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ABSTRACT 
 
 
 

Electronic Resonance Enhanced Coherent Anti-Stokes Raman Scattering Technique for 

Detection of Combustion Species and Biological Molecules. (August 2005) 

Sherif Fayez Hanna, B.S., Cairo University; M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Jerald A. Caton 
                                                          Dr. Robert P. Lucht 

 
 
 

The application of electronic-resonance enhanced (ERE) coherent anti-Stokes 

Raman scattering (CARS) for the detection of nitric oxide (NO) and acetylene (C2H2) is 

experimentally demonstrated and the effects of various parameters on the ERE CARS 

signal investigated. In addition, the detection of dipicolinic acid (DPA) using “normal” 

CARS is demonstrated.  

For NO detection, the frequency difference between a visible Raman pump beam 

and Stokes beam is tuned to a vibrational Q-branch Raman resonance of the No 

molecule to create a Raman polarization in the medium. The second pump beam is tuned 

into resonance with the rotational transitions in the (1,0) band of the A2Σ+-X2Π 

electronic transition at 236 nm, and the CARS signal is thus resonant with transitions in 

the (0,0) band. A NO gas cell was used for the experiment to detect NO at various 

pressure levels. A significant resonant enhancement of the NO CARS signal was 

observed and good agreement between calculated and experimental data was obtained.  

For C2H2 detection, ERE CARS experiments were performed in a room-

temperature gas cell using mixtures of 5000 ppm C2H2 in N2. Visible pump and Stokes 
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beams were used, with the frequency difference between the pump and Stokes tuned to 

the 1974 cm-1 υ2 Raman transition of C2H2. An ultraviolet probe beam with the 

wavelengths ranging from 232 nm to 242 nm is scattered from the induced Raman 

polarization to generate the ERE CARS signal. The effects of probe wavelength and 

pressure on signal generation are discussed.     

CARS was used to detect the 998 cm-1 vibrational Raman transition from a 

sample of polycrystalline DPA. The transition is the breathing ring vibration in the 

pyridine ring structure in the DPA molecule. The DPA 998 cm-1 transition is detected 

with excellent signal-to-noise ratio and the full-width-at-half-maximum is very narrow, 

approximately 4 cm-1. 
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CHAPTER I 

OVERVIEW OVER COHERENT ANTI-STOKES RAMAN SCATTERING 

(CARS) AND ELECTRONIC-RESONANCE-ENHANCED CARS 

 

The Electronic-Resonance-Enhanced (ERE) Coherent Anti-Stokes Raman 

scattering (CARS) technique is used in this thesis to detect and experimentally detect 

nitric oxide (NO) and acetylene (C2H2) in Chapters II and III, respectively. The first step 

towards its application to dipicolinic acid (DPA) involves performing conventional 

CARS experiments on DPA crystals, as presented in Chapter IV. ERE CARS is a variant 

of the conventional dual-pump CARS technique and both share many advantages, 

limitations and basic theory. In this Chapter, the theoretical background of CARS is 

reviewed with an emphasis on the modifications involved with the ERE CARS 

technique, the advantages of both techniques are discussed and the experimental 

considerations of both techniques briefly mentioned in relation to the work presented in 

this thesis. Eckbreth (1995) and Demtroder (1996) are recommended for in-depth 

treatments of CARS. In this Chapter, we only outline the more salient aspects of CARS.  

 

1.1. Comparison of CARS with Other Spectroscopic Techniques  

The choice of spectroscopic technique for a certain application depends on many 

factors that have to be evaluated on a case by case basis. In addition to the spectroscopic  

_________________________________ 

This dissertation follows the style of Combustion Science and Technology. 
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features offered by each diagnostic technique, the price of experimental system and as 

well as its complicity play a role in deciding on the system to use. Experimental systems 

for the CARS technique and its variants are in general more expensive than laser-

induced-fluorescence (LIF) or Raman scattering experiments, and more complicated. 

The spectroscopic features of the CARS technique make it attractive for combustion 

applications.  

Raman scattering and LIF, for example, are incapable of probing the highly 

luminous particle laden flames, which are typical for many practical combustion 

applications. This initiated the development of techniques with coherent characteristics, 

which include CARS. CARS offers major advantages over Raman scattering as briefly 

outlined in this section The coherent anti-Stokes Raman effect has no threshold. At same 

conditions, the CARS signals are orders of magnitude stronger than conventional Raman 

scattering signals. The coherence of the CARS signal permits complete collection and 

distinguishes it from the background. The demonstrated capability of CARS for 

measurements in hostile environments as a result of its coherence justifies its utilization. 

In other conditions, CARS permits single pulse thermometry with laser energies about 

an order of magnitude smaller than those associated with Raman scattering.  

One disadvantage of CARS is its complicated spectroscopic modeling 

requirements. Compared to Raman scattering, in which spectral synthesis is 

accomplished easily by an incoherent summation of all transition magnitudes. The 

spectra acquired by Raman scattering and modeled are relatively insensitive to Raman 

transition linewidths or precise spectral location. CARS spectra, on the other hand, 
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exhibits constructive and destructive interference effects and are sensitive to magnitude 

of the Raman linewidths and the precise spectral locations of the transitions. However, 

this disadvantage is being overcome with the development of software that emerged 

commercially in the last year.  

One other disadvantage mentioned by Eckbreth (1995) in his treatment of CARS 

is the line-of-sight optical access. Raman scattering can be detected with a single port, 

but CARS needs two ports of optical access for signal detection as stated by Eckbreth 

(1995). We believe that this statement might need reconsideration. In Chapter IV of this 

thesis, which demonstrates the detection of dipicolinic acid (DPA) by CARS in 

backscattering configuration, the potential for one optical port use for CARS signal 

detection is evident.  

In comparison with nonlinear Raman techniques, CARS, although not easy, is 

probably simpler than the other coherent Raman techniques. For example, stimulated 

Raman gain spectroscopy (SRGS) and Raman-induced Kerr effect spectroscopy 

(RIKES), encode the signal via beam modulation. In practical media, this approach can 

be prone to error caused by attenuation from soot, droplets, window fouling or varying 

refractive effects.  

 

1.2. Theoretical Background  

Eckbreth (1995) offered a detailed analysis of the classical treatment for the third 

order nonlinear CARS susceptibility and the quantum mechanical approach to develop 

an expression for it. The quantum mechanical approach is summarized in a number of 
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reviews by Druet and Taran (1981), Barrett and Begley (1981) and Prior (1984) and the 

main aspects of this treatment as emphasized by Eckbreth (1995) will be reviewed here 

as well. One general approach is to use time-dependent theory to compute the average 

dipole moment originating from the third power of the applied macroscopic electric 

fields. The bulk polarization P(3) is an average over all molecular orientations multiplied 

by the number density and the third order susceptibility is identified as the coefficient of 

various cubic field products. This leads to an expression for the susceptibility containing 

48 terms. Each term includes the density matrix element times the factor involving a 

product of four transition moments over all molecular states, illustrated in Fig. 1.1, 

divided by three frequency factors containing one of the frequencies or combinations of 

the frequencies of the applied fields. As explained by Fujimoto and Yee (1983), there are 

actually 1728 possible third order terms in the density matrix that could be reduced to 

348 terms if only the terms, in which a given field can interact only once, are considered. 

These terms can be further reduced if we consider that only 48 terms of these oscillate at 

ω1 – ω2 + ω0.  

Terms containing one of the frequencies can produce a very large third order 

nonlinear CARS susceptibility if one of these resides near a single photon absorption, 

known as electronic resonance CARS. Combinations of the frequencies can produce 

third order nonlinear CARS susceptibility χ(3) enhancements when they coincide with 

Raman resonances or two photon-absorptions. Terms not containing the appropriate 

frequencies can produce χ(3) enhancements when they coincide with Raman resonances 

or two photon absorptions. Terms not containing the appropriate frequency combinations 
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can be generally ignored. For CARS there are four processes which can contribute to 

susceptibility at ω3 = 2ω1 – ω2. The nonresonant processes result in a slowly varying 

contribution known as the nonresonant susceptibility, χnr, which is generally small but 

very important to CARS spectroscopy. As will be shown in the experimental scans 

acquired for NO ERE CARS in the following Chapter of this thesis, the nonresonant 

background can significantly interfere with the CARS signal and complicate the spectral 

features.  

The two photon process is important as an absorption spectroscopy. The Raman 

resonance process is the most important aspect of CARS. Omitting the detailed 

derivation outlined by Eckbreth (1995), one arrives at the following expression for the 

third order non linear CARS susceptibility  

(3)
3 1 1 2( , , , ) ab

CARS nr R
ab

χ ω ω ω ω χ χ− − = +∑  ……………………………………………   (1.1) 

where χR
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1 2( )
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R

ba ab

N
i

χ
ω ω ω− + − Γ

∼ ' ' ' '

' ' ' '3 3

an n b an n b

n nan a n b n a
i i

µ µ µ µ
ω ω ω ω

⎛ ⎞
× +⎜ ⎟⎜ ⎟− − Γ − − Γ⎝ ⎠
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ρ ρ× −∑  

2 1
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Fig.1.1. Various wave-mixing combinations contributing to CARS. Virtual and real 

states are indicated by dashed and solid lines (Eckbreth, 1995). Reprinted with 

permission from Laser Diagnostics for Combustion Temperature and Species by 

Eckbreth, A.C., 2nd Edition, 1995, Gordon and Breach, Amsterdam, The Netherlands. 

Copyright 1995 by Gordon and Breach.  

 

        

 

 



 7

where N is number density, µ the electric dipole matrix element between the states 

denoted, ρ the depolarization ratio between two states and Γ is the damping constant and 

related to the Raman linewidth through ∆υR = Γ / 2Π.  

In absence of one-photon electronic resonance, Nibler and Knighten (1979) 

reduced the above equation for the resonant electronic CARS susceptibility to 

( )2 4
1 0

4
2 2 1 2

8

2

a b

CARS
ab

j

n c N N

n i

σπ ε
χ

ω ω ω ω

∂
−

∂Ω=
Γ⎛ ⎞− + −⎜ ⎟

⎝ ⎠
=

 …………………………………………….   (1.3)   

 where n is the number density, ε0 permittivity of free space, ħ Planck’s constant / 2Π 

and ∂ σ/∂Ω is the differential cross section.  

The basis for diagnostic utilization becomes apparent in examining equation 1.3 

since the susceptibility is both density and temperature dependent. If the detuning of the 

frequency is defined as ∆ωj = ωj – (ω1-ω2), equation 1.3 can be rewritten as  

2
j

CARS j
j j

K
i

χ
ω
Γ

=
∆ − Γ

……………………………………………………………   (1.4) 

where 
2 4

1 0
4

2 2

(4 ) j
j

jj

n c N
K

n
π ε σ

ω
∆ ∂⎛ ⎞= ⎜ ⎟Γ ∂Ω⎝ ⎠=

…………………..……………………….....   (1.5) 

with ∆j defined as the fractional population difference between the states involved in the 

wave mixing. At resonance ∆ωj = 0. Considering the fact that there are a multitude of 

Raman resonance transitions and accounting for the nonresonant susceptibility, the full 

CARS susceptibility may be expressed as  

2
j j

CARS nr
j j j

K
i

χ χ
ω
Γ

= +
∆ − Γ∑ ……………………………………………………...   (1.6) 
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Yarkoni and Prior (1984) termed the CARS susceptibility in equation 1.6 the 

population susceptibility which can only be used for wave mixing frequencies far from 

electronic transitions. In the vicinity of electronic resonances, the 48 term expression 

must be employed; fortunately, just a few terms are predominant. To investigate 

electronic resonance CARS we have to examine equation 1.2. The effect of detuning into 

various electronic resonances is quite apparent in this equation. The Raman and anti-

Stokes electronic resonances multiply the term in brackets containing the state 

population densities. The pump laser ω1 resonance with ωna is very important due to the 

weighting of the (0)
aaρ than the Stokes laser ω2 resonance with ωnb which detracts from the 

susceptibility and is weighted by the upper vibrational level population, (0)
bbρ  in the 

ground electronic state. These resonances simplify the spectroscopy since a few 

dominant lines emerge in the CARS spectrum from all the transitions possible. Druet et 

al. (1978) emphasized that the perturbation expression for the third order susceptibility 

in equation 1.2 will not be applicable if the pump and Stokes intensities give rise to 

saturation and corrective terms may be applied. Except for the enhancement in the 

susceptibility, all of the features of resonance CARS are similar to conventional CARS. 

The equation of growth, treated in depth by Eckbreth (1995), and the requirement to 

phase match the process are the same.  

 

1.3. Experimental Considerations 

There is no formal intensity threshold for generating the CARS signal and as 

such, the experiments can be performed using continuous-wave (cw) laser sources as 
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demonstrated by Gustafson et al. (1982). With pulsed lasers, there is an imposed 

threshold, since a measurable number of signal photons needs to be generated during the 

pulse duration. In time-resolved measurements, the photon count needs to be statistically 

significant. Although a certain signal generation threshold is absent, high-intensity laser 

sources are required to generate CARS signals at higher intensity levels than the various 

sources of interferences. However, there are a number of factors which limit the laser 

irradiances used to generate the CARS signal. Eckbreth (1995) investigated the wave 

equation for the Stokes laser beam and examined the growth of the Stokes field. The 

stimulated Raman gain in which the Stokes wave is amplified via a Raman resonance by 

an intense pump beam can perturb the Stokes laser amplitude profile and lead to 

distorted spectra. This effect is generally unimportant at atmospheric pressure and 

below, but can become a significant factor at elevated pressure levels and should be 

avoided.  

Another limitation on the laser irradiances involved in CARS experiments is the 

perturbation of the population difference via stimulated Raman pumping between the 

two quantum states. This is treated in depth by Regnier and Taran (1974). State 

perturbation will be perturbed if the characteristic time for population pumping is less 

than or comparable to the laser pulse width. Because the expression for calculating the 

characteristic time for population pumping involves a product of the pump and Stokes 

laser irradiances, there is an upper limit imposed on the combination of both irradiances.  

Optical breakdown by intense electrical fields of the incident light waves also 

limits the laser beam energies. This factor is significant in particle-laden combustion 
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media such as in soot flames, where the focal fluxes cannot exceed a few tens of 

gigawatts per square centimeter.  

The selection of the laser source is an important factor in CARS experiments. 

Most CARS systems employ a frequency-doubled neodymium: YAG lasers for various 

reasons. They can be operated at high repetition rates up to 50 Hz, which expedites data 

collection and permits use of boxcar averagers. At repetition rates higher than 10 Hz, the 

experiment is nearly cw in behavior. This permits the improvement of the optical 

alignment of the laser beams at the CARS probe volume while the apparatus is running, 

a very important feature due to the critical alignment condition of CARS experiments. In 

addition, because most CARS experiments employ the Nd: YAG laser to generate the 

Stokes beam as well by pumping a dye laser, the 532-nm output of the Nd: YAG laser 

can pump very efficiently in the 550 to 700-nm region of the spectrum. Compared to 

ruby lasers, the CARS radiation from the Nd: YAG resides in a region of higher 

detection quantum efficiency than does the CARS generated from the 694.3-nm line of 

ruby. 

The Stokes beam may be employed in either narrowband or broadband mode 

depending on the spectral resolution, sensitivity or temporal resolution desired. For high 

spectral resolution a tunable, narrowband dye laser is used to generate the Stokes beam. 

The dye laser is scanned across the Raman transition to generate the CARS spectrum 

piecewise. The spectral resolution in this case is limited by the linewidths of the laser 

sources. However, some applications require broadband Stokes beam utilization. In 

nonstationary and turbulent combustion diagnostics, spectral scanning will result in 
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distorted spectra weighted towards the high-density, low-temperature excursions due to 

the nonlinear dependence of the CARS signal in such media on temperature and density. 

As such, true time average cannot be obtained. To overcome such problems, a 

broadband Stokes beam source can be used. Although the Stokes beam intensity in the 

broadband case is less, resulting in weaker CARS signals, it generates the entire CARS 

spectrum with each pulse. This permits instantaneous measurements of medium 

properties and the from a time series of instantaneous measurements, the probability 

function of a given parameter can be assembled and the true time average and magnitude 

of turbulent fluctuations can be obtained.  

Excimer lasers have been used in CARS systems as demonstrated by Marowsky 

et al. (1986). Their high repetition rates and pulse energies make them attractive to 

employ, yet the poor beam quality of excimer lasers limits its use to generating the 

CARS beams rather than being directly used in the CARS generation process. It is used 

as a pumping source for two dye lasers, one which serves as the pump beam and the 

other serves as Stokes beam.  

Alignment of the three laser beams is critical to the success of the CARS 

experiment. If the three beams are aligned parallel to each other before being focused in 

the CARS probe volume, they will cross at the focal point of the lens by definition. 

However, due to wavefront sphericity and chromatic aberration, the beams will not waist 

at the crossing point. Adjustable telescopes in the path of two beams, if three different 

wavelengths are used, are necessary for adjusting the position of the waist. A pinhole of 

smaller diameter than the smallest beam waist is used as a preliminary alignment tool to 
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ensure that the three beams cross at the focal point. The telescopes also permit the focal 

diameter to be varied. In unsteady and turbulent media, the Stokes beam diameter should 

match or even exceed the pump beam diameter to account for beam steering.   

   Other factors that influence the CARS experiment and have to be taken into 

account are the normalization of the CARS signal and single pulse statistics. 

Normalization of the CARS signal is used to account for effects of pulse-to-pulse laser 

power fluctuations, long term power drifts, spectral variations of dye power due to 

decaying dye solution and temporal changes in the optical alignment on the CARS 

spectrum. Single pulse statistics are used to account for multimode operation of the 

lasers. Eckbreth (1995) offers a detailed treatment of these factors.  

 

1.4. Dissertation Outline 

   This dissertation is divided into five chapters. After this brief introduction to 

coherent anti-Stokes Raman scattering (CARS) in Chapter I, Chapter II presents the 

results obtained by performing nitric oxide ERE CARS experiments and a detailed 

discussion of its significance. The numerical and experimental results are compared to 

show the success of the experiment. The experimental investigation of ERE CARS for 

acetylene detection is presented in Chapter III, followed by the detection of dipicolinic 

acid by conventional CARS in Chapter IV and a detailed discussion of its potential for 

biological agents’ detection. The dissertation is concluded in Chapter V with summary 

of the results and recommendations for future research.     
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CHAPTER II 

ELECTRONIC–RESONANCE–ENHANCED (ERE) COHERENT ANTI-

STOKES RAMAN SCATTERING (CARS) SPECTROSCOPY OF NITRIC 

OXIDE 

 

A three-laser electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman 

scattering (CARS) technique for the measurement of minor species concentration in 

combustion processes has been demonstrated by Hanna et al. (2003). The frequency 

difference between the visible Raman pump beam and Stokes beam is tuned to a 

vibrational Q-branch Raman resonance of the nitric oxide (NO) molecule to create a 

Raman polarization in the medium. The ultraviolet probe beam is tuned to a resonance 

with rotational transitions in the (1,0) band of the A2∑+-X2Π electronic transition around 

236 nm, and the CARS signal is thus resonant with transitions in the (0,0) band. 

Significant resonant enhancement of the NO CARS signal was demonstrated and good 

agreement between theory and experiment was obtained.  

 

2.1. Motivation 

Development of new spectroscopic methods for detection of the NO molecule 

has gained a lot of attention in the last few years. Since the passage of the Clean Air Act 

in 1970, levels of five of the six most harmful pollutants have decreased in the 

atmosphere. The concentration levels of the different nitric oxides (NOx), in contrast, 
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have increased since that time according to recent reports from the U.S. EPA Office for 

Air Quality Planning and Standards (2000).   

NO and NO2 molecules are emitted during combustion processes, with NO being 

the major species in terms of concentration (Colls, 2002). As such, most concentration 

measurement techniques focus on the NO molecule. In very small quantities, NO plays a 

significant role in biological processes in human body. An entire journal, NO, is devoted 

to the study of NO involvement in the different vital body processes. In large quantities, 

around 50 ppm, NO exposure can slightly agitate the mucous membranes. Between 60-

150 ppm the unhealthy effects of exposure to the NO molecule include coughing, 

shortness of breath, and burning of throat. Above these levels NO can be lethal and 

deadly, even for short exposure times. The NO molecule also has devastating effects on 

the environment as it oxidizes to NO2 which in turn reacts to form ozone and nitric acid, 

which constitutes the major component of acid rain.  

Considering its effects, many regulations have been developed to restrict the 

emission of NO in combustion streams. This in turn necessitated the advancement of 

different technologies to detect NO, measure its concentration and to reduce it to an 

acceptable level. The emission of NO from gas turbines is limited to 9 ppm in many 

states, for example. One of the major advantages of laser-based technologies is the non-

intrusive nature of the methods and the real-time capability of the measurements. 

A significant advantage of the ERE CARS technique is its enhanced selectivity 

due to the requirement of simultaneous vibrational and electronic resonance for signal 

generation. In our research, a three-color laser technique is used. The probe beam is an 
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ultraviolet laser beam with the frequency tuned into electronic resonance with specific 

transitions in the NO molecule. The first pump and the Stokes beam are visible laser 

beams with frequencies far from resonance with the A2∑+-X2Π electronic transition. The 

wide separation of the frequencies of the pump beam and probe beam is a major 

advantage for this technique compared to previous ERE CARS experiments that featured 

the same laser frequency for both the pump and probe beams and with both the pump 

and Stokes beams at or near the electronic resonance. These previous experiments are 

well represented by Attal-Tretout et al. (1977), Doerk et al. (1995) and Doerk et al. 

(1997b).     

Another motivation for this research is the need for developing ERE CARS 

techniques for probing hydrocarbon species. The NO ERE CARS experiments is the first 

step in developing this technique and gaining experience with the experimental system, 

as well as evaluate a theoretical model with a well studied molecule like NO. The 

enhanced selectivity feature becomes more emphasized in detecting hydrocarbon 

species.   

Moreover, the detection for NO by ERE CARS is the first step in developing a 

detection method for biological spores such as anthrax. Because NO is a well studied 

molecule and the literature contains numerous papers with its spectroscopic data, it 

serves as an excellent probe molecule for developing this technique for detection of 

biological molecules, as discussed in Chapter IV. Scully et al. (2002) propose the use of 

FAST CARS to detect anthrax, and NO ERE CARS is the first step in this direction. 
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2.2. Previous Related CARS Research 

The ERE CARS technique described in this thesis is a variant of the dual-pump 

CARS technique developed for the simultaneous detection of two species. Lucht (1987) 

demonstrated the use of a three-laser CARS technique for simultaneous detection of 

spectra from two species. In this study, a narrow-band tunable dye laser was used to 

produce one of the CARS pump beams. The frequency difference between the spectra of 

the two species was adjusted by changing the frequency of the dye laser pump beam, 

enabling the spectra to be displayed on the same intensified diode array detector. This in 

turns permits the determination of the temperature and mole fractions simultaneously. 

An advantage of this technique is that the relative intensity of the CARS signals is not 

dependent on the relative intensity of the pump and Stokes beams or on the geometry of 

beam overlap in the CARS probe volume. Dual-pump CARS is especially attractive for 

investigating flames with severe temperature gradients and high species concentrations 

changes.  

Lucht et al. (2003) demonstrated the application of dual-pump CARS in 

measuring the temperature and carbon dioxide concentration in laboratory flames, in a 

gas cell at room temperature and on an engine test stand in the U.S. Air Force Research 

Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd: 

YAG laser and an unintensified back-illuminated charge-coupled device digital camera 

were used to perform these measurements. The CARS measurements were performed on 

a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole 

fractions determined from single-shot dual-pump CARS spectra in steady laminar 
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propane/air flames were approximately 2% and 10% of the mean values at 2000 K and 

0.1, respectively. The precision and accuracy of single-shot temperature measurements 

and of CARS temperature measurements were comparable to the findings in various 

literature sources. The application of dual-pump CARS for single-shot measurements in 

a swirl-stabilized combustor was also demonstrated. 

The advantage of the ERE CARS technique presented in this thesis, which 

features wide separation of the frequencies between the two pump beams and between 

the Stokes and first pump beam and the resonance, is evident when compared to 

previous research. These experiments were performed with same laser frequency for 

both pump beams and with the pump and Stokes beams near electronic resonance. Attal-

Tretout et al. (1977) discuss the implementation of the electronically enhanced CARS 

technique in gases and report the first experimental observation of this effect in I2 vapor 

at 1 millibar.    

Doerk et al. (1995) applied resonance enhanced CARS with narrow separation of 

frequencies of the beams to the CH radical produced in a microwave excited Ar/CH4 

plasma. The electronic A2∆-X2Πr transition of the CH radical was probed and rotational 

lines up to N=15 and υ=2 were measured. Good agreement with previous measurements 

by application of LIF technique was observed. The study suggested the re-evaluation of 

the assumption of quadratic density dependence of the integrated CARS signal to 

account for uncertainties in their measurements. These uncertainties could have been the 

result of saturation that at the time was roughly accounted for in literature. Due to the 

relatively good agreement between the rotational temperatures measured with resonant 
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CARS by Doerk et al. (1995) and LIF measurements in similar environment, the 

experimental error seems to be tolerable.  

Doerk et al. (1997a) extended the investigations mentioned above to test their 

resonant CARS results more precisely by comparing the results with LIF measurements 

on the same transition. These measurements delivered a calibration of the resonant 

CARS system and therefore enabled absolute density determination. One important 

conclusion of this comparison is the suitability of LIF and resonant CARS for the 

diagnostics of minor species, and the preference of one technique over the other depends 

on the experimental limitations. For successful application of LIF, the emission in the 

spectral region of the LIF signal has to be significantly lower than the LIF signal itself. 

The saturation of the detection system, in this research a photomultiplier tube, by the 

luminescence from the plasma or flame, has to be avoided. The quenching effects have 

to be negligible as well. If conditions are suitable, LIF offers about one order of 

magnitude higher sensitivity. However, in luminescent flames and plasmas, where LIF is 

not suitable, resonant CARS is superior.  

In other experiments utilizing ERE CARS, the three laser beams frequencies 

were all in or near electronic resonance. Attal-Tretout et al. (1990) used a resonant 

CARS system to obtain spectra of the OH radical in high pressure flames. Three 

separately tunable lasers were used to achieve optimal enhancement, and the spectra 

observed were fit by using numerical computations. This permitted the estimation of the 

collisional broadening parameters for one-photon, ground and excited electronic state 

vibrational Raman transitions. The technique was also used by Attal-Tretout et al. (1990) 
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for temperature measurements by slight detuning of a single pump laser frequency. The 

technique proved promising for high pressure flames as concluded from this study. 

 

2.3. Spectroscopic Research on the NO Molecule 

The importance of the NO molecule has prompted different research venues in 

the combustion community to detect the molecule, study its spectroscopic properties or 

invent methods to reduce its concentration. In this section, we discuss the some notable 

previous research projects concerning the NO molecule. Many findings published in 

these research projects were used in our research project. In addition, a general overview 

over the current NO research will be presented.  

The reduction or elimination of the non-resonant background is necessary for 

detection of minor species using CARS. Rahn et al. (1979) obtained background-free 

CARS spectra of carbon monoxide in a rich methane-air flame. The principles of 

background-free CARS were derived and the different polarization techniques used to 

suppress the background were discussed. The original intent of their research was to 

demonstrate the capabilities of CARS for measuring minor species concentrations 

together with temperature when the background is suppressed. These new capabilities 

were based on manipulation of polarization-dependent properties of CARS signal. 

Suppressing the non-resonant background led to an increase of signal-to-noise ratio by a 

factor of two hundred. The method used was applicable in crossed beam, phase-matched 

geometries and thereby offered at the time the potential of precise spatial resolution. 

This technique was used later in our experimental system to suppress the non-resonant 
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background, which led to a significant increase in signal-to-noise ratio as will be 

discussed.  

Laane and Kiefer (1980) theoretically investigated interference effects in the high 

resolution CARS spectra of gases by calculating the CARS spectra of two individual 

lines and of the diatomic molecules O2, N2 and NO for a number of different linewidths. 

In high-resolution CARS spectra of the Q-branches of diatomic molecules, considerable 

interference between the lines occurs due to the contribution of the real part of the 

susceptibility, causing asymmetry in the band profiles. This interference is subject to 

variation with the pressure broadening of the linewidths at high and medium pressures 

and it also depends on the Doppler broadening at low pressures.  

Lempert et al. (1984) experimentally measured self-broadened NO Q-branch 

spectra in the pressure region ranging from 20 to 100 KPa. The J- and Ω- dependent 

pressure broadening coefficients were determined. The observed collisional narrowing 

was analyzed using a relaxation matrix theory, in which previous experimental results 

were incorporated together with theoretical values of NO rates. Assuming the near 

equivalence of off-diagonal relaxation matrix elements to rates, the fitting law approach 

was used to reproduce all available spectroscopic data for the NO molecule. Good 

agreement between experiment and theory was observed. The results obtained by Laane 

and Kiefer (1980) and Lempert et al. (1984) for the NO molecule were used in this thesis 

to provide the spectral data needed for performing least-square fits of theoretical spectra 

to the experimental spectra obtained using ERE CARS. 
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Huo et al. (1985) observed a large optical Stark effect in the two-photon 

spectrum Х2П →A2Σ+ in the NO molecule. It was explained as a near-resonant process 

in which the upper state of the two-photon transition is perturbed by interactions with 

higher-lying electronic states coupled by the laser field. A theoretical method has been 

developed that should be uniquely applicable to near-resonant Stark effects. Several 

aspects of the model were found to be essential to reproduce the features in the NO 

spectra. The time-dependent Schrödinger equation was solved directly since perturbation 

methods were unsuccessful. Similar observations were made in the ERE CARS results 

as will be discussed later. It is worth mentioning that Huo et al. (1985) did not discuss 

different results previously reported in literature by Johnson and coworkers. Further 

Stark effect studies in the NO molecule were performed by Deng et al. (1997), who 

measured Stark shifts and broadening on several multiphoton resonant rotational-

vibronic levels in NO. The levels and wavelengths were chosen so that the number of 

ions produced was minimized and complications due to space charge were avoided. The 

study concluded that the Stark effects are independent of pressure. The same conclusion 

was previously reported by Pratt (1989) in a lower pressure range. In contrast to former 

results published in literature, Pratt (1989) reported a constant ac-Stark-broadened 

linewidth for pressures between 2 x 10-4 and 10 Torr. Pratt (1989) addressed the 

discrepancy between his results from those of Johnson and coworkers, and attributed the 

difference to saturation effects.    

Pott et al. (1998) used a CARS system to study the reduction of NO by 

microwave-generated N2 plasma under atmospheric pressure. The detection of NO at 
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atmospheric pressure by CARS was limited to 2500 ppm. Using polarization-sensitive 

background reduction techniques as outlined by Rahn et al. (1979), the detection limit 

was reduced to 200 ppm.  

Doerk et al. (1997b) used folded BOXCARS to detect NO in the atmosphere. 

The observed NO CARS spectra included the first hot band in temperature range from 

300 K to 800 K. The detection limit of NO reported is 25 % in nitrogen under 

atmospheric pressure. For reasons not fully explained, the down scaling of the signal by 

polarization techniques was not successful. The weakness of the signal was attributed to 

the presence of NO2, which disturbed the measurement because of the strong absorption 

suffered by the laser beams in the plasma medium. It is worth mentioning that the 

spectra reported by Doerk et al. (1997b) and Pott et al. (1998) were just barely 

discernable from the background signal, a problem that we overcame as reported in this 

thesis and by Hanna et al. (2003).  

Collisional studies for the NO molecule were performed by Chang et al. (1992). 

They investigated the A2Σ+-X2Π electronic transition in the NO molecule, measuring 

collision-broadening and pressure-shift coefficients in the NO (0,0) band at 226 nm. 

Data were obtained for nitrogen and argon colliders for variety of different rotational 

quantum numbers. The results confirmed that the room-temperature broadening 

coefficient for the NO ultraviolet transitions is very large, approximately a factor of 

three greater than for ultraviolet transitions of OH. Their measurement of pressure shifts 

indicated that these too are quite significant and must be considered for high-pressure 

diagnostic applications. Measurements were performed at room temperature and 2800 K 
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and in all the profiles, evidence of collision-induced lineshape asymmetries was 

observed.  

Other NO electronic transitions in the ultraviolet have been studied by various 

researchers. Ebata et al. (1983) used two tunable dye lasers to measure the double- 

resonance-enhanced four-photon ionization spectra and fluorescence dip spectra of nitric 

oxide, simultaneously. The spectra showed clear rovibronic structure for the 2Σ+ and 2Π 

states in the third-photon region between 65,000 and 70,000 cm-1. Laser power 

florescence dip and ionization signals were analyzed using kinetic rate equations. The 

absorption cross sections for various transitions were obtained. In addition, by varying 

the delay time between the pulses from the first and second dye lasers, Etaba et al. 

(1983) observed collision-induced rotational relaxation in the A2Σ+ state. The relaxation 

rate was found to be comparable to the electronic quenching rate.  

Piper and Cowles (1986) measured the branching ratio for the NO γ bands. They 

showed that the electronic transition moment for the NO (A2Σ+-X2Π) transition varies by 

about 40% over the r-centroid range of 1.13-0.97 Angstroms. Combining this transition-

moment variation with radiative lifetime measurements they provided a complete set of 

Einstein coefficients for NO (A-X) transitions for υ' = 0-2.  

Wysong et al. (1989) studied the spectral overlap between the O atom two-

photon transitions and one-photon O2 and NO transitions near 226 nm. They were 

investigating the effect of excitation of photodissociating O2 levels on measurement of O 

atoms concentration in flames. They conclude that excitation of O3P1 will minimize the 

photochemical interference in the O-atom measurements.  
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Wang et al. (1996) excited the gamma system A2Σ+-X2Πr of nitric oxide 

isotopomers using an anode glow of a two column hollow cathode discharge tube and 

recorded the spectra in the spectral region 214 – 273 nm with medium resolution. They 

reported the gamma system of 15N18O and several bands of 14N18O for the first time. In 

addition, the rotational structure of the 0-1, 0-2 and 0-3 bands of 15N18O of this system 

was also recorded with high resolution. The results were analyzed with a global fit using 

the wavenumbers for the above mentioned states, the infrared vibration-rotation 

absorption bands of the X2Πr state from the literature, and an effective Hamiltonian 

method for the 2Π state.  

Paul (1997) provides a summary of relations and spectroscopic parameters 

required for the accurate prediction of transition frequencies and rotational line strengths 

of the gamma bands of NO. These relations and parameters take into account the effects 

of finite centrifugal distortion, higher order spin-orbit coupling and lambda-doubling. 

The magnitude of the correction is found to increase with rotational number to levels of 

5-15 % for values of J › 50. The corrections are more important for the satellite as 

compared to the main branch transitions.  

Luque and Crosley (1999a) used dispersed fluorescence scans of the A-X (4, ν") 

and D-X (0, ν") progressions of nitric oxide, after two-photon excitation, to determine 

the electronic transition moments of these band systems. The measured collision free 

lifetimes of 206 +/- 7 ns for the A2Σ+, ν'=0 and 18+/- 1 ns for D2Σ+, ν'=0 were used to 

place transition probabilities on an absolute basis and estimate various cross sections and 

branching ratios. The two-photon excitation of A–X (4,0) had an unusual intensity 
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distribution, probably due to interference between the intermediate states in the 

excitation or due to anomalies associated with photoionization.  

Laser-induced-fluorescence (LIF) has been used extensively to measure the 

concentration of the NO molecule in flames, combustion exhaust streams and in 

combustion devices, and to obtain additional spectroscopic data for the NO molecule. 

The group of Prof. Laurendeau and coworkers at Purdue University has performed a 

series of experiments to probe NO with LIF and selected publications are discussed in 

this paragraph. Cooper and Laurendeau (2000) report spatially resolved, linear LIF 

measurements for NO in high pressure spray flames. The laser was tuned to the Q2 

(26.5) transition of the γ (0, 0) band. The resulting fluorescence was detected in a 2-nm 

region centered on the γ (0, 1) band. The objective of the study was to assess the possible 

interferences due to oxygen and to evaluate the application of LIF in high pressure 

flames. Quantitative radial NO profiles were measured at different pressures and 

analyzed to understand the operation of lean-direct injectors for gas turbines combustors. 

An empirical relation was obtained from downstream NO measurements in LDI flames 

to correlate the NO concentration with overall pressure.  

Charleston-Goch et al. (2001) performed NO concentration measurements using 

LIF in flames fueled with synthesized coal-gas, The flame temperatures varied from 

1535 to 1790 K and the pressures were between 1.0 and 12 atm. Detailed analysis to 

establish the relation between the NO concentration and the air-to-fuel ratio, type of fuel, 

flow rate and axial distance was performed in the burnt gas for a series of laminar, 

premixed, low calorific value gas flames containing H2, CO and CH4 as the combustible 
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species. The results were compared to the results of two different kinetic mechanisms to 

examine the validity of these mechanisms for the regimes investigated.  

Naik and Laurendeau (2002) measured the NO concentration using the LIF 

technique in counter-flow diffusion flames at atmospheric pressure, utilizing methane as 

the fuel. Different levels of nitrogen were injected into the fuel stream or into the 

oxidizer stream and the flames were investigated at a 20 s-1 strain rate. The NO molecule 

was excited at 224.45 nm in the γ (0,0) band. The results were modeled using OPPDIF 

with GRI Mech-3.0. The excitation scans indicate no significant change in the 

background for oxygen-rich as compared to air-rich flames with no notable interference 

from other species. Axial profiles of NO were also obtained. Good agreement between 

model and experiment was obtained for temperatures below 2600 K. Above this 

temperature the agreement between model and experiment was not as good due to 

radiative heat loss and soot formation, suggesting the need for a combined soot 

formation and radiation model for these flames.  

Khadiya and Glumac (2001) obtained NO profiles in H2/O2/NH3 stagnation point 

flames using LIF measurements for a wide range of equivalences ratios and substrate 

temperatures. The flames were stabilized against platinum substrates. The NO LIF 

measurements were used to investigate and optimize gas-phase and surface chemical 

models of NO destruction. The experimental results were compared with a one-

dimensional stagnation flow model that incorporates full gas-phase chemistry, 

multicomponent transport and detailed surface chemistry. Good agreement was obtained 
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for a limited range of operating conditions. At low temperatures, the mechanism 

underpredicts the NO removal rate, while at high temperatures it does the opposite.  

Bessler et al. (2002) used planar laser-induced fluorescence (PLIF) images to 

measure NO concentrations in premixed laminar flames from 1-60 bar by exciting the A-

X (0,0) band. The effects of various factors on LIF measurements of NO concentrations 

such as the gas composition, oxygen molecule interference, variation of local 

temperature and laser attenuation were studied. The interference from the oxygen 

molecule was found to produce an error of 25% in a lean 60 bar flame, which brings into 

question the effectiveness of the supposedly minimum O2 – LIF contribution scheme 

used for NO detection. The dependence of the NO concentration on the temperature was 

found to be lower than 15%, which was attributed to the fact that different effects cancel 

out. Bessler et al. (2002) reported a 40% error in NO concentration due to laser and 

signal attenuation by interacting gases such as CO2 and by water vapor, despite the small 

scale of the flame in their experiment. The latter finding has prompted research to 

understand the dynamic range of the correction needed to minimize errors.  

              

   2.4. Sensor Technology and UV Generation Methods    

Due to strict environmental regulations regarding the emission of NO from 

combustion processes and the continuous development of new versions of gas turbines, the 

need for on-site sensors for continuous NO concentration measurements and the 

measurement of  pollutant concentration as a whole, much research activity has been 

devoted to the development of NO sensor technology. A good overview of the main types 
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of NO sensors can be found in a Vaught Engineering Corporation report (1999). Anderson 

(2003) provides an excellent overview of the advantages of diode-laser-based 

technologies. Diode-laser-based sensors offer the potential for continuous, real-time 

measurements of pollutants concentration. This feature makes this sensor technology easy 

to incorporate into control schemes to optimize the combustion process and minimize 

emissions, as demonstrated by Furlong et al. (1999).  The disadvantage of this technology 

is that it is expensive in comparison with competing technologies. However, the price of 

diode lasers has been constantly declining due to the interest of the telecommunication 

community in diode lasers and the widespread use of these lasers in fiber optic 

communication.  

Compared to CARS or DFWM, diode-laser-based sensor technology is much 

cheaper and simpler, yet it lack the accessibility to spectral features of NO that is provided 

by these laser diagnostics methods. Absorption based sensors operating in the IR domain 

were first used to probe the NO molecule. Many research groups have made measurements 

in the second overtone (3, 0) absorption band of NO. Sonnenfroh and Allen (1997) used an 

experimental distributed feedback (DFB) laser operating a 1.8 µm to measure NO in 

several media. The spectral lines probed were chosen carefully to minimize water vapor 

interference with the NO spectra. An absorption cell was used for the room temperature 

measurements, and a hydrogen/air flame, imbedded with NO flow, was used for the high 

temperature measurements. Although water vapor showed significant interference at the 

wavelength probed, the sensitivity reported in these experiments was 140 ppm per meter.  

Several other groups also reported NO measurements using this same wavelength [Kessler 
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at al. (1997) and Mihalcea et al. (1998)]. These studies differed in flames used and spectral 

lines probed, selected specifically to minimize water vapor interference, and the sensitivity 

varied according to the proper selection of spectral lines.  

Oh and Stanton (1997) acquired NO spectra in the first overtone (2, 0) absorption 

band of NO at 2.65 µm. Using a single-mode diode laser cooled by liquid nitrogen at 183 

K, they performed sub atmospheric measurements of NO in an absorption cell, probing the 

Λ-doublet components of the 2Π3/2 R (16.5) transition of NO in the (2, 0) band. These lines 

were used to avoid water vapor interference. The detection limit reported was 15 ppm per 

meter, which was achieved by using modulation spectroscopy.  

With the development of quantum cascade (QC) lasers, the range of NO detection 

shifted to the fundamental absorption band of NO in the mid-IR. The detection limit in 

these experiments was reduced to low as 3 ppb in a100-m path as demonstrated by Menzel 

et al. (2001). These low detection limits were achieved only in NO absorption gas cells. 

The QC lasers also used for cavity ringdown spectroscopy (CRDS) as demonstrated by 

Kosterev et al. (2001). These low detection limits were achieved only in NO absorption 

gas cells.   

The IR detection of the NO molecule has the advantage of simplicity for the optical 

system, because no frequency conversion is needed. However, this simplicity 

compromises the spectral features of the scans for many reasons. The spectra acquired in 

the IR region for NO suffer from interference with water vapor and CO2. These are the 

major components of combustion exhaust streams and therefore isolated NO lines have to 

be located and probed. Even then, the absorption lines of the other molecules usually 
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overlap with the isolated line due to high concentrations that broadens the lines. In 

addition, the IR transitions are relatively weak, especially for overtone transitions.  

These shortcomings of IR NO sensors prompted us to develop an NO sensors 

working in the UV range. Strong energy level transitions in the UV as opposed to weak IR 

transitions offer higher sensitivity, and the absence of molecules that interfere with the NO 

spectra in the UV domain enhances selectivity and eliminates interferences. Because no 

readily available diode laser source for UV radiation exists, different frequency conversion 

processes have been utilized. Second harmonic generation (SHG) was chosen for the ERE 

CARS experiment to produce a 236 nm UV beam by frequency doubling the dye laser 

output at 472 nm. SHG has been previously used by Hancock et al. (2002) to generate UV 

radiation at 430 nm to probe excited argon atoms. The output of an 860-nm diode laser 

was doubled in a KNbO3 crystal to obtain this wavelength. Ray et al. (2001) used 

frequency-quadrupling of a 1064 external cavity diode laser to study the OH molecule at 

266 nm. The first stage of frequency-doubling of the 1064 nm radiation to produce 532 nm 

radiation was performed using a periodically poled lithium niobate (PPLN) crystal, and a 

beta-barium borate (BBO) crystal was subsequently used to generate 266 nm radiation to 

allow OH absorption scans at this wavelength. Koplow et al. (1998) measured NO at 215 

nm using frequency-quadrupling of a DFB diode-laser-seeded tapered amplifier output at 

860 nm, a very expensive device.  

However, the need for other frequency techniques presented itself because simple 

SHG could not produce UV radiation at other wavelengths to probe specific lines such as 

the 226 nm NO line. Tunable diode lasers (or any compact size lasers) are not available to 
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scan a wide range. In the ERE CARS experiment, the compact size was not a priority and 

therefore, the radiation of a dye laser was used and frequency-doubled. In sensor 

technology however, compact size is key. Another non-linear technique, sum frequency 

generation (SFG), was utilized to access other NO spectral lines. Corner et al. (2002) 

probed the OH molecule at 309 nm by sum frequency mixing of a 404-nm diode laser with 

a 1320-nm DFB laser in a BBO crystal, producing 0.8 nW of UV radiation. Alnis et al. 

(2000) utilized a BBO crystal to generate 254-nm radiation for detection of mercury atom 

by sum frequency mixing of the 404-nm and 688-m outputs of separate diode lasers. They 

report that 0.9 nW of 254-nm radiation were produced.    

Lucht and coworkers at Texas A&M University and at Purdue University have 

used sum-frequency-generation to produce 226-nm radiation for the detection of NO in the 

UV region. Hanna et al. (2002) developed and demonstrated an all-solid-state continuous-

wave laser system for ultraviolet absorption measurements of nitric oxide (NO) molecule. 

The single-mode, tunable output of a 10-mW, 395-nm external-cavity diode laser (ECDL) 

was sum-frequency-mixed with the output of a 115-mW, frequency-doubled, diode-

pumped Nd: YAG laser in a beta-barium-borate crystal to produce 40 nW of tunable 

radiation at 226.8 nm. The wavelength of the 395-nm ECDL was then scanned over NO 

absorption lines to produce fully resolved absorption spectra. Initial results from mixtures 

of NO in nitrogen in a room temperature gas cell were reported and the estimated NO 

detection limit of the system for the demonstrated absorption sensitivity of 2 x 10-3 is 0.2 

ppm per meter of path length for 300 K. The estimated accuracy of the measurements is 

+/- 10%. 
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Fig.2.1. Energy level schematic diagram of the dual-pump ERE CARS process. 
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Anderson et al. (2005) built on the above encouraging results and demonstrated the 

use of the above NO sensor for field measurements in the exhaust streams of a gas turbine 

and a well-stirred reactor. Increasing the power to 325 +/- 75 nW of ultraviolet radiation at 

226.8 nm, corresponding to the (υ'=0 and υ"=0) band of the A2Σ+-Х2П electronic transition 

of NO, they were able to demonstrate the full capability of the sensor to resolve the 

absorption spectrum and accurately measure the NO concentration in actual combustion 

environments. The sensitivity was estimated to be 0.23% corresponding to a detection 

limit of 0.8 ppm in 1 m for 1000 K gas. These results are very encouraging and show that 

the sensor technology for NO detection is very promising. Currently the same group at 

Purdue is developing a variety of sensors for various combustion species.    

  

2.5. Energy Diagram for ERE CARS for NO Molecule Detection 

Figure 2.1 represents the schematic level diagram of the electronic resonance 

enhanced (ERE) CARS system for NO molecule detection. The first pump beam at ω1 and 

the Stokes beam at ω2 are visible laser beams with frequencies far from resonance with the 

A2Σ+-X2Π electronic resonance. The second pump beam at frequency ω3 is at or near 

electronic resonance. As mentioned before, the wide separation of the frequencies of the 

first pump and second pump beams distinguishes this experiment from previous ERE 

experiments. The Raman polarization in the medium is established when the Stokes laser 

is tuned so that the frequency difference between the first pump beam at ω1 and Stokes 

beam at ω2 is equivalent to a Raman resonance of the NO molecule. The second pump 

beam at ω3 scatters from the Raman induced polarization to produce the CARS signal at 
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ωCARS. δR and δe are the detuning from the Raman resonance and the electronic resonances, 

respectively. The wavelengths of the Stokes beam and the second pump beam are varied to 

scan the resonance. One wavelength is scanned at a time while the other beam’s 

wavelength is held constant. The wavelengths for NO ERE CARS are approximately 532 

nm for the first pump beam, 236 nm for the second pump beam, and 591 nm for the Stokes 

beam to produce a CARS signal at 226 nm.  

 

2.6. Experimental System    

 A schematic of the experimental system is shown in Fig 2.2. The laser source for 

the first pump beam at ω1 was a Continuum model 9010 injection-seeded, Q-switched Nd: 

yttritium-aluminum-garnet (YAG) laser with a repetition rate of 10 Hz, pulse length of 

approximately 7 ns, and pulse energy for the second harmonic production at 532 nm of 

approximately 750 mJ. During the acquisition of the high-pressure NO ERE CARS scans, 

the seeder was not working in a consistent manner and its operation had to be monitored 

regularly on an oscilloscope to judge its performance and its effect on the scan. The 532-

nm pump beam was directed through a series of reflections from 532-nm mirrors to the 

CARS probe volume. Along this path, 85% of the energy of the 532-nm beam was 

reflected by a beamsplitter to pump a Continuum ND6000 narrowband, tunable dye laser 

to produce the Stokes beam at ω2. Before passing through the 15-85% beamsplitter, the 

output of the 532-nm laser beam was directed through a half-waveplate and polarizer 

combination to control the energy of both the first pump beam and the Stokes beam.  
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Fig.2.2. ERE CARS system schematic for measurements of NO. 
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It was necessary to control the laser power in case of breakdown of the medium 

or saturation of the transition.  In addition, separate control of the pulse energy for the 

532-nm pump beam was provided through another combination of half-waveplate and 

polarizer after its passes through the beamsplitter. The 532-nm beam, after passing 

through the polarizer, becomes linearly polarized with the polarization axis at 60 degrees 

to the vertical as shown in Fig. 2.3. This polarization is necessary for minimization of 

the non-resonant background. The first pump beam also passes through a delay line to 

ensure that all three beams are overlapped in time at the CARS probe volume.  

A Continuum ND6000 narrowband, tunable dye laser is pumped by a portion of 

the 532-nm output from the 9010 Nd: YAG laser to produce the Stokes beam at ω2 with 

about 10% efficiency. The laser dye used was Rhodamine 610 (Rh 610), purchased from 

Exciton, and dissolved in methanol. The concentration of Rh 610 in the oscillator was 214 

mg/l and in the amplifier it was 37 mg/l. This dye solution provided excellent durability, 

efficient conversion of energy and wide tuning range that proved advantageous in the first 

stages of the experiment, when the wavelength of the Stokes beam for resonance was not 

precisely determined. The output of the Stokes dye laser was near 591 nm with a 

frequency bandwidth of approximately 0.08 cm-1. The Stokes beam was directed through 

multiple reflections by AR-coated prisms to the probe volume. Along the path, it was 

directed through a half-waveplate and polarizer combination to control its power and to be 

linearly polarized at 60 degrees to the vertical as shown in Fig. 2.3. This, as mentioned 

above, polarization was used to suppress the non-resonant background.  
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Fig.2.3. Polarization suppression of the nonresonant CARS background contribution.  
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The second pump beam at 236 nm was generated by frequency-doubling the output 

of the second narrowband Continuum ND6000 narrowband dye laser. The third harmonic 

output from a Continuum model 8010 Nd: YAG laser at 355 nm with a pulse energy 350 

mJ was used to pump a second Continuum ND6000 dye laser to produce a 472 nm beam. 

The dye solution used for the dye laser was a solution of LD 490 in methanol. The 

concentration used for the oscillator was 560 mg/l and the concentration used for the 

amplifier was 80 mg/l. The LD 490 dye has moderate solubility in methanol and a short 

lifetime (an hour for pumping energy typical for this experiment) which required multiple 

changes of dye for multiple CARS scans. For LD 490, according to the data sheet supplied 

by the supplier Exciton, the wavelength 472 nm lies on the border of the lasing range when 

pumped with a 355 nm beam, whereas it peaks around 486 nm. This resulted in a poor 

energy conversion for the dye laser of about 5% and the output at 472 nm was 

approximately 15 mJ. In spite of the poor energy conversion ratio and the short life time, it 

provided much superior beam shape, more pulse energy, and longer dye life time than the 

only other available alternative, the Coumarin dyes.  

The frequency-doubling of the 472-nm beam to produce the 236 nm pump beam 

was accomplished using an INRAD Autotracker III with a beta barium borate (β-BBO) 

crystal. The estimated frequency bandwidth of the UV pump beam generated was 0.2 – 0.3 

cm-1. The 472 nm beam from the dye laser was down-collimated using a two-lens 

telescope before it entered the Autotracker. The BBO crystal tuning angle was varied 

through a feedback control system to maintain optimal frequency-doubling as the 

fundamental dye laser wavelength was scanned. The UV power fluctuations are controlled 
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through this process, yet not fully eliminated. The speed of changing the BBO tuning 

angle by the control loop in the Autotracker has to be synchronized with the speed of the 

dye laser scan.  

The UV beam that emerged from the Autotracker was collinear with the 

fundamental beam at 472 nm. A 243-nm mirror was used to reflect the UV beam at 236 

nm and transmit the 472 nm into a beam dump. The UV beam was also directed through a 

half-wave plate/polarizer arrangement so that the UV beam was vertically polarized for 

nonresonant background suppression. In the high-pressure NO scans, acquired a year after 

the low-pressure spectra, this arrangement was also used to keep the UV beam energy 

steady as the fundamental dye laser power declined during the experiment. The UV energy 

was set to a low value at the beginning of the scan to avoid saturation of the electronic 

transition. The half-waveplate was rotated to maintain the UV energy constant as the dye 

laser power declined. The UV energy was measured using a Molectron Joulemeter and 

displayed on a Labview program.  

The CARS signal was generated using a three-dimensionally phase-matched 

geometric arrangement. The pulse energies for the 532, 590 and 236-nm beams at the 

CARS probe volume were on average 30, 20 and 0.1 mJ, respectively. The three beams 

were focused into the CARS probe volume using a 300-mm lens. To ensure signal 

generating phase-matching conditions, both Nd:YAG lasers were synchronized using a 

delay generator and the timing of the three beams at the CARS probe volume was 

constantly monitored using a digital oscilloscope. The initial alignment of the three beams 

in the CARS probe volume was performed by modifying the ERE CARS system. A 
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normal CARS system was used first to detect room nitrogen and the nitrogen CARS signal 

was maximized. This required a change of dye from Rh 610 to Rh 640 in the Stokes dye 

laser to produce the 607-nm output necessary to establish the Raman resonance for the 

nitrogen molecule. It also required the use of beamsplitter on a kinematic mount to 

produce the second of two 532-nm beams. One of the green beams was passed through the 

fused silica optics in the UV pump beam path into the CARS probe volume and the three 

beams were directed through a 100 µm pinhole. This ensured good overlap between the 

532 nm pump beam and the Stokes beam. The gas cell was then placed, filled with 

nitrogen, in the CARS probe volume and misalignment of the beams due to the gas cell 

windows was corrected. Marking the position of the gas cell, it was removed together with 

the dual pump CARS optics and the UV beam was focused using the same pinhole to 

overlap the other two beams. The gas cell was then placed again in its marked position, 

filled with NO/N2 gas mixture. The Stokes and UV wavelengths required for resonance 

were determined after multiple trials.  

The gas cell used for this experiment was 0.3 m in length and machined from 

aluminum. It has two fused silica windows to provide optical access. The overlap of the 

three beams inside the gas cell was moved close to the exit window to minimize the 

absorption of the ERE CARS signal at 226-nm by NO.    

The ERE CARS beam at 226-nm emerged from the cell above the UV beam and 

was collimated using a 300-mm lens. The 532-nm beam and the Stokes beam were both 

directed by prisms into beam dumps. The UV pump beam was directed into a pyroelectric 

Joulemeter to measure the pulse energy on a shot-by-shot basis. The signal from the 
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Joulemeter was used to normalize the ERE CARS spectra to account for the UV beam 

energy fluctuation. Scattering from the 236-nm UV pump beam was a major contributor to 

the noise in the spectra acquired and had to be minimized. Two 226-nm mirrors in the 

signal channel were used to raise the ERE CARS beam path to the level of the 

spectrometer entrance slit, and in the process any scattered light at 532-nm from the first 

pump beam or at 591-nm from the Stokes beam along the ERE CARS beam path was 

eliminated. To eliminate UV scattering, apertures were used both along the signal beam 

path and the 236-nm beam path before the CARS probe volume. In addition, four 

dielectric mirrors coated for reflection of 215-nm at 45 degrees were placed in the signal 

channel before the spectrometer. The 215-nm mirrors were used at 0 degrees incidence 

and had approximately 70% transmittance at 226 nm but less than 1% transmittance at 

236-nm. These mirrors served as spectral filters and significantly reduced the background 

from the 236-nm scattered light. This came at the expense of the ERE CARS signal level, 

but the drastic increase in the signal-to-noise ratio proved to be an experimental 

breakthrough in acquiring the ERE CARS spectra that had been dominated by UV 

scattered light in earlier stages of the experiment. Previously, optical filters from various 

companies, nominally specified to eliminate the scattered light while transmitting the ERE 

CARS signal, were tested, but were found to be ineffective in reducing the scattered light.  

The ERE CARS signal beam was then focused using a 150-mm lens onto the 

entrance slit of a 0.5-m spectrometer, and a solar-blind photomultiplier was used to detect 

the 226-nm ERE CARS signal. The ERE CARS signal and the UV pulse energy were 

recorded on a shot-by-shot basis using gated integrators while either the Stokes dye laser 



 42

wavelength or the 472-nm dye laser was scanned under computer control. A Lab view 

program was used to acquire the spectra and perform the dye laser scans.  

In addition to eliminating the UV scattering, suppression of the non-resonant 

CARS background proved necessary to obtain meaningful data at low NO concentrations. 

Polarization techniques were used to suppress the nonresonant four-wave mixing 

background signal as discussed by Rahn et al. (1979). The polarization arrangement shown 

in Fig. 2.3 was used. Both the 532-nm pump beam and the 591-nm Stokes beam were 

linearly polarized with the polarization axis at 60 degrees to the vertical. The ultraviolet 

pump beam was vertically polarized. The resonant CARS signal generated with this 

polarization arrangement has a nearly vertical polarization, while the nonresonant 

background is linearly polarized at 30 degrees to the vertical. An α–BBO polarizer was 

placed in the ERE CARS signal channel with its transmittance axis perpendicular to the 

polarization of the nonresonant background, thus drastically reducing the intensity of the 

nonresonant background. The ERE CARS signal intensity was also reduced, but the 

signal-to-noise ratio for the ERE CARS signal was significantly increased.  

 

2.7. Results and Discussion  

For initial comparison purposes between experimental and theoretical data the 

Sandia CARS code, developed at the Combustion Research Facility at Sandia National 

Laboratories for analysis of CARS spectra acquired in combustion experiments and 

published by Palmer (1989), was used to simulate typical experimental conditions.  
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Fig.2.4. Theoretical NO CARS spectrum obtained by Sandia CARS code.   
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Fig. 2.4 depicts a theoretical spectrum calculated using the Sandia CARS code for 

a Stokes dye laser scan in the wavelength range shown. The medium is 1% NO gas in 

nitrogen buffer gas at a pressure of 190 Torr. Electronic resonance is not included in this 

spectrum and therefore the CARS resonant signal is comparable to the nonresonant four-

wave mixing background signal. Because of noise sources present in the experiment, the 

detection limit in the absence of the electronic resonance enhancement process is 

estimated to be 1 %.  

The effect of electronic resonant enhancement is illustrated by the dramatic change 

in the NO CARS spectrum as the wavelength of the ultraviolet pump beam is changed 

from 237.3 nm to 237 nm, as demonstrated in Fig. 2.5 and Fig. 2.6, respectively. At the 

ultraviolet pump wavelength of 237.3 nm, the NO CARS signal is barely evident and 

modulated by a nonresonant background of comparable intensity. When the ultraviolet 

wavelength is changed to 237 nm, a very strong resonant signal is observed. Both spectra 

were acquired by fixing the ultraviolet wavelength at the given mentioned wavelengths 

and scanning the dye laser wavelength across the Raman transition. The NO concentration 

used was 1% NO in nitrogen buffer gas at room temperature and at 295 Torr and 159 Torr, 

respectively.   

The energy level schematic in Fig. 2.1 indicates that ERE CARS spectra can be 

recorded as a function of the Raman detuning δR by scanning the Stokes dye laser 

wavelength for fixed ultraviolet wavelength or as a function of electronic detuning δe by 

scanning the ultraviolet wavelength for fixed Stokes wavelength. The results of a spectral 

scan of the ultraviolet pump beam frequency at fixed Raman shift is shown in Fig. 2.7.  
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Fig.2.5. NO ERE CARS spectrum recorded at ultraviolet wavelength of 237.3 nm.   
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Fig.2.6. NO ERE CARS spectrum acquired with ultraviolet pump wavelength of 237 nm.   
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Fig.2.7. ERE CARS spectra obtained by scanning the ultraviolet pump beam with the 

Stokes beam frequency fixed at 1874.35 cm-1. The NO concentration was 1000 ppm and 

the cell pressure was 13.0 kPa. 
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The experimental scan was performed using a mixture of 1000 ppm of NO in a 

buffer gas of nitrogen. The gas cell was at room temperature, approximately 300 K, and at 

a pressure of 13.0 kPa. The modeling of the scan was performed using a perturbative ERE 

CARS analysis previously used by Attal-Tretout et al. (1977), Doerk et al. (1995), Doerk 

et al. (1997b) and Attal-Tretout et al. (1990). The basic equation for the CARS 

susceptibility, as given by Druet and Taran (1981), can be written as 

( ) ( )
4 3

4 1 2 3 3
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where the ( )4 1 2 3: , ,CARSχ ω ω ω ω−  is the CARS susceptibility, 1 1̂ac ac eµ µ •=
JG

, where acµ
JG

 

(C-m) is the electric dipole moment matrix element for states a and c, 1̂e  is the unit 

polarization vector for the electric field of pump 1, (0)
aaρ  is the initial population of state a, 

N is the total number density (m-3) of resonant molecules, =  is Planck's constant (J-s), abΓ  

is the dephasing rate (s-1) for the electric dipole transition between states a and b, and 

other parameters are defined in a similar fashion. The first term in the equation above in 

square brackets is the Raman resonance detuning term for the CARS process, the second 

term in square brackets is the electronic resonance enhancement term, and the final term 

in square brackets is the term that accounts for the strength of the Raman transition.  
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Fig.2.8. Detailed energy level diagram showing the origin of the ERE CARS effect of 

the Q (9.5) Raman Q-transition. The ultraviolet pump beam is tuned to the Q1 (9.5), R1 

(9.5) or P1 (9.5) transitions in the (0, 1) band of the X2Π – A2Σ+ electronic transition.  
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The Sandia CARS code was modified for the ERE CARS calculations by 

incorporating electronic resonance terms from the equation above. NO spectral data were 

obtained from the spectroscopic database code LIFBASE by Luque and Crosley (1999b) 

and from previous high-resolution NO CARS measurements such as Laane and Kiefer 

(1980) and Lempert et al. (1984). 

The square root of the CARS intensity is plotted in Fig. 2.7 versus the theoretical 

enhancement factor. The enhancement factor is the square root of the calculated CARS 

intensity for the ultraviolet pump frequency divided by the square root of the calculated 

CARS intensity for λ3 = 532 nm. There is good agreement between theory and experiment 

and an enhancement factor of nearly 200 at the peak of the Q1 (9.5) line can be observed. 

The spectral line assignment for the NO ERE CARS spectrum in Fig. 2.7 is based on the 

ERE CARS energy diagram in Fig. 2.8. Fig. 2.8 is specialized to the case where the 

Raman resonance frequency is tuned to the Q-branch resonances between the J" = 9.5 in 

the (1, 0) Raman band. The three main-branch transitions, Q1 (9.5), R1 (9.5) and P1 (9.5), 

through which the electronic resonance enhancement occurs are shown in the diagram; 

satellite transitions are not shown in Fig. 2.8 for the sake of simplicity. The main–branch 

electronic resonances, Q1 (9.5), R1 (9.5) and P1 (9.5), will be predominant in the spectrum 

when the Raman Q-branch transition between the J = 9.5 = N + 0.5 levels in the (1, 0) 

band in the X2Π state is probed. The occurrence of the Q2 (8.5), R2 (8.5) and P2 (8.5) lines 

in the same scan indicates that the Raman Q-branch transition between the J = 8.5 = N – 

0.5 levels in the (1, 0) band occurs at nearly the same Raman shift.  
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Comparison between theory and experiment is complicated by the noise in the 

spectrum resulting from the multi-mode frequency structure of the 236-nm and 591-nm 

beams. It is also negatively influenced by the short lifetime of the LDS 490 laser dye that 

was used to produce the 472-nm beam, resulting in a continuous decrease in the 236-nm 

pump beam energy and the level of the NO ERE CARS signal. The NO ERE CARS 

spectrum was normalized by dividing by the UV beam energy, but the influence of the 

UV beam energy decrease could not be fully eliminated. Despite this, the major features 

of the experimental data were reproducible for a very wide range of ultraviolet laser scans 

with fixed Stokes frequency, using only two minor and constant frequency offset 

parameters for the Stokes and ultraviolet pump beams.  

There appears to be significant saturation of the ultraviolet transition, because it is 

necessary to increase the ultraviolet spectral width to 6 cm-1 to obtain good agreement 

between the experimental and theoretical width of the resonance line. The increase in 

ultraviolet pump spectral width decreased the theoretical susceptibility enhancement 

factor by more than a factor of 10.  

When scanning the Stokes dye laser to obtain the NO ERE CARS spectra, good 

agreement was observed as well between the experimental scan and the modeling. Signal-

to-noise ratios in excess of 10 were obtained from mixtures of 100 ppm NO in nitrogen 

buffer gas, as shown in Fig. 2.9. The combination of polarization suppression of the 

nonresonant background and the electronic resonance enhancement results in a significant 

decrease in the CARS detection limit. Polarization CARS measurements of NO in plasmas 

have been reported by Doerk et al. (1997b) and by Pott et al. (1998).  
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Fig.2.9. ERE CARS spectra obtained by scanning the Stokes beam with the ultraviolet 

pump frequency fixed at 42329.15 cm-1. The NO concentration was 100 ppm and the 

cell pressure was 71.1 kPa.  
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Fig.2.10. Experimental NO ERE CARS spectrum for 1000 ppm NO in nitrogen buffer 

gas without nonresonant background suppression.    
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Fig.2.11. Experimental NO ERE CARS spectrum for 1000 ppm NO in nitrogen buffer 

gas suppression of nonresonant background. 
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It is worth mentioning that Pott et al. (1998) reports a detection limit of 200 ppm 

of NO at room temperature and atmospheric pressure, yet the published CARS spectrum 

for the above mentioned conditions is dominated by background signal which complicated 

the spectrum and suppresses the detection limit.  

The effect of polarization techniques on the NO ERE CARS scans is more 

amplified by comparing Fig. 2.10, acquired without background suppression techniques, 

with Fig. 2.11, taken after the elimination of the background was accomplished. The scans 

were taken at an early stage of the experiment and are presented only to indicate the effect 

of the nonresonant background suppression on ERE CARS scans, and they were 

performed before the signal strength was maximized by various techniques discussed 

above. The ERE CARS scan for NO in Fig. 2.10 was acquired by scanning the Stokes dye 

laser wavelength across the Raman active (v'=1, v"=0) vibrational band of the NO 

molecule. The NO gas cell was maintained at 230 Torr. The wavelength of the UV pump 

beam was kept at 236.2 nm and the UV energy was observed to vary within 10% of its 

average value. The ERE CARS signal for NO is resonant with transitions in the strongest 

part of the NO molecule ultraviolet electronic band at 226.2 nm. Electronic resonance 

enhancement is evident and the resonant ERE CARS signal dominates the spectrum, but is 

complicated by the nonresonant background. The Stokes laser beam was blocked at a 

Stokes wavelength of 590.9 nm to assess the relative intensities of scattered UV light and 

the nonresonant background. Fig. 2.11 was acquired with the same NO concentration in 

nitrogen but at 46 Torr pressure in the gas cell. The UV pump beam wavelength was fixed 

at 236.167 nm and polarization techniques for background suppression were used. The 
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nonresonant background is barely evident and the NO resonant CARS signal dominates 

the spectrum with a significant increase in the signal-to-noise ratio and the emergence of 

spectral features and lines, previously dominated by the nonresonant background, is 

evident as well.  

All the above scans were performed at sub atmospheric pressure. The gas cell was 

fitted with an Omega pressure transducer and the pressure was regulated through a needle 

valve on the suction line of a DS-202 Varian vacuum pump. NO ERE CARS scans were 

also performed at high pressures to examine the applicability of the technique to detect 

NO at high pressure. This is very relevant to high pressure flames and combustion 

processes in combustion devices. In the high pressure scans, the UV pump beam energy 

was kept constant within 10 % of the average value and the decline due to the dye solution 

decay was overcome by coupling the half-waveplate in the UV beam path with a 

polarizer. Starting the scan with moderate UV energy, the half-waveplate was rotated to 

increase the UV power and compensate for the loss of intensity as the scan progresses.   

The signal-to-noise ratios of high pressure scans were degraded significantly from 

inconsistent injection seeding for the Continuum Nd: YAG 9010 laser. Many factors 

affect the operation of the seeder, such as uniform temperature and seeder diode power, as 

well as the alignment with fundamental laser beam. Small temperature changes of a few 

degrees can cause multimode operation for the seeder, and therefore a chilled water 

cooling system is necessary for the minimization of temperature fluctuations in the laser 

system. The diode was producing sufficient power to maintain single-mode operation, and 

the optical alignment of the seeder was in order.  
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Fig.2.12. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam with 

the Stokes beam wavelength fixed at 591.05 nm with single mode 532-nm beam 

operation. The NO concentration was 1000 ppm and the cell pressure was 500 Torr. The 

Continuum Nd: YAG laser injection seeder was maintained a single mode operation 

during the scan.     
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Fig.2.13. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam with 

the Stokes beam wavelength fixed at 591.05 nm with multimode 532-nm beam 

operation.  The NO concentration was 1000 ppm and the cell pressure was 500 Torr. The 

Continuum Nd: YAG laser injection seeder did not maintain a single-mode operation 

during the scan.  
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However, we did not realize for a long time that our laser was hooked up to the 

normal water supply rather than the chilled water supply. Once we realized this, we 

switched the laser cooling water to the chilled water line. The seeder output was 

monitored on an oscilloscope.  

Comparison of Fig. 2.12 with Fig. 2.13 reveals the effect of seeder inconsistency 

on the results. Both of these NO ERE CARS spectra were obtained by scanning the 

ultraviolet pump beam with the Stokes beam wavelength fixed at 591.05 nm.  The NO 

concentration was 1000 ppm and the cell pressure was 500 Torr. In Fig. 2.12 the seeder 

was operating in a single-mode condition, and therefore the spectrum shows excellent 

spectral resolution between the different spectral lines and well defined spectral features. 

In Fig. 2.13 the seeder was fluctuating between single-mode and multimode operation as 

evident in the noise that complicates the spectrum.   

Numerical simulation for the high pressure is currently performed by Prof. R.P. 

Lucht, the School of Mechanical Engineering, Purdue University and collaborators. 

Preliminary simulations revealed that the UV linewidth for the high pressure data 

simulation is smaller than the linewidth of the previous low pressure scans by a factor of 

3. This is attributed to the fact that the UV beam energy in the high pressure scans was 

maintained at a much lower level than the low pressure scans to be able to maintain it 

nearly constant as explained above.   
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Fig.2.14. NO ERE CARS spectra obtained by scanning the Stokes beam with the UV 

pump beam fixed at 236.188 nm. The NO concentration was 1000 ppm and the cell 

pressure was 3 atm.   
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Fig.2.15. NO ERE CARS spectra obtained by scanning the Stokes beam wavelength 

while the UV pump beam wavelength is fixed at 236.24 nm. The NO concentration was 

1000 ppm and the cell pressure was 3 atm.       
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Fig.2.16. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.06 nm. The NO concentration 

was 1000 ppm and the cell pressure was 1 atm.  
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Fig.2.17. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.07 nm. The NO concentration 

was 1000 ppm and the cell pressure was 1 atm.   
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Fig.2.18. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.08 nm. The NO concentration 

was 1000 ppm and the cell pressure was 1 atm.      
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The effect of varying the UV pump beam wavelength on the NO ERE CARS 

spectrum is illustrated in Fig. 2.14 and Fig. 2.15. NO ERE CARS spectra were obtained 

by scanning the Stokes beam with the UV pump beam fixed at 236.188 nm and 236.24 

nm, respectively.  The NO concentration was 1000 ppm and the cell pressure was 3 atm. 

The signal-to-noise ratio is higher in Fig. 2.15 and a pressure shift took place. The 

nonresonant background in both cases is higher than in low pressure experiments as 

expected due to pressure increase. It is more difficult to suppress the nonresonant 

background using polarization techniques for high-pressure scans due to birefringence of 

the cell windows.   

The effect of varying the Stokes beam wavelength on the NO ERE CARS 

spectrum is illustrated by comparing Fig. 2.16, Fig. 2.17 and Fig. 2.18. NO ERE CARS 

spectra in these figures were obtained by scanning the ultraviolet pump beam wavelength 

with the Stokes beam wavelength fixed at 591.06 nm, 591.07 nm and 591.08 nm, 

respectively.  The NO concentration was 1000 ppm and the cell pressure was 1 atm for the 

three scans. The ERE CARS signal depicted on the vertical scale was normalized by the 

UV pump beam energy to ensure similar conditions for all cases. The Stokes beam 

wavelength variation did not influence the Stokes beam power, which was almost constant 

in this range. The ERE CARS signal intensity is reduced by increasing the wavelength of 

the Stokes beam. 

Two sets of data, each containing three ERE CARS scans for NO at pressures of 

2, 3 and 4 atmosphere, illustrates the effect of changing the pressures on ERE CARS 

spectra at constant Stokes wavelength. The first set contains figures 2.19, 2.20 and 2.21, 
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and the second set includes figures 2.22, 2.23 and 2.24. These NO ERE CARS spectra 

were obtained by scanning the ultraviolet pump beam wavelength with the Stokes beam 

wavelength fixed at 591.06 nm for the first set and at 591.07 nm for the second set.  The 

NO concentration was 1000 ppm and the cell pressure was 2, 3 and 4 atm for each set, 

respectively. As expected, the CARS signal increases with increasing pressure, and 

linewidth broadening is experienced, yet it seems that there was partial saturation of the 

transition at higher pressures. More insight will be provided when the numerical 

simulation is finished and the spectral parameters are calculated. Of particular interest is 

Fig. 2.19, which shows excellent spectral resolution of the spectral lines as well as well 

defined other features. The single-mode operation of the seeder was monitored 

throughout this scan and it was steady in its operation without multimode structures 

introduced.  
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Fig.2.19. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.06 nm. The NO concentration 

was 1000 ppm and the cell pressure was 2 atm.   
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Fig.2.20. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.06 nm. The NO concentration 

was 1000 ppm and the cell pressure was 3 atm.   
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Fig.2.21. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.06 nm. The NO concentration 

was 1000 ppm and the cell pressure was 4 atm.   
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Fig.2.22. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.07 nm. The NO concentration 

was 1000 ppm and the cell pressure was 2 atm.   
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Fig.2.23. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.07 nm. The NO concentration 

was 1000 ppm and the cell pressure was 3 atm.   
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Fig.2.24. NO ERE CARS spectra obtained by scanning the ultraviolet pump beam 

wavelength with the Stokes beam wavelength fixed at 591.07 nm. The NO concentration 

was 1000 ppm and the cell pressure was 4 atm.   
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CHAPTER III 

ELECTRONIC–RESONANCE-ENHANCED (ERE) COHERENT ANTI-STOKES 

RAMAN SCATTERING (CARS) SPECTROSCOPY OF ACETYLENE  

 

The detection of acetylene (C2H2) by electronic-resonance-enhanced (ERE) 

coherent anti-Stokes Raman Scattering (CARS) was demonstrated by Hanna et al. 

(2004). The ERE CARS experiment discussed in Chapter II was modified slightly for 

the C2H2 measurements. Experiments were performed using room-temperature gas cell 

with mixtures of 5000 ppm C2H2 in N2. Visible pump and Stokes beams were used, with 

the frequency difference between the pump and Stokes tuned to the 1974 cm-1 υ2 Raman 

transition of C2H2. An ultraviolet probe beam with wavelengths ranging from 232 nm to 

242 nm was scattered from the induced Raman polarization to generate the ERE CARS 

signal. The effects of probe wavelength and pressure on ERE CARS signal generation 

for C2H2 are discussed.  

 

3.1. Introduction and Motivation 

In the three-laser ERE CARS technique presented in this Chapter for detection of 

acetylene, the probe beam is an ultraviolet laser beam with a frequency tuned into 

electronic resonance with ultraviolet transitions in the C2H2 molecule. The technique 

used here is a variant of the three-laser technique developed for simultaneous detection 

of two species as demonstrated by Lucht (1987). As discussed in Chapter II, the first 

pump and the Stokes beams are visible laser beams with frequencies far from resonance 
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with the ultraviolet electronic transitions of C2H2, and the second pump beam is at a 

frequency at or near electronic resonance. This results in significant advantage over 

previous techniques in which both pump beams have the same wavelength and the pump 

and Stokes beams are both near electronic resonance. The ERE CARS technique offers 

enhanced selectivity owing to the requirement of simultaneous vibrational and electronic 

resonance for signal generation. In the detection of hydrocarbons such as C2H2, this 

advantage is even more amplified due to the overlap of the vibrational Raman 

resonances of various species, limiting the selective excitation of single species. 

Acetylene has been selected as a test molecule to evaluate the applicability and 

potential of ERE CARS for concentration measurements of hydrocarbon molecules. It is 

a very important molecule in combustion processes, whether it is used directly as a fuel 

in flames or produced as an intermediate molecule during the hydrocarbon / air 

combustion processes. Measuring the acetylene concentration with good sensitivity by 

taking advantage of the excellent temporal and spatial characteristics of the ERE CARS 

technique would be quite valuable for understanding the chemical kinetics of 

hydrocarbon combustion. Acetylene plays an important role in the soot formation and 

growth mechanisms. Therefore, one of the main goals of this study is to make a 

preliminary assessment of the potential for the application of ERE CARS for acquiring 

acetylene profiles in sooting flames and high pressure flames. The ERE CARS technique 

offers excellent discrimination of the signal against the luminous background of these 

flames due to its laser-like signal. The influence of several experimental parameters on 
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the ERE CARS signal, including the UV probe wavelength and the pressure are of great 

interest for studying the fundamental physics of the ERE CARS technique.       

The 1974 cm-1 υ2 Raman transition of C2H2 was selected for both theoretical and 

experimental reasons. Herzberg (1945) explained the structure of the acetylene molecule 

as a linear molecule with five fundamental vibrations as illustrated in Fig. 3.1. Among 

the five modes, υ1, υ2 and υ4 are Raman active and therefore are the only modes 

considered for Raman techniques such as CARS. The other two modes are Raman 

inactive. Comparing the three Raman active modes, Orduna et al. (1982) have measured 

Raman cross sections and depolarization ratios for each of the three modes. The υ2 band 

at 1974 cm-1 was found to be the strongest of the three modes with a differential Raman 

cross section nearly eight times greater than for the nitrogen Q-branch. In addition to the 

strength of this band, the experimental system in the laboratory that was used for the NO 

ERE CARS required only slight modification for the C2H2 ERE CARS. The NO 

molecule was detected using a UV pump wavelength of approximately 236 nm and a 

Stokes wavelength of approximately 591 nm. To detect C2H2, only a small modification 

to these wavelengths and minor experimental changes were necessary. The UV 

wavelength used for the C2H2 ERE CARS experiments was between 232-242 nm. The 

UV energy was increased for higher wavelengths (> 236 nm) as the peak lasing 

wavelength of the LD 490 dye was approached. The Stokes beam for maximum ERE 

CARS signal intensity from the 1974 cm-1 band of C2H2 was 594 nm, again very close to 

the Stokes wavelength for NO ERE CARS.  
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Fig.3.1. The vibrational modes of the acetylene molecule.  
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Fig.3.2. Energy level schematic diagram for the C2H2 ERE CARS process. 
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Both wavelength changes were easily accomplished with no modification in the 

optical system or alignment, proving the versatility of the ERE CARS technique and 

demonstrating the capability of measuring the concentration of multiple molecules with 

one optical arrangement.  

 

3.2. Energy Diagram 

An energy level schematic diagram for acetylene detection using the ERE CARS 

technique is shown in Fig. 3.2. The first pump beam is the second harmonic output of a 

Nd: YAG laser at a wavelength of 532 nm. The Stokes beam wavelength is 

approximately 594 nm and is generated using a 532-nm pumped narrowband dye laser. 

The UV probe beam is generated by frequency doubling the output of a 355-nm pumped 

narrowband dye laser. When the Stokes wavelength is tuned to a wavelength such that 

the difference between the frequency of the first pump beam and the Stokes beam is 

equal to the Raman transition of acetylene probed in this experiment at 1974 cm-1, a 

Raman polarization is established in the medium. The UV probe beam is then scattered 

from this induced Raman polarization. When the UV wavelength is tuned to an 

electronic resonance of acetylene, the ERE CARS signal is generated. The wavelength 

of the ERE CARS beam is approximately 229 nm for a probe wavelength of 239 nm. 

The first pump beam and the Stokes beam are visible beams with frequencies far from 

resonance with the ultraviolet electronic transitions of C2H2. The second pump beam or 

the probe beam is at or near electronic resonance. The wide separation of the two pump 

beams frequencies distinguishes this experiment from previous ERE CARS experiments 
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which were performed with the same laser frequencies for both pump beams. In 

addition, the wide separation between the pump beam and Stokes beam wavelengths and 

the electronic resonance in this experiment is another distinction from previous 

experiments which were performed with these wavelengths at or near electronic 

resonance (Attal-Tretout et al., 1977; Doerk et al., 1997a; Attal-Tretout et al., 1990). 

One of the major advantages offered by these different wavelength features is the 

enhanced selectivity of the technique owing to the requirement of simultaneous 

vibrational and electronic resonance for signal generation. This is an especially 

important consideration for selective excitation of hydrocarbon species in regions where 

vibrational resonances from different species overlap.  

 

3.3. Literature Review 

Acetylene is a molecule of great importance in combustion processes and has 

therefore been the subject of extensive research. It is used as fuel, is an important 

intermediate combustion species in hydrocarbon oxidation mechanisms, and is thought 

to play a major role in soot formation and growth.   

Herzberg (1945) outlined the different modes and structural features of acetylene 

as well as many of its spectral features. Orduna et al. (1982) measured Raman cross 

sections and depolarization ratios for different modes. Watson et al. (1982) 

photographed the A-X band system of acetylene with origin near 2400 angstroms in 

absorption with higher resolution than for studies that predated their research. They 

provided a detailed rotational analysis of bands in the 2470 – 2150 angstroms region, 
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involving the levels nυ"4 (n = 0-4) of the X1Σg
+ state and nυ'3 (n = 0-3), and υ'2 + nυ'3 (n= 

0-2) of the A1Aυ (C2h). They changed some of the previously established spectral line 

assignments based on their findings. The principal subbands with ∆K = ±1, and the 

satellite subbands with ∆K = ±2, 0 (due to axis-switching) and ∆K = ±3 (due to axis-

switching, asymmetry, and ℓ resonance) were included in a comprehensive least-squares 

fit. Rotational levels of all the ℓ components of the levels of υ"4 were observed and the 

validity of the results was verified by its compliance with the theory of ℓ doubling and ℓ 

resonance of a linear molecule. The rotational structures of the vibrational levels of the 

nonlinear A state were fitted by Watson et al. (1982) with asymmetric top rotational 

constants Aυ, Bυ, Cυ and principal centrifugal constants DJ
υ, DJK

υ and DK
υ.  

 Robert W. Field and coworkers have made significant contributions to the study 

of acetylene spectroscopy. Abramson et al. (1984) observed clumps of narrowly spaced 

lines that appeared in the stimulated emission pumping spectrum of the acetylene X 1Σg
+ 

state near 27900 cm-1. They further note that all the lines in a given clump arise from 

transitions in levels with the same lower state J" value. They conclude that the fine 

structure within each clump is of a purely vibrational nature. This prompted Abramson 

et al. (1984) to further study this point, as rotationally resolved and assigned spectra at 

such high vibrational excitation had not been previously reported for a polyatomic 

molecule. They analyze the spacing between adjacent lines in several of these clumps 

and their analysis revealed that the lines followed a Wigner distribution rather than a 

Poisson distribution, a characteristic that is expected when chaotic behavior within a 
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molecule occurs. This opened the door to the possibility of applying one of the suggested 

criteria of quantum chaos to a real molecular spectrum. 

J.K.G. Watson and coworkers continued on the research mentioned above. Van 

Craen et al. (1985) extended the studies of the high resolution absorption spectrum of the 

electronic transition of the acetylene molecule to the region between 2190 – 2050 

Angstroms. The vibrational levels nυ'3 (n = 4-6), and υ'2 + nυ'3 (n = 3-5), and υ'1 + nυ'3 (n 

= 2, 3) of the A state were assigned and these levels together with another level not 

identified by the study were observed as upper states of vibrational progressions in the 

known υ”4( Πg) vibrational mode of the ground state. Detailed rotational analyses of 

these bands were performed. It was suggested that the rotational levels of each of these 

vibrational levels were perturbed by interactions with unidentified vibronic levels. This 

limited the possibility of extracting accurate values for the rovibrational constants and 

only approximate values were obtained.  

Lucht et al. (1986) recognized the advantages that the CARS technique offers for 

the detection of hydrocarbon species, among them acetylene, in hostile media such as 

plasmas and sooting flames. Their approach is important to our study as well as their 

findings. They performed coherent anti-Stokes Raman scattering (CARS) measurements 

of acetylene in a laminar methane/ acetylene/ air flame. The acetylene concentration was 

determined from the ratio of the resonant acetylene CARS signal to the nonresonant 

background CARS signal. The resonant and nonresonant signals were detected 

separately on each laser shot by polarization analysis and a two-channel detection 

system. The flame temperature profile was determined from fits of nitrogen CARS 
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spectra and the experimental acetylene CARS spectra were compared with theoretical 

models and found to be in good agreement with theory. The measured CARS profiles 

indicate that as much as 2-3 percent acetylene is formed in the flame preheat region.  

Yamanouchi et al. (1991) obtained dispersed fluorescence (DF) and stimulated 

emission pumping spectra (SEP) of acetylene originating from single rovibronic levels 

of the A1Au state. The spectra were measured with resolutions of 30 and 0.5 cm-1, 

respectively, in order to examine the vibrational level structure of the electronic ground 

X 1Σg
+ state. The spectra showed that below 14000 cm-1 the vibrational features in the 

acetylene DF spectra could be assigned to progressions in the trans bend, the CC stretch 

and one other vibrational mode. The spectroscopic constants associated with the spectra 

were consistent with the values reported in literature. The SEP spectroscopy revealed 

that the DF features, corresponding to single vibrational levels at low energy, are 

composed of many vibrational levels at high energy and are more adequately explained 

as groups of eigenstates among which a zero order FC bright state is distributed.  

Taking advantage of newly recorded dispersed fluorescence spectra of acetylene 

and advances in developing a numerical pattern recognition technique which identifies 

groups of transitions in the spectra, O’Brien et al. (1998) assigned polyad quantum 

numbers to 134 vibrational levels of the X1Σg
+ state of acetylene with internal energies 

from 3,000 to 15,000 cm-1. No evidence for the breakdown of the polyad quantum 

numbers was observed.  
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Fig.3.3. ERE CARS system for measurements of acetylene.  
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Watson (2001) calculated the relative intensities in the vibrational structure of the 

A1Au (C2h) – X1Σg
+ (Dooh) electronic transition of acetylene. The large change in 

geometry and the change in normal coordinates between the two states were considered. 

The calculated intensities agreed quite well with those experimentally observed, lending 

confidence in the A-state harmonic potential. The strongest bands in the emission 

spectrum were for transitions to high levels of the ground state, for which anharmonicity 

is important. The calculations showed that the calculated emission intensities are quite 

sensitive to the form of the ground-state potential, which provides important data for 

future studies, such as the research presented in this thesis.  

To detect acetylene in low-pressure propane and methane flames, Williams and 

Fleming (2002) used laser-induced fluorescence to record profiles of acetylene formed 

as an intermediate species in 10-Torr premixed propane and methane flames. In low – 

temperature regions of the flames, excitation spectra confirmed that acetylene was 

selectively detected. The spectra of acetylene overlap those of oxygen and nitric oxide 

on terms of both excitation and detection wavelengths, yet acetylene was detected with 

relatively little interference at 228 nm. This finding is important for our thesis research 

as this is approximately the same wavelength that the ERE CARS signal for acetylene is 

generated and detected. The fluorescence lifetime of acetylene for the flame conditions 

studied was found to be approximately 20 ns, much shorter than the radiative lifetime, 

due to high quenching rate for all colliders investigated. Another finding of Williams 

and Fleming (2002) was their inability to detect the LIF signal for acetylene in methane 

flames due to various factors that are eliminated in the ERE CARS technique.  
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Baum et al. (2003) investigated the analysis of acetylene in breath gas and 

developed a miniaturized, noninvasive instrument for its detection. The instrument relies 

on dispersive UV absorption spectroscopy as its measurement principle and is employed 

in an extractive (side-stream) configuration. The analyzer in this innovative instrument is 

used for fast, interference–free detection of acetylene, with signal-to-noise ratios in 

excess to 50. Comparison tests with a mass spectrometer using calibration gas samples 

gave an excellent correlation that validated the linearity and accuracy of the UV 

instrument developed. This development is important, yet does not provide an in-situ 

and real time measurements, a quality ERE CARS provides.  

 

3.4. ERE CARS Experimental System for Acetylene Detection 

The ERE CARS experimental system for detection of acetylene is shown in Fig. 

3.3. The Nd: YAG lasers, the dye lasers, the optics, the detection systems, the computer 

controls, and the experimental arrangement and alignment of the laser beams are the 

same as in the experimental system for NO detection discussed in the previous Chapter. 

The only differences between the experiments are that the wavelengths of the Stokes 

beam and the UV probe beam are slightly different, and the detection wavelength of the 

ERE CARS signal is thus different as well. We shall therefore discuss the experimental 

system only briefly.  

The laser source for the pump beam at 532 nm was a Continuum Model 9010 

injection-seeded, Q-switched Nd: YAG laser with a repetition rate of 10 Hz, pulse length 

of approximately 7 ns, and pulse energy for the 532-nm output of approximately 750 mJ.  
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85% percent of the 532-nm output was used to pump a Continuum Model ND6000 

narrowband, tunable dye laser to produce the Stokes beam (ω2) at a wavelength near 594 

nm with a frequency bandwidth of approximately 0.08 cm-1. The 355-nm third-harmonic 

output of a Continuum Model 8010 Nd: YAG laser was used to pump a second 

Continuum Model ND6000 dye laser to produce tunable laser radiation at a wavelength 

of 470 nm to 490 nm; most measurements were performed with a probe beam 

wavelength near 239 nm. It is worth mentioning that the dye used, LD 490, has a 

maximum lasing energy when pumped with 355 nm at a frequency of about 243 nm. 

This resulted in higher UV beam energy for the acetylene ERE CARS experiments. The 

fundamental output of the dye laser was frequency-doubled to 239 nm using an INRAD 

Autotracker III with a beta barium borate (β-BBO) crystal to produce the pump beam at 

frequency ω3 with an estimated frequency bandwidth of 0.2-0.3 cm-1.   

The CARS signal was generated using a three-dimensionally phase-matched 

arrangement.  The pulse energies for the 532-nm, 594-nm, and 239-nm beams at the 

CARS probe volume were typically 30 mJ, 20 mJ, and 1 mJ, respectively.  The CARS 

focusing lens had a focal length of 300 mm.  After passing through the ERE CARS 

probe volume, the pump, Stokes, and CARS signal beams were recollimated using a 

300-mm-focal-length lens.  The 532-nm pump and Stokes beams were directed into 

beam dumps.  The 239-nm pump beam was directed into a pyroelectric Joulemeter to 

measure the pulse energy.  The ERE CARS signal was directed through apertures and 

four 45°-incidence, 215-nm dielectric mirrors.  The 215-nm mirrors were used at 0° 

incidence and had approximately 70% transmittance at 229 nm but less than 1% 
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transmittance at 239 nm.  These mirrors served as spectral filters and reduced 

significantly the background from the 239 nm scattered light. At higher ERE CARS 

wavelength, these mirrors reflected more of the ERE CARS signal intensity and 

therefore introduced uncertainties regarding the influence of increasing probe 

wavelength on the signal. The ERE CARS signal beam was then focused onto the 

entrance slit of a 0.5-m spectrometer, and a solar-blind-photomultiplier was used to 

detect the 229 nm ERE CARS signal.  The ERE CARS signals and the ultraviolet pulse 

energies were recorded on a shot-by-shot basis using gated integrators while either the 

Stokes dye laser or the ultraviolet pump dye laser was scanned under computer control.   

Polarization techniques were used to suppress the nonresonant four-wave mixing 

background signal as discussed in Chapter II.  Both the 532-nm pump beam and the 

Stokes beams were linearly polarized with the polarization axis at 60 degrees to the 

vertical.  The ultraviolet pump beam was vertically polarized.  For this polarization 

arrangement the resonant CARS signal was generated with a nearly vertical polarization, 

while the nonresonant background was linearly polarized at 30 degrees to the vertical.  

An α-BBO polarizer was placed in the signal channel with its transmission axis 

perpendicular to the polarization of the nonresonant background.  This resulted in a 

drastic reduction in the intensity of the nonresonant background.  The ERE CARS signal 

intensity was also reduced, but the signal-to-noise ratio for the ERE CARS signal was 

significantly increased. The measurements reported here were performed using a 

calibrated gas mixture of 5000 ppm C2H2 in a buffer gas of N2.  The gas cell was 

approximately 0.3 m in length and was fitted with fused silica windows. 
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Fig.3.4. ERE CARS spectra of acetylene for different probe wavelengths.  
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Fig.3.5. ERE CARS spectra of acetylene at three different probe wavelengths. 
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3.5. Experimental Results and Discussion 

The primary objective of the experiments reported here was to investigate the effect 

of varying probe wavelength λ3 on the shape and intensity of the C2H2 ERE CARS 

spectrum.  The ERE CARS spectrum of C2H2 is shown in Fig. 3.4 for wavelengths of 

239, 240.5, and 242 nm.  The drop in intensity from λ3 = 239 nm to λ3 = 242 nm is 

clearly evident, although the shape of the spectrum is fairly similar for all three spectra.  

Some of the drop in intensity with increasing wavelength can be attributed to decreasing 

reflectivity of the mirrors in the signal channel. Mirror reflectivity curves show about 

10-15 % increase in reflectivity for wavelengths higher than 229 nm, but most of the 

drop in intensity is because of the reduced electronic resonance effect as the wavelength 

λ3 of the UV probe beam was increased.  The electronic bands of acetylene are very 

broad but the transitions have significant intensity only below 240 nm, at least for room-

temperature conditions.  For the spectra shown in Fig. 3.4, for the probe wavelength at 

λ3 = 239 nm the ERE CARS wavelength λ4 = 228.2 nm and is very close to a very strong 

peak in the room-temperature absorption spectrum of acetylene. As discussed by 

Williams and Fleming (2002), the room-temperature absorption spectrum is complicated 

by transitions arising from low-lying vibrational levels, and the A-X electronic transition 

moments are much higher for excited vibrational levels in the X electronic state.  

Fig. 3.5 shows the ERE CARS spectrum of acetylene for λ3 = 236 nm, λ3 = 237 nm, 

and λ3 = 238 nm. As can be seen in Fig. 3.5, the shape of the spectrum varies as the 

probe wavelength is changed due to different electronic resonance interactions in the A-

X electronic band. While the electronic resonance interaction is quite complicated for 



 91

acetylene because of the structure of the A-X band, the electronic resonance interaction 

will become stronger as the temperature of the medium increases because the electronic 

transition moment will increase for excited vibrational levels in the ground state.  

The pressure dependence of the C2H2 ERE CARS signal was also investigated.  

As shown in Fig. 3.6, the ERE CARS signal increases approximately as the square of the 

pressure.  This illustrates a very significant potential advantage of ERE CARS compared 

to laser-induced fluorescence (LIF) detection of minor species in high-pressure flames. 

For ERE CARS the signal is approximately proportional to the number density and thus 

increases significantly as pressure increases for a given mole fraction of the minor 

species, whereas at best the LIF signal will remain constant for a given minor mole 

fraction as the pressure increases. 
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Fig.3.6. Pressure dependence of the acetylene ERE CARS spectra.   
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CHAPTER IV 

DUAL-PUMP CARS FOR DETECTION OF DIPICOLINIC ACID  

 

Dual Pump Coherent anti-Stokes Raman scattering (CARS) is used for detection 

of dipicolinic acid (DPA), a major component in the chemical composition of anthrax 

and other bacterial spores. A review of chemical and biological aspects of DPA is 

presented, followed by a brief summary of current methods to detect DPA. Both aerosol 

techniques and spectroscopic methods are reviewed. The experimental system for CARS 

detection of DPA is discussed. Experimental CARS spectra obtained for benzene and 

DPA are presented and analyzed. Two geometries of detection, forward and backward 

CARS detection, were investigated.   

 

4.1. Motivation 

DPA is a major component of anthrax bacterial spores. The anthrax attacks that 

followed the 9/11 atrocities called for more rapid, real-time and accurate methods for the 

detection of anthrax to avoid the disastrous consequences of anthrax attack. Ideally, real-

time anthrax detection method would be incorporated in detection devices and used in 

post offices, governmental and military institution and other potential terror targets. In 

addition, the development of real-time anthrax detectors in battle fields has become an 

increasing need for troops. It proves to be a major challenge, as the spectroscopic 

technique should be able to detect the signal from DPA in a backward direction.  
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Fig.4.1. Sketch of bacterial spore (Scully et al., 2002). Reprinted with permission from 

“FAST CARS: Engineering a laser spectroscopic technique for rapid identification of 

bacterial spores” by Scully, M.O., Kattawar, G.W., Lucht, R.P., Opartny, T., Pilloff, H., 

Rebane, A., Sokolov, A.V., and Zubairy, M.S., 2002. Proc. Natl. Acad. Sci., 99 (17), 

10994-11001. Copyright 2002 by National Academy of Sciences.    
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Fig.4.2. a) DPA    b) Calcium – DPA complex (Scully et al., 2002). Reprinted with 

permission from “FAST CARS: Engineering a laser spectroscopic technique for rapid 

identification of bacterial spores” by Scully, M.O., Kattawar, G.W., Lucht, R.P., 

Opartny, T., Pilloff, H., Rebane, A., Sokolov, A.V., and Zubairy, M.S., 2002. Proc. Natl. 

Acad. Sci., 99 (17), 10994-11001. Copyright 2002 by National Academy of Sciences.     
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The choice of CARS as the spectroscopic detection technique is based on the 

advantages that CARS offers over the currently existing techniques, as discussed in the 

review section of these methods. Both forward and backward CARS methods are 

discussed. CARS is the first step in identification and not only detection of DPA. Scully 

et al. (2002) presented the theory for using FAST CARS for identification of bacterial 

spores. The first step is to verify the applicability of this theory with CARS before 

applying the more complicated forms of CARS such as electronic-resonance enhanced 

(ERE) CARS.  

 

4.2. Biological and Chemical Composition of DPA 

A bacterial spore is depicted in Figure 4.1. It shows that DPA and its salts like 

Calcium-DPA are contained in the core and are in direct contact with the spore-specific 

DNA ribosomes and cell proteins. The approximate length of the spore is about 1.2 µm 

and the core is surrounded by the solid core wall and the spore coat. This structure is a 

key to the very long spore life, which is reported to extend to about 25 millions years 

(Black, 2002).  

The role of DPA in these bacterial spores is the removal of water. This removal 

of water significantly reduces the destructive effect of heat on the bacterial cell. Heat 

destroys the DNA and proteins with aid of water. Because of the importance of this role, 

DPA and its salts contribute about 17 % of the dry weight of spores. Fig. 4.2a shows the 

chemical composition of DPA and Fig. 4.2b shows the composition of one of its salts, 

Ca-DPA. Two features are of specific importance for our study. DPA features a pyridine 
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ring that causes similarity in spectral features between Benzene and DPA. This fact has 

been used in our current study. For Ca-DPA, the Hydrogen ion in the O-C-O-H group is 

replaced by a Calcium ion.    

 

4.3. Literature Review 

4.3.1 Review of Non-Spectroscopic Methods for Anthrax Detection  

This section is concerned with detection of anthrax and not specifically DPA, as 

the non-spectroscopic detection methods do not concentrate on a particular constituent of 

the biological agent as a marker. The end objective is the same in both cases. The 

methods reviews below concern bioaerosols in general, and can be applied to anthrax, 

which is usually present as a bioaerosol.  

 Such methods rely on collecting the bioaerosols under consideration and then 

allow them to settle directly into a culture that is easily accessible for detection by 

microscopic investigation. Hinds (1999) provides a good overview on the sampling 

process. Sampling of bioaerosols determines the presence of a certain bioaerosol and 

their number concentration. Sampling for bioaerosol particles employs many of the 

methods used for nonbioaerosol particles, but the analytical methods impose certain 

limitations on the sampling process. There are physical and biological aspects to 

bioaerosol sampling. The overview of the biological aspects involved in handling the 

bioaerosol was utilized in this present research with DPA, although direct exposure to 

anthrax spores was not in the scope of the study. The biological aspects require aseptic 

handling to prevent contamination and special attention to the survival of the biological 
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organisms during the process of sampling. Some studies show that the survival rate, 

which depends on the particular organism, the environment, the sample collection and 

analysis methods used, introduces a significant uncertainty into concentration 

measurements for the bioaerosol. The fraction of viable particles that survive the 

sampling and analysis process is estimated to be in the range between 0.1 and 0.001, as 

shown by Macnaughton et al. (1997). The high variation in the fraction of viable 

particles collected, interference with other particles, analytical sensitivity to 

underloading and overloading and the wide particle size range of interest are sources of 

considerable uncertainty. Additional reviews of sampling methods are found in 

publications by Nevalainen et al. (1993), Macher (1995) and Willeke and Macher 

(1998).  

Bioaerosol sampling can be divided into three stages. The first stage involves the 

inlet collection, which is the same for bioaerosol and nonbioaerosol particles. The 

second stage is the collection and deposition of particles onto glass slides, a semisolid 

culture medium, or water. The third stage is biological analysis to identify the bioaerosol 

present and how much is present. Most bioaerosol analysis involves either examination 

with a microscope or growth in a culture medium followed by counting of colonies.  

Multijet impactors have jets that impact directly onto the culture plates. This 

action spreads the collected particles over a wide area to prevent overloading. Single and 

multistage impactors are available with a range of cutoff diameters, but the shear forces 

that occurs in the high velocity jets and as a result of impact may cause loss of viability.  
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Impingers, which are a form of mutli-stage impactors but with the jet immersed 

in a liquid, are also used for bioaerosol collection. Liquid collection prevents 

desiccation, but the shear forces in the jet and in the turbulent liquid cause loss of 

viability. Water containing the collected organisms can be applied directly to the culture 

plates or can be diluted and applied to give the desired surface density.  

Centrifugal samplers have a rotating paddle wheel, open to the environment on 

one end, with a stationary removable agar-coated plastic strip around the rim of the 

wheel. Air enters along the axis, and the particles contained in it are driven by 

centrifugal forces onto the collecting strip.  

Membrane filters are also used to collect bioaerosol particles. The collected 

particles are then examined by an optical microscope, or they can be cultured by placing 

the filter, particle side up, on a culture medium. The filtration process causes significant 

desiccation of collected microorganism and loss of viability. This method of bioaerosol 

collection is used in highly contaminated environments.  

The simplest technique for bioaerosol sampling would be to allow the bioaerosol 

to settle directly onto culture plates. The technique is not useful for quantifying airborne 

concentrations because, after culturing, the size of the initial particle cannot be 

determined.  

The second stage relies heavily on impaction. The most common impactors are 

slit impactors, which impacts directly onto a culture medium. For bacteria and fungal 

spores, the culture medium, called agar, is a semisolid material containing water and 

nutrients that foster the growth of the viable particles that are collected. For viruses, cell 
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or tissue culture media are used. In many cases, the culture medium is mounted on a 

rotating disc to provide a history of collection. 

The third stage of sampling, which involves depositing the particles on a plate to 

microscopically identify the bioaerosol, involves many considerations. The most 

important factor to consider is to provide the appropriate surface density for counting 

organism or colonies. If the loading is insufficient, there will be few counts and high 

statistical uncertainty. In microscopic counting of organisms, overloading causes overlap 

with nonbioaerosol particles, making identification difficult. Environmental samples 

usually have far more nonviable particles than viable particles. In counting colonies, 

overloading leads to three types of underestimation. First, if two of the same species are 

sufficiently close to each other, they will be counted as a single colony. Second, if two 

different species are close, one may inhibit the growth of the other. Finally, due to 

chemical nature, a nonbioaerosol particle may inhibit the growth of nearby viable 

particles. For a given sampler, the sampling time t to achieve the desired surface density 

s is calculated as t = [s*A] / [C*Q], where A is the area onto which the particles are 

deposited, Q the sampler flow rate and C the average concentration of the bioaerosol.  

Of particular interest is the study on aerosol-to-hydrosol transfer stages for use in 

bioaerosol sampling by Phan and McFarland (2004), in which a single-jet and multijet 

aerosol-to-hydrosol transfer stages (AHTSs) with cut points of 2 and 0.8 µm, were 

designed and its performances evaluated. The systems are intended to be used in series 

to transfer bioaerosol particles to transfer the biological particles of interest from aerosol 

state to hydrosol state in near real time. The AHTSs were used using polystyrene solid 
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and oleic acid liquid aerosol particles to determine their collection efficiencies, 

achieving efficiencies well above 90% for most size ranges. The various tests that were 

conducted indicated the need for a surfactant addition to the collection liquid to prevent 

losses of particulate matter from hydrosol to internal surfaces of AHTSs. The optimum 

concentration of Tween 20 into distilled water was determined to be near 0.1%. 

Preliminary bioaerosol testing was performed with a single jet unit using 5.2 µm AD 

clusters of BG spores, and with the multijet unit using both 0.8 µm AD single spores and 

4.2 µm AD clusters of spores. Results showed unrealistic collection efficiency, which 

indicates that a different testing procedure should be used.      

 

4.3.2 Review of Laser – Based Methods for Detection of Bioaerosol  

Previous research dealing with detection and identification of bioaerosols 

through laser-based techniques is reviewed in this section. These methods are usually 

combined with methods for sizing and collection of aerosols. 

Seaver et al. (1999) described an instrument developed to monitor the biological 

fraction of an aerosol. The instrument simultaneously sizes individual particles in a 

flowing air stream and then measures total fluorescence of the particles following 

excitation at 266 nm. Laboratory data show that measurements of these two parameters 

enable discrimination between different types of bacterial species. Field measurements 

are discussed in which bacterial samples were aerosolized and subsequently detected 800 

m downwind. The apparatus has an optical chamber in which a stream of air with 

entrained biological particles is admitted through a 0.2 µm cutoff filter to produce a 
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well-defined jet. A 780-nm diode laser is directed perpendicular to the air stream so that 

it intersects with particles in the air stream. The scattered 780-nm laser light is collected 

by a reflector and collimated onto a photodiode. When the scattered light signal exceeds 

an adjustable threshold, a pulsed UV laser is triggered. The 266-nm laser radiation is 

generated by a frequency quadrupled Nd: YAG laser. With a proper delay, the UV beam 

is used to irradiate the particles. The 266-nm laser excitation produces fluorescence from 

constituents of the bioaerosol such as DNA, DPA and tryptophan. A color filter is used 

to block the 266 nm radiation. While the approach was partially successful to distinguish 

between some species, it could not distinguish between all species due to the presence of 

common constituents in all species. But more significantly, as in most biological 

fluorescence techniques, the complicated spectra are hard to analyze and quantify.  

Cheng et al. (1999) described a similar apparatus for aerosol generation to 

investigate fluorescence spectra of bioaerosols and pollen. The system included an 

aerosol generator, chamber, aerosol monitoring instrumentation, and LIF detection 

system. The aerosol generators, chamber, and monitors were housed in an enclosure with 

the exhaust vented through a filtration system. Bacterial aerosols were generated from 

using a nebulizer. The aerosol chamber was designed with the aid of a computational 

fluid dynamics code to optimize the generation of aerosol beams with a well-defined 

geometry for reproducible fluorescence measurements. The aerosol chamber had four 

windows for optical access. Contours of measured fluorescence signals showed the 

expected peak related to tryptophan at a fluorescence wavelength of 330 nm, and four 

bacterial species in the aerosol exhibited very similar spectra. The fluorescence cross 
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sections were reproducible to within a factor of 5. Again, the fluorescence technique 

provided little information about a specific bacterial species and interference was still a 

problem. 

Manoharan et al. (1990) probed Bacillus subtilis and three other bacterial spores 

at four different wavelengths with UV resonance Raman spectroscopy. With 251 nm 

excitation, bacterial nucleic acid spectra were obtained selectively. Nucleic acids also are 

strongly excited at 244-nm light while at that wavelength aromatic amino acid spectra 

just begin to be detected. Aromatic amino acid spectra were observed exclusively at 231 

nm appears along with some new strong nucleic acid peaks with 222 nm excitation. 

While this study is significant in its attempt to target DPA as its probe molecule, the 

large difference in spectral characteristics, due to potential selective excitation of various 

UV absorption cell components, puts this laser technique in a disadvantage as a 

detection method for DPA. On the other hand, the results obtained also suggest that 

absorbing bacterial markers across the spectrum can be selectively excited to give rise to 

characteristic resonance Raman bacterial spectral fingerprints as a basis for rapid 

identification. This feature, if coupled with a laser diagnostic method that eliminates the 

disadvantages of scattering and fluorescence techniques like CARS, is the basis for our 

research. 

Ghiamati et al. (1992) extended the research on aqueous solutions of DPA and 

Calcium DPA by probing endospores of three different bacterial spores using UV 

resonance Raman spectroscopy. The spores were detected at four different wavelengths 

and were compared with vegetative cells for normalization. At 222,231, and 251 nm the 
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spectra of endospores and their corresponding geminated spores show only modest 

differences. At 242 nm excitation, substantial differences are observed. Difference 

spectra obtained at 242 nm by subtracting spectra of germinated spores of Bacillus 

cereus from spectra of their corresponding endospores are attributed entirely to 

dipicolinate. It seems that this variation between different wavelength excitations can be 

attributed to large differences in the amounts and composition of proteins and nucleic 

acids. Ghiamati et al. (1992) showed that the 242 nm excitation is a significant transition 

in DPA for it can selectively and sensitively detect calcium dipicolinate in spores. The 

resonance enhancement at 242 nm is associated with the pyridine ring.  

Carmona (1979) studied the vibrational spectra and structure of crystalline 

dipicolinic acid and calcium dipicolinate trihydrate at 100K by recording Raman Spectra 

of DPA and its salts in the spectral region extending from 0 to 4000 cm -1. The solutions 

of DPA were saturated to avoid hydrolysis of the salt. The comparison of the vibrational 

spectra of the acid and its salts was quite useful. Some of the frequencies of the 

vibrational features remain almost unchanged for the different species and those that 

shift substantially are useful in understanding the nature of molecular association present 

in the solid state of these materials. The comparison is helpful in assigning band 

characteristics to different groups like the OH group and the pyridine ring. The latter in 

particular proved very valuable in the CARS research discussed in this dissertation. The 

benzene-like Raman transition of DPA and its salts due to the presence of the pyridine 

ring in the molecule was probed in our CARS experiment.  
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4.3.3 Review of Raman Spectroscopic Techniques for Solids and Solutions 

Crystals of DPA were produced and probed using CARS technique in this thesis 

research. The advantages of CARS over other techniques were previously discussed, and 

the previous research dealing with spectroscopy for solids was reviewed.  

Suzuki et al. (1968) first obtained polarized Raman spectra of single crystals of 

naphthalene and anthracene using an argon ion laser as an excitation light source. 

Pronounced effects of polarization were found for the Raman lines in the crystal spectra. 

The spectroscopic data was compared with theoretical models for the calculation of 

vibrational frequencies. The vibrational modes responsible for the lattice vibrational 

Raman lines were found to be described by rotational oscillations about the three 

principal axes of the molecule. Using the same technique, the effects of temperature 

variations the vibrational Raman lines of the lattice were studied. The frequencies 

obtained at different temperatures were used to evaluate the mean square amplitudes of 

the rotational oscillations of the molecules in the crystal lattice.  

Following on the above research, Bree and Kydd (1970) recorded infrared and 

Raman spectra of single crystal samples of naphthalene-d8 over the entire energy range 

of the fundamental vibrations. The depolarization ratios for the Raman lines in carbon 

tetrachloride and benzene solutions were obtained. The data was used to assign the 

frequencies of the molecular fundamental vibrations. The data were compared to force-

field calculations and were found to be in good agreement.  

Zinth et al. (1982) used a transient stimulated Raman process to coherently excite 

the Raman-active vibrational modes. They probed liquid cyclohexane and four new 
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Raman lines were observed in the frequency range they investigated. After the transient 

stimulated Raman process was initiated, a subsequent delayed probe of relatively long 

duration interacted with the freely relaxing vibrations. The resolution of the spectra was 

degraded by scattering. The paper by Zinth et al. (1982) describes the problems 

associated with probing liquid solutions, such as scattering and background interference 

of the background. 

Decola et al. (1980) investigated the lineshape of a vibrational transition of 

naphthalene crystal at 1.6 K using four-wave mixing techniques with two narrow band 

lasers at ω1 and ω2. The lineshape of the CARS signal from the 1385 cm-1 totally 

symmetric mode was well described by the Lorentzian lineshape over the complete 

range and the vibrational relaxation time of the excitation was measured.  

An early study of molecular structure using CARS was performed by Dlott et al. 

(1982). The temperature dependence of the decay of vibrational excitations in 

naphthalene was investigated. At temperatures less than 40 K, the vibrational relaxation 

is dominated by spontaneous emission of phonons. Above this temperature, high 

frequency phonons induce dephasing. There was a significant discrepancy between the 

measured vibrational frequencies than in previous studies. This discrepancy is attributed 

to impurities in the samples used in the previous studies. The temperature-dependent 

contribution to the linewidth was characterized by a simple activation energy.  

Wen et al. (1991) extend the use of CARS to polycrystalline and opaque solids, 

which is of direct relevance to our study of DPA crystals. In addition, they measured the 

CARS signal in the backscattering geometry, which has been demonstrated as well in 
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our research. They used a three-color picosecond CARS technique in backscattering 

geometry. The advantage of using three-color CARS is its insensitivity to the sample 

morphology, which did not raise any problems for our DPA CARS research. Wen et al. 

(1991) studied time-dependent vibrational dephasing from opaque polycrystalline solids 

at low temperatures. A quantative treatment of the limiting time response of the 

experimental apparatus was performed. Measurements of vibrational dynamics in low-

temperature carbon disulfide indicated that the polycrystalline samples were 

homogeneous on a microscopic level as was the case for the large single crystals used in 

other research. Raman line broadening in a sample of naphthalene in which strain was 

induced intentionally by grinding and compression is investigated as well. The CARS 

signal was easily discerned against the nonresonant background and scattered light by 

the proper use of interference optics and choice of the detection instruments. The 

measurements of CS2 CARS spectra revealed the advantage of using the backscattering 

geometry for rough materials or powders.  

 

4.3.4 Previous Spectroscopic Research on Benzene     

CARS experiments for liquid benzene were conducted as a preliminary step in 

our measurements of DPA CARS for the purpose of fine tuning and adjustment of the 

experimental system. DPA has a benzene-like ring in its chemical structure, as shown 

before, and as such benzene can be used as a model molecule for this experiment. In 

addition to the above mentioned advantages, benzene is a well characterized molecule 

that has been extensively studied.  
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Callomon et al. (1966) examined the 260-nm electronic resonance in benzene 

with absorption spectroscopy. The rotational fine structure was analyzed by comparison 

with theoretical contours. Improved values for several fundamental spectroscopic 

constants were obtained and some vibrational assignments were revised. The rotational 

and vibrational spectra recorded in this study made it certain that the equilibrium 

configurations of the carbon skeleton in benzene are exactly planar and hexagonal in 

both the ground and excited states.  

Raman techniques have been used extensively to probe the benzene molecule. 

Gillen and Griffiths (1972) analyzed the Raman line shapes and 2D NMR relaxations as 

functions of temperature, and the highly anisotropic nature of the molecular reorientation 

was evident. It was concluded that the rotation about the symmetry axis appeared to be 

consistent with a slightly damped free rotation model of diffusion, whereas the rotational 

motion perpendicular to the C6 axis was best interpreted in terms of a small step 

Brownian rotation model. These findings were important because the interpretation of 

molecular reorientation in liquid benzene had been largely unsatisfactory up to this study 

because isotropic reorientation was assumed. 

Griffiths et al. (1974) used detailed measurements of Raman line shapes and 

linewidths to study collision-induced intermolecular vibrational energy transfer process 

in liquid benzene. The lifetimes of molecules in the upper vibrational level of the υ2 

Raman transition in benzene were evaluated using frequency and time measurements. 

Varying the absolute number of benzene-benzene collisions through dilution with C6D6 

the lifetime of the υ2 transition was altered.  
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Tanabe and Jonas (1977) reported the Raman line shapes of totally symmetric 

bands, υ1 and υ2 and five degenerate bands as a function of pressure from 50 bar to 4 

kbar and over a temperature range from 30-120 degrees Celsius. They used a crude 

model to estimate the vibrational relaxation width for the degenerate Raman bands and 

concluded that the vibrational relaxation contributes differently to the total width of the 

individual bands. For all bands measured the vibrational relaxation time increased with 

pressure but the effect of varying the temperature was different for each individual band.  

Dugan et al. (1988) also used CARS and coherent Stokes Raman spectroscopy 

(CSRS) to probe liquid benzene. A new class of detuning oscillations in the THZ domain 

was reported. Vibrational dephasing rates were measured in neat benzene, benzene-d6 

and in a binary mixture where frequency beating oscillations difference are convolved 

with the detuning oscillations.  

Joo and Albrecht (1991) performed femtosecond time-resolved CSRS 

measurements of benzene-h6 and benzene-d6. Binary mixtures of both species were 

investigated for two different polarization geometries. The reorientational correlation 

time of benzene and the vibrational dephasing time for the υ1 ring breathing mode were 

measured. Bohr difference frequency beats were resolved between the υ1 band of 

protonated benzenes and deuterated benzenes that were present in neat liquids.  

Joo and Albrecht (1993) probed liquid benzene using femtosecond time-resolved 

CARS at room temperature and at 6.5 degrees Celsius. The υ1 ring-breathing modes of 

neat benzene-h6 and benzene-d6 were probed. The dephasing dynamics at early stages 

were measured with the ultrafast time resolution owing to the use of femtosecond lasers. 
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Deviations from the conventional exponential decay were reported and the data analyzed 

using a Kubo line shape. The correlation time and the rms magnitude of the Bohr 

frequency modulation were determined for the process responsible for the vibrational 

dephasing. A spinning motion was suggested as the stochastic process responsible for 

the vibrational dephasing in benzene and neat liquids.  

 

4.4. Theoretical Basis 

This current research is based on a theoretical study by Scully et al. (2002). In 

this study the potential use of CARS technique for detecting DPA was discussed. Scully 

et al. (2002) identified the major problem of the different resonance fluorescence 

techniques as being the inherent lack of advanced signal processing techniques. This 

leads to significant difficulties in identifying specific organisms from the fluorescence 

technique because of non-distinguishable emission spectra. It is postulated that resonant 

Raman spectroscopy is more promising for spore-specific identification. However, for 

resonance Raman spectroscopy, the interference of the background with the weak signal 

necessitates long collection times. Therefore, the optical probing of the biological 

particle is not instantaneous. This disadvantage can be overcome by increasing the 

resonant Raman signal strength and thereby reduce the probing time of the particle. This 

can be achieved through the CARS technique. In this research, we have realized the first 

steps towards such technique by performing visible CARS of DPA.  
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Fig.4.3. Energy level schematic diagram for the DPA CARS process. 
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Fig.4.4. Experimental system for the DPA CARS measurements. For the benzene CARS 

measurement a cell of pure liquid benzene was placed in the CARS probe volume.   
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Figure 4.3 is a schematic energy level diagram of the coherent anti-Stokes 

Raman scattering (CARS) system for the detection of DPA. The Raman polarization in 

the medium is established when the Stokes laser is tuned so that the frequency difference 

between the first pump beam and the Stokes laser is tuned to a Raman resonance of the 

DPA molecule. The second pump beam then scatters from the induced Raman resonance 

to produce the CARS signal. 

 

4.5. Forward Scattering CARS for DPA 

4.5.1 Experimental System for Forward Scattering CARS System 

The CARS system for DPA and benzene in a forward CARS scattering collection 

configuration is shown in Figure 4.4. The CARS spectrum of the 990 cm-1 ring-breathing 

transition in pure liquid benzene was recorded to calibrate the experimental system and 

optimize the system alignment. DPA was detected using the same experimental system. 

The wavelength of the Stokes beam was changed to match the 998 cm-1 transition of 

DPA.  

The pump source for the 532-nm pump beam (ω1) was a Continuum Model 9010 

injection-seeded, Q-switched Nd: YAG laser with a repetition rate of 10 Hz, pulse length 

of approximately 7 ns, and 532-nm pulse energy of approximately 750 mJ. The 532-nm 

beam was also used to pump a Continuum Model ND 6000 narrowband, tunable dye 

laser to produce the Stokes beam (ω2) at a wavelength near 560 nm with a frequency 

bandwidth of approximately 0.08 cm-1. The energy of the 532-nm beam was split using 

an 85-15 beam splitter, with the higher energy beam being directed into the dye laser. 
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The dye solution used for the dye laser was prepared from a solution of Rhodamine 590 

in Methanol. The output beam of the dye laser had a pulse energy of approximately 10 

mJ. The 532-nm beam, after the first beam splitter, was passed through a delay line to 

ensure that the pump and Stokes beams were temporally well-overlapped in the probe 

volume. The 532-nm beam energy was further divided by a 50-50 beam splitter and 

directed by mirrors and prisms into the probed media. The pulse energies for both the 

532-nm beams and the 560-nm beam energies were controlled by combinations of half-

wave plates and polarizers. The control of the energy of the beams, which were 

overlapped at their beam waist and focused on a fragile DPA crystal or in a cell with 

liquid benzene, was absolutely crucial for the success of the experiment and for safety 

considerations relating to benzene flammability. The DPA samples, prepared by 

precipitation from a DPA solution in water, degraded rapidly when subjected to intense 

laser irradiation. Increasing the lifetime of the DPA samples proved important in the 

early stages of the experiment to determine the optimal wavelength for the Stokes beam 

at the centerline of the DPA transition, as some drifts from the nominal dye laser 

wavelength were experienced. When acquiring DPA spectra, the increased lifetime of 

the DPA samples enabled extended measurements of spectra. In addition to the 

maximum attenuation provided by the combination of half-wave plates and polarizers 

inserted in the path of the 532-nm beam and Stokes beam, it was necessary to operate the 

Nd: YAG laser with a non-optimal Q-switch delay relative to the flashlamp pulse in 

order to lower further the pulse energies of the CARS beams at the DPA crystal. The 
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pulse energies for the 532-nm and 560-nm beams at the CARS probe volume were 

estimated to be on the order of few microjoules. 

The pump and Stokes beam were focused into the CARS probe volume using a 

lens with a focal length of 300 mm. Optimal overlap was achieved using a 100 µm 

pinhole, through which the pump and Stokes beam were directed. After passing through 

the CARS probe volume, the pump, Stokes and CARS signal beams were recollimated 

using a 300-mm-focal-length lens. The 532-nm pump and the Stokes beams were then 

directed into beam dumps. Significant scattering of the beams was experienced when 

they passed through the DPA samples or benzene, and this scattering interfered with the 

CARS signal. A 532-nm notch blocking filter was placed in the CARS signal channel, 

together with a 505-nm interference filter (CARS signal wavelength), to minimize 

scattered light. The interference filter passed 12% of the CARS signal and had a 10 nm 

bandwidth, but this reduction in CARS signal intensity was necessary to avoid scattered 

light interference with the DPA spectrum. The 505-nm CARS signal was directed 

through apertures and focused using a 150 nm lens onto the entrance slit of a 0.5-m 

spectrometer.  

The spectrometer was not scanned synchronously with the dye laser wavelength. 

The exit slit was operated throughout the experimental measurements at maximum width 

to provide the widest possible detection bandwidth; this was possible only because the 

suppression of the scattered light using filters was very effective. A photomultiplier tube 

(PMT) (Hamamatsu R1516) was used to detect the 505-nm CARS signal at the exit of 

the spectrometer. The CARS signal was divided by the dye laser energy on a shot-by-
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shot basis to account for the fluctuation of the dye laser energy and its influence on the 

CARS signal. The Stokes dye laser was scanned under computer control in an interval 

long enough to capture the 998 cm-1 DPA or 990 cm-1 benzene transition, and a Labview 

program was used to record the CARS spectrum. The wavelength of the Stokes dye laser 

was scanned in different step sizes for various scans, averaging over a different number 

of laser shots at each position, and the length of the scan interval varied as well. These 

parameters in data acquisition procedure were influenced chiefly by the need to extend 

the lifetime of the DPA crystal and to obtain meaningful results. The Stokes beam and 

the 532-nm beams were blocked alternatively at the end and the beginning of the scan to 

provide an estimate of the contribution of the non-resonant signal to the spectrum.  

The benzene cell used is shown in Fig. 4.5. Benzene filled the volume between 

two BK-7 glass windows held in place by two aluminum rings. Liquid benzene was fed 

through a side inlet pipe. Leakage through the windows was prevented through the use 

of Teflon O-rings, chosen for their excellent resistance to corrosion by benzene. The 

benzene cell was mounted on a translational stage to move its position relative to the 

overlap of the beams and thus to obtain maximum benzene CARS signal.  

DPA crystals were prepared by dissolving powdered DPA in distilled water. 

Because of the poor solubility of DPA in water at room temperature, the mixture was 

heated to 100 °C and kept at this temperature until the DPA powder was entirely 

dissolved. The solution of the DPA in water was then cooled in an insulated chamber. 

After preparing the initial sample, DPA flakes with good crystalline structure were used 

as seed crystals and were inserted into the solution at this stage.  
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Fig.4.5. Aluminum Cell for the Benzene CARS measurements.  
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Fig.4.6. Nonresonant background signal recorded by placing a glass plate in the CARS 

probe volume.  The sharp signal decrease at 982 cm-1 is an indication of the extent of the 

spectrometer bandpass. 
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As cooling continued, DPA flakes were observed to grow from the solution. The 

seed crystals, when used, slightly improved the light transmission properties of the DPA 

crystals. The flakes that exhibited the best light transmission properties, had no or few 

cracks on visual inspection and were large enough to be mounted at on a translation 

stage were selected. These were then placed in the CARS probe volume. The thickness 

of the DPA crystals used for the forward CARS experiment was approximately 500 

microns. Single CARS spectra were recorded with the sample at a given position with 

respect to the beam overlap position. The samples were then translated to another 

position to record another spectrum as the DPA crystal usually deteriorated as the result 

of the laser irradiation.  

 

4.5.2 Experimental Results for Forward Scattering CARS  

The spectral response of the CARS system was first tested by placing a glass 

slide in the CARS probe volume.  The resulting nonresonant background spectrum is 

shown in Fig. 4.6.  The drastic increase in signal is an indication of the spectral bandpass 

of the 0.5-m spectrometer.  Once the dye laser was scanned so that the CARS signal was 

within the spectral bandpass, the system response was nearly constant for the entire 

spectrometer bandpass. Determining the bandpass of the spectrometer was necessary to 

verify that resonances of DPA shown below in the DPA CARS spectra are real 

resonances and not non-resonant signals. The Stokes dye laser power is constant to 

better than 10% over the scanning range shown in Fig. 4.6. The dye laser was scanned 

using a step size of 0.01 nm/s and were averaged over 30 shots at each spectral position. 
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This scanning speed provided the optimum conditions to capture the various features of 

the DPA spectrum while maintaining the DPA crystal quality and lifetime for the longest 

possible lifetime.  

The CARS spectra of polycrystalline DPA and pure liquid benzene are shown in 

Fig. 4.7.  The ring-breathing Raman transition of the pyridine ring in DPA appears at 

998 cm-1 in agreement with experimental Raman measurements of Carmona (1979), who 

performed Raman measurements on crystalline DPA samples held at a temperature of 

100 K.  The shape of the CARS spectrum that we have recorded for the 998 cm-1 

transition is remarkably similar to the spectrum recorded by Carmona, even though our 

DPA spectrum was recorded at room temperature.  The shoulder to the low-Raman-shift 

side of the 998 cm-1 transition that is evident in the DPA spectrum shown in Fig. 4.7 is 

also evident in the spectrum shown by Carmona (1979).  The full-width-at-half-

maximum of the 998 cm-1 CARS transition is approximately 4 cm-1, and the peak is 

shifted by approximately 8 cm-1 from the peak of the equivalent transition in benzene.  It 

is also noteworthy that the nonresonant background from the DPA spectrum is 

essentially negligible.   

Fig. 4.8 and Fig. 4.9 are two different spectra of DPA acquired at two different 

experimental runs to show consistency of the results and their repeatability. It is evident 

from Fig. 4.8 and Fig. 4.9 that the resonance appears consistently at 998 cm-1. The 

intensity of the signal varied with the quality of the DPA crystals used and the thickness 

of the crystal at the CARS probe volume.  
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Fig.4.7. CARS signals recorded from polycrystalline DPA and pure liquid benzene. 
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Fig.4.8. CARS signal recorded from polycrystalline DPA.  
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Fig.4.9. CARS signal recorded from polycrystalline DPA.  Consistency in main spectral 

features evident when compared with Fig.4.8.  
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4.6. Backward Scattering CARS for DPA 

Experimental results obtained for the DPA CARS technique with the signal 

collected in a backscattering configuration is discussed in this section. The experiments 

were performed using two types of crystals obtained from different solutions. The 

motivation for detecting the DPA CARS crystal in backward direction was the need to 

explore the possibility of developing military portable sensors that would be able to 

detect the presence of an anthrax cloud at different distances to protect the soldiers from 

biological warfare.  

 

4.6.1 Theoretical Model 

Solutions of DPA in dymethylformamide (DMF) produced solid, opaque DPA 

crystals with milky appearance. These crystals have the shape of parallelepiped 

dimensions of a few millimeters. The crystal exhibits numerous cracks, scratches and 

irregularities when observed under the microscope. These irregularities scatter light 

strongly in different directions. The second type of crystal that was used are the flakes 

discussed section 4.5.1. They are modeled as monocrystals attached to each other, and 

each monocrystal has a size bigger than the optical wavelength. The model used 

addresses both types of crystals and the CARS signal by adjusting the parameters of 

roughness for each case. 
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Fig.4.10. Experimental system for DPA detection in backward CARS configuration. 
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The DPA crystals are modeled as a stack of crystals with rough surfaces, for 

which the random grating model, discussed by Rim et al (1990), Voronovich (1994) and 

Nieto-Vesperinas (1990), can be used. The rough surface is described by random height 

z = ξ (x, y, z), where x and y are the Cartesian coordinates along the Cartesian plane. 

The number of interfaces and characteristic spatial size of them is different for each type 

of crystalline medium used in the experiment. Hanna et al. (2005) provides a detailed 

discussion of the theoretical model used for comparison. 

 

4.6.2 Experimental System-Backscattering CARS Detection of DPA 

The experimental system for the backscattering CARS technique used for the 

detection of DPA is shown in Fig. 4.10. The source for the 532-nm pump beam used in 

the CARS experiment was a Continuum Model 9010 injection-seeded, Q-switched Nd: 

YAG laser with a repetition rate of 10 Hz, pulse length of approximately 7 ns and a 

pulse energy for the 532-nm output of approximately 700 mJ. The same 532-nm output 

of the Nd: YAG laser was used to pump a narrow-band Continuum Model ND6000 

tunable dye laser to produce the Stokes beam at a wavelength of 561 nm. The Stokes 

beam has a frequency bandwidth of approximately 0.08 cm-1.  The pump and Stokes 

beams passed through multiple reflections by mirrors and prisms to be guided to the 

probe volume. The probe volume consisted of either thin, brittle polycrystalline DPA 

flakes obtained by precipitation of heated DPA solution in water or from solid DPA 

crystals obtained from precipitation of DPA solution in Dimethylformamide (DMF). It 

was crucial in these experiments to control the power of the pump and Stokes beam 
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when taking a CARS spectrum of DPA because the crystals and flakes would degrade 

rapidly when subjected to intense laser fields. Therefore, the energy of each beam was 

controlled using a combination of half wave-plates and polarizers and the lasers were 

operated at a non-optimal Q-switch delay relative to the flashlamp pulse for further 

attenuation. The pulse energies of the pump beams at 532-nm and the Stokes beam 

around 561-nm at the CARS probe volume were about 0.9 mJ and 0.3 mJ, respectively.   

The CARS focusing lens had a focal length of 300 mm. The waist of the beams 

at the probe volume was approximately 100 microns. The beams passed through a hole 

in an ellipsoid Aluminum mirror. The DPA sample and the facet of an optical fiber 

waveguide were placed at the conjugated points of the mirror. The backscattered CARS 

signal from the DPA crystal second surface as well as scattered 532-nm and 561-nm 

radiation was collected by the optical fiber. To separate the backscattered CARS signal 

guided into the fiber from the other sources, a 505-nm narrow band interference filter 

with 10-nm bandwidth was placed at the inlet fiber tip. The other end of the fiber 

waveguide was directed onto the entrance slit of a 0.5-m spectrometer. The 

backscattered CARS Signal was detected using photomultiplier tube (PMT) (Hamamatsu 

R 1516) at the spectrometer exit slit. The CARS signal was recorded on a shot-by-shot 

basis using a gated integrator while the Stokes dye laser wavelength was scanned 

through a Labview program.   
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Fig.4.11. DPA spectrum acquired by backscattering CARS configuration using DPA 

flakes. 
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Fig.4.12. DPA spectrum acquired by backscattering CARS configuration.  
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4.6.3 Experimental Results for DPA CARS in Backscattering Configuration 

Figure 4.11 and Figure 4.12 show CARS spectra acquired using the CARS 

system in backscattering configuration. The scans were performed on two different days 

to ensure consistency and repeatability. The spectrum features a peak at the same 

spectral location as for the forward scattering CARS configuration at a Raman shift of 

998 cm-1. The intensity of the CARS signal in Fig. 4.11 is much higher than for the other 

scans, which can be attributed to the quality of the crystal used and the wide collection 

angle of the single provided by the elliptical aluminum mirror. The general features of 

the DPA spectra are similar to the forward scattering CARS spectra obtained before.  

The angular spatial distribution of the CARS signal collected by the aluminum 

mirror was investigated and angular scans obtained were modeled using the theory in 

Hanna et al. (2005) to verify its validity. The spatial distribution was measured using a 

movable and adjustable rectangular slit placed between the ellipsoid mirror and the fiber. 

The slit size was 1.5 mm in horizontal direction and was moved in steps of 1.5 mm 

across the fiber entrance. This corresponds to an angular resolution of 0.017 rad. The 

main limiting factor for the angular resolution was the need to maintain a reasonable 

signal-to-noise ratio.  

The backscattered radiation was examined in two regimes. In the non-linear 

regime, the CARS signal was collected using the experimental system described above. 

The three beams were focused on a spot on the DPA crystal. In the linear regime, the 

Stokes beam and one of the 532-nm beams were blocked and the other 532-nm was 
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focused on the same spot where the CARS signal was detected. To detect the 532-nm 

radiation, the spectrometer was tuned to this wavelength and the 505-interference filter 

in front of the fiber was removed. The spatial distribution scan in Fig. 4.13 was taken 

using DPA crystals precipitated from a DPA in DMF solution, while to obtain the data 

shown in Fig. 4.14 various DPA flakes from heated DPA in water solution were used. 

To ensure repeatability, both non-linear and linear regimes were probed several times, 

and for each different DPA crystal two representative cases are shown. In Fig. 4.13, the 

linear and non-linear regimes exhibit nearly the same scattering features, and this is 

more evident in Fig. 4.14. This is due to the fact that in both regimes, the scattered 

radiation results from non-homogeneous spots in the crystals.      
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Fig.4.13. Intensity of scattered light (arbitrary units) vs. observation angle. Data taken 

for a milky crystal. The angular dependence of scattered green light (a) and CARS signal 

(b) (Hanna et al., 2005).    
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Fig.4.14. Data taken with DPA flakes. The angular dependence of scattered green light  

(a) and CARS signal (b) (Hanna et al., 2005).  
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

The investigation of the electronic–resonance-enhanced coherent (ERE) anti-

Stokes Raman scattering (CARS) technique for detection and measurement of nitric 

oxide (NO) and acetylene (C2H2) concentration is described in this dissertation. The use 

of coherent anti-Stokes Raman Scattering for the detection of dipicolinic acid (DPA) is 

also discussed as the first step for application of ERE CARS for DPA.  

 

5.1. Nitric Oxide 

5.1.1. Summary of Results for Nitric Oxide ERE CARS Spectroscopy  

In the development and application of the ERE CARS technique to nitric oxide, 

there were three main objectives as outlined in Chapter II. The first was the design and 

assembly of the ERE CARS experimental system to perform spectroscopic 

measurements of NO. Second, the system was to be tested and the experimental 

parameters refined as a step towards its application to hydrocarbons and DPA. Finally, 

the experimental results were to be compared with numerical results obtained by 

modification of the CARSFT computational code for electronic resonance enhancement. 

Consistent with the objectives, the results are summarized below.  

In low pressure region, we have demonstrated the detection of ERE CARS 

signals from NO in concentrations as low as 100 ppm. Spectral scans were obtained with 
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fixed Stokes frequency as the ultraviolet pump frequency was varied, and with fixed 

ultraviolet pump frequency as the Stokes frequency was varied.  

The experimental system parameters were improved and experimental 

complications from different sources such UV scattered light interference and 

nonresonant background contributions to the spectra obtained were minimized.  

In low-pressure region, good agreement between theory and experiment was 

obtained for both scan methods, either the Stokes beam scans or the UV pump beam 

scans. The numerical results revealed strong saturation of the ultraviolet transition as the 

bandwidth for the ultraviolet pump laser was increased to a value of 6 cm-1 to obtain 

good agreement between the experiment bandwidth and theoretical width of resonance 

lines.           

At high NO pressure, the experimental results were complicated by the 

multimode operation of the injection seeder in the Continuum model 9010 Nd: YAG 

laser. The inconsistency of the seeder was monitored. Scans with minimum multimode 

interference were presented. They show excellent spectral resolution and well-defined 

spectral features. 

 

5.1.2. Recommendations for Future Work Based on NO ERE CARS Results 

To continue the development of the ERE CARS technique, many venues could 

be pursued, with the NO molecule and with other molecules. Some recommendations are 

presented in this section.  
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The use of the ERE CARS technique allows us to separate clearly the process by 

which the Raman coherence is induced in the medium from the ERE process where the 

Raman coherence is probed with the second pump. This separation simplifies 

considerably the theoretical modeling of the ERE process, and may enable sensitive, 

selective detection of small polyatomic molecules and flames.  

The high-pressure scans for NO should promise for application of the ERE 

CARS technique to measure NO concentrations in high-pressure flames, yet definitive 

conclusions could not be obtained due to multimode operation of the seeder and its 

interference with the spectra. High – pressure scans are recommended with stable laser 

operation. Numerical modeling with the modified CARSFT code is recommended as 

well for high – pressure spectroscopy.  

The multimode characteristics of the narrow–band dye lasers used to generate the 

ultraviolet pump beam and Stokes beam introduced minor, yet undesirable, 

complications in the spectra. A single–mode ultraviolet source, such as an injection-

seeded optical parametrical oscillator (OPO) will eliminate these effects. In addition, the 

experimental complications attributed to the continuous decline of the ultraviolet pump 

energy due to decay of the LD 490 dye would be overcome with the development of an 

OPO.    

The development of a single-mode laser source to replace the multimode 

ultraviolet source will enhance the detection limit greatly. A laser source is developed by 

R.P. Lucht and coworkers in the School of Mechanical Engineering at Purdue 

University. A β-BBO optical parametric generator system is seeded at the idler 
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wavelength with distributed feedback diode laser. The system was tested for single-

mode operation and has produced a tunable, pulsed laser radiation at seed wavelengths 

of 460 nm. The system can be configured to generate signal and idler radiation over the 

wide ranges by using suitable diode laser for injection-seeding the β-BBO at different 

seed or idler wavelength.  

 

5.2. Acetylene 

5.2.1. Summary of Results for Acetylene ERE CARS Spectroscopy 

The transition from nitric oxide to acetylene detection was accomplished by 

changing the wavelength of the Stokes beam to probe the 1974 cm-1 υ2 Raman transition 

of C2H2. The ultraviolet pump wavelength was varied between 232 nm and 242 nm to 

generate the ERE CARS signal.  

The detection of acetylene using the ERE CARS technique was demonstrated. 

Very high signal-to-noise ratios were obtained from a calibrated room-temperature 

mixture of 5000 ppm C2H2 in a buffer gas of nitrogen.  

The dependence of the spectral line shape and intensity on the probe wavelength 

was investigated. Below an ultraviolet wavelength of 239 nm, the peak intensity of the 

ERE CARS spectrum was fairly constant but the shape of the spectrum changed as the 

ultraviolet wavelength was shifted. The change in the shape of the spectra is due to 

different electronic resonance interactions in the A-X electronic band. For wavelengths 

higher than 239 nm, the intensity decrease was rapid. This decrease in signal can be 

mainly attributed to the reduced electronic resonance effect as the ultraviolet wavelength 
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increased. In addition, the fifth harmonic YAG mirrors used as spectral filters have an 

increasing reflectivity for the ERE CARS signal wavelength in this range.  

The pressure dependence of the acetylene ERE CARS signal was investigated as 

well. The ERE CARS signal increased approximately as the square of the pressure. This 

illustrates a significant advantage of the ERE CARS technique compared to laser-

induced-fluorescence (LIF) detection of minor species in high-pressure flames. The ERE 

CARS signal is approximately proportional to the number density and thus increases 

significantly as pressure increases, whereas the LIF signal remains constant for the same 

minor species mole fraction as the pressure is increased.  

 

5.2.2. Recommendations for Future Work Based on C2H2 ERE CARS Results 

The successful detection of acetylene using the ERE CARS technique indicates 

the potential of this technique in many areas. Many other hydrocarbon species such as 

C3H8 and diatomic species such as OH and O2 can be potentially detected using the same 

technique. In addition, acetylene detection in high-pressure flames using the ERE CARS 

and LIF techniques will provide an assessment of the potential advantages of ERE 

CARS over competing laser diagnostic techniques.    

Application of the ERE CARS technique to high temperature media should be 

investigated closer. While the electronic resonance interaction is quite complicated for 

acetylene because of the structure the A-X band, the electronic resonance interaction will 

become stronger as the temperature of the medium increases because the electronic 

transition moment will increase for excited vibrational levels in the ground state as 
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explained by Williams and Fleming (2002). As such, with higher signal-to-noise ratios, 

the complicated electronic and Raman spectra of acetylene could be investigated in 

detail.  

 

5.3. Dipicolinic Acid 

5.3.1. Summary of Results for Dipicolinic CARS Spectroscopy 

The detection of dipicolinic acid (DPA) using CARS was demonstrated. The 998 

cm-1 Raman transition of DPA was detected in the forward and backward experimental 

configurations to assess the applicability of this technique in biological warfare 

applications for anthrax detection. This transition has very characteristic and sharp 

spectral features and shows great promise for selective detection of bacterial endospores. 

In addition, the detection of this transition is facilitated by its benzene-like behavior due 

to the structure of DPA. This makes the calibration of the experimental system easier by 

detecting the strong signal of benzene first and then DPA.  

The DPA crystals were prepared by precipitation of DPA crystals from a solution 

in water. The flakes produced were inspected visually and the most transparent crystals 

that exhibited the minimum number of cracks was used in the CARS probe volume. The 

lifetime of the DPA crystals under intense laser radiation was short and required the 

reduction of the laser beams energy to well below 1 mJ to extend the lifetime. Together 

with reducing the number of experimental scans averaged at each wavelength and the 

number of steps during the dye laser wavelength scans, it helped to extend the crystal 

lifetime to survive the scans.  
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In the backward experimental configuration for DPA detection, the strong 

scattering of the CARS signal on rough interfaces between crystal layers in the 

polycrystalline medium was collected by an elliptical aluminum mirror and focused into 

a fiber optical waveguide. The angular distribution of the scattered CARS signal on the 

aluminum mirror was determined and used to determine the characteristic spatial size of 

inhomogeneities of the crystal.  

 

5.3.2. Recommendations for Future Work Based on DPA CARS Results    

The successful detection of various molecules such as NO and C2H2 using ERE 

CARS and the experience gained with the experimental system should be invested in 

detecting DPA using ERE CARS. Having detected DPA with two 532-nm pump beams 

and a 561-nm Stokes beam in a “normal” CARS experiment, the experimental 

considerations for DPA CARS spectroscopy are better understood.  

Preparing DPA crystals by precipitation from DPA solution in 

dimethylformamide (DMF) showed promising results. Instead of flakes, solid crystals 

were obtained and showed promise in extending the lifetime of the crystal. Many 

parameters such as the thickness and surface quality can be more controlled with these 

crystals. The crystal with better qualities should be used for ERE CARS for DPA 

detection. The results obtained in the backward configuration can be applied to improve 

LIDAR system performance.  
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