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ABSTRACT 
 
 

A Methodology for Memory Chip Stress Levels Prediction. (August 2005) 

Kartik Sharma, B.Tech, B.I.E.T. Institute, Jhansi, India 

Chair of Advisory Committee: Dr. Sheng-Jen (Tony) Hsieh 
 
 
 

 The reliability of an electronic component plays an important role in proper 

functioning of the electronic devices. The manufacturer tests electronic components 

before they are used by end users. Still at times electronic devices fail due to undue 

stresses existing inside the microelectronic components such as memory chips, 

microcontrollers, resistors etc. The stresses can be caused by variation in the operating 

voltage, variation in the usage frequency of the particular chip and other factors. This 

variation leads to variation in chip temperature, which can be made evident from thermal 

profiles of these chips. 

 In this thesis, effort was made to study two different kind of stress existing in the 

electronic board, namely signal stress based on variation in duty cycle/frequency of chip 

usage and the voltage stress. Memory chips were tested using these stresses causing 

change in heating rates, which were captured by infrared camera. This data was then 

extracted and plotted to obtain different curves for the heating rate. The same experiment 

was done time and again for a large number of chips to get heating rate data. 

 This data consisting of average heating rate for large number of chips was used 

to build Neural Network model (NN). Back Propagation algorithm was used for 

modeling because of its advantage of converging to solution faster compared to other 

algorithms. To develop a prediction model, data sets were divided into two-third and 

one-third parts.This two-thirds of the data was used to build the prediction model and the 

remaining one third was used to evaluate the model. The designed model would predict 

the stress levels existing in the chips based on the heating rates of the chips. 
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 Results obtained suggested 

1. There is difference in heating rate for chips stressed at different stress levels. 

2. Accuracy of the model to predict the stress is high (greater than 90 %). 

3. Model is robust enough that is it can yield efficient results even if there is 

presence of noise in the data. 

4. Generic methodology can be proposed based on the experiments. 

  

This work is progress in the direction of making a predictive model for a complete 

electronic device, which can predict the stress level existing on any  component in the 

device and will provide an opportunity to either protect the data or  removal of the 

defected components timely before it even fails. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motive 

Chips are widely used in all kind of electronic components, but they are highly 

prone to failure. Chip in an electronic device may fail due to voltage overstress or signal 

overstress existing in the chip. Voltage stress may cause gate oxide breakdown [1], 

electro migration or breaking of bonds at high temperature. Electrostatic discharge and 

electrical overstress (EOS) caused due to voltage overshoot are blamed for up to 60% of 

field failures [2]. Due to the unavailability of accurate circuit level simulation tool lots of 

work had been done on simulation models [3]. Other detection technologies include 

Wunsch- Bell Paradigm [4], non-destructive solutions using percolation and FEA tools. 

 Similarly, signal stress caused due to variation in duty cycle and chip usage may 

lead to unnecessary heating in the chip, which can lead to the failure of processor chip 

and other high frequency electronic devices. Jung et al. [5] mentioned duty cycle 

correction scheme. Okuda et al. [6] gave the different method for duty cycle error 

correction, while Chen et al. [7] described the effect of dynamic stress testing on 

memory application. 

Currently most of the methodologies for chip testing study the defective chip and 

try to narrow down on possible causes, which must be avoided or try to analyze the 

defects using simulation models, rather then collecting real time data, while the chip is in 

operation. Nowadays demand is for methodology based on the concurrent technology 

that can give real time analysis of the chip condition and can predict the failure before 

time based on the stress level existing in the chip. 

 

 

_________________  

This thesis follows the style and format of IEEE Journal of Solid-State Circuits. 
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1.2 Nature of the Problem 

When the end user uses the electronic components, at times they are subjected to 

extreme conditions, which might make them to work outside their design limits. In this 

research two of those extreme conditions were studied: signal stress and voltage stress. 

Here in this thesis work, we define signal stress due to variation in signals sent in/ out of 

the particular chip.  

In addition, voltage stress refers to the increase in the voltage at address and data 

pins on chips. Device components at times have to work at maximum capacity, resulting 

in increased heating rate of the device. The most familiar example is the cooling fan use 

to cool off over the microcontroller in a PC. The stress resulting on the chip due to the 

variation in the signals is what we call as the signal stress and can lead to component 

failure either due to excessive heating or due to internal stuck in faults in the registers. 

The voltage stress is caused when the component has to work at some higher 

voltage than the usual. This result in various kinds of failures in the chip most common 

is the gate failure at the pins on the chip. Failure can be slow or avalanche depending on 

the stress level. Voltage stress results in the increase of the temperature of the chip or 

heating rate and chip may fail due to the breakdown at very high temperature. 

For both of these stresses we saw that the heating rate plays a crucial role and 

increases with increase in both signal stress and voltage stress. As a result heating rate 

was taken one of the parameters which if kept under control or if there are some methods 

to detect the variation in the heating rate and then we can avoid chip failure. 

 

1.3 Problem Statement 

In this research work, the failure of the chip was identified due to the increase in 

signal stress caused by the variation in duty cycle and/or frequency of memory chip 

usage and voltage stress caused due to voltage overstressing on pins. It is assumed that 

heat will be generated over time as chips are subjected to stresses. 
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In this research work, heating rate was considered as a primary parameter for 

developing an analytical model using this parameter to predict the stress level existing in 

the chips. Neural Network is proposed as a modeling technique for this research work. 

 

1.4 Scope and Objective of Research 

The scope of research work is to build a predictive model and methodology 

which can avoid the failure of the chips under actual conditions by predicting the stress 

levels existing in the electronic components or board as a whole.  

The research objectives can be summarized as follows: 

• To understand the relationship between heating rate and stress levels. 

• To build a Neural Network model for failure prediction based on the voltage stress 

existing in the component using the relationship between stress and heat rates of the 

electronic components while in operation.  

• To build similar kind of Neural Network model for failure prediction based on signal 

stress existing in the component using the relationship between heating rates given 

by chips and corresponding stress level existing in the chips. 

• To test the noise tolerance of the model developed using statistical tools.  

• To proposed a generic methodology for electronic stress level prediction. 

 

1.5 Format of Research Work 

The progress of research work, starting from the idea of studying the thermal 

profile and then carrying out experiments and modeling to build the prediction model is 

mentioned in the following chapters. 

Chapter II in the research work consists of the literature review on the possible 

stresses existing in the chip, failure caused due to stresses, current methodologies and 

prediction techniques. 

Chapter III talks about the various aspects of board and the chip and design of 

experiment. 
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Chapter IV describes the way experiments were conducted for all the 

stresses to gather the heating rate information. 

Chapter V gives the results obtained from experiments and inferences obtained 

on the basis of results. 

In chapter VI the model was tested for its robustness by comparing the deviation 

in data to its effect on the model results. 

Chapter VII consists of the generic methodology that can be for creating a 

prediction model based on the stress existing in chips. 

Finally last chapter VIII consists of the conclusion drawn and the future work that 

can be done on similar lines of research. 

The entire procedure of using thermal profiles and using Neural Network 

modeling technique is innovative and can be successful in predicting the chip failures. 

The conclusion is drawn in the end based on the results from the neural model and its 

noise tolerance efficiency. 
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CHAPTER II  

LITERATURE REVIEW 

 

2.1 Introduction 

The research work is related to stress level prediction which is a part of field of 

reliability and testing. This chapter starts with brief history on chip reliability and 

testing. First few page deals with the reliability theory, followed by sections which talk 

about current techniques and prediction methodologies. The last section in literature 

review talks about stresses specifically those that were our main concern in this research 

work. 

Chip reliability and testing is vast field of research in electronics industry today. 

Every year millions of dollars are spent to find out the answers to various reliability 

issues and for the analysis of chip failure. Two main reasons for many research efforts in 

the field of chip reliability and failure analysis are given below:   

• First, the use of memory in electronic devices is indispensable and thus their failure 

during operation is not only irritating to end-users, but may result in the loss of life 

and valuable information. 

•  Secondly, historically speaking the number of bits per chip has quadrupled roughly 

every 3.1(π) years; and as memory chips have become more complex, so have their 

faults and sensitivity to faults. On the other hand, due to economic reasons, the test 

cost per chip (which is directly related to the test time) cannot be allowed to increase 

significantly. As a direct consequence, economical memory testing has been the 

subject of a large research effort. 

 

2.2 Electronic Reliability  

As the first reliability studies have been made in the USA, at the beginning the 

American definition has been adopted: "The reliability is the probability that a certain 

product does not fail for a given period of time, and for certain operational and 

environmental conditions" [8].  
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The evolution of reliability field can be traced between the milestones of the 

semiconductor manufacturing history as given by Birolini, Kuehn, Knight and Bazu. The 

first studies concerning the electronic equipment and its reliability have been made for 

the purpose to improve the military avionics technique and the radar systems of the 

army. The mathematical formulation of the reliability and its utilization for material tests 

originate in ideas born in WWII when Werner Von Braun and his colleagues worked on 

V1 missiles. They started from an idea that a chain can’t be more resistant than its 

weakest link. But repeated failure and multiple errors make them realize that all the 

constructive elements must play a role in reliability evaluation [8]. 

As of today reliability has been defined as the probability that an item will 

perform a required function under stated conditions for a stated period of time. Factors 

affecting the reliability of a product cover a large range of variables including design, 

manufacturing, application and the human involvement factor at each stage of 

production. 

For a product to have high reliability it should have a low failure rate; and in 

order to achieve a low failure rate, careful failure analysis is needed. The origin of 

device failure analysis began with the invention and fabrication of the transistor. Initially 

single transistor, such as point contact structures and micro alloy germanium devices, 

could be analyzed by adopting previously developed metallurgical cross- sectioning 

procedure [8]. 

The entire semiconductor industry was revolutionized by silicon planar 

technology. Optical microscopy was extensively used at that time. 

With the introduction of multiple devices fabricated within the same chip (ICs), 

electrical diagnostics became more complicated. Failure analysis technology continued 

to grow in parallel with IC fabrication in devising ways for selective passivation removal 

and methods for isolating individual transistor [8]. 

Reliability studies are performed to find out the reasons for chip failure and 

methods to avoid the failure. During its lifetime, a memory chip goes through various 

phases from wafer to final wear out period where it is highly susceptible for failure. 
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 Failure classification of the memory device can occur, depending on the cause, 

depending on the speed of failure or depending on the technical complexity. For 

simplicity, all failures can be broadly characterized into two categories [9]. 

• Failure Due to Manufacturing Defects at Chip Level and PCB Board Level: These 

failures arises due to the defects during manufacturing processes such as Epitaxy, 

Oxidation, Patterning, Diffusion, Thermal treatment, Cleaning, Etching, Bonding etc. 

[10]. PCB board defects may be caused due to improper wiring, missing chips and 

defect on board etc. 

• Failure Due to User Environment: This type of failure arises unexpectedly when the 

user is in control of the device. These may be catastrophic failures causing 

interruption of the normal operation, or drift failures, producing defective operation 

by varying electrical characteristics. These defects are primarily caused due to 

electrical overstress, thermal overstress, and environmental stresses. 
 

Most failures arising during the manufacturing and the user environment stage 

are due to the stresses that are inherent during the whole life cycle of the device. From 

the wafer stage until final packaging a device has to go through lots of mechanical and 

thermal stresses and in practice, lots of these stresses still remain inside the memory and 

affect functioning at the later stage. The next section describes current techniques for 

memory chip testing that are widely used in industries to detect these failures. 

 

2.3 Current Approaches in Testing Memory Chips 

Lots of research has already been devoted to the techniques being used in order 

to test the memory chips. These tests are done to find out the reliability of the chip while 

in operation. Here some of those important techniques are summarized. 

  Testing for inbuilt manufacturing defect can be done through electrical tests 

using flying probe testers, using manufacturing defect analyzers, using automated optical 

inspection, infrared thermography, acoustic micro imaging, and laser systems [11]. 
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For environmental stress screening stress may be applied in combination or in 

sequence on an accelerated basis within the product design capabilities. Stressing can be 

thermal cycling, vibration or both. Temperature range used is -65 to 230 deg F [11]. 

For finding the faults existing during functional or operating conditions electrical 

characterization is performed.  It is a parametric, experimental analysis of the electrical 

properties of a given integrated circuit; its purpose is to investigate the influence of 

different operating conditions on the IC's behavior. Electrical characterization is 

thorough and exhaustive and can be carried out on an automatic test equipment (ATE) 

and resulting in all practical combinations; device supply voltages, logic input/output 

voltages, temperatures, timing conditions, parametric variations, various test patterns, 

operating frequency responses, modes of operation and power consumption [9]. 

Screening tests and test strategies includes Burn in (statically or dynamically), 

constant acceleration, ESD tests, glassivation, high temperature storage, hot carriers, 

humidity or damp test, latch up test which simulate voltage overstress on signal and 

power supply line as well as power on/ power off sequences, seal test, soft errors, 

solderability, thermal cycles and time dependent dielectric breakdown [11]. 

Test programs for the RAM memory consist of three items: DC parametric test, 

AC parametric test and functional test (although they often are applied simultaneously). 

A memory test program comprises various tests such as continuity check, leakage tests, a 

variety of functional tests, dynamic or timing tests, and parametric tests. Functional tests 

by far are the most important test where in DUT (device under test) is in dynamic test 

mode, which uses fast changing input stimuli to check the DUT's internal logic, i.e. 

check the storage and retrieval of standard patterns at rated cycle times. Various test 

patterns and truth tables are use for the functional test. Some of these test patterns 

include GALPAT, DIAPAT, MARCH, CHECKERBOARD [9]. 

Other tests that can be performed and play the most important role during the life 

cycle of the memory device are termed under life testing. The purpose of life test is to 

obtain information about the lifetime properties of the components. The term reliability 

testing is often used synonymously with lifetesting. As actual test for the memory device 
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life cycle is not feasible, several kinds of accelerated tests are performed and inferences 

about the reliability of the components under different set of loading conditions can be 

made based on a proven acceleration model [12]. 

 Accelerated tests [13] (ATS) are used widely in manufacturing industries, 

particularly to obtain timely information on the reliability of product components and 

materials. Generally, information from tests at high levels of stress (e.g. use rate, 

temperature, voltage, or pressure) is extrapolated, through a physically reasonable 

statistical model, to obtain estimates of life or long-term performance at lower, normal 

levels of stress.  

There are fundamentally two different methods of accelerating a reliability test: 

•  Increase the use rate of the product 

• Increase the aging rate of the product by changing the conditions in which it is ought 

to work i.e. its loading conditions, thus decreasing the safety margin. 

There are two important prerequisites that must be fulfilled, if useful information 

is to be derived from an accelerated life test: 

• The failure mechanisms generated in the accelerated test must be the same as those 

observed under normal operating conditions. 

• Its must be possible to extrapolate the lifetest results from the accelerated conditions 

to normal operating conditions. 

 

Most accelerated tests data analyses include a combination of graphical methods 

(scatter and probability analysis) and analytical methods (regression analysis) based on 

the maximum likelihood (ML) estimation. These methods use the statistical models such 

as Arrehenius model, Monte Carlo simulation etc. Though most of the literature is 

devoted to using statistical methods for accelerated testing but there are other methods as 

well to analyze the data obtained from the accelerated tests. Few examples of new 

techniques that have evolved after different combinations of these traditional methods 

and using new devices are: 
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• Methodology for finding the metallization and the gate defects are photoemission 

microscopy, liquid crystal analysis [14], Voltage contrast [15] or internal probe [16, 

17]. 

• Methodologies for SRAM defect due to the gate oxide short [18] based on the 

surveillance of the circuit current consumption (IDDQ) are more efficient than logic 

testing. 

• Methodology for Defect in chips due to metallization shorts and the technique to 

single out the defect [19] can be external electrical functional test or internal contact 

less beam testing. 

• Methodologies for SRAM bit failure due to the high frequency operations [20] uses 

nanoprobes and a minute manipulator is use to find out these defects.  

• Methodology for SRAM cell cold failure [21] is based on using the electrical 

signatures of the transistors of SRAM cell after isolating the cell. 

 

All the methods that are described above are those, which can either find the 

defect and errors in the memory at the time of inspection or at the user level. But what 

about predicting the reliability of the chip in future or say lifetime of the memory chip? 

Most of the research work that is being presented is based on the handbooks that were 

developed by the reliability engineers based on the experience and the statistical data. 

Most of those handbooks still serve as the guide to predict the lifetime estimation of the 

memory device [22]. But as already mentioned in earlier text, today need is for 

concurrent methodologies which can help in either protecting the component or provide 

opportunity for safe transfer of the important information before failure can occur. 

 

2.4 Prediction of Stress Failure in Electronics and in Memory Chips 

In 1860, A.Wohler presented some of the earlier fatigue failure information; the 

S-N curve that he showed identifies the stress below, which no failure will occur. 

Reliability engineering for electronics started with the establishment of the Ad Hoc 

Group on reliability of electronic component in 1950s.The first formal handbook was 
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publication of RCA called TR- 1100. In the following years RCA proposed a new 

prediction model for microcircuits, based on work of Boeing Aircraft Company. One 

was steady state temperature and other was mechanical related failure rate. The advent 

of complex microelectronics devices pushed the application of MIL-HDBK beyond 

reasons and they are used in comprehensive number around the world these days [23, 

24]. 

Given the system architecture and parts, reliability prediction models are used to 

assess the influence of the magnitude and duration of the stresses on the reliability of the 

parts and systems, so that stress, environment controlling techniques and derating 

techniques can be implemented. For electronics derating parameters include current, 

voltage, power frequency and temperature [25]. 

The traditional approach to predict the long-term reliability of devices in field 

use involves implementing statistical models, using the exponential or constant failure 

rate model [26, 27, and 28]. Modified traditional approach is doubly conservative. After 

a time of 104 hr or say 1year it fixes the failure rate to be constant [29]. Other prediction 

techniques involve using the MIL-HDBK, Bellcore TR-NWT standard handbook, for the 

failure rate prediction. The new approach: Physics of failure modeling [12] arises due to 

lot of dissatisfaction in traditional technique. New approach is based on developing 

number of models for physics of failure lifetime evaluation. These models address the 

long-term wear out phase primarily. Modeling of electromigration failure and corrosion 

had already been mentioned in the modeling literatures. 

Many of these approaches are used for the stress failure analysis of the memory 

chips. One such model based on the physics of failure approach was given by [9] called 

as SYRP- for predicting failure rate in a lot- based on the physics of failure lifetime 

evaluation. 

Though most of the prediction methods that are being used in the memory chips are 

based on the RPP (reliability prediction procedures) as given in MIL-HDBK-217. 

Dynamic life testing methodology is used for purpose of quantifying the performance 

degradation during IC operation. Infact dynamic life testing is done for two major types 
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of degradation mechanisms: electrical ones (such as latchup, ESD, hot carrier effect, 

dielectric break down and electromigration) and environmental ones (produced by 

thermal stress, humidity) [12]. 

The accelerated tests stand-alone as the best-suited method for predicting the life 

time performance of the memory device. These tests are based on the fact that the life of 

a memory device can be compressed to few days or even to few hours. Thus faults that 

would occur in the memory in the near future occur during the test and estimation and 

prediction about the lifetime of the memory device can be made. 

 

2.4.1 Traditional Accelerated Test, Statistical Models and Methods 

For predicting the failure of the components using accelerated techniques, two 

statistical methods are widely used. One of them is Arrehenius model, which is used to 

predict the failure based on temperature-accelerating factor. The other one is the Eyring 

model based on the voltage-accelerating factor.  

There are few other models that don’t use statistical methods or mathematical 

modeling but use other advanced methods such as Neural Networks or Computer Aided 

Design for doing accelerated tests. Though these tests are not done on the memory 

devices but they have been done for residual life prediction from vibration based signals 

using Neural Network approach where in the input data is fed in to the feed forward 

back propagation Neural Network [30]. The device produces a signal of different 

frequencies or when device starts malfunctioning is known. As a result the signals at 

which the failure or the malfunctioning occurs are noted and then used for the input in 

Neural Networks [31, 32]. 

Next section talks about stresses, which can cause chip failure and are studied in 

this research work. 
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2.5 Stresses on Memory Chips 

Till now we already reviewed reliability, current techniques for detection and 

also failure prediction techniques. In this section stresses that are existing within the 

chips, which leads to its failure at manufacturing stage or after a lifetime are discussed. 

We also talked about the current work that’s been done in voltage stress and signal stress 

specifically, which is main concern of this research work as well. 

 

2.5.1 Mechanical Stresses 

 Both tensile and compressive stresses exist inside the memory device. If we look 

at the wafer grain surface due to ion implantation and bonding there are different stresses 

at the grain boundaries. These stresses can cause the failure of the memory devices if 

they are present in excess. 

 

2.5.2 Electrical Stresses  

SRAM when under operating conditions is subjected to different kind of stresses. 

These stresses can be voltage stress, current stress, or current density. 

 

2.5.3 Environmental Stresses 

Stresses arise due to the internal and external conditions such as vibration, shock, 

radiation, humidity, temperature, and contaminants. The failure mechanisms involved in 

all these process are generally corrosion, distortion, fatigue, fracture and wear. These 

defects may cause electro migration, change in electrical parameters, deformation, 

cracking, change in resistance, degradation, acid formation, material fatigue, shorting of 

electrical parts, and permanent stress etc  [11]. 

The stresses that are being studied in this research work are voltage stress and 

signal stresses. This section describes the current study and research being done in either 

detecting these stresses in chips or predicting failure due to them. 
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2.5.4 Voltage Stress 

The chip may fail due to various different reasons when subjected to higher than 

normal voltage. Generally if voltage overload is slowly applied then bond wires fail and 

if it is applied relatively fast then silicon junctions fail. But the location of the failure 

depends on the current path and melting temperature of the materials. Various methods 

are used to either predict overstress directly, or find a model that simulate the conditions 

and that data can be used to find out when the chip is going to fail [2]. 

 One of the major reasons for failure due to chip overstress is ESD (electrostatic 

discharge). ESD failures are usually due to a brief, high intensity static charge, often 

caused when an improperly grounded human or machine handles the chip. Similarly 

EOS (electrical overstress) failures typically involve long term low intensity stress such 

as might arise if a part consistently ran at a higher voltage or clock speed than intended 

[2]. 

Some of the novel techniques used for detecting of stress is using thermal 

simulators. In [33] algorithm for thermal simulations is given for electothermal 

simulation. This algorithm helps in studying the transient thermal effect caused due to 

existence of electrical overstressing. The algorithm is based on the region wise 

exponential approximation technique and a recursive convolution scheme. Like wise lots 

of other electrothermal circuit models are defined to simulate the conditions resulting 

from the thermal degradation setting in the chips due to overstressing [34]. 

In another approach electrical overstress is considered to be the effect of plasma 

instabilities and Wunsch-Bell thermal paradigm was used for practical failure modeling 

[35]. Also an engineering method based on the failure threshold of diodes and transistors 

due to reverse biasing pulses that are generated due to electrical overstressing is 

mentioned in [36]. 

Along with research for predicting electrical stress there is an ongoing effort to 

predict the defects that are produced due to overstressing. iTEM which is a reliability 

diagnosis tool for electromigration [37] and iCET a chip level electrothermal simulator 

which gives the CMOS on chip steady state temperature profile and circuit performance 
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for given input conditions [38] are used. Substrate resistance extraction method that 

accurately calculates, the distribution of injection current into the substrate during ESD 

or latch up resulting from overstressing is mentioned in [39]. 

Most of these methods create the simulation of the component failure but today 

demand is for the concurrent technologies, which can predict the failure before time and 

avoid the unnecessary failure of the chips. One of the current technologies based on the 

concurrent engineering was developed at Hughes Aircraft Company, radar system group. 

They developed software called HAC RPP, which concurrently does the computation of 

derated and stressed part failure rate/ unit and identifies overstressed part problem [40].  

 

2.5.5 Signal Stress 

 Signal stress can be caused due to variation in signal frequency, clock frequency, 

duty cycle or if the signal voltage is kept higher than the normal.  

Signal stress we used for the research was the stress induced, when continuous 

signals are send to chip and chip processes that information as compared to when its 

working intermittently. This kind of stress can be understood as the variation in the duty 

cycle as well as the variation in the frequency because it depends upon, how frequently 

code is running on the chip and the duration for which the code was running each time. 

Most of the work done for signal stress is based on finding out the defects during 

the duty cycle variation and defects due to variation in frequency.  

Research has been done on variation in the frequency to outline various defects 

and detection techniques. Nowadays chips are being made which can work in access of 

200 MHz. Dobberpuhl [41] mentioned the technique for self stress test for the systems 

working at very high frequency. It investigates the reliability concerns due to hot carrier 

injection, electromigration under realistic circuit conditions. Snyder et al. [42] did work 

to analyze the reasons of failure while the chip is working at very high frequency. Ikeda, 

Yoshida et al. [43, 44] described various different techniques such as nanoprobes, 

selective etching and TEM observations to analyze the bit failure that occurs at low 

voltage and high frequency operating speeds. 
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Research has been done to understand and detect the defects caused by the 

variation in frequency. The most prominent defect that may arise is the hot carrier 

injection as mentioned in [45]. 

The work on frequency variation in most of the researches deals with the 

variation induced due to variation in clock frequency of sending the signals but here in 

the research the term frequency means as to how frequent we are using particular 

component. This way we can avoid its overuse or prevent it from failure due to overuse 

by comparing the heating rate for the chip when it is working continuously and when its 

working intermittently. 

There were several codes, which were run on the chip for reduced duty cycle. 

The heating rate difference was calculated to give us the fair good results from which we 

can show that there is fairly good reason between the heating rate when chip is working 

continuously and when its working intermittently. 

As memory chip was used in the research so there was no significant increase in 

the chip-heating rate, which can cause the failure. But if the similar work is done for the 

microcontroller then we can build a heating rate model for variation in signal stress that 

is duty cycle and the frequency of the signals and avoid over heating which can lead to 

the failure of the chip. 

From the literature review it is clear, though lot of work is done for chip failure 

and controlling the parameter which might lead to its failure but lesser work is done in 

predicting the chip failure if it might occur while chip is being used. This research work 

is thus novel in finding out the possibility of predicting the chip failure due to two most 

important parameters namely voltage overstress and signal stress. 

All this can prove to be a step towards building a predictive model for complete 

electronic device based on the similar lines of conclusion. 
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CHAPTER III 

DESIGN OF EXPERIMENTS 
 

3.1 Introduction 

 This chapter details the features of the 8051 board used for the research.  

Description of static random access memory and its functional diagram, material used, 

detailed test set-up along with the data acquisition techniques and finally the hypothesis 

used for testing are given. This design of experiments gives the overall view of the 

various components, which were used for the research and also the test setup that was 

used to do the experiments. 

3.2 Experimental Setup 

 This subsection consists of the details about the micro controller board that was 

used for the research work. It discusses the basic features of 8051 board, description of 

SRAM used manufactured by Samsung, function of the SRAM, test set-up, material 

used and finally data acquisition and imaging procedure.  

3.2.1  Features of 8051 Board 

Some of the features of the 8051 board used were standard 87C52 CPU clocked 

at 22.1184 MHz, with on board 32k SRAM (2000-7FFF) and 30k FLASH ROM (8000-

F7FF). It can also work at high-speed baud rates: 115200, 75600, 38400, etc. It had eight 

LED’s controlled by 8 dedicated I/O lines. Figure 3.1 shows the layout of the board and 

the SRAM used. 

Requirement for the board were DC Voltage (8 - 15 volts), AS-31 Assembler or 

Compiler, Terminal Emulation Program, e.g. HyperTerminal (windows) or VB code. 

The internal layout allows the data transfer between micro controller-FLASH, micro 

controller-SRAM.   

3.2.2 General Description of SRAM  

The SRAM used belonged to K6X0808C1D family of CMOS chips [46]. It 

supported low data retention voltage and current. The normal operating voltage range for 
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SRAM was (Vcc Range: 4.5 V- 5.5V). Voltage on any pin relative to Vss was (–0.5 to 

+0.5 V on Vcc) and maximum was 7.0 V. Voltage on Vcc supply relative to Vss was (–0.3 

to 7.0 V).  

 

 

 

Figure 3.1 Layout of the board and SRAM used for experiments. 

 

 

 

3.2.3 Function of SRAM Diagram 

Since the goal of the experiment was to excite the SRAM it is important to 

understand the functioning of the component to excite it the most.  The SRAM functions 

in a series of steps as is shown quite well in the timing diagrams.  To explain its function 

it is important to know the overall function of the SRAM in tandem with the 8051 

microcontroller.  The microcontroller is able to send and retrieve data from the SRAM 

by sending two important pieces of information: the address of data to be read/written 

and the data to be written if that is the command to be used.  The SRAM is tied to the 

microcontroller by several lines as shown in Figure 3.2. 
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Figure 3.2 Functional block diagram for SRAM. 
 
 

 

The first lines are the write enable, and output enable lines, or WE and OE, 

which are used in reading and writing data to the SRAM.  The other single wire 

connected is the chip select wire.  This wire is used in indicating that this particular chip 

is to be used to store the incoming data, and will thus be used in writing data to the chip.  

This is incase there are multiple RAM chips for one particular board, it may be 

necessary to send data to a different RAM chip.  The last individual line on the SRAM is 

the line tied to the system clock of the microcontroller.  This is to allow the chip to sync 

up with the controller so that all data is captured properly and not at in between values.  

It is also used so that the SRAM will know when exactly eight bits have been entered 

and are ready to be read into and placed in memory.  Also going from the controller to 
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the SRAM are a series of address and data lines.  There are 15 address lines, and 8 data 

lines used to transmit data. 

The read cycle shown in Figure 3.3 is a simple process that essentially requires 

two steps out of the microcontroller.  It first will begin sending the address bits to the 

RAM chip(s).  The RAM chip(s) will receive the bits and one will be pulsed low on its 

CS line.  At this point it will also have its OE line pulsed low as well, enabling it to send 

the data specified by the address it is receiving.   

 

 
 

 
 

Figure 3.3 Timing waveform for the read cycle. 
 
 
 

The write cycle shown of the SRAM in Figure 3.4 is quite similar to the read 

cycle with the exception that the microcontroller sends data to the SRAM which is one 

more step in the process.  To write to the SRAM, the first step is for the microcontroller 

to send an address to the SRAM followed by pulsing the chip select line and write 

enable line low.  This will allow the address lines to bring in the memory location to be 

written to and will divide the information into row and column addresses.  At this point 

the data will be coming in and placed into the address specified on the address lines.   
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Figure 3.4 Timing waveform for write cycle. 
 

 

 

3.2.4 Materials 

Electronic equipment used for the experiments include 8051 development board 

communicating with computer through COM port, a enclosure with infrared camera 

inside it, special arrangement for experiments, bread board, connectors to stress the 

chips, power supplies. Also two thermocouples one for measuring temperature of the 

room and other inside the box, O-scope and digital multimeters were used. Various 

software tools were used for evaluating, collecting and analysis of data such as 

MATLAB’s Neural Network tool box, Statistical software tools like Statmost, Best Fit. 

 

3.2.5 Test Set-Up 

A connector was mounted on a board. Chips were placed over this connector 

while the board was kept on a fixture inside a black box that also has an infrared camera 

mounted inside it. This infrared camera was used for imaging the chip on the board, 
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while chips were stressed. The other end of connector was soldered to another connector 

via ribbon cable. This second connector was inserted in the slot for SRAM on the micro 

controller board. The purpose of this kind of arrangement was to keep SRAM separated 

from all the components on the micro controller board. As imaging was done for heating 

rate from SRAM so there was no use keeping the micro controller board having all the 

other components beside SRAM under infrared camera. That is why micro controller 

board was kept outside the box and only the ribbon cable connects the SRAM on the 

board, inside the box, with micro controller board outside the box. 

Beside experimental setup few softwares were also used. VB code APPENDIX B 

was used to synchronize the time between turning the power on, on the micro controller 

board, sending the code on the board and start imaging through infrared camera. This 

VB code mimics the HyperTerminal in windows but saves all kind of manual operations 

involving opening and sending the data file to micro controller. Besides that all the 

process of opening the files and sending the code and running it can be done by single 

command thus its easy to turn the power on and enter the command to send the code 

simultaneously. This way synchronization between turning the power on and sending the 

code was achieved. Power was turned on and at the same time code was sent on micro 

controller board as soon as first scan gets over. This way all three are synchronized. 

Two more softwares were used. WinTes to take the images using IR camera and 

Thermal View to get the heating rate data from the images obtained from IR camera. 

With this setup completed, we were ready for experiments. 

 

3.2.6 Image and Data Acquisition Procedure 

1. Once the codes were stored on SRAM, board was kept over a fixture inside an 

enclosed chamber.  

2. Infrared camera that was permanently fixed inside the chamber was positioned to 

take images of chip over board. 

 



  23   

3. Once chip was properly placed and chamber was closed, VB code was used to start 

the codes already stored. VB code was used to synchronize the time between turning 

the power on and running the code. 

4. Each code was run on the chip for specific time duration during which infrared 

camera takes images every 20 secs or 7 secs depending on the experiments. 

5. At the end of the trial we had several images from which data regarding the variation 

in the heating rate was obtained using Thermal View software. The heating rate was 

plotted on excel charts. 

 

3.3 Hypothesis  

In general terms hypothesis can be understood as the basis of doing any 

experiment. For every experiment we need to test certain hypothesis. Components of 

hypothesis are [47]: 

 

3.3.1 Null Hypothesis: According to the null hypothesis 

H0 = All are same i

~
µ

where  is the performance variable which is the heating rate in our case. i

~
µ

Performance Variable =  = “Average Heating Rate” i

~
µ

  

3.3.2 Alternative Hypothesis: According to the alternative hypothesis  

    Ha = At least two of the  ’s are different i

~
µ

 

Model can only be created if Alternative Hypothesis proved to be true. 
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CHAPTER IV 

EXPERIMENTS 

 

4.1 Introduction 

 Our main aim was to build a predictive model based on the heating rate emitted 

from the chip under voltage stress and signal (frequency/ duty cycle) stresses. For 

reaching on to that point we needed to follow certain steps.  

 These steps included finding out the heating rate for chips, which were stressed, 

extracting data using thermal view and finally building a model. 

 But before starting on the actual experiments from which model was created, few 

preliminary experiments were done to explore the parameter settings needed. This 

information would help us to reduce the errors in the later stage of the experiments. 

 Sections in this chapter discuss about results from preliminary experiments, 

methods to avoid errors and details of all the experiments done, while stressing. 

 The experiments can be categorized into two parts.  

• Preliminary Experiments: These experiments served as a platform and mean to 

standardize the second set of experiments. This set of experiments included 

experiments for ascertaining parameters such as “how long the chip should be 

stressed, what should be the cooling time, what should be the stress levels on the 

chip, what codes needed to be used etc.?” 

• Full Experiments: The second set of experiments referred to experiments that were 

needed for obtaining data for developing Neural Network. This set included 

experiments for voltage stress and signal frequency/duty cycle stress. 

 

4.2 Preliminary Experiments 

Following are the results that were obtained from preliminary experiments. At 

the end of these experiments we had all the necessary information that was needed to do 

the experiments that would finally give us the heating rate data to build the model. 
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• Heating rate from chips became constant in approximately 2 minutes, thus scanning 

time was reduced to less than 5 minutes. 

• Cooling time for the chip was same irrespective of whether it was a stressed chip or 

unstressed chip. 

• There was little effect due to random noise by infrared camera. 

• While doing voltage stressing, with positive voltage overstressing on Vcc and ground 

on Vss pins on chip as shown in Figure 4.1, no difference in heating rate between 

various stress levels was obtained. This was also proved by considering results from 

both F-test and excels graphs. Neither there was any difference in memory map 

between stressed and unstressed chips. The reason might be Vcc pins are better 

protected against voltage surge than data or address pins or Vcc pin connections do 

not directly interacts with the die area. 

• Heating rate difference was obtained when stressing was done on data pins and 

address pins simultaneously. The detail of the test are as follows: 

1. Pins to be stressed: Two data pins and an address pin were selected because it was 

possible to clearly differentiate between heating rates while stressing these pins. 

Although earlier Vcc pin was stressed but heating rate failed to give any significant 

difference for unstressed and stressed chips. 

2. Stress Levels: For the experiment 10 chips were stressed for five minutes each 

starting at 5.5V and going till 6.75 V. Chips were tested after every five minutes of 

stress to see if they were still working or not. Based on the finding it was concluded 

that out of 10 chips 7 of them failed when 6.75 V was supplied for five minutes. 

Thus the highest stress voltage was kept at 6.75 V. 

3. Time for Stressing: Experiment results suggest that chip failure occur while 

temperature exceeds 350 °F and chips attain that temperature within first two 

minutes for the least voltage stress used. So the time for least stress level was around 

2 minutes and it decreased correspondingly with increase in the stress level 

depending on how fast upper limit of temperature (>= 350 °F) was reached. 
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Figure 4.1 Pins that were stressed Vcc (+) and Vss (-). 

 

 

Pin 2-Vcc

Pin 1-Vss

• From the graphs between the heating rate and average heating rate, we observed that 

variation in heating rate was much smoother for graphs based on average of heating 

rates thus it was decided to build model based on average of heating rates for chip 

and die area. 

Average Heating rate for a cell (particular row and column) at Nth time interval is 

defined by taking the average of heating rate of cell, at that time interval and at all 

previous time intervals. 

Consider that initial heating rate is given as Ho and subsequent heating rates for 

every interval are defined as H1, H2,…..,HN, then average heating rate at Nth time 

interval is  
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AHN =∑       4.1 
=

N

i
iH

1

AHi = Average heating rate at ith time interval 

Hi = Heating rate at ith time interval 

• Increase in the temperature of the chips was exponential. At higher voltage which 

was around 7V the increase in the temperature from ambient to the failure 

temperature (>300 °F) was within couple of seconds. 

• The failure rate of the chips was thus exponential as well; i.e. the time for failure 

decreases exponentially with increase in the stress level. 

• There exists heating rate difference between unstressed chip and stressed one if 

stressed chip was made to run just after it was stressed but if its allowed to cool 

down for a day or two, no difference in heating rate exists between the two chips. 

The reason may be the tendency of the chip internal architecture to snap back to it 

normal conditions once it cools down. 

• For the particular memory chip that was suppose to work within the range of 4.5V 

to 5.5V the failure rate was significantly higher at 6.75 V and above. 

• When chip temperature is above 350 °F, the failure rate is around 40%. 

 

4.3 Avoiding Errors 

Few house keeping things to be aware of while doing the experiments are as 

follows. 

• Do not touch the chips with bare hands or blow air near the chips. 

• Try maintaining the ambient environment constant inside the chamber. 

• Try maintaining the same chip position and Infrared camera position. 

• Check for possibility of shorts on the board. 

• Check for any inconsistency in data due to environmental factors or due to human 

errors such as time lag between turning power on and sending code to the micro 

controller board. 
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4.4 Experiments with Signal Stress-I 

Signal stress experiment was done in two parts based on different ways of 

applying signal (frequency/duty cycle) stress. 

 First experiment was done to find out the effect of signal density variation for 

the data transfer across the SRAM and the micro controller. This kind of signal stress 

imitates the stress existing due to the variation in frequency of usage of particular 

component, SRAM in our case.  

For the experiment, two codes each with two modifications were used. In the next 

paragraph, basic differences in the codes are explained. More detailed explanation is 

provided in APPENDIX A. 

Two codes were used along with two modified codes, from each one of them, 

consisting of series of NOPs (No operation loop) in the codes. Code 5 

“IncrementsRAM.asm” incremented the value by 1 moving across the SRAM memory 

and increased the value till it reaches to the end of the address and then repeats the loop 

back again. Code 6 was the modification in the code 5 with finite number of NOP loops 

in the code, which caused the delay in execution of commands in the code. Code 7 

“Zerosnfswesc” filled the address with zeros till it reaches to memory address 7FFF and 

then it looped back and filled the addresses with F’s, this procedure was done repeatedly 

till “ESC” key was pressed. Code 8 was the variation in the code 7 with NOPs loop in 

the code, which does the same operation as explained for code 6 above. 

 For each one of them, time for execution of the commands was different on 

SRAM therefore they stressed the chips to different extent, depending on the usage of 

SRAM. For codes with NOPs the commands NOPs were executed faster than the 

instructions in the codes without NOPs. As a result the code with NOP heated the chip 

far more than those without NOPs. 

 Also between the two codes there was slight heating rate difference because of 

variation in data stored at different memory addresses as these values corresponds to 

variation in voltage level stored in the chip capacitors. Table 4.1 shows the test matrix 

based on the above description. 
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Table 4.1 Test matrix for the experiment based on the different tests on unstressed chips. 

 

Number of chips Codes Used 

Code 5 – IncrementsRAM.asm 

Code 6 – IncrementsRAMwdelay.asm 

Code 7- Zerosnfswesc.asm 

40 

Code 8- Zerosnfswescndelay.asm 

 

 
 

In these experiments two trials were done on each chip. Testing was done on 40 

chips; out of which two-third were used to develop Neural Network model and one- 

third test the model. The amount of time between each subsequent trial was reduced to 

7-8 minutes, which includes 2-3 minutes of blowing air in the chamber, 2 minutes of 

leaving the box open and lastly 2 minutes of leaving the box closed. In total of 4 codes 

were made to run for 3 minutes on each chip and adding repeated trials to it, we did 8 

trials on each chip, which took around hour and half for each chip. Again specific care 

was taken to keep the chip position to be same for every trial and for every test and to 

avoid or reduce the error due to human intervention. 

 

4.4.1 Procedure 

The design for the experiment and test set-up was already mentioned in detail in 

chapter-II. Following steps describe the procedure for performing signal stress 

experiment. 

1. Once the codes were stored on SRAM (for Signal Density stress-I), board was kept 

over a fixture inside an enclosed chamber.  

2. Infrared camera which was permanently fixed inside the chamber was positioned to 

take images of chip (SRAM) on the board. 
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3. Once chip was properly placed and chamber was closed, visual basic (VB) code 

automate the testing procedures by synchronizing the time between turning the 

power on, running the code and start imaging the chip for its heating rate. 

4. Each code was run on the chip for a minute and a half for which infrared camera 

takes images every 20secs. 

5. At the end of the trial we have 7 images from which data regarding the variation in 

the heating rate was obtained using an in-house written software called thermal view. 

The heating rate was plotted on excel charts. 

 

4.5 Experiments with Signal Stress-II 

This section talks about experiments consisting of signal stress caused due to the 

change in the duty cycle and also due to change in the frequency of chip usage. Codes 

were stored both on flash memory and SRAM so that when delay was caused SRAM 

should not be used instead code should run on flash for the time we want to cause the 

delay. Four different sets of codes were used to change the frequency of data in and out 

of the SRAM. Each set of code consisted of one code on SRAM and one code on flash.  

The code on SRAM runs for different duration for each set of code and thus 

gives the change in duty cycle of SRAM. Similarly code spent different time on flash 

before jumping on to SRAM which gave the variation in frequency of chip usage.  

The time spent on either of the chip was mentioned in ratio of SRAM: flash 

which means the ratio of time, spent on SRAM in comparison to that on flash. For the 

first code this ratio was 20:1 that means code was running 20 times more on SRAM than 

on flash. For the second code these ratios was 3:1 and still code was running on SRAM 

for longer duration than on flash. For the third code the ratio was 1:1 that is equal time 

spent on SRAM and on flash. For the last and the fourth code this ratio is 1:3 that is code 

on the flash was running 3 times more in comparison to the one on SRAM. The function 

of each code is separately mentioned in APPENDIX A. Table 4.2 shows the test matrix 

based on the above description. 

It can be noticed that time spent on SRAM was decreasing as we moved from 

code 1 to code 4 and thus its heating rate as well. 
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Testing was done on 40 chips, out of which two-third were used to develop 

Neural Net model and one- third for evaluating accuracy of the model. Number of trials 

was reduced from 5 to 2 for every chip while running each set of code. The time spent 

between the trials was also reduced as the external conditions in the room were stable. 

Again specific care was taken to keep the chip at the same position for every trial to 

avoid human intervention error.  

The design, test set-up and procedure followed for the experiments were similar 

to that of Signal Stress-I. 

 

 

 

Table 4.2 Test matrix based on the different sets of codes 

 

 

Number of 

Chips 

Code used on SRAM and Flash Ratio of time 

spent 

Code set 9: SRAM more-Flash same 20:1 

Code set 10: SRAM 200k-Flash same 3:1 

Code set 11: SRAM same-Flash same 1:1 

40 

Code set 12: SRAM same-Flash 150k 1:3 

. 

 

4.6 Experiments with Voltage Stress  

In this experiment we stressed two data pins simultaneously at varying voltages. 

Several sets of chips were stressed for before finally arriving at the conclusion as to how 

many chips needed to be stressed and how? During the course of the experiments several 

things were noted. Few of them are summarized below. 
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4.6.1 Procedure for Stressing 

1. 10 chips were placed on the breadboard. Data pins 2, 3 and address pin 4 were 

stressed simultaneously as shown in Figure 4.2. 

2. Each chip was stressed with the voltage starting from 5.5V and stressed for 5 

minutes. Once stressed this chip was tested if it was still working or not. If it was 

working then voltage was increased by 0.25 to 5.75 V and the chip was stressed for 5 

minutes again. The whole procedure was repeated till the chip failed. 
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Figure 4.2 SRAM and the pins stressed. 

 

 

3. From the experiments highest voltage at which chip can be stressed was considered 

to be 6.75 V with high probability of chip failure if it was stressed for 5 minutes. 

4. The stress level was divided into four different categories 6V, 6.25V, 6.5V and 

6.75V and each category consisted of 10 chips each. In total, we had 40 chips that 

were tested for 4 stress levels as shown in Table 4.3. 
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Table 4.3 Test matrix for the experiment based on the different stress levels used. 

 

  Number of chips Stress level Used 

1st set- 10 chips 6 V 

2nd set- 10 chips 6.25 V 

3rd set- 10 chips 6.5 V 

4th set- 10 chips 6.75 V 

 

 

 

4.6.2 Procedure for Imaging  

1. For starting the experiment chip was placed on a connector (1) on the board and the 

board was kept under the IR camera inside the box. The other end of the connector 

was soldered to second connector (2), which was outside the box on the breadboard. 

The reason for this arrangement was that when we stressed the pins of the connector 

outside the box it sends the same voltage to the corresponding pins on the chips. So 

we can stress the chip while scanning it under IR camera by applying voltage on 

corresponding pins of the connector (2) outside the chamber. 

2. Once setup was ready the connector outside the enclosure was stressed with 6V in 

such a way that it will stress the corresponding pins 2, 3 and 4. 2 and 3 were data 

pins whereas 4 was the address pin. Figure 4.2 shows the stressed pins on SRAM. 

The chip was stressed till its temperature starts increasing drastically. At the same 

time IR camera was turned on to take the scans every 7 seconds. The temperature 

determined the scanning time and the scanning was usually stopped whenever 

temperature reached around 350°F. 

3. Usually heating starts around 20 minutes or so for 6V whereas it took just 8 mins or 

so for temperature to increase when stressed at 6.25V, 6.5V and 6.75V. Once all the 

chips were scanned, thermal view software was used to obtain the data from the 

images. This data was plotted in the excel sheets to see the difference in the heating 
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rate of the stressed chips. The heating rate data obtained from the first four images in 

a scan were used as an input to the Back Propagation algorithm in Neural Networks. 

4. We had 40 scans in total, 10 scans each for individual stress level equal to the 

number of chips for each stress level. Out of these 40 scans 28 scans or two-third 

was used to train the neural net and 12 scans or one-third were used for the testing 

purposes. MSE (mean square error) value was the factor defining the accuracy and 

the efficiency of the Neural Network method. 
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CHAPTER V 

RESULTS 

 

5.1 Introduction 

This chapter describes all the experiment results obtained from infrared imaging 

over the chip, while it was stressed. The heating rate data was plotted in the Excel sheet 

and the graphs are shown for various set of experiments. This heating rate data was then 

used to train Neural Network to build a model based on the training set and the testing 

set used. MSE (Mean Square Error) was considered as the parameter to define efficiency 

of particular model. Thus MSE is shown for various topologies and using various 

training functions based on Back propagation algorithm. 

The chapter consists of three sections. First section consists of the results from 

the signal stress-I, second from section-II. Finally third section consists of the results 

from voltage stress. 

Heating rate data obtained using infrared camera was extracted using thermal 

view software. Excel charts were then used to plot the heating rate graphs. These graphs 

gave the visual representation of the heating rate curves for different stress levels. On 

these heating rate data statistical analysis was done to find out if the heating rate belong 

to different classes because then only it was possible to build efficient Neural Network 

model. Using heating rate data Neural Network model was build. As previously said out 

of the heating rate from all 40 chips two third was used to train the model and remaining 

one third was used to test the model. Details of the procedure are given in the subsequent 

sections. 
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5.2 Results from Signal Stress-I 

5.2.1 Thermal Profiles  

For every chip, average heating rate was obtained for both the chip and die area 

on chip using four different stress levels. Figure 5.1 shows the chip area and die area on 

a chip while imaging. 

 

. 

 
 

Figure 5.1 Chip area and the die area using Thermal View. 

 

 

Figure 5.2 shows the average heating rate trend for the chips using heating rate for 

the die area. Average heating rate for the codes with NOPs was pretty similar and was 

significantly higher than the heating rate for the codes with NOPs. Among the codes 

with NOPs heating rate was higher for the code in which each memory address was 

increased by 1. 
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Average heating rate for die area on chip w ith variation in signal density
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Figure 5.2 Variation in heating rate for die area on chips for signal stress-I. 
 

 

5.2.2 Statistical Analysis Results 

Heating rate graphs in Excel showed that average heating rate differs for each 

code mimicking various stress levels. But to prove it definitely, statistical f-test using 

STATMOST software was done.  If the critical f-value is higher than the f-value from 

the data then it’s difficult to differentiate between the data into different classes. But if f-

value from the data is higher than critical f-value, it means that it is possible to 

differentiate data into different classes. 

F-test results from the analysis showed that the critical f-value was much smaller 

than the f-value from data thus it was possible to clearly differentiate between the 

heating rate data from various stress levels. Table 5.1 shows the F-test results obtained. 
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Table 5.1 F-test results for SD-I die area. 

 

F- Test results for SD – I for die area 
Column Name Mean Standard Deviation 
Code 5  3.0165 0.6756 
Code 6  4.5626 0.4825 
Code 7  2.6622 0.3570 
Code 8  4.8448 0.4887 
f-value for confidence interval  
95% 

153.6855 

Critical f-value (0.05,3) 2.6732 

 

 

5.3 Model Development Approach for Signal Stress-I 

In this section complete methodology regarding neural net is described. Basic 3-

2-1 network is shown in Figure 5.3 consisting of 3 input nodes, 2 hidden nodes and one 

output node. Neural net model is more or less like brain having millions of neurons and 

hence the name.  

 

 

 

Output Layer Hidden LayerInput Layer

 

 

 

 

 

 

 

 

Figure 5.3 3-2-1 topology of Neural Network prediction model. 
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The underlying premise behind neural net methodology was the training of the 

network using input data based on some primary assumptions regarding the choice of 

network, number of nodes, layers, and training functions used. Repeated tests can be 

performed in order to obtain the best network. Neural Net is capable of complex 

modeling using large number of parameters while adjusting the values of the weights 

associate between elements (nodes) in order to reduce the error. 

Each NN consist of three layers based on their precedence. First layer is called 

the input layer and the last one as output layer while all the layers in between are termed 

as hidden layers.  Each layer consists of several nodes, which act as neurons (analogy to 

brain). These nodes link to other nodes in subsequent and the preceding layer. These 

links (synapses analogy to brain) have individual weights, which determine the strength 

of particular connection. For our case we had one input layer with 3 input nodes 

connected to 2 nodes in the first hidden layer which in turn are connected to 1 node in 

the out put layer.  

Two-third of the data was separated from the experimental result that was used 

for evaluation or training purpose of NN whereas the rest of one-third was used for 

testing the NN. Data was fed through the input nodes, which propagated towards the end 

to give an output based on the training function used. This output was compared with the 

desired output and weights and biases were adjusted automatically in order to bring the 

output result close to desired out put as much as possible. Finally degree of accuracy of 

the results was compared after evaluating MSE. The process was over if error was either 

zero, close to prescribed value or the output couldn’t be improved further. Back 

propagation algorithm is used for this work because of its advantages to lead to 

minimum error rate using non-linear modeling faster than other algorithms. 
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The model development approach consist of three parts 

• Principle analysis dealt with screening the noise and identifying possible primary 

classes. 

• Network Structure formulation dealt with process of deciding about the number of 

layers and number of nodes in each layer. 

• Parameter setting determination involved, setting the training function, learning rate, 

MSE, number of iterations or epochs. 

 

5.3.1 Principle Analysis  

There is no precise method to decide about the primary classes for the input data 

to the NN. Thus according to the rule of thumb we took four classes based on four stress 

levels. For both Signal stress-I and signal stress–II we had four stress levels based on the 

different frequencies for running the codes and different duty cycles on SRAM. Like 

wise there were four classes of out put values based on the stress levels. 

As NN is highly data driven thus analysis was done over various different 

tabulated heating rate data obtained from Infrared imaging. For both signal stresses 

average heating rate was chosen as the correct representation due to smooth variation 

rather than highly erratic variation as obtained for the other heating rates. The heating 

rate unit was taken as ° F/t. From the heating rate data it was observed that the heating 

rate was highest for snapshot 2nd and decreased later on. First snapshot was meant for 

synchronization and thus was erased before any kind of modeling.  

For modeling purpose the data from snap shot #2 was taken as input node I, data 

from snapshot #3 was taken as input node II and the sum of heating rate data for next 

four snap shots #4, 5, 6, 7 were taken as input node III. This would maximize the usage 

of thermal profile of each stressed chips. 

 

5.3.2  Network Structure Formulation 

 The best combination for making model was chosen to be the one described 

above. Based on that combination number of input nodes were determined to be three, 
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though again necessarily it was not hard and fast rule. It was just matter of convenience. 

Similarly numbers of hidden layers were taken to be one followed by an output layer. As 

for number of nodes two topologies were used, one having two nodes in hidden layer (3-

2-1 topology) and another with three nodes in the hidden layer (3-3-1 topology). Again 

MSE was used to determine which topology worked best. 

 

5.3.3 Parameter Setting Determination 

Various training functions and learning algorithm were used as described in NN 

matlab toolbox [48]. Various trials were used to determine the epochs, MSE and learning 

rate parameter. Table 5.2 shows various learning functions can be applied for Back 

propagation method. 

 

 

Table 5.2 Various learning functions for back propagation method. 

 

Training Functions Learning Algorithm associated  [49] 

TrainRP Resilient Back Propagation 

TrainOSS One step secant method 

TrainSCG Scaled conjugate gradient algorithm 

TrainGDA Gradient descent with adaptive learning rate 

TrainLM Levenberg- Marquardt algorithm 

TrainGD Basic gradient descent 

TrainGDM Gradient descent with momentum 

TrainCGB Powell- Beale conjugate gradient algorithm 

TrainCGP Polak- Ribiere conjugate gradient algorithm 

TrainCGF Fletcher- Reeves conjugate gradient algorithm 

TrainGDX Adaptive learning rate algorithm 
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5.4 Matlab Results for Signal Stress-I  

Once its verified that heating rate from different stress levels belong to separate 

classes, NN model was developed based on the average heating rate data from both chip 

and die area. The NN model was trained using the data and then compared with the 

output to check the error. Based on the error both weights and biases were adjusted. This 

procedure goes on till error goes to zero or close to preset value.  

 

 

 

Table 5.3 Matlab results obtained using different training functions for die area on chip 

and using signal stress –I. 

 

Network Used 3-2-1 Network Used 3-3-1 Training 

function MSE Epochs MSE Epochs 

TrainRP 0.0126 3937 0.0127 7891 

TrainOSS 0.0127 903 0.0128 2339 

TrainSCG 0.0127 53 0.0122 208 

TrainGDA 0.0127 238593 0.0127 315226 

TrainLM 0.0116 17 0.0120 23 

TrainGD 0.0131 1200000 0.0107 1012226 

TrainGDM 0.0131 1200000 0.0132 1200000 

TrainCGB 0.0128 25 0.0128 51 

TrainCGP 0.0128 43 0.0129 73 

TrainCGF 0.0128 63 0.0129 73 

TrainGDX 0.0125 64232 0.0114 32437 

Average 

MSE 

0.0128  0.0124  
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Table 5.4 Matlab results obtained using different training functions for chip area and 

using signal stress –I. 

 

Network Used 3-2-1 Network Used 3-3-1 Training 

function MSE Epochs MSE Epochs 

TrainRP 0.0713 53701 0.0726 24226 

TrainOSS 0.0666 14926 0.0825 9209 

TrainSCG 0.0672 1141 0.1319 2601 

TrainGDA 0.0712 1200000 0.0786 1200000 

TrainLM 0.0744 20010 0.0952 7958 

TrainGD 0.0640 1200000 0.0677 1200000 

TrainGDM 0.0656 1200000 0.0646 1200000 

TrainCGB 0.0666 536 0.0634 63 

TrainCGP 0.0638 364 0.0658 142 

TrainCGF 0.0640 369 0.0630 80 

TrainGDX 0.0665 411324 0.0819 555933 

Average 

MSE 

0.0674  0.0788  

 

 

 

5.5 Inferences for Signal Stress-I 

The tables above gave the MSE using topologies 3-2-1 and 3-3-1 and different 

training functions.  

• For different topologies different training function can yield least MSE. In the Table 

5.3 for SD-I die area MSE for 3-2-1 topology was least for TrainLM whereas for 3-

3-1 networks it was least for TrainGD.  

• Similarly Table 5.4 shows that MSE for chip area using 3-2-1 topology and 3-3-1 

topology was least for TrainCGP and TrainCGF respectively. 
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• For die area and chip area 3-3-1 topology gave the lowest error rate. 

• The function, which takes the least iterations, does not necessarily yield the lowest 

error rate. 

• In general training functions requiring more number of iterations for particular 

topology (3-2-1) continue requiring greater number of iterations for increased 

number of nodes in topology (3-3-1).  The reason might be that the sample to 

parameter ratio (weights, bias) was higher for 3-2-1 resulting in better results. 

• Lowest error rate for die area was 0.0107 obtained for TrainGD using 3-3-1 topology 

and for chip area it was 0.0630 for TrainCGF using 3-3-1 topology. 

• NN results showed that the MSE for die area was several times smaller than that of 

the chip area. Even the lowest average error rate 0.0123 was for die area with 3-3-1 

topology. Difference between error rates from all the training functions was 0.0025, 

which was infact significantly low. 
 
 
5.6 Results from Signal Stress-II 

 Similar to results in signal stress-I here too, the subsections consist of results 

from heating rate, statistical results and finally generating Neural Network model. For 

varying stress levels, different code sets were mentioned which are already described in 

the experiment section in the previous chapter. 

 

5.6.1 Results from Thermal Profile 

Figure 5.4 shows the heating rate trend for various code sets. It can be seen from 

the graph that the average heating rate for set code–9 is highest as the code spent 20 

times more time on SRAM as compared to FLASH. This average heating rate curve is 

followed by code set 10, 11 and 12 depending on decrease in time spent on SRAM. For 

code set-9 heating rate was 1.2 °F/t followed by 0.8, 0.6 and 0.4 °F/t for code set-10, 

code set-11 and code set-12 respectively. 
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Figure 5.4 Variation in heating rate for die area on chips for signal stress-II. 

 

 

5.6.2 Statistical Results 

Though excel graph shows the variation in heating rate from one code to another 

or one stress level to another but to prove it definitely again F-test was done. The results 

of F-test are shown in Table 5.5. Again results from the F-test showed that it is possible 

to develop a NN model because statistically, heating rate from different stress levels 

belong to different classes. 
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Table 5.5 F-test results for SD-II die area. 

 

F-test results for SD – II for die area 
Column Name Mean Standard Deviation 
Code Set-5 1.8022 0.3754 
Code Set-6 3.0590 0.5430 
Code Set-7 4.2717 0.6018 
Code Set-8 5.5031 0.5512 
f-value for confidence interval 
95% 

357.9142 

Critical f-value (0.05,3) 2.6641 
 

 

 

5.7 Matlab Results for Signal Stress-II 

Heating rate data from excel files was used to develop training set data 

(consisting of two third of heating rate data) and testing set data (from remaining one 

third of heating rate data) for NN model. Heating rate data from first scan was discarded. 

Training and testing data files were made from rest of the scans. The NN model was 

based on Back propagation algorithm using various training functions. Three layered 

networks 3-2-1 and 3-3-1 were used.  

Two methods were used for developing NN model, based on the heating rate for 

die area to verify the best suited method for arranging heating rate data among nodes.  

In method Ist- Heating rate from second snapshot was taken Input-I, heating rate 

from third snap shot was taken as Input-II and finally heating rate from snapshot 4th was 

taken as Input-III.  

For method IInd- Heating rate data from second scan was used as input- I, heating 

rate data from third scan was used as input- II and finally sum of heating rate data from 

remaining four scans were used as an input- III. The comparisons for results from the 

NN model are shown in Table 5.6 below. 
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Table 5.6 Matlab results obtained using network 3-2-1 and two different methods of 

training the data. 

 

Method Ist Method IIndTraining function 

MSE MSE 

TrainRP 0.1127 0.0923 

TrainOSS 0.1110 0.0935 

TrainSCG 0.1129 0.0935 

TrainGDA 0.1446 0.0937 

TrainLM 0.1132 0.0951 

TrainGD 0.1115 0.0980 

TrainGDM 0.1113 0.0981 

TrainCGB 0.1197 0.1034 

TrainCGP 0.1207 0.1052 

TrainCGF 0.1225 0.1065 

TrainGDX 0.1110 0.094 

Average MSE 0.1174 0.0976 

 

 

 

5.8 Inferences for Signal Stress-II 

From the NN results it can be seen that the average error rate was smaller for 

method II (0.0976). Thus for further analysis and development of model for both die 

area and chip area, data was arranged according to method II. 

Again NN model was developed and results were obtained using average heating rate 

data from chip area and also from die area. The results from the training functions for die 

area and chip area are given below in Table 5.7 and Table 5.8 for 3-2-1 and 3-3-1 

topologies. 

 

 



  48   

Table 5.7 Neural Network results for SD-II stress for die area. 

 

Network Used 3-2-1 

 (die-SD-II) 

Network Used 3-3-1 

 (die-SD-II) 

Training 

function 

MSE Epochs MSE Epochs 

TrainRP 0.0923 45903 0.0529 87011 

TrainOSS 0.0935 31461 0.0555 65083 

TrainSCG 0.0935 2756 0.0555 5543. 

TrainGDA 0.0937 1200000 0.0738 1200000 

TrainLM 0.0951 24088 0.0973 1200000 

TrainGD 0.0980 1200000 0.0977 1200000 

TrainGDM 0.0981 1200000 0.0958 1200000 

TrainCGB 0.1034 435 0.0945 901 

TrainCGP 0.1052 335 0.0539 2497 

TrainCGF 0.1065 104 0.0936 444 

TrainGDX 0.0941 1200000 0.0554 1200000 

Average 

MSE 

0.0976  0.0751  

High- Low 0.0142  0.0448  
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Table 5.8 Neural Network results for SD-II stress for chip area. 

 

 

Network Used 3-2-1 

 (chip-SD-II) 

Network Used 3-3-1 

 (chip-SD-II) 

Training 

function 

MSE Epochs MSE  Epochs 

TrainRP 0.1585 1200000 0.1629 1200000 

TrainOSS 0.147 15437 0.1323 28546 

TrainSCG 0.1459 891 0.1324 3849 

TrainGDA 0.1469 1200000 0.1357 1200000 

TrainLM 0.1472 92 0.1439 4241 

TrainGD 0.1469 1200000 0.1571 1200000 

TrainGDM 0.1469 1200000 0.1450 1200000 

TrainCGB 0.1471 696 0.1328 1370 

TrainCGP 0.147 999 0.1444 1101 

TrainCGF 0.147 1070 0.1442 1296 

TrainGDX 0.147 267544 0.1556 1200000 

Average 

MSE 

0.1479  0.1442  

High- Low 0.0116  0.0306  

 

 

• In Table 5.7 for die area MSE was least for TrainRP for 3-2-1 and 3-3-1 topology. 

• For results obtained from heating rate of chip area in Table 5.8 MSE for 3-2-1 

topology and 3-3-1 topology was least for TrainGD- TrainGDM and TrainOSS 

respectively. 

• For both chip and die area lowest error rate is for 3-3-1 topology. 
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• Lowest error rate for die area was 0.0529 obtained for TrainRP using 3-3-1 topology, 

similar to SD-I and for chip area least MSE this time was 0.1323 for TrainOSS using 

3-3-1 topology. 

NN results showed that the MSE for die area was several times smaller than that 

of the chip area. The lowest average error rate 0.0751 is for die area with 3-3-1 topology 

and the difference between the error rate using best topology from all the training 

functions was just 0.0448 which was still low. 
 
 
5.9 Results from the Voltage Stress 
 

 On similar cue as in signal stress results, here too heating rate was obtained for 

two positions chip area and die area. Apart from that heating rate curves are shown for 

different stress levels in excel graphs. From those heating rate data Neural Net model is 

developed based on the heating rate from first four snapshots. One of the main 

differences between NN model for voltage stress and the signal stress lies in the fact that 

for the signal stresses the heating rate from first snapshot was neglected or discarded but 

that was not the case for voltage stress. 

 
5.9.1 Results of Thermal Profile 

For every chip average heating rate was obtained for both the chip area and the 

die area on chip using four different stress levels. Figure 5.5 shows the chip area and die 

area on a chip while imaging. 

Figure 5.6 shows the average heating rate for all the chips for one particular 

stress level whereas Figure 5.7 shows the average heating rate comparison between 

different stress levels after taking average of heating rate for all chips.  

• Heating rate was highest when voltage stress was 6.75 V.  

• Also heating rate was highest for the first snap and then it started decreasing.  

• Fewer images were needed as stress level increased because higher the stress level 

faster was the temperature rise up to likely temperature of failure. 
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Figure 5.5 Die area and chip area while imaging. 
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Figure 5.6 Average heating rate trend for different chips for same stress level. 
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Average heating rate for chip at different stress level
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Figure 5.7 Average heating rate trends for different stresses. 
 

 
 
 
5.10 Model Development Approach for Voltage Stress  

Model development approach was similar to the one mentioned in signal stress –I 

and signal stress-II in previous sections. The only difference was in the arrangement of 

data for modeling purpose. For modeling purpose data from snap shot #1 was taken as 

input node I, sum of data from snapshot # 2, 3 and 4 were taken as input node II and the 

sum of data from snapshot #1, 2, 3 and 4 were taken as input node III. This would 

maximize the usage of the stressed chip thermal profile. 

 

5.11 Matlab Results for Voltage Stress 

Tables 5.9 and 5.10 below shows the Matlab results for die area and chip areas 

respectively from the heating rates obtained during voltage overstressing. The inferences 

drawn are shown in the next section. 
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Table 5.9 Neural Network results for voltage stress for die area. 

 

Network Used 3-2-1  

(die-VS) 

Network Used 3-3-1 

 (die-VS) 

Training 

function 

MSE Epochs MSE Epochs 

TrainRP 0.0342 1200000 0.0343 1200000 

TrainOSS 0.0355 7191 0.0370 15817 

TrainSCG 0.0355 263 0.0356 342 

TrainGDA 0.0360 1200000 0.0353 1200000 

TrainLM 0.0409 6519 0.0409 5937 

TrainGD 0.0364 1200000 0.0364 1200000 

TrainGDM 0.0364 1200000 0.0372 1200000 

TrainCGB 0.0356 94 0.0346 140 

TrainCGP 0.0357 70 0.0352 102 

TrainCGF 0.0355 120 0.0355 162 

TrainGDX 0.0355 79371 0.0373 1118810 

Average MSE 0.0361  0.0363  

High- Low 0.0067  0.0066  
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Table 5.10 Neural Network results for voltage stress for chip area. 
 

Network Used 3-2-1 

(Voltage stress- chip area) 

Network Used 3-3-1  

(Voltage stress- chip area) 

Training 

function 

MSE Epochs MSE Epochs 

TrainRP 0.0470 1200000 0.0472 1200000 

TrainOSS 0.0451 3104 0.1297 32194 

TrainSCG 0.0451 120 0.0451 246 

TrainGDA 0.0450 1200000 0.0449 1200000 

TrainGD 0.0454 1200000 0.0454 1200000 

TrainGDM 0.0454 1200000 0.0468 1200000 

TrainCGB 0.0452 72 0.0454 95 

TrainCGP 0.0451 456919 0.0460 113 

TrainCGF 0.0451 102 0.0451 108 

TrainGDX 0.0452 484587 0.519 1200000 

Average MSE 0.0454  0.1015  

High- Low 0.0020  0.0848  

 

 

 

5.12 Inferences for Voltage Stress  

1. For different topologies different training function can yield least MSE. In the Table 

5.9 for die area MSE for 3-2-1 and 3-3-1 topology was least for TrainRP (0.0342 and 

0.0343). 

2. Similarly Table 5.10 shows that MSE for chip area using 3-2-1 topology and 3-3-1 

topology was least for TrainGDA (0.0450 and 0.0449). 

3. Based on the heating rate data any of the topology can yield lowest error rate. For die 

area 3-2-1 topology gave the lowest error rate whereas 3-3-1 gave lowest error rate 

for chip area. 
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4. The function, which takes the least iterations, does not necessarily yield the lowest 

error rate. 

5. In general training functions requiring more number of iterations for particular 

topology (3-2-1) continue requiring greater number of iterations for increased 

number of nodes in topology (3-3-1).  The reason might be that the sample to 

parameter ratio (weights, bias) was higher for 3-2-1 resulting in better results. 

6. Lowest error rate for die area was 0.0342 obtained for TrainRP using 3-2-1 topology 

and for chip area it was 0.0449 for TrainGDA using 3-3-1 topology. 

7. NN results showed that the MSE for die area was smaller than that of the chip area. 

The lowest average error rate (0.0361) was for die area with 3-2-1 topology. 

Difference between error rates from all the training functions was 0.0067, which was 

infact significantly low. 
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CHAPTER VI 

MODEL TOLERANCE 

 

6.1 Introduction 

Following chapter deals with the noise tolerance of the neural model developed 

based on the heating rate from the experimental results. Noise can be caused when data 

is dispersed about its mean, more than it should be. For dispersing the data standard 

deviation was increased keeping the mean constant. It was assumed that when data is 

dispersed then there is overlapping between two adjacent heating rate data distribution 

proportional to inducing noise. Explanation for whole procedure is given in detail in the 

following sections. 

Here the point which is necessary to make is the evaluation of noise as 

overlapping ratio. Increasing standard deviation of the data can increase overlapping 

ratio. With increase in overlapping ratio between the data, noise would also increase. 

Neural network model was made based on the different standard deviations. It was 

assumed that the MSE from the neural model developed using the deviated data would 

also change (if the solution were already saturated). Thus effect of inducing noise can be 

observed by comparing MSE with overlap ratio. 

The chapter is divided into three sections based on the three different 

experiments conducted. Two of these experiments were done using signal stresses and 

one of the experiments was done using voltage overstressing. 

 

6.2 Generating Data for Signal Stress-I 

Once neural model was made based on the experimental heating rate data sets, 

more data sets were generated using statistical software for comparison of degree of 

sensitivity to the presence of noise in the data set. The method used was as follows: 

Numbers of data points (heating rate data) for each stress level from experiments 

were 28 for training set and 12 for testing set (40 in all). From these data points curve 

fitting was done and more data points (400 for training file and 100 for testing file) were 

 



  57   

generated satisfying the curve fit. As a result a large number of data points were created 

with the same standard deviation as the original data set (termed as base case or 

category-A). For studying effect of noise, heating rate data corresponding to input to 

node 1 and node 2 of neural network were taken. This input was termed as Input –I and 

Input-II, and each one of these inputs consist of four stress levels. Now the deviation was 

increased further by varying Input-I and Input-II in order to increase the noise within the 

model. The percentage of the noise was measured by equivalent parameter called 

overlap ratio. More the overlap ratio greater was the noise in the data. Overlap ratio is 

defined as the ratio of overlap area between heating rate PDFs from data of Input-I and 

Input-II to the individual area under each PDFs for Input –I and Input-II. This area is 

shown in Figure 6.1. It is assumed that difficulty for NN model to distinguish between 

the data points increases with increase in overlapping. This difficulty for NN model can 

cause increase in MSE for the model. 

Standard deviation increases overlap and thus increases both overlap ratio and 

MSE. This overlap ratio was then compared with MSE obtained from NN model based 

on that particular deviated data set. A good noise tolerant model is the one in which the 

increase in MSE is relatively low as compared to increase in overlap ratio. 

The model was based on the heating rate data, which yields least MSE among the 

topologies. In all three data sets were generated using best fit. First category (category- 

A) consisted of data set generated from original data set from experiments. Second in 

which deviation of the data set was increased 3 times (category-B) and the third in which 

deviation was increased by 6 times (category-C). In short the steps followed for 

generating and testing the model for tolerance are: 

 

• Determine the classes (Input-I and Input-II) and perform distribution-fitting 

technique of existing heating rate data. 

• Generate more data by increasing the standard deviation of the data set. 

• Calculate overlap ratio and run NN model based on the changed data set. 

• Compare the results to check the noise tolerance for the model. 
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Curves showing overlap area using PDFs

0

0.5

1

1.5

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 X value (average heating rate)

P (X)

log logistic Extreme Value

Overlap Are a

 
Figure 6.1 Overlap area of two distributions. 

 

 

-X is the heating rate. 

-P (X) is the probability density of variable X. 
 

 

6.3 Increase in Standard Deviation and Calculation of Overlap Area 

This section shows how standard deviation was increased and overlap ratio was 

calculated. As already mentioned, 400 data sets were generated from evaluation data set 

and 100 from testing data sets for each stress level and three inputs used for three nodes 

of neural network, using Best-fit software. These generated data sets follow the same 

trend as original heating rate obtained from experiments for each stress level and hence 

represent increased heating rate data set for each stress level. 

 For noise amplification in data, input-I and input-II were taken which represent 

input to the node-I and node –II of the Neural Network respectively. Each input 

consisted of heating rate from four different stress levels. Heating rate from input-I was 

compared with corresponding heating rate from input-II for the same stress level. 

 Thus we calculated increase in overlap area with increase in the standard 

deviation for all these four stress levels. The entire procedure is shown using an example 
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to calculate standard deviation and overlap ratio. The heating rate used was obtained 

from input-I and input-II for stress level 2. The increase in standard deviation was kept 

to be three times more than the generated data sets for this stress level. 

 The generated data for stress level 2 follows the probability density distribution 

(PDF) as given by log logistic and extreme value distribution in Input-I and Input-II 

respectively. The curves in the Figure 6.2 show probability distribution function for both 

heating rates with 95 % confidence interval.  
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Figure 6.2 Probability density distributions with 95% confidence interval. 

 

 

6.3.1 Increasing Standard Deviation 

 Taking log logistic distribution first; mean, variance and standard deviation for 

log logistic distribution are given as: 
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Mean = β*θ*cosec θ + γ        6.2 

Variance = β2*θ*(2* cosec (2θ) - θ*cosec2θ)     6.3 

Standard Deviation = Sq. Root (Variance)      6.4 

 

 Log logistic curve is determined with three parameters (γ,β,α) where α = (π/θ). 

Best- fit generated the initial data set of 400 data, from experimental results thus we had 

values for all these parameters as well as mean, variance and standard deviation for the 

initial generated data set. Other data sets were generated with increase in the deviation of 

this initial generated data set. 

 Mean, variance and standard deviation for initial generated data set were given 

as: 

 

Mean = 1.0643 

Variance = 0.0115 

Standard Deviation = 0.1072 

 

(γ, β, α) = (0.6806, 0.3701, 6.7915) 

 

 Standard deviation was increased by three times for next set of generated data 

set. Thus new values while keeping mean constant were given as: 

 

Mean = 1.0643 

Variance = 0.10335 

Standard Deviation = 0.3215 

 

 These parameters were used to solve equations 6.2 and 6.3 to get new (γ,β,α) 

given in equation 6.5. As there were two equations thus only two unknowns can be 

obtained. Therefore we took α to be constant for these calculations. 
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(γ, β, α) = (0.0869, 1.1106, 6.7915)       6.5 

 Now equations to be solved in such way so that mean does not change but 

variance change according to standard deviation. Curves obtained by new (γ,β,α) is 

shown in Figure 6.3 and represented by (2). 

Now taking PDF for corresponding heating rate in input-II, which follows 

extreme value distribution and determined by parameters (a, b). Mean, variance and 

standard deviation were given by: 

 

Mean = a + 0.577*b         6.6 

Variance = (π2*b2)/6         6.7 

Standard Deviation = Sq. Root (Variance)      6.8 

 

 Mean variance, standard deviation and initial value of parameters for the initial 

PDF of the generated data set were given as: 

 

Mean = 0.9432 

Variance = 0.0091 

Standard Deviation = 0.0954 

 

(a, b) = (0.9003, 0.0744)         

 

 Again keeping mean, constant and varying standard deviation by three times we 

get new values for mean, variance and standard deviation given as:  

 

Mean = 0.9432 

Variance = 0.0818 

Standard Deviation = 0.2861 
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 From these new values we solved equations 6.6 and 6.7 to get the new values of 

(a, b) given in 6.9. In this way we generated a new curve with standard deviation three 

times more than the initial generated curve from experimental data. This curve is shown 

as (3) in the Figure 6.3. 

 

(a, b) = (0.8145, 0.2231)        6.9 
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Figure 6.3 Area needed to be integrated for overlap ratio. 

 

 

6.3.2 Overlap Area 

To calculate the overlap ratio the overlap region (4) was divided into two region 

(5) and (6) as shown in Figure 6.3.  

 

Point ‘a’ is minimum X value for PDF (2). 

Point ‘c’ is maximum X value for PDF (3). 

Point ‘b’ is intersection point for both PDFs. 
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Points ‘a’ and ‘c’ were obtained when PDF’s were drawn using Best-fit software. 

For calculating ‘b’, PDF’s of two curves were compared. At this point both curves gave 

the same value. MS excel was used to get ‘b’. 

Once all three points are obtained, Matlab was used to integrate the PDF’s over 

the range ‘a’ to ‘b’, for PDF from curve (2) and from ‘b’ to ‘c’, for PDF from curve (3). 

This way overlap area (4) under the distribution was calculated quantitatively. Finally 

for particular standard deviation this overlap area was obtained for all four-stress levels. 

The percentage increase in area or combined overlap ratio, due to increase in 

standard deviation while keeping mean constant, was calculated by taking ratio of 

change in overall area to original area under the curves. The original area corresponds to 

the area under distribution of initial generated data set obtained from experimental 

heating rate data. 

 

6.4 Noise Tolerance Results for Signal Stress-I 

Also for comparison between overlap ratio or noise with results from Neural 

Network, Matlab results were obtained for all three generated data sets (category A, B 

and C) and overlap ratio was calculated using excel. Table 6.1 gives the overlap ratio for 

base case and for categories B and C having deviations of three times and six times 

respectively more than the base case. Results are shown in the Table 6.2 and 6.3 below 

and the inferences regarding noise tolerance of the model are drawn based on the results. 
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Table 6.1 Overlap percentage between classes (input-I and input-II). 

 

Category Content Class Overlap 

A Base Case Input-I and Input-II 0.2137 

    

B Standard Deviation-  3 times Input-I and Input-II 0.3771 

    

C Standard Deviation- 6 times Input-I and Input-II 0.4022 

 

 

 

Table 6.2 Average error rate for SD-I die area. 

  

Category A B C 

Function MSE MSE MSE 

TrainRP 0.0151 0.0503 0.3749 

TrainOSS 0.0160 0.0267 0.3704 

TrainGDA 0.0231 0.0364 0.3665 

TrainLM 0.0269 0.0203 0.3505 

TrainGD 0.0296 0.0372 0.3682 

TrainGDM 0.0249 0.0425 0.3691 

TrainCGB 0.0128 0.0154 0.3703 

TrainCGP 0.0128 0.0283 0.3564 

TrainCGF 0.0126 0.0307 0.3718 

High-Low 0.0170 0.0349 0.0213 

Average MSE 0.0193 0.0319 0.3664 

Percentage Overlap 

 (I and II) 

0.2137 0.3771 0.4022 
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Table 6.3 Number of iterations needed for SD-I die area. 
 

Category A B C 

Function Iterations  Iterations  Iterations 

TrainRP 1200000 8490 1200000 

TrainOSS 19080 907 846 

TrainGDA 1200000 45989 68562 

TrainLM 5016 10 5 

TrainGD 1200000 336982 291218 

TrainGDM 1200000 301415 289133 

TrainCGB 49 58 86 

TrainCGP 1200000 211 120 

TrainCGF 113 100 114 

Average Iterations 669362 77129 205564 

 

 

 

6.5 Inferences for Signal Stress-I  

• For all training functions the error rate increased as the standard deviation for each 

class increased. That is there was increase in MSE between category A-B and B-C. 

• Neural Net model was noise tolerant upto a certain overlapping ratio. If the overlap 

was increased further MSE error increased drastically but until overlap ratio was less 

than that maximum limit, increase in MSE was pretty low. For e.g.: though for above 

generated data overlap ratio increased to 21.47 % from 37.71 % but the change in 

MSE error was just around 2% (0.0193 – 0.0319). But when it was increased to 40 % 

for category C, there was sudden increase in the MSE error. Thus it can be said that 

model was noise tolerant even when data was overlapping until 38 % (approx.). 

Again it was observed that training functions like TrainCGF, TrainCGB and 

TrainCGP converged faster than any other training function.  
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6.6 Generating Data for Signal Stress-II 

Again new data set were generated based on the method described in section A 

of signal stress. Category A was generated from best-fit curve satisfying the 

experimental data. In Category A deviation of the data sets was same as that of the 

original set. Category B was generated with three times of deviation of original data set 

that is base case and Category C was generated with six times of deviation of base case. 

 

6.7 Noise Tolerance Results for Signal Stress-II 

Matlab results were obtained for all three generated data sets and overlap ratio 

was calculated using excel. Table 6.4 gives the overlap ratio for base case and for 

categories B and C having deviations of three times and six times respectively more than 

the base case. Results are shown in the Table 6.5 and 6.6 below and the inferences 

regarding noise tolerance of the model are drawn based on the results. 

 

 

 

Table 6.4 Overlap percentage between classes (input-I and input-II). 

 

Category Content Class Overlap 
A Base Case Input-I and Input-II 0.2926 
    
B Standard Deviation-  3 times Input-I and Input-II 0.4092 
    
C Standard Deviation- 6 times Input-I and Input-II 0.4528 
    

 
 

 

 

 

 

 

 



  67   

Table 6.5 Average error rate for signal density-II die area. 

 

Category A B C 
Function MSE MSE MSE 
TrainRP 0.1223 0.1013 0.1104 
TrainOSS 0.1212 0.1111 0.1134 
TrainSCG 0.1239 0.0994 0.1208 
TrainGDA 0.1343 0.1176 0.1297 
TrainLM 0.1374 0.1097 0.1121 
TrainGD 0.1152 0.0974 0.0980 
TrainGDM 0.1313 0.0970 0.1185 
TrainCGB 0.1226 0.1087 0.1084 
TrainCGP 0.1067 0.1102 0.1075 
TrainCGF 0.1068 0.1087 0.1127 
TrainGDX 0.1300 0.1074 0.1184 
High-Low 0.0233 0.0206 0.0317 
Average MSE 0.1228 0.1063 0.1136 
Percentage Overlap 
 (I and II) 

0.2926 0.4092 0.4528 

 
 

 

Table 6.6 Iterations needed for signal density-II die area. 
 

Category A B C 

Function Iterations Needed Iterations Needed Iterations Needed 

TrainRP 1200000 1200000 1200000 

TrainOSS 106258 45138 40466 

TrainSCG 66275 2455 8071 

TrainGDA 1200000 1200000 1200000 

TrainLM 1200000 127221 33340 

TrainGD 1200000 1200000 1200000 
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Table 6.6 continued 

 

Category  A  B  C  

Function Iterations Needed Iterations Needed Iterations Needed 

TrainGDM 1200000 1200000 1200000 

TrainCGB  854 236 228 

TrainCGP 567 305 348 

TrainCGF 561 385 1110 

TrainGDX 1200000 12000000 1039061 

Average Iterations 670410 561431 538420 

 

 

 

6.8 Inferences for Signal Stress-II  

• Interesting fact worth to note over here was that the error rate in the model was 

already saturated. Though the overlap ratio increased but error rate for deviated data 

set was smaller than the base case.  

• Neural Net model was noise tolerant. Though for above generated data overlap ratio 

increased from 29.26 % to 40.92% from Category A to B but error rate decreased 

from 12.28% to10.63%. Similarly moving from category B to C overlap ratio 

increased from 40.92% to 45.28% but there was just slight increase in error rate from 

10.63%to 11.36%. Again it was observed that training functions like TrainCGF, 

TrainCGB and TrainCGP converged faster than any other training functions.  

• The number of iterations also had no relationship with MSE or the overlap ratio. 

Least MSE can have higher or lower number of iterations than other categories. 
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6.9 Generating Data for Voltage Stress 
 

For voltage stress also the basic premise for development of generated data sets 

and Neural Network based on that, was similar to that of signal stress experiments. In 

Category A deviation of the data sets was same as that of the original set. But unlike for 

signal stress, Category B was generated after adding +6 deviation to original data set that 

was base case and Category C was generated after adding +9 deviation to original data 

set. This was done because the difference between the heating rate in Input-I and Input-II 

was pretty large, thus unless deviation was increased +6 or +9 more than original case, 

heating rate data would not overlap. 

 

6.10 Noise Tolerance Results for Voltage Stress 

Matlab results were obtained for all three generated data sets and overlap ratio 

was calculated using excel. Table 6.7 gives the overlap ratio for base case and for 

categories B and C having deviations of six times and nine times respectively more than 

the base case. Results are shown in the Tables 6.8 and 6.9 below and the inferences 

regarding noise tolerance of the model are drawn based on the results. 

 

 

 

Table 6.7 Overlap percentage between classes (input-I and input-II). 

 

Category Content Class Overlap 

A Base Case Input-I and Input-II No overlap Region*  

    

B Standard Deviation +6  Input-I and Input-II 0.1128 

    

C Standard Deviation + 9 Input-I and Input-II 0.1493 

* Based on 95 % Confidence Interval 
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Table 6.8 Deviation results from voltage stress chip area. 

 

Category A B C 

Function MSE MSE MSE 

TrainRP 0.0389 0.0421 0.0412 

TrainOSS 0.0373 0.0446 0.0394 

TrainSCG 0.0372 0.0488 0.0408 

TrainGDA 0.0385 0.0432 0.0405 

TrainLM 0.0423 0.0450 0.0444 

TrainGD 0.0411 0.0438 0.0403 

TrainGDM 0.0411 0.0437 0.0403 

TrainCGB 0.0374 0.0421 0.0425 

TrainCGP 0.0354 0.0460 0.0401 

TrainCGF 0.0374 0.0444 0.0397 

TrainGDX 0.0373 0.0454 0.0394 

High-Low 0.0051 0.0067 0.005 

Average MSE 0.0385 0.0445 0.0407 

*Percentage 

Overlap (I and II)  

No overlap 0.1128  0.1493 

* Based on 95 % confidence interval 
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Table 6.9 Number of iterations for voltage stress chip area. 
 
 

Category A B C 

Function Iterations  Iterations  Iterations  

TrainRP 1200000 141434 1200000 

TrainOSS 6959 17503 16777 

TrainSCG 609 1549 966 

TrainGDA 1200000 1200000 1200000 

TrainLM 11078 1200000 2224 

TrainGD 1200000 1200000 1200000 

TrainGDM 1200000 1200000 1200000 

TrainCGB 182 176 137 

TrainCGP 497 732 298 

TrainCGF 369 406 413 

TrainGDX 231976 967499 315350 

Average Iterations 459243 539027 466924 

 

 

 

6.11 Inferences for Voltage Stress  

• Generally with increase in deviation, MSE also increased. That is average error rate 

increased from category A to B (0.0380-0.0445). But once its saturated there was no 

further increase in error rate as observed from category B to C (0.0445-0.0407). 

• Neural Net model was noise tolerant. Though for above generated data overlap ratio 

was increased to 11.28% in category B the increase in error rate was from 3.8% to 

4.4%. Similarly moving from category B to C overlap ratio increased from 11.28% 

to 14.93% but error rate decreases to 4.04% due to saturation of overlap ratio. Again 

it was observed that training functions like TrainCGF, TrainCGB and TrainCGP 

converged faster than any other training function.  
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CHAPTER VII 

GENERIC METHODOLOGY FOR STRESSING 

 

7.1 Introduction 

This chapter gives generic methodology to be followed for any other chip and 

board, for developing similar kind of stress level prediction model.  

Test setup for any other board with any other chip will remain more or less same. 

Component to be studied should be removed from the board because  

• It will be practically difficult to place whole board under camera. 

• Also heating rate of one component will affect the heating rate of another component 

and also heating rate captured by the imaging device.  

Thus component or chip under study should be kept under the infrared camera or 

imaging device without having any other component in its vicinity. For that cables and 

connectors can be used to connect the chip to its main board when it is removed and 

placed on separate board to study under infrared camera. The board with chip is kept 

under infrared camera inside a closed chamber to avoid any effect from surroundings. 

Once this is done next step in the procedure is to stress the chip. If it is signal 

stress than parameter which is causing the variation in signal stress should be 

determined. If it’s the voltage stress then preliminary experiments based on either the 

knowledge of chip architecture or hit and trial procedure should be adopted to find out 

which pins need to be stress to observe change in heating rate.  

Until this point the steps for voltage stress and signal stress for all kind of 

experiments are same. But after this there exists some changes in the way experiment is 

done for both voltage and signal stress which is as follows: 

 

7.2 Generic Methodology for Stressing 

 Based on the experiments Figure 7.1 represents the generic methodology for 

model based on signal stressing and voltage stressing, on different chips and boards.  
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Stress the chips to its failure point or 
maximum possible stress point. 
Stress can be vibration, humidity, 
voltage, signal etc. Obtain the 
maximum stress limit. 

Further divide this stress limit into 
stress levels so that we have different 
stress levels within the stress limit. 

Decrease the 
number of 
stress levels 
used to divide 
stress limit. 

No, relationship 
exists between 
heating rate and 
stress level. 
Model can not be 
created. 

Is there exists 
relationship 
between heating 
rate and stress 
level?

A 

No

Yes

A 

Preliminary experiments, to find 
out relationship between heating 
rate and stress levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Generic methodology for building a stress prediction model. 
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Developing analytical predictive 
model based on heating rate. This 
model can be either statistical, 
Neural Network or any other model. 

Revise Input 
to Model. 

Experiments are done to obtain 
heating rates based on test matrix 
and preliminary experiments. 

Divide heating rate data into two 
sets. 
1) Training Set.  
2) Testing Set. 

Increase 
Sample Size. 

Is accuracy 
acceptable? 

Stop 

A A 

No

Yes

 

 

Figure 7.1 Continued 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

 

8.1 Introduction 

 The results from the tests are generic. As was stated earlier, the factors that 

determine the heating rate of the chip under test are current entering/exiting the chip, and 

its manufacturing method. If the chip is not CMOS for example, it should have higher 

heating rate when placed under the same conditions due to the fact that circuits are of the 

same make up and require a net larger voltage. Other factors, like changing the board 

chip is on, should play little or no roll in affecting the heating rate, as is seen in the tests 

in which the chip was placed on a completely different board simply to achieve an 

undisturbed heat measurement. Another factor that should not change results too 

significantly is the SRAM being tested. As long as it is CMOS, and the load of the code 

or the voltage stress is similar to that in the tests then the result would be comparable as 

well. This also holds true for testing a micro controller, though a micro controller will 

typically do much more work than a SRAM chip, and hence should heat up more, the 

results should still be proportional to the current load entering/leaving the chip. 

For both voltage stress and the signal stress whole procedure involves designing 

experiments for stressing the chips.  This is followed by obtaining heating rate using 

infrared camera, exploring the variance in heating rate data for different stress level 

using statistical tools, identifying the specific combination for heating rate which leads 

to significant difference in stress level. Finally that combination of data was used to 

develop NN model. The model was also tested for its noise tolerance and sensitivity. 

Next two subsections give details of conclusions obtained from both kind of 

stresses that is signal stresses involving variation in duty cycle and frequency of chip 

usage, and voltage stress involving variation in operating voltage. 
 

8.2 Conclusion from Signal Stressing 

In this thesis work a methodology for stress level prediction due to variation in 

duty cycles and frequency on electronic chip was studied. This work can be extended to 
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other chips as well where effect of variation of frequency and duty cycles is prominent 

such as microprocessors. Results obtained suggested that 

• Average heating rate from die area gives better NN model than heating rate for 

signal stress.  

• Error rate for NN model is independent of iterations and the learning algorithms 

used. 

• During signal stressing though the maximum stress level was reached but chip did 

not fail. In order to fail the chip using signal stress we might need a chip working at 

very high signal frequency such as microprocessors. 

• For signal stress-I wherein codes were stored on SRAM and NOPs were used in 

codes to increase the heating rate, lowest MSE is for TrainGD (0.0107) for die area 

and TrainCGF (0.0630) for chip area using 3-3-1 topology. Similarly for signal 

stress-II lowest error for die area was obtained for TrainRP (0.0529) and for chip 

area, TrainOSS (0.1323) gave lowest MSE again using 3-3-1 topology.  

• This proves that model was quite efficient as the error rate for DIE area was always 

less than 10% for both stresses. 

• From the noise tolerance results we observed that error rate increases with standard 

deviation. Then it might become stagnant or increase suddenly. But over a range of 

increase in overlap ratio the increase in MSE rate is relatively small. For signal 

stress-I overlap ratio of generated data increased to 37.71 % from 21.47 % but the 

change in MSE error was just around 2% (0.0193 – 0.0319). Similarly for signal 

stress-II NN model showed pretty good noise tolerance. Overlap ratio for generated 

data overlap ratio increased from 29.26 % to 40.92% from Category A to B but error 

rate decreased from 12.28% to10.63%. Similarly moving from category B to C 

overlap ratio increased from 40.92% to 45.28% but there was just slight increase in 

error rate from 10.63%to 11.36%.  

 

Thus in all NN model developed using signal stresses is pretty efficient and this 

methodology can be extended to other electronic components as well where effect of 
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frequency change is more prominent such as micro controller processor or for chips 

which crunches lots of information in relatively small time. 

 

8.3 Conclusion from Voltage Stressing 

Similar work on voltage stress was also done in this thesis work and a 

methodology was studied for stress level prediction due to voltage stress.  Results 

obtained suggested that: 

• Any topology can yield best results. But the accuracy depends on the accuracy of 

data obtained during experiments. 

• For die area MSE for 3-2-1 topology was least for TrainRP (0.0342). For chip area it 

was least for TrainGDA (0.0449) using 3-3-1 topology.  

• Neural Net model was noise tolerant. Though for above generated data overlap ratio 

was increased to 11.28% in category B the increase in error rate was from 3.8% to 

4.4%. Similarly moving from category B to C overlap ratio increased from 11.28% 

to 14.93% but error rate decreases to 4.04% due to saturation.  

 

The most important conclusion made during the research was to propose the 

generic methodology for stress level predictions. 

The conclusion made clearly justifies the research work we tried to accomplish in 

our problem statement which was to build a model for stress level existing in chips. As 

the error rate is pretty small and the accuracy for the results are high (>90%), generic 

methodology given earlier can be used to build a model for other electronic components 

as well. 

This work does not end over here but can be further performed on various other 

electronic chips and components and accuracy of the results can be compared to other 

predictive methodologies existing. Some of the future work that can be undertaken is 

mentioned in the next section as well. 
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8.4 Future Work 

The work done in this research can be further extended to other models and we 

can finally build a predictive model for whole PCB board itself. The future 

recommendations can be summarized in following points: 

• Developing the same model for different chips such as micro controller where the 

effect of variation in frequency and duty cycles are significant. 

• Increasing sample size for the experimental chips to get more reliable and better 

results. 

• Scope of similar work for different kind of signal stresses that can be caused by 

changing the clock frequency or using an incompatible micro controller, which 

increases the rate of data transfer significantly higher than normal rate and thus 

causes stress in the chips. 

• Using components working at very high signal frequency which might result in the 

failure of the chip. 

• Comparing the results with those obtained from statistical methods or using finite 

element approach. 

• The Neural Network model can be developed based on two output nodes instead of 

just one. The idea behind it is that, as there are four stress levels, they can be divided 

into four binary outputs 00, 01, 10, 11.  
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APPENDIX A 

CODES USED 

 

Codes 1-4 are essentially the same, the main difference in the codes is the values 

of data being placed in RAM as well as possibly varying delays.   

 

Code 1 is 1206.asm – this code is similar the one shown in the diagram below.  It 

functions by activating one LED at a time across the range of 8 LED’s.  Each 

time the next LED is lit up in the pattern the program will move a hex number, in 

this case FF, to R1, this is followed by placing the value 00 into R1 repeatedly 

until the comparison statement is reached.  At this point the program loops and 

repeats these steps. 

Code 2 is 1206ram2.asm – this code is the same as the previous with a slight change.  

Once the program enters the loop where it moves decimal 255 into R1, it will 

continual to loop here forever.  Instead of exiting the loop, when R0 = 255, the 

loop will reiterate just as if R0 were any other value.   

Code 3 is 1206ram3.asm – this code is also similar to the first with a subtle change.  It 

moves decimal 0 into the location of the data pointer followed by moving 255 

into the same location.  It then loops infinitely performing this action repeatedly. 

Code 4 is 1.asm – this code is the one shown in the diagram below.  It works the exact 

same as the first one though instead of alternating FF, 00 into the R1 register, it 

instead just places FF into it repeatedly.  This program follows the steps of the 

diagram and the flow laid out in the first code. 
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Figure A-1 
 
 
 

Code 5-8 are used to both create a heat in the RAM but also to test the memory 

array of the chip for faults.  The programs create a regularly visible data structure in the 

array which can easily be scanned to find faults in the memory. 
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Code 5 is IncrementsRAM.asm – this code worked by entering a loop where a pointer 

was placed at location 2100 and this was filled with hex value 00, the program 

then entered a loop where it went through each location in RAM and filled it with 

a value one higher than the location before it. 

Code 6 is IncrementsRAMwdelay.asm – this program was the same except there was a 

delay built in which was filled with “nop” instructions.  This came in at the end 

of the larger loop, and other than the delay performed the exact function of the 

previous code. 

Code 7 is Zerosnfswesc.asm– this program was structured the same as the previous two 

programs but instead of placing incremental values in RAM it alternated by 

filling the RAM with all zeros, followed by filling the RAM with all FF’s 

Code 8 is Zerosnfswescndelay.asm – this program is the same as the previous program 

but included a delay.  This is analogous to the relationship of codes 6 and 7 in 

that it is the same code with the same function, but with a delay thrown in to 

allow the nop’s to increase the heating rate.  
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Figure A-2 
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For code 9-12, there were two codes run, one in FLASH, one in SRAM.  This 

structure allowed the user to have a greater control in how much time the code spent in 

use on either the SRAM chip of the FLASH.  The programs functioned by starting one, 

which at termination, called the other program, and visa versa.  This lead to a loop 

between the two programs that was easy to manipulate to get the test data desired. 

 

Code 9 is SRAM_More & FLASH_Same -  this code followed the diagram below with 

the exception that the delay loop on the SRAM has been increased so that the 

microcontroller spends 20times more time interfacing with the SRAM than the 

FLASH. 

Code 10 is SRAM200k & FLASH_Same – this code was designed with a loop structure 

that left the SRAM getting used three times as often as the FLASH. 

Code 11 is SRAM_Same & FLASH_Same – this code gives a 1:1 ratio of use between 

the SRAM and FLASH. 

Code 12 is SRAM_Same & FLASH150k – this code function in the same manner as the 

previous codes and provides a 1:3 ratio of time for the microcontroller to spend 

on the FLASH instead of on the SRAM. 
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Figure A-3 
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APPENDIX B 

VB CODE USED FOR SYNCHRONIZATION 
 
 
  Option Explicit 

  Dim Darray() As String 

 Private Sub cmdSend_Click() 

  Dim buffer, Newline, SFile, FileName As String 

   Dim i As Integer    

'******************************************************************* 

   SFile = "1.txt"              'Change "    " to a new file 

'******************************************************************* 

   If txtFileName.Text = "" And SFile = "" Then 

     MsgBox ("Pls enter a file name") 

   End If 

  

   If txtFileName <> "" Then SFile = txtFileName.Text 

   

   FileName = AppendFileToPath(App.Path, SFile) 

   ' Buffer to hold input string 

   Dim Instring As String 

   ' Use COM1. 

   MSComm1.CommPort = 1 

   ' 1200 baud, no parity, 8 data, and 1 stop bit. 

   MSComm1.Settings = "1200,N,8,1" 

   ' Tell the control to read entire buffer when Input 

   ' is used. 

   MSComm1.InputLen = 0 

   ' Open the port. 

   MSComm1.PortOpen = True 

   ' Send the attention command to the modem. 
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   '***************************************************** 

   ' Send the attention command to the modem. 

    

   MSComm1.Output = Chr$(13) ' Ensure that 

  ' MSComm1.Output = "ATV1Q0" & Chr$(13) ' Ensure that 

     

   ' the modem responds with "OK". 

   ' Wait for data to come back to the serial port. 

    

   Text1.Text = "" 

    

   Do 

      DoEvents 

      buffer = buffer & MSComm1.Input 

      Text1.Text = buffer 

   Loop Until InStr(buffer, "PAULMON2 Loc:2000 >") '& vbCrLf) 

    

   ' InStr(buffer, "2000 >" & vbCrLf) 

   ' Read the "OK" response data in the serial port. 

   ' Close the serial port. 

  '****************************************************** 

    

   On Error GoTo FileError 

   Open FileName For Input As #1 

    

    

   Text1.Text = "" 
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   i = 0 

    

   Do Until EOF(1) 

       

      i = i + 1 

      ReDim Preserve Darray(i) 

      Input #1, Darray(i) 

          Text1.Text = Text1.Text & Darray(i) & vbNewLine 

      MSComm1.Settings = "1200,N,8,1" 

      MSComm1.Output = Darray(i) 

    

   Loop 

    

     Dim PauseTime, Start, Finish, TotalTime 

     PauseTime = 1   ' Set duration. 

     Start = Timer   ' Set start time. 

     Do While Timer < Start + PauseTime 

        DoEvents   ' Yield to other processes. 

     Loop 

    

   buffer = "" 

    

   Do 

      DoEvents 

      buffer = MSComm1.Input 

      Text1.Text = Text1.Text & buffer 

   Loop Until buffer = "" 

    

     PauseTime = 0.5   ' Set duration. 
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     Start = Timer   ' Set start time. 

     Do While Timer < Start + PauseTime 

        DoEvents   ' Yield to other processes. 

     Loop 

       

   MSComm1.Output = "r" 

    

   buffer = "" 

    

   Do 

      DoEvents 

      buffer = MSComm1.Input 

      Text1.Text = Text1.Text & buffer 

   Loop Until buffer = "" 

    

     PauseTime = 0.5   ' Set duration. 

     Start = Timer   ' Set start time. 

     Do While Timer < Start + PauseTime 

        DoEvents   ' Yield to other processes. 

     Loop 

    

   MSComm1.Output = "a" 

      Exit Sub   

     

FileError: 

    MsgBox "File Error!" 

MSComm1.PortOpen = False 

End Sub 
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' Purpose: This function safely appends the passed file name 

'          to the passed path by making sure the last character 

'          in the path contains a "\" 

Private Function AppendFileToPath(ByVal Path As String, _ 

    ByVal File As String) As String 

    If Path = "" Then    ' the path is at the root 

        AppendFileToPath = File 

    ElseIf Right(Path, 1) = "\" Then 

        AppendFileToPath = Path & File 

    Else 

        AppendFileToPath = Path & "\" & File 

    End If 

End Function 

 

Private Sub cmdExit_Click() 

 

   'MSComm1.Output = "" 

   If MSComm1.PortOpen = True Then MSComm1.PortOpen = False 

   Unload Me 

   Exit Sub 

End Sub 

 

Private Sub Form_Load() 

Dim i As Integer 

i = 0 

'txtFileName.SetFocus 

End Sub 
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