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ABSTRACT

Physically Based Mechanical Metaphors

in Architectural Space Planning. (May 2004)

Scott Anthony Arvin, B.Arch., University of Notre Dame;

M.S., Troy State University

Chair of Advisory Committee: Dr. Donald H. House

Physically based space planning is a means for automating the conceptual design

process by applying the physics of motion to space plan elements. This methodology

provides for a responsive design process, allowing a designer to easily make decisions

whose consequences propagate throughout the design. It combines the speed of au-

tomated design methods with the flexibility of manual design methods, while adding

a highly interactive quality and a sense of collaboration with the design.

The primary assumption is that a digital design tool based on a physics paradigm

can facilitate the architectural space planning process. The hypotheses are that

Newtonian dynamics can be used 1) to define mechanical metaphors to represent the

elements in an architectural space plan, 2) to compute architectural space planning

solutions, and 3) to interact with architectural space plans.

I show that space plan elements can be represented as physical masses, that

design objectives can be represented using mechanical metaphors such as springs,

repulsion fields, and screw clamps, that a layout solution can be computed by using

these elements in a dynamical simulation, and that the user can interact with that

solution by applying forces that are also models of the same mechanical objects. I

present a prototype software application that successfully implements this approach.
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A subjective evaluation of this prototype reveals that it demonstrates a feasible

process for producing space plans, and that it can potentially improve the design

process because of the quality of the manipulation and the enhanced opportunities

for design exploration it provides to the designer.

I found that an important characteristic of this approach is that representation,

computation, and interaction are all defined using the same paradigm. This contrasts

with most approaches to automated space planning, where these three characteristics

are usually defined in completely different ways.

Also emerging from this work is a new cognitive theory of design titled ‘dynami-

cal design imagery,’ which proposes that the elements in a designer’s mental imagery

during the act of design are dynamic in nature and act as a dynamical system, rather

than as static images that are modified in a piecewise algorithmic manner.
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1. INTRODUCTION

Many approaches to automated architectural design incorporate much building and

construction knowledge. Nonetheless, architects sometimes avoid them because they

do not provide the freedom of easy design manipulation and exploration. Thus, most

architects tend to use tedious manual means for creating their designs. In contrast,

architects sometimes use terms such as “manipulate,” “mold,” and “massage” when

describing their interaction with design elements during the early stages of design.

These words evoke images of spaces as pieces of clay being sculpted by the application

of forces to achieve the designer’s objectives. A design is dynamically transformed

under the influence of these forces. Within this metaphor forces represent design

objectives, and the process of resolving a set of forces represents the creation of a

design. Once design is thought of in this force-based metaphor, physically based

simulation becomes a potential methodology for realizing a computer aided design

process. This dissertation proposes this approach to bridge the gap between current

automated design methods that provide inadequate interaction with the designer,

and current manual design methods that require too much tedious work, bringing

together the benefits of both.

Imagine an architectural design that is responsive, that feels alive, that contin-

ually responds to the changing decisions of the designer. Most objectives specified

in an architectural program affect the position, size and shape of some building ele-

ment in space. These objectives are typically interconnected, such that changing one

objective causes changes in the application of others. A responsive building model

would take these changes into account, continually adjusting to the current state of

The journal model is Environment and Planning B: Planning and Design.
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unfulfilled objectives to produce a design that tries to meet those objectives. For

example, if the designer moves the location of a wall, not only would elements at-

tached to the wall get updated, but the rooms on each side should change area as

well. Those rooms can automatically adjust to maintain their correct area, but these

changes may cause other dimensions to be incorrect. A responsive design process

would allow the designer to specify design decisions while automatically propagating

the consequences of those decisions to the rest of the design.

The architectural design problem can be loosely defined as the process of creat-

ing a final building design from the objectives initially specified in an architectural

program. Non-trivial architectural design problems are ill-defined (Yoon, 1992, p. 8)

and over-constrained. They are ill-defined in that initial design specifications are

incomplete. Additional design knowledge needs to be added throughout the design

process in order to arrive at a final solution. This knowledge can be added either

manually by the designer or automatically by a computer application. Architectural

design problems also tend to be over-constrained in that initial specifications are

often in conflict with each other, and therefore no final design exists that meets all

design objectives. Over-constrained problems tend to have many almost correct solu-

tions, and need some method of finding the ones that are most correct (Balachandran

and Gero, 1987).

Architectural design is a highly interactive process. The final product of a

design is more dependent on the process of design than it is on a well defined list of

initial design objectives. Much has been written about how architects employ visual

and graphic thinking in their design process (Arnheim, 1969; Laseau, 1980; McKim,

1972). Scriabin and Vergin (1975) note that

. . . attempts to use fully automated computer algorithms to solve the lay-
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out problem should be reexamined with a view of incorporating man’s

visual capability into the procedures, especially since the real layout prob-

lem involves many factors which cannot readily be incorporated into a

computer program, but which a man can take into account while design-

ing a layout.

Any method of automating the architectural design process needs to accommo-

date the three fundamental characteristics just described: by 1) modifying sets of

design objectives in an ill-defined problem, 2) searching for a good solution in an

over-constrained problem, and 3) giving the designer a very high level of interaction

with the design thereby enabling active and visual exploration of the design space.

I propose a responsive design approach to architectural space planning that uses

a physically based metaphor for the early stages of the conceptual design process.

This approach addresses the ill-defined nature of the problem by allowing designers to

add and modify a set of force-based design objectives throughout the design process.

Searching for a solution in an over-constrained problem can be done either automat-

ically or manually. This new approach provides an automated component to this

search by using physically based simulation on appropriately represented building

elements, and introduces a manual component by implementing it within a compu-

tational framework that provides for extensive real time user interaction. Thus, the

designer is included as a necessary and integral part of the ‘search’ process.

The significant benefit to using this physically based responsive design approach

should be that the quality of interaction with a design is enhanced. The design should

feel alive to the designer and promote a sense of collaboration between the designer

and the design. The quality of design results should be enhanced, not because of an

improvement in automation, but because of an improvement in design interaction.
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1.1. A physical paradigm for digital design

The initial idea for a physically based approach to space planning came from thoughts

about how one could design an interface for specifying architectural programs. Ad-

jacency requirements between spaces are typically specified in a matrix by assigning

each space pair a descriptive term, such as immediate, important, convenient, or

unimportant (Karlen, 1993). I thought the same task might be done numerically

in a graphical user interface by displaying a slider between two space centers, and

adjusting the slider based on the strength of the adjacency. I then made a conceptual

leap and replaced the slider with a virtual spring, a basic element used in physically

based modeling and animation. The spring could apply forces to the spaces caus-

ing them to move toward each other. The applied force would be proportional to

the strength of the adjacency. From here the natural next step is to define a sys-

tem of such springs connecting spaces, and to use this system to aid in producing

space plans. Once such a system exists, other architectural design objectives can be

represented using similar mechanical metaphors.

Physically based modeling, a sub-field of computer graphics and visualization,

attempts to represent motion and changes in geometry by modeling objects as me-

chanical elements that behave according to the laws of physics. Dynamics are most

often derived by the use of forward numerical simulation over discrete time inter-

vals. In a forward simulation, the system is moved from its state at some current

time to its state at the next discrete time step, using forces to determine accelera-

tions, and thus changes in velocity, during the time step, and velocities to determine

translations. The process of making this forward extrapolation is called numerical

integration. The elementary concepts of physically based modeling are reviewed in

more detail in section 3, “Review of Physically Based Modeling.”
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A physically based approach to automated architectural space planning should

be valid for the following reasons: 1) It is very easy to think of architectural design ob-

jectives in terms of forces being applied to architectural elements (Alexander (1964)

uses a wide variety of physical terms in his discussions about the design process); 2)

The process for solving a physically based system through numerical integration is

a holistic one, progressing from one time step to the next while accounting for all

forces acting on all elements of the system at the same time; and, 3) objects that

follow the laws of physics appear natural to humans, since we continually experience

physical interaction in the world. Human interaction with these simulated objects

should therefore feel natural and intuitive.

A particle system is a classical physically based modeling technique where the

motion and display of a number of point particles are used to simulate existing or

imaginary phenomena. Each particle that exists in a simulated environment has a

position, mass, and velocity; it interacts with ‘physical’ elements or other particles

in its environment; and it has a lifespan during which it exists. The characteristics

of its environment, such as gravity strength and direction, and air viscosity, are

specified, and a motion simulation is run. Particle systems can be used to simulate

such natural phenomena as waterfalls and fire.

The method of physically based space planning proposed here is essentially a

classical particle system with springs applied to the specific problem domain of archi-

tectural space planning. In applying physically based techniques to space planning,

the first problem is how to represent the elements of a space plan, the spaces and the

walls surrounding them, such that forces can be made to act on them. The second

problem is how to represent different architectural design objectives as forces that

can be applied to these elements. It is useful to think of design objectives as wants or

needs. For example, space A “wants” to be next to space B, or space C “needs” to
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be 200 square feet in area. It then becomes easier to choose an applicable mechanical

metaphor to define the physical forces needed to accomplish the design objectives.

Figure 1-1 shows a single space with forces acting on its elements. Arrows labeled a

represent forces applied to the space location, which may change the way this space

relates to another. Arrows labeled b represent forces applied to the polygonal edges

of the space boundary, which may change the geometric position of the edges.

a1

a3

a2

b2

b3 b1

b6
b4

b5

Fig. 1-1. Simple space with forces acting on its elements

Physically based methods are computationally expensive, so using them to solve

a simple space layout problem may seem at first like using a sledge hammer to drive

a finishing nail. Why employ a complex method such as physics equations to solve

a seemingly simple problem? As I will show, the benefit of their use is not so much

that they aid in the solving of the problem, but that they add a ‘quality’ to the

design process that few other methods can. With recent advances in computational

capability, the application of physics to a variety of problem domains has become

more and more possible.

In an article reporting on advances in solving satisfaction problems, Peterson

(2000) describes how the principles of physics can shed some light on the nature of
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those problems. It turns out that satisfaction problems appear to have character-

istics of phase transitions similar to that of some types of matter. A satisfaction

problem with few constraints has many solutions, while one with too many con-

straints is insoluble. The difficulty lies in the middle ground, where if the number

of constraints approaches a critical number it becomes difficult to tell if the prob-

lem is soluble or not. For some problems the transition from soluble to insoluble

is discontinuous, similar to the transition when water freezes, while in others the

transition is continuous. Peterson quotes Lenore Blum - “Looking at a problem from

a new perspective can add new insight. The idea of introducing the concept of phase

transitions into [computational] complexity has this potential. Even if it does not

characterize complexity, figuring out to what extent it may or may not be relevant

would be extremely interesting.” (Peterson, 2000) Looking at problems in physical

terms can shed some light on their nature, and be used to aid in solving them.

1.2. Problem statement

The assumption, then, is that a digital design tool based on a physics paradigm

can facilitate the architectural space planning process, and possibly any dimensional

design process. This assumption leads to the hypotheses addressed here: Newtonian

dynamics can be used

1. to define mechanical metaphors to represent the elements in an architectural

space plan,

2. to compute architectural space planning solutions, and

3. to interact with architectural space plans.
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Representation, computation, and interaction can all be encompassed within the same

dynamical system.

Two individual questions are raised by these hypotheses. The first question is

one of representation: How can the elements in a space planning design problem be

modeled with mechanical analogues? Given this representation, the second question

is one of implementation: How does an implementation of this representational model

work?

1.3. Methodology

The representation of space planning elements will be addressed by applying a variety

of common techniques used in physically based modeling to the elements of a space

plan, as introduced earlier. Given this representation, an algorithm will be defined to

produce an instance of a space plan given a dimensional state and a number of design

objectives, and to provide a way for designers to manipulate a plan by modifying

existing objectives and adding new ones. This representation, computation and

interaction of architectural space plan elements as mechanical analogues is presented

in section 4, “A physically based approach to space planning.”

A prototype computer application will be developed using this representational

model. The scope of this implementation will be limited to those architectural space

plans consisting of rectangular shaped spaces, and single story buildings with single

height spaces. Research in space planning approaches is often limited to rectangles in

order to simplify the development of new ideas, such as that presented by Liggett and

Mitchell (1981b), Flemming (1978), and Akin et al. (1988). I recognize that a truly

useful approach to design needs to be able to handle more complex buildings including

non-rectangular shapes, multi-storied buildings, spaces with different heights, and
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other design objectives. However, if the concepts of physically based space planning

can be validated for basic design types, it should be possible to extend them in the

future to handle more complex real-world design problems. The implementation

of the prototype computer application and some worked examples are presented

in section 5, “Prototype implementation,” and an analysis of the computational

and space complexity of the implementation is presented in section 6, “Complexity

analysis.”

The resulting prototype implementation will be used to develop a plan for a

simple building. Analyzing its performance in this process, I will attempt to answer

such questions as “does it behave as initially visualized?,” “does it provide a com-

pelling design experience?,” “does it aid the design process?,” “is it ‘fun’ to use?,”

and “how can it be improved?” Some general observations about the concepts pre-

sented, their implementation, and the potential usefulness of the proposed approach

in the architectural space planning process are made in section 7, “Discussion.”

1.4. Summary of results

The results and contributions of this research are highlighted below. They will be

revisited in section 9, “Conclusions,” along with suggestions for future work.

1.4.1. Representation

The elements of an architectural space plan were successfully modeled as physically

based elements. Spaces and walls were represented as masses on which forces can be

applied. A number of design objectives were represented as force applicators, using

such mechanical metaphors as springs, repulsion fields, balloons, clay, and screw

clamps.
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1.4.2. Implementation

A prototype software application was successfully implemented. Using the physically

based architectural representations mentioned above, and numerical simulation of a

physical environment, space planning solutions could be computed. The force based

design objectives moved design spaces and walls from one design state to another.

1.4.3. Interaction

A key realization that emerged from working with the prototype application was the

importance of the quality of user interaction with the design. What started out as

a method for automatically producing a space plan from a set of initial objectives

turned into a method of interacting with the space plan itself. Since the physical

objects we interact with daily behave according to intuitively familiar physical laws,

and the elements in a physically based space plan behave according to similar laws,

the interaction with those elements seems to produce a more satisfactory design

experience.

1.4.4. Contributions

The primary contribution of this work is a mapping from architectural space planning

concepts to physically based metaphors of mechanical objects. The proof of the

success of this mapping is a working software application, and a demonstration of

its use in creating a sample architectural floor plan.

1.4.5. Theoretical Implications

An additional contribution that emerged from this work is a cognitive theory of

design titled ‘dynamical design imagery,’ which will be discussed in greater detail
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in section 8, “Theoretical Implications”. This interesting though highly speculative

theory proposes that the elements in a designer’s mental imagery during the act of

design are dynamic in nature and act as a dynamical system. Although it will be

difficult to gather empirical evidence, if it does turn out to have some validity it

could have significant implications for the implementation of future digital design

tools.

I will now review in section 2 some of the literature in computer-aided space

planning, physically based modeling, and design thinking, as well as some emerging

ideas about the role of dynamics in cognitive science. This will be followed in section 3

by an overview of the basic techniques used in physically based modeling, which will

be necessary in order to understand their application to architectural space planning.
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2. LITERATURE REVIEW

The two main fields of research related to this dissertation are computer-aided space

planning and physically based modeling. However, it cannot be neatly classified

into only these two areas, and also relates significantly to other major fields such

as human-computer interaction, design thinking, and cognitive science. A thorough

review of the literature in each of these fields is not practical, so this section describes

only some of the important research in each field, and some of the previous research

directly related to ideas presented in this dissertation.

2.1. Physically based modeling

Physically based modeling is a sub-field of computer graphics and visualization. It

attempts to represent dynamic motion and changes in geometry by modeling objects

as mechanical elements that behave according to the laws of physics. Dynamics are

most often derived by the use of forward numerical simulation over discrete time

intervals. In a forward simulation, the system is moved from its state at the current

time to its state at the next discrete time step, using forces to determine accelera-

tions, and thus changes in velocity during the time step, and velocities to determine

translations. The process of making this forward extrapolation is called numerical

integration. An excellent introduction to the concepts of physically based modeling

and a practical guide to the implementation of these concepts in the computer is

given in Witkin and Baraff (1997).

This research does not extend the field and techniques of physically based mod-

eling, but instead applies those techniques in a new way to the field of architectural

space planning. An extensive review of the fundamental techniques of physically

based modeling used is given in section 3, “Review of physically based modeling.”
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One basic use of physically based modeling is in particle systems, introduced by

Reeves (1983), in which a collection of particles, each of which has a mass, position,

velocity, and display properties, are made to appear as desired physical objects such

as water in a waterfall.

A spring is one of the fundamental objects introduced later to model space

planning design objectives. Examples of using springs to model the behavior of

flexible objects include Haumann (1987) and Haumann and Parent (1988).

Other techniques in physically based modeling that are relevant to this research

and will be mentioned later include constraining object movement relative to other

objects (Witkin and Kass, 1988; Barzel and Barr, 1988), interacting with dynamic

models (Witkin et al., 1990; Witkin and Welch, 1990), and collision detection between

objects (Moore and Wilhelms, 1988).

Physically based modeling has been used to model the realistic behavior of rigid

bodies (Barzel and Barr, 1988; Baraff, 1989), deformable models (Terzopoulos et al.,

1987), and flocking behavior of a large number of objects (Reynolds, 1987).

House and Kocmoud (1998) use physically based modeling techniques to create

what they call ‘continuous cartograms’. A cartogram is a map that displays data

about a region by, for example, coloring or shading the parts of the region based on

data values for those parts. For example, the states in a map of the United States can

be colored red or blue based on presidential voting for a specific year. One problem

with cartograms such as this is that the percent area covered with one color may

not represent the related percentage of the data value. An area cartogram scales the

regions so that their displayed area correlates with the data being represented. House

and Kocmoud use physically based techniques to perform this scaling. Springs of

various types are used to maintain the length and angle of region boundaries relative

to each other, and to apply forces to make the regions become larger or smaller over



14

time so as to create an area cartogram that is more recognizable than those created

with other methods. This task can be thought of as a highly restrictive subset of

a floor planning problem - ‘given floor plan (map) A, produce another floor plan

(similarly recognizable map) B, where the area of each room (state or country) is

proportional to the floor plan’s area as is a desired room area (data value assigned

to a state) is proportional to the floor plan’s area (sum of the data values for all

states).’

Physically based dynamics have recently begun to be used in geometric design.

Qin (Qin et al., 1998; Qin and Terzopoulos, 1995; Qin, 1998) and Mandal et al.

(1997) use physically based techniques to manipulate smooth surfaces of arbitrary

topology interactively. In their approach, a user defines the points of an initial con-

trol mesh, which are manipulated by applying synthesized forces until the desired

shape is achieved. In describing his physically based approach to modifying free-

form deformable models Qin uses phrases that fit very well with the purpose of the

research proposed here, such as “interactive design environment,” “integrates tra-

ditional design principles with advanced physics-based design techniques,” “explore

and develop flexible, efficient design tools,” and “physics-based force sculpting tools

for direct manipulation of geometric primitives.”

2.2. Computer-aided space planning

Methods to automate the process of architectural space planning have been stud-

ied quite heavily over the past four decades. It is a natural place for architectural

researchers to begin to apply the technology of computer science because space plan-

ning is such a fundamental part of the architectural design process, and seems to be

a process that lends itself to automation. As with many problems that at first glance
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look easy to solve, automated space planning has turned out to be quite a complex

problem.

2.2.1. Constructive placement methods

Constructive placement methods for automated space planning place one space in a

building area, then iteratively place each additional space in the building in relation

to those previously placed. Objective functions are used to determine the order in

which spaces are placed, as well as the placement of each space.

Liggett and Mitchell (1981b) present one such method for accomplishing auto-

mated and interactive optimized space planning. First they present a way of cal-

culating an objective function that provides a quantitative measure of the cost of

locating a particular area in a building. The objective function takes into account

the fixed costs of an activity, such as rent; the interactive costs of an activity relative

to other activities, such as adjacency relationships; and the move costs that would

be incurred from relocating an activity from one place to another. Then they present

a method for creating a space layout by incrementally adding an area to a building

layout based on minimizing the cost in the objective function. They do this through

the method of quadratic assignment. A set of areas is mapped into a set of locations,

considering the cost of assigning an area to a location, the cost of interaction be-

tween areas, and the distance between areas. The quadratic assignment method tries

to find a solution, from within the set of all possible solutions, that optimizes the

objective function. Since the problem is highly complex, an exact objective function

cannot be calculated, so they use probability theory to calculate the expected value

of the objective function based on possible future space assignments. Their method is

capable of handling multi-stage designs, is zone based, and outputs a character-based

graphic representation of a floor plan (Liggett and Mitchell, 1981a).
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A strength of their method is that it is able to automatically produce a near

optimal space layout. It is not necessary to find a globally optimum solution in archi-

tectural design because “the task is not to find one least-costly plan, but to integrate

an understanding of the cost consequences of location decisions, in a well-structured

way, into a search for a solution that responds to a broad spectrum of complex and of-

ten ill-defined criteria.” (Liggett and Mitchell, 1981a, p. 296) A weakness with their

method is the combinatorial complexity of quadratic assignment problems, which

“belong to a class of mathematical problems known as NP-complete.” (Liggett and

Mitchell, 1981b, p. 282) As additional terms are added to a problem, the solution

depends on all the previous terms. This algorithm then has a computational com-

plexity of order O(n!), and it is generally impossible to prove that a solution is the

optimal solution. However, the space planning problem itself is not this complex.

As a new space is added to a problem, it tends not to be functionally related to all

other spaces, but just a subset of them, so it is more likely to be of order O(n2).

The quadratic assignment approach is thus adding complexity to the problem that

is not really there. This is usually not considered much of a limitation in space plan-

ning problems, because of the size of these problems relative to other NP-complete

problems, and because finding the optimal floor plan is not of primary concern.

One of the most notable and extensive research projects in recent years is the

“Software Environment to support the Early phases in building Design,” or SEED

(Flemming and Chien, 1995). SEED partitions the schematic design problem into

a variety of modules, one of which is SEED-Layout (Flemming and Chien, 1995).

SEED-Layout supports design space exploration through an iterative constructive

placement, constraint based approach that can be either manual or automated. It

also supports a case-based approach where previous designs can be used to produce

new designs.
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Akin et al. (1988) also use a type of constructive initial placement method, which

will be described later in this section in the context of design thinking.

2.2.2. Generative methods

Generative space planning methods seek to produce all or a large number of the

possible designs within a design space. Two common methods are shape grammars

and genetic algorithms.

2.2.2.1. Shape grammars

Shape grammars were developed with the intent of defining a language of design, and

are an application of phrase structure grammars introduced by Chomsky (2003) and

used to develop a theory of linguistics. They were introduced into the design domain

by Stiny and Gips (1972). Whereas linguistic phrase grammars operate on alphabets

to create sentences, shape grammars operate on shapes to create geometric designs.

Shape grammar elements consist of individual shapes, similar to words, a vocabulary

of a set of shapes, and re-write rules where one shape or set of shapes is transformed

into another shape or set of shapes.

A shape grammar system can be used to generate designs, depending on the

application of the re-write rules. They have been used to attempt to define a design

language of ‘well-formed’ design styles such as the windows of Frank Lloyd Wright

(Rollo, 1995), the architecture of Palladio (Stiny and Mitchell, 1978), and Queen

Anne houses (Flemming, 1987), as well as in solid modeling (Heisserman, 1994), and

urban layouts Grimsdale and Chang (1996). Shape grammars have also been used

with rectangular dissections, described in more detail in the next section. Harada

(1997) describes a physically based method for improving design exploration of an

instance of a shape grammar design, which will be described in detail in section 2.4.
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2.2.2.2. Rectangular dissections

A rectangular dissection is a rectangle that has been partitioned into a number

of smaller rectangles such that none of the smaller rectangles overlaps each other,

and no space inside the outer rectangle does not belong to an inner rectangle. A

typical method for creating a rectangular dissection is to take the outer rectangle,

draw one or more horizontal (vertical) lines between opposite edges, then draw one

or more vertical (horizontal) lines that do not cross but whose endpoints fall on

horizontal (vertical) lines, and continue to alternate between vertical and horizontal

lines. Although rectangular dissections have limitations, they have provided a useful

tool to developing a number of theories of automated space planning.

Flemming (1978) describes a method for automated space allocation that applies

wall representations to rectangular dissections. A wall representation is a string

that specifies whether a wall is horizontal or vertical, and identifies the spaces that

lay on each side of the wall. A series of wall representations can then define a

specific rectangular dissection. He defines a set of string substitution rules that

transform one wall representation containing n spaces to another wall representation

containing n+1 spaces that remains valid within the bounds of a set of constraints

specified in a design problem. His approach searches for a set of possible design

solutions by starting with a single space and continually adding additional spaces

that meet specified constraints. The resulting set of solutions is then ordered based

on an objective function. First, potentially all topologically feasible solutions are

enumerated, and then dimensional constraints such as area are applied. He notes

that most design problems are under constrained, in that there are a large number

of possible solutions that meet all of the initial constraints, and that a candidate

design solution need not be optimized, but need only be ‘reasonably dimensioned.’
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Gilleard (1978) has a similar goal of enumerating the floor plan possibilities for

a rectangular dissection. Given a planar adjacency graph with nodes representing

spaces and edges representing adjacencies between spaces, its dual is created, whose

edges represent walls separating spaces and whose nodes represent wall intersections.

At this point, the edges of the dual graph are rarely orthogonal to the principal axes.

Gilleard’s approach is to specify the orientation of each dual edge as horizontal or

vertical through the application of a sequence of rules, thus transforming the dual

graph into a rectangular dissection. Many of the orientations are unique, but some

have multiple possibilities. The enumeration of the possible rectangular dissections

based on these non-unique edges is the significant contribution of his approach.

2.2.2.3. Genetic algorithms

Genetic algorithms are a class of methods that change a data set through rules of

variation and selection. Specific solutions to a problem are evolved through the use

of these rules, and then compared to some fitness function to see if any of the new

solutions are better than the old one. Gero and others have recently applied concepts

from genetic algorithms in their work on evolutionary approaches to space planning

(Gero, 1998; Gero and Kazakov, 1998; Jo and Gero, 1998).

The basic concepts used in genetic algorithms are the genotype, the phenotype,

expression, selection, and reproduction (Sims, 1991, p. 319). The genotype is the

genetic information that can be used to describe a specific individual, while the

phenotype is the individual itself. Expression is the process of realizing the phenotype

from the genotype; a genotype expresses a phenotype. Sims (1991) uses genetic

algorithms to create digital images, in which the genotype is a symbolic expression

whose result is a color value at a specific pixel location, and the phenotype is an

image created with that expression. Selection is the act of determining which of
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the expressed phenotypes survives to the next generation. The selection process is

done through some measurement of fitness of a phenotype, which can be done by a

person as well as an algorithm. Sims uses human interaction as the fitness test in his

implementation of genetic algorithms. At each generation, a number of phenotypes

are presented to the user, who picks the best ones to use as the starting point for the

next generation. Reproduction is the process of creating new genotypes from existing

genotypes. Variation needs to be introduced into succeeding generations in order for

evolution to occur. This can be done through mutation, which is randomly changing

parts of a single genotype, or through mating, which is combining the parts of two

genotypes together.

An interesting characteristic of genetic algorithms is that they can provide for the

creation of new types of beings, such as Sims’ evolving virtual creatures (Sims, 1994).

The genetic code can be made to combine is such a way as to create new codes, often

unimaginable to the user. Although applicable in some domains, this would typically

not be useful in the space layout problem, where the number, size, and kind of spaces

are well specified before design starts. Any change to the specifications results in an

undesirable redefinition of the problem.

2.2.3. Constraint methods

Constraint methods began with the classic work of Ivan Sutherland and his SKETCH-

PAD system (Sutherland, 1963). Along with the innovative use of hardware such as

the light pen and buttons for selecting objects on a screen, and data structure inno-

vations such as linked lists, Sutherland developed many user interaction techniques

that form the basis of today’s graphical user interfaces and direct manipulation tech-

niques. His work in drawing precise geometric objects based on imprecise user input

forms the basis of many constraint systems to this day.
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Constraints have been used in architectural design (Gross et al., 1987) in, for

example, three-dimensional solid modeling (Tobin, 1991; Martini, 1995), and space

layout planning (Yoon, 1992). Others have described a variety of design constraint

types such as dimensional, ratio, adjacency, orientation, and shape constraints (Pf-

efferkorn, 1975, p. 430),(Mitchell, 1977).

Papper et al. (1991) use constraints to create an interface where users manipulate

virtual objects in a manner similar to the way objects are constrained in the real

world. For example, when a user moves a table in a room it stops moving when

it ‘hits’ a wall, or when a user places an object such as a computer over a table,

the computer ‘falls’ until it rests on the table. An example of how expert test

subjects used these constraints is when “they use one block as a pusher block to move

several objects in the same mode,” (Papper et al., 1991, p. 219), which is similar in

functionality to the alignment objective I will describe in section 4.2.7.1. They define

‘physical’ constraints such as gravity, friction, and pushing. However, constraint

transformations are computed using a standard algebraic constraint solver, rather

than through the use of physics as proposed here. For example, a friction constraint

is defined such that if object A is on top of and touching object B and B is moved,

then A is moved by the same amount. Actual friction, “the force that resists relative

motion between two bodies in contact” (Merriam-Webster, 1995), plays no part in

the computation of the constraint, and if in the future the application provided

haptic feedback there would be no indication of the effort required to slide a heavy

object across another. Instead, the friction constraint is more like an ‘on’ constraint

or a ‘hierarchical position’ constraint. The extensive use of this physical terminology

does suggest, however, that a constraint system that is physically based might be

worth investigating.

Weinzapfel and Handel (1975) and Johnson et al. (1970) describe a constraint
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based approach to automated space planning that is conceptually very similar to

the one proposed here, in which a design problem consists of a set of spaces and a

set of relationships describing constraints on the spaces. Their algorithm repeatedly

iterates through each space, testing all relationships that affect a space to determine

the next location that best meets those relationships. If two spaces that need to be

adjacent to each other have been picked for evaluation, the new position of each space

will be computed algebraically in one computational step, after which the adjacency

constraint will be met. Conflicting relationships are solved using an optimization

technique called Least Mean Squares Fit. A drawback of their approach is that the

order in which the spaces are evaluated affects the final solution. In contrast, in

the physically based space planning approach proposed here 1) all defined design

objectives are computed in one computational step, 2) constraints are not achieved

in that one step but require a number of steps that simulate the passage of time

and move constraints incrementally closer to valid relationships, finally, 3) since the

simulation solves for the affect of all objectives at the same time and there is no

specified order of evaluation, a specific design state with a specific set of design

objectives will always produce the same solution.

2.2.3.1. Objectives vs. constraints

Lawson (1997, p. 92) says that constraints “establish relationships between elements

of the object being designed.” Much of the literature related to space planning uses

the term constraint in a similar fashion. There are two ways to use constraints, as

constraint achievers or as constraint maintainers. Given two elements that currently

are not in a valid constrained relationship, a constraint achiever has the capability

of transforming one or both elements so that they are in a valid relationship. In

contrast, given two elements that currently are in a valid constrained relationship,
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a constraint maintainer makes sure that they remain in that valid relationship. A

constraint maintainer cannot achieve constraints, and a constraint achiever cannot

maintain constraints.

A design objective, as used here, is really a type of constraint, specifically a

constraint achiever. The term objective is used instead of constraint so as not to

be confused with dynamic constraint which is often used in physically based mod-

eling. Dynamic constraints are constraint maintainers. They are described later in

section 3.3.7, and will be mentioned again in section 4.3.2 as the means used to

maintain the distance between spaces that have collided with each other.

A number of design objectives will be defined in section 4.2, all intending to be

constraint achievers in that it is desired that they transform elements from a non-

valid to a valid relationship. Some, such as an adjacency objective, are defined as

what might be called soft constraints, because they might not be able to successfully

create a valid relationship due to conflicting objectives, a state typically described

as over-constrained. Others, such as an alignment objective, are defined as what

might be called hard constraints, because they will almost always be able to create

a valid relationship (except in badly defined or degenerate cases). A soft constraint

that rarely produces a valid relationship would be considered a problem in typical

constraint based systems. However, it may turn out to have its advantages, if they

can be related in some way to the following distinction between constraints and

criteria described by Negroponte.

A criterion is a target, usually defined without a numeric value and described

“as a direction with -est : smallest, widest,” etc. A constraint is a limit, usually

defined with a numeric value and “being a bound delimited by -er : greater than,

cheaper than,” etc. (Negroponte, 1975, p. 173) Negroponte notes that “as soon as

there is more than one criterion, the issue becomes messy because it is necessary
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to relate criteria to each other,” and that one way to define this relationship is to

rephrase the problem statement, “making one of the criteria into a constraint.” The

interesting statement he then makes is that

it is precisely because of this practice of forever making criteria into

constraints that automated space planning yields distorted and unpro-

ductive results. While it facilitates computer programming and while it

conveniently removes context, the continual rephrasing of criteria into

constraints disregards all circumstances where a good solution can be

found fractionally beyond one (usually arbitrarily set) limit (Negroponte,

1975, p. 173).

This statement was made almost thirty years ago, and constraint methods have no

doubt advanced since then, but they are rarely used in practice and it could be argued

that they still produce “distorted and unproductive results.” Design objectives that

are soft constraints still fit Negroponte’s definition of constraint, but the fact that

they are soft and ‘fuzzy’ suggests that they might be better described as criteria.

2.2.4. Optimization methods

Optimization is the process of finding the best solution or solutions to a problem given

a number of requirements. The constructive placement method used by Liggett and

Mitchell (1981b) and described previously uses quadratic assignment to find near

optimal space plans.

Some optimization methods employ an iterative improvement strategy, which

starts with a system in a known configuration, then steps through a number of states

attempting to improve the solution at each step. Genetic algorithms, described pre-

viously, are one such iterative improvement strategy. At each step a single parameter
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of the system is changed by some amount, and then an objective function for the

system is calculated. If the value for the function shows that the new system is

better than the old system, the new one is kept; otherwise the old one is kept. The

algorithm keeps running until the objective function doesn’t improve after a specified

number of times. One problem with this strategy is that it tends to get caught on

local optima rather that continuing until it finds the global optimum.

Simulated annealing is an iterative improvement method that introduces an

annealing schedule of temperatures to solve the problem of getting stuck on local

optima. A high temperature corresponds to a large change in the value of a system

parameter, while a low temperature corresponds to a small change. The annealing

schedule determines the rate at which the temperature is reduced. At each tempera-

ture, changes are continually made until the system has reached a steady state, that

is, the objective function no longer improves. The temperature is reduced in slow

stages until the system freezes. At any step, if the objective function for the new

configuration is better, the new configuration is kept. If it is worse, then a probability

is calculated to determine if the new worse system is kept or the system is returned

to its old state, and a new step is begun. By keeping worse systems every now and

then, it is possible to back out of local optima.

Gero and Kazakov (1998) note that Wilhelm and Ward (1987) have applied

simulated annealing to the space planning problem as a way to solve combinatorial

optimization in quadratic assignment problems.

2.3. Design thinking

A general definition of the term design is “to create, fashion, execute, or construct

according to plan” (Merriam-Webster, 1995), which can be applied to a wide range of
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activities. Similarly, Schön notes that “Herbert Simon and others have suggested that

all occupations engaged in converting actual to preferred situations are concerned

with design. Increasingly there has been a tendency to think of policies, institutions,

and behavior itself, as objects of design” Schön (1983, p. 77). However, design will

be used here in the more limited context of “the creation of a representation of

an object which meets a set of requirements” (Woodbury, 1987, p. 13), where the

representation contains geometric elements that have dimensional properties.

Arnheim (1969), in developing the idea of visual thinking, notes that thinking is

not a process that takes place solely in the mind, but is one that includes all of the

senses. What a person sees and feels has as much to do with the process of thinking

as does what goes on in the brain. Thinking is a sensory experience, not simply a

logical one.

Laseau (1980) takes visual thinking one step further to graphic thinking, where

the act of sketching becomes an integral part of the cognitive process. Graphic

thinking is a communication process with ourselves, in which the drawing and the

act of drawing suggest new ideas. The graphic thinking process contains four parts,

the eye, the brain, the hand, and the sketch, all of which “have the capability to add,

subtract, or modify the information that is being passed through the communication

loop.” (Laseau, 1980, p. 9) Visual artifacts enhance graphic thinking by externalizing

part of the cognitive process, through the creation of objects that have their own

existence. Laseau says externalized graphic thinking has the following advantages

over internalized thought (quoted from Arnheim (Arnheim, 1966, p. 206)):

First, direct sensory involvement with materials provides sensory nour-

ishment - literally ‘food for thought.’ Second, thinking by manipulating

an actual structure permits serendipity - the happy accident, the unex-
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pected discovery. Third, thinking in the direct context of sight, touch,

and motion engenders a sense of immediacy, actuality and action. Finally,

the externalized thought structure provides an object for critical contem-

plation as well as a visible form that can be shared with a colleague ...

(Laseau, 1980, p. 11)

These advantageous characteristics of graphic thinking might be used to evaluate

the usefulness of computer-aided design methodologies that propose to support the

design process.

Schön (1983) introduces the concept of “reflection-in-action” in his research on

how professionals think while they are performing their tasks, which has added a new

dimension to our understanding of the design process. He proposes that when pro-

fessionals are attempting to solve their domain specific problems, they do not simply

‘arrive’ at a solution, but are engaged in a continual and reciprocal interaction with

the elements of the problem. The professional and the problem collaborate with and,

in his words, “continually talk-back” to each other. The interplay between problem

and solver is nicely summed up when he notes that “the unique and uncertain situa-

tion comes to be understood through the attempt to change it, and changed through

the attempt to understand it” (Schön, 1983, p. 132).

In his research Schön closely studied a number of professions, one of which is the

design profession. Specifically, using protocol analysis he recorded the interaction be-

tween a student and an instructor in an architectural design studio. When discussing

design changes with the student the instructor often used “spatial-action language”,

such as “this room might go over here”, which usually could not be understood by

analyzing either the speech or the drawing alone, but could only be understood by

analyzing the speech directly in the context of the drawing. This extensive use of
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spatial-action language suggests a potential benefit from using a highly interactive

approach to design manipulation. “Move this room over here” has a strongly physi-

cal connotation, because that’s what we do when we interact with our environment.

With static drawings we are limited to speaking about a desired change, and imagin-

ing the impact that change might have on related aspects of the design. By using a

physically based manipulative design tool, the designer can act directly on the object

as if it were real, much like moving things around in our physical world, and then

quickly see the consequences of that action.

A common concept in the discussion of design processes is the notion of a design

space or a problem space, which is the collection or space of all possible solutions for a

single problem with a set of specified requirements. If the requirements for a problem

are modified, then the design space is also modified. A single instance or embodiment

of a design solution within a design space is called a design state. Much research

into the design process, and in creating tools to support it, has been done in the

area of design exploration, which is how designers go about moving from one design

state to another within a design space. Design as a process of exploration is readily

apparent in Schön’s protocols. His theory of reflection-in-action is an outgrowth

of this characteristic, which can be seen when he says that designers “are likely

to find new and unexpected meanings in the changes they produce and to redirect

their moves in response to such discoveries. And if they are good designers, they will

reflect-in-action on the situation’s back-talk, shifting stance as they do so from “what

if?” to recognition of implications, from involvement in the unit to consideration of

the total, and from exploration to commitment” (Schön, 1983, p. 103).

Design fixation occurs when a designer gets ‘stuck’ at a specific design state and

resists searching for other, potentially better, solutions. Design fixation is the an-

tithesis of design exploration; it is design lack-of-exploration. Designers sometimes
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get fixated on ideas generated early in the design process and tenaciously “cling

to major design ideas and themes in the face of what at times might seem insur-

mountable odds,” (Rowe, 1987, p. 32) maybe due to the great cost associated with

synthesizing a solution from the vast amount of information related to a design prob-

lem. Other reasons might be that design tools are based on theoretical models that

do not correlate with designer’s cognitive processes (Smithers, 1994), or that they are

too cumbersome to provide real-time interactive exploration at speeds that parallel

the rate at which designers can think of new ideas.

2.3.1. Space planning and design thinking

Akin et al. (1988) created a computer program to create architectural space layouts

called ‘HeGeL’, which stands for ‘Heuristic Generation of Layouts.’ This work could

have been reviewed in the previous section on computer-aided space planning. How-

ever, their purpose was not so much to implement another method of automated

space planning, but to validate a paradigm they developed for how designers work

and possibly think. They developed this paradigm from observations of designers

in action. In their words, “our interest in this research lies in understanding and

modeling the design process as a cognitive skill,” and “we describe a system that

simulates the behavior of designers as recorded in our protocol experiments” (Akin

et al., 1988, p. 414).

The elements of their approach consist of design units (spaces), predicates (de-

sign objectives), and a constructive placement methodology using a generate-and-test

search strategy. Similar to the way designers might approach a manual design prob-

lem, a number of predicates are selected for consideration and are active while all

others are passive, then design units are placed in the potential building area using

these predicates. If the placement is successful a next set of predicates are chosen,
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otherwise the previous predicates are ‘backtracked’ and another set chosen. This

process continues until all design units are successfully placed, or if the problem is

over constrained until all possible search paths have ended in failure.

Their fundamental assertion is that “a designer has a vast amount of knowledge

that is incrementally brought to bear on spatial design problems” (Akin et al., 1988,

p. 430). While this is true, and although they do not propose this method as a way

to automate space planning in practice, it may not be appropriate to model digital

design tools completely on observed practices. The way designers verbally articulate

their thought processes, in this case as an incremental process, might be a result

of the limitation of currently available tools. New digital design tools that remove

the requirement to think incrementally about parts of a problem might reveal new

characteristics of design cognition.

2.3.2. Alexander’s ‘Notes on the Synthesis of Form’

As noted in the introduction, in ‘Notes on the Synthesis of Form,’ Alexander (1964)

describes the space planning process using a wide variety of physical terms such as

‘force,’ ‘viscosity,’ ‘effortless contact,’ ‘frictionless coexistence,’ ‘equilibrium,’ ‘stress,’

‘strength of interaction,’ and ‘physical influence.’ He uses this terminology through-

out much of his discussion about the design process, and is an important reference

for the work presented here because this terminology is so prevalent. But ironically,

the essential idea proposed by Alexander has little or nothing to do with physics or

physicality.

The process Alexander describes is one of a mathematical decomposition of a

list of design variables into sets of related variables. A simplified version of the entire

process is as follows:
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1. List and define individual variables, which defines a potentially large set of

‘misfit’ variables called M .

2. Define the relationships between all the variables, which defines a set of links

called L.

3. Analyze the graph of these links, called G(M, L), to arrive at a decomposition

of the variables into a hierarchy of smaller sets.

4. For each leaf node in G, draw a diagram that represents the essence of the set

of variables contained in that node.

5. For each node containing sub-nodes, combine the smaller diagrams into a larger

diagram.

6. Continue up the graph hierarchy to the root node, combining multiple diagrams

into larger diagrams. The root diagram then contains the basis for a design

that can be further refined.

Alexander uses the idea of forces of design to create diagrams of parts of a

design, with the intent that the diagrams aid the design process by helping to under-

stand how the parts interact with each other. His original intent was to articulate

a mathematical approach to creating these diagrams. But subsequent research and

experience showed him that it was not necessary to use a complicated mathematical

process but that those diagrams could easily be created experientially. This thought

process evolved into the excellent and well known series of books based on The Time-

less Way of Building (Alexander, 1979) and A Pattern Language (Alexander et al.,

1977).

The importance of this work is not so much in the mathematical process de-

scribed, which Alexander admits is flawed, but in the description of the design pro-
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cess itself. Describing the design process in so many physical terms sheds light on

some important characteristics of that process, either on the design process itself,

or on the designer’s mental processes. If that description has any validity, and the

continued extensive referencing of this work despite the questionable nature of the

underlying proposal suggests that it is valid, then perhaps a methodology that is

based on fundamentally similar characteristics should be explored. The approach

presented in this dissertation can then be thought of as revisiting the supposition

that a complicated mathematical process is needed to create diagrams, and seeing if

it is possible to use this ‘complicated’ mathematical means to achieve a useful design

process while hiding the complication in the underlying physical simulation.

2.4. Physically based methods in space planning

The most important reference related to this work is the Ph.D. dissertation of Mikako

Harada (Harada, 1997), part of which is also found in Harada et al. (1995). She also

uses a physically based approach to manipulate architectural floor plans, as well as

volumetric massing and similar floor planning problems such as circuit board layout

and page layout. The motivation for her work was to provide a means to explore

design spaces related to shape grammars. Early research in shape grammars typically

focused on the definition of the shape grammar itself and on the generation of a

usually large number of alternate designs, but was extremely difficult for non-experts

to interact with. She used the physically based paradigm to provide a natural means

with which to interact with floor plans. Physically based modeling typically requires

that a model be transformed from one state to the next in a continuous manner,

and discrete changes to the model, such as changing the topological relationship

of two rooms by moving one room from one side to the other, cannot be done.
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This limits the user from interactively engaging with the design by leaping from one

discrete design state to another. Harada’s major contribution was in defining and

implementing a way to make these kinds of discrete changes to a model. Her method

involves reading the direction of motion of the user’s input device, determining when

that motion would be limited by one or more dynamic constraints, then performing

a local search of the available alternatives around that design state and performing

the discrete transformation of the best local alternative.

Harada lists three areas of future work: “1) applying the technique to more gen-

eral shapes, 2) experimenting with semantics of constraints, in particular with the

emphasis on subjective design criteria, and 3) applying the technique to a broader

class of problem domains.” (Harada, 1997, p. 120) As will be shown in section 9.2,

areas 1 and 3 are also areas of future work related to my research. My research to

a certain extent addresses some of the issues in area 2. As will be discussed later, a

constraint is a characteristic that must be met, while what I call a design objective is

similar to a constraint in that it is a characteristic about a design that a designer de-

sires to be met. A design objective can then be thought of as a fuzzy constraint, and

the ones I describe in effect expand the semantics of constraints (design objectives)

to the architectural domain. The mechanical metaphor used to describe, define, im-

plement, and interact with these design objectives also provide an additional level of

semantics. Harada notes in the discussion of area 2 that “ultimately we want to have

a tool that allows designers to ‘simulate’ their minds or to test, learn and evaluate

their ideas more freely at the level of generating ideas. (emphasis added)” (Harada,

1997, p. 121) This is an extremely interesting statement in light of the cognitive

theory of design that emerged from my work, which is discussed in section 8, “The-

oretical Implications.” The physically based space planning approach started out to

be a potentially interesting means with which to automatically produce space plans,
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but might in fact be a simulation of the cognitive processes active in a designer’s

mind during the act of design.

2.5. Why use physics in digital design?

There are many established theories on design processes, but most, if not all, are

static, in that they are based on an analysis of the process and products of design as

static images. Those that might be dynamic in some way are dynamic in the sense of

movement or change over time. For example, when discussing dynamic visualization

in architecture Koutamanis says:

Dynamic visualization is often presented as the pinnacle of architectural

representation, the fullest form of visual realism. By including movement

of one sort or another in a three-dimensional representation, the designer

adds depth and time to the subject under controlled conditions, i.e., in

the framework of a specific event or state. As a dynamic description

is a sequence of static, normally photorealistic images, the results can

be superior to other representations for visual inspection, analysis and

communication. (emphasis added)

He goes on to discuss dynamic visualization strictly in terms of cinematographic

filming techniques.

Despite this historical focus on the static nature of design products, others are

beginning to recognize the dynamic possibilities. Mitchell and McCullough (1995)

titles the conclusion of a chapter on Animation “Unfreezing Images”, and says “The

real world moves and changes, but designers have worked for centuries with frozen

images - static structures of lines embedded in paper fibers. Now those images can

be animated - brought to life - as, according to legend, was Pygmalion.” (Mitchell
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and McCullough, 1995, p. 312)

But rarely is the term dynamic meant in the context of ‘dynamical’ in the sense

of objects reacting to each other according to established laws. After learning the

techniques of physically based modeling, I thought it would be useful to think about

how those techniques could be applied to general design processes by applying them

to the specific problem of space planning.

The question remains, though. Why use physics in digital design?

Here are three possible reasons:

1. The design process is traditionally physical and tactile.

2. Recent research in cognitive processes suggests that cognitive processes them-

selves, such as the design process, may be dynamical in nature.

3. Previous research supports this approach.

2.5.1. Design is traditionally physical

Traditional design processes are inherently physical in nature. McCullough notes

that one of the key factors in the practicing of a craft is in touching the material

being crafted, and that “. . . any fool can tell you that a craftsperson needs to touch his

or her work. This touch can be indirect . . . but it must be physical and continual, and

it must provide control of whole processes.” (McCullough, 1996, p. x) The classic

example is sculpture, where the artist has an intimate knowledge of the material

being sculpted and a deep understanding of how tools affect that material. But

this physical quality also extends to other non-sculptural arts. Musicians know the

feel of the instrument. Painters know the feel of the canvas, paints, and brushes.

Before computer aided design, architects knew the feel of paper, mylar, and pencil.

Choosing the right pencil hardness; sharpening the pencil to a nice but not too sharp
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point; using T-squares and triangles to draw lines of just the right thickness on the

paper. All these skills promote an intensely physically connection between architects

and their tools, and were skills required to produce quality architectural drawings.

The artist knows how the tool is made, how it works, and how to manipulate it to

achieve desired ends.

This physical connection between the artist and the tool is lacking in today’s

digital design applications. There is no longer that physical connection between the

hand and the tool, and between the tool and the design. The artist has no deep

understanding of why a tool acts like it does, and interfaces are rarely intuitive and

easy to understand. So the artist is forced to expend mental energy focused on the

tool rather than on the design. In Martin Heidegger’s terms (Heidegger, 1962), tradi-

tional tools are ‘ready-at-hand’ unless they are broken, when they become ‘present-

at-hand,’ while digital tools all too often feel ‘present-at-hand’ without providing the

‘ready-at-hand’ experience required to support the creative process. Lawson seems

to put this concept in much simpler terms when he says “ we probably work best

when we think least about our technique” (Lawson, 1997, p. 11).

Since traditional design processes are physical in nature, the basis for that nature

is physics, and since today’s digital design tools lack a physical quality, it might be

useful to incorporate a semblance of physics into their implementation. McCullough

gives us hope that computers can eventually be used to restore a sense of touch

to our practice when he writes “. . . our nascent digital practices seem more akin to

traditional handicrafts, where a master continuously coaxes a material. This new

work is increasingly continuous, visual, and productive of singular form; yet it has

no material.” (emphasis added) (McCullough, 1996)
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2.5.2. Design cognition may be dynamical

Recent research in cognitive science suggests that the cognitive processes of the brain

are better modeled as dynamical systems, rather than as digital computers. This new

view is called the dynamical hypothesis, and extends the more traditional view, which

is called the computational hypothesis (van Gelder, 1998).

Whereas the computational hypothesis models cognition as stored bits of infor-

mation with algorithmic processes that modify their values and result in actions in

the environment, in the dynamical hypothesis cognitive elements are directly influ-

enced by each other, much as the Sun affects the motion of the Earth, which in turn

affects the motion of the Sun.

Van Gelder illustrates the difference between the two concepts by describing how

each would operate on a governor for a steam engine, which attempts to maintain a

constant output for the steam engine; if the engine slows down the governor opens

the throttle to increase its speed, and vice versa. He summarizes the differences

between a computational governor and a dynamical governor as follows:

Instead of cycles of inputs, symbolic representations, rule-governed, atem-

poral computations, and outputs, we have the continual mutual influenc-

ing of two quantities. This influencing is very subtle (though mathemat-

ically describable): the state of one quantity is continually determining

how the other is accelerating and vice versa. This relationship is very

unlike the relationship between a digital symbol and its referent. (van

Gelder, 1999, p. 5)

I discuss the contrasts between the dynamical and computational hypotheses more

fully in section 8.3, as one argument for dynamical design imagery, the new cognitive

theory of design that emerged as a result of this work.
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See also Port and van Gelder (1995), Dietrich and Markman (2000), and Kelso

(1995) for recent ideas on the emerging role of dynamics in cognitive science.

If the cognitive processes of the brain can be shown to be part of a dynamical

system, then a specific cognitive process is also likely to be a part of a dynamical

system. The act of design by a human is a specific cognitive process, which can

then be analyzed in relation to the dynamic hypothesis. If the dynamical hypothesis

proves to be valid, then a greater understanding of the design process as a dynamic

system, and the application of that understanding to the design of tools that aid in

the design process should yield better design tools.

2.5.3. Previous attempts support applying physics to design processes

As noted earlier in this section, several keys pieces of research either support or are

directly related to the application of physics to design processes. Alexander describes

the design process using many physical terms. Qin and others use physically based

methods for direct manipulation of geometric models, specifically free-form surfaces.

Most important, Harada uses physically based methods for direct manipulation of

space plans to support design exploration of shape grammars.

These three arguments suggest that designers need to begin to think of their

designs in dynamic, fluid, life like terms. One way to enable designs to come alive is

to make them respond to the objectives of the designer the way real objects respond

to forces acting upon them in the real environment. Just as objects respond to

physical forces, so can design objects respond to design forces. Physically based

modeling is the means for simulating real object behavior, so it may be useful to

employ physically based techniques in the design process.

Before presenting how physically based techniques can be applied as mechanical



39

metaphors of the elements in an architectural space plan, we need to review the

basics of those techniques.



40

3. REVIEW OF PHYSICALLY BASED MODELING

This section provides a background on physically based modeling principles, since

they form one of the central themes of this study and have rarely been applied to

space planning problems. A basic understanding of these principles is necessary to

understand how they are applied later to the space planning problem.

3.1. Definitions

The following definitions of terms in physically based modeling will be useful in the

ensuing discussion:

3.1.1. Newton’s first law of motion

Newton’s first law of motion is “if there is no net force acting on a body, it will

continue in its state of rest, or will continue moving along a straight line with uniform

velocity.” (Williams et al., 1976)

3.1.2. Newton’s second law of motion

Newton’s second law of motion is “the acceleration of a body is directly proportional

to the net force exerted on the body, is inversely proportional to the mass of the

body, and is in the same direction as the force.” (Williams et al., 1976)

3.1.3. Newton’s third law of motion

Newton’s third law of motion is “whenever one body exerts a force on another, the

second body exerts on the first a force of equal magnitude in the opposite direction.”

(Williams et al., 1976)
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3.1.4. Damp

Damp is a transitive verb meaning “to check the vibration or oscillation of (as a

spring or voltage).” (Merriam-Webster, 1995)

3.1.5. Dampen

Dampen is a verb meaning “to check or diminish the activity or vigor of.” It also is an

intransitive verb meaning “to become deadened or depressed.” (Merriam-Webster,

1995)

3.1.6. Dashpot

A Dashpot is “a device for cushioning or damping a movement (as of a mechanical

part) to avoid shock.” (Merriam-Webster, 1995)

3.1.7. Viscosity

Viscosity is “the property of resistance to flow in a fluid or semifluid.” (Merriam-

Webster, 1995)

3.1.8. Point

A point specifies a position by defining three scalar values each representing a distance

from the origin along a different coordinate axis (for example, (1, -2, 3) along the (x,

y, z) axes). A point will be represented in a formula by a term with a line over it,

such as p.
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3.1.9. Vector

A vector specifies a direction and a distance. A vector is uniquely defined by the

difference between two points. Thus a single point and (implicitly) the origin define

the vector whose direction is the direction from the origin to the point, and whose

length is the distance from the origin to the point. A vector will be represented in a

formula by a bold term, such as v.

3.1.10. Kinetic energy

Kinetic energy is the energy of a mass associated with its motion.

3.1.11. Potential energy

Potential energy is the energy of a mass relative to its displacement from another

position.

3.1.12. Equilibrium

Equilibrium is “the state of a body in which there are no unbalanced forces or torques

acting on it.” (Williams et al., 1976)

3.2. Example: Thrown ball

A classic example of a physical system that can be simulated is that of a thrown

ball with fixed mass. At the point in time when the ball leaves the thrower’s hand it

has a position, and a velocity (defined as the rate of change of position in a specific

direction). If this ball were to be thrown in the absence of gravity or air friction, as

in space, it would continue moving with the same velocity until it came under the

influence of new forces. If it were thrown on earth, it comes under the influence of
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a number of forces, such as the force of gravity or the force of the air’s drag on the

surface of the ball. In a real system, each of these forces acts continuously on the ball;

that is, they act at all instants in time. The task of a physically based simulation is

to approximate the actual trajectory of the ball while accounting for all known forces

on it. This simulation is accomplished through the process of numerical integration,

a process of computing integrals at discrete rather than continuous points in time.

The key point to understand in numerical integration is that it provides only an

estimation of the integral. A primary focus in physically based simulation is to

develop and use more accurate numerical integration methods.

Figure 3-1 shows a ball with mass m, position p(t), and velocity v(t) at time

t. The forces acting on the ball include gravity fg, drag fd(t), and wind fw(t). The

solid curve represents the actual path the ball may take under the influence of these

forces. The dotted curve represents the estimated path the ball may take as a result

of using numerical integration in a simulation.

3.3. Elements of a physical system

Within the context of this work, a physical system consists of a set of matter-based

movable objects, a set of forces that may act upon those objects, and a means of simu-

lating the system in a computational environment. Newtonian physics will suffice, as

it approximates the everyday experience of humans; black holes, string theory, quan-

tum mechanics, and relativity will be ignored. Additional concepts include collision

detection (determining when two objects intersect each other), dynamic constraints

(maintaining specified constraints in a dynamic system, such as a roller coaster con-

strained to roll on its tracks), and user interaction (how users can interact with the

elements of the system).
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Fig. 3-1. A ball thrown through the air

3.3.1. Physical object

A physical object is an object that has matter and that can be acted upon to change

its position. A state specifying its position and velocity can be defined for it at a

single point in time.

3.3.1.1. Mass

A physical object has a mass (m), a measure of the matter existing in the object.

A mass typically consists of a positive scalar value in some predefined units (such as

1.2 grams).
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3.3.1.2. Position

A physical object has a position (p), a measure of its location within a specified

coordinate system. A typical coordinate system is the Cartesian coordinate system,

where a position is represented by a point: three scalar values each representing a

value along a different orthonormal coordinate axis (for example, (1, -2, 3) along the

(x, y, z) axes).

3.3.1.3. Velocity

A physical object has a velocity (v), or speed in a specific direction in a specific

coordinate system, which is a measure of its rate of change of position. In the

Cartesian Coordinate system, velocity is represented by a vector, three scalar values

each representing a speed along a different coordinate axis (for example, (1, -2, 3)

along the (x, y, z) axes). If the velocity is thought of as a point, the direction

component of the velocity is the direction from the origin to its position, while the

speed component is the length of the vector from the origin to its position.

3.3.1.4. State

The state of a physical object is the set of values that fully describe its current

dynamic condition. For an object without rotational inertia, this is its position and

velocity. The state of an object is changed by the application of external forces. The

state of such an object with fixed mass at some time t is captured by its position

p(t) and its velocity v(t).
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3.3.2. Basic motion

The velocity of an object at a specific point in time is a measure of how its position

is changing at that time,

v(t) = ṗ(t).

For example, given a coordinate system measured in feet and time measured in

seconds, an object at time t0 = 0 might be at position [1, 2, 3], with a velocity of

[1, 1, 0] feet per second. Assuming no forces are acting on the object, the position of

the object at some later time is

p(t0 + ∆t) = p(t0) + ∆tv(t0).

If ∆t = 2 then

p(t0 + 2) = [1, 2, 3] + 2[1, 1, 0] = [3, 4, 3].

The acceleration of an object at a specific point in time is a measure of how its

velocity is changing at a specific time,

a(t) = v̇(t) = p̈(t).

Loosely using the same example as above, but in this case with some force producing

an acceleration of [0, 1, 0] feet per second squared, the velocity of the object at some

later time is

v(t0 + ∆t) = v(t0) + ∆ta(t0).

If ∆t = 2 as before then

v(t0 + 2) = [1, 1, 0] + 2[0, 1, 0] = [1, 3, 0].

The problem with the examples is that they only work for uniform velocities
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or accelerations. In realistic systems with varying accelerations, and velocities that

continuously change, the above calculations quickly produce errors in succeeding

states and ultimately unrealistic motion. Very small time steps can improve the

accuracy somewhat, but result in greatly increased computation time. Despite these

problems, the examples do give a basic sense of the relationships between position,

velocity, and acceleration.

3.3.3. Force and acceleration

A force acts upon physical objects in the classical method of Newtonian dynamics.

The basic equation of force is Newton’s Second Law of Motion, which can be written

f = ma. Acceleration is a measure of the rate of change of velocity of an object in a

specific coordinate system. The acceleration of a physical object is proportional to

the force that is applied to it. The constant of proportionality is known as the mass

of the object.

Forces are categorized here based on the number of objects they act upon in a

simulation and the manner of their application. This categorization is not absolute

or even physically correct (that is, a physicist would probably object to it), but

is defined for a class of physical systems used in computer animation. Forces are

specified in this section with the term fi, where i designates the type of force being

described.

3.3.3.1. Unary forces

Unary forces act on a single object independent of other objects. Technically speak-

ing, unary forces do not exist in classical physics. They are used as a means to

simplify parts of a physical simulation.
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Gravity. Gravity is a force resulting from the interaction between two objects

dependent on their masses and the distance between them. Newton’s law of universal

gravitation can be written

fgravity = G
m1m2

d2
,

where m1 and m1 are the masses of the two objects, d is the distance between their

centers of mass, and G is the universal gravitational constant.

In some physical systems, such as objects on the surface of the Earth, the force

of gravity does not change significantly throughout the range of possible locations

in the system, so it can be treated as a constant force applied to all objects in the

system. One mass (the Earth) is so large compared to the other that its acceleration

can be ignored.

The force due to gravity on an object can be computed using

fgravity = mg,

where m is the mass of the object, and g is the gravitational constant.

Viscous drag. Viscous Drag is actually a force on a solid object resulting from

its motion through a ‘fluid’ medium (a liquid or a gas). It has the effect of slowing

down the object, and is usually considered to be directly proportional to the velocity

of the object. The object and the fluid interact with each other and apply forces to

each other.

The force due to viscous drag on an object can be computed using

fdrag = −kdragv

where kdrag is the drag coefficient, and v is the velocity of the object.
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3.3.3.2. n-ary forces

n-ary forces are applied to a fixed set of objects. Typical are forces that are applied

between two objects.

Spring. A spring connects two objects and applies a force to each proportional

to the distance between them. A spring has a rest length, at which it applies no

forces. If the spring is longer than the rest length, it applies forces pulling the

objects together, and if it is shorter than the rest length, it applies forces pushing

them apart.

The forces due to a spring on two objects at positions a and b can be computed

using

fa
spring = −ks(|∆x| − r)

∆x

|∆x|

f b
spring = −fa

spring

where ks is the spring coefficient, ∆x is the direction vector between the two objects

(∆x = a − b), |∆x| is the distance between them, and r is the rest length of the

spring.

Damper. A damper applies a force to two objects proportional to the difference

in their relative velocities. It works much like a screen door closer, trying to keep

the door from slamming shut. If the objects are moving very fast toward or away

from each other, the damper applies a large force to each trying to slow them down

(relative to each other). If they are not moving at all towards or away from each

other, the damper applies no forces. The speed of the two objects as a system has

no effect on the damping force, nor does motion tangential to the direction between

the objects.

The force due to a damper on two objects at positions a and b, with velocities



50

va and vb, respectively, can be computed using

fa
damping = −kd(∆v · ∆x

|∆x|
)

∆x

|∆x|

f b
damping = −fa

damping,

where · is the dot product between two vectors, ∆x is defined as above, kd is the

damping coefficient, and ∆v is the difference between the velocities of the objects

(∆v = va − vb). The middle term ((∆v · ∆x
|∆x|)) is the relative velocity between the

objects; that is, it is the component of ∆v parallel to the vector between the two

objects, ignoring the tangential component.

3.3.4. Example: Mass-spring-damper system

Figure 3-2 puts many of the elements just discussed together. It shows a simple

mass-spring-damper system consisting of two masses m0 and m1 at positions p0 and

p1, connected by a spring with spring constant k01 and a dashpot with damping

constant d01, and predefined with a desired rest length r01. The current length

l01 of the spring is the magnitude of the vector between the positions p0 and p1

at the current time. The spring exerts forces with magnitude proportional (with

proportionality constant k01) to l01 − r01. The direction of these forces will be along

the line connecting the point masses. As the masses move farther from each other,

the spring forces try to move them closer, and as they move closer these forces try to

separate them. The dashpot, attached in parallel with the spring, damps the motion

of the masses by producing forces proportional (with proportionality constant d01)

to their relative velocity towards or away from each other, thus reducing the kinetic

energy introduced by the spring forces. The net result of the spring and damper

forces is shown as f0 and f1 in the figure (note thatf0 = −f1).
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d0  1

f0 f1p0

m0

p1

m1

r0  1

l0  1

Fig. 3-2. A mass-spring-damper system

3.3.5. Numerical simulation

Given a physical system containing a set of physical objects and their states, and

a set of forces, numerical integration is used to compute the next system state.

A numerical simulation is a means of computationally estimating how the state of

a physical system changes; that is, given a state at time t, numerical simulation

computes the next state at time t + ∆t, where ∆t is the change in time or the time

step.

As mentioned before, a real physical system changes continuously in time, while

numerical simulation estimates the state at discrete points in time. The accuracy

of the simulation, and thus the quality of it, depends on the design of the numer-

ical simulation. The challenge in designing a numerical simulation is to find the

right balance of time step and numerical integration method that produces a quality

simulation in a reasonable amount of computational time.

3.3.5.1. Time step

A time step is a discrete time interval over which the next state will be computed.

For example, given a time scale measured in seconds, the time step might be set

to 1/10 seconds. In general, the smaller the time step, the more computational
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resources required to compute a specified time range, and the better the accuracy of

the simulation.

3.3.5.2. Numerical integration

Each state of a dynamic simulation is computed using numerical integration, which

in the context of physically based simulation is a process of estimating a future state

based on a set of current conditions. Two interrelated concerns arise when making

estimates using numerical integration, accuracy and stability. Both depend on the

step size and the quality of the numerical integration method, and are greatly affected

by the dynamics of the system being simulated.

There are two basic types of integration methods discussed here, non-adaptive

and adaptive. In both approaches, a step size is specified at the beginning of the sim-

ulation. In non-adaptive methods, the step size does not vary during the simulation,

whereas in adaptive methods, it can vary throughout the simulation as it attempts

to adapt to estimates of error in the simulation. Much of the following discussion

can be found in Witkin and Baraff (1997).

Non-adaptive methods. With non-adaptive integration methods, the state at

the end of a specified uniform time step is computed. That computation will always

contain some error, but the time step does not change based on the magnitude of that

error. In certain physical systems this error can lead to noticeably unrealistic phys-

ical behavior. The Euler and Runge-Kutta Methods are examples of non-adaptive

integration methods.

Euler’s method. The simplest numerical integration method and one that helps

in understanding the other methods is Euler’s method. It uses the method described

in section 3.3.2 by taking a step in the direction of the current velocity. Euler’s
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Method is

x(t + h) = x(t) + hẋ(t),

where ∆t is now replaced by h, and x(t) is the state vector at time (t) containing posi-

tion and velocity for every object in the system, x(t) = [p0,v0, p1,v1, . . . , pn−1,vn−1]

where n is the number of objects in the system. The derivative of the state vector

is ẋ(t) = [v0, a0, v1, a1, . . . , vn−1, an−1]. Since the accelerations are all functions of

state, if we know the dynamics of a system we can always find a function f(x, t) such

that ẋ = f(x, t).

Euler’s method is very simple, and very quick to solve for a single time step, but

it produces large errors very quickly and is highly unstable, as shown in figure 3-3.

3-3a shows what is supposed to be circular motion, but no matter how small the

time step is set, the estimated path will always spiral outward. 3-3b shows what is

supposed to be a converging path, but if the time step is too large, the estimated

path will diverge.

a b

Fig. 3-3. Problems with Euler Integration [From Witkin and Baraff (1997, p. B4)]
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Taylor series. Given a state x at time t0 and a time step h, we can express the

new state x(t0 + h) as the sum of the initial state and an infinite number of its

derivatives. This is done using the Taylor series,

x(t0 + h) = x(t0) + hẋ(t0) +
h2

2!
ẍ(t0) +

h3

3!
xiii(t0) + . . . +

hn

n!

∂nx

∂tn
+ . . .

If we know x(t0) and all of its derivatives then we can use the Taylor series to

compute x(t0 +h) exactly, as long as there are no singularities between t0 and t0 +h

(a singularity is a point at which one or more derivatives of x are undefined or

unbounded, which, for example, can occur at a collision).

Euler’s Method is simply a truncation of the Taylor series; it throws away every-

thing higher than the first order derivative ẋ(t0), which we know because it is part of

the state or can be calculated using Newton’s second law (x(t) = (p(t),v(t)), ẋ(t) =

(ṗ(t), v̇(t)) = (v(t), a(t)) = (v(t), f
m

(t))). The measurement of the resulting error is

the dominate term in those that are thrown away, which is Oh2 (read as Order h2)

when h is smaller than one. Since we know none of the higher order derivatives, in

order to get more accuracy in the computation we must find a method for estimating

some of the higher order terms. One such class of methods is called Runge-Kutta,

which takes a weighted average of a number of estimates of future states.

Midpoint method (2nd order Runge-Kutta method). The midpoint method

uses the Taylor series out to the second-order term (h2

2!
ẍ(t0)), which it approximates,

and has error O(h3) because it throws away the rest. It is shown graphically in

figure 3-4. pt is the position of the object at the beginning of the time step. The

curve that ends at point pt+h is the actual path of an object during a single time

step. Point p′t+h is the result of taking an Euler step; that is, moving from pt in the

direction of its velocity for one time step.

As noted earlier, the function f(x(t0), t0) computes the derivative of the state
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vector, ẋ(t0). The midpoint method takes an Euler step,

∆x = hf(x, t),

evaluates f at the midpoint of this step to get estimates of velocity and acceleration

halfway through the time step,

fmid = f(x +
∆x

2
, t +

h

2
),

and then takes a step in the direction of that velocity one time step,

x(t + h) = x(t) + hfmid,

to reach p′′t+h. Putting this all together yields

x(t + h) = x(t) + h(f(x(t) +
h

2
f(x(t), t), t +

h

2
)), (3.1)

or assuming that f does not directly depend on the time,

x(t + h) = x(t) + h(f(x(t) +
h

2
f(x(t)))).

See Witkin and Baraff (1997) for the derivation.

For identical time steps, the computational cost of the midpoint method is

roughly twice that of Euler’s method, but the midpoint method produces better

results because it is more accurate. f(x) dominates the computation time and since

the midpoint method must compute f(x) twice and Euler’s method once, taking a

midpoint step with a time step of h is similar in computational cost to taking two

Euler steps with a time step of h
2
. However, the midpoint method, with error O(h3),

produces less error than Euler’s method, with error O(h2), so produces better results.

In practice, most dynamics simulations can be run faster using the midpoint method

than using Euler’s method while maintaining the same level of accuracy.
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pt+h
pt

pt+h′′

pt+h′

fmid

∆x

Fig. 3-4. Midpoint method [From Witkin and Baraff (1997, p. B6)]

In addition, Euler’s method cannot be used to simulate certain kinds of motion

no matter how small the time step. For example, when simulating circular motion,

refer back to figure 3-3a, Euler’s method will always result in spiral motion but the

midpoint method will produce circular motion.

4th order Runge-Kutta method. The midpoint method can also be called a 2nd

order Runge-Kutta method, since it estimates the second order term in the Taylor

series. The 4th order Runge-Kutta method, also called RK4, estimates the second

through the fourth terms in the Taylor series, evaluates f(x) four times, and has

error O(h5). The following set of equations, similar in form to equation 3.1, is used
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to compute x(t0 + h) using the RK4 method:

k1 = hf(x0, t0)

k2 = hf(x0 +
k1

2
, t0 +

h

2
)

k3 = hf(x0 +
k2

2
, t0 +

h

2
)

k4 = hf(x0 + k3, t0 + h)

x(t0 + h) = x0 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4.

As with the midpoint method, taking a RK4 step with a time step of h is similar

to taking two midpoint steps with a time step of h
2
. However, the RK4 method, with

error O(h5), produces less error than the midpoint method, with error O(h3), so

produces better results, while remaining faster.

Adaptive methods. Adaptive integration methods adjust their result based on

some measurement of the error produced during a time step. An acceptable error

range is specified. If the error during a time step exceeds the higher threshold the

time step is reduced, the state is recomputed, and the error measured again. This

process continues until the error is within the acceptable range and the resulting

time step is used for the next step. If the error during a time step is below the

lower range the time step can be increased for the next step. Two common adaptive

integration methods are Runge-Kutta-Felberg and Runge-Kutta-Cash-Karp. Both

of these are fifth order integration methods where the fifth-order term is used as

the measurement of the error against which the error threshold is compared. This

measurement of error is not to be confused with the order or error, which for these

methods is O(h6). See Press et al. (1992) for a more complete explanation.

It appears that much more computation is required with adaptive methods, but
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Table 3-1. Comparison of truncated Taylor series used in integration methods

Taylor series

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
xiii(t0) + . . . + hn

n!
∂nx
∂tn

+ . . .

Truncated Taylor series on which Euler’s Method is based:

x(t0 + h) = x(t0) + hẋ(t0) + O(h2)

Truncated Taylor series on which the Midpoint Method is based:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + O(h3)

Truncated Taylor series on which the Runge-Kutta Method is based:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
xiii(t0) + h4

4!
xiv(t0) + O(h5)

because the result is more accurate, and because the extra computation only occurs

during error prone states, usually when accelerations are high, a larger basic time

step can be used resulting in less overall computational expense. However, the main

advantage is that the simulation can be run with precise error control at every time

step and so is the preferred method if precision is of concern.

3.3.5.3. Accuracy and Stability

As noted in section 3.3.5.2, two problems that arise when using numerical integration

are inaccuracy and instability. The accuracy and stability of a numerical method

depends on how small the time step is, and the highest order derivative this is

estimated.

The accuracy of each method has already been discussed, and is the order of

error (O(hn) where n is the lowest order derivative discarded from the Taylor series).

Table 3-1 shows again the Taylor series and the truncated versions of the three

methods previously discussed. Comparing each method shows the additional term(s)

that must be estimated for each method, and what part of the Taylor series is

discarded, which provides the measurement of the order of error.
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Physical simulations are notorious for blowing up when instability occurs. The

simulation appears to behave normally, then all of a sudden becomes erratic until the

elements explode outward because their positions and velocities are vastly outside

their ‘normal’ or stable range.

The notion of stability will be discussed as it relates to the mass-spring-damper

system in figure 3-5, which shows an object with mass (mass coefficient) m connected

to a wall with infinite mass by a parallel spring and damper. The spring has spring

coefficient k, rest length r, and current length l due to an applied external force

fext, and the damper has damping coefficient d. The object can only move along the

x-axis.

Our task is to choose an appropriate time step h so that the numerical simulation

remains stable. If h exceeds a certain threshold, the system will become unstable

and blow up.

The stability of this system is a function of the mass, spring, and damper coeffi-

cients, and the key to understanding this is to understand the time constant T of the

system, which is a measure of how long it will take motion to die out when all forces

d

fext

x

m

r

l

k

Fig. 3-5. Stability example: a 2nd order linear system
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are removed. Depending on the integration method, h needs to be some fraction of

the minimum time constant (Tmin) of the entire system. For example, using Euler’s

Method, h must be less than 2Tmin.

There are two kinds of motion that the object can have in this system, oscillatory

and damped, and typically both. In oscillatory motion the object continually crosses

back and forth over its resting position. In damped motion the object continually

approaches its resting position without crossing over it. Table 3-2 attempts to sim-

plify understanding the relationship between these three coefficients by essentially

removing one of them from the system and taking the other two to extremes.

3.3.6. Collision detection and response

The discussion above describes the forces acting on an object and how those forces

affect the object’s motion, but it does not describe how objects interact with each

other when they collide or attempt to occupy the same space at the same time.

There are two collision tasks that need to be accomplished in a physical simulation,

detecting when a collision has occurred between two objects, and then responding

to the collision when it occurs (Moore and Wilhelms, 1988).

pt-h

n
pt

pc p

pt+h

nvc vc′

a b

Fig. 3-6. Collision detection and response
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Table 3-2. Stability depends on mass, spring, and damper constants
Tiny Mass a: Strong Damper - Weak Spring b: Weak Damper - Strong Spring
damped motion
l=/ r

small spring forces large spring forces
large damping forces small damping forces
low velocities large velocities
long time to rest short time to rest

large time step small time step

Dampless c: Large Mass - Weak Spring d: Small Mass - Strong Spring
oscillatory motion
l=/ r

small spring forces large spring forces
large mass small mass
low velocities large velocities
low frequencies high frequencies

large time step small time step

Springless e: Large Mass - Weak Damper f: Small Mass - Strong Damper
damped motion
v=/ 0

large mass small mass
small damping forces large damping forces
long time to rest short time to rest

large time step small time step

......

......

......

x

t

x

t

x

t

x

t

x

t

x

t

Figure 3-6 shows a simplified method for detecting when a point object has

collided with an arbitrary plane, and how to respond to that collision. In 3-6a,

pt−h, pt, and pt+h are the object’s positions at three points in time if there were no

collision with the plane, which has normal n pointing toward the non-collision side

of the plane. The object crosses the plane between times t and t + h at position

pc. We determine a collision has occurred if (pt+h − p) · n is negative, where p is an
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arbitrary point on the plane. We can then determine the fraction s along the line pt

and pt+h where pc occurs using

s = − d + n · pt

n · (pt+h − pt)
,

where d is found using the plane equation for n = [a, b, c]

ax + by + cz + d = 0.

The time that the collision occurred can then be approximated as t + sh. This is

only an approximation, because it assumes that there is uniform motion during the

time step, when usually the velocity of the object is changing throughout the time

step.

At this point in the simulation, the time is t + h. In order to respond to

the collision we can back up the time to t, and compute the system’s state at the

approximate time the collision occurred t + sh. During a collision, what happens to

an object’s velocity is that it instantaneously (for our purposes) changes direction

and magnitude. To respond to the collision then, we need to determine a new velocity

vector. Figure 3-6b shows in two dimensions what happens to the velocity before

and after the collision. vc is the velocity of the object prior to the collision, while v′
c

is its velocity after the collision, which can be found using

v′
c = vc − 2(vc · n)n,

(Whited, 1980). This equation assumes that there is no loss of motion during the

collision. In a physical collision, however, some of the energy of motion is converted

to other forms of energy, such as heat and noise. This loss of energy can be simulated

by introducing an energy attenuation term, α, called the coefficient of restitution. α

can range between 0 for total energy loss, to 1 for no energy loss. The equation then
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becomes

v′
c = vc − (1 + α)(vc · n)n.

This discussion applies only to point objects colliding with immovable planes,

and does not account for collisions between possibly rotating rigid bodies where

the collision itself can introduce rotations within the colliding bodies. See Witkin

and Baraff (1997) for an implementation of determining and responding to collisions

between rigid bodies.

3.3.7. Dynamic constraints

Constraining the movement of objects in predetermined ways, such as simulating a

roller coaster constrained to its track, introduces problems into a physically based

simulation. One way to simulate this is to attach the simulated roller coaster to the

track via a spring. As the roller coaster moves away from the track, the spring exerts

a force on the roller coaster to move it back toward the track. One problem with

this approach is that it leads to very loose or ‘goopy’ behavior, probably leading to

an even sicker stomach. The stiffness of the spring can be increased, but this very

soon results in a stiff system. As the stiffness of the system is increased, the time

step needed to produce a satisfactory estimate of the next state must be decreased,

and the computation time is considerably increased.

Dynamic constraints are often used in physically based simulations to meet this

need. Instead of using springs, whenever a force would break a specified constraint,

an additional constraint force is added to the system so that it does not. Con-

strained dynamics modifies the normal numerical simulation process by computing

these constraint forces after normal forces are determined but before the next state is

computed, as follows: 1) given a state, 2) compute the forces on the elements of the
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system, 3) compute any additional forces necessary to maintain specified constraints,

4) then compute the next state. Figure 3-7a shows what is supposed to happen in

the case of a physical bead on a circular wire. At time t, the bead is at position pt,

its velocity vt will be tangent to the circle, and its acceleration at will be such that

at time t + 1 the bead’s position will be at pt+1 and its velocity vt+1 will still be

tangent to the circle. In an unconstrained numerical simulation, such as one using

springs in figure 3-7b, it is possible for a force ft at time t to result in the bead’s

position at time t + 1 to be off the wire. Using dynamic constraints, an additional

constraint force fc is added to ft to ensure that the bead stays on the wire, as shown

in figure 3-7c.

See Witkin and Kass (1988) and Barzel and Barr (1988) for discussion on how

dynamic constraints can be used in computer animation, and Witkin and Baraff

(1997) for details on how to implement the mathematics needed to compute con-

straint forces.

pt ptptvt ftpt+h

ft

at

pt+h

a cb

pt+h

vt+h

at+h

fc

Fig. 3-7. Example of a dynamic constraint
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3.3.8. User interaction

Interaction with the elements of a physically based model needs some special han-

dling. In a modeling environment that is not physically based, such as traditional

CAD, if the user wants to change the position of an object, they simply move the

object. In a physically based simulation, moving an object using an ‘outside agent’

results in discontinuous, very large accelerations, which can introduce instabilities

into the system. ((Witkin et al., 1990; Witkin and Welch, 1990), and (Witkin and

Baraff, 1997, p. C9))

3.3.8.1. Via force applicator

One method of interacting with the elements in a physically based modeling system

is to treat the user interactor as a force object in itself. Typically this is done with a

spring with a zero rest length. When a user clicks on an object to move it, a spring is

introduced into the simulation, with a rest length of zero, and both endpoints on the

object to be moved. When the user moves the cursor, one end of the spring moves

while the other remains connected to the object. The spring now introduces a valid

force into the system that seeks to move the object toward the user’s cursor position.

3.3.8.2. Via infinite mass

Another method of interaction is to treat the object to be moved as if it temporarily

has infinite mass. Any forces that get applied to the object then result in an accel-

eration of zero, since by Newton’s Second Law acceleration is given by a = f
m

. Since

this is the only place where the mass term is used, instead of storing the mass with

each object, it is convenient to store its inverse, so the equation becomes a = m−1f .

When a user clicks on an object to move it, the object’s mass is temporarily set to
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infinity by setting its mass inverse to zero. The object is moved around in the system

in a seemingly traditional manner, but any interactions the object has with other

objects are in terms of valid forces and accelerations.

3.3.9. Kinetic energy and dynamic equilibrium

The kinetic energy KE of a body is its energy of motion, and is dependent on its

velocity v and mass m,

KE =
1

2
mv2.

For n bodies in a system, the total kinetic energy is

KEtotal =
1

2

n∑
i=1

mi|vi|2.

A system of springs, masses, and dampers is said to be in dynamic equilibrium

when it has zero total kinetic energy. However, a system approaching zero total ki-

netic energy does so asymptotically. For practical purposes in a numerical simulation

we define a threshold value KEmin, such that if KEtotal < KEmin, it is considered

to be in dynamic equilibrium.

3.4. Summary

Given the elements and concepts discussed in this section, the final step is to put them

all together into an algorithm that performs the actual dynamics simulation. After

setting up the initial conditions in the physical system being simulated, the basic

algorithm continually loops through a process of computing any auxiliary variables

that can be computed given a state and a time (for example, display characteristics

such as a color based on velocity), displaying a single state, computing the forces on

the objects, and using those forces in an integration method to estimate the next
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Establish an initial state consisting:
A set of objects with mass, position, and velocity
A set of force types to be applied to the objects
An integration method
An initial time, t = 0
A time step, h

Repeat:
Compute any auxiliary variables
Display the objects
Compute object accelerations from the state, time, and forces
Compute any forces needed to maintain dynamic constraints
Integrate to get the next state at time t + h
Set t = t + h

Until t > maximum time

Fig. 3-8. Basic numeric simulation algorithm

state. This process is outlined in figure 3-8.

Now that the basic elements and methods used in a physically based simulation

have been presented, I can describe how they can be applied to design problems in

general and space planning problems in particular.
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4. A PHYSICALLY BASED APPROACH TO SPACE PLANNING

Physically based modeling will be used as the basis for modeling the dynamical

behavior of cognitive design objects. A design element is an individual, configurable

part of a design problem, and is represented as a mass with position and velocity. A

design state is a specific configuration of a number of design elements at a discrete

point in time. A design objective is an intended configuration of one or more design

elements. According to Newton’s second law of motion and assuming a constant

mass, the only mechanism that can change an object’s velocity, and consequently

its position, is a force applied to it. Given this law and a mass representation of a

design element, a design objective must be and is represented as a force applicator.

These representations are posited to apply to general design domains. In this

chapter they will be applied to the specific design domain of architectural space

planning, and with slight modification of nomenclature to general floor planning

problems. A prototype computer application that provides a user interface for these

concepts is described in the next section. Although the behavior of these elements in

action can be imagined, it is only through experiencing them in a real-time setting

that the benefits of the proposed approach emerge.

Figures 4-1 and 4-2 give some idea of where the concepts described in this

section will take us, and show the interesting relationship between the space planning

problem as seen through the eyes of the designer and the same problem as seen

through the ‘eyes’ of the dynamical system. Figure 4-1 shows the interior walls of

each space in a sample result of a simple space plan, while figure 4-2 shows the

same problem at the same solution state with masses representing space centers and

walls, and lines between these masses representing a design objective modeled as a

force applicator. This section defines elements in one system, the dynamical system
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in figure 4-2, in such a way that they support the creation of elements in another

system, the mental and graphical design system in figure 4-1.

Fig. 4-1. Designer’s problem Fig. 4-2. Dynamics problem

4.1. Design elements

Physically based space planning design elements are defined to represent the spaces

and walls of a building in such a way that they can be used in a physically based

simulation. A configuration of design elements defines the state of a building design

at a specific instant in time, while design objectives change the design state over

time.

At a minimal level the only design element required in space planning is a Space.

The representation of a space requires a shape to define its boundaries, and a mass

for the entire space as well as for each of its individual edges. Nodes represent masses,

on which design objective forces will be applied.

For example, a space can be represented as a polygonal boundary with a point
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mass at its center. The boundary can be represented as an ordered series of masses

located on edges that maintain their orientation, and alternatively can be represented

as masses located on each boundary vertex. With this representation, forces can be

applied to the masses, inducing them to change position.

4.1.1. Nodes

A node is a point in space on which a force can be applied. The data structure

representing a node contains values for mass, position, and velocity, as well as a

force accumulator and other geometric information that may be required for each

node type. Each unique node type has its own graphic representation. Nodes are

typically connected to other nodes by springs. The type of the node determines how

its movement, and the movement of the node to which it is connected, is constrained.

The basic data structures used within nodes are a point

class Point
x, y, z: Real,

which defines a position in a three-dimensional coordinate system, and a vector

class Vector
x, y, z: Real,

which defines a magnitude and a direction in the same coordinate system.

4.1.1.1. Point node

A point node is the simplest node type. The data structure for a point node stores

the following typical node information

class Point Node
mass : Real
position : Point
velocity : Vector
force : Vector,
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and is displayed as a dot. A force applied to a Point Node is not constrained in any

way. Figure 4-3 shows a point node with position x(t) at time t, with a constant force

f applied to it, and no initial velocity. A point node at position x(t) is accelerated

in the direction of f so that at time t + ∆t it is at position x(t + ∆t).

Point nodes are typically used to define the centers of spaces.

x(t)

f

x(t+ t)∆

Fig. 4-3. Point node

4.1.1.2. Line node

A line node defines an infinite line passing through a point. Any force applied to a

line node is constrained to act perpendicular to the line it defines, thus preserving

its orientation. The data structure for a line node, which contains the typical node

information as well as unit direction and unit normal vectors, is

class Line Node
mass : Real
position : Point
velocity : Vector
force : Vector
direction : Vector
normal : Vector.

A position and a direction are all that are needed to define a line; the additional

normal vector is stored so as not to repeat its calculation. A line node is displayed
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as a dot with a short bar going through it parallel to the direction vector. Figure 4-4

shows a line node with unit direction d, unit normal n, and position x(t) at time t,

with a constant force f applied to it, and no initial velocity. The line is constrained

to move along n by applying

f ′ = (f · n)n,

the component of the force in the direction normal to the line. In the preceding

equation the · operator is the dot product of two vectors. Thus, a line node at

position x(t) is accelerated in the direction of n so that at time t + ∆t it is at

x(t + ∆t).

Line nodes are typically used to define the polygonal edges of space boundaries.

x(t)

f x(t+ t)∆

f ′

n

d

Fig. 4-4. Line node

4.1.1.3. Plane node

A plane node defines an infinite plane passing through a point. Any force applied to

a plane node is constrained to act perpendicular to the plane it defines, thus preserv-

ing its orientation. The data structure for a plane node, which contains the typical

node information as well as a unit normal vector, is
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class Plane Node
mass : Real
position : Point
velocity : Vector
force : Vector
normal : Vector.

A plane node could be displayed as a dot with a square drawn around the dot,

oriented to the plane. Figure 4-5 shows a plane node with unit normal n, and

position x(t) at time t, with a constant force f applied to it, and no initial velocity.

The plane is constrained to move along n by applying

f ′ = (f · n)n.

the component of the force in the direction normal to the plane. Thus, a plane node

at position x(t) is accelerated in the direction of n so that at time t + ∆t it is at

x(t + ∆t).

x(t)

f

f ′
n

x(t+ t)∆

Fig. 4-5. Plane node

It would seem natural to use a plane node in three-dimensions to represent a

wall or one face of a space volume. However, due to the nature of the architectural

space planning problem, extending space planning to the third dimension is not that

straightforward. This is discussed in section 9.2.1.2. A building in three dimensions
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contains one or more plans that by themselves remain in two dimensions, and there

is little to be gained by using space volumes and plane nodes.

Despite the seeming lack of usefulness of a plane node in space planning, this

element could be useful in other three dimensional design domains, such as building

massing design or manufactured artifact design.

4.1.2. Polygons

Now that the basic node elements are defined, they can be used to define and build

up more complex elements.

A polygon is a closed plane figure with straight boundary lines, and is defined

here as an ordered list of a pair of line nodes and polarities, where each line node is

connected to a common center node with a line perpendicular to the direction vector

of the line node. No two edges of a valid polygon can cross each other. Examples

are shown in figure 4-6.

Figure 4-6a shows an arbitrary n-sided polygon, with center node c, edge line

nodes e, and vertices v. Each vertex vi can be found as the intersection of edges

ei and ei⊕1, where the operator ⊕ is addition modulo n. This representation of a

polygon can also be found in Kalay (1989, p. 36). The polarity of an edge defines the

direction that the next edge will turn. The convention used here is -1 to the right,

and 1 to the left. For example, the polarity list of the polygon in figure 4-6a is (1, 1,

-1, 1, 1, 1). Given this representation, the data structure for a polygon is

class Polygon
edges : Line Node list
polarities : Integer list [-1, 1].

The position of an edge along its direction vector technically does not matter; all

positions along the direction vector yield the same line, and thus the same polygon.
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Therefore, an infinite combination of line nodes can yield the same polygon. Even

when given the additional constraint that each line node must be connected to a

common center node with a perpendicular line, there are still an infinite combination

of line nodes that define a single polygon, which can be shown by comparing figure 4-

6a with figure 4-6b.

The polarity list insures that the topology of the polygon does not change. Using

only a line node list, the two polygons in figures 4-6b and c produce the same polygon.

The addition of a polarity list differentiates them into two different polygons.
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Fig. 4-6. An arbitrary polygonal shape represented with edge line nodes

This may seem like an overly complicated way to represent a polygon, and

that a simple list of vertices would suffice. There are three reasons to choose this

representation. 1) It allows the orientation of each edge to be easily maintained;

2) it allows a connection to be made between each edge node and a center node,

which will be used later as the center of a space; and 3) it allows the topology of the

polygon to be fixed; that is, it prevents the edges from ‘flipping.’

Easy maintenance of edge orientation is needed if a polygon is used to define
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the boundary of a space. It allows us to apply forces to individual segments in such

a way that the edge moves but does not rotate. A typical task in space planning is

to move a wall, not to move the end points of a wall. If a shape were represented

with point nodes at its vertices, in order to maintain edge orientation any force

applied to one vertex would have to be separated into components that are applied

to its surrounding vertices. For non-orthogonal shapes, computing the necessary

components could get unnecessarily complicated. Figure 4-7a shows a rectangle

represented with vertex point nodes. A force applied to one of its vertices as shown

results in the non-orthogonal polygon shown in figure 4-7b. Figure 4-7c shows a

rectangle represented with edge line nodes. Forces f1 and f2 applied to its edges yield

resultant forces f ′1 and f ′2, which act normal to each edge, resulting in the maintained

rectangular shape shown in figure 4-7d.

b d

a c

f f1′ f1

f2′

f2

Fig. 4-7. A rectangle represented with vertex point nodes and edge line nodes

Vertex polygonal representations are potentially useful in modeling soft or amor-

phous shapes, or a number of soft or amorphous edges on an otherwise rigid shape.
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A space plan consisting of totally fluid shapes would probably result in plans look-

ing like cell membranes or other organic forms (Thompson, 1992; Prusinkiewicz and

Lindenmayer, 1990), such as that shown in figure 4-8. A single space containing

some soft edges and some rigid edges is potentially useful in allowing such a space to

wrap around another rigid shape, as shown in figure 4-9, where part of the almost

rectangular shape wraps around the circular shape.

Fig. 4-8. A space plan using vertex polygonal representations [From Prusinkiewicz

and Lindenmayer (1990, p. 154)]

Fig. 4-9. A space with soft edges wrapping around a space with rigid edges
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4.1.3. Spaces

A space defines any arbitrary polygonal area or the volume of a polygonal extrusion.

The data structure representing a space, which contains a common center node to

define its location and a polygon to define its boundary, is

class Space
center : Point Node
shape : Polygon.

The shape value is optional, to enable the definition of any generalized space. For

example, a space used to represent the outside would not need a defined position or

shape, and could be used when a building space needs to relate to the outside.

A hierarchy of spaces of arbitrary depth can be constructed by allowing any

space to contain any number of child spaces, each of which can contain their own set

of child spaces, as shown in figure 4-10a. A similar structure is described in Flemming

and Chien (1995). A parent space and its child spaces define a self-contained physical

system, and the relationship between the parent and its children is defined by the

parent boundary. A set of spaces that all have the same parent space will be referred

to as a sibling set. If a parent boundary exists, as in figure 4-10a, the system of

child spaces needs to be contained within that boundary. If a parent boundary does

not exist, as in figure 4-10b, the union of the child space boundaries will define the

parental boundary.

The location of the center node relative to the edges is not important to the

polygonal representation, as described in section 4.1.2, but is important in deter-

mining space adjacencies. For simple shapes the geometric center or center of mass

is fine, but for more complicated shapes a more appropriate center may need to be

defined by the designer. For example, a U-shaped space might have its center of

mass located outside the boundary, but the designer might prefer that the center
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node be located inside the boundary.

Fig. 4-10. Parent space with and without a defined boundary

4.1.3.1. Local coordinate system

The polygonal shape for a space is defined and maintained in the local coordinate

system of the space. Each space has its own local coordinate system with its center

node always located at the origin. The center node contains the space’s position in

world coordinates, while each polygonal shape contains wall node positions in the

space’s local coordinates. The vertices used to draw the shape are computed and

temporarily stored in world coordinates. Forces applied to a Space Node have no

direct effect on anything stored in the Space’s local coordinate system, while forces

applied to a Wall Node result in changes to the Space’s polygonal shape. Figure 4-11

describes what happens in a sample problem when a force is applied to a Wall Node.

An obvious question to ask is if moving a wall ends up affecting the position of

the space, then why not just move the space? The answer is that moving a space

would be the same as moving all walls, with the result that the space’s shape can
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World
Coordinate

System (WCS)

Local
Coordinate

System (LCS)

Reacting to a force applied to a Wall Node.

The wall node moves in the local coordinate system,
and the vertices of the space’s shape are computed in
the world coordinate system. If nothing else is done,
the space’s center node will be off center from it’s
shape...

So, the space’s center node is repositioned in world
coordinates to the center of the shape. If new shape
vertices were to be computed from the existing wall
node positions, the shape would move...

So, the wall nodes are repositioned in local
coordinates, to the intersection of each node’s
associated shape edge, and a line perpendicular to
that edge through the space node.

1) Compute shape vertices in WCS.

2) Move space node in WCS.

3) Move wall nodes in LCS

Fig. 4-11. Use of a space local coordinate system

never change. By only moving a single wall, different forces may be moving other

walls, thereby changing the shape of the space. The position of the space itself is

affected by the aggregate of all wall forces.

4.2. Design objectives

While design elements define the state of a design at a specific instant in time,

design objectives define the intentions that the designer may have toward changing
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that state. The primary requirement of a design objective in a physically based

design approach is to apply forces to the spaces and walls represented in the data

structures. These applied forces should act to change the location of the spaces and

walls, thereby changing the design over time. Additionally, they need to be defined

in terms that are familiar to designers, and they need to cause design elements to

behave as expected.

4.2.1. Properties of design objectives

Each type of design objective has a number of properties that define how such ob-

jectives act. Each design objective defines the type and number of nodes on which

it acts (represented in formulas with their position p), the desired configuration of

those node positions as a scalar d or vector d, a method of computing the configu-

ration error e or e, and a level of importance I. These values vary for each instance

of a design objective. A strength constant ktype is defined for all instances of a type

of design objective. The configuration error, level of importance, and strength con-

stant are multiplied to compute the configuration force Ftype that will be applied

to the individual nodes to move them from an undesired configuration to a desired

configuration. These properties are summarized in table 4-1.

4.2.1.1. Nodes

Each design objective specifies one or more nodes on which it will act. The node

types and the manner in which they are specified are determined by the type of

design objective. A design objective that can be applied to either wall nodes or

space nodes specifies one or more nodes. An objective that can be applied only to

wall nodes specifies one or more line nodes. An objective that can be applied to space

nodes specifies a space, and the objective itself accesses the space’s center node. An
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Table 4-1. Properties of a design objective
Property Specification Term

Node (if type does not matter) p , or

Line Node or Point Node (if type matters) p i for i th node
Space Node
Space Polygon
Scalar d , for example
Vector d, for example

Configuration Error Vector e, ei

Importance Real [0.0 - 1.0] I
Strength Constant Real k type

Configuration Force Vector Ftype

Node(s)

Desired Configuration

objective that can be applied to a space polygon specifies a space, and the objective

itself would access the space’s polygon’s nodes.

The position term of a node is p, or pi for the ith node in a list of nodes.

4.2.1.2. Desired configuration

Each design objective specifies a numeric value that indicates the desired configu-

ration of the nodes. Each type of design objective specifies the meaning of that

numeric value, such as a scalar distance d or area a, or a vector direction d.

4.2.1.3. Configuration error

Each type of design objective specifies a way of computing the configuration error

of each of the nodes. Configuration error is defined to be a measure of the differ-

ence between a desired configuration and an undesired configuration. If the current

configuration is the desired configuration, then there is no error. If the current con-

figuration is not the desired configuration, the magnitude of the configuration error

is proportional to the degree with which the current configuration is not the desired

configuration.
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The term for the configuration error is e, or ei for the configuration error com-

puted for the ith node.

4.2.1.4. Level of importance

Each design objective specifies the level of importance of one instance of a design

objective relative to another instance, possibly of a different type. This is a numerical

value that scales the magnitude of the configuration error. For example, if an exterior

objective applied to one space is more important than an exterior objective applied

to another, their relative level of importance can be set accordingly.

Level of importance is set within the range (0.0 - 1.0]. Sanoff describes a similar

method of using a numerical value to define a relationship:

This discussion is based on binary decisions between two activities; either

there is a relationship or there is not. It is possible to assume that there

is some connection between all the activities in the matrix so that the

important distinction is the magnitude of the dependency between each

pair. In this case it would be appropriate to substitute a numerical scale

value from one to five to indicate potency, rather than a notation to

indicate dependency. (Sanoff, 1977, p. 109)

A set of descriptive terms can be used to help define numeric values for levels of

importance, as in the sample set shown in table 4-2.

The term for the level of importance is Itype.

4.2.1.5. Strength constant

Each type of design objective specifies a strength constant applied to all instances of

one type of design objective. This is a numerical value that scales the magnitude of
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Table 4-2. Sample levels of importance
Descriptive requirement Numerical value

Mandatory 1.0
Significant 0.6
Desirable 0.3
If Possible 0.1

the configuration error, similar to level of importance.

The purpose of the strength constant is to scale the effect of the design objectives

so that objectives with the same level of importance maintain the same relative

strength to each other. Each type of design objective is implemented in a slightly

different way, and this differing implementation sometimes results in one type being

apparently stronger or weaker than another. An appropriate set of design objective

strength constants should result in two objectives of differing types but with the

same level of importance having the same apparent strength.

The term for the strength constant for a type of design objective is ktype, such

as kad for an adjacency objective.

4.2.1.6. Configuration force

The configuration force is the force actually applied to a specific node in a physically

based space planning system. It is simply the configuration error scaled by both the

level of importance and the strength constant.

The term for the configuration force is F, or Fi for the force applied to the ith

node, and is

F = ktypeItypee.
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Table 4-3. Classes of objectives and their properties
Topological Geometric

Unary Move one space
Move all walls of one space,

without necessarily moving the space itself
Binary Move two spaces Move two walls from different spaces

4.2.1.7. Description

In the descriptions for the types of design objectives that follow, only the properties

for nodes, desired configuration, and configuration error will be described. These

properties vary from objective to objective and define how one is applied differently

from others. The importance and strength constant properties are defined in the

same way for all types, and given all of these properties the configuration force is

computed in the same way for all types.

4.2.2. Classes of design objectives

Design objectives are grouped here according to their similarity to each other. They

can be designed to change the relationship between design elements or to change

the geometry of design elements. They can act on a single element or on multiple

elements. The possible combinations and a description of how they affect design

elements in a space plan are shown in table 4-3.

4.2.2.1. Topological vs. geometric

The space planning problem is often separated into two sub-problems (Jo and Gero,

1998; Flemming, 1989). The first problem is satisfying topological properties such as

the location of individual spaces relative to each other. Some topological objectives

described here include adjacency, separation, orientation, and interior-exterior ob-

jectives. The second problem is satisfying geometric properties such as the size and
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Table 4-4. Physical analogues of design objectives

Interior Spring
Exterior Spring

Orientation Spring

Adjacency Spring
Separation Repulsion Field

Area Balloon
Proportion Clay

Alignment Screw clamp

Unary Topological Objectives

Unary Geometric Objectives

Binary Geometric Objectives

Binary Topological Objectives

shape of space boundaries. Some geometric objectives described here include area,

alignment, and proportion objectives.

All topological objectives minimally specify a space whose location the objective

is trying to influence, and a vector, which specifies the direction and magnitude of

the force being applied. The differences among the various topological objectives lie

in the manner in which the direction vector is specified.

Geometric design objectives influence the dimensions of space boundary edges.

Any objective that results in a force being applied to an edge is a geometric objective.

All geometric objectives minimally specify a node or set of nodes whose location the

objective is trying to influence.

4.2.2.2. Unary vs. binary

Unary objectives apply a single force to a single element. Binary objectives apply a

pair of forces, equal in magnitude and opposite in direction, to two different elements.
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4.2.3. Physical analogues

Since spaces and walls are represented with nodes that have a mass, they are analo-

gous to physical objects in the real world. Design objectives, which apply forces to

nodes, also have physical analogues. Table 4-4 lists the design objectives that will

be described in the rest of this section, along with their physical analogue.

4.2.4. Unary topological objectives

Unary topological objectives apply a single force to a single space node. The intent

of a unary topological objective is to move a single space in the direction specified

by the force vector, so these objectives will also be called direction objectives. The

differences among the various direction objectives are in the manner in which the

direction vector is specified and how it may change. Unary topological objectives

tend to be mutually exclusive, so a single space should in general have only one

specified at any one time.

There are two additional considerations unique to direction objectives that affect

their design. All of the design objectives that will be described later are balanced,

in that they define equal and opposite forces. They are also easily bounded, in that

the minimum and maximum force magnitudes are fairly obvious. Because direction

objectives apply a single force to a single space, they are unbalanced. In the absence

of other counteracting forces, the force applied by a direction objective to a plan will

cause it to continually move.

As stated in section 4.2.1, a good design objective needs to apply a force that

is proportional to the degree to which it is not met. Defining a lower bound of this

force, the point at which the objective has been met and the magnitude of the force

is zero, is critical. In order to find the bounds of a direction objective force, two
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conditions must be defined: what is the ‘interior’ and what is the ‘exterior’ of a set

of spaces. A variety of methods can be used to define these conditions.

4.2.4.1. Interior objective

fin1

fin2

pc

p1

p2

Fig. 4-12. Interior objectives

An interior objective is a topological objective that attempts to locate a space in

the center of its set of sibling spaces. For example, an interior objective may be used

for spaces that have privacy or security requirements that may be better achieved

by being located away from exterior walls.

The data structure for an interior objective contains only a space

class Interior Objective
space : Space (space center node)

(direction is computed) (desired configuration).

The space’s center node is used for the nodes property. A desired configuration need

not be defined because the direction and magnitude of the configuration error can

be computed from the position of the space within it’s set of siblings.

The parental center pc of a space is defined here as the average position of it



89

and each of its sibling’s positions. For n spaces with space node position pi

pc = (
n∑

i=1

pi)/n.

This is just one of a variety of methods that can be used to define the parental center.

The configuration error is the vector from the space center p to the parental

center

e = pc − p.

The interior objective configuration force F is

Fin = kinIine.

Its magnitude is proportional to the distance between the space center node and the

parental center, and is zero when the space node is at the parental center. This

force is applied in the direction of the direction vector, and tends to move the space

toward the parental center and away from the parental boundary.

Figure 4-12 shows a set of sibling spaces with parental center pc. Two of the

spaces have interior objectives specified, shown with configuration forces Fin1 and

Fin2 pointing toward the parental center pc.

4.2.4.2. Exterior objective

An exterior objective, the opposite of an interior objective, is a topological objective

that attempts to locate a space toward the boundary edges of its parental shape. For

example, an exterior objective may be used to specify that a space has daylighting

requirements.

The data structure for an exterior objective is the same as that for an interior

objective and contains only a space

class Exterior Objective
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Fig. 4-13. Exterior objectives

space : Space (space center node)
(direction is computed) (desired configuration).

The space’s center node is used for the nodes property. A desired configuration need

not be defined because the direction and magnitude of the configuration error can

be computed from the position of the space within it’s set of siblings.

As described previously, a good design objective needs to apply a zero magnitude

force once the objective has been met. An exterior objective has been met when the

space is on the ‘exterior’ of its set of sibling spaces. The ‘exterior’ is a fairly loose

term that can be hard to define in some contexts. Given a floor plan, a room is on

the ‘exterior’ if one of its walls is an exterior wall. As will be described later, during

topological resolution spaces are treated as circles. What is the ‘exterior’ of a set of

circles? Is it enough to find the union of all of the circles, and if one of the exterior

arcs on that union is contributed by the subject space is it considered to be on the

exterior? But what if, when geometric resolution is solved, the space is no longer on

the exterior?

As with defining the parental center pc of a set of spaces, described in the
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previous section, there are a variety of ways to define the ‘exterior’ of a set of spaces,

both in a circular and polygonal representation of space boundaries. The method

described here is not ideal, but is used to demonstrate a relatively simple approach.

To find the exterior of a set of spaces, and thus an exterior point with which

to measure an exterior objective, find the smallest enclosing circle that contains

all sibling space centers, as shown in the circle with center pe (hereafter called the

enclosing center) and radius r in figure 4-13. Note that the enclosing center is not

equal to the parental center.

Let d be a vector from the enclosing center pe to the space center p

d = p− pe.

The direction vector

dex =
d

|d|

is a unit vector in the direction of d.

The strength s needs to be proportional to the distance between the space center

and the ‘exterior’ of its set of sibling spaces, so it is the radius of this circle r minus

the distance from the enclosing center to the parental center

s = r − |d|.

The configuration error is then the strength times the unit direction

e = sdex.

The exterior objective configuration force Fex is

Fex = kexIexe.
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If the space center coincides with the parental center the direction vector is

undefined as described above, so it should point toward the nearest edge of the

bounding box surrounding the sibling centers. If the direction vector is still undefined

due to equal distances to each bounding box edge, a random direction should be

chosen.

The force Fex is applied in the direction of the direction vector, and tends to

move the space away from the enclosing center and toward the parental boundary.

Two of the spaces in figure 4-13 have exterior objectives specified, shown with con-

figuration forces Fex1 and Fex2 pointing away from pc.

4.2.4.3. Orientation objective

pc
p1

p2

for1

for2

dor1

dor2

pr

Fig. 4-14. Orientation objectives

An orientation objective influences where a space is located on the building

perimeter. See Akin et al. (1988, p. 417) for a similar use of orientation. For example,

an orientation objective can be used to specify a particular view for an office, or that
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a public parking area needs to be near the site entrance.

The data structure for an orientation objective contains a space, and a direction

vector

class Orientation Objective
space : Space (space center node)
direction : Vector (desired configuration).

The space’s center node is used for the nodes property. The desired configuration is

the direction from the center of the set of sibling spaces to the point on the outside

of this set where the subject space is desired to be.

The direction vector for an orientation objective points to the side of the set of

sibling spaces where the space needs to be located. It can be specified with an angle,

a vector, or with descriptive terms such as Northeast or Southwest (see appendix B).

Unlike interior and exterior objectives, whose direction vectors can change contin-

uously throughout a dynamics simulation, the direction vector for an orientation

objective is specified by the user when the objective is defined, and remains constant

throughout the simulation. As with the other direction objectives, there are a variety

of methods that can be used to define the configuration force; the method described

here is just one.

Given a specified unit direction vector dor, and an enclosing circle with enclosing

center pe and radius r (as described in the previous section), the exterior point px

on the enclosing circle in the direction of the direction vector is

px = pe + rdor.

The configuration error is the vector from the space center p to the exterior

point px

e = px − p.



94

The orientation objective configuration force For is

For = korIore.

Two of the spaces in figure 4-14 have orientation objectives specified; one shown

with Northwest direction vector dor1 and its resulting force For1, and another shown

with Southwest direction vector dor2 and its resulting force For1. These forces tend

to move the spaces to the side of the building specified by the direction vector.

4.2.4.4. Applications and relationships

To summarize the relationships among these objectives, an interior objective points

toward the center of a group of spaces, an exterior objective points away from the

center of a group of spaces, and an orientation objective always points in a specific

direction. The direction of interior and exterior objectives can change with time,

depending on the location of the associated space relative to its siblings.

Architects might use these objectives to meet a variety of design objectives.

For example, if an architect wants a particular space to have daylight, she might

use an exterior objective to position the space on the exterior of the building, or if

she is concerned about sunlight or the quality of light in the space she might use

an orientation objective to locate the space on a specific side of the building. For

another example, if a building site has a particularly good view in one direction the

architect might want the windows in a space oriented toward that view, so he might

use an orientation objective pointing in the direction of the view.

There is not a one-to-one relationship between the designer’s objectives and

the technical implementation of those objectives. An orientation objective cannot

simply be renamed to a daylight objective because an exterior objective can be used

to achieve the same goal. Also, that same renaming hides the fact that an orientation
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objective can be used to accomplish a view design objective as well as daylight. The

design of the user interface for a practical application, if following the goal-directed

design process specified in Cooper (1999), should follow the needs of the designer

instead of the needs of the implementation. It might be acceptable to have interior,

exterior, and orientation objectives, as implemented, but users would probably want

an explicitly named daylight or view objective. The view objective would simply be

an orientation objective with another name, while the daylight objective would need

to be implemented as either an exterior or an orientation objective, depending on

the specific needs of the designer for a specific space. The need is to capture and

label the designer’s intent as well as to implement that intent. An exterior objective

says nothing about why the space needs to be on the exterior, while labeling the

objective daylight or view does. This enables the designer to later make appropriate

design modifications. For example, if it is later determined that it is not necessary

for a space to have a view, the objective can be removed. If the objective was called

exterior, however, there might be other non-view related reasons for having it, and

the designer might be hesitant in removing it.

4.2.5. Binary topological objectives

Binary topological objectives apply a force to two space nodes. The intent of a binary

topological objective is to change the location of two spaces relative to each other.

The data structure for a binary topological objective minimally contains two spaces

class Binary Topological Objective
space1 : Space
space2 : Space.
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4.2.5.1. Adjacency objective

An adjacency objective is a topological objective that attempts to locate two spaces

next to each other. For example, two spaces that have a large amount of traffic

between them may need to be located very close together. Figure 4-15 shows two

spaces connected with an adjacency objective, and how a system of spaces connected

with a number of adjacency objectives might be resolved.

Fig. 4-15. Adjacency objective

The data structure for an adjacency objective contains two spaces

class Adjacency Objective
space1 : Space (space center node)
space2 : Space.

Each space’s center node will be used for the nodes property. The desired configu-

ration is that the distance between the spaces be zero.

The center nodes of each space are connected with a spring (see section 3.3.3.2),

which applies forces to the nodes depending on the distance between them. If the

spaces are too far apart, the spring will produce forces on each space node that

attempt to move them together, and vice versa.

The vector from space1’s center p1 to space2’s center p2 is

d12 = p2 − p1.
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When using the circular representation of spaces, the desired configuration, or rest

length, of the spring is the sum of the radii of each space

r = r1 + r2.

The configuration error on space1 is

e1 = −(|d12| − r)
d12

|d12|
.

While the configuration error on space2 is the opposite of that of space1

e2 = −e1

The adjacency objective configuration force Fad for each space is

Fad1 = kadIade1

Fad2 = kadIade2.

4.2.5.2. Separation objective

Fig. 4-16. Separation objective

A separation objective is the opposite of an adjacency objective, and is a topo-

logical objective that attempts to locate one space away from another. Figure 4-16

shows two spaces connected with a separation objective. For example, a separation

objective may be used to keep a private space and a public space on opposite sides of
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a building. Separation objectives can be problematic, in that two spaces may need

to be separated from each other, but not so much that the system they belong to

separates into two different sets.

A separation objective is designed as a repulsion field that repels one space

away from another when they are located too close together. The data structure

for a separation objective contains two spaces, and the minimum distance required

between the edges of each space

class Separation Objective
space1 : Space
space2 : Space
distance : Real.

A repulsion field is in a sense a spring with a rest length equal to the minimum

separation distance, but that only expands and never contracts, because a repulsion

field ‘spring’ applies no force when the distance between the spaces is greater than

the minimum distance.

The unit vector from space1 to space2 d12 is

d12 =
p2 − p2

|p2 − p2|
.

Using a circular representation for the area of each space, the separation distance d

between the two spaces is the distance between each space’s center node minus the

sum of their radii

d = |p2 − p2| − (r1 + r2).

If d > dse, where dse is the minimum separation distance defined for the sepa-

ration objective, then the configuration errors for each space, ese1 and ese2, are zero.
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Otherwise, they are

e1 = −(dse − d)d12

e2 = −e1.

The direction of the error for space1 is away from space2, and vice versa.

The separation objective configuration forces for each space are

Fse1 = kseIsee1

Fse2 = kseIsee2.

4.2.6. Unary geometric objectives

Unary Geometric Objectives apply forces to all of the edge nodes of a single space.

The intent of a unary geometric objective is to change the dimensions of a single

space by changing the dimensions of each of its edges. The data structure for unary

geometric objectives minimally contains a space, a target value, and a range

class Unary Geometric Objective
space : Space
target : Real
range

percent : Real
or

minimum : Real
maximum : Real.

The meaning of the target and range values are set by each individual objective.

4.2.6.1. Area objective

An area objective is a geometric objective that attempts to maintain a specified area

for a polygonal shape. Figure 4-17 shows a rectangular polygon, with the desired

area shown as a dashed rectangle, the area range shown as dotted rectangles, and
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area objective forces applied to the edge line nodes. The forces applied by an area

objective are analogous to a balloon in that they are applied to the insides or outsides

of all edges of the polygonal shape.

Fig. 4-17. Area objective

pc

pi

fi

pi′

A,P

A ,P′

Fig. 4-18. Area objective forces

Area objective forces need to be defined in such a way that they change the

area but not the proportion of the shape they are applied to. Figure 4-18 shows

a space’s polygonal shape with current area A and proportion P and its intended
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shape with target area A′ and the same proportion. The point pc is the position of

the space’s center node, pi is the current position of one of the edge nodes of the

polygon defining the space, p′i is the target position of the same node, and fi is the

force vector needed to move pi toward p′i. A polygon’s proportion does not change

after it has been scaled. The scale value s necessary to scale a polygon with area A

to area A′ is

s =

√
A′

A
.

Each point p′i is found by scaling pi from pc by s

p′i = pc + spi.

Since the position of a space’s wall nodes are stored in the space’s local coordinate

system with its center node at the origin, as described in section 4.1.3.1, pc is the

origin, and thus p′i becomes

p′i = spi.

The configuration error between pi and p′i for each edge node is then

ei = s(pi)− pi

= (s− 1)pi.

As area A approaches A′, s approaches 1, and each of the errors ei approach zero.

The area objective configuration force for each line node i is

Far i = karIarei.

If an area range is defined for the area objective as described above, then s also

depends on the target area range. If the current area is too small (A < Amin), then

A′ = Amin, while if it is too large (A > Amax), then A′ = Amax. If the current area
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is within the desired range (Amin < A < Amax), then A′ = A and s = 1, resulting in

no needed change in area and thus no forces applied to the nodes.

4.2.6.2. Proportion objective

A proportion objective is a type of geometric objective that attempts to maintain the

specified proportions of a polygonal shape. It is similar in concept and application

to the area objective. If the proportions of a polygon deviate beyond a specified

range, forces are applied to the polygonal edge nodes to attempt to bring them back

into range. Figure 4-19 shows a rectangular polygon, with the desired proportion

shown as a dashed rectangle, the proportion range shown as dotted rectangles, and

proportion objective forces applied to the edge line nodes. The forces applied by a

proportion objective are analogous to a cube of clay or Jello in that one pair of forces

that squeeze the cube along one axis results in another set of forces that expand the

cube along the other axes, thus preserving its volume.

Fig. 4-19. Proportion objective

Proportion objective forces need to be defined in such a way that they change

the proportion but not the area of the shape they are applied to. Figure 4-20 shows

a space’s polygonal shape with current proportion P and area A and its intended

shape with target proportion P ′ and the same area. The point pc is the position of
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Fig. 4-20. Proportion objective forces

the space’s center node, pi is the current position of one of the edge nodes of the

polygon defining the space, p′i is the target position of the same node, and fi is the

force vector needed to move pi toward p′i. Scaling a polygon non-uniformly changes

its proportion. The correct set if horizontal and vertical scale factors can change

a polygon’s proportion without changing its area. The proportion of a polygon is

defined here as the ratio of the horizontal distance to the vertical distance of its

bounding box

P =
δx

δy
.

The horizontal scale value necessary to scale a polygon with proportion P to pro-

portion P ′ is

sx =

√
P ′

P
,

and the vertical scale is then the inverse of the horizontal scale

sy =
1

sx

.

Each point p′i is found by scaling the horizontal distance between pi and pc by sx and
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the vertical distance by sx

p′i.x = pc.x + sxpi.x,

p′i.y = pc.y + sypi.y.

Since the position of a space’s wall nodes are stored in the space’s local coordinate

system with its center node at the origin, as described in section 4.1.3.1, pc is the

origin and the components of p′i become

p′i.x = sxpi.x,

p′i.y = sypi.y.

The configuration error between pi and p′i for each edge node is then

ei.x = (sx − 1)pi

ei.y = (sy − 1)pi.

As proportion P approaches P ′, sx and sy approach 1, and each of the errors ei

approach zero.

The proportion objective configuration force for each node i is

Fpr i = kprIprei.

For the line node polygon representation used here, this method for determining

proportion objective forces only works for orthogonally shaped polygons. It does

not work for polygons with diagonal edges, because in a non-uniform scaling of a

polygon, diagonal edges change angle. In the line node representation, the angle is

stored in the node as the direction vector, and does not change after a scale. This

method would work for a vertex polygonal representation. It is felt that this is not
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an important limitation, because a proportion objective would not be defined for

irregularly shaped spaces, and they are not as important as other types of objectives

such as adjacency and area.

If a proportion range is defined for the proportion objective as described above,

then sx and sy also depend on the target proportion range. If the current proportion

is too small (P < Pmin), then P ′ = Pmin, while if it is too large (P > Pmax), then

P ′ = Pmax. If the current proportion is within the desired range (Pmin < P < Pmax),

then P ′ = P and sx = sy = 1, resulting in no needed change in proportion and thus

no forces applied to the nodes.

4.2.6.3. Relationship between area and proportion objectives

There is a very close relationship between the area objective and the proportion

objective. If one is not designed with the other in mind they will end up fighting

against each other. The forces computed for the area objective need to be defined

in such a way that they do not cause the shape to change proportion. Likewise, the

forces computed for the proportion objective need to be defined in such a way that

they do not cause the shape to change area. If this is not done and both are applied

to the same space, the space will end up oscillating. In trying to achieve a desired

area, the Area Objective might change the proportion as well. Then in trying to

achieve a desired proportion, the proportion objective might change the area.

4.2.7. Binary geometric objectives

Binary Geometric Objectives apply forces to two wall nodes from two different spaces.

The intent of a binary geometric objective is to change the locations of two edges

so as to achieve a specified geometric configuration. The data structure for binary

geometric objectives minimally contains two line nodes
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class Binary Geometric Objective
node1 : Line Node
node2 : Line Node.

4.2.7.1. Alignment objective

Zero distance Non-zero distance

Fig. 4-21. Alignment objective

d12

d12′p1

p2

,f1

f2

n1

Fig. 4-22. Alignment objective forces

An alignment objective is a type of geometric objective that attempts to align

two nodes or to have them separated by a specified distance. The data structure

for an alignment objective contains two nodes, at least one of which must be a line

node, and a separation distance. If each node is a line node, the direction vectors
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of both should be parallel. Each node is connected with a spring with a signed rest

length equal to the specified distance. Figure 4-21 shows the effect of an alignment

objective on two sets of parallel line nodes, with both zero and non-zero distance.

Any non-trivial design problem will probably be over-defined, in that there may

be more than one objective applied to the same node. In such a condition, an

alignment objective represented with a simple spring and dashpot will rarely align

its two nodes. For this reason an integral spring is used. The force applied by an

integral spring contains the spring and dashpot components described in section 3.3.4,

as well as a third component that continuously increases as long as the desired rest

length is not achieved. This third component is the sum of the errors of previous

time steps, where the error at a given time is the difference between the length at

that time and the rest length. As the simulation time increases, this value increases

until the error is zero, causing the spring to apply just enough force to make the

current length equal to the rest length.

Figure 4-22 shows two rectangular spaces whose right edges need to be aligned.

The vector from node1’s position p1 to node2’s position p2 is

d12 = p2 − p1,

which is projected onto the line node normal vector of node1 to yield

d′
12 = n1(d12 · n1).

Since n1 is by definition a unit vector, d′
12 is a vector that is perpendicular to each

line node, and whose length is the distance between their parallel direction vectors.

The rest length r of the integral spring is set to the specified separation distance.

It is a signed value, measured relative to the normal vector of node1.

By definition, the error e0 at time step 0 is zero, where time step 0 is the first
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time step when the alignment objective is to be applied. The error at time step n is

en = en−1 + d12 · n1.

en continually changes in magnitude until the objective is met, at which time

d12 · n1 = 0.

The configuration error on node1 at time tn is

e1 = (|d′
12| − r)

d′
12

|d′
12|

+ en.

While the configuration error on node2 is the opposite of that of node1

e2 = −e1

The alignment objective configuration forces for the nodes are

Fal1 = kalIale1

Fal2 = kalIale2.

4.2.8. Relationship between topological and geometric objectives

One of the issues that must be addressed is what happens when spaces overlap. In

physically based modeling this issue is called ‘collision detection and response.’ The

objects in the system need some way to tell when they have collided with each other,

and some way to respond or change their motion as a result of this collision. The

design of topological and geometric objectives is generally governed by the collision

method used during their respective resolutions; that is, topological objectives are

designed given the circular space representation used for collision detection during

topological resolution, while geometric objectives are designed given the rectangu-
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Fig. 4-23. Topological elements vs geometric elements

lar or polygonal space representation used for collision detection during geometric

resolution.

Figure 4-23 shows how the same space planning problem is essentially two sepa-

rate problems. 4-23a shows the topological view of the problem, with circular shaped

spaces and point nodes at their centers, while 4-23b shows the geometric view of the

problem, with rectangular shaped spaces and line nodes at wall midpoints. The

two problems are ‘connected’ via the local coordinate system of each space (see sec-

tion 4.1.3.1). Wall node positions are defined within their space’s origin, which is

the space center node. They are then transformed into world coordinates so that the

dynamical system can work on them.

One consequence of this dichotomy is that although a topological objective might

be satisfied during topological resolution, after switching to geometric resolution it
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might no longer be met. For example, say that two rectangular spaces need to be

adjacent to each other. Although their circular representations might be adjacent

during topological resolution, they rarely will be during geometric resolution. For

this reason, and to make this approach more ‘robust,’ topological objectives should

really be implemented in two different ways, one for circular collisions and the other

for polygonal collisions.

4.3. Process

Once a set of spaces and objectives has been defined, a dynamic simulation runs

through a series of phases to produce a layout solution. First, topological relation-

ships between spaces are resolved. Second, the geometric positions of walls separating

the spaces are resolved. Finally, the designer interacts with the design by modifying

the set of design objectives, thereby modifying the design itself. This is conceptually

a linear process, but in reality it is highly circular. Every modification of design

objectives causes the simulation to loop to either topological resolution or geometric

resolution, depending on the type of design objective being modified. This process

is shown graphically in figure 4-24.

4.3.1. Topological resolution

The first phase in solving a space layout is to determine the location of each space

relative to all other spaces. In this phase only topological objectives are applied. For

collision detection, boundary shapes are treated as circles so spaces are able to slide

around each other. If polygonal boundary shapes were used, corners might catch on

each other and keep one space from being able to move to the other side of another.

The dynamic simulation runs until the system is in equilibrium, which is defined as
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Fig. 4-24. Simulation

the state at which there are no unbalanced forces acting on a body.

4.3.2. Geometric resolution

Once the topological simulation has reached dynamic equilibrium, as described in

section 3.3.9, the second phase is started, during which geometric objectives are

applied and topological objectives are turned off. In this phase, space boundaries

are switched from a circular to a polygonal representation. Collision detection and

response, as described in section 3.3.6, then act to keep spaces from overlapping,

resulting in an arrangement that is very close to a recognizable building floor plan.

Constrained dynamics is used to maintain the separation between spaces, which are

more fully described in section 3.3.7.

4.3.3. User interaction

At any time while the simulation is running, but typically once a geometric simulation

has reached equilibrium, the designer can analyze and interact with the design by
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modifying existing objectives and adding new ones. Here is where the true power of

this approach becomes apparent. The designer interactively manipulates the design

via objectives rather than via geometry, allowing him or her to concentrate on the

design itself rather than on the mechanics of geometric transformations.

4.3.4. Topological/geometric connection

The topological and geometric systems appear to be totally disconnected systems

in that topological objectives only apply forces to space center nodes and never to

polygon edge nodes and conversely geometric objectives only apply forces to polygon

edge nodes and never to space center nodes. The key to the connection between the

two lies in each space’s local coordinate system (see section 4.1.3.1). The edge node

positions of each polygon are defined in its space’s local coordinates. Any force that

moves an edge node indirectly moves the space’s center node, and any force that

moves the center node moves all edge nodes.

4.4. Summary

I have described the components of a physically based space planning system, which

include design elements such as nodes, polygons, and spaces that are used to define

the tangible parts of a design, and a number of design objectives used to define the

intangible intent of the designer. Two types of design objectives were defined: 1)

topological objectives that affect the location of one space relative to another, and

2) geometric objectives that affect the dimensional size of individual spaces. Finally,

a procedure was defined for using these elements and objectives in a design process.

To generalize to any design domain dealing with multi-dimensional space, de-

sign elements and design objectives need to be defined for each domain, while the
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algorithms should apply to every domain. Design elements are the ‘objects’ that the

designer is working on, while design objectives are the intentions of the designer to

change the state of those objects. The concepts of elements and objectives apply to

every design domain, while the specific elements and objectives described here ap-

ply only to the domain of space planning, and may be slightly modified in terms of

nomenclature to apply to general floor planning problems. The algorithms described

here define the means by which design objectives operate on design elements, and

should generally apply to every design domain. Conceivably then, given a generalized

physically based design methodology, for every design domain it should be possible

to define a unique set of elements and objectives specific to that domain, while the

algorithm remains the same across domains.
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5. PROTOTYPE IMPLEMENTATION

This section describes the implementation of a prototype software application that

demonstrates the concepts of the previous chapter.

5.1. Implementation

Here I give some of the details of the prototype implementation, and discusses some

of the significant differences between how concepts were described in section 4, “A

physically based approach to space planning,” and how they were implemented in

the prototype. Appendix A provides a detailed description of the interface and how

to use it. A general discussion of this implementation is left for the next section.

5.1.1. Implementation summary

Table 5-1 shows all the main concepts presented in section 4, “A physically based

approach to space planning,” along with an indication of whether or not and to what

degree they were implemented in the prototype.

As can be inferred from the table, spaces are limited to rectangles in a single story

building. Limiting spaces to rectangular shapes has often been used in prototypes to

demonstrate new approaches (Flemming, 1978). If an approach works for rectangles,

chances are it will work for other shapes. The problems of circulation and multi-story

hierarchical design are left for future investigation.

5.1.2. Polygons

The line node polygonal representation described in section 4.1.2 was implemented

in the prototype. In addition to the advantages described in that section – easy

computation of forces to maintain edge orientation – it allowed a relatively sim-
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Table 5-1. Implemented concepts from section 4
Item Implemented
Nodes

Point Node Yes
Line Node Yes
Plane Node No

Polygons
Rectangular edge list Yes (see section 5.1.2)
Non-rectangular edge list No
Non-rectangular vertex list No

Space
Space Object Yes
Space Hierarchy No (see section 5.1.3)

Unary Topological Objectives
Interior Yes
Exterior Yes
Orientation Yes

Binary Topological Objectives
Adjacency Yes
Separation Yes

Unary Geometric Objectives
Area Yes
Proportion Yes

Binary Geometric Objectives
Alignment Yes

Automated Simulation Yes

ple implementation of physically based techniques using rectangles. The polygon

polarities discussed were not implemented.

5.1.3. Space hierarchy

Section 4.1.3 discusses a multi-level spatial hierarchy, but in the prototype only one

hierarchical level was fully implemented. The prototype space code was structured

to implement a multi-level hierarchy, as can be seen in the structure of an .apf file

(see appendix B). However, the prototype dynamical system was not structured to

account for multi-level hierarchy.
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5.1.4. Details

This prototype was initially developed on a Silicon Graphics O2 workstation using

the Irix 6.3 operating system, with a 200 MHz R5000 processor, and 192 MB RAM.

Programming was done in object-oriented C++, using OpenGL for the graphics,

and the Fast Light Tool Kit (FLTK) user interface toolkit (FLTK, 2003), version

1.1.4rc1. The prototype was later ported to the Microsoft Windows 98 and 2000

operating systems using Microsoft Visual C++ versions 6.0 and 7.0, and further

developed on 650 MHz and 1200 MHz Intel Pentium III processors. Additional

software libraries include gltt version 2.5.2 (GLTT, 2001) used to draw True Type

text in OpenGL applications, and libpng version 1.2.5 (PNG, 2002) used to create

png (Portable Network Graphic) images.

5.2. Suggested interaction

Here I describe a suggested process for interacting with and using the Physically

Based Space Planning prototype. This seemed necessary, because like all prototype

software it has designed shortcuts that make user interaction uncertain. Appendix A

gives detailed and complete information on the user interface.

Labels mentioned in this section are displayed with italics.

Run pbspace.exe. When the application is displayed an empty space plan

consisting of a top-level project space with a single space node is drawn in the

drawing area.

Create some spaces. Using the left mouse button, create a number of rect-

angular spaces.

Define some adjacency objectives. Using the right mouse button, create a

number of adjacency objectives between spaces by clicking on one space node and
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dragging to another.

Define additional topological objectives. Add some additional design ob-

jectives by selecting them from the Objectives menu and following the directions of

the active help displayed below the drawing area.

Set Intersections to Circles and turn off Auto. To the left of the drawing

area, set the intersection method to Circles and turn off Auto, which automatically

switches the method from circles to polygons when the simulation reaches dynamic

equilibrium. It is useful in the beginning to do this manually so as to better under-

stand the differences between them.

Run the simulation. Click the Start button to the left of the drawing area.

The spaces will contract toward each other and come to rest within a few seconds,

or longer if one space is in the process of moving around another. The Start button

now reads Stop. If at any time the plan becomes unstable or moves off the screen

click the Stop, Reset, or Reset Random buttons.

At this point the dynamical space plan is trying to achieve topological resolution.

The rectangular spaces will overlap because as far as the system is concerned at this

stage they have circular shapes. Click on the Circle and Polygon buttons under the

Display tab to display the spaces as circles instead of rectangles. The circles may

overlap a small amount, but for the most part they do not.

Reposition spaces. Click and drag on the center node of a space to reposition

it. Notice how the other spaces reposition themselves in response. (It is possible at

this time that an external force is introduced due to accumulated error that might

eventually move the plan off the screen. Either Reset, or use the middle mouse

button to move the plan toward the center.)

A useful process for repositioning spaces is to position them based on the rel-

ative importance of their adjacency objectives. Go to the Importance tab and turn
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off the display of all but Mandatory importances. Reposition spaces until these ad-

jacencies are met. Turn on the display of Significant importances and do the same

for them. This process, performed manually here, could be automated, as described

in section 4.3.1.

If spaces are drawn as circles at this point, click on the Circle and Polygon

buttons under the Display tab again to display the spaces as rectangles.

Switch to geometric resolution. Once the system has reached equilibrium,

click on the Polygons intersections button to the left of the drawing area, which also

turns off topological objectives and turns on geometric objectives. The dynamical

space plan is now trying to achieve geometric resolution, and you should notice that

the rectangular spaces no longer overlap and that the space plan expands by a small

amount because the adjacency objectives are no longer active. The space plan should

now begin to look more like a potential building plan.

Define geometric objectives. From the Objectives menu, select Alignment.

Locate two walls that you want to be co-linear, click and hold on one with the right

mouse button, drag to and release the button over the other. The two walls should

begin to align. Do this with a few other walls.

The process of adding alignment objectives begins to reveal the power of this

approach to space planning. During topological resolution, because the spaces over-

lap each other, few space arrangements appear to be that of a recognizable building.

Once the switch to geometric resolution is made, spaces no longer overlap and the

arrangement begins to look more recognizable, but usually side gaps still exist be-

tween spaces and the layout looks haphazard and not intentionally ‘designed.’ Once

alignment objectives or other geometric objectives are added to the plan, the de-

signer’s aesthetic intent is inserted, and the plan begins to look more recognizable

as a building, thus revealing physically based space planning as a compelling design
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method.

The essence of the physically based space planning approach is demonstrated

with the steps outlined so far. The following steps reveal other information and the

possibilities of their use.

Display area error Under the Options menu, turn off Black and White to

display colored graphics on a black background. From the Display tab, click on the

Shaded Area button. Some of the spaces will now be colored shades of red or blue.

Darker red areas are smaller than the required area specified in the architectural

programming file, while darker blue areas are larger; the darker the color, the more

the error.

Display force vectors From the Display tab, click on the Vectors toggle, then

click on the Step button to the left of the drawing area. All individual force vectors

active at the current state of the dynamics system will be drawn. See sections A.4

and A.4.3 for explanations on how to control the display of the different force types.

5.3. Early worked example

1
2
3
4
5
6
7
8
9

University Career
Counseling Center Sq. Ft.

250
220
140
180
300
200
120
50

350

Immediate Adjacency
Important Adjacency
Reasonably Convenient
Unimportant
Remote

Reception
Interview Station
Director
Staff
Seminar Room
Rest Rooms
Work Area
Coffee Station
Guest Apartment

Fig. 5-1. Sample Adjacency Matrix [Redrawn from Karlen (1993, p. 22)]
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Fig. 5-2. Sample topological resolution

During early development of the prototype, the architectural program shown in

figure 5-1 was used to define the initial space planning requirements. During the

early stages of development, the architectural program needed to be fairly small but

contain many adjacency requirements. It needed to be small because the emphasis

in early development was in getting the dynamics between individual spaces to work,

not in working on a large space planning problem. It needed to have many adjacency

requirements so that many locally optimal solutions were possible. A small number

of adjacency requirements would yield a small number of solutions.

Figure 5-2 shows a sample topological resolution using the architectural program

in figure 5-1. The APF file used to create these figures was similar to that listed

in appendix C. Figure 5-2a and 5-2b show each space boundary drawn with its

required area and with random initial positions, figure 5-2a displaying boundaries

drawn as circles, and figure 5-2b displaying boundaries drawn as rectangles with



121

random proportions. Recall that during topological resolution, circles are used in

collision detection. It is difficult to show the dynamic movement with static images,

but figure 5-2d shows every tenth frame from the dynamic simulation, with frame

90 showing the spaces in equilibrium. The entire sequence took about three seconds

to compute and display, so the illusion to the user is of smooth natural motion.

Notice that most of the movement occurs between frames 0 and 10 when the spaces

are coming together, and that any movement after that is a result of the spaces

rearranging themselves and coming to equilibrium. With some initial positions it is

possible for the system to almost be at equilibrium when one space manages to move

onto the other side of another, and the whole system rearranges itself. Figure 5-2c

shows the final topological solution with the boundaries drawn as rectangles again.

Although some of the boundaries overlap, this in not important during topological

resolution and the overlaps will be resolved during geometric resolution.

Figure 5-3 shows six samples of geometric resolutions using the same architec-

tural program. Initial proportions for each space were maintained from sample to

sample, but initial positions were randomized. Final topological relationships were

not edited manually. For these results, topological resolution was not performed

before geometric resolution, so these do not represent locally optimal topological

solutions. Note in figure 5-3f that some wasted space is possible.

Note the variety of designs produced from a simple set of objectives. The only

objectives active in producing these samples are adjacency and rectangular area

objectives. The addition of other objectives such as non-rectangular shape, parental

shape, and alignment objectives, among others, should allow the architect to have a

great amount of control over the design of space plans.

In another worked example, figure 5-4 shows two more results from a sample

design problem using the same architectural program described above. Figures 5-4a
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a                                     b                                    c

d                                      e                                    f

Fig. 5-3. Sample geometric resolutions

and 5-4b show the same set of spaces with the same initial random positions, but

with a different set of topological objectives. Adjacency objectives are solid lines

connecting spaces, the width of the line representing the strength of the adjacency.

Separation objectives are dashed lines connecting spaces, in this example all with

the same separation strength. Figure 5-4b shows the same problem as in 5-4a, but

with the addition of an interior objective for space 3, an exterior objective for space

6, and an orientation objective for space 7.

Figures 5-4c through 5-4g show the process of resolving a space plan from the

initial state shown in 5-4b. 5-4c shows the result of topological resolution after the

simulation has reached equilibrium. Recall that during topological resolution space

boundaries are treated as circles for collision detection purposes. Note the location

of space 9, which is connected to all other spaces with separation objectives. This
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a                                                    b

c                                     d                                    e

f                                      g                                    h

Fig. 5-4. Early worked example

physical separation demonstrates the problem of separation objectives described in

section 4.2.5.2. 5-4d shows the transition of space boundary representation from

circles to polygonal shapes, and shows the many gaps and overlaps between shapes.

5-4e shows the first step in geometric resolution, with all topological objectives turned
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Table 5-2. Dynamic and other constants
Coordinate system units feet
Wall thickness 1 foot
Drawing area screen size 100' x 100'
Time Step 1/30 second (30 frames per second)
Adjacency spring constant 0.0 - 20.0
Shape spring constant 500.0
Edit spring constant 500.0
Spring dashpot 2.0
Coefficient of Restitution 0.0
Viscosity 10.0
Mass 1.0

off, and geometric objectives except gravity turned on. The overlaps are removed, but

the gaps remain. 5-4f shows the result of manually moving spaces until they contact

each other (see section 4.3.2), which removes the gaps. This figure also shows the

beginnings of manual design interaction with the minor relocation of spaces 4, 7, and

9. Finally, 5-4g shows more designer manipulation with the addition of alignment

objectives to clean up the outer walls.

Figure 5-4h shows one step near the end of the process of resolving a space plan

from the other initial state shown in 5-4a. It is at a similar state in the process as

figure 5-4f, but without any manual space relocations. Recall that 5-4a and 5-4b have

the same set of adjacency objectives. Note how the addition of interior, exterior, and

direction objectives on spaces 3, 6, and 7, respectively, affect their final locations in

figure 5-4f.

Table 5-2 shows some of the mathematical values used in the physically based

simulation and in the drawing area to create the images shown in this section. They

apply to the physically based simulation and not to the design problem used in the

worked examples, and were found to provide acceptable behavior in the simulation

and can be used as a starting point for further investigation and refinement.
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5.4. Final worked example

The images shown in the previous section were created during early development of

the prototype. Later development included refinement of most objectives, that is,

interior, exterior, orientation, separation, area, and proportion objectives, develop-

ment of offset alignment objectives, use of a local coordinate system in spaces for

wall nodes, extension of level of importance from adjacency objectives only to all

objectives, large amount of user interaction work, and implementation of automatic

switching from topological to geometric resolution.

c                                                                    d

a                                                                    b

Fig. 5-5. Final worked example - from initial placed positions
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Figures 5-5, 5-6, and 5-7 show space plans at varying stages of the resolution

process for a residential program using the later prototype. The APF file used to

create these figures was similar to that listed in appendix D.

Figure 5-5 shows four figures at the early stage in the design process, where

the spaces in the architectural program were initially created in a rough relationship

to each other. In figures 5-5a and b the spaces are at their initial positions, figure

a displaying space names and areas, and figure b displaying all design objectives.

Figure 5-5c shows the result of topological resolution from the initial state in the

previous figures, while figure 5-5d shows the continuing result of geometric resolution.

c

a                                                                    b

Fig. 5-6. Final worked example - after manual rearrangement of spaces, and doing

topological and geometric resolutions

Figure 5-6 shows three figures at the next stage of design, where a few spaces are

manually rearranged, especially those without any adjacency objectives, figure 5-6a

displaying names and figure b displaying design objectives. Figure 5-6c is similar to
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figure 5-5d, showing the result of topological then geometric resolution.

c                                                                    d

a                                                                    b

Fig. 5-7. Final worked example - after manual rearrangement of spaces, and doing

only geometric resolution

Figure 5-7 shows four figures much later in the design process, after much man-

ual manipulation occurred after topological resolution but before final geometric

resolution. Again, figure 5-7a displays space names and figure 5-7b displays design

objectives. Figure 5-7c shows the result of geometric resolution, after the many

alignment objectives shown were added, and figure 5-7d shows the final result with

space names along with exterior wall surfaces.



128

5.5. Summary

The vast majority of the concepts described in section 4, “A physically based ap-

proach to space planning,” were successfully implemented in the prototype applica-

tion. The prototype adequately demonstrates the intended concepts and suggests

that this approach is a potentially promising computer aided design methodology.

The prototype also pointed out some potentially severe limitations, such as perfor-

mance problems, that must be overcome and additional features, such as a contact

objective, that must be designed and implemented.

The implementation of the prototype was an extremely valuable process in the

act of defining the concepts described in section 4, and the two, concepts and pro-

totype, were developed in iterative stages. Many fully defined concepts, once imple-

mented, were determined to be ineffective in some way. Or, many new concepts were

formed based on interaction with the implementation. The implementation, then,

informed and modified those concepts to their current state, and was an integral part

of the process.

Now that the prototype implementation has been described, along with the

results of a small worked example, the next section presents a computational and

space complexity analysis, which will provide an indication of how this approach

will scale to larger space planning problems, and will also identify those processes

where performance improvements or alternate implementations will have the greatest

impact.
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6. COMPLEXITY ANALYSIS

Space and computational complexity will be discussed using the O(), or ‘big O,

notation typically used in computer science, which provides an asymptotic analysis

for comparing different algorithms (Russell and Norvig, 1995, p. 851).

In the following discussion, n is the number of nodes, s is the number of spaces, d

is the number of design objectives, c is the number of contacts, or pairs of overlapping

spaces, and k is the number of edge or wall intersections. At times when the task

performed for each space is a function of the number of nodes in the space, s = n.

As discussed further below a worst case scenario involves an arrangement of

polygons with a very large number of intersections. Is is possible to artificially

construct such an arrangement, but in typical practice architectural floor plans are

more “well behaved” and do not contain a large number of intersections for each

space. The results below show that the worst case computational complexity is

O(n + d + n2 + n2c + s(n + k) log n), while the expected case computational com-

plexity is O(n2), which is due to the task of computing dynamic constraints. Further,

the worst case space complexity is O(n2), while the expected case space complexity

is O(n).

6.1. Computational complexity

The overall computation complexity of the algorithm is determined by the complex-

ity of one time step in the physical simulation, which is called the DoTimestep

algorithm and shown later in figure 6-5. I will first discuss the computational com-

plexity of distinct parts of this algorithm, put them all together, and then reduce

them to arrive at a measure of the overall computation complexity.

In this section, algorithms will be described in figures using lines of pseudo-code
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on the left, and O() notation for the computational complexity of the line on the

right. A line of pseudo-code and its corresponding O() notation will be indented to

the right of the line above it if it is contained within a for loop or an if condition.

In this way, the complexity of a line of pseudo-code is easily seen as the sum of the

complexities of indented lines below it.

6.1.1. Reductions

Since many design objectives apply to more than one node, it is conceivable that each

new node added to a system adds design objectives for all other nodes, which means

that d ≈ n2. However, even highly complex architectural floor plans will not require

this many objectives. For example, a room in a building with a thousand rooms

will not have an adjacency objective with most of the other nine hundred ninety-

nine. In practice d increases in size at a more constant rate for each additional

node, making O(d) = O(n). This supposition will be used to reduce and simplify

the computational complexity analysis in the following discussion, which will be

indicated with the ⇒ operator. The ⇒ operator will also be used to indicate that

alternative implementation methods exist that can further reduce the complexity of

various tasks.

Another area of reduction that is possible after some analysis is the number

of contacts c and the number of edge intersections k. Given a number of spaces

with a total of n edges, it is possible to artificially construct a placement such that

each space overlaps all others, in which case the size of both c and k approaches

n2. However, due to collision detection and response and the maintaining of space

separations using dynamic constraints, it is not possible for each space to overlap

every other space. So k is limited by the number of space-to-space contacts that are

possible. Most of the spaces in a typical architectural space plan are of relatively
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similar size, the larger spaces being on the order of 10 times larger than the smaller

spaces, with the exception of very large gathering spaces like stadiums and convention

centers where this ratio may be more on the order of 100 or even 1000. If we can also

discount the number of spaces in contact with long, thin spaces such as corridors,

then c and k can be further reduced to a constant value for each node, or O(c) = O(n)

and O(k) = O(n).

6.1.2. Integrate Algorithm

Algorithm Integrate ( N , D ) O(n + d + n2) = O(d + n2)

⇒ O(n2)

Input:

N , an unordered list of n nodes contained in S

D, an unordered list of d objectives

Output:

N , with new position and velocity for each node

1. for n nodes in N O(n)

2. Set initial environmental forces O(1)

3. for d objectives in D O(d)

4. Apply objective forces O(1)

5. Compute dynamic constraints O(nc) ⇒ O(n2)

6. for n nodes in N O(n)

7. Differentiate O(1)

Fig. 6-1. Simplified algorithm to integrate over a set of nodes

Figure 6-1 shows the pseudo-code for the Integrate algorithm. Lines 1, 3,
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and 6 are constant time tasks for each node and objective, and together have a

complexity of O(n + d). Line 5 computes dynamic constraints, which are described

in sections 3.3.7 and 4.3.2. See Witkin and Baraff (1997, p. F1–F12) for a complete

description of the required implementation, which involves the use of a biconjugate

gradient solver (Press et al. (1992, p. 83)). Solving dynamic constraints involves

inversion of an n by n matrix, but by using sparse matrix techniques the complexity

of the biconjugate gradient solver is actually O(nc). For worst-case systems with

many collisions between nodes this approaches O(n3), whereas for expected-case

architectural floor plan systems this approaches O(n2).

The overall computational complexity of the Integrate algorithm is

O(n + d + n2), which equals O(d + n2), and if O(d) = O(n) as discussed above

is further reduced to O(n2) in practice.

6.1.3. HandleContacts Algorithm

Figure 6-2 shows the pseudo-code for the HandleContacts algorithm. Line 1 is a

constant time task for each contact to remove those between spaces that have moved

apart, and line 8 is a constant time task for each contact to set values. Each has a

complexity of O(c).

The purpose of the task in line 3 is to find contacts between spaces. The proto-

type implementation used a brute force method of iterating through each space pair,

searching the list of contacts to see if the contact already exists for that pair (lines 4

and 5), testing if they are in contact (line 6), and inserting the contact in the list if

needed (line 7). Iterating through the space pairs in line 3 has complexity O(s2), but

since the contact test is performed for each node in the spaces boundary, the actual

complexity is O(n2). As implemented, line 4 has a complexity of O(c), but existing

search techniques make it possible to achieve O(log c). So the total complexity of
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Algorithm HandleContacts ( S, C ) O(c + n2c) = O(n2c)

⇒ O(n(log n)2)

Input:

S, an unordered list of s spaces

C, an ordered list of c contacts

Output:

C, a new list of contacts

1. for c contacts in C O(c)

2. Remove if not valid O(1)

3. for s(s− 1)/2 space pairs in S O(n2c) ⇒ O(n log n log c)

4. for c contacts in C O(c) ⇒ O(log c)

5. Search for existing contact O(1)

6. if not in C and spaces are in contact O(1)

7. Insert new contact into C O(log c)

8. for c contacts in C O(c)

9. Post process O(1)

Fig. 6-2. Simplified algorithm to find and handle contacts between spaces

lines 3-7 as implemented is O(n2(c + log c)), which equals O(n2c). With changes to

use existing techniques that are more efficient, this can be reduced to O(n log n log c).

The overall computational complexity of the HandleContacts algorithm is

O(n2c), which in practice can be reduced to O(c + n log n log c), and further reduced

to O(n(log n)2) if O(c) = O(n).

6.1.4. PolygonUnion Algorithm

Figure 6-3 shows the pseudo-code for the PolygonUnion algorithm. Line 2 is used

to set up each space in preparation of its use in the polygon union algorithm. Its
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Algorithm PolygonUnion ( S ) O(n + s(n + k) log n)

= O(s(n + k) log n)

⇒ O(n log n)

Input:

S, an unordered list of s spaces

Local:

k: count of edge intersections

Output:

For each space in S that contains child spaces, a set of polygons that is

the union of the child polygons

1. for s spaces in S O(n)

2. Setup space O(n amortized)

3. for s spaces in S O(s(n + k) log n)

⇒ O((n + k) log n)

⇒ O(n log n)

4. if s contains subspaces O(1)

5. Compute Polygon Union (recursive) O((n + k) log n)

Fig. 6-3. Simplified algorithm to compute union of space polygons

running time depends on the number of nodes in the space, so its complexity is

O(n). The complexity of line 1 would then be O(sn), except that the task in line 2

is only performed once for each node, so it is amortized across all the nodes, and the

resulting complexity of line 1 is O(n).

Line 5 computes the union of the polygonal outline of a space’s set of subspaces,

and its complexity is O((n + k) log n) as described in section E.5. It is run for each

space, and is potentially recursive in that it may need to be run on each subspace

that contains its own subspaces. In the worst case arrangement of a deep space
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hierarchy, where each space contains at most two subspaces, each of which may or

may not contain subspaces, the complexity of line 3 will be O(s(n + k) log n).

Worst case arrangements are highly unlikely in typical architectural floor plan-

ning problems. Even a highly complex building such as a hospital probably contains

a space hierarchy of limited depth, and each non-leaf node in the hierarchy contains a

relatively large number of leaf nodes. So, typical practice can reduce the complexity

of line 3 to O((n + k) log n).

We can make a further reduction in complexity by analyzing k, the number of

edge intersections. For the computation of a single space’s polygon union, the worst

case arrangement of its subspaces, in which each subspace overlaps every other sub-

space, results in k approaching n2. However, due to collision detection and response

and the maintaining of space separations using dynamic constraints, it is impossible

for each subspace to overlap every other subspace. So k is limited to the number of

space-to-space contacts that are possible. Most of the spaces in a typical architec-

tural space plan are of relatively similar size, the larger spaces being on the order of

10 times larger than the smaller spaces, with the exception of very large gathering

spaces like stadiums and convention centers where this difference is more on the order

of 100 or even 1000. If we can also discount the number of spaces in contact with

long, thin spaces such as corridors, then k can be further reduced to a constant. So,

typical practice can further reduce the complexity of line 3 to O(n log n).

The overall worst case computational complexity of the PolygonUnion al-

gorithm is O(n + s(n + k) log n), which equals O(s(n + k) log n), which in typical

practice can be reduced to O(n log n).
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Algorithm ComputeEnergy ( N , D ) O(n + d)

⇒ O(n)

Input:

N , an unordered list of n nodes contained in S

D, an unordered list of d objectives

Output:

The total kinetic energy of a state

The total potential energy of a state

1. for n nodes in N O(n)

2. Compute kinetic energy O(1)

3. for d objectives in D O(d)

4. Compute Potential Energy O(1)

Fig. 6-4. Algorithm to compute state energy

6.1.5. ComputeEnergy Algorithm

Figure 6-4 shows the pseudo-code for the ComputeEnergy algorithm. The algo-

rithm contains constant time tasks to compute the kinetic energy for each node and

the potential energy for each objective, and has a complexity of O(n + d).

6.1.6. DoTimestep Algorithm

Figure 6-5 shows the pseudo-code for the DoTimestep algorithm. Line 1 is a

constant time task to setup each objective, and lines 3 and 6 are constant time tasks

to process each node before and after integration. The complexity of the algorithms

in lines 5, 8, 9, and 10 were discussed in their respective sections above.

The Integrate algorithm is typically run multiple times per time step, de-
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Algorithm DoTimestep (S, D, C ) O(d + n2c + s(n + k) log n)

⇒ O(n2)

Input:

S: an unordered list of s spaces

D: an unordered list of d objectives

C: an ordered list of c contacts

Local:

N : an unordered list of n nodes contained in S

Output:

N : nodes with new positions and velocities

C: modified list of contacts

1. for d objectives in D O(d)

2. Setup objective O(1)

3. for n nodes in N O(n)

4. Setup node for integration O(1)

5. Integrate ( N , D ) O(d + n2) ⇒ O(n2)

6. for n nodes in N O(n)

7. Post process after integration O(1)

8. HandleContacts ( S, C ) O(n2c) ⇒ O(n(log n)2)

9. PolygonUnion ( S ) O(s(n + k) log n) ⇒ O(n log n)

10. ComputeEnergy ( N , D ) O(n + d) ⇒ O(n)

Fig. 6-5. Algorithm to perform one time step

pending on the integration method used. For example, when using Runge-Kutta 4th

order numerical integration it will be run 4 times for each time step. However, this

does not change its complexity because it is a constant.

The overall computational complexity of the DoTimestep algorithm is

O(n + d + n2 + n2c + s(n + k) log n), which equals O(d + n2c + s(n + k) log n) after
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removing n and n2, which are dominated by n2c. With a variety of reductions, either

through implementation or an argument from practical applications, the expected

overall computational complexity is O(n + n log n + n(log n)2 + n2), which equals

O(n2) after removing n, n log n, and n(log n)2, which it dominates.

6.2. Space complexity

All data structures required by the algorithm, except one, are of linear complexity.

That exception is the storage required to compute dynamic constraints in line 5

of the Integrate algorithm shown in figure 6-1. The biconjugate gradient solver

involves inversion of a n by n matrix, which would normally result in a space com-

plexity of O(n2). However, through the use of sparse matrix techniques mentioned

in section 6.1.2, a full n by n matrix is not required, resulting in an actual space

complexity for this task of O(n), which will not affect the overall space complexity.

Each node, space, design objective, contact, and intersection are of constant size,

so the space complexity of these elements is O(n + s + d + c + k. The worst case

relationships between these variables, as discussed in section 6.1.1, are O(s) = O(n),

O(d) = O(n2), O(c) = O(n2), and O(k) = O(n2). So the worst case space complexity

is O(n2). However, due to possible reductions for architectural space plans discussed

in section 6.1.1, O(d) = O(n), O(c) = O(n), and O(k) = O(n), so the expected case

space complexity is actually O(n).

6.3. Summary

The purpose of the task to compute dynamic constraints is simply to maintain the

distance between two spaces that have come in contact with each other. That task

dominates the computational complexity of the entire algorithm. But because it does
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not affect the design object forces and has nothing to do with the basic function of

the algorithm, the dominance of this step might be removed with an alternative

implementation. One such alternative might be to merge nodes that have come in

contact. For example, when two wall nodes are in contact with each other, one node

is the ’master’ and participates in the dynamic simulation while the other node is a

’slave’ whose position is determined by the master. Since they more accurately work

in concert and forces applied to the slave node are applied to the master, a better

terminology might be ’representative’ and ’citizens.’ Additional contacts with either

the representative or citizen node produces additional citizen nodes. Undoubtedly

there exist other complicating factors, such as how to determine when two nodes are

no longer in contact, or how to draw citizen nodes relative to representative nodes,

but this alternative can potentially greatly reduce the computational requirements

of the overall algorithm. Not only is the need to compute dynamic constraints

eliminated, but the number of nodes is reduced as well, by as much as a half. In

buildings with relatively long corridors, this can potentially cut the number of nodes

in half.
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7. DISCUSSION

An application is useful to the extent that it aids a user in accomplishing some task.

An application is useable to the extent that its individual features work as expected.

It is possible for an application to be useable but not useful for accomplishing a

specified task. The goal is to make an application that is both useable and useful.

This section discusses the approach as presented, to determine if it is potentially

useful in practice.

I will begin with a discussion of the prototype implementation just described

in section 5, “Prototype implementation,” and described in complete detail in ap-

pendix A, followed by some general observations about the concepts proposed in

section 4, “A physically based approach to space planning.” These discussions only

provide initial subjective observations based on the prototype implementation, which

can be used to inform more rigorous future investigations.

7.1. Prototype

While using the prototype application during its development and implementation,

a number of observations were made.

7.1.1. Objectives

The different types of design objectives needed to address most designer’s intentions

are surprisingly few. One reason might be due to the limited number of geometric

elements dealt with during development of the prototype. Another, more interesting,

reason might be due to the definition of the problem as used here. The set of

topological objectives is limited to the number of ways a vector can be applied to a

point, that is, the number of ways a force can be applied to the center of a space.
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Similarly, the set of geometric objectives is limited to the number of ways a force

can be applied to the line node representing a polygonal edge. There are only so

many ways a vector can relate to a point, which limits the number of possible design

objectives. Although this may seem a shortcoming of my overall approach, within

the domain of space layout planning the few objectives I have discussed enable the

designer to produce a wide variety of results. It remains to be seen if these objectives

are adequate as applied to the overall design process.

7.1.1.1. Alignment objective and importance of geometric objectives

Between topological and geometric design objectives, the geometric objectives are

more critical from a design perspective. The physically based space planning ap-

proach is compelling to use during topological resolution, when a user can manipulate

space relationships by dragging the space nodes around. But its potential power is

revealed during geometric resolution when the user begins to apply geometric design

objectives such as alignment objectives.

Because of this, the creation of the alignment objective during the development

of the prototype was a defining moment in this research (see section 4.2.7.1 for

its description and section 5.2 for more discussion regarding its value). With the

ability to define alignment objectives, the user begins to truly design, by molding a

particular plan into the design he or she has in mind or that is beginning to emerge

from the explorations enabled by topographical manipulation.

Alignment objectives were intended to apply to parallel edges only. During

their implementation, however, selecting non-parallel edges was not prohibited, so

an inadvertent added feature is the ability to align one wall with the midpoint of

another. With some simple modifications it could be made to align with any point.

This provides an interesting demonstration of how potentially useful ‘features’ can
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be serendipitously discovered during the software development process.

7.1.1.2. Unary topological objectives

Section 4.2.4 describes unary topological objectives, which are design objectives that

apply a single force to a space node. The objectives described, including interior, ex-

terior, and orientation, apply a varying force along a direction vector pointing either

toward or away from the center of a set of spaces. The multiple passes of develop-

ment and written description of these objectives provide an interesting example of

the iterative nature of the process of research and problem solving.

The early prototype implemented these objectives by applying a constant force,

which is counter to the requirements of a good design objective as described in sec-

tion 4.2. The consequence of this implementation was that even when the objective

was met there was still a force being applied to the space. This was a convenient way

to implement and demonstrate the intent of these types of objectives, but it did not

follow the general intent of a force-based objective, which is that once an objective

is met, no forces are applied to its nodes.

The early written description of these objectives described this early implemen-

tation, and discussed their problems and limitations. In reviewing this description

a potential solution came to mind, resulting in another round of implementation

and the ultimate description presented in section 4, “A physically based approach to

space planning.”

7.1.1.3. Relationship between topological and geometric objectives

As implemented, topological objectives have one method of behavior, they apply

forces only during topological resolution, and are intended to be turned off during

geometric resolution. The suggested process involves resolving first topological then
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geometric objectives – once the switch is made to geometric resolution, topological

objectives are turned off and geometric objectives are turned on. One problem with

this approach is that it is possible for a topological objective to be achieved during

topological resolution, but when the resolution method has switched to geometric

resolution it is no longer achieved; namely, the circular representations are in contact

with each other, but the polygonal representations are not.

One solution is to design topological objectives with two different modes, one

active during topological resolution and another active during geometric resolution.

For example, an adjacency objective could be defined in such a way that it applies no

force when the edges of two spaces are in contact. In this way topological objectives

can be active and measurable during geometric resolution.

7.1.1.4. Constraints and integral springs

Implementing design objectives as force applicators is a loose method of implementing

design constraints, as mentioned in section 2.2.3.1. It is loose because the effect on

an object at any one time is only the average of the set of forces applied to the object.

A surer method of achieving design objectives, as discussed in a number of cases, is

to use integral springs and dynamic constraints. An obvious question to ask is, why

not use these methods for all design objectives?

One reason is the problem of dealing with over constrained systems. If all design

objectives were implemented as integral springs, in an over constrained system a point

in time will be reached when it is at equilibrium, but since some objectives haven’t

been met the force applied by the integral spring will continually increase. At some

point the physical simulation will then be dealing with massively large forces and

become highly unstable, and eventually the program will crash.



144

7.1.1.5. Strengths and level of importance

One potentially useful approach to using importances was discovered during devel-

opment. Rather than displaying all objectives at the same time and requiring the

designer to manipulate the plan with all of them displayed, which will usually re-

quire a high cognitive burden, one method is to use a hierarchical approach. First

display only those objectives with the highest importance, and manipulate the plan

until those are met, then iteratively display the successively less important objec-

tives, with each iteration attempting to improve the plan. This process could even

be automated in a manner similar to simulated annealing.

Much effort was expended to implement levels of importance, with the intent

to allow the user to set different levels of importance for different design objectives.

In order for this ability to be useful, however, changing the level of importance of a

number of objectives by a significant amount should result in a significantly different

result. This was not seen. Possible reasons are that 1) the averaging method inherent

in the use of springs precludes this level of semantic fidelity, 2) the maximum strength

of the springs was not high enough, or 3) the level of importance scale should be

non-linear, such as logarithmic, instead of linear.

7.1.2. Modeless interaction

The prototype made extensive use of modeless interaction; the user could interact

with most of the elements in the drawing area directly, without explicitly selecting a

menu command. This kind of interaction was very useful and quick, and along with

the active help could probably be learned by the user in a fairly short time. For small

applications this methodology could be extremely useful. For larger applications such

as a complete computer aided design application this methodology is probably not
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as useful because of the large number of objects the user interacts with and the large

number of commands used to interact with those objects. However, if a core set of

objects and commands could be identified, and if that set could be ‘ordered’ into a

logical and intuitive list, it is possible that this could increase the usability of even

very complex applications.

7.1.3. Thumbnails

The thumbnails window provides a means to quickly save and restore a number of

design states. This is a potentially very powerful tool. When working on designs

during the conceptual phase, which is the main intent of the physically based space

planning approach, it supports the ability to produce a larger number of design

possibilities in a short amount of time.

7.1.4. Numerical integration

Runge-Kutta 4th order numerical integration was found to be more than adequate

for the purposes of this prototype, and provides relatively fast computation with

reasonable stability. In fact, the midpoint method proved to be quite stable in

most situations. The Euler method, however, provided very unstable systems which

invariably ‘blew up.’ The elements begin to oscillate so much that as a space plan

they rapidly become meaningless and quickly leave the area of the drawing area.

Adaptive step-size methods provide a way to improve the accuracy of a dynam-

ical simulation without greatly increasing the computational cost, and are essential

for some physically based simulations where the accuracy of the behavior is impor-

tant. In non-adaptive methods, the accuracy can be increased by reducing the time

step between state computations (frames), at the expense of increasing the com-

putation time for each frame. Adaptive step-size methods 1) compute a frame, 2)
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estimate the error of the frame, 3) if the error is above a specified threshold the time

step is reduced, 4) and continually loop through these steps until the error is below

a specified threshold. I considered putting adaptive methods in the prototype for

experimental purposes, but felt that they were not necessary for space planning in

particular and probably other design domains in general. Physically based design

seeks to make design elements appear to behave as dynamical elements, but because

designers have no actual experience of perceiving them as dynamical they are not

aware when they may not behave as accurately as they might.

7.1.5. Worked examples

During the vast majority of development, much of the focus was on getting the various

parts of the system to work as originally envisioned, implementing the physically

based simulation system and designing the individual objectives. The focus tended

to be on the parts of the system rather than on the whole or how it would be used

in a real design situation.

Although much manual manipulation was required to achieve the results shown

in figure 5-7, it was obvious that time was saved by using the prototype. No detailed

geometric manipulation was required, such as, “move this wall over here,” or “stretch

this space over there.” The manipulation consisted of moving rooms around and the

detailed positioning of the final result was taken care of by the physically based

system. In other words, the designer’s thoughts were allowed to focus on macro

level design actions rather than micro level command and geometric actions, thus

supporting the supposition that this is a viable strategy for a design process.

However, there is still much work to be done before this approach can be used in

a commercial application. Although the prototype works fast enough on a plan with

half a dozen spaces, going to the residential plan used in the example in section 5.4
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caused a noticeable slowdown in performance. Many necessary features or abilities

are still lacking. These are described more fully in the concluding section as future

work, but include multi-story support, hierarchical space structure, non-rectangular

spaces, and circulation.

7.1.6. Optimization

The physically based space planning technique presented here does not provide an

optimal solution to the space planning problem. An optimal solution is not possible

given the nature of the technique; the final position of a room, for example, is a

result of the average of forces being applied to it, which will rarely result in an

optimal position. My position is that this is not a serious flaw in the technique,

although some may argue otherwise. Its value is not in its automated nature, but

in the quality of the interaction between the designer and the design that it adds

to the design process. Instead of automatically producing an optimal solution, this

approach looks for local optima and depends on the designer to recognize when a

solution is weak and to make appropriate changes by hand to guide the system into

a more optimal configuration.

It is in the nature of the space planning problem that it is NP-complete (Liggett

and Mitchell, 1981b, p. 282), and the goal of many space planning techniques is to

find optimal solutions. This is a natural goal to strive for given the apparent nature

of the problem, its similarity to other layout problems, and the available tools used to

solve them. However, not everyone believes that optimization is a valid goal. Lawson

(1997) lends support to the position that optimization is not of prime importance

by stating that “rarely can the designer simply optimize one requirement without

suffering some losses elsewhere,” and that “there are thus no optimal solutions to

design problems but rather a whole range of acceptable solutions . . . each likely to
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prove more or less satisfactory in different ways and to different clients or users. Just

as the making of design decisions remains a matter of judgment so does the appraisal

and evaluation of solutions.” (Lawson, 1997, p. 123) Similarly, McCullough lends

support to the position that quality is important by stating that “. . . the ultimate

significance of postindustrial technology has to be in serving the need to work well

– and not in automation,” and that “. . . it matters less what the technology can do

alone than what you want to do with it.” (McCullough, 1996) Another argument is

that an optimal solution implies the definition of an optimization function, and that

function itself is not easy to define, and depends very much on who defines it. Each

player in a design project, such as the client, user, or designer, would likely define

a significantly different objective function, resulting in significantly different designs

produced by an optimal automated design system.

This is not to say that physically based space planning cannot be enhanced or

extended to provide a more optimal solution. For example, one potentially beneficial

approach is to employ some form of simulated annealing to determine which set of

initial space positions can produce an optimal topological arrangement, and then

let the user refine the design using the physically based space planning interface.

Another approach would be to integrate this technique with another optimal space

planner that doesn’t provide a manipulative interface. For example, a similar set of

design objectives could be defined for the optimal space planner, which outputs an

optimal plan. This potentially ‘unimaginative’ plan is then input into the physically

based space planning program to allow the designer to manipulate it into a more

aesthetically pleasing form.
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7.1.7. Essence of its usefulness

What characteristics of the prototype were determined to be ‘essential?’ In other

words, what features could be removed and still be left with a useful methodology?

The essence of this approach as used during topological resolution is as a ‘bubble

diagrammer.’ One way to implement such an approach in a physically based system

is simply to have all spaces wrapped with a virtual rubber band. While manipulating

spaces the rubber band would keep them together into a single building, but still

appear to ‘get out of the way’ when one space is moved through a number of others.

None of the topological objectives would need to be modeled as force applicators,

and their primary value would be in visually indicating to the designer whether or

not objectives are being met.

One reason I believe the physically based space planning approach is as com-

pelling as it is is because using and manipulating bubble diagrams is one of the first

techniques learned by all architecture students. What architect hasn’t at one point

in their career cut out pieces of paper for each space and moved them around in

relation to each other?

However, this minimalist approach would remove the potential benefit of using

each objective’s force to measure the ‘fitness’ of a particular design, to use Alexan-

der’s terminology (Alexander, 1964).

Moving from topological to geometric resolution again reveals the power of using

a physically based approach. It would be difficult to remove the force application

implementation of geometric objectives such as alignment, area, and proportion. If

that were done, these objectives would have no way of making the changes to a space

plan that they are designed to make, and the process of design then begins to be

similar to that of traditional CAD.
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7.2. General observations

Here I discuss some general observations about the concepts proposed in section 4,

“A physically based approach to space planning.”

7.2.1. Graphic thinking, design exploration, drawing collaboration

Three somewhat related concepts that characterize a useful design process are graphic

thinking, collaboration, and design exploration. Graphic thinking involves how the

elements of a design drawing or diagram are abstracted to have fuzzy semantic mean-

ings to the designer, for example, “this line represents a wall in this rough position,

instead of one face of a wall in a specific position.” Design exploration involves the

process whereby the designer moves through the design space to visit an adequate

number of possible designs. Drawing collaboration involves how the designer inter-

acts with drawings and diagrams to move in a specific direction within the design

space. One measure of the usefulness of the physically based space planning approach

is to what degree it promotes these related concepts in the design process.

The benefits of using computer aids during the middle and later stages of de-

sign are well accepted. There is little dispute that they improve the process rather

than hinder it. However, these statements cannot be made about design during the

conceptual stage, as few computer aided applications truly support the quick, loose,

sketchy freedom of idea generation required during conceptual design. Ware (2000,

p. 381) notes the importance of supporting diagrammatic interaction:

Possibly the most challenging problem posed in data visualization sys-

tems is to support the way sketchy diagrams are used by scientists and

engineers in the production stage. Discoveries and inventions that began

as table-napkin sketches are legendary. Here is a description of the role
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of a diagram by an architectural theorist (Alexander, 1964, p. 91)

Each constructive diagram is a tentative assumption about the

nature of the context. Like a hypothesis, it relates an unclear

set of forces to one another conceptually; like a hypothesis, it

is usually improved by clarity and economy of notation. Like

a hypothesis, it cannot be obtained by deductive methods, but

only by abstraction and invention. Like a hypothesis, it is

rejected when a discrepancy turns up and shows that it fails to

account for some new force in the context.

It is clear that if creativity is to be supported, the medium must afford

tentative interactions. Imprecise, “loose” sketches gain from a lack of

precision that affords multiple interpretations. The fact that a line can

be interpreted in different ways . . . can be a distinct benefit in enabling a

diagram to support multiple tentative hypotheses. The sketches people

construct as part of the creative process are rapid, not refined, and readily

discarded. (emphasis added)

The automated nature of a physically based space planning approach affords

tentative interactions because it removes much of the precise interaction required of

the user, who thinks at the level of “I want to move this space somewhere over here,”

rather than “I want to move this space to this specific position.” This character-

istic strongly suggests that the approach enhances design exploration, because the

designer can produce a large number of designs in a small amount of time.

The physically based nature of the approach active during direct user interaction

strongly suggests that it enhances design collaboration, because of the ‘tactile’ quality

of interacting with its elements in an experientially familiar physical manner.
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There is less support, however, to suggest that the approach enhances graphic

thinking. Walls remain semantically walls, and spaces remain spaces during manip-

ulation and design analysis, and never ‘jump’ to other meanings during the design

process, as happens with hand-drawn diagrams. Possible exceptions might be during

topological resolution when spaces overlap and if design objective forces are displayed

as shown in figure A-21. These non-reality based elements displayed in the plan may

invoke semantically different meanings in the mind of the designer and may spark

new and interesting design possibilities.

7.2.2. Automated space planning vs. a manual interactive experience

The inspiration for and much of the work toward the proposed approach was in its

automated potential. The original intent was to provide a means to automate the

space planning process. However, compared to the many other methods of auto-

mated space planning, this method suffers from many problems, and indeed cannot

automatically produce very good space plans.

However, once the prototype was essentially working, the benefits of this ap-

proach shifted from its automated nature to the manipulative experience it can give

the user. It does automate parts of the process, but it is valuable not because of

that, but because the experience of working with the space plan in a physical and

manipulative way is so compelling. The user is encouraged to play with the design,

explore new ideas, discover new relationships.

7.2.3. Newtonian physics vs. modern physics

A natural question to ask given the hypotheses presented here is “If Newtonian

physics can be applied to design imagery, why not more advanced physics theories

such as Einstein’s theories of relativity or quantum mechanics?” After all, these more
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modern theories have experimentally proven to be more representative of reality than

has Newtonian dynamics.

A reply to this question is that modern theories may be more representative

of reality, but not at the everyday level of reality that humans can perceive and

intuitively understand. This assertion is supported by none other than Stephen

Hawking:

Einstein’s general theory of relativity predicted a slightly different motion

from Newton’s theory. The fact that Einstein’s predictions match what

was seen, while Newton’s did not, was one of the crucial confirmations of

the new theory. However, we still use Newton’s theory for all practical

purposes because the difference between its predictions and those of gen-

eral relativity is very small in the situations that we normally deal with.

(Newton’s theory also has the great advantage that it is much simpler to

work with than Einstein’s!) (Hawking, 1988, p. 10)

Newtonian dynamics attempts to explain the motion of bodies as a result of

forces acting upon them. It does not, however, fully explain the motion of bodies.

Einstein’s General Theory of Relativity encompasses Newtonian dynamics in explain-

ing more of the observable phenomena of motion. Despite the fact that Newtonian

dynamics does not fully explain the motion of bodies, it is adequate in explaining

that motion operative at the experiential level of humans. We cannot observe with

our own senses light bending around stars due to the curvature of space, so this fact

has little, if any, impact on the way we interact with our environment. Our senses,

however, are able to observe the motion of bodies due to gravity, how they react to

collisions, how they are affected by the viscosity of air and water, and many other

phenomena that Newton described. These ‘facts’ form the basis for our experience
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of and understanding of the physical elements of our environment.

7.2.4. Possible reasons for being compelling

When presented informally to architects, educators, students, and even lay people

the prototype application is almost universally well received. It is conceptually very

easy to understand the intent of the approach from the simple statement “imagine

moving spaces connected with springs,” and very easy to envision how this approach

might be used to aid in solving the space planning problem. What might be some

reasons for the positive reaction?

One reason may be that it is possible people are drawn to a physically based

approach to space planning because they are unfamiliar with existing approaches,

which may be just as exciting to them as this one. Despite four decades of research

into automated space planning, few commercially available software packages employ

the results of this research, and no widely used software packages use automated

space planning techniques. It is likely that the majority of architectural educators

and virtually all architectural students are unaware of any approach to automated

space planning. At conferences where the majority of attendees are researchers in

this field, most of them are probably aware of many approaches to automated space

planning. For these people though, their cognitive exposure to these ideas is probably

limited to reading technical papers and viewing author’s presentation, and not with

having first hand experience with using prototype software applications. In this

sense, when confronted with an application that appears to work, they may still

be considered to not be familiar, at a design level, with other approaches to space

planning.

Another reason may be that people are drawn to the ‘WOW’ factor, that is, to

the novelty of the software. Few people, even CAD researchers, have been exposed
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to physically based modeling, and fewer still understand the principles behind its

use. And none have ever seen the rooms and walls of a space plan moving around

dynamically, as if they were alive. In their experience, elements move because they,

the designer, are directly causing them to move through some elementary graphic

command in a CAD program. The novelty of viewing a dynamical space plan may

not transfer to using a physically based space planning tool to solve real design

problems.

A third reason may be that manipulating design objects as if they are sepa-

rate physical entities with their own mass and substance is directly related to our

experience of manipulating real world objects. We are intimately familiar with how

real objects move and relate to others under the influence of environmental forces,

so it may not be such a stretch to see and interact with design objects that behave

similarly. This reason does support the use of a physically based approach to design.

A fourth reason may be that designers are interested in using this approach

because it is closely related to how they think about designs. If it can be shown that

a designer’s mental imagery during the process of design behaves as a dynamical

system, then a computer aided design tool that presents design elements as dynamical

elements should be of compelling interest to designers. A first outline of this theory

is presented in section 8, “Theoretical Implications.”

The last two reasons, if accurate, provide support for a physically based approach

to design, while the first two reasons do not.

7.2.5. Holistic nature

One of the significant characteristics of this physically based approach to space plan-

ning that became apparent after reviewing a number of other approaches is its holistic

nature. The hypothesis of this dissertation is that the space planning process can be
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modeled using physically based mechanical metaphors. In this work I have shown

that space plan elements and design objectives can be defined as virtual mechani-

cal objects, the collection of those elements can be used in a dynamical system to

compute a space planning solution, and then the user can interact with the solution

to modify it by applying forces that are themselves models of the same mechanical

objects. Representation, computation, and interaction are all encompassed within

the same dynamical system.

It is highly doubtful that any other approach to automated space planning can

make this claim. The physical elements of the plan are usually represented in some

geometrical or spatial manner, and the design objectives are usually represented in a

completely unrelated manner. The computation of a potential space plan given these

representations is usually highly complex and highly iterative in nature. Finally, in

the rare event that a particular method accommodates user interaction, it is usually

implemented using basic geometric CAD commands such as move, stretch, scale, etc.

For example, iterative approaches such as Weinzapfel and Handel (1975), Liggett

and Mitchell (1981b), and Akin et al. (1988), where a design solution is changed from

one state to another by iteratively evaluating one or more spaces, are not holistic.

Each space is considered only in relation to the spaces already placed, and the order

in which the spaces are evaluated affects the final solution. In contrast, the approach

proposed here considers all spaces and all design objectives simultaneously while

computing the next design state.

In physics and mathematics simple theories are thought to be beautiful and

often prove to be correct relative to more complex theories. As Albert Einstein

says “things should be made as simple as possible, but not any simpler.” A related

sentiment in the field of design, by Antoine de Saint-Exupery is “you know you’ve

achieved perfection in design, not when you have nothing more to add, but when you
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have nothing more to take away.” So, even if it turns out that the approach does

not have the practical application that we hope it does, its holistic nature seems to

be an important characteristic in itself in illuminating the design process.

7.3. Summary

I feel that my prototype system provides a convincing demonstration of the attrac-

tiveness of the responsive design approach and the use of physically based methods

in implementing this approach. The prototype effectively demonstrated the con-

cepts defined in section 4, “A physically based approach to space planning,” and

revealed the importance of a highly manipulative user interface for the designer and

the benefits of using a physically based approach to provide that manipulation. All

of these observations remain subjective in nature, however, and will require much

future empirical research to either support or refute them.

The work presented here may have theoretical implications beyond simply a new

model for space planning, and may reveal something new about design cognition. In

the next section I will discuss an interesting though speculative theory of ‘dynamical

design imagery,’ which proposes that, rather than being static ‘pictures,’ the elements

in a designer’s mental imagery during the act of design are dynamic in nature and

act as a dynamical system.
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8. THEORETICAL IMPLICATIONS

While speculating on why the approach presented here was compelling to many

viewers, a theory emerged that may describe cognitive processes active in a designer’s

mind during the act of design. This theory, which I call dynamical design imagery,

postulates that the mental images in a designer’s mind during the act of design are

dynamical in nature and that the elements of those images behave as elements in a

dynamical system.

If this theory can be shown to have validity, it has significant implications for

the development of computer-aided design applications. A designer’s desire to use

one tool over another might suggest that there is a correlation between the way the

tool works and the way the mind works, that is, there is a better fit between tool

and mind. So, if it can be shown that an element of physics exists in cognitive design

processes, tools that respect that element, use it, and support it, are more likely to

be easier to use, and by extension produce better results.

8.1. Dynamical design imagery

For millennia our view of the intermediate products of the design process, drawings,

has been essentially static. This view is partly due to the fact that the final products

of design, such as a building in the area of architectural design, tend to be static. It is

also due to the technological tools of the time, whatever that time may be before the

present. Drawings are themselves static, whether produced with pencil and paper or

more recent computer aided design tools. Even when viewing unconstructed build-

ings with animation tools such as virtual walk-throughs, the elements of buildings

are still cognitively understood as being static.

Dynamic terminology is often used to describe the images in designer’s minds
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during the process of design (such as Arnheim (1977) and McKim (1972)). In these

descriptions this dynamic terminology is limited to notions of movement, without

an underlying understanding or description of how the movement is accomplished.

Yes, design imagery is dynamic. But how is it dynamic? What does it mean that

the images are dynamic? What additional insight can this idea bring to the design

process? How can design tools be created to support a dynamic view of design

imagery? Can such tools improve the quality of the design process and of designs?

Is there more to dynamic design imagery than simple movement or change?

A theory began to emerge during the development of this dissertation that

begins to include notions of dynamic systems in the cognitive design process. I

call this theory dynamical design imagery. Dynamical, because it contends that the

elements of the cognitive design process behave as a dynamical system; not simply

’dynamic,’ which connotes ‘change’ instead of specifically ‘change based on physical

dynamics;’ and imagery, because the theory applies to the mental representations of

the focus of the design problem, not on the physical representations, such as drawings

or models. Some hypotheses that result from this theory are that design imagery is

dynamical in the sense that its elements behave as a dynamical system, that viewing

design imagery as a dynamical system can improve our understanding of the design

process, and that design tools that treat design elements as dynamical provide a

better fit between the manipulable and mental elements of design.

Some have hinted at the dynamical character of mental processes. McCullough

references Focillon (1934) in his discussion of The Phenomenon of Handicraft ;

Focillon addresses the dynamics of creativity, for which he argues that

art must be tangible. Object form, he asserts, is the one way to record

the flux of forms that occurs in space, in matter, and especially in the
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mind. The apprehension and giving of form is a dynamic process, rather

than a static code; giving form gives works their meaning. Of course the

givers of form are the hands. (emphasis added) (McCullough, 1996)

Bohm and Peat expresses how imagination can be thought of in physical, dynamic

terms:

Literally imagination means ‘the ability to make mental images,’ which

imitate the forms of real things. However, the powers of imagination

actually go far beyond this, to include the creative inception of new forms,

hitherto unknown. These are experienced not only as visual images,

but also through all sorts of feelings, tactile sensations, and kinesthetic

sensations and in other ways that defy description. The ability of Mozart

and Bach to sense whole musical works all at once could be regarded

as a kind of musical imagination. The activity of the imagination does

not therefore resemble a static-picture but rather it is closer to a kind of

“play” that includes a subtle orchestration of feelings, as well as a sense

of intention and will. (Bohm and Peat, 1987, p. 261–262)

There is empirical evidence that some mental processes are analogous to physical

processes. If a person has stored a mental image of a familiar object viewed from a

set orientation, and is viewing a similar object at a different orientation and trying

to determine if they are the same, she will mentally rotate the viewed object until it

aligns with the stored image. The interesting thing is that the greater the difference

in orientation of the viewed object to the stored object, the longer it takes to perform

the mental rotation. In this case, the mental process of rotation is similar in function,

application, and time to the physical process of rotation. Figure 8-1 shows some of

the figures used in an experiment. During the first part of the experiment subjects
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were taught a number of figures in set orientations, such as that on the left. Then

they were shown the same figure but at a number of randomly selected orientations.

It was found that the “the farther it would have to be rotated to be aligned with the

nearest familiar view, the more time people took.” (Pinker, 1997, p. 280)

0 45 90 135 180° ° ° ° °

Fig. 8-1. Mental rotation [redrawn from (Pinker, 1997, p. 281)]

I present a number of arguments to help support a theory of dynamical design

imagery. One draws parallels between the physical process of modeling clay and the

mental process of design. Another provides a direct argument using recent theories of

cognition. A third, more indirect, argument attempts to incorporate existing models

of the natures of design, cognition, and dynamics into a framework that sequentially

leads to a dynamical model of design imagery from a number of different directions.

8.2. Clay argument

The simplest and probably most compelling argument for a theory of dynamical

design imagery comes from working with clay. Just as a mass of clay is changed from

one state to another with the application of physical forces, designs in the designer’s

mind may change from one state to another with the application of ‘design’ forces

and mentally follow a similar ‘physics’ process.
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In terms of movement through design space, a parallel can be drawn between a

clay model in physical space and an architectural model in mental space or mental

imagery.

In modeling clay, changing its shape by applying forces with hands and tools

follows a continuous path through physical space from one shape state to another.

Even adding and subtracting chunks of clay are continuous processes. The design

state of the clay can only change with the application of physical forces.

Do these same rules and processes apply in some way to design imagery? A

designer may have one mental image of a design in a particular state which probably

has a number of features that do not meet the goal state, so the designer’s objective is

for the one state to change into another. It might be possible that a dynamic mental

process takes place whereby one state is transformed into another while maintaining

continuity in the mental design space.

8.3. Cognitive science argument

A direct argument that design imagery is part of a dynamic system comes from

recent research in cognitive science based on the dynamical hypothesis, which says

that “cognitive agents are dynamical systems” (van Gelder, 1998). If the cognitive

processes of the brain can be shown to be part of a dynamical system, then a specific

cognitive process, such as design, is also likely to be a part of a dynamical system.

Then an effort should be made to explain particular aspects of the design process in

terms of a dynamical system, as well as explain how design tools can be created to

support this mental model of design.

The prevailing explanation for how human cognitive processes work is called the

computational hypothesis. The computational hypothesis says that “cognitive agents
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are digital computers” (van Gelder, 1998), which is based on the work of Newell and

Simon (1976). It says that cognitive agents, such as humans or computers, are

physical symbol systems. They store quantitative bits of information about their

environment, and use an algorithmic process to modify those stored values, resulting

in a change in the values and some type of action in the environment.

In contrast, the dynamical hypothesis says, as stated before, that cognitive

agents are dynamical systems. The difference between these hypotheses is best ex-

plained by contrasting the two.

The computational hypothesis recognizes that states change over time, but time

itself is not a quantifiable variable. In the dynamical hypothesis, time is a quantifi-

able, essential element of a dynamic system, in that its state changes in time. Thus,

the rate of change of state becomes an essential characteristic.

In the context of a state space, which is the hyper-space of all possible states of

a ‘system,’ the computational hypothesis recognizes the difference between states.

However, the dynamical hypothesis recognizes the distance between states.

The dynamical hypothesis recognizes that cognitive processes are situated or

embedded in a context; that is, the environment plays an integral role in cognitive

processes and can’t be excluded. The computational hypothesis does not account

for environmental context.

The computational hypothesis says that representations are a key factor in the

cognitive process. The dynamical hypothesis treats representations as another ele-

ment in a dynamic system, and says that representations can change in time as any

other quantifiable variable, and in fact may not be present at all.

A closer look at these differences between the computational hypothesis and the

dynamical hypothesis reveals that the dynamical hypothesis contains all elements

of the computational hypothesis, but adds additional considerations. The relation-
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ship between these two views can be compared to that of the physics of Einstein

and Newton; Einstein’s theory of relativity does not replace Newtonian dynamics,

but includes it and explains even more natural phenomena than does Newton. For

example, the dynamical hypothesis extends the computational hypothesis notion of

time to include rates of change in time; the dynamical hypothesis extends the com-

putational hypothesis notion of the difference between states to include the distance

between states; the dynamical hypothesis accounts for the environment where the

cognition occurs whereas the computational hypothesis does not; and finally, the dy-

namical hypothesis extends the computational hypothesis notion of a representation

to include the possibility of representations themselves changing over time.

The dynamical hypothesis says something about the space around a state. The

computational hypothesis describes a state and how it might be different from other

states, but with the dynamical hypothesis, seeing a state in motion says something

about the ‘landscape’ around the state, revealing more information.

Because the dynamical hypothesis encompasses all of the phenomena of the

computational hypothesis and more, it should, in theory, explain more cognitive

phenomena and be able to be applied to more cognitive situations.

If cognitive processes can be shown to be dynamical systems, then it probably

holds that specific cognitive processes are also dynamical systems (as long as the

specific process is not at too elementary a level). The act of design by a human is a

specific cognitive process. Therefore, based on the dynamical hypothesis of cognitive

science, the act of design by a human is a dynamical process. The act of design

involves a wide variety of information types, such as textual, graphical, quantita-

tive, and so forth. By extension of the previous argument, the act of processing

those information types is also a dynamical process (again, without decomposing

into atomic elements). The goal of the design process, at least for the definition of



165

design as discussed here, is a building or other geometrically defined entity. The

focus of the design process during the act of design is a representation of that entity

that uses graphic elements. Therefore, the graphical representation of the goal of a

design process is a dynamical system.

Van Gelder supports the application of the dynamical hypothesis to sub-processes

of cognition when he says,

In the prototypical case, the dynamicist focuses on some particular aspect

of cognition and proposes an abstract dynamical system as a model of

the processes involved. The behavior of the model is investigated using

dynamical systems theory, often aided by simulation on digital comput-

ers. A close match between the behavior of the model and empirical

data on the target phenomenon confirms the hypothesis that the target

is itself dynamical in nature, and that it can be understood in the same

dynamical terms. (emphasis added)

‘Design’ is the “particular aspect of cognition” on which the dynamical hypothesis

will be focused.

A greater understanding of the design process as a dynamic system, and the

application of that understanding to the design of tools that aid in the design process

should yield better design tools.

8.4. Design-mind-motion argument

The Design-Mind-Motion argument shows that successive combinations of three

fairly distinct major concepts lead to dynamical design imagery.

Figure 8-2 shows overlapping circles, each circle representing three major con-

cepts of Design, Mind, and Motion. Overlapping areas of two circles yield combi-
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Fig. 8-2. Dynamical Design Imagery - the three major concepts of Design, Mind, and

Motion

nations of the two concepts, and overlapping areas of all three in the center yield

Dynamical Design Imagery. The argument ’flows’ from the outside to the inside,

showing that combinations of a large number of existing theories and ideas can lead

to a theory of Dynamical Design Imagery.

It may appear that the choice of the three major concepts is arbitrary, but it

can be argued that they represent aspects of broader, unique, fundamental concepts.

There are many ways of describing these concepts in terms that are coherent to each

other. Separating concepts into three major areas seems to be a common occurrence,

and table 8-1 lists some. It is interesting to relate each triad relative to each other,

as was intended when each was originally defined, but it is also interesting to look

at each column and see the similarity between them.

The Mind is the most irreducible concept of the three. It represents cognition,
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Table 8-1. Similar Mind/Motion/Design separations
Mind Motion Design

Mentality Physicality Intentionality
Mind Body Spirit

Awareness Existence Action
Consciousness Reality Causation
Consciousness Reality Thought (Combs, 2003)

Intellectual Physical Emotional Biorythms
Significance Soma Energy (Bohm, 1995)

Meaning Matter Energy
Subtle Manifest
Viable Capable Desirable (Cooper, 1999, p. 72)

Business Engineering Design
Exotic Dorsai Friendly (Dickson, 1959)
Mind Brain Chaos (Pinker, 1997, p. x)

Perception, Reasoning Social Relations Emotion

thought processes, awareness of existence, logic, etc.

Motion is the most reduced concept of the three. It actually is just one aspect

of existence, or physicality. Motion is an essential characteristic of physical objects.

It can be argued that the existence of objects is unimportant if some notion of their

interaction is not taken into account - objects exist not in themselves, but in their

interaction with others.

Design represents the process whereby objects that exist are rearranged or mod-

ified with some purpose in mind (or Mind, in this context). A word that aptly de-

scribes the concept of Design is intentionality. Design is the connection between the

Mind and the Body.

At a higher, more philosophical level, it can be argued that these three major

concepts are inseparable, and that the three circles representing each fully overlap.

Mind cannot exist outside a physical context and has no purpose if it has nothing

to Design. Design cannot occur without Mind to guide it and without Motion on

which to operate. However, this argument breaks down with Motion. Motion and
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physicality can exist without Mind or Design, which may indicate that the triad of

concepts is not adequately formed.

It is useful nonetheless to describe each concept as a separate entity, thereby

enabling understanding and insight of new concepts from different directions and

perspectives. Separating and understanding the major ideas, and subsequently com-

bining them back together again, leads toward the argument for Dynamical Design

Imagery. I recognize that choosing which concepts are relevant in the combinations

represents a type of ‘spin’ placed on the argument, and that other choices may yield

different, possibly conflicting, though valid results.

With this overlap of major concepts it is inevitable that some ideas discussed

relative to one may also be applicable to others. For example, decision making is an

integral part of the Mind and how an entity interacts with its environment. But it is

also an integral part of the nature of Design; design is a process of solving problems,

which necessarily includes an element of decision making.

Figure 8-3 shows the same diagram as that shown in figure 8-2, with some char-

acteristics of the three major concepts listed. These characteristics are not complete,

and may not even be the most important ones for their respective concepts, but are

meant to be a starting point for future comparisons.

Characteristics of the nature of design include design states, a single instance of

a possible design; design space, the space of all possible designs for a given design

problem; and design processes, the wide variety of methods designers use to arrive

at design states within a design space.

Characteristics of the nature of the mind include cognition, imagination, and

learning.

Characteristics of the nature of motion include physics, our mathematical and

conceptual understanding of how bodies move in relation to each other; simulation,
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Fig. 8-3. Dynamical Design Imagery - some characteristics of the three major concepts

ways to more simply represent the complex motion of bodies; and systems, ways to

define and work with a set of bodies.

Given the three major concepts just described, we can show that a wide variety

of theories and ideas are combinations of two of these concepts. Figure 8-4 shows

the same diagram as that shown in figure 8-3, with some theories and ideas listed in

the three different overlaps of each combination of the three major concepts. These

theories and ideas will only be mentioned here to give an idea on how the Design-

Mind-Motion is structured. A more thorough description is left for future work.

Combining characteristics of the mind and of design yields theories such as per-

ception, visual thinking, graphic thinking, reflective thinking, and spatial thinking.

Combining characteristics of design of of motion yields theories such as dynamic

form, dynamic behavior, design simulation, and design exploration. Finally, com-

bining characteristics of the mind and of motion yields theories such as kinesthetic
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Fig. 8-4. Dynamical Design Imagery - theories as combinations of two major concepts

thinking, kinesthetic imagination, and kinesthetic learning.

Figure 8-5 shows that the theory of Dynamical Design Imagery is a combination

of all three major concepts, as shown in the overlap of all three circles. As the

three arrows in the diagram attempt to show, when the theories and ideas of the

dual combinations are in turn combined with the missing major concept, dynamical

design imagery emerges.

Graphic thinking, a combination of mind and design, is a theory proposed by

Laseau (1980) that the sketch itself and the designer’s mind work in concert with

each other, and that the act of sketching is an important part of the process. Add

the missing concept of motion to this idea, and you have sketches that are in motion,

and the designer thinking about and interacting with the elements of those sketches

using tools that support that motion.

Design exploration can be thought of as a combination of design and motion,
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Fig. 8-5. Dynamical Design Imagery - a combination of all three major concepts

in that it is movement through a design space. Add the missing concept of the

mind to this idea, and you have thinking about design as movement, the cognitive

process of design exploration with an intuitive understanding of how a design space

is structured and how to move from one state to another within that space.

Kinesthetic imagination, a combination of the mind and motion, is the ability

to imagine the motion of objects. When we think or dream about objects they

typically move in our minds while obeying the laws of physical motion. Add the

missing concept of design to this idea, and you have kinesthetic imagination applied

to the design process, imagining the elements in the design process as moving in

relation to each other, and obeying their own physical laws.

These are just three of the many possible paths from a single concept of mind,

motion, or design, to a combination of all three, all of which can be thought of as
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some aspect of dynamical design imagery.

8.5. Summary

During the development of the ideas presented in this dissertation, a theory emerged

that the mental constructs of a designer’s mind during the process of design are

part of a dynamical system. Three arguments to suggest support for the theory

were presented. The first argument is fairly direct and intuitive, and compares

the cognitive design process to the act of modeling clay - “the design process ‘is’

like modeling clay.” The second argument is also fairly direct, although much less

intuitive, and is based on recent theories in cognitive science - “a cognitive process

‘is’ dynamical in nature rather than computational in nature.” The third argument

is much more indirect, and attempts to encompass many existing theories by showing

that they are combinations of the three major concepts of mind, motion, and design,

and that dynamical design imagery is a combination of all three.

This theory is admittedly highly speculative, but nonetheless interesting. As

stated earlier, if it can be shown to have some validity it will have significant im-

plications for the design of computer-aided design systems. An enormous challenge

remains in designing appropriate experiments to produce empirical evidence that the

theory is correct.
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9. CONCLUSIONS

The primary assumption of this research is that a digital design tool based on a

physics paradigm can facilitate the architectural space planning process. This as-

sumption lead to these hypotheses: Newtonian dynamics can be used

1. to define mechanical metaphors to represent the elements in an architectural

space plan,

2. to compute architectural space planning solutions, and

3. to interact with architectural space plans.

To address these hypotheses I have described and implemented a physically

based space planning methodology, showing that space plan elements and design ob-

jectives can be defined using mechanical metaphors, the collection of those elements

can be used in a dynamical system to compute a space planning solution, and the

user can interact with the solution to modify it by applying forces that are themselves

models of the same mechanical objects. I found that an important characteristic of

this approach is that representation, computation, and interaction are all defined

using the same paradigm. This contrasts with most approaches to automated space

planning, where these three characteristics are usually defined in completely different

ways.

These hypotheses raised two questions. The first question was one of represen-

tation: How can the elements in a space planning design problem be modeled with

mechanical analogues? Given this representation, the second question was one of

implementation: How does an implementation of this representational model work?

In answer to the question of representation, I found that it was possible to model

the elements of a space plan using physically based techniques, despite the fact that
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there was not a one to one correspondence between what the technique was meant

to simulate in the physical world and how the design element behaved in the mental

world. For example, a wall is not a point mass, yet a point mass was used to represent

a wall in the design simulation. Some of the design objectives, such as exterior and

interior objectives, took a number of iterations before they were reasonable. But

for the most part there was an appropriate physical analog for design elements and

objectives.

In answer to the question of implementation, I successfully developed a proto-

type software application that implemented the design elements as they were defined.

Based on a subjective evaluation of the prototype implementation, I found that

it demonstrates a feasible process for producing space plans, and that it has the

potential for improving the design process due to quality of the manipulation that it

provides to the designer, and the potential for greatly improving design exploration.

As implemented the proposed approach was somewhat computationally expensive

and may not scale to work effectively on large design problems. However, the results

of the computational complexity analysis revealed some ideas that should greatly

increase its performance. Much further study is required to determine if these results

apply as described to actual design problems.

9.1. Contributions

The primary contribution of this work is a mapping from architectural space planning

concepts to physically based metaphors of mechanical objects. The proof of the

success of this mapping is a working software application, and a demonstration of

its use in creating a sample architectural floor plan.

This work makes a number of unique contributions:
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• It defines physically based representations for a number of architectural

design objectives, using mechanical objects such as springs and force fields

as metaphors.

• It defines a methodology for using these design objectives in a physically

based simulation to compute solutions for architectural space plans.

• Along with these contributions of physically based representation and

computation, it uses physically based direct manipulation to provide a

means for a designer to interact with a space plan by modifying existing

objectives and adding new ones. These three elements, representation,

computation, and interaction, are holistically encompassed within a single

paradigm.

• It describes the implementation of these elements in a prototype soft-

ware application that demonstrates the potential usefulness of the ap-

proach.

• It proposes that the familiar physical nature of design elements during

the process of design helps the design process – by being interactive,

compelling, interesting, responsive, and explorative.

• It introduces a potentially important theory of dynamical design im-

agery, which may provide insight into some characteristics active in the

brain during the process of design.

9.2. Future work

The proposed physically based approach to modeling design objectives is a previously

unexplored concept, and raises many new questions and presents many opportunities

for future work. Some of these are obvious and require answers and elaboration in



176

order to make this approach truly useful to space planners. Other questions are of a

more theoretical, fundamental nature.

9.2.1. Extensions

The concepts presented in section 4, “A physically based approach to space plan-

ning,” and their implementation in the prototype are only a start. There exists

much opportunity to extend these concepts to encompass greater functionality and

usability. Some extensions, such as multi-level and circulation problems, are natural

ones and often the first questions asked by architects after observing a demonstra-

tion. Other extensions, such as using forces to ‘measure’ the fitness of a plan, take

advantage of the physically based nature of the approach and represent new and

interesting opportunities.

9.2.1.1. Other design objectives

The most important design objectives and the ones most required for space planning

problems were described in the previous sections and implemented in the prototype.

Here are some examples of other possible design objectives, and there are no doubt

more.

A gravity objective would be a type of geometric objective that attempts to

remove gaps between adjacent spaces by making them ‘gravitate’ toward each other.

Such an objective might solve the problem of removing undesired holes in a plan.

Field objectives could be defined as a grid of values placed on the plan site,

and could apply forces to nodes depending on their location within the field. They

are similar to what Grant (1983) calls ‘nature-of-the-spot.’ As Grant describes, they

could be used to model physical conditions such as soil type, economic conditions

such as land cost, or social conditions such as quality of a school district.
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Another possible design objective is what Grant (1983) calls a ‘gestalt’ objec-

tive, such as formality/informality. For example, these could be used to imposed

symmetry or balance to a space plan.

All the design objectives described in section 4 and the potential new ones

described above are continuous in nature. However, there exist other kinds of design

objectives that cannot be adequately defined continuously and are discrete. Harada

(1997) has proposed one solution for handling the physically based manipulation of

discrete changes, but it might be difficult to represent such discrete design objectives

in my implementation. Although it might be fairly easy to define a discrete objective

itself as a force applicator, the interaction of such objectives with others might lead

to unsatisfactory behavior. For example, a discrete objective might have two valid

states, A or B. If at one point in time it is in state A, other forces might cause it to

switch to state B, but then the same forces might cause it to switch back to state

A, thereby causing part of the plan to oscillate.

9.2.1.2. Multi level problems

The prototype application only works in two dimensions, and one of the first ques-

tions asked by anyone presented with it is “how will this work in three dimensions?”

Physically based modeling systems typically work in three dimensions, so making the

system work from a mathematical perspective is relatively trivial. The issue, how-

ever, is the nature of the space planning problem, which is inherently planar. Except

for unusual cases such as ramped parking facilities and banked velodromes, most

floors in a building are level. This design limitation can be used to advantage when

applying the concepts of physically based space planning to multi-story buildings.

The multi-story space planning problem is essentially a series of two dimensional

problems. Each floor or sub-floor in a building can then be viewed as a separate,
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two dimensional physically based space planning system.

Multi-floor spaces can be defined as a single space that can appear in multiple

systems. Prime examples are elevator and stair shafts. The elevator space can appear

in all floors of a building design, and any design objectives applied to the elevator

may cause the elevator to change location on all floors.

Vertical forces can be applied that influence on what floor the space is located.

For example, if most of the rooms on one floor are under their desired square footage,

while most of the rooms on the floor above are over their desired square footage,

vertical forces may knock rooms from the upper floor to the lower.

9.2.1.3. Circulation

Corridor spaces can be simulated by drawing long thin spaces, but their circular

representation isn’t accurate during topological resolution, which then requires much

manipulation during geometric resolution. A possible solution is to represent corridor

spaces as a series of line nodes rather than a single point node as described in

section 4.1.3, and its area could be defined with a width, instead of both a width

and depth.

9.2.1.4. Hierarchical space structure

As described in sections 4.1.3 and 5.1.3, the space object was designed to represent

a generic space in a hierarchical structure. The prototype space data structure

accounted for the hierarchy, but was not implemented beyond a single hierarchical

level. Interesting issues would inevitably surface if they were to be implemented,

especially regarding how the designer interacts with spaces at different levels of the

hierarchy.

Another issue is the definition and use of a unique shape surrounding a space in
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one level of the hierarchy that contains spaces within it, as shown in figure 4-10.

9.2.1.5. Non-rectangular spaces

The use of rectangular spaces is a useful limitation when developing space planning

methodologies, as mentioned in section 5.1.1. Allowing a variety of space shapes other

than rectangular would be necessary in any useful space planning tool. As described

in section 4.1.2, defining shapes in a physically based space planning systems is not

exactly straightforward, and a number of issues peculiar to this approach are bound

to arise.

9.2.1.6. Functional strain

When parts of a physically based space plan are over-constrained and the plan is

at equilibrium, design objectives are still applying forces to nodes attempting to

move them. The magnitude of these forces is information about the plan that can

potentially be put to use as a measure of the ‘fitness’ of a plan.

The potential energy of a body is its energy of position, and might be used

to measure a design’s functional strain; that is, to measure how far off a design is

from its set of design objectives. If a plan completely satisfies all design objectives

it will have a functional strain of zero. Otherwise it will have a positive functional

strain. Two plans can then be compared by evaluating this measure – the plan with

the lower functional strain value is a ‘better’ design than the other one.

The potential energy of a body is a function of all the forces acting on it, and it

is possible that a body has a potential energy of zero even when a number of large

forces might be acting on it. For this reason potential energy itself cannot be used

as a measure of functional strain. One solution to this problem is to take the sum of

the potential energy, and better yet the square, of each individual design objective.
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This is a classic measure used in optimization and has the effect of de-valuing small

errors and over-valuing large ones.

Given a methodology for measuring the fitness of a plan, two plans with a

similar set of design objectives can be compared. This approach should work without

requiring a true dynamical simulation; that is, it works on static plans.

9.2.1.7. Structured design process

Section 4.3 outlines the process of creating a space plan using the proposed physically

based approach. To summarize, it is an iterative process of topological resolution,

geometric resolution, and user interaction. In the prototype it is possible to automate

the switch from topological resolution to geometric resolution. One area of study is

to determine the usefulness of this automation, and to find ways in which this process

can be improved. Also, when the user interacts with a plan while the simulation is

running, it can automatically switch from geometric resolution back to topological

resolution. Another area of study is to determine if this is useful to the user, or if it

is more of a distraction.

Alternative processes that relate to current theories of design thinking, such

as the paradigm simulated by Akin et al. (1988), might also be studied. A typical

strategy for solving design problems is to first solve for the most important require-

ments, then try to fit in successively less important requirements. This process could

be automated to try to mimic observed manual processes. For example, instead of

having all adjacencies active from the start, first have only the strong adjacencies

active, run the simulation until it reaches equilibrium, turn on the next strongest

adjacencies, run the simulation, and so on.
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9.2.2. Design process

An obvious and important area of study is how this approach will fit in with current

architectural design processes, or potentially change those processes. Does it ade-

quately solve some of the problems of schematic design? What kinds of additional

work would be required to transition from the conceptual design phase that the ap-

proach appears to aid and later design phases? What about the potential need to

transition back to conceptual design if an area of a space plan must be revisited? Is

it really compelling to designers when they must use it to solve real problems?

Eastman notes that solids modeling has not and will not serve as the “core rep-

resentational scheme within architectural CAD” due to the abstractions inherent in

architectural presentation drawings and the necessity of solid models to be accurate

rather than abstract. He suggests that “another approach involving multiple repre-

sentations is required.” (Eastman, 1987, p. 139) Space planning methodologies in

general are most likely one of the many representations that Eastman speaks of. This

applies especially to physically based space planning due to the highly specialized

physical properties it requires, which would have little use to other representations.

9.2.3. Strengths and level of importance

Each type of design objective has a strength constant specified for it, which is ap-

plied to all instances of that type, as described in section 4.2.1.5.The purpose of

the constant is to scale the effect of the design objectives so that objectives with the

same level of importance maintain the same relative strength to each other. Strength

constants used in the prototype ranged between 1.0 and 500.0, but further study is

needed to determine valid values for these constants. For example, the strength of

exterior objectives might need to be adjusted relative to adjacency objectives so that



182

two ‘Important’ objectives, one of each type, have the same expected effect relative

to each other.

Each instance of a design objective has a level of importance specified for it,

which is applied to all objectives with the same level of importance, as described

in section 4.2.1.4. The values for level of importance range between 0.0 and 1.0,

and its purpose is to differentiate ‘strong’ vs. ‘weak’ design objectives. Further

study is needed to determine how values set by the designer are scaled within this

range. For example, it might be found that a difference of 0.2 between two adjacency

types might not provide a corresponding ‘expected’ difference in a space plan. An

underlying scale, such as a logarithmic scale, might be found to be more appropriate

than the linear scale used in the prototype.

9.2.4. Exposure of physically based nature

The design of an application’s user interface is a continual challenge, especially in

areas where the application is attempting to introduce new concepts and there is a

disconnect between the user’s and the application’s model of the problem. Should

the underlying physically based nature of the approach be exposed to the designer?

What would be the effect on the designer if more specific physically based ter-

minology was used? Or is it important to hide this terminology and attempt to use

terminology that is more familiar to the designer? What physically based graphic

elements are most useful to the designer during the process of design? For example,

the display of objective force vectors could be studied to determine if they are in

any way useful to designers, such as to help answer the design question “Why is this

space where it is?”
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9.2.5. Mass

In this prototype, the mass for all space and wall nodes is set to a value of 1.0.

These mass values might be an additional factor to consider in modeling certain

design objectives. For example, the mass of the center node of a space might be set

based on the space’s level of importance. A space that is important might have a

greater mass than one that is less important, in which case it is less likely to move

due to the influence of the less important space.

9.2.6. Effects on design fixation

Does the proposed approach potentially reduce design fixation? The combined au-

tomated and manual nature of the approach suggests that a designer can quickly

produce a number of designs, save them temporarily using thumbnails, and contin-

ually refine more than one to arrive at a suitable design.

9.2.7. Usefulness with different classes of plan types

How does the usefulness/behavior of this approach differ for different ‘types’ of ar-

chitectural programs? For example, is there a significant difference between ‘tight’

programs with many adjacencies between spaces, such as the counseling center listed

in appendix C, and ‘loose’ programs such as the residence listed in appendix D?

9.2.8. Extension to other design domains

The statement made in the Introduction is that ‘space planning is a suitable domain

in which to develop and test the hypothesis that physically based techniques can be

applied to design processes.’ Can the results of this research be applied to other

design domains? In other words, can the geometric elements in other domains be
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modeled with nodes, and can the design objectives as described here be applied to

those domains?

9.2.9. Integration with other space planning methods

Section 7.1.6 describes the potential of integrating this approach, with its more useful

manipulative abilities, with other approaches that provide more optimized plans.

Further work is possible to determine if there is designs are improved when starting

with a more optimal plan, or if designer control is ‘good enough’ for most design

projects.

9.3. Conclusion

As quoted in Lawson (1997, p. 154), Michael Wilford uses the analogy of a “juggler

who’s got six balls in the air . . . and an architect is similarly operating on at least six

fronts simultaneously and if you take your eye off one of them and drop it, you’re in

trouble.” The physically based space planning approach proposed in this dissertation

should allow the designer to keep more things in mind while exploring the design

space – in effect it allows the designer to ‘juggle more balls.’ More important, it

allows the designer to juggle them better, with more finesse, and more enjoyment.
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APPENDIX A

PROTOTYPE INTERFACE

Fig. A-0. Physically based space planning prototype: Main interface

Physically Base Space Planning, shown in figure A-0, is a prototype application

intended to produce architectural space plans. The main objects that are created

and modified are Spaces, which represent individual physical volumes in or around

a building, and Design Objectives, which represent the intentions of the designer

regarding the location of spaces relative to each other and the dimensions of space

boundaries.
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The purpose of this prototype is to demonstrate the feasibility of an approach

to space planning that models the elements of a space plan as physical masses and

the intentions of the designer as physical forces that act upon those masses.

Since this is a prototype developed for research purposes, many of the controls

that are available would not normally be available in a commercial or ‘working’

application. They exist to support the development of either research ideas or the

software itself.

The main areas of the initial application window are:

Drawing Area. The drawing area is the main control and is located in the

middle of the main application window. All object display and direct user interaction

takes place in the drawing area. Directions to the user as well as potential actions

based on the current cursor position are displayed in the area immediately below

the drawing area. Drawing area graphic elements and interaction are described in

section A.1.4.

Menus. The menu bar is in the standard location along the top of the applica-

tion window. It makes available many commands, options, and system information.

Menu items are described in section A.2.

Simulation Controls. The simulation controls are located on the left of the

drawing area and provide the means to control various aspects of the dynamic simula-

tion environment, such as starting, stopping or resetting the simulation. Simulation

controls are described in section A.3.

Display Tabs. The display tabs are located on the right of the drawing area

and provide the means to control the display of design elements and objectives,

as well as control the strength of design objectives. The different display tabs are

described in section A.4.
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A.1. Drawing area

Space Edge

Space Node

Edge Node

Adjacency Obj.

Separation Obj.

Fig. A-1. Drawing area elements

This section describes all graphic objects that can be drawn in the drawing area.

Figure A-1 shows some of the more common elements.

The elements in the drawing area can be displayed with individual colors on a

black background, or as black on a white background. The colors noted are those

used with the black background.
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A.1.1. Space elements

A Space element represents an individual physical volume in or around a building,

and is modeled internally as masses for the space itself and for the wall surrounding

it. A number of graphic elements are related to features of a single space object or

a collection of spaces. When a space is created it is assigned a random color, which

most of the individual elements also use. The following elements apply to a single

space and are shown in figure A-2.

Office

Space Circle

Polygon Edge

Offset Polygon

Space Name

Wall Node

Space Node

Nail

Fig. A-2. Drawing area space elements

Space Node. A Space Node is a space’s center node, as described in sec-

tion 4.1.3. It is typically a point node, which is represented as a dot. Its color is the

space’s color.

Wall Node. A Wall Node is a node for each edge that defines a space’s polyg-

onal boundary, as described in section 4.1.2. It is always a line node, which is

represented as a dot with a bar through it parallel to the edge. Its color is the
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space’s color.

Polygon Edge. A Polygon Edge is the edge of the polygon defining each Space,

drawn through each edge’s associated Wall Node. Its color is the Space’s color.

Space Circle. A Space Circle is the circular representation of the area of a

space’s polygon. It is used to visualize the internal representation of a space that is

active during topological resolution. Its color is the space’s color.

Name. A Name is text displaying a space’s name. Its color is white.

Offset Polygon. An Offset Polygon is a space’s polygon offset to the outside by

a predefined value representing a wall thickness. The collection of all offset polygons

for a given hierarchical level is used in the polygon union algorithm to find the

exterior boundary of a set of spaces (see appendix E). Its color is the space’s color.

Nail. A Nail is a graphic indication that a space or wall Node cannot move due

to forces applied to it. Its color is white.

Vertices. Vertices, not shown, are small dots that are displayed at the inter-

sections of each pair of coincident edges of a space’s polygon. Their color is white.

Outdoor Space. An Outdoor Space, not shown, has all the properties of

normal spaces as far as space planning is concerned, except that it does not contribute

to the parent polygon (described below) used to represent the exterior face of a

building. It is drawn with dotted lines.

The following elements apply to multiple spaces and are shown in figure A-3.

Node Tree. A Node Tree is a way to visualize the hierarchical connections of all

nodes in a plan. Shaded white lines are drawn between each parent-child relationship

for space nodes, and between each space node and its associated wall nodes. The

node tree lines are dark at the parent node and light at the child node.

Parent Polygon. The Parent Polygon is the union of the collection of offset

polygons for a given hierarchical level. Its color is yellow.



197

Node Tree

Parent Polygon

Fig. A-3. Drawing area space elements (cont.)

Parent Circle. The Parent Circle is the smallest circle that can enclose the

space center nodes for a given hierarchical level.Also drawn with it are two small

circles, one at the geometric center and the other at the center of mass of the

enclosing circle. Its color is gray.

A.1.2. Design objective elements

A Design Objective represents the intentions of the designer regarding the location of

spaces relative to each other and the dimensions of space boundaries. It is modeled

internally as an object that applies forces to space or wall masses (nodes). Some

individual design objectives are shown in figure A-4.

Unless otherwise noted, the color of a design objective is defined by its level of

importance (see section A.4.2).

Adjacency. An Adjacency Objective can be applied to two spaces with the

intent that they be located next to each other. It is drawn with a thin line connecting

the center nodes of the two spaces, overlaid with either a thick line or a spring, whose
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Adjacency Objective

Interior Objective

Alignment Objective

Orientation Objective

Separation Objective

Exterior Objective

Fig. A-4. Drawing area objective elements

length represents its level of importance.

Separation. A Separation Objective can be applied to two spaces with the

intent that they be located apart from each other. It is drawn with a thin line

connecting the center nodes of the two spaces, overlaid with two ‘T’ shaped thick

lines whose length represents its level of importance.

Interior. An Interior Objective can be applied to a single space with the intent

that it be located at the center of a set of spaces. It is drawn as an arrow starting

at the space’s center node, pointing toward the center of mass of the space’s parent

circle. (See Parent Circle in section A.1.1)

Exterior. An Exterior Objective can be applied to a single space with the

intent that it be located on the outside of a set of spaces. It is drawn as an arrow

starting at the space’s center node, pointing away from its parent circle’s geometric

center. (See Parent Circle in section A.1.1)
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Orientation. An Orientation Objective can be applied to a single space with

the intent that it be located on the outside of a set of spaces, similar to an exterior

objective, but in a specified direction or orientation relative to the center of that

set. It is drawn as an arrow starting at the space’s center node, pointing toward

a location on the space’s parent circle, which is found by projecting the specified

direction vector from the parent circle’s geometric center. (See Parent Circle in

section A.1.1)

Area. An Area Objective is implicitly created when a space is created, with

the intent that the space maintains a specified area. It is drawn as a shaded polygon

whose color depends on the difference between the actual area and the intended area.

It is black if the actual area equals the intended area, red if the actual area is smaller,

and blue if it is larger. The intensity (value in the HSV color space (Foley et al.,

1992)) of the color indicates the degree of difference. It is also drawn with polygons

representing the target area and minimum and maximum ranges.

Proportion. A Proportion Objective is implicitly created when a space is

created, with the intent that the space maintains a specified proportion. It is drawn

with polygons representing the intended proportion and minimum and maximum

ranges.

Alignment. An Alignment Objective can be applied to two walls with the

intent that their nodes either align with each other or are offset by a specified amount.

If the alignment is currently not met it is drawn with arrows whose start points are

at each wall node, whose length is the distance required for each node to reach

alignment, and whose direction is toward the point where each node would reach

alignment. If the alignment is currently met, it is drawn as a dot. In addition,

dotted lines are drawn between each node indicating the offset distance and the

distance of ‘misalignment.’
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Fig. A-5. Drawing area force elements on all nodes

Force Vectors. Every design objective, not just those that have their own

graphic representation, can apply a number of forces to the space or wall nodes of

a space plan. Each of these individual forces can be drawn as a colored line whose

length corresponds to the magnitude of the force, starting from the node to which

the force is applied and drawn in the direction that the force is applied. The color for

different types of forces can be defined individually. (see section A.4.3) It is possible

to display forces on all nodes, as shown in figure A-5, or on a single selected node,

as shown in figure A-6.

Instead of drawing each individual force on a node, the sum of all forces applied

to a node can be drawn. This total force is drawn as a green line, similar to the

display of individual forces just described.



201

Fig. A-6. Drawing area force elements on a single node

A.1.3. Miscellaneous elements

There are a few more graphic elements that can be displayed in the drawing area, in

addition to those representing spaces and design objectives.

Collision. A Collision indicator is a small green dot displayed when two spaces

are in contact with each other, with lines drawn from each space’s center node to

the collision dot. Collision display only occurs during geometric resolution, when the

collision detection method is via polygons and not circles. This element was used

during prototype development to debug the dynamic constraints used to maintain

the appropriate distance between spaces. (see section 4.3.2)

Position Vector. A Position Vector displays the change in position of a node,

and is a blue line drawn from the node’s last position to its current position.

Velocity Vector. A Velocity Vector displays the current node’s velocity, and
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Table A-0. Kinetic energy graph colors
Equilibrium Black Background White Background

No Red Gray
Yes Green Black

is a cyan line with a length equal to the magnitude of the velocity, drawn from the

node’s current position in the direction of the velocity.

Coordinate Axes. The Coordinate Axes display the X, Y, and Z axes of the

world coordinate system, colored red, green, and blue, respectively. (XYZ = RGB).

Equilibrium Threshold

Fig. A-7. Drawing area kinetic energy graph

Kinetic Energy Graph. The Kinetic Energy Graph, as shown in figure A-

7, is a display of the kinetic energy in the simulation over a period of time. This

energy measurement is used to determine whether or not the system is in equilibrium,

which is used in turn to automatically change the intersection method from circles

to polygons, as discussed in section 4.3. See table A-0 for the colors used to draw

the graph.
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Table A-1. Basic drawing area mouse interaction
Left Mouse Create and Modify Spaces
Right Mouse Create and Modify Design Objectives
Middle Mouse Change View
Shift Key Constrain in some way
Control Key Miscellaneous option, or customize (unconstrain)

A.1.4. Interaction

The user can interact with the elements displayed in the drawing area with various

combinations of mouse movements, mouse button clicks, and modifier key options.

Table A-1 shows a basic summary or ‘philosophy’ of mouse and keyboard interaction

in the drawing area, and table A-2 shows a complete outline of mouse interaction

in the drawing area for the combinations of mouse-key buttons and drawing area

elements, which are further described below.

The line of text immediately below the drawing area displays the user interaction

required in the drawing area when a specific command is active, as well as potential

user interaction when no command is active and the cursor hovers over different

elements.

Most of the interaction required in the drawing area can be done in a modeless

manner; that is, most commands used to create and modify objects can be implic-

itly activated based on what is currently under the cursor and do not have to be

explicitly activated by selecting buttons or menu items. For example, if the user

clicks and drags a space center node, the space is moved; if a space edge, the space

is reshaped. The discussion below is presented in hierarchical order; for example, if

a space node and a space edge are under the cursor position when the left mouse

button is activated, the command associated with the space node is activated.

Unless otherwise noted, ‘click’ or ‘double-click’ indicates clicking with the left
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Table A-2. Outline of drawing area mouse interaction

Node Edge Vertex All Topo Orientation Alignment

Left
Create
space

Move Resize Resize

Left-Shift
Constrain
to square

Constrain
to axes

Constrain
proportion

Left-Control
Create

outdoor
space

Constrain
area

Right
Display
coords

Create
adjacency

Create
alignment

Modify
strength,

constrained

Modify
direction

Modify
offset

Right-Shift
Modify

direction,
constrained

Modify
offset,

constrained

Right-Control
Create

separation

Modify
strength,
custom

Middle
Middle Wheel
Middle-Shift
Middle-Control

Zoom
Rotate (only in perspective view)

Empty ObjectivesSpaces

Pan
Zoom

mouse button.

Space Node. To move a space, click on the center node of the space, drag, and

unclick to select its new location. The behavior of the space while moving and its

resulting position depends on the currently selected edit method (see section A.2.2).

Pressing the Shift key while dragging will constrain the node position to a horizontal

or vertical direction relative to its position when initially selected.

To add an adjacency objective between two spaces, right-click over one space

node, drag, and unclick over another space node.

To add an separation objective between two spaces, ctrl-right-click over one

space node, drag, and unclick over another space node.

Space Edge. To resize a space polygon, click on any space edge, drag, and

unclick. Edge movement is automatically constrained to maintain a rectangle. The
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space’s area and proportion objectives will be updated to the new polygon.

To add an alignment objective between two space edges, click on one space edge,

drag, and unclick on a space edge from another space. During the dragging process a

gray dashed line will be drawn between the previously selected edge and the current

cursor position. If two edges from different spaces are successfully selected, a red

line will be drawn between the centers of the edges. If the two edges are parallel the

alignment objective will attempt to make them co-linear. If they are perpendicular

the alignment objective will attempt to align one edge with the center of the other.

Space Vertices. To resize a rectangular space polygon, click on any vertex,

drag, and unclick. With no key modifier pressed, the change in shape is uncon-

strained, and the space’s area and proportion objectives will be updated to the new

rectangle. Pressing the Shift key will constrain the rectangle’s proportions, changing

and updating the space’s area objective. Pressing the Control key will constrain the

rectangle’s area, changing and updating the space’s proportion objective.

Space Name. To move a space name, click, drag, and unclick. To change it,

double-click over the name and type the new name in the input box displayed near

it, and enter to change it or press escape to leave it unchanged.

All Topological Objectives. To change the strength of any topological ob-

jective, click on it, drag, and unclick. During dragging the current cursor location

is projected perpendicularly to the line representing the objective, and that point is

used to set the new strength. By default that point will be ‘snapped’ to the nearest

level of importance defined on the Importance tab (see section A.4.2). To customize

the strength or set an unconstrained level of importance, press the control key while

dragging.

Orientation Objective. Orientation objectives have other types of interac-

tion in addition to those provided above. To change the direction of an orientation
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objective, shift-right-click on an orientation objective, drag, and unclick. During

dragging a gray dashed line will be drawn from the space node in the direction of the

current cursor location. While the shift key is pressed and the right mouse button is

down, the direction will be constrained to 45◦ increments; with the shift key up the

direction will be unconstrained.

Alignment Objective. Alignment objectives have other types of interaction

in addition to those provided above. To change the offset value of an alignment

objective, right-click on an alignment objective, drag, and unclick. To constrain the

offset to the nearest foot, hold the Shift key while dragging. To set the offset directly,

double click on it with the left mouse button.

Empty area. To create a new rectangular space object, click when the cursor

is over an empty area of the drawing area to set one corner of the space, drag, and

unclick to set the opposite corner. The new space will have an area objective and a

proportion objective defined by the resulting rectangle. Pressing the Shift key while

dragging will constrain the shape of the Space to a square. To create an outdoor

space, press the Control key before selecting the first corner of the space.

To display the current cursor coordinates, right click. As long as the right mouse

button is down the coordinates will be displayed to the left of the Drawing Area below

the simulation controls.

Pan view. Pan the current view in the drawing area by clicking and dragging

with the middle mouse button.

Zoom view. Zoom the current view in the drawing area by scrolling with the

mouse wheel, or clicking and dragging with the middle mouse button while pressing

the shift key (dragging up will zoom in, dragging down will zoom out).

Rotate view. When the Camera is set to Perspective mode, rotate the current

view in the drawing area by clicking and dragging with the middle mouse button
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while pressing the control key.

A.2. Menus

The menu bar provides access to commands and options not available via the controls

on the tabs or via direct interaction in the drawing area.

Fig. A-8. File menu

A.2.1. File menu

The File menu, shown in figure A-8, contains commands for reading and writing files.

The file format created for the Physically Based Space Planning program is

called an .apf file, for Architectural Programming File, and is described in detail in

appendix B. An .apf file defines a hierarchy of spaces, the adjacency requirements be-

tween spaces, and other information affecting the planning of spaces. It was designed

as a means of defining an architectural space plan from an architectural program,

and to be relatively easy to implement.

New. The New menu item prompts the user to save the current plan if is has

changed, then clears the current space plan from the drawing area.

Open. The Open menu item prompts the user to save the current plan if it has
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Fig. A-9. File Open dialog

changed, displays a file dialog as shown in figure A-9, and opens a selected .apf file

to be displayed in the drawing area.

Save. The Save menu item saves the current plan to an .apf file. If there is no

current filename, the file dialog is displayed to select one.

Save As. The Save As menu item displays the file dialog, and saves the current

plan to the selected .apf file.

Export DXF. The Export DXF menu item displays a file dialog to select a .dxf

file, and exports the current space plan in .dxf format, the Drawing Exchange Format

specified by Autodesk Incorporated (Murray and vanRyper, 1994). This option was

used primarily to create figures for presentation purposes, and was also intended to

provide a means to bring a space plan into a commercial CAD package for further

refinement.
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Quit. The Quit menu item prompts the user to save the current plan if is has

changed, and exits the program.

A.2.2. Options menu

Fig. A-10. Options menu

The Options menu, shown in figure A-10, provides access to setting a large

number of miscellaneous options.

Camera. The Camera flyout menu controls the view direction in the Drawing

Area. The radio buttons set the current projection method to either Orthographic

or Perspective. The Reset item resets the current viewing transformation to the

default view for the current projection method. The Zoom Window item is used

to set the current view to a specified rectangle. The Zoom All item is used to set

the current view to encompass all spaces.

Black and White. The Black and White menu option toggles the display

colors of the drawing area. If it is selected, drawing elements are displayed as black

on a white background, otherwise they are displayed in multiple colors on a black

background.
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Draw Springs. The Draw Springs menu option toggles the display of dia-

grammatic springs for adjacency objectives. When not set, adjacency objectives are

displayed as lines.

Counterbalance Edit Forces. The Counterbalance Edit Forces menu option

toggles the application of forces to counterbalance those applied during editing, and

also depends on the current edit method specified in the Settings dialog window

described in section A.5.3. If this setting is on, for any force applied to a node

during editing, such as when a space node is moved, additional forces are applied to

all other space nodes such that there sum has equal magnitude but opposite direction

to the edit force.

Debug Visibility. The Debug Visibility menu option toggles the display of the

Debug menu and other controls used strictly for debugging.

Font ... The Font menu item displays the Font dialog window, which is used

to set the font for displaying space names. See section A.5.1.

Thumbnails ... The Thumbnails menu item displays the Thumbnails dialog

window, which is used to easily save and restore a number of plans during their

conceptual development. See section A.5.2.

Settings ... The Settings menu item displays the Settings dialog window, which

is used to control some miscellaneous settings, most controlling the physically based

simulation. See section A.5.3.

A.2.3. Spaces menu

The Space menu, shown in figure A-11, contains items used to create and delete

spaces.

Space. The Space menu item is used to create a rectangular space element in

the drawing area. It is an alternative to the more useful direct interaction method
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Fig. A-11. Spaces menu

described in section A.1.4. After selecting the item, click on a point in the drawing

area to set one corner of the rectangle, drag, and click on another point to set the

opposite corner.

Delete Space. The Delete Space item is used to delete a space element in the

drawing area. After selecting the item, click on either a space node or a space edge

to delete a space.

Nail. The Nail menu item is used to anchor or ‘nail’ a space node so that it

cannot move during the physical simulation. After selecting the item, select a space

node.

Unnail. The Unnail menu item is used to unanchor or ‘unnail’ a space node

that is currently nailed so that it is free to move. After selecting the item, select a

space node.

A.2.4. Objectives menu

The Objectives menu, shown in figure A-12, contains commands for creating a num-

ber of the Design Objectives described in section 4.2.

A.2.4.1. Topological Objectives

Adjacency. The Adjacency menu item is used to create an adjacency objective (sec-

tion 4.2.5.1). After selecting this item, select two space nodes. Adjacency objectives

can also be added directly in the drawing area, as described in section A.1.4.
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Fig. A-12. Objectives menu

Separation. The Separation menu item is used to create a separation objective

(section 4.2.5.2). After selecting this item, select two space nodes. Separation objec-

tives can also be added directly in the drawing area, as described in section A.1.4.

Interior. The Interior menu item is used to apply an interior objective (sec-

tion 4.2.4.1) to a space. After selecting this menu item, click on a space node. A

green line is drawn from the space node pointing to the center of all its sibling spaces.

Exterior. The Exterior menu item is used to apply an exterior objective (sec-

tion 4.2.4.2) to a space. After selecting this menu item, click on a space node. A

green line is drawn from the space node pointing away from the center of all its

sibling spaces.

Orientation. The Orientation menu item is used to apply an orientation ob-

jective (section 4.2.4.3) to a space. After selecting this menu item, click on a space
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node, and then drag in any direction. A red line is drawn from the space node point-

ing in the direction specified. If the Shift key is pressed while dragging the direction

is constrained to 45◦ increments.

Delete All Direction Objectives. The Delete All Direction Objectives menu

item is used to delete all interior, exterior, and orientation objectives in the current

plan.

A.2.4.2. Geometric Objectives

Area. The Area Objective menu item is used to create an area objective for a

single space. After selecting this item, select a space. Note that area objectives are

automatically added to spaces when they are created. This command will only have

an effect if an area objective is explicitly deleted on a space.

Proportion. The Proportion Objective menu item is used to create a propor-

tion objective for a single space. After selecting this item, select a space. Note that

proportion objectives are automatically added to spaces when they are created. This

command will only have an effect if a proportion objective is explicitly deleted on a

space.

Alignment. The Alignment Objective menu item is used to create an alignment

objective between two space edges. After selecting this item, select the edges from

two different spaces. Alignment objectives can also be added directly in the drawing

area (see section A.1.4).

Delete Area. The Delete Area menu item is used to delete an area objective

from a space. After selecting this item, select a space node or edge. The Delete

Objective menu item describe later can also be used to delete an area objective,

but requires selecting the area objective directly. The Delete Area menu item was

included because often the space itself obscures area objective graphics, making them
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difficult to select.

Delete Proportion. The Delete Proportion menu item is used to delete a

proportion objective from a space, similar to the delete area item described above.

Delete All Alignment Objectives. The Delete All Alignment Objectives

menu item is used to delete all alignment objectives in the current plan. This item

is useful because alignment objectives are geometric objectives applied to multiple

spaces, and if the topological relationship between those spaces changes the alignment

objective may be obsolete. Instead of requiring them to be deleted one at a time,

this item allows them to be deleted all at once.

Reset All Alignment Objectives. The Reset All Alignment Objectives menu

item resets all integral spring forces to zero. As described in section 4.2.7.1, an

integral spring continually adds or subtracts a force until a desired condition is met.

This button can be used when a dynamical simulation becomes unstable due to a

chaotic event, such as when two spaces ‘stuck’ at a corner become ‘unstuck’.

A.2.4.3. All objectives

Delete Objective. The Delete Objective menu item is used to delete any objective

created with the previously described menu items. After the item is selected, select

an objective.

A.2.5. Debug menu

The Debug menu, shown in figure A-13, controls the printing of a wide variety

of information about the state of the dynamic simulation. As the name implies

this information was used during prototype development for debugging purposes.

Debugging information can be output to either a Text Editor window (figure A-27),

standard output, or to a file named output.txt. The output method is set with the
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Fig. A-13. Debug menu

Output Format menu item under the Debug menu.

See also Sections A.5.4, Text Editor, and A.5.5, Debug Polygon Union, for

additional dialogs available through the Debug menu.

A.2.6. Help menu

Fig. A-14. Help menu
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Help. The Help menu item is used to display the Help dialog window. See

section A.5.6.

Fig. A-15. About panel

About. The About menu item is used to display the About Panel, shown in

figure A-15. It displays the name of the program, copyright information, and the

date of the build.

A.3. Simulation controls

The Simulation controls, shown in figure A-16, provide an interface that in general

controls the dynamic simulation environment. These controls do not create or modify

space elements and objectives, but control how these elements behave.

Start/Stop button. The Start button starts a dynamic simulation, which

continuously advances the time by one time step and computes the next state. Once

pressed its label changes to Stop. Clicking on the Stop button stops the dynamic

simulation and its label changes to Start.

Step button. The Step button causes the dynamic simulation to advance the

time one time step and compute a single new frame. If the dynamic simulation was
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Fig. A-16. Simulation controls

already continuously running it will stop running and take one more step.

Clear button. The Clear button is used to remove all spaces and their objec-

tives from the current project space. It is similar to the New menu item on the File

menu (section A.2.1).

Time. The Time displays the current time during a dynamic simulation. The

simulation timestep is 1/30 of a second, intending to create a rate of 30 frames per

second. While a simulation is running a clock is displayed in the drawing area near

the time, as shown in figure A-17.
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Fig. A-17. Drawing area clock

Reset button. The Reset button resets the state of the dynamic simulation to

its initial conditions. The time is set to zero, and all spaces relocate to their initially

specified positions.

Random button. The Random button is similar to the Reset button, except

each space is set to a new random position.

Intersections radio buttons. The Intersections radio buttons set the cur-

rent collision detection method used to determine when two spaces have collided

with each other. The Circles and Polygons button toggles the collision detection

method between the circular representation of spaces (section 4.3.1) and their actual

polygonal shape (section 4.3.2). Clicking the Circles button also turns on Topolog-

ical Objectives and turns off Geometric Objectives. Clicking the Polygons button

does the opposite. The Auto button causes the simulation to switch automatically

from circle intersections to polygonal intersections when the simulation has reached

dynamic equilibrium, as described in section 4.3.

Objectives buttons. The Objectives buttons toggle the use of Topologi-

cal and Geometric Objectives, respectively. Turning off the Topological button

will disable all topological objectives. Turning off both objectives will disable all
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objectives, resulting in a completely static plan.

For some space planning problems, especially those with many adjacency re-

quirements for each room, if adjacency objectives are still active during geometric

resolution they may have the effect of compressing the entire space plan. For this

reason it is useful to manually turn them off by toggling the Topological button.

Coordinates. When the right mouse button is pressed in an empty are of

the drawing area the current cursor coordinates are displayed at the bottom of the

simulation control area, to the left of the drawing area.

A.4. Display tabs

The Display Tabs control the display of almost all elements drawn in the drawing

area, as well as setting the maximum forces for each type of force applicator.

A.4.1. Display tab

The Display Tab, shown in figure A-18, contains controls to set the visibility of

various element components in the dynamic simulation.

A.4.1.1. Nodes

Nodes button. The Nodes button controls the visibility of all Nodes, Space as well

as Wall.

Space button. The Space button controls the visibility of each space’s center

point node.

Wall button. The Wall button controls the visibility of each space edge’s line

node.

Node Tree button. The Node Tree button controls the visibility of the node
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Fig. A-18. Display tab

tree, which draws lines showing the hierarchical relationship of all space and wall

nodes.

A.4.1.2. Spaces

Spaces button. The Spaces button controls the visibility of all space graphic

elements, not including nodes and objectives.

Polygon button. The Polygon button controls the visibility of each space’s
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edges.

Circle button. The Circle button controls the visibility of the circular repre-

sentation of each space’s area. This display is useful during topological resolution

when the boundary of each space is treated as a circle (see section 4.3.1).

Name button. The Name button controls the visibility of each space’s name

or label.

Area button. The Area button controls the visibility of each space’s area.

Offset Poly button. The Offset Poly button controls the visibility of the

exterior offset of each space’s edges. A space’s offset polygon is used in the calculation

of the building’s exterior wall surface by finding the union of all such polygons.

(Interior walls are formed naturally by the colliding edges of adjacent spaces.)

Vertices button. The Vertices button controls the visibility of points at the

intersection of space edges.

Parent Poly button. The Parent Poly button controls the visibility of a

space’s exterior wall surface.

Parent Circle button. The Parent Circle button controls the visibility of a

space’s parent’s smallest enclosing circle. This circle is used by interior, exterior, and

orientation objectives to determine appropriate forces.

A.4.1.3. Objectives

Objectives button. The Objectives button controls the visibility of all objectives.

Other buttons in the Objectives section control the visibility of all their respec-

tive objectives.

Range buttons. Area and proportion objectives are drawn with dashed rect-

angles representing a space’s target area and proportion, respectively. Each of these

objectives can potentially be defined with a target range, such as ±10%. The Range
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buttons control the visibility of these target ranges.

A.4.1.4. Vectors

Vectors button. The Draw Vectors button controls the visibility of all vectors

(position, velocity, and force vectors). Vectors cannot be drawn until one frame of

the dynamic simulation has been computed. If the current simulation is not running,

toggling Vectors on will have no immediate affect. To get the force vectors to display,

click the Step button on the simulation controls to advance the simulation by one

time step.

Note that the display of vectors can significantly slow down the simulation.

Force button. The Force button controls the visibility of force vectors on

nodes.

Components button. The Components button controls the visibility of force

components on nodes if the force button is selected. If the component button is

unselected, then a single vector representing the total force on each node is displayed.

If it is selected, then each individual component of that force is displayed as a separate

vector.

Position button. The Position button controls the display of node position

vectors, which are displayed as a line from a node’s position at the end of the last

time step to its current position.

Velocity button. The Velocity button controls the display of node velocity

vectors, which are displayed as a line from a node’s current position in the direction

of the current velocity, with a length equal to the magnitude of the velocity.

Single Node button. The Single Node button toggles vectors to display for

either all nodes or for only a single selected node. The selected node is specified by

clicking on the Select button and selecting a space or wall node in the drawing
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area.

A.4.1.5. Contacts

The Contacts button controls the visibility of contact points between spaces during

geometric resolution.

A.4.2. Importance tab

Fig. A-19. Importance tab Fig. A-20. Forces tab
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The Importance tab, shown in figure A-19, sets the relative strength of different

objectives, as described in section 4.2.1.4. The descriptive terms for the different

levels of importance are hard coded to Mandatory, Significant, Desirable, and If-

Possible. The values for each are set in by manipulating the sliders on the right.

The buttons to the left of the label control the visibility of all objectives with the

associated level of importance.

A.4.3. Forces tab

The Forces tab, shown in figure A-20, controls the use and visibility of individual

forces. Each force used in the prototype is listed on the left, and their corresponding

controls are on the right. Figure A-21 shows a sample simulation state with force

vectors displayed.

Draw Vectors button. The Draw Vectors button toggles the display of force

vectors in the drawing area, and is a duplicate of the Force button described in

section A.4.1.4.

In-use diamonds. The In-use diamonds directly to the right of each force label

indicate whether any forces of this type exist in the current simulation state.

Color buttons. The Color button indicates the color used to display the

associated force vector. The color can be changed by clicking on the button, which

will display a Color Selector dialog as shown in figure A-22, and selecting or setting

the desired color. The colors used to draw force vectors are set by default to be

evenly divided around the hue part of the color wheel. This control was useful

during development to highlight specific force types, since some of these colors are

visually close together.

Use (U) buttons. The Use buttons, under the ‘U’ label, control whether or

not to use or apply the associated forces in the dynamic simulation.
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Fig. A-21. Example of a space plan showing individual force vectors

Display (D) buttons. The Display buttons, under the ‘D’ label, control

whether or not to display the individual force vectors for the associated forces in

the dynamic simulation.

A.4.4. Strengths tab

The Strengths tab, shown in figure A-23, is used to set the relative strengths of the

various force types. Each force used in this prototype is listed on the left similar

to the Forces tab, with a corresponding slider on their right. The available range is



226

Fig. A-22. Color selector

preset for each force type and is not customizable.

A.5. Dialogs

The following sections describe the various dialog windows available for display

through menu items.

A.5.1. Font dialog

The Font dialog, accessed from the Options menu and shown in figure A-24, is used

to specify font characteristics for displaying space names.

Face. The Face selection box displays all true type fonts (*.ttf) currently in the

Fonts directory within the same directory where the Physically Based Space Planning

application resides.

Type. The Type radio buttons control the way the fonts are displayed. Avail-

able choices are Filled, Outline, Bitmap, and Pixmap. These choices were those

available in the gltt library (GLTT, 2001) that made possible the drawing of true

type fonts in OpenGL. The Bitmap and Pixmap options, however, do not work.
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Fig. A-23. Strengths tab

Size. The Size edit box controls the size, in pixels, of displayed text.

A.5.2. Thumbnails dialog

The Thumbnails dialog, accessed from the Options menu and shown in figure A-25,

can be used while designing a space plan to save and restore potential designs. It is

intended to be used during an experimental test to determine the level of support

for design emergence, and its corollary, the level of reduction of design fixation.
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Fig. A-24. Font dialog

Fig. A-25. Thumbnails dialog

Six different numbered plans can be saved and restored using the down and

up arrows, respectively. The Folder edit box is used to specify the location where

the different plans and images will be stored. The Filename Prefix edit box is

used to specify the prefix for each file created. For example, if the first down ar-

row is selected, the space plan currently displayed in the drawing area will be saved

as “<Folder>/<Filename Prefix> - 1.apf”, and an image of the current drawing

area will be saved as “<Folder>/<Filename Prefix> - 1.png”. A running index

is kept of the number of files saved, and additional files are saved in history fold-

ers so that a history of the design process can be viewed. If the current index

is 1, then the files “<Folder>/HistoryApf/<Filename Prefix> - 001 - 1.apf” and

“<Folder>/HistoryPng/<Filename Prefix> - 001 - 1.png” are saved along with those
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above. Continuing the example, if the third down arrow is selected, the following

files would be created:

<Folder>/<Filename Prefix> - 3.apf

<Folder>/<Filename Prefix> - 3.png

<Folder>/HistoryApf/<Filename Prefix> - 002 - 3.apf

<Folder>/HistoryPng/<Filename Prefix> - 002 - 3.png

If thumbnail 1 is saved again, the following files would be created:

<Folder>/<Filename Prefix> - 1.apf

<Folder>/<Filename Prefix> - 1.png

<Folder>/HistoryApf/<Filename Prefix> - 003 - 1.apf

<Folder>/HistoryPng/<Filename Prefix> - 003 - 1.png

Note that in the last save the first two files replace those created during the first

save, but that the history files are new. In this way the six most promising plans are

saved and can be reviewed, as well as the entire history of their creation.

The Save Current button is used to save the current space plan without using

one of the thumbnails, and uses the current index described above. Continuing the

example from above, if the Save Current button was selected with a current index

of 4, the following files would be created:

<Folder>/HistoryApf/<Filename Prefix> - 004 - Save.apf

<Folder>/HistoryPng/<Filename Prefix> - 004 - Save.png

This button was intended to be used by an observer during an experiment to
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save an interesting plan that the user would not have saved.

A.5.3. Settings dialog

Fig. A-26. Settings dialog

The Settings dialog, accessed from the Options menu and shown in figure A-26,

controls various aspects of the simulation environment described in the following

sections.
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A.5.3.1. Integration Method

The Integration Method radio buttons sets the numerical integration method used

in the dynamic simulation, as described in section 3.3.5.2. The better the quality of

the numerical integration, the more stable the dynamic system. The three options

available are Euler, Midpoint, and Runge-Kutta 4, each successive option having

a higher quality.

A.5.3.2. Edit Method

The Edit Method setting controls the method used to provide user interaction with

mass elements (nodes), as described in section 3.3.8. The two options are Spring and

Infinite Mass.

Spring. If the Spring option is selected, when the user clicks and drags a space’s

center node, a spring with zero length is temporarily created connecting the cursor

location with the space’s center node. As the cursor moves the spring exerts a force

on the space node to move it in the direction of the cursor. The spring is removed

when the user releases the mouse.

Infinite Mass. If the Infinite Mass option is selected, when the user clicks and

drags a space the mass of it’s center node is temporarily essentially set to infinity

(in reality the mass inverse is temporarily set to zero, as explained in section 3.3.8).

The user can move the space anywhere on the screen, and since its mass is infinite

any forces acting upon it have no effect.

A.5.3.3. Drawing Area

The Drawing Area settings control miscellaneous settings related to the drawing area

that do not fit neatly elsewhere.
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Axes button and roller. The Axes button toggles the display of the X (a red

line), Y (a green line), and Z (a blue line) axes (XYZ = RGB). Clicking on the roller

and dragging to the left and right respectively decreases and increases the length of

the axes lines.

Pickbox Size slider. The Pickbox slide sets the size of the pick box used to

determine what elements are under the cursor when a mouse button is clicked.

A.5.3.4. Spring Constants

The Spring Constants settings control the overall spring constant, damping constant,

and mass constant for the dynamic simulation.

Spring. The Spring setting controls the strength of springs, which determines

the force a spring will apply to a node when the spring’s current length does not

equal its target or rest length. Increasing the spring constant generally increases

the strength of all springs, thereby increasing the chance that an objective that uses

springs will be met.

Damping. The Damping setting controls the damping strength of springs,

which determines the force a spring will apply to a node when the node has a non-

zero velocity. Increasing the damping constant generally decreases the time it takes

for the system to come to equilibrium, because the dampers do not allow the objects

to build up velocity.

Mass. The Mass setting controls the mass of all nodes. Increasing the Mass

constant of each object also generally decreases the time it takes for the system to

come to equilibrium, because it takes more force to change the velocity of the objects.

The values for all of these settings can be specified directly in the edit boxes,

or by using the numeric spinners to their right. Clicking on the arrow buttons

increases or decreases the associated value. Clicking increases the value, while click-
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ing with the Ctrl key pressed decreases it. The left arrows adjust by 1.0, the middle

arrows by 0.1, and the right arrows by 0.01.

The relationship between these parameters affects the overall stability of the dy-

namics system, as described in section 3.3.5.3. The effects described above only work

within a limited range, beyond which the system becomes unstable and unusable.

A.5.3.5. Environment

The Environment settings control the overall environmental characteristics in which

the dynamic simulations take place. Environmental characteristics generally apply

to every element in a simulation, as opposed to other characteristics that apply only

to selective elements. Without these environmental characteristics, no outside forces

are applied to the elements in the dynamic simulation, so they are essentially moving

in outer space.

The buttons control whether or not the associated value has any effect, es-

sentially setting it to zero. The numeric spinners work as described above in sec-

tion A.5.3.4.

Viscosity. The Viscosity setting simulates the presence of air around the ele-

ments, and results in a force due to viscous drag being applied to all elements. The

magnitude of this force is directly proportional to an element’s velocity, while the

direction of the force is opposite that of the velocity. See section 3.3.3.1 for a more

complete description.

Without viscosity and without any other forces acting on it, then according to

Newton’s first law of motion, once an element has a velocity it continues in motion

until another force is applied to it. This kind of behavior is unusual in our experience,

and makes dynamical simulations less ‘believable.’ Making the environment generally

viscous improves the believability of the simulation, and makes it easier to interact
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with the elements because they tend to reach equilibrium faster.

Gravity. The Gravity setting simulates the presence of a massive body near the

elements, and results in a constant force being applied to all elements. To simulate

a system near Earth, the magnitude of the force is constant, and the direction is

constantly downward. Using gravity is important in some dynamics simulations

where the behavior of falling bodies is being simulated. This particular behavior is

not important in physically based space planning.

A.5.3.6. Kinetic Energy

Draw Graph button. The Draw Graph button toggles the display of the kinetic

energy graph in the drawing window.

Equilibrium Threshold. The Equilibrium Threshold setting defines when a

Fig. A-27. Text editor window
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simulation achieves dynamic equilibrium, as described in section 4.3. The numeric

spinners work as described above in section A.5.3.4.

A.5.4. Text editor window

The text editor, accessed from the Debug menu and shown in figure A-27, is used

to display a variety of debug information. If the current debug output format is set

to text editor, any output from the debug commands will be displayed in the this

window. It will not be further described.

A.5.5. Debug Polygon Union dialog

The Debug Polygon Union dialog, accessed from the Debug menu and shown in fig-

ure A-28, was used during the development of the Polygon Union algorithm described

in appendix E. This algorithm is used to create the parent polygon that displays

an outline around a set of spaces, in effect displaying the exterior wall surfaces of a

building (see section A.1.1). It will not be further described.

Fig. A-28. Debug Polygon Union dialog
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A.5.6. Help dialog

Fig. A-29. Help dialog

The Help dialog, accessed from the Help menu and shown in figure A-29, is used

to display help text in HTML format.
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APPENDIX B

APF FILE FORMAT

An .apf (Architectural Programming File) file contains programming informa-

tion about an architectural design project. It is intended as a sample input file for a

Physically Based Space Planning system. See figure B-30 for a very simple example.

See also Appendices C and D for more complicated examples and sections 5.3 and

5.4 for some samples of their use.

#APF Version 0.0 Project project name
Subspace space 1
Subspace space 2

Space space 1
Adjacency Immediate space 2
Subspace space 3

Space space 2
Adjacency Immediate space 1

Space space 3

Fig. B-30. A simple .apf file

The first line identifies the file as an apf formatted file. The rest of the file con-

tains a definition of each ‘Space’ in the design project in the form of a tree. A space

can be anything from an entire site, all the way down to a piece of paper on a desk.

Any space may contain any number of subspaces that are wholly contained within it,

each of which can contain their own subspaces. In this way, a hierarchical structure

of parent-child spatial relationships can be constructed. Each space typically defines

a number of design objectives for it, such as area requirements and adjacency rela-
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tionships. The top level or root space is the project space, which should not contain

any relationships to other spaces (except for a list of child spaces, of course). Except

for the project space, all spaces must first be referred to in a Subspace Name struc-

ture, and later as a complete definition in a space. In this way, the file represents a

top down definition of the tree structure.

Note that in the prototype described here only one hierarchical level is imple-

mented; that is, subspaces are only referred to by the project space.

This appendix describes in detail the elements necessary to construct a valid apf

file. The elements of an apf file are structures, which contain one or more substruc-

tures, which contain one or more primitives.

B.1. Symbols used

The following symbols are used to define structures, substructures, and primitives.

B.1.1. << double angle bracket >>

Indicates a subordinate structure is to be substituted in place of the enclosing double

angle brackets. The substitute structure is found in section B.3: Structures or in

alphabetical order in section B.4: Substructures.

For example, in the following definition of the APF File structure, double angle

brackets are used to indicate that ‘Header’ is a structure or substructure.

<<Header>> {1:1}
<<Project>> {1:1}
<<Space>> {1:m}

B.1.2. < single angle bracket >

Indicates the name of a value for this line: < Primitive >. The specific definition

of this value is found in alphabetical order in section B.5: Primitive Elements. For
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example, in the following definition of a Polygon, single angle brackets are used to

indicate that ‘Integer’ and ‘Point’ primitives are required.

Polygon <Integer>
<Point> {3:m}

B.1.3. { braces }

Indicates the minimum to maximum occurrences allowed for this structure or line:

Minimum:Maximum . Note that minimum and maximum occurrence limits are de-

fined relative to the enclosing structure. This means that a required line (minimum

= 1) is not required if the optional enclosing structure is not present. Similarly, a

line occurring only once (maximum = 1) may occur multiple times as long as each

occurs only once under its own multiple-occurring structure. An ‘m’ indicates that

‘many’ occurrences are allowed. For example, in the previous definition of a Polygon,

braces indicate that 3 or more Point elements are required.

If no occurrence indication is noted next to an item, one item is required; that

is, assume 1:1.

B.1.4. [ square brackets ]

Indicates a choice of one or more options: [ Choice of ]. A ‘-’ separating two values

indicates a range of values, for example [0-9].

B.1.5. | vertical bar

Separates multiple choices, for example [Choice 1 | Choice 2].

B.2. General

All lines within structures and substructures should end with a new line character.
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B.2.1. Comment

A line is considered a comment if it begins with ‘#’. Comments and blank lines may

be placed on any line in the file, expect the first line, which identifies the file type.

# <String> {0:1}

B.3. Structures

B.3.1. APF File

#APF <Version_Number>
<<Environment>> {1:1}
<<Energy_Graph>> {1:1}
<<Project>> {1:1}
#End APF

B.3.2. Project

Project <Space_Name>
<<Subspace_Name>> {1:m}
<<PointNode>> {1:1} Must come before Polygon
<<Polygon>> {0:1} Default: Randomly Positioned Rectangle
<<Area_Objective>> {0:1}
<<Proportion_Objective>> {0:1} Default: 1.0
<<Space>> {0:m}

Used in APF File.

B.3.3. Space

Space <Space_Name>
<<Subspace_Name>> {0:m}
<<PointNode>> {1:1} Must come before Polygon
<<Polygon>> {0:1} Default: Randomly Positioned Rectangle
[<<Interior_Objective>> | <<Boundary_Location_Objective>>] {0:1}
<<Area_Objective>> {0:1}
<<Proportion_Objective>> {0:1} Default: 1.0
<<Adjacency_Objective>> {0:m}
<<Separation_Objective>> {0:m}
<<Alignment_Objective>> {0:m}
<<Space>> {0:m}

Used in Project and Space.
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B.4. Substructures

B.4.1. Adjacency Objective

Adjacency <Importance> <Space_Name>

Used in Space.

B.4.2. Alignment Objective

[ Alignment | Offset <Float> ] <Importance> (cont.)
<Integer> <Integer> <Space_Name>

Used in Space.

B.4.3. Area Objective

Area <Float> [<Tolerance>]

Used in Project, and Space.

B.4.4. Boundary Location Objective

[ <<Exterior_Objective>> | <<Orientation_Objective>> ]

Used in Space.

B.4.5. Energy Graph

EnergyGraph
Position <Vector>
Width <Float>
Height <Float>
drawGraph [ 0 | 1 ]
End EnergyGraph

Used in APF File.
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B.4.6. Environment

Environment
AirOn [ 0 | 1 ]
AirViscosity <Float>
GravityOn [ 0 | 1 ]
GravityValue <Float>
GravityVector <Vector>
End Environment

Used in APF File.

B.4.7. Exterior Objective

Exterior <Importance>

Used in Boundary Location Objective.

B.4.8. Interior Objective

Interior <Importance>

Used in Space.

B.4.9. Line Node

Node Line
<<Node>>
Direction <<Vector>>
End Node

Used in Polygon.

B.4.10. Node

Position <Position> {1:1} Default: Local
<Mass> {1:1} Default: 1.0
Nailed {0:1} Default: Unnailed

Used in Line Node, and Point Node.
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B.4.11. Orientation Objective

Orientation <Importance> <Direction>

Used in Boundary Location Objective.

B.4.12. Point Node

Node Point
<<Node>>
End Node

Used in Project, and Space.

B.4.13. Polygon

Polygon <Integer>
<Point Type> <Point> {3:m}
<<LineNode>> {Number of points}

The Integer indicates the number of vertices for this polygon.

Used in Project, Space.

B.4.14. Proportion Objective

Proportion <Float> [<Tolerance>]

The proportion is the ratio of the maximum width of the polygon divided by

the maximum height.

Used in Project, Space.

B.4.15. Separation Objective

Separation <Importance> <Space_Name>

Used in Space.
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B.4.16. Subspace Name

Subspace <Space_Name>

A space that is enclosed within the boundary of a parent space. A space can

only be a subspace within at most one parent space, and the Space for a space should

be specified after the Subspace Name that refers to it.

Used in Project, and Space.

B.5. Primitives

B.5.1. Angle

<Float>

Value will be converted to the range [0.0, 360.0).

Used in Direction.

B.5.2. Compass Direction

[ N | S | E | W | NE | NW | SE | SW ]

Used in Direction.

B.5.3. Digit

[0-9]

Used in Number.

B.5.4. Direction

[ <Compass Direction> | <Angle> ]

Used in Orientation Objective.
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B.5.5. Float

<Number>.<Number>

Used in Proportion Objective, Environment, Importance, Angle, Mass, Align-

ment Objective, Area Objective, Vector, and Point.

B.5.6. Importance

[ [ Mandatory | Significant | Desirable | IfPossible ] | (cont.)
Custom <Float> ]

Used in Adjacency Objective, Orientation Objective, Alignment Objective, Ex-

terior Objective, Interior Objective, and Separation Objective.

B.5.7. Integer

<Number>

Used in Area Objective, Alignment Objective, Polygon, Tolerance.

B.5.8. Mass

Mass [ Infinite | <Float> ]

Used in Node.

B.5.9. Number

[ <Digit> | <Number><Digit> ]

Used in Integer, Float.

B.5.10. Point

<Float> <Float> <Float>

A three dimensional coordinate in the world coordinate system.

Used in Polygon.
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B.5.11. Point Type

[ X | x | T | t | P | p ]

Indicates the type of point for a polygon.

X or x: the intersection of two Line Nodes, which will be created using the

surrounding vertices.

T or t: a transition point between a Line Node and a Point Node. A Point Node

will be created at this point.

P or p: a Point Node, which will be created at this point.

(Note: Transition and Point nodes for polygons are not currently implemented.)

Used in Polygon.

B.5.12. Position

[ Local | World ]

Used in Node.

B.5.13. Space Name

<String>

A string identifying the name of a space.

Used in Project, Space, Subspace Name, Alignment Objective,

Separation Objective, and Adjacency Objective.

B.5.14. String

[any number of characters that are not a newline character]

Used in Space Name.
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B.5.15. Tolerance

<Integer>

The tolerance of a previously specified value, as a percent. For example, an area

objective of 120 square feet might have a tolerance of +/- 10

(Not implemented.)

Used in Area Objective, Proportion Objective.

B.5.16. Version Number

Version [ 0.0 ]

Used in APF File.

B.5.17. Vector

<Float> <Float> <Float>

Used in Polygon, Line Node, and Environment.
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APPENDIX C

APF SAMPLE FILE - COUNSELING CENTER

#APF Version 0.0
# From Mark Karlen, Space Planning Basics, p. 22

Project University Career Counseling Center
Subspace Reception
Subspace Interview Station
Subspace Director
Subspace Staff
Subspace Seminar Room
Subspace Rest Room
Subspace Work Area
Subspace Coffee Station
Subspace Guest Apartment

Space Reception
Area 250
Aspect 1.35
Adjacency Immediate Interview Station
Adjacency Important Director
Adjacency Convenient Staff
Adjacency Immediate Seminar Room
Adjacency Convenient Rest Room
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment
Exterior

Space Interview Station
Area 220
Aspect 0.65
Adjacency Immediate Reception
Adjacency Convenient Director
Adjacency Immediate Staff
Adjacency Convenient Rest Room
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment
Exterior

Space Director
Area 140
Aspect 0.7
Adjacency Important Reception
Adjacency Convenient Interview Station
Adjacency Immediate Staff
Adjacency Convenient Seminar Room
Adjacency Convenient Work Area
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment
Exterior
Orientation NE

Space Staff
Area 180
Aspect 0.7
Adjacency Convenient Reception
Adjacency Immediate Interview Station
Adjacency Immediate Director
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Adjacency Convenient Rest Room
Adjacency Important Work Area
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment
Exterior

Space Seminar Room
Area 300
Aspect 1.2
Adjacency Immediate Reception
Adjacency Convenient Director
Adjacency Important Rest Room
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment
Exterior

Space Rest Room
Area 200
Aspect 0.8
Adjacency Convenient Reception
Adjacency Convenient Interview Station
Adjacency Convenient Staff
Adjacency Important Seminar Room
Adjacency Convenient Work Area
Separation Immediate Guest Apartment

Space Work Area
Area 120
Aspect 1.1
Adjacency Convenient Director
Adjacency Important Staff
Adjacency Convenient Rest Room
Adjacency Convenient Coffee Station
Separation Immediate Guest Apartment

Space Coffee Station
Area 50
Aspect 0.9
Adjacency Convenient Reception
Adjacency Convenient Interview Station
Adjacency Convenient Director
Adjacency Convenient Staff
Adjacency Convenient Seminar Room
Adjacency Convenient Work Area
Separation Immediate Guest Apartment
Exterior

Space Guest Apartment
Area 350
Aspect 1.0

# test comment
Separation Immediate Reception
Separation Immediate Interview Station
Separation Immediate Director
Separation Immediate Staff
Separation Immediate Seminar Room
Separation Immediate Rest Room
Separation Immediate Work Area
Separation Immediate Coffee Station
Exterior
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APPENDIX D

APF SAMPLE FILE - RESIDENCE

#APF
Environment
AirOn 1
AirViscosity 9
GravityOn 0
GravityValue 1
GravityVector 0.000 -1.000 0.000
End Environment

EnergyGraph
Position -40.000 5.000 0.000
Width 90.000
Height 40.000
drawKineticEnergy 1
drawPotentialEnergy 0
drawAverageEnergy 0
drawAverageAverageEnergy 0
drawMaxEnergy 0
drawSeparateGraphs 0
drawGraph 0
End EnergyGraph

Project Worked Example
Subspace Entrance
Subspace Living
Subspace Family
Subspace Dining
Subspace Garage
Subspace Kitchen
Subspace Breakfast
Subspace Laundry
Subspace Study
Subspace Master Bed
Subspace Guest Bath
Subspace Master Closet
Subspace Master Bath
Subspace Bedroom 1
Subspace Bedroom 2
Subspace Guestroom
Subspace Bath
Subspace Hall

Node Point
Position World 0.000 0.000 0.000
End Node

# ===========================================
# Parent space is Worked Example
Space Entrance
Node Point

Position Local 2.397 -44.530 0.000
End Node

Polygon 4
X 6.493 -41.478 0.000
X -1.699 -41.478 0.000
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X -1.699 -47.582 0.000
X 6.493 -47.582 0.000

Node Line
Position Local 4.096 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 3.052 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -4.096 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -3.052 0.000
Direction 1.000 0.000 0.000
End Node

Area 50.0000 0.2000

Proportion 1.3421 0.2000

Adjacency Mandatory Living

# ===========================================
# Parent space is Worked Example
Space Living
Node Point

Position Local 5.550 18.291 0.000
End Node

Polygon 4
X 16.209 25.328 0.000
X -5.108 25.328 0.000
X -5.108 11.255 0.000
X 16.209 11.255 0.000

Node Line
Position Local 10.659 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 7.036 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -10.659 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -7.036 0.000
Direction 1.000 0.000 0.000
End Node

Area 300.0000 0.2000
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Proportion 1.5148 0.2000

Adjacency Mandatory Dining

Adjacency Mandatory Entrance

# ===========================================
# Parent space is Worked Example
Space Family
Node Point
Position Local -20.057 36.583 0.000
End Node

Polygon 4
X -11.540 41.866 0.000
X -28.575 41.866 0.000
X -28.575 31.299 0.000
X -11.540 31.299 0.000

Node Line
Position Local 8.518 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 5.283 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -8.518 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -5.283 0.000
Direction 1.000 0.000 0.000
End Node

Area 180.0000 0.2000

Proportion 1.6122 0.2000

Adjacency Mandatory Kitchen

# ===========================================
# Parent space is Worked Example
Space Dining
Node Point

Position Local -18.922 9.335 0.000
End Node

Polygon 4
X -10.870 16.321 0.000
X -26.974 16.321 0.000
X -26.974 2.349 0.000
X -10.870 2.349 0.000

Node Line
Position Local 8.052 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
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Position Local 0.000 6.986 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -8.052 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -6.986 0.000
Direction 1.000 0.000 0.000
End Node

Area 225.0000 0.2000

Proportion 1.1525 0.2000

Adjacency Mandatory Living

# ===========================================
# Parent space is Worked Example
Space Garage
Node Point

Position Local -36.330 -43.899 0.000
End Node

Polygon 4
X -25.944 -34.271 0.000
X -46.716 -34.271 0.000
X -46.716 -53.528 0.000
X -25.944 -53.528 0.000

Node Line
Position Local 10.386 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 9.628 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -10.386 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -9.628 0.000
Direction 1.000 0.000 0.000
End Node

Area 400.0000 0.2000

Proportion 1.0787 0.2000

Adjacency Mandatory Kitchen

# ===========================================
# Parent space is Worked Example
Space Kitchen
Node Point

Position Local -39.358 14.128 0.000
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End Node

Polygon 4
X -32.201 19.368 0.000
X -46.515 19.368 0.000
X -46.515 8.889 0.000
X -32.201 8.889 0.000

Node Line
Position Local 7.157 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 5.240 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -7.157 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -5.240 0.000
Direction 1.000 0.000 0.000
End Node

Area 150.0000 0.2000

Proportion 1.3659 0.2000

Adjacency Mandatory Garage

Adjacency Mandatory Laundry

Adjacency Mandatory Breakfast

Adjacency Mandatory Family

# ===========================================
# Parent space is Worked Example
Space Breakfast
Node Point

Position Local -53.635 38.163 0.000
End Node

Polygon 4
X -48.822 41.539 0.000
X -58.448 41.539 0.000
X -58.448 34.786 0.000
X -48.822 34.786 0.000

Node Line
Position Local 4.813 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 3.376 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
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Position Local -4.813 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -3.376 0.000
Direction 1.000 0.000 0.000
End Node

Area 65.0000 0.2000

Proportion 1.4255 0.2000

Adjacency Mandatory Kitchen

# ===========================================
# Parent space is Worked Example
Space Laundry
Node Point

Position Local -54.988 -3.349 0.000
End Node

Polygon 4
X -50.906 -0.287 0.000
X -59.071 -0.287 0.000
X -59.071 -6.411 0.000
X -50.906 -6.411 0.000

Node Line
Position Local 4.082 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 3.062 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -4.082 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -3.062 0.000
Direction 1.000 0.000 0.000
End Node

Area 50.0000 0.2000

Proportion 1.3333 0.2000

Adjacency Mandatory Kitchen

# ===========================================
# Parent space is Worked Example
Space Study
Node Point

Position Local 45.665 27.122 0.000
End Node

Polygon 4
X 51.273 33.808 0.000
X 40.057 33.808 0.000
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X 40.057 20.435 0.000
X 51.273 20.435 0.000

Node Line
Position Local 5.608 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 6.687 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -5.608 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -6.687 0.000
Direction 1.000 0.000 0.000
End Node

Area 150.0000 0.2000

Proportion 0.8387 0.2000

# ===========================================
# Parent space is Worked Example
Space Master Bed
Node Point

Position Local 44.404 1.388 0.000
End Node

Polygon 4
X 50.899 10.048 0.000
X 37.908 10.048 0.000
X 37.908 -7.273 0.000
X 50.899 -7.273 0.000

Node Line
Position Local 6.495 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 8.660 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -6.495 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -8.660 0.000
Direction 1.000 0.000 0.000
End Node

Area 225.0000 0.2000

Proportion 0.7500 0.2000
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Adjacency Mandatory Master Bath

Adjacency Mandatory Master Closet

# ===========================================
# Parent space is Worked Example
Space Guest Bath
Node Point
Position Local 94.228 -20.716 0.000
End Node

Polygon 4
X 98.700 -18.480 0.000
X 89.756 -18.480 0.000
X 89.756 -22.952 0.000
X 98.700 -22.952 0.000

Node Line
Position Local 4.472 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 2.236 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -4.472 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -2.236 0.000
Direction 1.000 0.000 0.000
End Node

Area 40.0000 0.2000

Proportion 2.0000 0.2000

Adjacency Mandatory Guestroom

# ===========================================
# Parent space is Worked Example
Space Master Closet
Node Point

Position Local 69.129 6.307 0.000
End Node

Polygon 4
X 72.832 9.008 0.000
X 65.425 9.008 0.000
X 65.425 3.607 0.000
X 72.832 3.607 0.000

Node Line
Position Local 3.703 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 2.700 0.000
Direction -1.000 0.000 0.000
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End Node

Node Line
Position Local -3.703 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -2.700 0.000
Direction 1.000 0.000 0.000
End Node

Area 40.0000 0.2000

Proportion 1.3714 0.2000

Adjacency Mandatory Master Bed

Adjacency Mandatory Master Bath

# ===========================================
# Parent space is Worked Example
Space Master Bath
Node Point

Position Local 70.263 -6.055 0.000
End Node

Polygon 4
X 75.486 -2.225 0.000
X 65.041 -2.225 0.000
X 65.041 -9.885 0.000
X 75.486 -9.885 0.000

Node Line
Position Local 5.222 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 3.830 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -5.222 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -3.830 0.000
Direction 1.000 0.000 0.000
End Node

Area 80.0000 0.2000

Proportion 1.3636 0.2000

Adjacency Mandatory Master Bed

Adjacency Mandatory Master Closet

# ===========================================
# Parent space is Worked Example
Space Bedroom 1
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Node Point
Position Local 50.207 -32.546 0.000
End Node

Polygon 4
X 57.630 -27.831 0.000
X 42.783 -27.831 0.000
X 42.783 -37.261 0.000
X 57.630 -37.261 0.000

Node Line
Position Local 7.423 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 4.715 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -7.423 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -4.715 0.000
Direction 1.000 0.000 0.000
End Node

Area 140.0000 0.2000

Proportion 1.5745 0.2000

Adjacency Mandatory Bedroom 2

Adjacency Mandatory Bath

# ===========================================
# Parent space is Worked Example
Space Bedroom 2
Node Point

Position Local 72.409 -33.051 0.000
End Node

Polygon 4
X 78.923 -28.445 0.000
X 65.894 -28.445 0.000
X 65.894 -37.656 0.000
X 78.923 -37.656 0.000

Node Line
Position Local 6.514 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 4.605 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -6.514 0.000 0.000
Direction 0.000 -1.000 0.000



260

End Node

Node Line
Position Local 0.000 -4.605 0.000
Direction 1.000 0.000 0.000
End Node

Area 120.0000 0.2000

Proportion 1.4146 0.2000

Adjacency Mandatory Bedroom 1

Adjacency Mandatory Bath

# ===========================================
# Parent space is Worked Example
Space Guestroom
Node Point

Position Local 96.629 -32.672 0.000
End Node

Polygon 4
X 102.953 -26.347 0.000
X 90.304 -26.347 0.000
X 90.304 -38.997 0.000
X 102.953 -38.997 0.000

Node Line
Position Local 6.325 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 6.325 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -6.325 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -6.325 0.000
Direction 1.000 0.000 0.000
End Node

Area 160.0000 0.2000

Proportion 1.0000 0.2000

Adjacency Mandatory Guest Bath

# ===========================================
# Parent space is Worked Example
Space Bath
Node Point

Position Local 55.000 -21.445 0.000
End Node

Polygon 4
X 60.334 -19.101 0.000
X 49.666 -19.101 0.000
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X 49.666 -23.789 0.000
X 60.334 -23.789 0.000

Node Line
Position Local 5.334 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 2.344 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -5.334 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -2.344 0.000
Direction 1.000 0.000 0.000
End Node

Area 50.0000 0.2000

Proportion 2.2759 0.2000

Adjacency Mandatory Bedroom 1

Adjacency Mandatory Bedroom 2

# ===========================================
# Parent space is Worked Example
Space Hall
Node Point

Position Local 105.046 3.580 0.000
End Node

Polygon 4
X 117.226 5.222 0.000
X 92.866 5.222 0.000
X 92.866 1.938 0.000
X 117.226 1.938 0.000

Node Line
Position Local 12.180 0.000 0.000
Direction 0.000 1.000 0.000
End Node

Node Line
Position Local 0.000 1.642 0.000
Direction -1.000 0.000 0.000
End Node

Node Line
Position Local -12.180 0.000 0.000
Direction 0.000 -1.000 0.000
End Node

Node Line
Position Local 0.000 -1.642 0.000
Direction 1.000 0.000 0.000
End Node
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Area 80.0000 0.2000

Proportion 7.4174 0.2000

#End APF

#################
# COMMAND LOG #
#################
#
# Mon Jun 16 16:22:24.323 2003 # ---- File Open
# Mon Jun 16 16:22:27.888 2003 # bttn Name
# Mon Jun 16 16:22:44.812 2003 # ---- Add Adjacency Objective
# Mon Jun 16 16:22:44.812 2003 # ---- Add Adjacency Objective 2
# Mon Jun 16 16:22:49.920 2003 # ---- Moving Space While Not Running
# Mon Jun 16 16:22:54.656 2003 # ---- Add Adjacency Objective
# Mon Jun 16 16:22:54.656 2003 # ---- Add Adjacency Objective 2
# Mon Jun 16 16:23:02.508 2003 # ---- Moving Space While Not Running
# Mon Jun 16 16:23:10.720 2003 # ---- Add Adjacency Objective
# Mon Jun 16 16:23:10.720 2003 # ---- Add Adjacency Objective 2
# Mon Jun 16 16:23:21.375 2003 # ---- Add Adjacency Objective
# Mon Jun 16 16:23:21.375 2003 # ---- Add Adjacency Objective 2
# Mon Jun 16 16:23:29.737 2003 # ---- File Save
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APPENDIX E

ALGORITHM TO UNION MULTIPLE POLYGONS

E.1. Problem

The problem addressed here is to find the union of an arbitrary number of polygons,

and also to identify in the resulting data structure the exterior boundary and all

interior islands. See figure E-31.

Fig. E-31. Sample problem

E.2. Previous work

The algorithms reviewed were Vatti (1992), Schutte (1995), Leonov and Nikitin

(1997), and Zalik et al. (1998). Algorithms used to operate on polygons usually

involve the boolean operations union, subtract, intersection, and exclusive or. All

of these operations except union can only be performed on two polygons. None of

the reviewed algorithms operates on an arbitrary number of polygons. Most of them
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use a sweep line strategy and find the intersections between line segments, some as

a preprocessing step. One combines these into a ‘scanbeam’ strategy that uses the

area between two successive sweep lines to find intersections. Some algorithms iter-

ate over ordered polygonal edges, crossing over to the other polygon at intersection

points. Many use some type of edge labeling scheme. And some require geometric

operations such as determining point location in a polygon.

A sweep line strategy is a method for solving geometric problems where a line

is ‘swept’ through the space being considered, and operations are performed at each

step of the sweep such that everything to one side of the sweep line is completely

solved. For example, to find the intersection of a number of line segments, the

segments end points can be sorted into a queue first by their y coordinates, then by

their x coordinates for those points with equal y coordinates. The sweep line starts

at the top left most point and steps successively between each point in the queue.

Status structures are maintained at each step, and operations are performed to add

and remove items from the structures. The sweep line algorithm is designed is such

a way that for all positions of the sweep line, all intersection points above the line

have been found.

E.3. Basic algorithm

The algorithms reviewed perform boolean operations on two polygons. In order to

use these algorithms to find the union of an arbitrary number of polygons, they

need to be performed multiple times using a strategy such as divide and conquer;

that is, find the union of sets of two polygons, then find the union of sets of two of

those resulting polygons, and continue until only one polygon remains. The fact that

the problem as stated only needs to find a union and does not need other boolean
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operations, can then be exploited to operate on an arbitrary number of polygons.

The PolygonUnion algorithm shown in figure E-32 and presented here is a

sweep line algorithm that basically follows the FindIntersections algorithm from

de Berg et al. (1997, p. 25), with a preprocessing step to label the edges of the

polygons as being on the left or right side, and a step to determine if an edge is

on the boundary of the union polygon. The significant and, it turns out, extremely

easy part of the algorithm is the method for determining the boundary edges. If a

horizontal line representing a sweep line intersects the subject polygons, a running

count of how many polygons overlap at a specific point on the line can be kept and

stored for each edge, as shown in figure E-33. This count, hereafter called tag, is

determined when an edge is inserted into the sweep line status (when the sweep

line reaches the top of the edge), and is always determined by the tag of the edge

immediately to the left of the inserted edge. If there is no edge to the left, hereafter

called left edge, as with inserted edge 1 in figure E-33, the tag for the inserted edge

is set to one. If the labels of the inserted edge and left edge are different, as with

edges 5, 8, 9, 11, and 13, the tag remains the same. If the labels are both left, as

with edges 2, 3, 4, and 12, the tag is incremented. Finally, if the labels are both

right, as with edges 6, 7, 10, and 14, the tag is decremented. Any edge with a tag

value of one is on the boundary of the union polygon.

The general position assumption is:
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Algorithm PolygonUnion( P )

Input:

A set P = {p1, ..., pm} of m polygons in general position with

a total of n vertices

Output:

A set B of edges that bound the union of P

1. for each polygon pi in P

2. MakeAndLabelEdges ( pi, E )

3. Initialize an empty queue structure Q.

4. Initialize an empty status structure T .

5. Initialize an empty boundary edge result list B.

6. for each edge ei in E

7. Insert a top event into Q corresponding to the top vertex of ei.

8. Insert a bottom event into Q corresponding to the bottom vertex of ei.

9. while Q is not empty

10. Get the next event v in Q

11. if v is a top event

12. HandleTopEvent( v, Q, T )

13. else

14. HandleBottomEvent( v, Q, T , B )

15. return boundary edge list B.

Fig. E-32. Algorithm to compute the union of a number of polygons

• Each polygon is simple; that is, non-self-intersecting and without holes.

• Polygon vertices are listed in counter-clockwise order.

• Horizontal segments are allowed, with the left vertex considered the top

vertex.

• Co-linear edges can overlap.

• Output is not stitched.
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21 3 4 5 6 14138 12117 9 10
21 3 4 4 3 122 212 2 1

index
tag

Fig. E-33. Edge tag values at a sweep line

An edge structure contains pointers to the vertices defining its endpoints, a label

defining whether or not it is on the left side or the right side of the polygon it bounds,

and a tag that will eventually define how many polygons overlap at that edge.

An event structure contains a pointer to the edge associated with it, a label

defining if it is a top or bottom event, and a method for determining the relative

order between two events. Each edge produces two events, one for the top vertex and

one for the bottom. Each intersection point contributes at most four events. Two

segments that intersect need to be split at the intersection point. Two new bottom

events are produced for the two segments above the intersection point, and two new

top events are produced for the two segments below.

A queue structure is used to maintain an ordered list of events and is represented

with a balanced binary search tree. Top and bottom events are added to the queue

at the beginning of the algorithm, while intersection events are added to the queue

as the sweep line encounters them. The events in the queue are ordered first by

decreasing y coordinate, then by increasing x coordinate for events with the same

y coordinate. For events with the same x and y coordinates, bottom events come

before top events. Multiple bottom events at the same point are ordered as if the

event point was the intersection point of the edge associated with the event and a line
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immediately above the sweep line. Similarly, multiple top events at the same point

are ordered as if the event point was the intersection point of the edge associated

with the event and a line immediately below the sweep line. In this way, there is a

unique ordering of events.

A status structure is used to maintain an ordered list of edges that currently

intersect the sweep line and is also represented with a balanced binary search tree.

The sweep line invariant is that the tag value for all segments that have already been

processed by the sweep line has been determined, and that all new intersections are

below (or to the right of) the current event point being processed.

E.3.1. Edge labeling

Each edge of a polygon needs to be initially labeled as being a left edge or a right

edge. The algorithm for labeling edges starts at the topmost vertex of the polygon

(or if more than one vertex has the same largest y coordinate, the leftmost vertex

among those). It then traverses each vertex in counter-clockwise order, creates a new

edge, and determines the appropriate label for the edge. If the next vertex is lower

than the current vertex (or to the right for horizontal lines), the edge between those

points is a left edge. If the next vertex is higher (to the left), the edge is a right edge.

The algorithm for making and labeling edges from a polygon is shown in figure E-34.

E.3.2. Event handling

Referring to figure E-35, at a top event, an edge that first encounters the sweep line

is added to the status structure, it is tested for intersection with its neighbors on the

sweep line, and its tag value is determined.

Figure E-36, at a bottom event, a boundary edge may be added to the result

list, an edge is removed from the sweep line status, and new neighboring edges are
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Algorithm MakeAndLabelEdges ( p, E )

Input:

A polygon p with a set V = v1, ..., vn of vertices

An edge list E

Output:

A set of labeled edges for p, inserted into E.

1. Find the topmost( leftmost ) vertex vt in V .

2. for each vertex vi in V , starting at vt

3. vn = the next vertex in counter-clockwise order from vi

4. Make a new edge e with vertices vi and vn and add it to E.

5. if vn.y < vi.y

6. e.label = LEFT

7. else if vn.y > vi.y

8. e.label = RIGHT

9. else (the edge is horizontal)

10. if vn.x > vi.x

11. e.label = LEFT

12. else if vn.x < vi.x

13. e.label = RIGHT

14. else (the edge has zero length)

15. Remove e from E.

Fig. E-34. Algorithm to make and label edges from a polygon

tested for intersection and handled.

When two segments intersect, each is split into two new segments, and new

events are added to the event queue. Figure E-37 shows the basic algorithm for

determining if two edges intersect. It does not show the geometric process of finding

the intersection coordinates, but shows that the intersection test only occurs for

edges from different polygons, and the return value that indicates intersection or



270

Algorithm HandleTopEvent ( v, Q, T )

Input:

An event v with associated edge e

Output:

A tag value for edge e

New events that might result from edges intersecting with e

1. Insert e into status structure T .

2. Get edges el and er, the edges immediately to the left and right of e in

T , respectively.

3. if EdgesIntersect( e, el, p )

4. HandleIntersection( e, el, p, Q )

5. if EdgesIntersect( e, er, p )

6. HandleIntersection( e, er, p, Q )

7. SetTag( e, el )

Fig. E-35. Algorithm to handle a top event

not. Figure E-38 shows the algorithm for handling two edges once it is determined

that they intersect.

E.3.3. Bounding edge determination

As noted earlier, the most significant part of the algorithm is the one that determines

the boundary condition of each edge; that is, whether or not the edge is part of the

boundary of the union polygon. It turns out that this algorithm is exceedingly simple.

As the sweep line encounters each edge, the tag value of the edge immediately to its

left completely determines its boundary condition. Figure E-39 shows the algorithm

for setting the tag value of an edge just added to a status structure. It would help

to understand the algorithm to follow along the status line in figure E-33.
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Algorithm HandleBottomEvent ( v, Q, T , B )

Input:

An event v with associated edge e.

Output:

Edge e potentially added to boundary result list

New events that might result from edges intersecting with the edges on

each side of e

1. if e.tag = 1

2. Add e to boundary edge result list B.

3. Get edges el and er, the edges immediately to the left and right of e in

T , respectively.

4. Remove e from T .

5. if EdgesIntersect( el, er, p )

6. HandleIntersection( el, er, p, Q )

Fig. E-36. Algorithm to handle a bottom event

E.4. Overlapping edges

The general position condition that no two parallel edges overlap can be relaxed by

modifying the EdgesIntersect and HandleIntersection functions. Overlap-

ping edges need to be considered valid intersections in EdgesIntersect, but need

to be handled differently in HandleIntersection. Overlapping edges with differ-

ent left/right labels, as shown in figure E-40a, need to be removed from the event

queue. If they are not removed and have a tag value of 1, they may be returned as

boundary edges when they should not be. Overlapping edges with the same label,

as shown in figure E-40b, need to be added to the event queue, and then handled

normally. In this example, only one of the overlapping segments will have a tag value
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Algorithm EdgesIntersect (e1, e2, p )

Input:

Two edges e1 and e2

Output:

Intersection state of edges e1 and e2

true if they intersect

The intersection point p

false if they do not intersect

1. if e1 and e2 are part of the same polygon

2. return false

3. if e1 and e2 intersect

4. Set p to be the intersection point

5. return true

6. else

7. return false

Fig. E-37. Algorithm to determine if two edges intersect each other

of 1 and returned as a boundary edge, while the other will have a tag value of 2 and

is needed to balance the lower left edge of the smaller rectangle. (This example also

demonstrates the potential problem of this solution by allowing co-linear boundary

edges. The three bottom right segments are co-linear and should be returned as a

single segment, in order to produce a correct polygonal structure.) Instead of simply

returning true or false, EdgesIntersect then needs to return either false, normal,

overlapSame, or overlapDifferent. For both of the overlapSame and overlapDiffer-

ent conditions, HandleIntersection should split each edge into two segments

using an endpoint from the other edge. If the return value is overlapSame, two new

edges and four new events are created. If the return value is overlapDifferent, the
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Algorithm HandleIntersection ( e1, e2, p, Q )

Input:

Edges e1 and e2 that intersect each other

Point p where they intersect

Output:

New events resulting from creating new edges

1. if e1’s endpoints are different than p

2. Split e1 into two segments by making a copy of it, changing both the

bottom point of e1 and the top point of it’s copy to point to p.

3. Add a new bottom event to Q associated with e1.

4. Add a new top event to Q associated with the copy of e1.

5. if e2’s endpoints are different than p

6. Same as lines 2-4, but with e2.

Fig. E-38. Algorithm to handle the intersection of two edges

overlapping segments are deleted and not added to the event queue.

The ability to handle overlapping edges was implemented in the prototype soft-

ware application, similar to that described above. The implementation is not de-

scribed in detail here because it is boring and tediously complex.

E.5. Computational Complexity

As stated previously, this algorithm is essentially a modified version of the FindIn-

tersections algorithm described in de Berg et al. (1997, p. 25). The significant

additions are the MakeAndLabelEdges and SetTag functions.

MakeAndLabelEdges is run on line 3 of PolygonUnion for each of the

input polygons. Its running time is based on the number of vertices of each polygon.
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Algorithm SetTag ( e, el )

Input:

An edge e

The edge el immediately to the left of e when it was

inserted into T

Output:

The tag value for e

1. if el does not exist

2. e.tag = 1

3. else if e.label 6= el.label

4. e.tag = el.tag

5. else if e.label = LEFT

6. e.tag = el.tag + 1

7. else e.label = RIGHT

8. e.tag = el.tag − 1

Fig. E-39. Algorithm to set tag

Its total running time is then based on the total number of polygon vertices, which

is n. So lines 2 and 3 take O(n) time.

SetTag runs in constant time, so does not affect the asymptotic running time

of its calling function, HandleTopEvent.

Line 10 in PolygonUnion runs for each event. The total number of events is

two times the number of input vertices, 2n, plus four times the number of intersection

points, 4k. So line 10’s running time is O(n+k). Line 11 in PolygonUnion, and the

functions HandleTopEvent and HandleBottomEvent all perform operations

on balanced binary search trees, so their running times are O(log n).

So the running time of PolygonUnion is O((n + k) log n), where n is the total
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a b

Fig. E-40. Overlapping edges

number of polygonal vertices, and k is the total number of intersections between edges

from different polygons.

E.6. Extensions

The general position condition that polygons cannot be self-intersecting can be re-

laxed if the MakeAndLabelEdges function is modified to find and handle intersec-

tions between edges. Once an intersection point is reached, the labeling tests would

have to be switched from assuming counter-clockwise vertex ordering to clockwise

ordering.

The general position condition that polygons cannot have holes can be relaxed if

the MakeAndLabelEdges function is modified to expect a polygon data structure

that allows for holes in its representation. Changes similar to those just noted can

be made to appropriately label hole edges.
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E.7. Discussion

The advantages of using this algorithm over ones designed for other boolean opera-

tions are:

• it can handle an arbitrary number of polygons,

• it requires no preprocessing step (other than the labeling step at the

beginning, which is making explicit a property of the parts of a poly-

gon),

• it does not require any polygon based geometric operations, and

• it is conceptually much simpler.

This approach of using labels and analyzing edges as they relate to each other

on a sweep line can probably be extended to handle the other boolean operations

on two input polygons. However, many other algorithms exist that perform this

function, and it will probably not be much more advantageous, if at all.
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