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ABSTRACT

Congestion Control Schemes for Single and Parallel TCP Flows in High

Bandwidth-Delay Product Networks. (May 2006)

Soohyun Cho, B.S., Korea University;

M.S., Korea University

Chair of Advisory Committee: Dr. Riccardo Bettati

In this work, we focus on congestion control mechanisms in Transmission Control

Protocol (TCP) for emerging very-high bandwidth-delay product networks and sug-

gest several congestion control schemes for parallel and single-flow TCP. Recently, sev-

eral high-speed TCP proposals have been suggested to overcome the limited through-

put achievable by single-flow TCP by modifying its congestion control mechanisms.

In the meantime, users overcome the throughput limitations in high bandwidth-delay

product networks by using multiple parallel TCP flows, without modifying TCP it-

self. However, the evident lack of fairness between the high-speed TCP proposals (or

parallel TCP) and existing standard TCP has increasingly become an issue.

In many scenarios where flows require high throughput, such as grid computing

or content distribution networks, often multiple connections go to the same or nearby

destinations and tend to share long portions of paths (and bottlenecks). In such cases

benefits can be gained by sharing congestion information. To take advantage of this

additional information, we first propose a collaborative congestion control scheme for

parallel TCP flows. Although the use of parallel TCP flows is an easy and effective

way for reliable high-speed data transfer, parallel TCP flows are inherently unfair

with respect to single TCP flows. In this thesis we propose, implement, and evaluate

a natural extension for aggregated aggressiveness control in parallel TCP flows.

To improve the effectiveness of single TCP flows over high bandwidth-delay prod-
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uct networks without causing fairness problems, we suggest a new TCP congestion

control scheme that effectively and fairly utilizes high bandwidth-delay product net-

works by adaptively controlling the flow’s aggressiveness according to network situa-

tions using a competition detection mechanism. We argue that competition detection

is more appropriate than congestion detection or bandwidth estimation. We further

extend the adaptive aggressiveness control mechanism and the competition detection

mechanism from single flows to parallel flows. In this way we achieve adaptive aggre-

gated aggressiveness control. Our evaluations show that the resulting implementation

is effective and fair.

As a result, we show that single or parallel TCP flows in end-hosts can achieve

high performance over emerging high bandwidth-delay product networks without re-

quiring special support from networks or modifications to receivers.
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CHAPTER I

INTRODUCTION

A. Introduction

The Internet has evolved from small research networks into the backbone infrastruc-

ture network for worldwide communications. It has become an almost indispensable

tool in the daily lives of most people today. However, differently from the traditional

telephone networks, the Internet is not a tightly managed or controlled communica-

tion network. The service provided by the current Internet is basically best-effort,

which does not guarantee in-time delivery of data packets or even the delivery itself.

The Internet allows users or applications the freedom in choosing the best way for

their data delivery. Because of this freedom given to users and the lack of tight man-

agement of the network resources, there is always a possibility that the behavior of

a set of selfish users may eventually lead to congestion collapse of the Internet, in

which nobody can communicate with each other.

To avoid this, it is desirable that all the elements composing the Internet (end-

hosts, servers, network equipment, etc.) work cooperatively. Significant amounts of

research has gone into this area for decades, with the objective to provide a stable and

efficient Internet. One of the main research directions to avoid the congestion collapse

or fair bandwidth sharing among users of the Internet is to embed effective congestion

control mechanisms in the end-hosts. Current Transmission Control Protocol (TCP)

[1] represents the achievement of this effort. The success of the flourishing, world-

wide Internet depends heavily on the protocol’s ability to keep networks stable while

using them effectively. The main topic studied in this work is TCP congestion control

The journal model is IEEE Transactions on Automatic Control.
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schemes for the Internet. Because TCP is the main flow control mechanism and the

most widely used protocol in the Internet, a small upgrade in the TCP congestion

control mechanism can result in a large increase in the efficiency of the Internet.

Although the stability of the current Internet is mainly based on the end-to-

end congestion control mechanism embedded in TCP, another research direction to

improve the performance of the Internet is to embed mechanisms into the network

equipment such as routers. There has been a significant amount of research dedicated

to such mechanisms. RED [2] and XCP [3] are examples that represent efforts in this

direction. Further, there have also been schemes proposed to support service differ-

entiation in the Internet. IntServ [4], DiffServ [5], and Proportional Differentiation

[6] are well-known examples of service-differentiation schemes. It is understood that

IntServ is for strictly prioritized services, DiffServ and Proportional Differentiation

are to provide relatively prioritized services to incoming flows. However, history has

shown that it is unlikely in practice for operators of Internet routers/switches to adopt

schemes that might burden their equipment with additional overhead. The issues of

effectiveness and scalability (or deployability) that have plagued many such schemes

still need to be addressed. We believe that the best place for improvement of the In-

ternet is the end-host and, therefore, primarily focus on mechanisms that can achieve

better performance without requiring special support from network infrastructures.

During the last decades, to overcome increasing heterogeneity and diversity in

network elements that compose the Internet, TCP has continuously evolved from a

simple error control mechanism not much different from “Selective Repeat ARQ” [7]

to the current, state-of-art level congestion window control that defies easy under-

standing. The heterogeneity of network situations that TCP covers ranges from slow

links such as dial-up modem lines to the thousands of miles of trans-Pacific optical

links. Also, the wide use of wireless networking requires TCP to further evolve to
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become more intelligent to differentiate between packet losses caused by transmission

error or noise from those caused by congestion. Furthermore, continuing evolution in

transmission technology and ever-increasing demands for very-high bandwidth ser-

vices pose a number of new challenges to TCP.

To deal with such challenges, there have been many proposals and suggestions

with different approaches for TCP congestion control. However, the de facto stan-

dard for the TCP congestion control is still a loss-based approach, as exemplified

by, in TCP-NewReno [8] and TCP-SACK [9]. By controlling the sender’s congestion

window size in response to packet loss in the network, loss-based congestion control

adjusts the amount of outstanding data. However, a pure loss-based approach has the

inevitable shortcoming that it cannot detect congestion until well after it happens.

There have been proposals to compensate for this with delay variation information

measured at end-hosts. TCP-Vegas [10] and FAST-TCP [11] are examples that rep-

resent achievements in this direction. However, it is known that pure delay-based

approaches respond to congestion well before loss-based schemes, and thus cannot

compete effectively. These schemes eventually lead to low-priority flows by giving up

bandwidth to loss-based TCP.

The limited throughput achievable by single-flow TCP over high bandwidth-

delay product networks has increasingly become an issue. TCP’s flow control and

error control mechanism has been shown to be a limiting factor for such networks:

Given TCP’s lack of ability to distinguish non-congestion packet loss from congestion

related packet loss, its throughput is inversely proportional to the round-trip time.

To overcome this ineffectiveness, recently, several proposals to modify the behavior

of TCP for high bandwidth-delay product networks have been introduced. These

proposals include HS-TCP [12], STCP [13], H-TCP [14], FAST TCP [11], BIC-TCP

[15], and LTCP [16]. These have shown good performance in the utilization of high
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bandwidth-delay product networks. However, we will examine the fairness of these

proposals and show that most of these proposals have serious fairness problems with

respect to flows that use standard TCP, e.g., TCP-SACK. In Chapter IV, we propose

a new TCP congestion control scheme called Adaptive TCP, which is effective in

high bandwidth-delay product networks while maintaining fairness close to that of

standard TCP when it competes against other TCP flows.

Differently from these approaches, high utilization over high bandwidth-delay

product connections can be achieved without modifications to TCP itself, by opening

multiple concurrent parallel TCP flows. If users at end-hosts establish multiple TCP

connections simultaneously to the same destination, they can achieve higher through-

put than users with single TCP flow. This is because, with standard TCP, the total

congestion window size increase and recovery of parallel TCP flows are faster than

for a single flow and each loss of a packet in a set of parallel TCP flows causes the

congestion window of only a single TCP flow to half instead of halving all parallel

TCP flows’ windows [17]. As a result, the achievable throughput of parallel TCP

flows, given the same packet loss probability and round-trip time, is bigger than that

of a single TCP flow.

Opening multiple parallel TCP flows is unfair in terms of throughput with respect

to hosts who open a single TCP flow when they compete for the same bottleneck link.

There have been several efforts such as Fractional/Combined TCP flows [18] to achieve

high performance with parallel TCP flows while constraining the unfairness of parallel

TCP flows. However, we show that improving performance of parallel TCP flows while

maintaining fairness (or TCP-friendliness) to single TCP flows is not easy to achieve.

In Chapter III, we propose an aggregated aggressiveness control framework and its

implementation called TCP-P that controls aggregated aggressiveness of parallel TCP

flows to be comparable to that of a given number of parallel TCP flows according to
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the strength parameter of the group.

High-speed connections are often used by servers or very busy hosts, where mul-

tiple, parallel connections exist simultaneously. Similarly, in overlay networks, such

as Content Distribution Networks (CDN) [19] and peer-to-peer networks [20], it is

common to aggregate traffic at the edges of the network and forward it between over-

lay nodes as flows aggregate. Flows in such systems tend to share long portions of

paths (and bottlenecks), and benefits can be gained by sharing congestion informa-

tion. In Chapter II we leverage this correlation among parallel TCP flows and propose

a congestion control scheme for parallel TCP flows. In the scheme, parallel TCP flows

control their congestion windows using additional congestion related information from

other parallel TCP flows in their group.

While the fairness (or TCP-friendliness) of the TCP proposals is considered as

an important factor in determining the performance of the proposals, it is not usually

mentioned what will happen if many such TCP flows compete against standard TCP

flows. By simply opening multiple fair TCP flows users can easily achieve more than

a fair share regardless of how fair the TCP was designed to be. Thus, we believe that

parallel-level performance such as fairness to single TCP flow should be considered

as one of the important criteria in evaluating TCP proposals. Finally, in Chapter V,

by combining the aggregated aggressiveness control mechanism of TCP-P in Chapter

III with the adaptive aggressiveness control mechanism of A-TCP in Chapter IV, we

propose a new TCP scheme called Adaptive TCP-P (A-TCP-P) whose performance

in terms of effectiveness and fairness are not affected by the number of parallel flows.

In Figure 1 we illustrate the relationship between existing TCP schemes and the

extensions proposed in this dissertation. The relationship between the schemes is

represented by the arrows. For example, TCP becomes parallel TCP when a node

opens more than one active TCP to the same destination. The three gray circles
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Fig. 1. Relationship Diagram

in the figure represent relationship between existing schemes: TCP, MulTCP [21],

and parallel TCP. MulTCP and TCP/k in Chapter IV are similar to each other as

both try to emulate the aggressiveness of parallel TCP with single-flow TCP while

their implementations are slightly different. Transparent circles represent schemes

proposed in this dissertation: i) TCP/DCA-C in Chapter II based on collaboration

among parallel TCP flows, ii) TCP-P in Chapter III that controls aggregated ag-

gressiveness of parallel TCP flows, iii) A-TCP in Chapter IV applies the adaptive

aggressiveness control on single-flow TCP, iv) A-TCP-P in Chapter V employs the

adaptive aggregated aggressiveness control on parallel TCP.

The remainder of this dissertation is structured as follows: In Chapter II, we

suggest a collaborative congestion control scheme called TCP/DCA-C for dynamic

congestion information sharing among parallel TCP flows. In Chapter III we propose

aggregated aggressiveness control on groups of TCP flows. In Chapter IV we pro-
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pose an adaptive aggressiveness control scheme for single TCP flows, which achieves

effective utilization of high bandwidth-delay product networks without causing the

fairness problem. In Chapter V we extend the scheme proposed in the previous section

from single flows to parallel flows: We extend TCP-P by adopting an adaptive aggre-

gated aggressiveness control mechanism based on group-wide information. Chapter

VI concludes this dissertation.
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CHAPTER II

COLLABORATIVE CONGESTION CONTROL IN PARALLEL TCP FLOWS

A. Introduction

A loss-based TCP congestion control scheme such as TCP-NewReno [8] adjusts the

amount of outstanding data by controlling the sender’s congestion window size in

response to packet loss in the network. Although this loss-based approach has been

the de facto standard for the TCP congestion control for decades, it has an inevitable

shortcoming in that it can detect congestion only after it has happened. To solve

this problem many researchers proposed alternative methods to replace loss-based

congestion control with delay-based schemes, such as Delay-based Congestion Avoid-

ance (DCA) [22] or TCP-Vegas [10], or to combine delay-based fine tuning (such

as TCP/Dual [23] and TCP/DCA [24]) with loss-based (so called, coarse) congestion

control. TCP/Dual decides that congestion is impending if a round-trip time is larger

than the average of the maximum and minimum round-trip time. In TCP/DCA, sam-

pled round-trip times are compared to long-term average and standard deviation of

round-trip times to decide whether congestion is imminent. The rationale behind the

various delay-based approaches is that the increase of round-trip time delay is due

to queuing delay at switches and can be used as an indicator for impending packet

losses.

Recent transmission technology improvements have resulted in much higher band-

width available to Internet hosts, thus significantly increasing the delay-bandwidth

product over end-to-end connections. In this chapter we use the following observa-

tions: First, high-speed connections are often used for servers or very busy hosts,

where multiple connections exist simultaneously. Similarly, in overlay networks, such
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as Content Distribution Networks (CDN), it is common for much of the traffic to be

forwarded between overlay nodes as flows aggregate. Finally, techniques such as TCP

splicing [25] technique suggest to splice TCP flows through a proxy to improve for-

warding performance of TCP by overcoming heterogeneity of networks. Flows in such

systems tend to share long portions of paths (and bottlenecks), and improvements

may be gained by sharing congestion information.

In order to do so, we group multiple TCP flows from a node according to their

destinations, so that TCP flows in a group can share their congestion information with

each other. We modify TCP flow control to adopt a simple delay-based congestion

detection mechanism and make the flows exchange their congestion events within

the group. By doing this, we expect that parallel TCP flows can (i) control their

congestion windows (so, their sending rates) more accurately, so that they can (ii)

reduce packet losses from flows in the group and (iii) maintain small and stable queue

sizes in the network compared to those of unmodified parallel TCP flows.

The remainder of this chapter is organized as follows: Section B surveys related

work on parallel TCP flows. Section C presents the proposed collaborative congestion

control scheme in parallel TCP flows with the definition of groups and events. Section

D shows that this scheme can be used to improve various performance measures of

parallel TCP flows. Section E summarizes this chapter.

B. Related Work

There has been significant research done to improve the congestion control when

multiple flows are sending traffic to similar destinations from a single node. T/TCP

(TCP for Transactions) [26] proposes temporal information sharing among parallel

TCP flows. A T/TCP host caches previous TCPs’ congestion control information,
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e.g., Round Trip Time (RTT) and Maximum Segment Size (MSS). The cached in-

formation is used when a new TCP connection is established to the same remote

hosts. Ensemble-TCP [27] suggests both temporal and ensemble information sharing

using a common TCB (TCP Control Block) among concurrent connections. A new

connection uses existing connection’s TCB and congestion control of all TCP flows

are done based on an aggregated congestion window.

Similarly, Congestion Management architecture (CM) [28] proposes an integrated

congestion control and loss recovery scheme for parallel TCP connections. There is

a single congestion window for the set of TCP connections between a sender and

receiver. The integrated control block adjusts the total amount of unacknowledged

data that the set of connections can put in the network. COCOON [29] has a similar

approach to ours in that it uses an aggregate control of a group of TCP flows. Specif-

ically, it changes the congestion window size of a TCP flow whenever other flows in

the group experience packet losses.

Recently, attention has focused on prioritizing TCP flows. TCP-Nice [30] and

TCP-LP [31] both try to control background TCP traffic not to interfere with more

important foreground traffic. TCP-Nice is based on TCP-Vegas [10] and controls

the amount of outstanding data to be less than that of foreground traffic. TCP-

LP uses one-way delay increase as an early indicator of impending congestion and

halves the congestion window of low-priority flows earlier than standard TCP. RCS

[32] assumes that the network supports a priority scheme. It sends dummy (low

priority) packets to probe available bandwidth before it determines its sending rates

for multimedia traffic. SAReno [33] adopts the Shortest Remaining Processing Time

First (SRPT) scheduling for TCP flows. To achieve better average bit transmission

delay (i.e., delay/file size), this scheme changes priorities of TCP flows according to

their residual size of data. In this scheme, the priority of each TCP flow is represented
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by its linear increase rate and multiplicative decrease rate.

The scheme proposed in this chapter is different from the above methods because

each TCP flow in our scheme maintains its own congestion window and uses extra

measurement information from other TCP flows in the group and responds to them

independently. In addition, the particular realization described in this chapter is

based on a delay-based congestion avoidance mechanism as opposed to packet loss.

C. Collaborative Congestion Control

In networks that do not provide congestion control mechanisms, such as Explicit

Congestion Notification (ECN) [34], acknowledgement (ACK) packets are the only

indicators for TCP traffic senders to estimate the current network state. In an in-

creasing number of service deployment scenarios, however, TCP flows get aggregated,

and so share both large portions of their paths and likely the congested links on them.

As a result, parallel TCP flows would benefit by using the other flows’ information

in addition to their own to estimate the network status.

We use the term group to indicate a set of flows from a node that have the same

destination node and that share the path between senders and destination nodes. This

group concept can be extended to aggregated flows between clusters of nodes at the

sender or the receiver side. For example, we can take advantage of IP’s hierarchical

addressing [35] or systems like GNP [36] to cluster end-hosts, so that connections

between clients share most of their path, thus allowing for an effective grouping of

flows that not necessarily share both source and destination nodes. However, in this

chapter we only group flows with the same source and destination pairs.

Three types of congestion related indicators are available to the sending host:

(a) round-trip time history, (b) duplicate acknowledgement (DUPACK) events, and
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(c) time-out events. While all three indicators can be used in collaborative conges-

tion control, we focus on (a), round-trip time history. The rationale for this is that

DUPACK and time-out events, while necessary for flow and error control for the af-

fected flows, happen after congestion, which is typically too late for use for preventing

packet losses of other TCP flows in the group. We therefore extend traditional TCP

by adding an inter-flow, delay-based, congestion control method in addition to the

existing loss-based congestion control mechanism.

We call our scheme TCP/DCA-C because (i) parallel TCP flows in our scheme

adopt a delay-based congestion avoidance scheme and (ii) flows share delay events de-

tected by TCP flows in the group as indictors of imminent congestion collaboratively

(i.e., C stands for Collaborative). To detect imminent congestion, a TCP/DCA-C flow

monitors its round-trip time, and uses a threshold-based approach with the following

threshold level T:

T = rttmin + γ ∗ (rttmax − rttmin). (2.1)

Here, rttmin and rttmax represent the maximum and minimum round-trip time of a

TCP flow respectively. If a round-trip time is larger than the threshold, then a TCP

flow in our scheme interprets this as an indicator for impending congestion. The value

for parameter γ used in this chapter is 1/2.

Algorithm 1 illustrates the details of the mechanics of TCP/DCA-C. As a basis,

we use TCP-Reno. The TCP/DCA-C mechanism keeps track of RTTs to generate

indicators of possible congestion. Flow grouping is done using a registration scheme:

during connection establishment a new flow either creates and registers to the new

group or register to an existing group. When a TCP flow is torn down it unregisters

from the group. A TCP/DCA-C flow in a group behaves the same way as a normal

loss-based TCP does, except that (i) it responds to delay-based congestion events as
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Algorithm 1 TCP/DCA-C

At connection setup:

1: if a group for this flow exist then

2: register to the group;
3: else

4: create a new group and register to the group;

5: end if

During connection life time: same as TCP-Reno except for:

(1) Every rtt updates:

1: update rttmin and rttmax;
2: if rtt > rttmin + γ(rttmax − rttmin) then

3: Send a signal and cwnd to TCP flows in the group;
4: if cwnd > ssthresh then

5: cwnd← cwnd− α · cwnd
6: end if

7: end if

(2) When a signal is received from other flows in the group of size N :

1: if cwnd > signal sender’s cwnd then

2: cwnd← cwnd− α · cwnd/(N − 1)

3: end if

At connection tear down:

1: unregister from the group;
2: if no flow exists in the group then

3: delete the group;

4: end if
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well if it is in congestion avoidance phase (i.e., cwnd > ssthresh), (ii) it passes its

delay events to other flows in its group, and (iii) it reacts to incoming indicators from

other flows. The value for the parameter α, which decides the amount of reduction

in congestion window of a TCP flow when it detects delay increase events from its

own ACKs, is set to 0.125. This value is taken from the decrease ratio of congestion

window suggested in DCA [22]. In DCA the sender decreases its congestion window

if the normalized delay gradient is larger than 0.

When a TCP/DCA-C flow sends its delay event as a signal to other flows in the

group, it also sends out its current congestion window size. TCP/DCA-C flows in

the same group reduce their congestion windows, but do so only if the congestion

window of the signal sender is smaller than their own. Furthermore, TCP/DCA-C

adjusts the amount of congestion window reduction in response to indicator signals

from other flows inversely proportional to the size of its group (i.e., the number of

flows in the group). This compensates for group size effects, since more flows in the

group would generate more indicator signals.

It is reasonable to assume that the expected size of congestion windows of all

TCP/DCA-C flows in a group are similar because we define groups based on source-

destination pairs and the path for a group is fixed. Furthermore, with a group of size

N , we can reasonably assume that the number of flows sending congestion notifica-

tions with a smaller congestion window to a particular flow in the group is typically

not more than (N − 1)/2, as the remaining (N − 1)/2 flows have a larger or equal

congestion window than the particular flow. As a result, if all the other flows in the

group simultaneously detect delay events then the expected amount of adjustment

will not be more than α/(N − 1) ∗ (N − 1)/2 = α/2 of the congestion window of a

flow according to step (2) in Algorithm 1, regardless of the group size.

The threshold-based approach we use for the detection of imminent congestion is
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similar to that used in TCP-Nice [30], which counts the rate of these events and if the

rate is larger than some threshold value it responds by reducing its congestion window

by half. However, TCP-Nice is designed to minimize disturbances to foreground

traffic. In our scheme, TCP/DCA-C flows in a group respond to each of the events

by reducing their window size less than half of its current congestion window size

(i.e., α < 0.5) and sending the event as an indicator signal to other TCP flows in its

group.

To compare the effectiveness TCP/DCA-C scheme with single-flow based schemes,

we also define TCP/DCA-S (i.e., S stands for Self ), which only uses its own delay

events for the fine-tuning of its sending rate. This scheme is implemented by disabling

the response of a TCP/DCA-C to signals from other TCP flows shown in Case (2) in

Algorithm 1. In the next sections we will show using simulation that our TCP/DCA-

C scheme in parallel TCP flows can improve the performance of parallel TCP flows

in various network situations.



16

D. Simulation Results

We used ns-2 [37] Ver. 2.27 as a simulator for all the experiments. We implemented

TCP/DCA-C by constructing a group management structure for parallel TCP flows

to exchange information with each other. The TCP module used in our scheme

was built by inheriting from the TCP-Reno module. All other TCP flows we use

in the simulation are TCP-Reno. We use a fixed segment size of 1000 bytes for

all connections including UDP. The simulated network we use is shown in Figure

2. The default buffer size at the output port of the bottleneck switch node SW0

is set to 36 packets, which is the bandwidth-delay product value of the bottleneck

link between the two switch nodes SW0 and SW1. The advertised window sizes of

TCP receivers were set to be large (e.g., 200 packets) enough for TCP senders to fill

network resources.

FIFO Drop-Tail scheduling is used at the outport of Node SW0 when we test

the TCP schemes that do not require network support. When we measure the per-

formance of TCP/ECN flows, which require support from network, we configure an

active queue management scheme at the bottleneck link. TCP/ECN responds to

marked ACKs the same way it does to packet losses. For the ECN support in the

network we run RED [2], one of the most popular active queue management (AQM)

mechanisms, at the output buffer of Node SW0 and enable marking instead of drop-

ping of packets. The parameters used for RED in all simulations are left to the

default values of the ns-2 distribution except for a mean packet size of 1040 bytes.

The default settings of RED give us minth = 5, maxth = 15, wq = 0.001663, and

maxp = 0.1.

In the following, we compare the performance (in terms of goodput, packet loss

rate, delay, and jitter) of TCP-Reno, TCP/DCA-S, TCP/DCA-C, and TCP/ECN
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for the case of no cross traffic, square-waved UDP cross traffic, and web cross traffic.

1. No Cross Traffic Case

In the first simulation we do not generate cross traffic in the test network shown in

Figure 2. We establish two FTP flows (Flow 0 and Flow 1) from the sender node S0

to illustrate the difference of the various schemes. In this simulation we compare the

results of our collaborative congestion control scheme TCP/DCA-C and its variants

(TCP/DCA-S) with unmodified TCP flows and TCP flows with ECN. A sender node

S0 opens two FTP flows at the same time to a receiver node R0 for 50 seconds.

Figure 3 shows the queue size changes in the bottleneck link from time 14 sec to

20 sec of the simulation run when we use different schemes for the two TCP flows. The

graphs show that TCP/DCA-C maintains a small queue size and variation. With this

result we expect that TCP/DCA-C will have low delay and jitter for packets arriving

at the receiver. Unmodified TCP flows show large fluctuations of the queue size. The

queue size of TCP/ECN is generally small as is to be expected, given the help from

the network infrastructure.

In Figure 3 we also show the congestion windows of the two parallel TCP flows

in each scheme for the same time period. From the graphs, we can see the TCP

flows in the TCP/DCA-C scheme maintain stable congestion windows. TCP/DCA-S

also shows stable congestion windows. However, we can see that there is significant

difference in sizes of congestion windows between two TCP/DCA-S flows even though

they are going to the same destination from the same source node. This shows

that lock-out [38] is happening for TCP/DCA-S flows, which results in unfairness in

throughput between the two flows. Lock-out occurs because TCP/DCA-S is a single-

flow based scheme, where flows respond to their own congestion events only. This

example illustrates the benefit of sharing congestion signals across flows.
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Fig. 3. Queue Size and Congestion Window Changes

In Table I we show performance measurement data of each scheme when two FTP

flows start randomly from 0 to 0.1 sec and finish at 50 sec. All data shown in the table

is obtained from averaging 10 simulation runs. The unit of aggregated goodput in the

table is kbps and it is calculated by dividing the total number of packets arrived at the

two FTP receivers by the simulation time. Except for TCP/ECN, the schemes do not

show much difference in aggregated goodputs. The “Loss” column in the table shows

percentage of lost packets of the two flows. Most of the losses of TCP/DCA-C flows

happened during the initial slow-start phase. After they enter congestion avoidance

phase they show little packet losses at all. Unmodified TCP and TCP/ECN showed

significant packet losses during congestion avoidance phase as well.

The time unit in the “Delay” column is msec. The column shows average and
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Table I. Aggregated Goodput, Loss, Delay, and Fairness of Two TCP Flows with Start

Time [0, 0.1] sec

Goodput Loss Delay Fairness
(avg./std.) (avg.) (avg./std.) (avg.)

TCP 4705.2/9.6 0.41 71.8/19.6 0.997
TCP/ECN 4497.7/30.8 0.31 53.5/9.29 0.996

TCP/DCA-S 4784.8/7.9 0.29 68.0/5.41 0.972
TCP/DCA-C 4740.3/37.9 0.26 51.7/5.38 0.999

standard deviation of one-way delays incurred by packets of the two TCP flows. In the

column TCP/DCA-C flows show higher performance than TCP/ECN. To measure

fairness in goodputs of the two flows we use the fairness index from Chiu and Jain

[39] as shown below:

FI(x1, x2, .., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2
. (2.2)

The measured data in the last column of the table show that single-flow based

TCP/DCA-S is less fair than the other schemes, just as we expected from Figure 3.

2. On-Off CBR Cross Traffic Case

In this section we first apply On-Off (i.e., square-waved) Constant Bit Rate (CBR)

traffic over UDP as cross traffic in the setup described in Figure 2. The CBR traffic

comes from Node S1 and goes to Node R1 to disturb the TCP flows from Node S0 to

Node R0 when it is On. The parallel TCP flows start randomly during the interval

between 0 and 0.1 sec, and the On-Off CBR flow start in Off state at time 0 sec.

The sending rate of the CBR flow when On is set to 60% of the bottleneck link, and

durations of On and Off periods are both set to 10 sec. Intervals between CBR packets

are randomly distributed to introduce jitters by enabling the random parameter for

CBR in ns-2.
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Fig. 4. On-Off Cross Traffic, Different Number of FTP Flows

Figure 4 shows the simulation results with various numbers of parallel TCP

flows from Node S0 to Node R0. All the data shown in the figure are averages of 10

independent simulations of 50 second duration each. The figure shows that parallel

TCP/DCA-C flows achieve high aggregate goodput and small packet loss ratios and

jitters (we define jitter as standard deviation of one-way delays). One-way delays

incurred by TCP/DCA-C packets are smaller than those of unmodified parallel TCP

flows but larger than those of TCP/ECN flows. However, note that TCP/DCA-C

scheme does not require support from the network nodes while TCP/ECN scheme

does. In fact, TCP/DCA-C uses information acquired by TCP flows in its group at

the sender-node only. In Figure 5 we also show simulation results obtained when we

changed bottleneck buffer sizes from 30 to 90 with 6 parallel TCP flows. The figure

shows that the relative performance of the TCP/DCA-C scheme compared to other
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Fig. 5. On-Off Cross Traffic, Different Buffer Sizes

schemes is not affected by buffer size changes.

In Figure 6 we show experiment results when we change the periods of On-Off

UDP cross traffic while the number of flows and the bottleneck buffer size are fixed:

We change the periods of the On-Off UDP cross traffic from 0.05 to 12.8 second (i.e.,

0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8 sec). The durations of On and Off states are

both set to half of each period. The number of flows from Sender Node S0 is fixed at

two, and the bottle-neck buffer size is set to 36 packets for all the experiments. The

CBR UDP rate from Sender Node S1 is again 60% of the bottle-neck bandwidth (i.e.,

3Mbps) when it is On, and zero cross traffic when it is Off. Therefore, the average

available bandwidth that can be utilized by TCP flows is maximum 3.5Mbps. We

use this maximum achievable bandwidth to normalize the goodput of TCP flows
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Fig. 6. On-Off Cross Traffic, Different Period

from experiment. This experiment have been suggested and used in [40] to measure

how quickly TCP congestion control schemes utilize available bandwidth. From the

experiment results in Figure 6 we can see that parallel TCP/DCA-C flows achieve

small packet loss ratio and low delay and jitter while maintaining similar goodput

compared to other schemes.

3. Web Cross Traffic Case

Figure 7 shows the experiment results in the presence of web cross traffic instead of

On-Off traffic. The cross traffic is established between web server nodes (S2 to S6)

attached to the switch node SW0 and web client nodes (R2 to R6) attached to the

switch node SW1. All the data shown in the figure are averages of 10 simulation runs

obtained of 50 second duration each. For the simulation of web traffic we adopted a
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Fig. 7. Web Cross Traffic, Different Number of FTP Flows

model suggested in [41]. In this model clients randomly initiate sessions to download

files from server nodes. The parameters and distributions for the web traffic model

used in simulations are: number of sessions: 100, inter-session time: exponential with

mean 5 sec, pages per session: 10, inter-page time: exponential with mean one sec,

number of object per page: 10, inter-object time: exponential with mean 10 msec,

and object size: Pareto II with mean 10 packets and shape 1.2. These parameters

resulted in quite significant amount and variation of cross traffic in the test network.

However, as we can see from Figure 7, TCP/DCA-C shows similar performance to

the previous On-Off cross traffic case in most aspects.
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E. Summary

In this chapter we proposed a new, measurement based, collaborative congestion

control scheme called TCP/DCA-C for parallel, or quasi-parallel, TCP flows, which

exchanges indicator signals about imminent congestion within the group in order to

improve performances of all the flows in the group. In TCP/DCA-C, flows in a group

can manage their data sending rates more accurately to achieve better performance by

taking advantage of information that comes from other TCP flows, which experience

congestion earlier, and by treating their congestion signals as indicators of imminent

congestion in network.

Simulation results show that the TCP/DCA-C scheme for parallel TCP flows

achieves better performance than unmodified parallel TCP flows in terms of packet

loss ratio and delay and jitter without compromising aggregated goodput. The scheme

also shows improved fairness among parallel TCP flows and comparable performances

to TCP/ECN scheme which requires support from networks.
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CHAPTER III

AGGREGATED AGGRESSIVENESS CONTROL ON GROUPS OF TCP FLOWS

A. Introduction

Parallel TCP has been widely used to work around the limitations of single-flow TCP

over high bandwidth-delay product connections. GridFtp [42] and XFTP [43] are

examples of the use of parallel flows at application level to achieve high throughput.

PSockets [44] is a library that supports applications to use parallel connections. The

use of parallel TCP flows has several benefits compared to a single TCP flow [45].

If an end-host opens N parallel TCP flows to the same destination, its congestion

window recovery and increase are N times faster than a single TCP flow [17]. As

a result, the achievable aggregate throughput of parallel TCP flows is significantly

bigger than the achievable throughput of a single TCP flow given the same packet loss

probability and round-trip time. Unfortunately, this increase comes at the expense

of the throughput experienced by other, single TCP flows, as sender nodes who open

parallel TCP flows will unfairly consume more bandwidth when they compete with

single TCP flows from other nodes for the same bottleneck links.

With the increased venues for bundling of TCP flows (e.g., overlay networks, TCP

splicing [25], large servers with topological aggregation of service delivery, dedicated

connections between supercomputers or campuses) flexible schemes are needed for the

controllable aggregation of large numbers of parallel TCP flows. Naively limiting the

number of parallel connections that applications in a node can open concurrently is

not appropriate in many situations, as it violates the separation of application design

from network resource allocation: Making the number of available connections visible

to the application unduly burdens the application design. On the other hand, hiding
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the varying numbers of connection endpoints from the application through tunneling

or multiplexing schemes typically is costly. Also, statically limiting the maximum

aggregate sending rate of parallel TCP flows from sender nodes may leave network

resources under-utilized because it disables TCP’s available bandwidth probing ability

beyond the given sending rate. It is therefore preferable to allow for TCP flows to

aggregate, but do so in a controlled way.

Methods to control aggregation of TCP flows must have the following capabilities:

• Transparency to applications (management of connections and expected dy-

namics of data transmission should maintain TCP characteristics,)

• Compatibility with existing TCP implementations (“TCP-friendliness”,)

• Controllability and flexibility of the service (the “control knob” offered by the

mechanism should be intuitive and have measurable effect on behavior,)

• Effective use of available bandwidth (the mechanism should not prevent TCP

from quickly making use of available bandwidth,)

• Flexible deployability (the mechanism should be deployable in single-sender

(server), or multi-sender (overlay) scenarios.)

In this chapter we propose aggregate strength as a mean to control the fairness of

parallel TCP flows: The aggressiveness or unfairness of parallel TCP flows is appro-

priately controlled to not exceed that of a configurable number of single TCP flows,

regardless of the number of TCP connections. With the term fairness (unfairness)

we mean how fairly (unfairly) a group of parallel TCP flows from a node share net-

work resources such as bandwidth with TCP flows from other nodes. By setting the

aggregate strength of a group to some value k, the group of parallel TCP flows in

a node behaves as if there were a group of k parallel TCP flows regardless of the
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Fig. 8. Aggregated Aggressiveness Control

number of parallel flows applications in the node open. By doing so we provide a

flexible aggregate control of parallel TCP flows while keeping the ability of parallel

TCP flows to effectively utilize available bandwidth.

We implement aggregated aggressiveness (or strength) control within TCP-P,

which is an extension to TCP. TCP-P controls the aggressiveness of a group of N

parallel TCP flows from a node against single TCP flows from other nodes by con-

trolling the strength of the group of flows. The “strength” in this context is a scalar

value k of the TCP group and describes how big (in terms of number of flows) the

group is perceived by other TCP flows from other nodes sharing network resources

with the group. We will show in the following how this parameter provides a simple

and intuitive means to control aggressiveness of parallel TCP flows. In Figure 8 we

show the conceptual diagram of aggregated aggressiveness control working in an In-

ternet node. With the figure we illustrate that the system achieves the effectiveness

of k TCP flows, and competing flows in the Internet experience the aggressiveness of

k TCP flows even though applications in the system open N parallel TCP flows.

There have been several efforts to improve TCP performance using parallel

flows while constraining the unfairness of parallel TCP flows comparable to that

of a single TCP flow. The Congestion Management (CM) architecture [28], Frac-
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tional/Combined TCP flows [18] and COCOON [29] are some examples. In contrast

to these schemes, MulTCP [21] was proposed to claim k times more bandwidth for

a single TCP connection. A MulTCP flow with parameter k increases and decreases

its congestion window size as if there were k multiple TCP flows. However, as far

as we know, there has been no scheme to controllably constrain the aggressiveness of

parallel TCP flows.

The remainder of this chapter is organized as follows: Section B presents the

methodology we used to control parallel TCP flows’ total strength. Section C de-

scribes our implementation in the Linux kernel. Section D presents experimental

results that demonstrate how this implementation effectively controls the aggressive-

ness of parallel TCP flows. In Section E we analyze and evaluate the throughput ratios

between parallel TCP flows and competing single TCP flows. Section F summarizes

this chapter.

B. Aggregate Aggressiveness Control

Aggregate aggressiveness control on parallel TCP flows is achieved through mod-

ifications to TCP’s congestion window increase and decrease behavior. During the

increase phase, a normal TCP has two modes: exponential increase during slow-start,

linear increase during congestion avoidance. Within the decrease phase, normal TCP

responds to congestion events, such as three duplicate acknowledgement packets, by

halving its congestion window size. With a given strength parameter k, we want to

match the total amount of increase and decrease of congestion windows of a group of

N parallel TCP-P flows to those of k single TCP flows.

We denote the amount of increase of congestion window of a single TCP flow

i in increase phase as ∆+
i and the amount of decrease in decrease phase as ∆−

i ,
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respectively. Let the amount of increase and decrease of a TCP-P flow j in a group

of size N be ∆p+
j and ∆p−

j respectively. To make N parallel TCP-P flows become like

k single TCP flows, we need to make sure that
∑k

i=1 ∆+
i =

∑N
j=1 ∆p+

j for the given

number of non-duplicate ACKs, and
∑k

i=1 ∆−
i =

∑N
j=1 ∆p−

j for a congestion event.

1. Controlling Increase

In slow-start mode, TCP increases its congestion window by one per non-duplicate

ACK until it detects congestion events or the congestion window size reaches its slow-

start threshold value. When a TCP is in slow-start mode, the congestion window size

of a TCP, W , after a non-duplicate ACK arriving at time t is shown in the following

equation:

W (t+) = W (t) + 1. (3.1)

When all TCP flows in a group of N unmodified parallel TCP flows are in slow-

start mode, the total congestion window increase will be N times faster that a single

TCP flow. For the same group size of TCP-P flows to have strength k, the congestion

window of each TCP-P flow, Wj, should increase by k/N per non-duplicate ACK as

shown in the following equation:

Wj(t+) = Wj(t) +
k

N
. (3.2)

In congestion avoidance mode, we want to make the aggregate congestion window

size increase of N parallel TCP-P flows with strength k be equal to that of k TCP

flows for the same amount of non-duplicate ACKs. We describe the special case of

k = 1 first, and generalize it later. Let W (t) be the congestion window size of a single

TCP at time t, and we assume the sum of congestion window size of each TCP-P flow

in the group is equal to W (t), i.e.,
∑N

j=1 Wj(t) = W (t). The amount of congestion



30

window increase of a single TCP per non-duplicate ACK in this mode is 1/W (t) as

shown in the following equation:

W (t+) = W (t) +
1

W (t)
. (3.3)

If each TCP-P flow in a group size N increases its congestion window by one,

the total increase will be N. For a single TCP flow to increase its congestion window

size W by N , it needs W + (W + 1) + (W + 2) + · · ·+ (W + N − 1) =
∑N−1

i=0 (W + i)

non-duplicate ACKs. Hence, to match the congestion window increase speed of N

parallel TCP-P flows to that of a single TCP flow, we should require the group of

TCP-P flows with size N to receive
∑N−1

i=0 (W + i) non-duplicate ACKs before each

TCP-P flow in the group increases its congestion window by one.

To ensure fairness among TCP-P flows within the group, we evenly distribute

the total amount of non-duplicate ACKs required for a group to each TCP-P flow

in the group, so that each TCP-P flow in a group needs to receive
∑N−1

i=0 (W + i)/N

non-duplicate ACKs before it can increase its window size by one. In this way, with

the same amount of non-duplicate ACKs, i.e.,
∑N−1

i=0 (W + i), the N parallel TCP-P

flows will increase their total congestion window size by the same amount, N, just as

the single TCP flow.

For the case of k > 1, we generalize the previous case: parallel TCP-P flows

need to increase their total window size of the group by k after the group received
∑N−1

i=0 (kW +i) non-duplicate ACKs. Here, W is the average of the congestion window

sizes of k TCP flows, and we assume that
∑k

i=1 Wi = kW =
∑N

j=1 Wj, i.e., the sum

of congestion window Wi of k single TCP flows is equal to the sum of congestion

window Wj of N parallel TCP-P flows at time t. We use the fact that the increase

of the total congestion window size of k parallel TCP flows with a given number of

non-duplicate ACKs is k times larger than the increase of the congestion window of a
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single TCP flow with the same window size (i.e., kW ). For this, each TCP-P flow in

a parallel TCP-P group of size N should increase its congestion window by one after

receiving the following amount of non-duplicate ACKs:

∑N−1
i=0 (

∑N
j=1 Wj + i)

k ∗N
. (3.4)

As a result, the increase behavior of a group of N TCP flows can be made to

closely reflect that of k TCP flows.

2. Controlling Decrease

A single TCP flow reduces its congestion window size W by half when it detects a

congestion event, such as three duplicate ACKs at time t:

W (t+) =
W (t)

2
. (3.5)

In unmodified parallel TCP flows, only single TCP flow in the group halves

the congestion window size for each congestion event to the group. This behavior

primarily contributes to the observed throughput advantage (and the unfairness) of

parallel TCP flows over a single flow. In contrast, we let each TCP-P flow in a group

responds to its own congestion event by reducing its own congestion window. In

addition, TCP-P adjusts congestion windows of other TCP-P flows in the group as

well based on the group size N and strength parameter k.

For k = 1, we halve all parallel TCP-P flows’ congestion window sizes whenever

any member flow detects a congestion event. For k > 1, we let the total congestion

window size after a congestion event be (2k−1)/(2k) of the previous total congestion

window size of N parallel TCP-P flows. Hence, for a group of N TCP-P flows with

strength k, the total amount of congestion window decreases according to the following
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equation:

N
∑

j=1

Wj(t+) =
N

∑

j=1

Wj(t) ∗ (
2k − 1

2k
). (3.6)

For k = N , N parallel TCP-P flows becomes unmodified N parallel TCP, and the

total decrease amount of N TCP-P flows become (2N−1)/(2N) of the previous total

window size. This is the same as that of unmodified parallel TCP flows’ [17]1.

However, when a TCP-P flow detects a congestion event, its slow-start threshold

(ssthresh) value is set to half of its congestion window size before the congestion

window reduction regardless of the amount of the reduction. Furthermore, the TCP-

P flow that detects a congestion event reduces only the congestion windows of other

member TCP-P flows not their slow-start threshold values. The rationale behind

this is that if TCP-P flows reset ssthresh values to the half of the new congestion

window sizes, it may result in too aggressive behavior of TCP-P flows by putting

them in multiplicative increase mode (i.e., cwnd < ssthresh) when next congestion

events are detected. By doing this we drive the congestion window increase behavior

of parallel TCP-P flows in linear increase mode (i.e., congestion avoidance mode) in

most time of their operation.

3. Avoiding Unnecessary Decreases

Since packet drops in the network are typically bursty [46], multiple TCP flows in

a parallel TCP group may simultaneously experience packet losses. If bursty packet

drops occur, they may result in too much congestion window reduction to parallel

TCP-P flows: Every TCP-P flow that experiences a congestion event might in turn

1When N = k, in TCP-P implementation, we disable all the mechanisms for TCP-
P, so that N TCP-P flows with strength N becomes purely unmodified N parallel
TCP flows.



33

trigger a congestion window reduction in other flows, which already have responded to

the congestion event. This may result in a cascade of congestion window reductions.

In traditional TCP a flow responds to congestion events only once within a congestion

window, regardless of the number of lost packets. In comparison, TCP-P flows may

end up with a lower throughput than that of a single TCP flow in this situation.

To avoid unnecessary reduction of congestion windows, when the strength k of a

group of TCP-P flows is less than their group size N, the TCP-P flows skip adjusting

congestion windows if the elapsed time since its last adjustment by other flows is

less than the minimum of the moving average of its round-trip times2 (i.e., minimum

srtt.) In doing so, we assume that the length of packet drop bursts does not typically

last longer than the minimum of the moving average of round-trip times.

C. Implementation Issues

We implemented TCP-P scheme on Redhat Linux 9.0 kernel 2.4.20-8. The default

behavior of Linux TCP implementation is based on TCP-SACK [9], time-stamping

on each packet, and Quick-ACK [47]. Also, Linux uses the packet as the unit of

congestion window size, unlike BSD, which uses bytes, and adopts rate-halving [48]

for congestion window reduction mechanism.

1. Structure

Whenever a TCP connection is established, the system kernel looks up the group list

using the destination IP address as a key to know whether other flows already exist to

2This is also called smoothed round-trip time, srtt(t+) = (1−w)∗srtt(t)+w∗rtt(t)
where rtt(t) is round-trip time at time t and w = 1

8
.
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Fig. 9. Manage Groups and Flows

the same destination3. If no such group exists, a new group entry is added in the list

and the connection is registered as a member of the group using its sock structure

pointer. Otherwise, the connection is added as a member to the group. When a

connection closes, the connection is removed from the list of members of the group.

If the group has no more members it is also deleted.

Figure 9 illustrates how the Linux kernel data structures are extended to manage

TCP flow groups. The Linux TCP implementation has a structure named sock to

manage socket information for each connection and tcp opt for TCP specific infor-

mation. We added new variables to these structures for TCP-P: a pointer that points

group size variable of its group is added to tcp opt to get the number of flows of

3In this implementation, we use destination address as group classifier. Other
classifications could be used just as well.
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its group without searching the group list, and a pointer to the next sock structure

in the same group is added in the sock structure. Each group structure has a pointer

to its first member’s structure sock and has an unsigned integer variable group size

to count the number of member flows of the group. Whenever a new member TCP

is added or deleted in a group, this count variable updates the number of member

TCP flows. For a system-wide control of strength we added a new system control

parameter sysctl tcp strength in net/ipv4/sysctl net ipv4.c. This parameter

can be easily changed in the run-time using the sysctl system call.

2. Implementing Increase

In slow-start mode, the congestion window of each TCP-P flow in a group is increased

by k/N per non-duplicate ACK, as described in Equation (3.2). The amount of

increase, k/N , is less than or equal to 1 when k is not bigger than N . Since floating

point arithmetic is not supported in the Linux kernel, we let each TCP-P flow in

our scheme increase its congestion window size by k after receiving N non-duplicate

ACKs.

In congestion avoidance mode, each TCP-P flow in a group of size N with

strength parameter k should increase its congestion window by 1 after receiving
∑N−1

i=0 (
∑N

j=1 Wj + i)/(k ∗ N) non-duplicate ACKs as Equation (3.4). To implement

this for each TCP-P flow independently, we use the following equation:

∑N−1
i=0 (

∑N
j=1 Wj + i)

k ∗N

=

∑N−1
i=0

∑N
j=1 Wj +

∑N−1
i=0 i

k ∗N

=
N

∑N
j=1 Wj +

∑N−1
i=0 i

k ∗N
. (3.7)

Therefore, each TCP-P flow should increase its congestion window size Wj by
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1 after (N
∑N

j=1 Wj +
∑N−1

i=0 i)/(k ∗ N) non-duplicate ACKs. Alternatively, it can

increase the congestion window by (k ∗N)/(N
∑N

j=1 Wj +
∑N−1

i=0 i) per non-duplicate

ACK.

Looking up other TCP-P flows’ congestion window size at every non-duplicate

ACK arrival may result in serious overhead. To reduce operation cost we assume that

all TCP-P flows in a group have the same window size W0, so that
∑N

j=1 Wj = NW0.

With this assumption, each flow does not need to know other TCP-P flows’ congestion

window sizes. Instead, it can use its own congestion window Wj to estimate the total

window size for the group. Each TCP-P can find the size of its group, N, easily

because each TCP-P structure has a pointer to its group’s member count variable

group size as shown in Figure 9.

Since floating point arithmetic is not supported in Linux kernel, we increase the

congestion window size of each flow by k after it received (N2 ∗ Wj +
∑N−1

i=0 i)/N

non-duplicate ACKs. This number can be further simplified as follows:

N2 ∗Wj +
∑N−1

i=0 i

N

= NWj +
(N − 1)N

2N

= NWj +
N − 1

2
. (3.8)

Therefore, each TCP-P flow in a group of size N and strength k should increase

its congestion window by k after receiving NWj + (N − 1)/2 non-duplicate ACKs.

3. Implementing Decrease

TCP-P controls the decrease amount of total congestion window sizes of parallel

TCP-P flows according to Equation (3.6) to match with that of k unmodified parallel

TCP flows. One possible method to implement this is to decrease every TCP flow’s
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congestion window by the same proportion. Another way is that when a TCP-P

flow i detects a congestion event at time t (and the elapsed time is not less than its

minimum srtt,) it responds like a normal TCP: It enters recovery mode and halves

its own congestion window regardless of other parallel flows. Therefore, other TCP-P

flows in the group can reduce their congestion window sizes less than the proportion

shown in Equation (3.6).

Hence, the amount of decreases of congestion window sizes of other member

TCP-P flows’ become as follows:

Wj(t+) = Wj(t) ∗ (
1

2
+

N(k − 1)

2(N − 1)k
), ∀j 6= i. (3.9)

This equation is derived from the following equation to distribute the remaining

amount of congestion window decrease among the other member TCP-P flows:

N
∑

j=1

Wj(
2k − 1

2k
)

= W0N(
1

2
+

k − 1

2k
)

= W0(1 + N − 1)(
1

2
+

k − 1

2k
)

=
1

2
W0 + W0(N − 1)(

1

2
+

N(k − 1)

2(N − 1)k
). (3.10)

However, note that when k > N , the latter method is not applicable because it

may result in more than (2k−1)/(2k) reduction of aggregate congestion window size.

D. Evaluation

For the evaluation of TCP-P, we use the topology shown in Figure 10. To emulate de-

lays and packet losses in the Internet, we use NIST Net Emulator [49]. The NIST Net

Emulator is implemented on a Linux machine and emulates the Internet by appropri-
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Fig. 10. Experiment Network

ately delaying and dropping packets. Because the network links in our experiments

are fairly high-bandwidth (default 100Mbps) and the NIST Net delay parameters are

large (50msec round-trip propagation delay,) we set the TCP parameters of the Linux

end systems - such as tcp wmem and tcp rmem sizes - appropriately, rather than using

system defaults. We also disabled the TCP time-stamping and TCP-SACK options

to see the effects of our modification more clearly. By disabling TCP-SACK, Linux

TCP works based on TCP-NewReno.

All the end-host nodes and the NIST Net Emulator are running on Linux PCs.

The PCs we use for experiments are Pentium 4 or 3 machines with 10/100 Mbps Fast

Ethernet network interface cards. Each Fast Ethernet card has an output queue of

length 100 packets by default, and can be controlled if needed. Two TCP sender

nodes, Node 0 and Node 1, run both on Redhat 9.0 with kernel 2.4.20-8. In Node 0

we installed a modified Linux kernel that supports TCP-P. NIST Net Emulator and

the TCP sink, Node 2, are running on Redhat Linux 7.2 with kernel 2.4.7-10.

For traffic generation and throughput measurements we use iperf [50], which

supports parallel TCP flows and offers flexibility for measurement. In all experiments

in this section, every experiment was done for 100 sec to get an average value and
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Fig. 11. Effect of N TCP-P Flows with k = 1 on a Single TCP Flow

repeated 10 times with 5 sec waiting time after each experiment unless told otherwise.

Error bars in figures of this section represent 95% Confidence Interval of the data.

1. TCP-P Flow Groups with Strength k = 1

We first show the performance of TCP-P with k = 1 (We use TCP-P/k to call

parallel TCP-P flows with strength k.) We open a group of parallel TCP-P flows

from modified Linux kernel at Node 0 to a TCP sink Node 2 for 100 seconds, and a

single unmodified TCP flow from another sender Node 1 to Node 2 for the same time.

Figure 11 (a) shows the experimental results with a varying number of parallel TCP-

P flows from Node 0 with k = 1. This figure shows that the average of aggregated

throughput of a group of parallel TCP-P flows of k = 1 with group size from 1 to 10

remains comparable to the average throughput of the single TCP flow from Node 1.

In order to investigate the robustness of the TCP-P approach we repeat the

experiments with a reduced bottleneck link speed by limiting the link speed from the

NIST Net emulator to the TCP sink Node 2 from 100Mbps to 10Mbps. Figure 11 (b)
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Fig. 12. Observed Outstanding Packets of Flows

shows the experiment results with 10Mbps link. These results also show that TCP-P

can regulate the aggressiveness of parallel TCP-P flows not to steal bandwidth from

the single TCP flow, so that the throughput of the single TCP flow from Node 1 is

comparable to that of total parallel TCP-P flows from Node 0 regardless of the group

size N.

The experimental results in Figure 12 illustrate some of the details of the op-

eration of TCP-P. These figures are generated by tcptrace [51] using tcpdump [52]

data on the sender Node 0 and Node 1. For the simplicity of comparison of the time-

dependent behaviors we open two parallel TCP-P flows with k = 1, Flow 0 and Flow

1, from Node 0 to Node 2, and one TCP flow, Flow 2, from Node 1 to Node 2. All

other conditions are the same as the previous experiment, and all connections start

at the same time and finish after 100 seconds. Average throughput achieved by the

two TCP-P flows from Node 0 and the single TCP flow from Node 1 were 4.73Mbps

and 4.78Mbps, respectively.

The figures show the amount of outstanding data of each TCP flow, from which

we can infer the changes of congestion windows of TCP flows. The spikes in the

figures represent Fast Retransmit/Fast Recovery [1] behaviors of TCP flows. Figure

12 (a) and Figure 12 (b) are for two TCP-P flows from Node 0. We can see in these
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figures that there are congestion window decreases without spikes, which indicates

adjustments of the congestion window by the other TCP-P in the group. Compared

to these two figures, the change in the congestion window of Flow 2 in Figure 12 (c)

always have a spike before a reduction.

2. TCP-P Flow Groups with Strength k > 1

In the following, we illustrate how TCP-P effectively controls the magnitude of ag-

gressiveness of parallel TCP flows according to the strength parameter k. We first

present experimental results with unmodified parallel TCP flows in Figure 13(a).

Node 0 opens N unmodified parallel TCP flows to Node 2 for 100 seconds, while

Node 1 opens a single TCP flow to Node 2 for the same time. Figure 13(a) shows the

average throughput of TCP flows from Node 0 and Node 1 for a varying number of

unmodified TCP flows from Node 0. The single TCP flow from Node 1 achieves in-

creasingly smaller throughput with the increasing numbers of the unmodified parallel

TCP flows from Node 0. It illustrates the unfairness of parallel TCP flows mentioned

in Section A of this chapter.

In comparison, Figure 13(b) shows the results of TCP-P in the same environment,

except that we let Node 0 open a group of 10 parallel TCP-P flows to Node 2 with

varying strength k. Figure 13(b) shows average aggregate throughput of parallel

TCP-P flows and a single TCP flow when we control the aggressiveness of the group

of parallel TCP-P flows. In the figure, with k = 0 we describe the case of no parallel

TCP-P flows sending any traffic to the destination, so that only the single TCP flow

from Node 1 consumes all the bandwidth. By comparing (a) and (b) in Figure 13

we can see that the TCP-P scheme accurately controls the overall aggressiveness of

a group of 10 parallel TCP-P flows according to k. 10 TCP-P flows with strength k

show almost the same effect to a single TCP as k unmodified parallel TCP flows.
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Fig. 13. Effect of Parallel N TCP and 10 TCP-P/k Flows on Single TCP in 100Mbps,

50msec Link

We also test parallel TCP-P with different strength k in 10Mbps bottleneck link

by limiting the link speed from NIST Net Emulator to TCP sink Node 2 from 100Mbps

to 10Mbps. Figure 14 shows the experimental results with (a) N parallel TCP flows

and (b) 10 parallel TCP-P flows with different strength k in 10Mbps, 50msec RTT

network. By comparing Figure 14(a) with 13(a) from experiments with 100Mbps

link, we can see that the effect of parallel TCP flows on a single TCP flow remains

similar in both cases. Further, by comparing Figure 14(a) with Figure 14(b) we can

see that 10 parallel TCP-P flows with different strength k and k parallel TCP flows

have similar effect on the competing single TCP in 10Mbps bottleneck link. These

results also show that TCP-P can regulate the aggressiveness of parallel TCP-P/k

flows comparable to that of k parallel TCP flows.

In the next section we analyze the steady-state throughput of N parallel TCP

and TCP-P flows with strength k (TCP-P/k), and evaluate it with our experimental

results.
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Fig. 14. Effect of Parallel N TCP and 10 TCP-P/k Flows on Single TCP in 10Mbps,

50msec Link

E. Throughput of Parallel TCP and TCP-P Flows

Previously the throughput of N parallel TCP flows was known as proportional to

the number of parallel flows, i.e., N times larger than a single TCP flow [18]. Also,

the throughput of MulTCP [21] had been modeled with similar results. However, we

analyze steady-state throughput of parallel TCP and TCP-P/k flows and evaluate the

results using throughput ratios between parallel TCP (and TCP-P/k) flows and the

competing single TCP flow based on the experimental results in the test-bed network

shown of Figure 10.

To analyze the aggregate throughput of N parallel TCP flows we closely follows

the method used in [53]. We first assume that all the parallel TCP flow in a group

has the same congestion window size W0 at time t = 0, so that the sum of all the

congestion windows of the parallel TCP flows is NW0 as shown in Figure 15. We also

assume that the packet loss probability is very small, so that only one packet loss

happens per congestion epoch (we call a period that starts from window size with NW0
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Fig. 15. Aggregate Congestion Window of N Parallel TCP Flows

and ends at the next NW0 as a congestion epoch.), and delayed acknowledgement [1]

is not used, i.e., one ACK per one data packet is generated by the receiver.

Because a TCP flow in unmodified parallel TCP flows behaves the same way as a

normal TCP flow does, the total increase amount of congestion window of N parallel

TCP flows is N per round-trip time instead of one of a single TCP flow if there is no

packet loss. Also, the reduction of total congestion window is only 1/(2N) of total

congestion window (NW0) [17]. Hence, in parallel TCP flows the time needed to

recover the congestion window (period of the congestion epoch) is W0/(2N) round-

trip times because the amount of windows size needed to recover is only W0/2 as

shown in Figure 15.

Let S be the total amount of packets sent in each congestion epoch. Then, from

Figure 15 we can see that S = NW0(1− 1
2N

)W0

2N
+ 1

2
W0

2
W0

2N
. If we let p be the packet loss

probability then, by the assumption, p equals to 1/S. Hence, 1/p can be expressed
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using the following equation:

1

p
= S

=
W0

2N
(NW0

(2N − 1)

2N
+

W0

4
)

=
W 2

0

2N
(
2N − 1

2
+

1

4
)

= W 2
0 (

4N − 1

8N
). (3.11)

As a result, W0 = (1
p

8N
4N−1

)1/2. Therefore, the average aggregate throughput

T (N) [packets/sec] of N parallel TCP flows can be modeled as:

T (N) =
data sent per epoch

time per epoch

=
W 2

0 (4N−1
8N

)
W0

2N
RTT

=
W0(4N − 1)

4RTT

=
( 8N

4N−1
)1/2(4N − 1)

4RTT
√

p

=

√

N(4N−1)
2

RTT
√

p
[packets per sec]. (3.12)

This equation can also be found by setting the AIMD parameter to be a = N

and b = 1
2N

in the AIMD(a,b) equation of T =
√

2−b
√

a
√

2b∗RTT∗
√

p
given in [54]. We can also

compare the result when N = 1 with the following throughput equation of a single

TCP flow given in [53].

T (1) =

√

3/2

RTT
√

p
[packets per sec]. (3.13)

From Equation (3.12) we can see that with the same round-trip time and packet

loss probability, N parallel TCP flows can achieve
√

N(4N − 1)/3 more throughput
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than a single TCP flow:

T (N)

T (1)
=

√

N(4N − 1)/3. (3.14)

In contrast to the unmodified TCP flows, parallel TCP-P flows with strength

k = 1 controls the total congestion window increase and decrease of parallel TCP-

P flows to match that of a single TCP flow, so that it results in effective AIMD

parameters for parallel TCP-P flows with a = 1 and b = 1/2, which are equal to

those of a standard TCP flow.

Next, based on the behavior of parallel TCP-P flows described by Equation (3.4)

and (3.6), we analyze steady-state throughput of parallel TCP-P/k flows. Figure

16 illustrates the changes of the aggregate congestion window size of parallel TCP-

P/k flows. In the figure, W is the total congestion windows size of parallel TCP-P

flows when packet loss happens. As the figure shows, the time needed to recover the

congestion window in TCP-k is reduced to W
2k2 round-trip times (RTTs) from the W

2

RTTs in standard TCP. This reduction stems from the smaller congestion window
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size needed to recover (W
2k

), and the higher rate at which the window size increases

(increases speed is k packets per RTT in congestion avoidance mode.) We use Figure

16 to model the steady-state throughput of TCP-P/k, and again let S be the total

amount of packets sent in each congestion epoch by TCP-P/k flows. From Figure 16,

we can see that S = W (1− 1
2k

) W
2k2 + 1

2
W
2k

W
2k2 . If we let p be the packet loss probability,

then p equals to 1
S
. Hence, 1

p
can be expressed using the following equation.

1

p
=

W 2

2k2

4k − 1

4k
= W 24k − 1

8k3
. (3.15)

As a result, W = (1
p

8k3

4k−1
)1/2. Thus, the average throughput T (k) [packets/sec]

of a TCP-k flow can be modeled as:

T (k) =
data sent per congestion epoch

time per congestion epoch

=
W 2 4k−1

8k3

W
2k2 RTT

=
W (4k − 1)

4kRTT

=
( 8k3

4k−1
)1/2(4k − 1)

4kRTT
√

p

=

√

k(4k−1)
2

RTT
√

p
[packets per sec]. (3.16)

By comparing Equation (3.16) with Equation (3.13) we can see that, given the

same round-trip time and packet loss probability, TCP-P/k flows achieve
√

k(4k − 1)/3

times the throughput of a single TCP flow:

T (k)

T (1)
=

√

k(4k − 1)/3. (3.17)

This is consistent with the results for parallel TCP flows in Equation (3.14) if we

replace k with N .

We evaluate the ratio models by comparing aggregate throughput of N parallel

TCP and parallel TCP-P/k flows with the throughput of the competing single TCP
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Fig. 17. Throughput Ratios of Parallel TCP-NewReno and TCP-P against Single

TCP-NewReno

flow. We first use the data from the previous experiments in Figure 13. Figure 17

shows the ratios of achieved aggregated throughput by parallel TCP and TCP-P

flows against a single TCP flow in Figure 13(a) and Figure 13(b). The dashed line in

the figure presents the ratio between aggregate throughput of 10 TCP-P flows with

different strength k and the throughput of a single TCP flow. The dotted line in the

figure shows the ratio between the aggregate throughput of N unmodified parallel

TCP flows and the throughput of a single TCP flow. Both graphs show the ratios

closely follow Equation (3.14) shown as the solid line in the figure.

Next, we configure the test bed shown in Figure 10 to have random packet

drops by NIST Net Emulator. The achieved throughput by TCP flows is significantly

reduced when NIST Net invoked random packet drops to emulate non-congestion

related packet losses such as transmission channel errors. When we configure NIST

Net to drop 0.01% of packets, the achievable bandwidth for a single TCP flow drops

to about 20Mbps. This value is close to the theoretical average throughput of a TCP
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flow [53] if we consider delayed-ACK of Linux TCP and a maximum segment size of

1500 bytes.

Again, Node 0 opens a varying number of parallel TCP flows to Node 2 while

Node 1 opens only a single TCP flow to Node 2. Figure 18 shows the experiment

results for unmodified parallel TCP flows against a single TCP flow. From the ex-

perimental results in the figure show the average throughput of unmodified parallel

TCP flows when it increases the number of parallel TCP flows. We can see from the

results that by increasing the number of unmodified parallel TCP flows, Node 0 can

achieve high throughput even if there is high rates of non-congestion related packet

loss. However, note that Node 1 again steals bandwidth from the competing single

TCP flow from Node 1 when Node 1 opens more than four parallel TCP flows.

Figure 19 shows the ratio of the total achieved throughput of unmodified parallel

TCP flows from Node 0 to the throughput of the single TCP flow from Node 1 in the

previous experiments. The figure shows that the throughput ratio of the experiment
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results is indeed close to the ratio model given in Equation (3.14).

F. Summary

In this chapter, we have proposed TCP-P for aggregated aggressiveness control on

parallel TCP flows. The TCP-P scheme uses strength as a single - easily tunable

- parameter to accurately control the aggressiveness of a group of TCP flows with

respect to a single flow sharing the same bottleneck link. We have showed that by

employing TCP-P we can control the total aggressiveness or unfairness of parallel

TCP flows against single TCP flows from other nodes in an easily parameterizable

and controllable way without requiring application modification.
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CHAPTER IV

ADAPTIVE TCP FOR EFFECTIVE AND FAIR UTILIZATION OF HIGH

BANDWIDTH-DELAY PRODUCT NETWORKS

A. Introduction

TCP [55] has proven remarkably effective in providing stable end-to-end reliable ser-

vices for large-scale distributed applications, despite the fact that the Internet has

increased by several orders of magnitude. The evolution of transmission technology

and the increasing demand for very-high bandwidth services, however, pose a number

of new challenges to TCP. Over emerging high bandwidth-delay product networks,

TCP’s flow control and error control mechanisms have shown to be limiting factors

for the effective utilization of such networks: Traditional TCP increases its congestion

window (and sending rates) too slowly with non-duplicate acknowledgement packets

(ACKs) and decreases the congestion window size too much with congestion events

such as three duplicate ACKs. Further, at this level, even very small non-congestion

related packet loss can further reduce utilization of the links. This becomes problem-

atic especially over high-speed long-distance paths because of the long time required

to recover congestion windows and, hence, the sending rate.

In order to fully utilize the available link bandwidth in high bandwidth-delay

product networks, it is important to adapt the system parameters of the TCP sender

and receiver hosts, such as maximum TCP sender and receiver window sizes, to re-

flect link characteristics [56]. Because of the heterogeneity and variety in connection

characteristics, such as bandwidth or delay in today’s networks, adapting system pa-

rameters for TCP itself is not easy. The experiments in projects such as web100 [57]

clearly show how poor configuration of TCP parameters leads to a low utilization
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of available bandwidth even if the systems are connected over high-bandwidth links.

Furthermore, even if system parameters are appropriately configured, TCP’s conges-

tion control mechanism itself needs to be more effective: TCP should increase its

sending rate much faster than current traditional TCP when it detects available (or

unclaimed) bandwidth in its path.

Recently, several proposals to improve the performance of TCP over high bandwidth-

delay product networks have been introduced. These proposals include HS-TCP [12],

STCP [13], H-TCP [14], BIC-TCP [15], FAST-TCP [11], and LTCP [16]. An exper-

imental performance comparison of some of these new TCP proposals was reported

in 2004 and 2005 PFLDnet workshops [58, 59]. Given the design objective of these

protocols, it is not surprising that they tend to not inter-operate well with traditional

TCP flows. For example, all protocols listed above - except for FAST-TCP - are

seriously unfair against standard TCP, such as TCP-SACK [9], as we will show in the

following. FAST-TCP, on the other hand, becomes weaker than loss-based standard

TCP when the two compete for the same network resources. This is due to the con-

gestion avoidance mechanism in FAST-TCP reduces the sending rate to avoid packet

loss when the measured delay increases, and it can not distinguish whether the delay

increase is self-introduced or caused by other flows.

In order to support “cohabitation” of traditional applications and emerging appli-

cations with very high bandwidth demands, protocols must be developed to support

both effective and fair use of network resources. For the effective and fair utilization

of network resources, a number of proposed schemes, such as eXplicit Congestion Pro-

tocol (XCP) [3], require participation of the underlying network infrastructure, such

as switches or routers. History has shown that, in practice, it is unlikely for Internet

service providers to adopt these schemes given the additional operational overheads

they cause on routers/switches. In the following, we focus on end-host-based solu-
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tions. In other words, we look for congestion control mechanisms purely based on

information that can be gathered at the sender side.

In this chapter, we first evaluate the performance of a number of well-known

high-speed TCP proposals using a test-bed setting. These experiments will illustrate

that all evaluated schemes have problems - one way of the other - with fairness to

standard TCP. We believe that the fairness problem of the high-speed TCP proposals

stems from their ineffectiveness in detecting competing TCP flows or differentiating

self-induced congestion from the congestion caused by other flows. Based on these

results we propose a new, adaptive, congestion control scheme, which relies on compe-

tition detection to identify whether impending congestion is self-inflicted or non-self

inflicted. Based on this scheme we implement Adaptive TCP (A-TCP), an exten-

sion of TCP/k (or MulTCP [21]) that uses a competition detector to adaptively

tune its TCP friendliness. We show that A-TCP can achieve high performance in

high bandwidth-delay product network without requiring any special support from

network infrastructure or from receivers. Also, we show that A-TCP exhibits good

TCP-friendliness toward standard TCP when both compete for the same network

resources.

The remainder of this chapter is organized as follows: Section B surveys related

work on high-speed TCP proposals and evaluates their effectiveness and fairness. In

Section C, we discuss the benefits and problems emerging from the use of parallel

TCP flows in high-bandwidth settings. We also discuss how some of these benefits

are harnessed in single-flow emulation schemes of parallel TCP, such as MulTCP [21]

and our TCP/k. Section D describes basic concept for our competition detection

mechanism. In Section E, we propose Adaptive TCP and describe how it combines

TCP/k with the competition detection mechanisms to automatically adapt its aggres-

siveness. Section F presents experimental results that demonstrate the effectiveness
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Fig. 20. Test-Bed for Experiments

of the proposed TCP in high bandwidth-delay product networks. In Section G we

evaluate the fairness property of Adaptive TCP through experiments. In Section

H we show ns2 simulation results of A-TCP and other high-speed TCP proposals.

Section I summarizes this chapter.

B. Related Work and Fairness

In this section, we survey and evaluate the performance of several popular high-speed

TCP protocols over high bandwidth-delay product networks in terms of effectiveness

and fairness (or TCP-friendliness1). By effectiveness we mean how well a high-speed

TCP flow utilizes high bandwidth-delay product networks. By fairness we mean how

fairly (or unfairly) a high-speed TCP flow shares network resources - such as band-

width - with standard TCP flows, e.g., TCP-SACK, from other nodes. Our experi-

ments will show how effectively existing high-speed TCP proposals utilize available

bandwidth and how fairly (or unfairly) they share bandwidth with standard TCP.

For this series of experiments, we use the test-bed shown in Figure 20. In this

test-bed, we measure the bandwidth achieved by a high-speed TCP flow and compare

1We use the terms fairness and TCP-friendliness interchangeably.
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it with that of a competing standard TCP flow. We use the NIST Net Emulator

[49] to emulate a portion of an inter-network. The NIST Net Emulator emulates

a network cloud by appropriately delaying and dropping packets if it is configured

to do so. In our test-bed, all the end-host nodes and the NIST Net Emulator are

running on Linux PCs. The PCs we use for experiments are Pentium 4 machines

with 10/100Mbps or 1Gbps Ethernet network interface cards. Each 10/100Mbps

Ethernet card has an output queue of length 100 packets by default. We set the

TCP system parameters of the Linux end systems - such as tcp wmem and tcp rmem

- according to the recommendations2 in [57], rather than using system defaults.

Sender Node 0 is used to evaluate the various high-speed TCP protocols. In

this node, we installed Linux kernel 2.4, which we modified with patches from the

authors’ web-site to accommodate the various high-speed TCP protocols. We use

these modified kernels without changing any parameters from their default settings.

The other sender, Node 1, always runs on Linux kernel 2.4.20-8 to generate standard

TCP cross traffic. In this kernel, the TCP behavior is by default based on TCP-SACK.

The NIST Net node emulates an inter-network cloud. The NIST Net Emulator is

running on Linux kernel 2.4.20-8. Receiver Node 2 also runs a standard TCP stack in

Linux kernel 2.4.20-8. For TCP traffic generation and throughput measurement we

use iperf [50], which offers great flexibility for traffic generation and measurements.

2System parameters of TCP sender and receiver nodes are configured as below
unless told otherwise.

• /proc/sys/net/core/wmem max = 8388608.

• /proc/sys/net/core/rmem max = 8388608.

• /proc/sys/net/ipv4/tcp wmem = “4096 65536 4194304”.

• /proc/sys/net/ipv4/tcp rmem = “4096 65536 4194304”.

• TCP receivers’ socket buffer sizes are set to 16MByte.
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Fig. 21. TCP-SACK vs. (a) TCP-SACK (b) HS-TCP

The experiment runs are designed to evaluate effectiveness of high-speed TCP

protocols first, and TCP friendliness in a second part: For the first 40 seconds of each

run we let a high-speed TCP flow from Node 0 to Node 2 use the 100Mbps, 50msec

RTT link without competition. High resource utilization during this phase indicates

good effectiveness of the protocols. After 40 seconds Node 1 opens a TCP-SACK flow

to Receiver Node 2. The TCP-SACK flow starts to compete for the resources of the

bottleneck link with the high-speed TCP flow from Node 0 for the next 100 seconds.

The bandwidth results from this phase of the experiment run give indicators about

the fairness of the high-speed protocols. Throughputs of all the flows shown in this

section are measured using Iperf at the senders every one second.

As a base line, Figure 21(a) shows experimental results with two standard TCP

flows (TCP-SACK). The experimental results show that the two standard TCP flows

share the bottleneck link fairly; each of the two flows achieves similar throughput

during the 100 second period when both are active. This figure also shows how TCP-

SACK increases its sending rate slowly and decreases it drastically. This behavior of

standard TCP results in overall low utilization of the available bandwidth, especially
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Fig. 22. TCP-SACK vs. (a) STCP (a) H-TCP

when the flow is alone in the test-bed network. In the following we repeat the same

experiment using a number of high-speed TCP proposals.

HS-TCP (HighSpeed TCP) [12] is one of the early TCP proposals for high

bandwidth-delay product networks. HS-TCP increases its congestion window faster

and reduces it less than standard TCP by changing the values for its AIMD param-

eters (which decide congestion window increase amount per non-duplicate ACK and

the reduction proportion of the congestion window per congestion event) if the con-

gestion window size is bigger than some threshold. Otherwise, the AIMD parameter

values are those of standard TCP’s. Figure 21(b) shows the experiment results when

Node 0 opens a HS-TCP flow to Node 2. For this experiment we installed modified

Linux kernel 2.4.27 obtained from the Web100 project in Node 0. Although the ex-

periment results show that a single HS-TCP flow highly utilizes the bandwidth while

it is alone in the test-bed, the figure clearly shows that HS-TCP is seriously unfair

when it competes against a standard TCP flow: When Node 1 opens a single stan-

dard TCP-SACK flow at 40 sec, it only achieves about 19Mbps during the next 100

seconds. At the same time the HS-TCP flow from Node 0 consumes about 75Mbps.
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STCP (Scalable TCP) [13] adopts a multiplicative-increase scheme for the con-

gestion window size (instead of TCP’s additive increase) to quickly grow the conges-

tion window: If the congestion window size of a STCP flow is bigger than a threshold,

the flow decides to increase its congestion window multiplicatively and reduces its con-

gestion window less than a standard TCP flow does. Figure 22(a) shows how STCP

at first effectively utilizes the available bandwidth when it is alone in the test-bed.

When it competes against a standard TCP-SACK flow, however, the results show

that STCP is unfair. The achieved throughput for the competing TCP-SACK flow

is in fact less than when it competes against the HS-TCP flow.

H-TCP (High-speed TCP) [14] was proposed to utilize high bandwidth-delay

product networks effectively while retaining TCP-friendliness for backward compat-

ibility. To do this, it has two modes of operations: If the durations of congestion

events3 are less than a given threshold, H-TCP retains a traditional AIMD scheme;

otherwise, it sets the additive-increase parameter to a value bigger than that of stan-

dard TCP. It monitors the durations of congestion epochs to decide which mode to

use. H-TCP also monitors the throughput before congestion events to decide the re-

duction proportion of the congestion window size. Figure 22(b) shows the experiment

results with H-TCP where Node 0 opens an H-TCP flow to Node 2. The results show

that a single H-TCP flow effectively utilizes the available bandwidth whenever it is

alone in the test-bed. However, we can also see that this effectiveness comes at the

cost of unfairness toward standard TCP-SACK flows.

BIC-TCP (Binary Increase Congestion control TCP) [15] uses a method called

binary search increase to quickly utilize available bandwidth while reducing packet

loss. BIC-TCP identifies a target window size and increases the congestion window

3A congestion epoch is a period that starts from a congestion event and finishes
at the next one.
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Fig. 23. TCP-SACK vs. (a) BIC-TCP (b) FAST-TCP

size using a binary search scheme. As a result, BIC-TCP in effect uses a logarithmic

function to increase its congestion widow size. We installed BIC-TCP in Node 0 with

the kernel 2.4.25 version patches from the authors’ web-site. The experimental results

in Figure 23(a) show that BIC-TCP utilizes bandwidth effectively when it is alone

on the bottleneck. However, when a standard TCP-SACK flow joins, the BIC-TCP

flow prevents it from achieving its fair throughput.

FAST-TCP (Fast Active queue management Scalable TCP) [11] is a variant of

TCP-Vegas [10] for high bandwidth-delay product networks. It uses delay-variation

information gathered at the sender side to decide whether it needs to change its

congestion window size. The experimental results in Figure 23(b) show that FAST-

TCP effectively utilizes the 100Mbps, 50msec RTT network with a single FAST-TCP

flow when there is no cross traffic. However, when a single TCP-SACK flow from Node

1 joins the network, the FAST-TCP flow backs off and does not effectively compete

against the loss-based TCP-SACK flow. Therefore, it achieves less throughput than

the competing TCP-SACK flow during the overlapping 100 second period.

This result is somewhat expected because FAST-TCP uses a delay-based conges-



60

tion avoidance mechanism similar to that used in TCP-Vegas, which slows down its

sending rate to avoid congestion. In contrast, loss-based schemes such as TCP-SACK

continuously increase their congestion windows (thus sending rates) until packet loss

occurs. This behavioral difference of loss-based and delay-based schemes eventually

results in lower throughput for delay-based congestion avoidance mechanisms, such

as TCP-Vegas and FAST-TCP, whenever they compete against loss-based (and stan-

dard) TCP such as TCP-SACK. The lack of ability in these delay-based schemes to

differentiate the delay increase caused by self-induced congestion from that by other

flows also contributes to these results.

TCP-Africa [60] operates in two modes and uses congestion detection to change

from fast mode to slow mode. The congestion detector in TCP-Africa is based on delay

variations: TCP-Africa increases its congestion window linearly like for standard TCP

whenever the estimated queue build-up is bigger than a threshold value. Otherwise,

TCP-Africa behaves like as HS-TCP. We do not include experimental results with

TCP-Africa because we could not find any kernel implementation of TCP-Africa.

Instead, we implemented TCP-Africa in ns2 [37] simulator according to the algorithms

described in [60]. The ns2 simulation results of TCP-Africa as well as other high-speed

TCP proposals are shown in Section H.

In summary, the experimental results of this section show that it is hard to

design a TCP congestion control scheme that effectively utilizes high bandwidth-

delay product networks while remaining TCP-friendly to existing standard TCP. We

argue in the following that the use of congestion detectors based on delay variations is

not sufficient to ensure fairness, for two reasons. First, congestion detectors typically

are unable to differentiate self-induced congestion (i.e., when no other flow competes

for bandwidth, but data rates are simply too high) from competition. In such cases

the detector is too conservative. Second, competing flows may not always be able
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to build up sufficient throughput to generate congestion, in which case the detector

becomes ineffective.

In Section D we propose the use of a competition detector to control the mode of

operation of the proposed TCP protocol. By “competition detection” we mean the

detection of the existence of flows that can effectively compete for the same network

resources.

C. Parallel TCP and TCP/k

The TCP protocol that we propose in this chapter operates in two modes (highly

aggressive and non-aggressive) and uses a competition detector to change between

them. In this section we first present a scheme to gracefully and controllably tune

the aggressiveness of TCP. We will then propose the competition detector and how

to combine the detector with the TCP aggressiveness control in the following section.

We will describe an extension to traditional TCP that allows for a dynamically con-

trollable aggressiveness through single parameter k, which we call “strength”. The

strength parameter k is a positive value that describes the aggressiveness (in number

of flows) of the single flow as perceived by other TCP flows. We call this TCP scheme

with controllable aggressiveness TCP/k.

TCP/k controls increase and decrease behavior of standard TCP to achieve the

aggressiveness of k parallel TCP flows. By definition, parallel TCP flows are multiple,

active TCP connections concurrently opened by a node to the same destination.

Parallel TCP is a widely used scheme to work around the limitations of TCP over

high bandwidth-delay product networks [61]. If an end-host opens N parallel TCP

flows to the same destination, their total congestion window increase speed is N times

faster than a single TCP flow and reduce total congestion window size less than half
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when packet loss happens [17]. As a result, the achievable aggregate throughput of

parallel TCP flows is significantly higher than that of a single TCP flow given a packet

loss probability and round-trip time.

The goal of TCP/k is to emulate the aggressiveness of k parallel TCP flows with

a single TCP. With a given strength k, a single TCP/k behaves as if it were composed

of k parallel TCP flows. TCP/k realizes this through appropriate manipulation of

the congestion window increase and decrease behavior: In slow-start mode, TCP/k

increases its congestion window size, cwnd, by k per non-duplicate ACK as shown

below.

cwnd← cwnd + k. (4.1)

In congestion avoidance mode, TCP/k increases its congestion window by the follow-

ing amount per non-duplicate ACK:

cwnd← cwnd +
k

cwnd
. (4.2)

When a congestion event such as three duplicate ACKs is detected, TCP/k adjusts
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its congestion window size and slow-start threshold value (ssthresh) as follows:

ssthresh← cwnd

2

cwnd← cwnd
2k − 1

2k

. (4.3)

As a result, the increase and decrease behavior of a single TCP/k flow closely

reflects that of k parallel TCP flows: The congestion window increase speed is k times

faster than that of standard TCP, and the reduction proportion of the congestion

window with packet loss is 1/2k instead of 1/2 in standard TCP. Figure 24 illustrates

the changes of the congestion window size of a TCP/k flow. As the figure shows,

the time needed to recover the congestion window in TCP/k is W
2k2 round-trip times

(RTTs) instead of W
2

RTTs in standard TCP. This reduction stems from the smaller

congestion window size needed to recover (W
2k

) and the higher rate at which the window

size increases (increase speed is k packets per RTT in congestion avoidance mode.)

Note that the mechanisms used for TCP/k are similar to those used in MulTCP

[21] and the strength parameter in TCP/k has the same meaning as the multiplicity

parameter of MulTCP. However, differently from MulTCP, TCP/k does not limit the

aggressiveness in slow-start mode because doing so may result in different behavior

from k parallel TCP flows. Further, TCP/k sets ssthresh before adjusting cwnd as

shown in Equation (4.3). This is because TCP/k is a special case of TCP-P/k, i.e.,

TCP/k is a single TCP-P/k flow.

To show that TCP/k indeed has the same aggressiveness as k parallel TCP flows,

we implemented TCP/k in Linux kernel 2.4.20. The experimental results in Figure 25

illustrate how k parallel TCP flows resemble a single TCP/k flow. For the experiment

we use the test-bed shown in Figure 20 with all 100Mbps links and 50msec round-trip

propagation delay in the NIST Net Emulator. Every experiment was done for 100

sec to get average values and repeated 10 times with 5 sec waiting time after each
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Fig. 25. TCP-SACK vs. (a) k Parallel TCP-SACK (b) TCP/k with Different k

experiment. Error bars at the figures represent the 95% confidence interval of the

mean value.

Figure 25(a) shows the aggregated throughput of k parallel TCP-SACK flows

from Node 0 and the throughput of the competing single TCP-SACK flow from Node

1. In this experiment, Node 0 opens k parallel TCP-SACK flows to the receiver

Node 2 for 100 seconds, while Node 1 opens a single TCP-SACK flow to Node 2 for

the same period. In this figure, k = 0 denotes the case of no parallel TCP flows

from Node 0, so that only the single TCP-SACK flow from Node 1 consumes all the

network resources. From the figure we can see that Node 0 achieves higher aggregate

throughput by increasing the number of parallel TCP flows. However, the throughput

of the single TCP-SACK flow from Node 1 shrinks as the number of parallel TCP

flows from Node 0 increases. The figure illustrates both the effectiveness and the

unfairness of parallel TCP flows caused by the aggressiveness of the parallel TCP

flows against the single TCP flow.

Figure 25(b) shows similar results with TCP/k in the same test-bed. Instead of

increasing the number of parallel TCP flows, we increase the value of the strength pa-



65

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200  250  300  350  400

cw
nd

 [P
ac

ke
ts

]

Time [Sec]

cwnd

0

100

200

300

400

500

 0  50  100  150  200  250  300  350  400

T
hr

ou
gh

pu
t [

M
bp

s]

Time [Sec]

TCP-SACK in 1Gbps, 50ms RTT link

Throughput

(a) TCP-SACK

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200  250  300  350  400

cw
nd

 [P
ac

ke
ts

]

Time [Sec]

cwnd

0

100

200

300

400

500

 0  50  100  150  200  250  300  350  400

T
hr

ou
gh

pu
t [

M
bp

s]

Time [Sec]

TCP/4 in 1Gbps, 50ms RTT link

Throughput

(b) TCP/4

Fig. 26. Throughput and Congestion Window over 1Gbps, 50ms RTT Link

rameter k. By comparing Figure 25(a) and Figure 25(b) we see that the aggressiveness

of the TCP/k flow is accurately controlled by changing strength k. Moreover, TCP/k

utilizes bandwidth as aggressively as k parallel TCP flows. The effectiveness of both

k parallel TCP flows and the single TCP/k flow in utilizing the bandwidth comes

from their aggressive behavior as shown in Figure 24. Unfortunately, this increased

effectiveness comes at the cost of decreased throughput experienced by competing

TCP flows as the number of parallel TCP flows increases or TCP/k increases k.

To evaluate the effectiveness of TCP/k in higher bandwidth-delay product net-

works, we change the link bandwidth between Sender Node 0 and the NIST Net

Emulator node from 100Mbps to 1Gbps4. Now Node 0 opens a single TCP-SACK or

a single TCP/k connection to the NIST Net emulator. The RTT between Node 0 and

4For the gigabit link, TCP system parameters are configured as follows:

• /proc/sys/net/core/wmem max = 33554432.

• /proc/sys/net/core/rmem max = 33554432.

• /proc/sys/net/ipv4/tcp wmem = ”4096 33554432 33554432”.

• /proc/sys/net/ipv4/tcp rmem = ”4096 33554432 33554432”.
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NIST Net Emulator is set to 50msec by the NIST Net Emulator (NIST Net Emula-

tor also works as a receiver in this experiment). Although the physical link between

these two nodes is an optical Gigabit Ethernet, the hardware performance (533MHz

front-side bus, 32bit PCI bus) of the sender and receiver nodes in our test-bed limited

the maximum achievable throughput to about 440Mbps.

Figure 26(a) shows the achieved throughput by Node 0 when it opens a TCP-

SACK flow to the destination and the changes of the congestion window size of the

TCP-SACK flow during the experiment. The figure clearly shows that a single TCP-

SACK flow is not effective in the utilization of available bandwidth: It takes about

250 sec to reach the maximum throughput, and the TCP-SACK flow decreases its

congestion window drastically with a congestion event at about 320 sec. In contrast,

Figure 26(b) shows the achieved throughput by Node 0 when it opens a TCP/k

flow with k = 4 (i.e., TCP/4) to the destination and the changes of the congestion

window size of the TCP/4 flow during the experiment. The figure shows that TCP/4

can utilize the available bandwidth more effectively than standard TCP: The TCP/4

flow reaches the maximum throughput at about 60 sec. The figure clearly shows that

TCP/4 increases its sending rate faster and decreases its congestion window less than

standard TCP.

However, the results in Figure 26 also illustrate the weaknesses of TCP/k (also

k parallel TCP). First, TCP/4 flow is still not aggressive enough for the fast uti-

lization of available bandwidth during the first 60 seconds. Second, there are many

packet losses in TCP/4 when it reached maximum bandwidth because of its fixed

aggressiveness. Third, the fixed strength of TCP/4 is clearly problematic when it

competes against standard TCP flows since it is as unfair as four parallel TCP flows.

Furthermore, it is hard to decide an adequate strength k for TCP/k (or number

of flows for parallel TCP flows) so as to effectively and fairly use the dynamically
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changing network resources. From these observations, in the next section we propose

a new congestion control scheme that automatically tunes its strength k in response

to network situation to achieve both effective utilization of available bandwidth and

fairness against standard TCP.

D. Competition Detection

While competition in the network not necessarily leads to congestion, it always causes

faster queue build-up. We take advantage of this to formulate a competition detector.

The rationale for this relies on two observations. First, cwnd increases at a rate

proportional to RTT, which in turn increases only slightly with increasing queuing at

the bottleneck link. Second, queue build-up happens as a result of incoming traffic

to the queue. Therefore, cwnd for a given queue length will tend to be smaller when

queue build-up is faster. We estimate the queue build-up speed by monitoring the

congestion window size and the measured queuing delay. To do this we define knee

congestion window (knee cwnd) to be the congestion window size when estimated

queue build-up (srtt − srtt min) exceeds some threshold, which is defined in terms

of a portion of the estimated maximum build-up (srtt max−srtt min). Here, srtt is

smoothed round-trip time and srtt min and srtt max is the minimum and maximum

of the smoothed round-trip time, respectively. We use 20% of queuing delay increase

as the reference level because it gives early notification with relatively small amount

of queue build-up. The term knee and its concept is borrowed from [22], but A-TCP

determines knee using a simple delay level checking instead of the delay gradient.

The effect of competition on knee cwnd is illustrated in Figure 27 for the case

of standard TCP-SACK. For this experiment, we use our test-bed shown in Figure

20. In the test-bed, all the links are set to 100Mbps and RTT is set to 50msec using
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Fig. 27. TCP-SACK Flows in 100Mbps, 50msec RTT Network

the NIST Net Emulator. During the experiment, a TCP-SACK flow (TCP-SACK 0)

from Node 0 sends traffic to Node 2 for 300 seconds while another TCP-SACK flow

(TCP-SACK 1) from Node 1 joins the network by sending traffic to Node 2 after 100

sec for the next 100 seconds.

The throughputs achieved by the two TCP-SACK flows in Figure 27(a) show that

the two TCP-SACK flows share the network bandwidth fairly during the overlapping

100 seconds. Figure 27(b) and (c) track the congestion window size and smoothed

round-trip time (srtt) of the TCP-SACK flow from Node 0, respectively. Figure 27(b)

also shows the changes of knee cwnd, which is updated whenever srtt reaches the

reference queuing delay ref delay. The arrows between Figure 27(b) and Figure 27(c)

indicate how knee cwnd is updated. The ref delay line in the Figure 27(c) represents

the reference queuing delay level. Note that the TCP-SACK used in the experiment
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is not affected by these added variables, which are added solely to illustrate the

competition detection mechanism, not to change the behavior of TCP-SACK.

During the first 100 seconds we can see that knee cwnd remains almost the same

value, i.e., knee cwnd does not change much in each measurement. When the com-

peting TCP-SACK flow from Node 1 joins the network at 100sec, knee cwnd of the

TCP-SACK flow from Node 0 decreases about half from the previous value. During

the overlapping 100 seconds, knee cwnd continues to change. After the competing

TCP-SACK flow leaves the network at 200 sec, knee cwnd becomes stable again.

However, since knee cwnd gets update only when the srtt crosses over the reference

delay, the change in the competition does not get reflected until the next queue build-

up. In Figure 27, for example, the next queue build happened 30 sec after tear down

of the competing flow.

We use the changes of knee cwnd illustrated in the experiment to formulate a

competition detector: When there is no competition, knee cwnd remains almost at

the same value. If there is competition with a greedy flow like TCP, knee cwnd

continuously fluctuates especially when the competition starts and finishes. In the

next section, we combine this simple competition detection scheme to TCP/k and

propose a new TCP congestion control scheme that achieves both effective and fair

utilization of high bandwidth-delay product networks.

E. Adaptive TCP

In this section, we show how the easy tunability of TCP/k can be used as the basis of

an adaptive protocol that operates aggressively (large k) when no other flows compete

for bandwidth, and reduces its aggressiveness (small k, k = 1) whenever it detects

other flows. In order for such a scheme to work it must combine two characteristics:
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accurate competition detection and effective adaptation of aggressiveness once com-

petition is detected or bandwidth becomes available. To realize this we combine the

tunable aggressiveness of TCP/k and the competition detection mechanism in the

previous section (in addition to traditional congestion detection) and propose a new

TCP congestion control scheme called Adaptive TCP (A-TCP).

The basic idea behind A-TCP is to quickly increase the strength k to effectively

utilize available bandwidth (or unclaimed bandwidth by other flows) when there is

no competition, and enter non-aggressive mode by setting the strength of A-TCP to

k = 1 to ensure TCP-friendliness whenever it detects competition with other flows.

Note that A-TCP (and TCP/k) is identical to standard TCP when its strength k = 1.

In addition, A-TCP sets k = 1 during periods of congestion to reduce packet loss

regardless of the result of competition detection. Here, by congestion we mean that

the network queuing delay estimated by A-TCP is larger than a reference queuing

delay level. We use the same value (i.e. 20% queue-build-up) for this as the threshold

queuing delay level used to trigger the competition detector.

The details of A-TCP mechanics are shown in Algorithm 2, Algorithm 3, and

Algorithm 4. As the algorithms suggest, A-TCP uses the queuing delay increase

(indicating queue build-up) as an estimator for congestion and competition. It does

so by keeping track of the minimum and maximum of the smoothed round-trip time5

(srtt min and srtt max, respectively) and triggers detection when the estimated

queue build-up (srtt − srtt min) exceeds some threshold. (γ value in Algorithm 2

decides this threshold.)

One of the difficulties in the use of the delay variation information for the TCP

5i.e., srtt. This is also called moving averaged round-trip time, and it is updated
whenever new RTT is available. srtt ← (1 − w) ∗ srtt + w ∗ rtt. Here, rtt is high-
resolution version RTT and w = 1

8
. Also, with a new srtt, srtt max ← srtt if

srtt max < srtt, srtt min← srtt if srtt min > srtt.
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Algorithm 2 Parameters and initialization of variables of A-TCP
Parameters:

α← 10; //waiting time after the last checking
δ ← 10; //waiting time after packet loss
β ← 0.1; //margin of error

γ ← 0.2; //reference queuing delay level

Variables:

k ← 1; //strength of A-TCP
knee cwnd← 0; //congestion window size at a knee
knee cwnd ref ← 0; //reference knee cwnd
knee k ← 0; //strength k at a knee
check knee← 0; //check knee cwnd when it is 1
low delay ← 0; //low queuing delay when it is 1.
srtt max← 0; //maximum srtt (smoothed round-trip time)
srtt min← 0xffffffff; //minimum srtt
modify time← now; //last time when k was modified.

wait time← 0; //waiting time for the next checking.

congestion control is the coarse resolution of the timers in most TCP implementations:

Most TCP implementations use 10msec resolution, which is not sufficiently accurate

to capture delay variations. To overcome this, we use the high-resolution (1 micro

second) system time for round-trip time estimation in A-TCP. We modified the round-

trip time estimation functions in the Linux kernel to use additional micro second

resolution system timer. Thus, the timing variables such as srtt, srtt max, and

srtt min used in Algorithm 3 are in usec resolution6. However, note that the use of

usec resolution system timer is only for experimental purpose in Linux kernel 2.4. We

believe that we do not need to depend on this if we use 1 msec TCP timers in Linux

kernel 2.6 versions.

Whenever A-TCP detects congestion (i.e., srtt crosses over ref delay), A-TCP

6We do not modify timing behavior and time related TCP variables of existing
TCP. The srtt in Algorithm 3 is added additionally for A-TCP, and it has a name of
srtt usec in actual A-TCP implemented kernel to differentiate it from existing srtt.
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Algorithm 3 With a new ACK

1: update srtt, srtt min, and srtt max;
2: if now−modify time > wait time then //check if it is time to work.
3: if srtt ≤ srtt min+γ · (srtt max− srtt min) then //check if queuing delay is lower

than this reference queuing delay level.
4: if (check knee = 1) and (knee cwnd ref = knee cwnd) then //increase k until a

knee is reached.
5: k ← k + 1;
6: end if

7: low delay ← 1;
8: else

9: if low delay = 1 then //queuing delay becomes bigger than the threshold.
10: knee cwnd← current cwnd; //set new knee cwnd
11: if knee cwnd ref = 0 then //set knee cwnd ref with new knee cwnd
12: knee cwnd ref ← knee cwnd;
13: else if ((1−β) ·knee cwnd ref ≤ knee cwnd ≤ (1+β) ·knee cwnd ref) then

14: knee cwnd ref ← knee cwnd;
15: end if

16: if check knee = 1 then //set new knee k with current k.
17: knee k ← k;
18: end if

19: check knee← 0; //stop aggressive behavior (i.e., increasing k).
20: low delay ← 0;
21: end if

22: k ← 1;
23: end if

24: modify time← now;
25: wait time← α · srtt min; //set waiting time until the next checking.

26: end if

records current cwnd as knee cwnd and current k as knee k. Then, it prepares immi-

nent packet loss by setting k = 1 to reduce packet loss. knee k is later used to decide

the reduction amount of congestion window size when packet loss happens and compe-

tition is not detected. Also, A-TCP updates knee cwnd ref with the new knee cwnd

if knee cwnd is less than ±10% different from knee cwnd ref . knee cwnd ref is used

to track the changes of knee cwnd by keeping previous value of knee cwnd. The 10%

margin is given for possible measurement errors and it is decided by β parameter in

Algorithm 2. This parameter decides the sensitivity of competition detection because
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Algorithm 4 With packet loss

1: if first = 1 then //ignore the first packet loss caused by initial slow-start.
2: k ← 1; knee k ← 1; knee cwnd← 0; knee cwnd ref ← 0; first← 0;
3: else if knee cwnd ref = knee cwnd then //enter aggressive mode.
4: k ← max(

√
knee k, 1);

5: srtt max← srtt min;
6: else //enter non-aggressive mode.
7: k ← 1; knee k ← 1; knee cwnd ref ← 0;
8: end if

9: check knee← 1;
10: low delay ← 0;
11: modify time← now;

12: wait time← δ · srtt min; //set waiting time until the next checking.

A-TCP might not detect changes of competition level if the margin is too big7. A-

TCP uses the relationship between the two variables, knee cwnd and knee cwnd ref ,

to determine its operation mode in the next congestion epoch: If the two variables

are set to the same value, A-TCP will be highly aggressive when and after it responds

to a congestion event such as three duplicate ACKs. Otherwise, A-TCP infers that

competition along the path has changed and remains non-aggressive during the entire

next congestion epoch by holding k = 1. Also, A-TCP resets knee cwnd ref = 0 to

set knee cwnd ref to new knee cwnd that will be measured in the next congestion

epoch as shown in Line 11 of Algorithm 3.

As Algorithm 3 describes, A-TCP keeps increasing k per each checking period

until it detects congestion when competition is not detected in the previous congestion

epoch (i.e. knee cwnd ref = knee cwnd). The checking period is defined in terms

of multiples of the minimum smoothed round-trip time (srtt min) and it is one of

the design parameters of A-TCP (α and δ) as shown in Algorithm 2. They decide

7While the 10% margin seems a reasonable trade-off between the sensitivity of the
detection and possible measurement errors in real networks and gives good behavior
in our experiments and simulations, it still needs more investigation.
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how quickly A-TCP responds to network variations. In this work we use α = δ = 10,

so that the checking period is 10 srtt min. (Although these values for α and δ

work fine in our experiments, they need more investigation in the future.) When a

packet loss happens, A-TCP compares current knee cwnd ref and knee cwnd before

responding to the packet loss. If competition has been detected (i.e. knee cwnd ref 6=

knee cwnd) A-TCP resets variables: k = 1, knee k = 1, and knee cwnd ref = 0, and

keep k = 1 during the entire next congestion epoch. Otherwise, it sets its strength k

to
√

knee k before reducing its congestion window. As a result, A-TCP reduces its

congestion window by cwnd
2
√

knee k
instead of cwnd

2
when competition is not detected.

In the following sections, we will explain the details of the behavior of A-TCP

using experimental examples and show that Algorithm 3 and Algorithm 4, in conjunc-

tion with high-resolution timers, provide an accurate estimation of network status and

thus enable A-TCP to adequately control its strength k to achieve high utilization of

available bandwidth with good TCP-friendliness.

F. Effectiveness of A-TCP

We first show how effectively A-TCP utilizes high bandwidth-delay product networks.

For this, we repeat the same experiment done for Figure 26 in Section C with an A-

TCP flow. In Figure 28 we show the achieved throughput and changes of congestion

window of the A-TCP flow in the experiment. The achieved throughput by an A-

TCP flow in Figure 28 shows that A-TCP utilizes the link bandwidth faster than a

TCP-4 flow shown in Figure 26(b). We also show the changes of congestion window

size of the A-TCP flow in Figure 28 to illustrate behavioral difference of A-TCP from

standard TCP and TCP-4 shown in Figure 26. Further, in Figure 29, we show the

changes of several other variables inside the A-TCP flow during the experiment, such



75

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200  250  300  350  400

cw
nd

 [P
ac

ke
ts

]

Time [Sec]

cwnd

0

100

200

300

400

500

 0  50  100  150  200  250  300  350  400

T
hr

ou
gh

pu
t [

M
bp

s]

Time [Sec]

A-TCP in 1Gbps, 50ms RTT link

Throughput

Fig. 28. A-TCP in 1Gbps, 50msec RTT Link

as strength k and knee cwnd.

We can see from Figure 29(c), the A-TCP flow starts in aggressive mode. The

A-TCP flow increases its strength k rapidly up to k = 34. This in turn causes the

congestion window size of the A-TCP flow to increase fast as well, as Figure 28 shows.

This rapid initial increase of the strength k can be explained with the changes in srtt

and knee cwnd shown in Figure 29(a) and Figure 29(b). During the first 20 seconds

of Figure 29(a), srtt is smaller than ref delay line shown in the figure. ref delay

represents the reference queuing delay level in Line 3 of Algorithm 3. At about 20

sec, knee cwnd and knee cwnd ref in Figure 29(b) and knee k in Figure 29(c) are

updated with the current cwnd and k at the time, then the strength k is set to one

because the congestion detector triggers, i.e., srtt exceeds the reference queuing delay

level (this is caused by self congestion in this case).

The A-TCP flow stays non-aggressive by holding its strength k at one until

the first packet loss happened at about 70 sec. With the packet loss event, A-TCP

checks if knee cwnd is equal to knee cwnd ref . Since it is true in this example, A-

TCP sets its strength k to
√

knee k, i.e. 5, and it reduces the congestion window
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Fig. 29. Changes of the Variables Inside A-TCP

by 1
2∗k

cwnd = 1
10

cwnd instead of halving it. After that, the A-TCP flow resets its

strength to one again because of the congestion detector. Note that knee k and other

variables are not updated at this time because the variables can only be updated when

srtt becomes bigger that the reference queuing delay level as shown in Algorithm 3.

This pattern keeps repeating and the achieved throughput by the A-TCP flow in

Figure 28 remains stable.

Figure 30 illustrates A-TCP’s congestion window changes in the steady-state. By

steady-state we mean the period for which throughput of A-TCP remains stable be-

cause it does not detect competition (i.e., knee cwnd remains equal to knee cwnd ref)

as the example in Figure 28 shows. The behavioral differences between A-TCP shown
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in Figure 30 and TCP/k shown in Figure 24 are: (i) the congestion window increase

speed of A-TCP is the same as that of standard TCP because the self-induced queuing

delay, (ii) when A-TCP encounters packet loss, the strength k of A-TCP is decided

by the knee k value instead of the fixed k in TCP/k. Thus, it takes W
2k

RTT times

to recover the congestion window compared to W
2k2 of TCP/k.

We use Figure 30 to analyze the steady-state throughput of A-TCP. We let S be

the total amount of packets sent in each congestion epoch. From Figure 30, we can

see that S = W (1− 1
2k

)W
2k

+ 1
2

W
2k

W
2k

. Thus, the packet loss probability p equals to 1
S
,

and 1
p

can be expressed as:

1

p
= S =

W 2

2k

4k − 1

4k
= W 24k − 1

8k2
. (4.4)

As a result, W = (1
p

8k2

4k−1
)1/2. Hence, the average throughput T [packets/sec] of
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an A-TCP flow in steady state can be modeled as:

T =
data sent per congestion epoch

time per congestion epoch

=
W 2(4k−1

8k2 )
W
2k

RTT

=

√

4k−1
2

RTT
√

p
[packets per sec].

.

However, in contrast to the fixed strength k in TCP/k, the strength k of A-TCP

is dynamically decided by knee k. Hence, we can replace k with
√

knee k and obtain

the following equation:

T =

√

4
√

knee k−1
2

RTT
√

p
[packets per sec]. (4.5)

G. Fairness of A-TCP

1. 100Mbps Case

To illustrate how A-TCP works when there is competition by other flows and to

evaluate the performance of A-TCP, we repeat the experiments done in Section B.

All the links in the test-bed of Figure 20 are set to 100Mbps and RTT is set to 50msec

using the NIST Net Emulator. Differently from the experiments done in Section B,

now Node 0 opens an A-TCP flow and sends traffic to Node 2 for 300 seconds while

a TCP-SACK flow from Node 1 joins the network by sending traffic to Node 2 at

100 sec for the next 100 seconds. Figure 31 and Figure 32 show the results of the

experiment.

Figure 31 shows the achieved throughput by the A-TCP and TCP-SACK flows.

From the experimental results in the figure we can see that A-TCP achieves high

throughput when it is alone in the test-bed during the first 100 and the last 80 seconds.
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Further, the results also show that the A-TCP flow and the competing TCP-SACK

flow share the bandwidth fairly during the overlapping 100 seconds. This was not

the case for the other high-speed TCP proposals in Section B. By comparing the

experimental results in the figure with the results of other high-speed TCP proposals

in Figure 21, Figure 22, and Figure 23 we can clearly see that A-TCP is significantly

fairer to the competing TCP-SACK flow than other proposals.

To illustrate how A-TCP behaves in the experiment, we also show variables

inside the A-TCP flow, such as srtt and strength k in Figure 32. Figure 32(a) shows

the changes of the congestion window sizes of the A-TCP and TCP-SACK flows.

Figure 32(b) tracks knee cwnd and knee cwnd ref , which in turn used to detect

competition. The ref delay line in the Figure 32(c) represents the reference queuing

delay level. From the relationship between the changes of the variables, we can see

how knee cwnd is updated whenever the srtt reaches the reference queuing delay

level. Figure 32(d) shows the changes of k and knee cwnd.

From Figure 32(a) we can see that the A-TCP flow increases its congestion

window size fast when it starts because its strength k increases rapidly as shown in

Figure 32(d) until it detects queuing delay increase at about 7 sec as shown in Figure
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32(c). At this point A-TCP sets its strength k to one and keeps it until packet loss

happens at about 12 sec. When packet loss eventually happens, A-TCP responds to

the packet loss by setting k = 3 before reducing its congestion window because the

relationship between knee cwnd and knee cwnd ref indicates no competition (i.e.,

knee cwnd = knee cwnd ref) and knee k = 11. As a result, the A-TCP flow reduces

its congestion window by cwnd
6

instead of cwnd
2

and increases k after the reduction of

the congestion window. This aggressive behavior of A-TCP is repeated until the
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competing TCP-SACK flow from Node 1 joins the test-bed network at 100 sec.

Just after a TCP-SACK flow from Node 1 joins the network at 100sec, Fig-

ure 32(b) shows that knee cwnd of the A-TCP flow is set to a different value from

knee cwnd ref . A-TCP infers this change as a signal of competition and enters non-

aggressive mode during the next congestion epoch (until about 125 sec) as the changes

of the congestion window shown in Figure 32(a). During the overlapping 100 seconds,

as figure 32(b) shows, knee cwnd and knee cwnd ref variables of A-TCP are set to

have different values from each other continuously by the existence of the competing

TCP-SACK flow. As a result, the A-TCP flow is forced to be in non-aggressive mode

repeatedly although it tries to increase k several times (e.g., at around 150 sec) during

the overlapping 100 seconds. This example illustrates how the competition detection

mechanism drives A-TCP to being fair to competing flows even if the competing flows

is single, standard TCP flow.

After the competing TCP-SACK flow leaves the network at 200 sec, knee cwnd

and knee cwnd ref are set to have the same value at about 230 sec. After that point

the two variables remain equal, and A-TCP stays in aggressive mode. However, since

knee cwnd gets updated only when the srtt crosses up the reference delay, the change

in the competition is not detected until the next queue build-up. This in turn leads to

a delay in transition back to aggressive mode once the competition period has ended

in 200 sec. In Figure 32(c), for example, the next queue build happened 30 sec after

tear down of the competing flow.

To compare TCP-friendliness of A-TCP with other high-speed TCP proposals

we repeat the experiments in Section B 10 times for A-TCP and other high-speed

TCP proposals against a TCP-SACK flow. Figure 33 shows the achieved throughput

by each flow when a TCP-SACK flow from Node 1 competes against a high-speed

TCP flow of different types from Node 0 for the overlapping 100 seconds. The lengths
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and error-bars of the histogram in the figure represent the average throughput and

95% confidence interval of the average achieved by each flow.

The first bar in Figure 33 shows that the crossing TCP-SACK flow from Node

1 achieves about 41Mbps when it competes against a TCP-SACK flow from Node 0.

We use this value as a reference for our fairness evaluation of TCP proposals (the

closer to this value, the better the fairness of the TCP proposal.) The experimental

results in Figure 33 clearly show that the TCP-SACK flow from Node 1 achieves a

much smaller throughput than its fair share when it competes against a HS-TCP,

STCP, H-TCP, and BIC-TCP flow. Also, as expected, the TCP-SACK flow achieves

much higher throughput than its fair share when it competes against a FAST-TCP

flow. The last bar in the figure shows that the A-TCP flow allows the competing

TCP-SACK flow to achieve similar throughput to its fair share.
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2. 10Mbps Case

In this section we repeat the experiments of the previous section with 10Mbps bot-

tleneck link. For this experiment we changed the link bandwidth from NIST Net

Emulator to the receiver Node 2 to 10Mbps in the test-bed shown in Figure 20.

The bandwidths of other links are all 100Mbps, and the 50msec RTT delay is un-

changed. Figure 34 shows experimental results of A-TCP against single TCP-SACK

flow in the 10Mbps, 50msec bottleneck link. The achieved throughputs by A-TCP

and TCP-SACK in Figure 34 shows that the A-TCP flow from Node 0 is fair to

the competing TCP-SACK flow from Node 1. The changes of the congestion win-

dow size of the A-TCP flow in Figure 34 shows almost the same behavior as that

of the competing standard TCP-SACK flow. This is because A-TCP does not have

many chances to increase its strength k in this low bandwidth case. This result

demonstrates the good adaptivity of A-TCP to network conditions: A-TCP does not

increase the strength because a single TCP flow is enough for the high utilization of

this not-so-high bandwidth-delay product network.
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In Figure 35 we show experimental results obtained by repeating the above ex-

periment to each high-speed TCP proposal. The first bar of the figure shows that

the TCP-SACK flow from Node 1 achieves about 4.7Mbps when it competes against

a TCP-SACK flow from Node 0. We use this value as a reference to evaluate the

fairness property of TCP proposals in 10Mbps bottleneck, 50msec RTT network. In

the figure, the achieved throughput by crossing TCP-SACK flow is less than its fare

share when it competes against HS-TCP, STCP, H-TCP, and BIC-TCP. But it is

better than the previous 100Mbps case. HS-TCP, especially, shows much improved

fairness in this 10Mbps bottleneck link experiment. This is because HS-TCP be-

comes a standard TCP when its congestion window size is less than a threshold value

(i.e. 38 packets [37]). Again, the TCP-SACK flow achieves much higher throughput

than its fair share when it competes against FAST-TCP. The last bar in the figure

shows that the crossing TCP-SACK flow from Node 1 achieves almost its fair share

of throughput when it competes against an A-TCP flow from Node 0.
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Fig. 36. ns2 Simulation Test-bed

H. Simulation Results

To further evaluate the performance of A-TCP and for the flexibility of the evaluation,

we also implement A-TCP in ns2 Version 2.27 [37]. For the test-bed topology we

use a simple dumbbell topology shown in Figure 36 with bottleneck link bandwidth

of 622Mbps and 50ms RTT propagation delay between senders and receivers. The

bottleneck switch SW 1 uses FIFO/Drop-Tail scheduling with 20% of the bottleneck

bandwidth-delay product. We again use TCP-SACK for the competing standard

TCP, and TCP receivers use delayed ACK. TCP initial congestion window size is

set to two packets instead of one to remedy round-tip time measurement errors by

the use of delayed ACKs when connections initiate. FTP is used for application to

generate continuously back-logged, long-term flows.

1. Intra-Protocol Fairness

We first evaluate intra-protocol fairness between A-TCP flows. For this experiment

both Node 0 and Node 1 use A-TCP. Node 0 opens an A-TCP connection (A-TCP

1) to Node 2 for 1500 seconds. Node 1 joins the experiment by opening a competing

A-TCP flow (A-TCP 2) to Node 3 from 400 sec to 1000 sec. Figure 37 shows the

achieved throughput by the two A-TCP flows and the changes of their congestion
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window sizes during the experiment. The figure shows that A-TCP 1 flow utilizes

bandwidth effectively by keeping aggressive mode when it is alone during the first

400 seconds. After A-TCP 2 joins the network at 400 sec, we can see that the two

A-TCP flows share the bottleneck link fairly.

2. Inter-Protocol Fairness

In this section, we evaluate and compare inter-protocol fairness of A-TCP with other

high-speed TCP proposals including TCP-Africa using ns2. We first let an A-TCP

flow and a standard TCP flow start to send traffic through the same bottleneck link

at the same time. Then, we compare the test results with those of TCP-Africa, which

controls its operation mode from fast to slow mode using a delay-based congestion

detector only. When we test TCP-Africa using our ns2 implementation, we use the

default α parameter value given in the authors’ paper, and tcpTick of ns2 was set

to 0.1ms to support high-resolution srtt that is required for TCP-Africa. For this

simulation, Node 0 in Figure 36 opens an A-TCP or TCP-Africa connection for 1000
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Fig. 38. TCP-SACK and (a) TCP-Africa (b) A-TCP Start at the Same Time

seconds to Node 2. Node 1 opens a TCP-SACK flow to Node 3 for the same period.

Figure 38(a) and Figure 38(b) show the simulation results. In the figures we show

the changes of the achieved throughput and congestion window size of the partici-

pating TCP flows. The achieved throughput of the TCP-Africa and the competing

TCP-SACK flows in Figure 38(a) show that TCP-Africa eventually dominates the

network and not allow the competing TCP-SACK its fare share of bandwidth. The

changes of the congestion window size of the TCP-Africa shown in the bottom of

Figure 38(a) clearly show that congestion detection alone is not sufficient to mitigate

aggressiveness of TCP-Africa. In contrast to the simulation results with TCP-Africa,

the simulation results of A-TCP in Figure 38(b) show that A-TCP is fairer to the

competing TCP-SACK flow than TCP-Africa. The changes of the congestion win-

dow size of A-TCP shows that the aggressiveness of the A-TCP flow is repeatedly set

to that of a standard TCP. This is because the competition detection mechanism in

A-TCP detects the existence of the competing TCP repeatedly during the simulation.

Next we test A-TCP’s fairness with standard TCP when A-TCP joins network

later than a TCP-SACK flow. We also compare the experimental results with other
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Fig. 39. TCP-SACK vs. (a) H-TCP (b) BIC-TCP

high-speed TCP proposals such as BIC-TCP, H-TCP, and TCP-Africa. For BIC-

TCP and H-TCP, we use ns2 codes from the authors without changing their default

parameter settings. For this experiment Node 1 in Figure 36 opens a TCP-SACK

connection for 1400 seconds to Node 3. Node 0 joins the experiment by opening a

high-speed TCP flow to Node 2 from 400 sec to 1000 sec. In Figure 39 and Figure 40

we show the results of the experiments.

From the experimental results of H-TCP and BIC-TCP shown in Figure 39(a)

and 39(b) we can see that when a BIC-TCP or H-TCP flow joins the test-bed network,

they dominate the network resources and would not allow the competing TCP-SACK

flow to consume fair amount of the bandwidth. As a result, the competing TCP-SACK

flow achieves only a small portion of the bottleneck bandwidth. The experimental

results of TCP-Africa shown in Figure 40(a) show that TCP-Africa is also significantly

unfair to the competing TCP-SACK although it is better than H-TCP and BIC-TCP.

In contrast, as Figure 40(b) shows, when an A-TCP flow joins the test-bed network,

the A-TCP flow does allow the competing TCP-SACK flow much higher bandwidth

than it could achieve against other high-speed TCP proposals.
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Fig. 40. TCP-SACK vs. (a) TCP-Africa (b) A-TCP

In Figure 41 we also show another simulation result that illustrates TCP-friendliness

of A-TCP when A-TCP and TCP-SACK have different access link bandwidth. For

this test we change the access link bandwidth for the competing standard TCP flow

to 100Mbps. The bandwidths of all other links remain at 622Mbps. The achieved

throughput by the A-TCP flow and the TCP-SACK flow as well as the changes in

the congestion window size of the two flows are shown in Figure 41. The simulation

results in the figure show that the competing TCP-SACK flow achieves almost full

bandwidth utilization of its access link. A-TCP does not steal bandwidth from the

standard TCP flow with the smaller bandwidth access link. From the figure we can

see that A-TCP adapts to the change in the available bandwidth when the competing

TCP-SACK starts to send traffic at 400 sec. After the tear down of the competing

TCP-SACK flow at 1000 sec, A-TCP tries to adapt to the newly available bandwidth.

Note that, however, it took one congestion epoch for A-TCP to reclaim the available

bandwidth because the competition detection mechanism in A-TCP holds A-TCP to

be non-aggressive for the period because of the detection of competition level change.

To test how well or how quickly A-TCP responds to the changes of network
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Fig. 41. A-TCP vs. TCP-SACK from 100Mbps Link

situations, we now use a non-responsive UDP connection as the cross traffic from

Node 1 of Figure 36. In this simulation, the bandwidths of all links are set to 622Mbps

and the propagation delay between senders and receivers remain 50msec. First, Node

0 opens an A-TCP flow to Node 2 for 1600 seconds. At 400 sec Node 1 opens a

UDP connection of 300Mbps to Node 3 for the next 700 seconds. In Figure 42 we

show the achieved goodput by the A-TCP flow and the UDP flow. We also show the

changes of the congestion window size of the A-TCP flow in the figure. From Figure

42 we can see that the A-TCP flow from Node 0 quickly adapts to the new network

situation caused by the non-responsive 300Mbps UDP cross traffic generated by Node

1 from 400 sec to 1100 sec. A-TCP adapts to the changes in the network caused by

the start and cease of the non-responsive UDP connection. Except the periods for

A-TCP to adapt to the changes in the network, the goodput achieved by the A-TCP

flow remains stable.
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I. Summary

In this chapter we proposed a new TCP congestion control scheme called Adaptive

TCP (A-TCP) for effective and fair utilization of high bandwidth-delay product net-

works. A-TCP automatically adapts its strength to control its aggressiveness accord-

ing to network status through accurate estimation of network situations using high

resolution round-trip times and a competition detection mechanism. A-TCP increases

its strength k to achieve high utilization of available, or unclaimed bandwidth, while

it holds the strength k = 1 and becomes a standard TCP when it detects competition

with other flows. As a result, A-TCP achieves both effective and fair utilization of

network resources. Further, A-TCP is a purely sender-based TCP because it does

not require any special support from networks or modification of receivers.
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CHAPTER V

ADAPTIVE AGGREGATED AGGRESSIVENESS CONTROL ON GROUPS OF

TCP FLOWS

A. Introduction

Opening parallel TCP flows (i.e. multiple concurrent TCP connections to the same

destination) is an easy way to effectively utilize available bandwidth because it does

not require modification of TCP itself. With parallel TCP flows, users can work

around the throughput limitations for single-flow TCP in high bandwidth-delay prod-

uct networks. However, it is difficult to determine the number of parallel TCP flows

needed to effectively utilize available bandwidth without unduly hurting competing

single TCP flows, especially in dynamically changing networks. There have been sev-

eral efforts to achieve high performance using parallel TCP flows while mitigating the

unfairness of parallel TCP flows. The Congestion Management (CM) architecture

[28], COCOON [29], and Fractional/Combined TCP flows [18] are some examples.

In this chapter, however, we show through extensive experimentation that improving

performance of parallel TCP flows while maintaining fairness (or TCP-friendliness)

to single TCP flows is not easy to achieve.

We proposed TCP-P earlier, which allows adjusting the aggressiveness of a group

of parallel TCP flows in a controllable fashion, using a runtime adjustable strength

parameter k. The “strength” k is a scalar value that describes how big the group

(in number of flows) is perceived by other TCP flows. TCP-P in effect controls

the aggressiveness of parallel TCP flows by separating the aggressiveness of parallel

TCP flows from the number of parallel TCP flows that can be opened by users almost

without limits. However, deciding on an adequate value for the strength k for a group
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of parallel TCP-P flows in a particular network situation still remains. The system

operator therefore is left with the task to explicitly manage the aggressiveness of TCP-

P flow groups. In this chapter we present an approach to have the system adaptively

determine a good value for the aggressiveness in a management free fashion.

Most of recent high-speed TCP proposals, such as HS-TCP, STCP, HTCP, and

BIC-TCP, have shown to exhibit serious fairness problems with respect to standard

TCP. A-TCP is one of the recent high-speed TCP proposals. Differently from other

high-speed TCP proposals, however, A-TCP does not cause fairness problem with

competing single TCP flows because it automatically adapts its aggressiveness to

network situations using a competition detection mechanism. A-TCP increases its

strength (or aggressiveness) k to achieve high utilization of available, or unclaimed

bandwidth, while holding its strength at one when it detects competition with other

flows. As a result, A-TCP achieves both effective and fair utilization of network

resources. However, if multiple A-TCP flows compose a group of parallel TCP flows,

the aggregated aggressiveness of the parallel A-TCP flows will be at least that of the

parallel standard TCP flows because the minimum aggressiveness of A-TCP is the

same as that of standard TCP. Given the relatively poor fairness provided by other

high-speed TCP schemes for the single-flow case, we expect them to perform even

worse in the case of multiple parallel flows.

In this chapter, we propose a new parallel-TCP scheme, called Adaptive TCP-P

(A-TCP-P), whose effectiveness and fairness are not affected by the number of the

parallel TCP flows. A-TCP-P realizes effective and fair parallel TCP by combining

TCP-P with the competition detection mechanism in A-TCP. When the competition

detection mechanism detects the changes in the competition level along its path, the

parallel A-TCP-P flows become TCP-friendly by holding the strength of the group

at k = 1. When k = 1, A-TCP-P regulates the aggregated aggressiveness of parallel
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TCP flows to be comparable to that of single, standard TCP flow using the aggregated

aggressiveness control mechanism in TCP-P. (In this case, every flow in the group is

less aggressive than a single standard TCP flow.) Otherwise, A-TCP-P allows the

parallel TCP flows to increase the strength of the group to effectively utilize available

bandwidth. In addition, A-TCP-P reacts when it detects imminent packet loss and

holds the group strength of the parallel TCP flows at k = 1 to reduce upcoming

packet losses by estimating queuing delay variations.

The remainder of this chapter is organized as follows: Section B proposes Adap-

tive TCP-P. Section C experimentally shows that A-TCP-P effectively and fairly

utilizes available bandwidth. We also compare its performance with other parallel

TCP schemes. In Section D we compare the fairness of parallel high-speed TCP flows

with that of parallel A-TCP-P flows. Section E summarizes this chapter.

B. Adaptive Aggregated Aggressiveness Control

Fairness in the context described here is based on the ability to detect and adequately

respond to competition for resources in the network. We previously developed a

competition detection and response scheme for the TCP single-flow case, and imple-

mented it in form of the A-TCP protocol. In this chapter we describe our experiences

of extending competition detection and response to the parallel-flow case. To adopt

A-TCP-style competition detection into TCP-P, we extend the meaning and usage of

the variables used in A-TCP to be group-wide. The competition detector used here

is based on the observation that the queue build-up rate is higher the more flows are

present along the path. Queue build-up in turn can be measured by monitoring the

changes of g knee cwnd.

g knee cwnd is the aggregated congestion window size of all the member TCP
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Algorithm 5 Parameters and initialization of variables of A-TCP-P
Parameters:

α← 10; //waiting time after the last checking
δ ← 10; //waiting time after packet loss
β ← 0.1; //margin of error

γ ← 0.2; //reference queuing delay level

Variables:

k ← 1; //strength of a group of A-TCP-P flows
g knee cwnd← 0; //group congestion window at a knee
g knee cwnd ref ← 0; //reference g knee cwnd
g knee k ← 0; //group strength k at a knee
g check knee← 0; //check knee cwnd when it is 1
g low delay ← 0; //low congestion when it is 1
gsrtt← 0; //group-wide smoothed round-trip time
gsrtt max← 0; //maximum gsrtt
gsrtt min← 0xffffffff; //minimum gsrtt
g modify time← now; //last time when k was modified

g wait time← 0; //waiting time for the next checking.

flows when gsrtt passes over the reference queuing delay level shown in Line 3 of

Algorithm 6, which is based on the group-wide round-trip delay information such as

gsrtt min and gsrtt max. A-TCP-P determines if there are competing TCP flows

by checking whether g knee cwnd ref is equal to g knee cwnd or not. When packet

loss is detected by any member A-TCP-P flows and if g knee cwnd ref is different

from g knee cwnd, the flow reduces total congestion windows size of the group by

half and the parallel A-TCP-P flows will behave as if a standard TCP flow during

the next congestion epoch. The next congestion epoch ends when any A-TCP-P flow

experiences packet loss. Otherwise, the group will enter aggressive mode: i) The

total congestion window size of the group (g cwnd) of the parallel TCP flows will

be reduced by g cwnd
2
√

g knee k
instead of halving (g knee k is the strength of the parallel

A-TCP-P flows when the estimated queuing delay becomes bigger than the reference

queuing delay level). ii) After the reduction, the strength k of the group will increase
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Algorithm 6 With a new ACK in any member A-TCP-P flow of a group

1: update gsrtt, gsrtt min, and gsrtt max;
2: if now− g modify time > g wait time then //check if it is time to work.
3: if gsrtt ≤ gsrtt min + γ · (gsrtt max− gsrtt min) then

4: if (g check knee = 1) and (g knee cwnd ref = g knee cwnd) then

5: k ← k + 1; //increase k until a knee is reached.
6: end if

7: g low delay ← 1;
8: else

9: if g low delay = 1 then //queuing delay becomes bigger than the threshold.
10: g knee cwnd← current g cwnd;
11: if g knee cwnd ref = 0 then

12: g knee cwnd ref ← g knee cwnd;
13: else if ((1−β) ·g knee cwnd ref ≤ g knee cwnd ≤ (1+β) ·g knee cwnd ref)

then

14: g knee cwnd ref ← g knee cwnd;
15: end if

16: if g check knee = 1 then

17: g knee k ← k;
18: end if

19: g check knee← 0; //stop aggressive behavior (i.e., increasing k).
20: g low delay ← 0;
21: end if

22: k ← 1;
23: end if

24: g modify time← now;
25: g wait time← α · gsrtt min; //set waiting time until the next checking.

26: end if

quickly if the estimated queuing delay is less than the reference queuing delay level.

The parameters and variables used for A-TCP-P are shown in Algorithm 5 and

details of the mechanics for adaptive aggregated aggressiveness control are shown

in Algorithm 6 and Algorithm 7. Because the usage of all the variables shown in

Algorithm 5 is group-wide, any A-TCP-P flow can access and modify the variables

of its own group and the changes of these variables affect the behavior of the entire

parallel TCP flows in the group. For example, gsrtt is the smoothed round-trip

time based on the round-trip time measured by all the parallel TCP flows. gsrtt
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Algorithm 7 With packet loss in any member A-TCP-P flow of a group

1: if first = 1 then //ignore the first packet loss caused by initial slow-start.
2: k ← 1; g knee k ← 1; g knee cwnd← 0; g knee cwnd ref ← 0; first← 0;
3: else if g knee cwnd ref = g knee cwnd then //enter aggressive mode.
4: k ← max(

√
g knee k, 1)

5: gsrtt max← gsrtt min
6: else //enter non-aggressive mode.
7: k ← 1
8: g knee k ← 1
9: g knee cwnd ref ← 0
10: end if

11: g check knee← 1;
12: g low delay ← 0;
13: g modify time← now;

14: g wait time← δ · gsrtt min; //set waiting time until the next checking.

is updated when any A-TCP-P flow updates its own smoothed round-trip time srtt.

Also the maximum and minimum of gsrtt, i.e. gsrtt max and gsrtt min, are updated

whenever new gsrtt is bigger than gsrtt max or smaller than gsrtt min. The way to

update gsrtt of a group of parallel A-TCP-P flows is similar to updating srtt in each

flow:

gsrtt(t+) = (1− w) ∗ gsrtt(t) + w ∗ rtt(t). (5.1)

The parameter w assigns a weight to the new round-trip time measurement (rtt)

and is set to 1
8
. In this implementation, all the variables are embedded in a group

information management structure and pointers are used for member A-TCP-P flows

to access these variables.

In the following sections we describe a series of experiments where we evaluate

the performance of A-TCP-P (in terms of effectiveness and fairness) and explain how

A-TCP-P adaptively adjusts its group strength according to network situations.
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Fig. 43. Experiment Network

C. Evaluation

1. Experiment Setup

For all the experiments in this chapter, we use the test-bed shown in Figure 43. In the

test-bed, we use NIST Net Emulator [49] to emulate link delays in the Internet. All the

end-host nodes and the NIST Net Emulator are running on Linux PCs. The PCs we

used for these experiments are Pentium 4 machines with 10/100Mbps Fast Ethernet

or Gigabit Ethernet network interface cards. In a sender Node 0, we installed Linux

kernel 2.4.20-8 and modified Linux kernels for A-TCP-P. The other machines run on

unmodified Linux kernel 2.4.20-8. For traffic generation and throughput measurement

we use iperf Version 1.7.0 [50]. By default, Linux TCP behavior is based on TCP-

SACK [1].

2. Effectiveness of A-TCP-P

First, we evaluate the effectiveness of A-TCP-P in using the available bandwidth. To

do this, we use a 1 Gbps link between Sender Node 0 and the NIST Net Emulator

node to 1Gbps. To illustrate the behavioral difference between parallel A-TCP-P

and unmodified parallel TCP, we let Node 0 open either four parallel unmodified
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Fig. 44. 4 Parallel (a) TCP-SACK (b) A-TCP-P Flows in 1Gbps, 50msec RTT Link

TCP-SACK flows or four parallel A-TCP-P flows to the NIST Net node (NIST Net

emulator works as a receiver for this experiment). The round-trip propagation delay

between Node 0 and NIST Net Emulator is set to 50msec by the NIST Net Emulator.

Although the physical link technology between these two nodes is optical Gigabit

Ethernet, the hardware performance (533MHz front-side bus speed, 32bit PCI bus)

of the sender and receiver machines in our test-bed limited the maximum achievable

throughput to about 440Mbps.

In Figure 44(a) we show the aggregated throughput achieved by Node 0 when it

opens four parallel TCP-SACK flows to the NIST Net node and the changes of the

aggregated congestion window size of the four parallel TCP-SACK flows during the

experiment. In comparison, Figure 44(b) shows the aggregated throughput achieved

by Node 0 when it opens four parallel A-TCP-P flows to the NIST Net node and the

changes of the aggregated congestion window size of the four parallel A-TCP-P flows.

By comparing the two figures we can see that A-TCP-P can utilize the available

bandwidth more effectively than standard TCP: A-TCP-P flows reach the maximum

throughput at about 10 sec compared to about 50 sec of unmodified four TCP-SACK
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Fig. 45. 4 Parallel A-TCP-P vs. One TCP-SACK in 100Mbps, 50msec RTT Network

flows. Further, the figures also show that A-TCP-P results in less packet loss than

the unmodified parallel TCP by reducing the group’s aggressiveness before packet

loss happens.

3. Fairness of A-TCP-P

To illustrate how A-TCP-P behaves in a dynamic network situation, we let four

parallel A-TCP-P flows from Node 0 compete against a single TCP-SACK flow from

the other sender node (Node 1). All the links in the test-bed are now set to 100Mbps

and RTT between the sender nodes and the receiver node is set to 50msec using the

NIST Net Emulator. Node 0 now opens four parallel A-TCP-P flows to Receiver

Node 2 for 300 seconds. After 100 sec, Node 1 opens a TCP-SACK flow to Node 2

for the next 100 seconds.

In Figure 45 we show the aggregated throughput achieved by the four parallel

A-TCP-P flows and the throughput achieved by the competing single TCP-SACK
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Fig. 46. Variables Inside A-TCP-P

flow. The figure also shows the changes of the aggregated congestion window size

of the four parallel A-TCP-P flows and the changes of the congestion window of the

competing TCP-SACK flows. From the experimental results in the figure we can see

that A-TCP-P achieves high throughput when it is alone in the test-bed during the

first 100 and the last 50 seconds. Further, the results also show that the four A-TCP-

P flows and the competing TCP-SACK flow fairly share the bandwidth during the

overlapping 100 seconds.

To explain the behavior of A-TCP-P in this experiment, we also show the changes

of the variables inside the parallel A-TCP-P flows, such as gsrtt and strength k, in

Figure 46. The ref delay line in the Figure 46(a) represents the reference queuing

delay level. Figure 46(b) tracks g knee cwnd and g knee cwnd ref used to detect

competition. Figure 46(c) show the changes of k and knee k. By comparing Figure 45
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and Figure 46(c), we can see that the initial quick increase of aggregated congestion

window of parallel A-TCP-P flows is caused by the rapid increase of the group strength

k. This aggressive behavior of A-TCP-P is repeated after each packet loss until the

competing TCP-SACK flow from Node 1 joins the test-bed network at 100 sec because

g knee cwnd remains equal to g knee cwnd ref as shown in Figure 46(b).

During the overlapping 100 seconds, as Figure 46(b) shows, g knee cwnd and

g knee cwnd ref variables of A-TCP-P are set to have different values from each

other repeatedly by the competition detection mechanism. As a result, A-TCP-P is

forced to be in non-aggressive mode repeatedly. This example clearly illustrates how

the competition detection mechanism in A-TCP-P drives parallel A-TCP-P flows to

fairly share the bandwidth even with one standard TCP flow. After the competing

TCP-SACK flow leaves the network at 200 sec, g knee cwnd and g knee cwnd ref

are set to have the same value again at about 250 sec. The two variables remain equal

after that point and A-TCP-P stays in aggressive mode.

4. Performance Comparison with Other Parallel TCP Schemes

In this section, we first compare A-TCP-P with other parallel TCP schemes such as

Fractional/Combined TCP, COCOON, CM, and TCP-P. Node 0 now opens from zero

to 10 parallel TCP flows for each scheme to the receiver Node 2 for 100 seconds while

the other sender Node 1 opens one standard TCP-SACK flow to the same receiver for

the same period. When the number of parallel TCP flows from Node 0 is zero, Node 0

does not open any TCP flow to Node 2, so that only the single TCP-SACK flow from

Node 1 consumes all the network resources without competition. By increasing the

number of parallel TCP flows from Node 0, we measure how much bandwidth Node

0 gains at the cost of Node 1. In all the following experiments, every experiment was

repeated 10 times with a 5 sec waiting time after each experiment to get an average
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Fig. 47. TCP-SACK vs. Parallel (a) TCP-SACK (b) Frac./Comb. TCP

value. Error bars in the figures represent 95% Confidence Interval of the data.

For comparison we first show how much bandwidth unmodified parallel TCP

steals from the competing standard TCP flow. Figure 47(a) shows the experiment

results with an increasing number of unmodified parallel TCP flows from Node 0.

From the figure we can clearly see that, by opening more TCP connections to the

same destination, the unmodified parallel TCP flows achieve higher throughput by

stealing bandwidth from the competing TCP-SACK flow of Node 1.

Fractional and Combined TCP schemes [18] were proposed to mitigate unfairness

of unmodified parallel TCP flows. Fractional TCP scheme reduces the increase speed

of the congestion window sizes of parallel TCP flows’ according to the number of

parallel flows. The Combined TCP scheme suggests to include one unmodified TCP to

a group of Fractional TCP flows to compensate for the conservativeness of Fractional

TCP flows. We used our implementation of Fractional and Combined TCP in Node 0

based on the authors’ paper [18]. Figure 47(b) shows that Fractional and Combined
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Fig. 48. TCP-SACK vs. Parallel (a) COCOON TCP (b) CM TCP

TCP flows are less aggressive than unmodified TCP flows, while Combined TCP

flows show higher throughput than Fractional TCP, at the cost of more throughput

decrease in the competing TCP flow. As we can see from the figures, although the

unfairness is reduced compared to that of unmodified parallel TCP flows, this scheme

still steals significant amounts of bandwidth from the competing TCP flow.

COCOON [29] employs a coordinated congestion control to a group of TCP flows.

Specifically, when a flow in the group experiences congestion, it adjusts the congestion

windows of member TCP flows whose outstanding packet sizes are larger than the

congestion window size of the TCP flow. To test COCOON we use modified kernel

2.4.22 with the kernel patch from the authors. Figure 48(a) shows that COCOON

also becomes unfair when it opens more than one TCP connection to the receiver.

Furthermore, the experimental results also show that parallel COCOON TCP flows

do not effectively utilize the bandwidth taken from the competing TCP-SAck flow.

Congestion Management (CM) architecture [28] uses single congestion window
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Fig. 49. TCP-SACK vs. Parallel (a) TCP-P/1 (b) A-TCP-P

for a group of parallel TCP flows. We used modified Linux kernel 2.2.18 from the

authors in Node 01. We also used unmodified kernel 2.2.18 in Node 1 for fair compar-

ison. Figure 48(b) shows the experimental results with parallel CM TCP flows. The

experimental results in the figure show that the aggregated throughput of parallel

CM TCP flows from Node 0 and the throughput of the competing TCP flow from

Node 1 are not much changed even if Node 0 opens 10 CM TCP flows, so that CM

can be considered to be a fair parallel scheme.

Differently from Fractional TCP, which controls only increase behavior, and CO-

COON, which controls only decrease behavior, TCP-P controls both. Parallel TCP-P

flows with strength k (i.e., TCP-P/k) appear to other TCP flows like k separate TCP

flows. Figure 49(a) shows experimental results with TCP-P with strength k = 1 (i.e.

TCP-P/1). From the figure we can see that a group of parallel TCP-P flows with

1The CM kernel implementation had some bugs that cause TCP hang. We disabled
flood of kernel debugging messages and increased the socket buffer size of TCP to
2MB from the default 64 kB.
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strength k = 1 has similar fairness property to that of CM even though TCP-P allows

each TCP-P flow to maintain its own congestion window.

Figure 49(b) shows the experimental results with different number of parallel A-

TCP-P flows. Although A-TCP-P is slightly more aggressive than TCP-P and CM,

the experimental results indicate that parallel A-TCP-P flows also maintain good

TCP-friendliness to the competing TCP-SACK flow. However, note that the aggres-

siveness of TCP-P/1 or CM is fixed to that of a single TCP, so that their effectiveness

can not be better than that of single TCP. In contrast, A-TCP-P changes the strength

of the group automatically for the effective utilization of the high bandwidth-delay

product networks whenever it does not detect competition.

D. Parallel High-speed TCP

Although the fairness of TCP proposals are considered as an important factor for the

evaluation of the TCP proposals, it is usually not questioned what will happen if many

of such TCP flows form parallel TCP flows and compete against standard, single TCP
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flows. Since there is almost no limit to the number of connections a user can open

concurrently, users may easily achieve more than its fair share by simply opening

multiple of such TCP flows regardless of how fairly the TCP was designed. Thus, we

believe that parallel-level performance of TCP proposals should be considered as an

important criteria during evaluation. In this section we investigate the parallel-level

fairness of recently proposed high-speed TCP schemes when multiple flows of each

TCP proposal compose parallel high-speed TCP flows.

For this, Node 0 in our test-bed now opens five parallel TCP flows of each

high-speed TCP proposal including HS-TCP, STCP, H-TCP, BIC-TCP, A-TCP, and

FAST-TCP to Node 2 for 100 seconds. The other sender Node 1 opens one TCP-

SACK flow to Node 2 for the same period. The histogram in Figure 50 shows the

experimental results. The bar length for each high-speed TCP proposal in the figure

represents the total throughput achieved by the five parallel high-speed TCP flows.

In the figure, for comparison, we also show the experimental results with 5 parallel

TCP-SACK flows.

The experimental results in the figure clearly show that parallel TCP flows of

high-speed TCP proposals except for A-TCP-P are seriously unfair against the com-

peting TCP-SACK flow. The throughput achieved by the single TCP-SAck flow when

it competes against five parallel A-TCP-P flows is significantly higher than other

cases. Interestingly, the aggregate throughput achieved by five parallel FAST-TCP

flows is not much different from that of other parallel high-speed TCP proposals al-

though a single FAST-TCP flow showed weaker aggressiveness than that of a standard

TCP flow. The results demonstrate that parallel-level performance of TCP propos-

als can be quite different from their per-flow performance unless their parallel-level

performance is considered in its design aspect as A-TCP-P.



108

E. Summary

While parallel TCP is an effective means to effectively make use of network resources,

in particular in high bandwidth-delay settings, balancing the number of flows against

fair use of the networks is difficult, in particular in dynamically changing network

environments. In this chapter, we propose a method to decouple the number of flows

from the aggregated aggressiveness of the group of flows in a self managing fash-

ion. Based on this scheme, we implemented A-TCP-P, which adequately adjusts the

group strength k of parallel TCP flows to achieve high utilization of available band-

width while maintaining TCP-friendliness against single TCP flows. A-TCP-P uses

a competition detection mechanism to adaptively adjust aggregated aggressiveness

of parallel TCP according to network situations. As a result, we provided a parallel

TCP scheme for effective and fair utilization of network resources independently from

the number of parallel flows.



109

CHAPTER VI

CONCLUSION

In this work, we have suggested several congestion control schemes for single and

parallel TCP flows.

The collaborative congestion control scheme in Chapter II has shown the use-

fulness and benefit of collaboration among parallel TCP flows by sharing dynamic

congestion information. By comparing the experimental results of the scheme with

other schemes such as ECN-based TCP congestion control, we show that the collabo-

rative congestion control has performance that is comparable (in terms of packet loss,

delay, and jitter) with architecturally significantly more expensive schemes.

In Chapter III, we have suggested a new congestion control scheme for parallel

TCP flows, called TCP-P, which controls aggregated aggressiveness of parallel TCP

flows by regulating their total aggressiveness (or unfairness) to be comparable to that

of a single TCP flow, or any multiple thereof. TCP-P makes a group of N parallel

TCP flows appear to other flows like k separable TCP flows through appropriate

manipulations of increase and decrease behavior of the congestion windows of the

TCP flows in the group. The experimental results with the implementation of TCP-

P in Linux kernel show that the proposed scheme effectively controls the aggregated

aggressiveness of parallel TCP flows.

In Chapter IV, we focus on the fairness (or TCP-friendliness) issues of recently

proposed high-speed TCP proposals for high bandwidth-delay product networks. We

have suggested a new TCP congestion control protocol, called Adaptive TCP (A-

TCP), which adaptively controls its aggressiveness according to network situations

using a competition detection mechanism. If no competing flows are detected, A-TCP

increases its aggressiveness in order to effectively utilize the network. Otherwise, it be-
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comes a standard TCP flow for the fair sharing of the network with other flows during

the next congestion epoch. As a result, A-TCP effectively utilizes high bandwidth-

delay product networks while maintaining TCP-friendliness to standard TCP flows.

Experimental results with the implementation of A-TCP in Linux kernel and ns2

show that A-TCP indeed achieves high utilization with better TCP-friendliness than

other high-speed TCP proposals.

In Chapter V, we have proposed a congestion control scheme whose parallel-level

effectiveness and fairness are independent from the the number of parallel connec-

tions. For this we combined TCP-P’s aggregated aggressiveness control mechanism

for parallel TCP flows with A-TCP’s adaptive aggressiveness control mechanism for

single TCP flows. We have shown that the proposed parallel TCP scheme called

adaptive aggregated aggressiveness control (A-TCP-P) utilizes available bandwidth

effectively and fairly by adaptively adjusting the aggregated aggressiveness of parallel

TCP flows.

As a result, we have shown that we can realize effective and fair congestion

control schemes for both single and parallel TCP flows by adaptively adjusting their

aggressiveness according to network situations in self-managed way. Further, the

proposed TCP congestion control schemes do not require special support from network

equipment or modification of TCP receivers because all the proposed schemes work

based on the information which can be gathered by the sender-side. Thus, we believe

that the proposed schemes can be applied in a variety of network settings without

causing deployability issues.
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