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ABSTRACT

On Distributed Coding, Quantization of Channel Measurements

and Faster-than-Nyquist Signaling. (December 2004)

Angelos Dimitriou Liveris, B.S., National Technical University of Athens

Chair of Advisory Committee: Dr. Costas N. Georghiades

This dissertation considers three different aspects of modern digital communication

systems and is therefore divided in three parts.

The first part is distributed coding. This part deals with source and source-

channel code design issues for digital communication systems with many transmitters

and one receiver or with one transmitter and one receiver but with side information at

the receiver, which is not available at the transmitter. Such problems are attracting

attention lately, as they constitute a way of extending the classical point-to-point

communication theory to networks. In this first part of this dissertation, novel source

and source-channel codes are designed by converting each of the considered distributed

coding problems into an equivalent classical channel coding or classical source-channel

coding problem. The proposed schemes come very close to the theoretical limits and

thus, are able to exhibit some of the gains predicted by network information theory.

In the other two parts of this dissertation classical point-to-point digital com-

munication systems are considered. The second part is quantization of coded chan-

nel measurements at the receiver. Quantization is a way to limit the accuracy of

continuous-valued measurements so that they can be processed in the digital domain.

Depending on the desired type of processing of the quantized data, different quantizer

design criteria should be used. In this second part of this dissertation, the quantized

received values from the channel are processed by the receiver, which tries to recover
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the transmitted information. An exhaustive comparison of several quantization cri-

teria for this case are studied providing illuminating insight for this quantizer design

problem.

The third part of this dissertation is faster-than-Nyquist signaling. The Nyquist

rate in classical point-to-point bandwidth-limited digital communication systems is

considered as the maximum transmission rate or signaling rate and is equal to twice

the bandwidth of the channel. In this last part of the dissertation, we question this

Nyquist rate limitation by transmitting at higher signaling rates through the same

bandwidth. By mitigating the incurred interference due to the faster-than-Nyquist

rates, gains over Nyquist rate systems are obtained.



v

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisor, Professor

Costas Georghiades, because without his continuous support, guidance and patience

this dissertation would never have been completed. He has helped me feel like at home

in College Station and he has always been very encouraging and inspiring throughout

my studies.

I am also very thankful to Professor Zixiang Xiong for introducing me to the

exciting field of distributed coding. It has been a pleasure to work with him and

discuss several aspects of research and life.

I would like to thank Professor Krishna Narayanan for introducing me to the

field of channel coding through his graduate courses and for always being available

to discuss technical and nontechnical issues.

Furthermore, I would like to express my gratitude to my other two Ph.D. com-

mittee members, Professor Henry Taylor and Professor Steve Liu, for their patience

and help in several stages of my doctoral studies. I am also grateful to the other

professors of the Wireless Communications group, Professor Scott Miller, Professor

Erchin Serpedin, and Professor Deepa Kundur, for their help throughout my studies

at Texas A&M. I would like to acknowledge the invaluable help of Sonny Matous,

Tammy Carda, and Linda Currin in dealing with all the administrative procedures.

I would also like to thank Texas Instruments Inc. for funding and supporting

most of the work on faster-than-Nyquist signaling and more specifically, Dr. Murtaza

Ali, Dr. Alan Gatherer, and Dr. Gene Frantz.

Of course, I am also very grateful to all of my current and former colleagues,

for inspiring technical and nontechnical discussions that made studying and living in

College Station much more pleasant. I would particularly like to thank Hari Sankar,



vi

Arzu Karaer, Weerakhan Tantiphaiboontana, Yongzhe Xie, Wenyan He, Nitin Nan-
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CHAPTER I

INTRODUCTION

In this chapter we briefly go over the material covered in this dissertation. The

dissertation is divided in three parts, as its title also suggests. The first part is

distributed coding, the second is quantization of coded channel measurements and

the third is faster-than-Nyquist signaling. In each of the sections that follow, more

details for each part are provided and the way the material of each part has been

divided into chapters is explained. This introductory chapter has been kept short

and more introductory information can be found in the introduction of each of the

following chapters.

A. Distributed Coding

Distributed coding in this dissertation refers to the encoding of the output of two

or more physically separated sources that do not communicate with each other but

send their encoded outputs to a single central point. In general, coding refers to

joint source-channel coding as shown in Fig. 1, but in the special case when the

channels through which the encoders communicate with the joint decoder are perfect

(no distortion), we have a pure source coding (compression) problem. We will refer

to this ideal source coding problem as distributed source coding.

There is increased interest nowadays in distributed coding, due to its possible

applications in network communications, such as distributed data bases and sensor

networks, and a recently introduced practical framework for distributed source coding

[7]. What is remarkable about distributed coding, is that there is a great range of

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Distributed coding with two correlated sources.

cases that can be considered. Depending on the number of sources, their type, the

correlation statistics between their outputs, whether communication is done over

perfect or noisy channels with the joint decoder, and the cost function measuring

the reliability of the estimates at the output of the decoder, a unique information

theoretical problem is formed for a specific combination of all these parameters. Some

of these theoretical problems have not been solved yet. But even among the problems

for which the theoretical limit has been given, there is a significant number for which

no actual coding scheme approaching the limit has been suggested, as most of the

information theoretical proofs are nonconstructive.

Suggesting such constructive schemes for some distributed coding cases is the

main focus of this part of the dissertation. We will consider more extensively the case

when the output of one of the sources is perfectly known at the decoder. This output

can be considered as side information (SI) at the decoder, as shown in Fig. 2 and

this problem will be refered to as coding with side information (SI) at the decoder.

Source coding with SI at the decoder will again refer to the case of a perfect channel.

Obtaining a good understanding of the ideal source coding with SI at the decoder

problem helps gain more insight for the more general coding with SI at the decoder

problem.

In Chapter II we assume a binary symmetric model for the sources, the side
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Fig. 2. Coding of a single source with side information at the decoder.

information and the correlation. This is probably the most popular statistical model

considered so far for such coding problems. Several novel schemes are then proposed

in Chapter II that come close to the corresponding theoretical limits, closer than com-

peting schemes in most of the cases. The main reason for this improved performance

of the suggested coding schemes is that they exploit the link that exists between most

of these distributed coding problems and classical coding problems that have been

extensively studied in the digital communications field.

B. Quantization of Coded Channel Measurements

To extend the distributed coding research, especially to nonbinary sources where the

correlation is modeled by a discrete memoryless channel, and get more insight into

coded communication systems, another part of this dissertation deals with an aspect

of quantization in coded communication systems.

Quantization is the process of limiting the accuracy with which the values of a

signal are described to a finite (usually small) number of bits. Quantization is used

when converting an analog signal to digital, but the criteria for the quantizer design

are not always the same in communication systems. They depend on what kind of

processing the quantized values will experience and how the signal reconstruction,

if any, will be performed. Determining the appropriate design criteria is the most
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Fig. 3. Quantization of channel measurements with an L-level quantizer at the input
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important part of the quantizer design and this part of the dissertation focuses on

such a design for quantization of coded channel measurements.

As channel measurements in a communication system we define the analog (in-

finite precision) sampled received values. We assume that the system is coded, i.e., a

channel code is being used, and that the channel measurements need to be quantized

before being passed to the decoder, as shown in Fig. 3. Several quantizer design cri-

teria are examined for this problem as explained in Chapter III of this dissertation,

focusing on the case of the binary input additive white Gaussian noise (BIAWGN)

channel, shown in Fig. 3.

The main criterion in this quantizer design problem is the error rate, i.e., the

probability of making an error when trying to detect the transmitted bit sequence at

the receiver. The problem with determining the bit error rate, however, is that exact

analytical expressions for the bit error rate do not exist; the best one can hope for are

bounds for some quite simple channel codes. Thus, one needs to resort to simulations

that require days or weeks to produce results, especially for more powerful codes

that require high complexity/latency decoding. Our work in this area addresses the

problem of finding some quantizer design criteria that can be applied to advanced

channel codes and do not require running lengthy simulations. At the same time, our

approach does not sacrifice much of the optimality in the quantizer design.
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Significant work has already been done in this field. The three most common

general design criteria used have been:

1. the minimization of the mean-squared error (MSE) between the input and the

output of the quantizer

2. the maximization of the cutoff rate of the equivalent channel between the input

to the BPSK modulator and the output of the L-level quantizer

3. the maximization of the mutual information of the equivalent channel between

the input to the BPSK modulator and the output of the L-level quantizer

Chapter III includes a more detailed presentation of the above three criteria

and an extensive comparison between them. Such an extensive comparison has been

missing from the literature. The comparison in Chapter III covers scalar quantizer

designs both uniform and nonuniform, showing that the last two criteria (cutoff rate

and mutual information) are almost equivalent and superior to the first one (MSE),

as expected. Another important conclusion is that there is no significant difference

between uniform and nonuniform scalar quantization. The last important conclusion,

drawn from the extensive comparison in Chapter III for the first time ever, is the

higher robustness of the second criterion (cutoff rate) over a wide range of SNRs.

C. Faster-than-Nyquist Signaling

The previous two parts of the dissertation use the discrete-time model to account for

the encountered distortion due to signal transmission through the channel. When

employing the discrete-time model, the equivalent binary-input discrete-time channel

models the effect of the transmit filter at the transmitter, the continuous-time additive

white Gaussian noise (AWGN) channel, the matched-filter at the receiver and the



6

g(t) g*(-t)
Binary input

Transmit filter

+

n(t)

r(t) y(t)

nτ

Equalizer

Matched-filter

τ

t

Fig. 4. Overall system for binary faster-than-Nyquist signaling.

sampler at the output of the matched-filter of Fig. 4.

In this third part of this dissertation we will use the continuous-time model of

Fig. 4 and will assume bandlimited transmission. This assumption is very common

in communication systems, as bandwidth along with power are the most valuable

resources and therefore they should be used efficiently.

The limited bandwidth transmission constraint requires the transmit filter band-

width to be strictly bandlimited to W Hz, i.e., the frequency response of the transmit

filter should be zero for all frequencies |f | ≥ W (baseband transmission). In such a

case it is assumed that the maximum signaling rate 1
τ

is always less than or equal to

twice the transmit filter bandwidth, i.e., 1
τ
≤ 2W . Equality in the last inequality is

achieved for some ideal signaling pulses, such as the ideal sinc pulse which has ideal

rectangular spectrum.

The maximum signaling rate 2W is called the Nyquist rate. When signaling at

the Nyquist rate with ideal sinc pulses, the samples at the receiver are also taken

at the same rate and there is no interference between neighboring pulses, i.e., pulses

corresponding to neighboring binary inputs at the input of the transmit filter. This

type of interference is called intersymbol interference (ISI).

For a more practical transmit filter, excess bandwidth needs to be used due to

the more gradual roll-off of practical filters. In this case to avoid interference between
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neighboring pulses, the signaling rate 1
τ

has to be strictly less than the Nyquist rate,

i.e., 1
τ

< 2W .

In this last part of this dissertation we examine whether it is possible to reliably

signal faster than the Nyquist rate. Doing so we could achieve higher rates at the

expense of introducing ISI between the samples at the matched-filter output. If we

could mitigate this ISI, this faster-than-Nyquist signaling will result in throughput

gains that could also partly or completely be translated into coding gains. This ISI

cancellation is performed by the equalizer block following the sampler in Fig. 4.

In Chapter IV we present several ways of performing equalization and joint equal-

ization and channel decoding for faster-than-Nyquist signaling and thus for the first

time ever, practical ways to exploit the faster signaling rate are proposed. All these

methods exhibit the potential of faster-than-Nyquist signaling to yield gains over

Nyquist rate systems and hence, its applicability as an alternative signaling scheme

for increased efficiency.
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CHAPTER II

DISTRIBUTED CODING

A. Introduction

Throughout this chapter we will consider the binary symmetric scenario of distributed

coding which corresponds to Figs. 1 and 2 with the following simplifying assumptions:

• X = [X1, X2, . . . , Xn], Y = [Y1, Y2, . . . , Yn], where the Xi’s are independent and

identically distributed (i.i.d.) uniform binary random variables and so are the

Yi’s, i.e., Pr[Xi = 0] =Pr[Xi = 1] = 1
2
, and similarly, Pr[Yi = 0] =Pr[Yi = 1] =

1
2
.

• Xi and Yi are correlated and their correlation is given in terms of a joint prob-

ability mass function (pmf) p(xi, yi) = p(x, y) =





p x 6= y

1− p x = y
, which

will often be given in terms of the binary symmetric channel of Fig. 5.

This model has been one of the most popular in the recently published work on dis-

tributed coding. The reason is that in some cases this model appears to be practical,

while in other cases, due to its simplicity, it provides significant insight into more

complex distributed coding problems.

The two coding with side information (SI) at the decoder problems that this

chapter focuses on are:

1. Lossless Coding of Binary Sources : Binary sources are sources producing binary

random variables Xi whose realizations take values from the set X = {0, 1}.
Lossless coding means that the probability that the estimate at the output of

the decoder X̂i is not equal to the original output Xi of the source can be made

arbitrarily small (Pr[X̂i 6= Xi] < ε).
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Fig. 5. Binary symmetric channel with crossover probability p modelling the correla-

tion between the source output Xi and the second source output (or the side

information) Yi.

2. Lossy Coding of Binary Sources : Some limited loss d is allowed in the recon-

struction X̂i of Xi and this loss is measured in terms of the Hamming distance,

i.e., d =
∑

x∈X
∑

y∈Y
∑

x̂∈X̂ p(x, y, x̂)|x̂− x|, where X = {0, 1}, Y = {0, 1} and

X̂ = {0, 1} contain all the possible values that the realizations of the random

variables Xi, Yi and X̂i, respectively, can take, and p(x, y, x̂) is the joint pmf of

the three binary random variables Xi, Yi and X̂i.

We will also study the lossless distributed source coding problem, or Slepian-

Wolf coding problem, of two and more than two binary sources. In the Slepian-Wolf

coding problem of two or more than two sources the probability of reconstructing all

sources’ outcomes at the decoder can be made arbitrarily small.

The way lossless or lossy coding is combined with perfect or noisy channel(s)

to yield a distributed compression problem or a distributed source-channel coding

problem is better depicted in Table I. All the coding schemes corresponding to the

entries of the Table I and presented in this chapter are novel in the sense that they were

first proposed through this work and are different from existing competing approaches,
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Table I. The Different Cases of Binary Symmetric Distributed Coding Considered in

This Chapter

Perfect Channel(s) Noisy Channel(s)
Lossless Asymmetric Slepian-Wolf Asymmetric Slepian-Wolf
Coding coding coding over noisy channel
with SI (Section B, Subsection 1) (Section C)
Lossless Symmetric Slepian-Wolf

Coding of coding Not considered
Two Sources (Section B, Subsection 2)

Lossless Coding Slepian-Wolf coding
of More than for multiple sources Not considered
Two Sources (Section B, Subsection 3)
Lossy Coding Wyner-Ziv coding Not considered

with SI (Section D)

exhibiting most of the time better performance. Subsections 1, 2 and 3 make up

Section B of this chapter and then Section C and D follow. The discussion and

conclusions sum up the chapter.

B. Binary Slepian-Wolf Coding

Assuming a perfect channel initially between encoder and decoder in Fig. 2, as shown

in Fig. 6, the lossless source coding with SI at the decoder problem is called asym-

metric Slepian-Wolf coding problem. The reason is that this problem can be viewed

as a distributed source coding problem with two discrete sources by allowing time-

sharing between the two sources, i.e., as the coding problem of Fig. 1 with two prefect

channels. The interesting thing about this distributed source coding problem is that,

under some conditions, the same overall compression can be achieved as when the

two sources communicate with each other. This theoretical result is given by the

Slepian-Wolf theorem [8] and this is the reason for the title of this section.

So in the first subsection we handle the asymmetric Slepian-Wolf coding problem.
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Fig. 6. System for source coding with side information at the decoder.

It mainly reduces to finding the syndromes of advanced channel codes. In Subsection 2

an alternative approach to time-sharing of asymmetric Slepian-Wolf codes for lossless

distributed compression of two sources is investigated, called symmetric Slepian-Wolf

coding. Subsection 3 discusses the extension of both asymmetric and symmetric

Slepian-Wolf coding to more than two sources.

All the Slepian-Wolf coding approaches in this section are novel and exhibit

superior performance in most of the cases to their existing competing approaches.

1. Asymmetric Coding

For the lossless source coding with SI at the decoder (asymmetric Slepian-Wolf coding)

case the Slepian-Wolf limit can be written as

R ≥ H(Xi|Yi) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(y)

p(x, y)
, (2.1)

where R is the allowable rate at which Xi can be compressed losslessly (in bits per

source output symbol if the logarithm is base 2), H(Xi|Yi) is the conditional entropy

of Xi given Yi defined as in the last equality of (2.1) [9], X and Y contain all the

possible values that the realizations of the random variables Xi and Yi, respectively,

can take, and p(x, y) is the joint pmf of the two correlated random variables Xi and

Yi. This limit is the same as in the case when the SI Y in Fig. 6 is available not only
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at the decoder but at the encoder as well, while when there is no SI neither at the

encoder nor at the decoder, the limit becomes [9]

R ≥ H(Xi) =
∑
x∈X

p(x) log
1

p(x)
≥ H(Xi|Yi). (2.2)

Thus, in general taking into account the availability of SI at the decoder when design-

ing the source encoder and source decoder, can theoretically improve the efficiency of

our system to such an extent that it is like having the side information at the encoder

as well!

This interesting result of the Slepian-Wolf theorem has been known for about

30 years but it was only recently that practical approaches were proposed based on

channel codes [7], i.e., a source coding problem could be solved by converting it to an

equivalent channel coding problem.

Channel coding is actually employed in digital communication systems to add

error protection to the transmitted signal, allowing the receiver to correct some of

the errors that occur due to the distortion experienced by the signal as it propagates

through the channel. Advanced channel codes are powerful codes that can achieve

better protection, such as turbo codes [10] and low-density parity-check (LDPC) codes

[11]. These advanced codes, invented [10] or reinvented [12, 13] in the last decade,

have helped communication theory researchers come very close to the fundamental

limits of communication.

To come close to the Slepian-Wolf limit, most of the researchers in this area have

been trying to introduce new coding schemes based on ideas borrowed from advanced

channel codes [1, 2, 3, 14, 15]. However, apart from the case of simple codes [7],

there is no direct correspondence of the already proposed schemes with channel codes

and so the progress already made in conventional channel coding in the attempt to

approach the theoretical limits could not be exploited. Establishing this link between
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lossless distributed source coding and conventional channel coding is the main focus

of this subsection.

Before proceeding further with this approach, we need to note that the general

idea of how to achieve the Slepian-Wolf limit (2.1) is almost as old as the Slepian-Wolf

theorem. Wyner [16] first suggested that the use of capacity approaching linear block

codes can lead to source codes approaching the Slepian-Wolf limit, hence this concept

is known as Wyner’s scheme [17] (also referred to as syndrome approach [7]). The

reasons that for so long no more practical schemes had been suggested, are first that

nobody really clarified the idea before the elegant example in [7] was introduced and

second that it was only in recent years that capacity approaching channel codes were

discovered and understood.

In order to apply conventional channel codes to this source coding with SI at the

decoder problem, we first need to make the overall system look like a communication

system. This is done by modelling the correlation between the uncompressed source

output and the side information in Fig. 6 with an equivalent channel.

In the binary symmetric setup Xi and Yi are equiprobable binary random vari-

ables, i.e., Pr[Xi = 0] =Pr[Xi = 1] =Pr[Yi = 0] =Pr[Yi = 1] = 1/2, and have

correlation of the form Pr[Xi 6= Yi] = p. In this case the equivalent channel modelling

the correlation is a binary symmetric channel (BSC) with crossover probability p,

shown in Fig. 5.

If n is the codeword length and k is the information word length, a rate k/n

linear binary (n, k) block code can be defined by its (n− k)× n parity check matrix

H , which is a matrix with binary elements. With all operations performed in the

binary field, e.g., binary addition corresponds to the “XOR” operation, we define the

length (n− k) binary word s, the syndrome, of an arbitrary binary length n word w
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as

s = wHT . (2.3)

If s = 0 (all zeros word), then w is a codeword of this code, otherwise it is not. Since

the (n− k) columns of H are linearly independent, there are 2k different codewords.

Each of the 2n−k − 1 nonzero values of the syndrome s indexes a set of 2k binary

words and all these 2n−k sets (including the zero syndrome one that contains all the

codewords) are disjoint and thus, form a partition of the space of the binary words of

length n. Another important property of this partition is the fact that if each set is

viewed as a binary (n, k) code, it preserves the Hamming distance properties of the

linear code defined by H .

To employ such a code in the binary source coding with SI at the decoder setup,

the source encoder can just determine the syndrome Z of the length n binary word

X (source output) using the parity check matrix H . Transmitting the length (n−k)

syndrome Z instead of the length n output X, n : (n − k) compression is achieved.

How close this (n−k)/n to the Slepian-Wolf limit H(Xi|Yi) = H(p) = −p log p− (1−
p) log p is, has to do with how close the linear code can approach the binary symmetric

channel (BSC) capacity, which is 1 − H(p), i.e., the rate k/n of the linear code has

to be such that the decoder trying to estimate X as the most probable element of

the set indexed by Z = XHT given Y does not fail with probability almost equal

to one.

This approach, known as Wyner’s scheme, was given as a theoretical solution to

the binary source coding with SI at the decoder problem [16] but only recently [7]

was it used to design some practical coding schemes. However, the designs in [7] were

limited to simple schemes. To exploit the recent advances in channel coding, Wyner’s

scheme needed to be implemented with more complicated coding schemes. This is
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the focus of this subsection, starting first with low-density parity-check (LDPC) codes

and then considering convolutional and concatenated (turbo) codes. Both LDPC and

turbo codes are state-of-the-art channel codes in coding theory nowadays.

The encoding and decoding algorithms for LDPC and concatenated codes are

given next, after which, simulation results based on both schemes are presented.

a. LDPC Codes†

A low-density parity-check (LDPC) code is determined by its parity-check matrix H

or, equivalently by its bipartite graph. An ensemble of LDPC codes is described by

the degree distribution polynomials λ(x) and ρ(x) [18, 19, 20]. The bipartite graph is

used in the message-passing decoding algorithm [18, 19, 20, 21]. An example of such

an LDPC code graph is given in Fig. 7.

Encoding: Given H , to encode, i.e., compress, an arbitrary binary input se-

quence, we multiply X with H [15] and find the corresponding syndrome Z (length

(n− k)). Equivalently in the bipartite graph this can be viewed as binary addition of

all the variable node values that are connected to the same check node. An example

of this encoding procedure is given in Fig. 7.

Decoding: The decoder must estimate the n-length sequence X from its (n−k)-

long syndrome Z and the corresponding n-length sequence Y . We use the following

notation, also shown in Fig. 8:

− xi, yi ∈ {0, 1}, i = 1, 2, . . . , n, are the current values of Xi and Yi, respectively,

corresponding to the ith variable node vi,

† c©2002 IEEE. Reprinted, with permission, from “Compression of binary sources
with side information using low-density parity-check codes”, Angelos D. Liveris, Zix-
iang Xiong, and Costas N. Georghiades, in Proc. 2002 IEEE Global Telecommunica-
tions Conference (GLOBECOM ’02), Nov. 2002, pp. 1300-1304.
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uncompressed binary
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compressed output
(syndrome)

0

1

Fig. 7. Encoding with an LDPC code using its bipartite graph: at each right (check)

node all the connected left (variable) nodes are added modulo 2. Here the

codeword length is only 6, λ(x) = 4
7
x + 3

7
x2, ρ(x) = 3

7
x2 + 4

7
x3 and the rate of

the original (conventional) LDPC code is 1/3, yielding a compression ratio of

3 : 2 = 1.5.

− li ∈ {2, 3, . . .}, i = 1, 2, . . . , n, is the degree of vi,

− qout
i,m (qin

i,m) ∈ R, i = 1, 2, . . . , n, m = 1, 2, . . . , li, is the log-likelihood ratio (LLR)

sent along the mth edge from (to) vi,

− sj ∈ {0, 1}, j = 1, 2, . . . , n−k, is the value of Zj corresponding to the jth check

node cj, i.e., the jth syndrome component,

− rj ∈ {2, 3, . . .}, j = 1, 2, . . . , n− k, is the degree of cj,

− tout
j,m (tinj,m) ∈ R, j = 1, 2, . . . , n− k, m = 1, 2, . . . , rj, is the LLR sent along the
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mth edge from (to) cj.

Setting

qi,0 = log
Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1− 2yi) log

1− p

p
, (2.4)

i = 1, 2, . . . , n, p = Pr[xi 6= yi] < 0.5, the LLR sent from the ith variable node vi along

the mth edge is

qout
i,m = qi,0 +

li∑

j=1, j 6=m

qin
i,j, (2.5)

m = 1, 2, . . . , li, i = 1, 2, . . . , n, where initially qin
i,j = 0.

The values qout
i,m are assigned to the corresponding tinj,π(i,m,j) according to the con-

nections in the bipartite graph and are then used to do the processing at the check

nodes. From the “tanh rule” and the syndrome information, the LLR sent from the

jth check node cj along the mth edge is

tanh

(
tout
j,m

2

)
= (1− 2sj)

rj∏

i=1, i 6=m

tanh

(
tini,m
2

)
, (2.6)
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m = 1, 2, . . . , rj, j = 1, 2, . . . , n − k. The inclusion of the (1 − 2sj) factor is actually

the only modification to the “conventional” sum-product decoding algorithm in order

to account for the syndrome information.

Now qin
i,m = tout

j,π(i,m,j) for all edges in the bipartite graph, which can be used to

start a new iteration and estimate xi from

x̂i =





0, if qi,0 +
∑li

m=1 qin
i,m ≥ 0

1, if qi,0 +
∑li

m=1 qin
i,m < 0

. (2.7)

b. Convolutional Codes

A general binary rate k
n

convolutional code can be given in terms of its k×n generator

matrix G(D)

G(D) =




g11(D) g12(D) · · · g1n(D)

g21(D) g22(D) · · · g2n(D)

· · ·
· · ·
· · ·

gk1(D) gk2(D) · · · gkn(D)




(2.8)

where each element of the table gij(D) is a polynomial in D. E.g., for the rate 1
2

G(D) = [1 + D + D2, 1 + D2] convolutional code g11(D) = 1 + D + D2 and g12(D) =

1 + D2.

This generator matrix can describe all possible convolutional codes, systematic

and nonsystematic, punctured and nonpunctured. To account for puncturing the

generator matrix has to include more than one trellis steps and so the generator

matrix might become quite large. To avoid confusion in this part on convolutional

codes and the next one one on concatenated convolutional codes, we denote with

capital letters N and K the convolutional codeword length and the corresponding
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information sequence length, respectively, while small n < N and k < K are used

to denote the number of convolutional coded bits and the corresponding number of

information bits, respectively, in one trellis step or a few more if the convolutional

code is punctured. In both cases the convolutional code rate is given as k
n

= K
N

.

In channel coding, channel encoding is done by taking the information sequence

a = [a0, a1, . . . , aK−1] and passing it through the convolutional encoder to produce

the coded bit sequence. Assuming that the length of the input bit sequence K is a

multiple of k, i.e., K = k m, where m is a positive integer, the resulting N = nm

coded bits from the rate k
n

convolutional code can be determined from

[x0(D), x1(D), . . . , xn−1(D)] = [a0(D), a1(D), . . . , ak−1(D)] G(D) , (2.9)

where xi(D) = xi+xi+n D+xi+2n D2+. . .+xi+n(m−1) Dm−1 with x = [x0, x1, . . . , xN−1]

being the coded bit sequence and similarly, ai(D) =
∑m−1

j=0 ai+kj Dj.

Without loss of generality, we can assume that the first k columns of the generator

matrix G(D) are linearly independent. If they are not, it is possible to rearrange the

columns in G(D) so that the first k are linearly independent. We will denote this

invertible k×k submatrix of G(D) as G1(D) and the remaining k×(n−k) submatrix

of G(D) as G2(D), i.e.,

G(D) = [G1(D) G2(D)] . (2.10)

Then one possible choice for the (n − k) × n parity-check matrix H(D) of the

rate k
n

convolutional code G(D) is

H(D) =
[
GT

2 (D)
[
GT

1 (D)
]−1

In−k

]
, (2.11)

where In−k is the (n − k) × (n − k) identity matrix and the superscript T denotes

matrix transpose. It is easy to confirm that H(D) GT (D) = 0(n−k),k, where 0(n−k),k
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is the (n− k)× k all-zeros matrix.

The inversion of G1(D) as well as the possible column rearrangement in G(D)

to form an invertible G1(D) should not be difficult to perform when G(D) is a small

matrix. We will see next how the difficulty in inverting a large matrix G(D), which

might come up in a randomly punctured convolutional code, can be overcome by

using the trellis of G(D). We assume that when the convolutional code is systematic

G1(D) = Ik.

For example, for the rate 1
2

convolutional code [1 + D + D2, 1 + D2], we would

get from (2.11)

H(D) =

[
1 + D2

1 + D + D2
, 1

]
(2.12)

Encoding: Using the above matrix formulation and following Wyner’s scheme

the syndromes of a binary length N = nm sequence x = [x0, x1, . . . , xN−1] with

respect to the rate k
n

convolutional code G(D) can be determined as follows. The first

step is to form n different length m subsequences xi = [xi, xi+n, . . . , xi+n(m−1)], i =

0, 1, . . . , n− 1. Each of these subsequences can be written in polynomial form as

xi(D) = xi + xi+n D + xi+2n D2 + . . . + xi+n(m−1) Dm−1 . (2.13)

Then the asymmetric Slepian-Wolf encoder, which is just a syndrome former

according to Wyner’s scheme, is performed as [22]

[s0(D), s1(D), . . . , sn−k−1(D)] = [x0(D), x1(D), . . . , xn−1(D)] HT (D) , (2.14)

where

si(D) = si + si+n−k D + si+2(n−k) D2 + . . . + si+(n−k)(m−1) Dm−1 (2.15)

with i = 0, 1, . . . , n − k − 1, and s = [s0, s1, . . . , sN−K−1], being the length (N −K)
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Fig. 9. Forming the syndromes of the rate k
n

convolutional code

G(D) = [G1(D) G2(D)] using equation (2.16).

sequence of the resulting syndrome bits.

Based on all the above, we can rewrite equation (2.14) as

[s0(D), s1(D), . . . , sn−k−1(D)] = [x0(D), x1(D), . . . , xk−1(D)] G−1
1 (D) G2(D)

+ [xk(D), xk+1(D), . . . , xn−1(D)] . (2.16)

The importance of the last equation in forming the syndromes is the following: for

every n bits from the sequence x the first k can be used to determine the first term of

the right side of the last equation using the rate n−k
k

nonsystematic convolutional code

G−1
1 (D) G2(D).1 The (n − k) resulting bits from this convolutional code encoding

can then be added to the remaining (n − k) bits of these n bits from the sequence

x to form the corresponding (n − k) syndrome bits. The way this syndrome former

works is depicted in Fig. 9.

The importance of this method of forming the syndromes is that the correspond-

1The rate of this convolutional code does not have to be less than one.
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ing information sequence a is first formed through G−1
1 (D), as shown in Fig. 9, i.e.,

[x0(D), x1(D), . . . , xk−1(D)] = [a0(D), a1(D), . . . , ak−1(D)] G1(D) . (2.17)

This property will be very helpful when two convolutional codes are concatenated, as

discussed in the next part on concatenated codes, where the information sequences

are interleaved. Furthermore, this one-to-one correspondence between the k m long

information sequence a and k m bits of the sequence x means that since the infor-

mation sequence a determines the path through the convolutional code trellis, the

corresponding k m bits of the sequence x can equivalently play this role.

More specifically, the first k bits from the sequence x, i.e., the k bits corre-

sponding to the coefficients of D0 in the polynomials x0(D), x1(D), . . . , xk−1(D), can

be mapped to a unique combination of the first k bits of the information sequence

a. Similarly, the k bits corresponding to the coefficients of D1 in the polynomials

x0(D), x1(D), . . . , xk−1(D), can be mapped to a unique combination of the second

set of k bits in the information sequence a, and so on. This means that the trellis

transitions in the linear convolutional code trellis can be selected from the properly

chosen bits of the sequence x and thus, these bits can select the path through the

linear convolutional code trellis. E.g., in Fig. 10 it is shown how the even positioned

bits of x, i.e., x0, x2, x4, . . . , xN−2, can select the path through the trellis of the linear

convolutional code [1 + D + D2, 1 + D2]. In other words, a subsequence of x can

uniquely identify the path through the trellis that should be followed and thus, also

the information sequence a corresponding to this path.

Then, based on the selected path or equivalently, this information sequence a,

the remaining part of the codeword of the linear convolutional code [G1(D) G2(D)]
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Fig. 10. The bits x0, x2, x4, x6 are used to determine the bold path through the en-

coding trellis of the linear convolutional code [1 + D + D2, 1 + D2], as they

are equivalent to a0, a1, a2, a3. The numbers over the transitions indicate the

single input (information) bit and the two output (coded) bits when the trellis

is used for channel encoding, i.e., they are in the form ai/x2ix
′
2i+1.

corresponding to a is

[
x′k(D), x′k+1(D), . . . , x′n−1(D)

]
= [a0(D), a1(D), . . . , ak−1(D)] G2(D) . (2.18)

The combination of the bits from x0(D), x1(D), . . . , xk−1(D) and x′k(D), x′k+1(D), . . .,

x′n−1(D) would yield a valid codeword of the linear convolutional code [G1(D) G2(D)],

as

[
x0(D), x1(D), . . . , xk−1(D), x′k(D), x′k+1(D), . . . , x′n−1(D)

]
=

= [a0(D), a1(D), . . . , ak−1(D)] · [G1(D) G2(D)] . (2.19)

In Fig. 10 the bits in x′k(D), x′k+1(D), . . . , x′n−1(D) correspond to the second coded

bit, i.e., the rightmost bit over each trellis transition.

The syndromes of the sequence x can be determined from the difference of the
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Fig. 11. The bits x0, x2, x4, x6 are used to determine the bold path through the en-

coding trellis of the linear convolutional code [1 + D + D2, 1 + D2], i.e.,

a0, a1, a2, a6, exactly as in Fig. 10. The numbers over the transitions indi-

cate the single input (information) bit and the two output (coded) bits when

the trellis is used for channel encoding, i.e., they are in the form ai/x2ix
′
2i+1.

Based on these labels, the bits x′1, x
′
3, x

′
5, x

′
7 are determined by going through

the selected path and then added to the rest of the bits of x, i.e., x1, x3, x5, x7,

to yield the corresponding syndrome bits s0, s1, s2, s3.

bits in x′k(D), x′k+1(D), . . . , x′n−1(D) from the corresponding ones in x, i.e., si(D) =

x′k+i(D)+xk+i(D), for i = 0, 1, . . . , (n−k−1). Fig. 11 shows how the path from Fig. 10

can yield the bits x′k(D), x′k+1(D), . . . , x′n−1(D) and how these bits can be combined

with the respective bits in xk(D), xk+1(D), . . . , xn−1(D) to yield the syndrome bits

s0(D), s1(D), . . . , sn−k−1(D).

The advantage of using the original channel encoding trellis defined by G(D)

instead of the syndrome trellis defined by H(D) is that puncturing can easier be
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treated when looking at the G(D) trellis. Fig. 12 shows how when the second coded

bit is punctured every second trellis step in the linear convolutional code [1 + D +

D2, 1 + D2], the path can be determined. From this path, the nonpunctured coded

bits that were not used to determine the path are used to generate the corresponding

syndrome bits. This approach can easily be generalized to any pattern of puncturing,

random or periodic, as long as the nonpunctured bits can determine a unique path

through the convolutional code trellis.

We will denote the above convolutional syndrome former with a block with input

the length N bit sequence x and outputs the length (N−K) syndrome bit sequence s

and the corresponding length K information bit sequence a, as shown in Fig. 13. The

notation of Fig. 13 makes clear the difference with the nonsyndrome approaches of

[1, 2, 3, 14]. The syndrome generation with the method presented here and any of the

methods in [1, 2, 3, 14] can be considered equivalent. However, the main difference

lies in the second output, the corresponding information sequence a, which should be

the only thing interleaved to preserve the turbo structure in the next section, unlike

the approaches in [1, 2, 3, 14], where the input sequence x is interleaved.

Decoding: There are two equivalent ways to perform the decoding, assuming

that the encoding was done as explained above. In both cases the side information

sequence y = [y0, y1, . . . , yN−1] with length N = nm is first used to form n different

length m subsequences yi = [yi, yi+n, . . . , yi+n(m−1)], i = 0, 1, . . . , n− 1. Each of these

subsequences can be written in polynomial form as

yi(D) = yi + yi+n D + yi+2n D2 + . . . + yi+n(m−1) Dm−1 (2.20)

The decoding for the codeword of x of the coset convolutional code indexed by

the syndrome sequence s, given that the side information y is correlated with x, can

be performed using the trellis of the linear binary convolutional code G(D). This can
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Fig. 12. The syndrome bits of the same bit sequence x0, x1, x2, x3, . . . , x6 as the one

used in Fig. 11 are determined with respect to the punctured to rate 2
3

linear

convolutional code [1 + D + D2, 1 + D2]. The bits x0, x1, x3, x4, x6 are used

to determine the bold path through the encoding trellis of the punctured

convolutional code, i.e., a0, a1, a2, a3, a4. The numbers over the nonpunctured

transitions indicate the single input (information) bit and the two output

(coded) bits when the trellis is used for channel encoding, i.e., they are in the

form a2i+1/x3i+1x
′
3i+2. The numbers over the punctured transitions indicate

the single input (information) bit and the single output (coded) bit when the

trellis is used for channel encoding, i.e., they are in the form a2i/x3i. Based

on these labels, the bits x′2, x
′
5 are determined by going through the selected

path and then added to the rest of the bits of x, i.e., x2, x5, to yield the

corresponding syndrome bits s0, s1.
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x

length  N = m n

convolutional code
syndrome former

(code rate =  k / n )

s

length  (N-K ) = m (n-k )

a

length  K = m k

Fig. 13. The convolutional code syndrome former as a block with one input and two

outputs: the input is the length N sequence x and the outputs are the length

(N −K) syndrome sequence s and the length K information sequence a.

be done in one of the following two ways.

The first way is two modify the trellis of the linear convolutional code in the

trellis steps where at least one of the (n − k) si(D)’s are nonzero. We consider the

jth trellis step to correspond to the exponent j in the polynomials of D. There are

(n − k) polynomials si(D) in D so if at least one of them includes a Dj term then

the jth trellis step has to account for that. If si(D) is the only polynomial with a

Dj term then the (k + i)th bit over all the transitions in the jth trellis step has to be

flipped. If more than one of the polynomials si(D) have a Dj term, then more than

one bits have to flipped at the corresponding positions of the jth trellis step.

As an example consider the syndrome sequence formed in Fig. 11. Fig. 14 shows

how this syndrome sequence can be used to modify the linear convolutional code

trellis. Wherever a syndrome bit is not zero, the corresponding parity bit in all the

labels of the respective trellis step has to be changed.

In the above way the coset convolutional code trellis is actually considered instead

of the linear convolutional code trellis and any decoding algorithm for convolutional

codes, e.g., the Viterbi or the BCJR algorithm, can be used on this modified trellis.

In this approach the syndrome sequence was used to convert the trellis of the linear

convolutional code into the trellis of the coset convolutional code by flipping the

marked bits. The decoder outputs the most likely sequence x̂ of this modified trellis.
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Fig. 14. The convolutional code syndromes are used to modify the convolutional code

trellis used at the decoder.

An equivalent way of performing the above decoding without modifying the trel-

lis structure of the linear convolutional code is to decode for the most likely linear

convolutional codeword assuming that y′ = [y′0, y
′
1, . . . , y

′
N−1] is correlated more with

one of these codewords. y′ is determined by combining the side information sequence

y and the syndrome sequence s in the following manner.

y′i(D) =





yi(D) if 0 ≤ i < k

yi(D) + si−k(D) if k ≤ i < n

(2.21)

where

y′i(D) = y′i + y′i+n D + y′i+2n D2 + . . . + y′i+n(m−1) Dm−1 (2.22)

This second approach amounts to first accounting for the coset offset in the side

information y converting it into y′ and then decoding the linear convolutional code

for the most likely codeword x̂′. After the decoding the coset offset should be added
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back to form the most likely coset codeword x̂ as

x̂i(D) =





x̂′i(D) if 0 ≤ i < k

x̂′i(D) + si−k(D) if k ≤ i < n

(2.23)

where

x̂′i(D) = x̂′i + x̂′i+n D + x̂′i+2n D2 + . . . + x̂′i+n(m−1) Dm−1 (2.24)

and similarly

x̂i(D) = x̂i + x̂i+n D + x̂i+2n D2 + . . . + x̂i+n(m−1) Dm−1 (2.25)

c. Concatenated Interleaved Codes

The main issue that should be accounted for in computing syndromes for concate-

nated interleaved codes is that the two component codes are connected through one

of the two information sequences involved. E.g., in parallel concatenation the infor-

mation sequence of one component code is the interleaved version of the information

sequence of the other component code, while in serial concatenation only the infor-

mation sequence of the inner component code is passed through the interleaver.

Therefore, the syndrome formers we considered in the previous section for convo-

lutional codes come in handy, as they also include the generation of the corresponding

information sequences. This is what makes this approach the only one so far to follow

Wyner’s scheme. In [1, 2, 3, 14] the whole sequence to be compressed is interleaved

instead of the transformation of part of it. Therefore, the approach presented here

corresponds to conventional concatenated interleaved codes employed in channel cod-

ing, while the schemes in [1, 2, 3, 14] do not seem to have an equivalent channel

coding scheme.
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Fig. 15. The parallel concatenation of two interleaved convolutional codes in conven-

tional channel coding.

We assume we have two possibly punctured convolutional component codes C1

and C2 of rates k1

n1
and k2

n2
, respectively, and consider forming the syndromes of a

binary sequence x of length N with respect to their parallel concatenation and their

serial concatenation through interleavers. The code rate of the concatenated code is

assumed to be k
n
. We assume k1

n1
≤ 1 and that there are k1 independent columns

out of the n1 columns in the generator matrix of C1, so that the syndrome forming

approach of the previous section can be followed for the component code C1, but the

approach can be extended to the case of k
n
≤ 1 in the parallel concatenation case. For

the serial concatenation, we have to make the same assumption of the k2 independent

columns out of the n2 columns in the generator matrix of C2 as well. The overall

approach can also be extended to the case of component block codes.

In the parallel (turbo) concatenation (Fig. 15), we assume that to generate a

length N = mn binary codeword, the information sequence a must have length

K = m k, where m is a positive integer. This is also the interleaver length and it

satisfies K = m1 k1 = m2 k2, where m1 and m2 are two positive integers. In this case,

m1 n1 coded bits are generated by the channel encoder of C1 and m2 n2 coded bits

are generated by the channel encoder of C2 and thus, the overall code rate can be
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Fig. 16. The serial concatenation of two interleaved convolutional codes in conven-

tional channel coding.

expressed as

k

n
=

K

m1 n1 + m2 n2

(2.26)

In the serial concatenation (Fig. 16), we assume that the code C2 is the inner code

[23]. So, to generate a length N = m n = m2 n2 binary codeword, the information

sequence a must have length K = mk = m1 k1, where m, m1 and m2 are positive

integers. The interleaver length in this case must be m1 n1 = m2 k2 and the overall

rate can be expressed as

k

n
=

k1 k2

n1 n2

(2.27)

Showing how the syndrome formers of parallel and serial concatenated interleaved

codes with two component codes operate, the approach in this subsection can be

extended to any hybrid concatenation, i.e., any combination of parallel and serial

concatenation, of more than two codes.

Encoding: In the parallel concatenation, we form the (N − K) long syndrome

sequence of a binary sequence x of length N . Since N = m1 n1 + m2 n2 with

m1 n1 ≥ K = m1 k1, the first m1 n1 bits of the sequence x of length N are used

to determine (m1 n1 − K) syndrome bits with respect to the code C1, as explained

in the previous part on convolutional codes. Following the approach of the previous

part on convolutional codes, the code C1 is also used to determine the information
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Fig. 17. The syndrome former for the parallel concatenation of two interleaved convo-

lutional codes.

sequence a.

The second step of the parallel concatenated syndrome former is to interleave the

information sequence a. The interleaved information sequence a′ can be passed to

the second component code to determine the corresponding m2 n2 coded bits. These

bits are added to the remaining m2 n2 bits of the sequence x to form the remaining

m2 n2 syndrome bits. This approach is shown in Fig. 17.

In the case of serial concatenation, the first m2(n2 − k2) syndrome bits of the

total (N −K) = (m2 n2 −m1 k1) syndrome bits are determined with respect to the

inner code C2, as explained in the previous previous part on convolutional codes.

The corresponding length m1 k1 information sequence a of the inner code C2 is also

determined.

Then this information sequence a is interleaved to form a′. The remaining
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Fig. 18. The syndrome former for the serial concatenation of two interleaved convolu-

tional codes.

m1(n1− k1) = (m2 k2−m1 k1) syndrome bits are determined as the syndromes of the

sequence a′ with respect to the outer code C1. This approach is shown in Fig. 18.

Decoding: Decoding is similar to decoding of convolutional codes over each com-

ponent coset code. The syndrome bits are split into two subsets corresponding to the

two component codes. Both approaches of either modifying the respective trellis to

form the coset code trellis, or adding the syndrome bits before and after decoding

and using the linear code trellis can be applied.

We should just note that in the case of the parallel concatenation the second

component code has all its coded bits modified by the respective syndrome bits and if

the first component code is systematic and thus the whole turbo code is systematic,

the second component decoder also uses the side information bits corresponding to

the systematic bits in decoding.

Scaling and/or clipping of the extrinsic information exchanged between the com-
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ponent decoders in the iterative algorithm is also helpful, as first pointed out in [24].

d. Simulation Results†

We first simulated left regular (λ(x) has a single term) LDPC codes and compared

the results with those of nonsyndrome turbo-codes [1, 2] using approximately the

same parameters. The codeword length is n = 16384, i.e., equal to the interleaver

length of [1, 2].2 More than 2000 blocks were transmitted without a single error after

40 iterations of the message passing algorithm. As for the LDPC code distribution,

λ(x) = x2 and ρ(x) = (1−ρr)x
r−2+ρrx

r−1, where r̄ = (1−ρr)(r−1)+ρrr = r−1+ρr

varies so that the code rate changes. The results are given in Table II together with

those of [1, 2]. R1 and R2 are the rates in compressed bits per information bit used

for Xi and Yi, respectively and so in our case always R2 = 1. From the table, it is

clear that even these simple LDPC codes can exhibit small gains over the turbo code

performance.

In Table II, we also compare the conventional turbo code design with the non-

conventional of [1, 2] using the same uncompressed input sequence length n = 16384

and the same generator polynomial G(D) = (1+D+D2 +D3)/(1+D2 +D3), i.e., the

first component code C1 is the systematic convolutional code [1, 17/13] and the second

component code C2 is the convolutional code [17/13]. Because of the fixed n = 16384,

† c©2002,2003 IEEE. Reprinted, with permission, from “Compression of binary
sources with side information at the decoder using LDPC codes”, Angelos D. Liveris,
Zixiang Xiong, and Costas N. Georghiades, IEEE Commun. Letters, Oct. 2002, pp.
440-442 and from “Distributed compression of binary sources using conventional par-
allel and serial concatenated convolutional codes”, Angelos D. Liveris, Zixiang Xiong,
and Costas N. Georghiades, in Proc. 2003 IEEE Data Compression Conference (DCC
’03), Mar. 2003, pp. 193-202.

2If we wish to impose the additional requirement of symmetric rates (R1 = R2),
we should use time-sharing with n = 8192 for a fair comparison with [1], which will
slightly worsen the LDPC code performance.
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Table II. Comparison of [1, 2] with our LDPC and Conventional Turbo Code Results

p 0.05 0.1
H(X, Y ) 1.286 1.469

(1 + H(p))
R1 + R2 [1] 1.435 1.630
R1 + 1 [2] 1.380 1.580

R1 + 1 (LDPC) 1.402 1.600
R1 + 1 (conventional turbo) 1.388 1.556

the puncturing and the interleaver length in our conventional codes has to be different

each time to guarantee n ≤ 16384. In conventional systematic turbo codes, only the

parity bits are punctured. Following this approach here, and as less parity bits means

less syndrome bits, and thus higher compression, the two component convolutional

source encoders use the punctured trellis of the original convolutional channel code.

For instance, for p = 0.1, the orginal turbo channel code would yield 5 parity

bits for every 4 input bits, i.e., 3 parity bits from the first component code and 2

from the second. Hence, there would be 4 + 5 = 9 turbo coded bits resulting in an

overall channel code rate of 4/9 = 0.444. The corresponding turbo source encoder

would take 9 input bits and output 5 syndrome bits, 3 from the first component code

and 2 from the second, achieving 9:5 compression (R1 = 0.556).

For p = 0.05, 0.1, the interleaver length was 10020 and 7280, respectively. Both

interleavers were s-random with spread s = 42, 36, respectively. Our results in Ta-

ble II correspond to zero errors after 15 decoding iterations for 2500 blocks.

Much better results are expected from LDPC codes with improved irregular code

design [18, 19, 20, 21]. We use the simplest good irregular code of [20],3 i.e., the rate

3The irregular codes in [20] have been optimized for the additive white Gaussian
noise (AWGN) channel, but they are expected to perform better than regular or
nonoptimized irregular codes over the binary symmetric channel (BSC) as well [20].
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1/2 code with the degree distribution:

λ(x) = 0.234029x + 0.212425x2 + 0.146898x5

+ 0.102840x6 + 0.303808x19 (2.28)

ρ(x) = 0.71875x7 + 0.28125x8 (2.29)

This irregular code was simulated together with the regular (3,6) code in Fig. 19. The

codeword (frame) length was n = 104 for the regular code and n = 104 and n = 105 for

the irregular code (marked “awgn”). The bit error rate (BER) for Xi, Pr[X̂i 6= Xi],

was measured after 100 iterations of the decoding algorithm. The Slepian-Wolf the-

oretical limit of 0.5 bits and the best nonsyndrome turbo code performance reported

for this code rate [3] (about 0.38 bits for codeword length 105) are also shown in

Fig. 19. The second irregular code, marked “bsc” in Fig. 19, is the rate 1/2 LDPC

code given in example 2 of [19], which has been optimized for the binary symmetric

channel (BSC). The threshold for this code is H(p∗) = 0.488 bits [19], also shown in

Fig. 19.

In Fig. 19 even the regular (3,6) code slightly outperforms the turbo coding

schemes of [3, 14], which use greater or equal codeword length, while the irregular

code of (2.28) and (2.29) almost halves the gap to the Slepian-Wolf limit, even with

a codeword length of n = 104. Further irregular LDPC code design for the binary

symmetric channel yields slightly better results as the difference between the “awgn”

and “bsc” curves of Fig. 19 shows.

For larger interleaver lengths, the advantage of conventional over nonconventional

turbo schemes is also expected to be clearer. This can be seen in Fig. 19, where

serial and parallel concatenated codes of rate 1/2 have also been simulated. The

serial concatenation has the [1, 5/7] convolutional code as the outer code and the
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differential encoder [1/3] as the inner code. The parallel concatenated code of Fig. 19

is the best punctured turbo code of memory 4 in [25] with generator polynomial

G(D) = (1 + D + D4)/(1 + D3 + D4), which gives very good performance even for

severe puncturing. The block size in each of the serial and parallel concatenation

cases refers to the overall codeword size, which is equal to the interleaver size only

for the serial concatenation. For the parallel case the interleaver length was 50000.

All interleavers were s-random, 30 iterations were used in the decoder and for each

simulated point either 100 block errors or 5 · 108 bits were simulated.

In Fig. 19, the Slepian-Wolf limit is given as a special case of the Wyner-Ziv limit

[26], i.e., for practically lossless compression (BER for Xi =Pr[X̂i 6= Xi] ≤ 10−6). As

in conventional channel coding, in Fig. 19, conventional parallel and serial concate-

nated interleaved codes outperform regular low-density parity-check (LDPC) codes

but not optimized irregular LDPC codes. Furthermore, parallel concatenation can

converge much faster. Whichever way we employ, however, to concatenate the binary

convolutional codes, as long as it is done conventionally, the performance is better

than nonconventional turbo schemes as shown in Fig. 19, where the performance of [3]

is also included (codeword length in the order of 105), and very close to the theoretical

limits.

However, regular LDPC codes could not outperform the codes of [3] for higher

compression, i.e., for 4:1 and 8:1 compression only good irregular codes could achieve

slightly higher compression. In Table III our results for length 105 irregular LDPC

codes are compared with those of [3] (length 105). For the rate 1/2 codes we considered

the results of the LDPC code of example 2 of [19], whereas for the other two cases

we designed a rate 3/4 and a rate 7/8 LDPC code respectively using the method of
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[18], obtaining the distributions

λ(x) = 0.071428x + 0.230118x2 + 0.079596x9

+ 0.147043x10 + 0.073821x48 + 0.397994x49, (2.30)

ρ(x) = x27 (2.31)

for R1 = 0.25 and

λ(x) = 0.034482x + 0.270427x2 + 0.027719x9

+ 0.209427x10 + 0.457945x49, (2.32)

ρ(x) = x57 (2.33)

for R1 = 0.125. For the design of these two LDPC codes we considered right regular

codes and allowed a maximum left node degree of 50. To easily avoid length 4 cycles

of degree-2 variable nodes, we also upper-bounded the percentage of degree-2 variable

nodes. All irregular LDPC results shown in Table III assume a probability of error

smaller than 10−6 for 5 · 108 simulated bits and 100 iterations.

In Table III, the results for conventional turbo codes for higher compression

ratios are also given for Pr[X̂i 6= Xi] ≤ 10−6 with 30 iterations at codeword length

105 (interleaver size 87500, 75000 and 50000 respectively, always s-random interleaver)

and 5 ·108 simulated bits. From both Tables II and III, it turns out that, as expected,

the schemes of [2, 3] exhibit similar performance to the conventional codes for severe

puncturing, but the conventional approach is clearly better for less puncturing.

2. Symmetric Coding

The asymmetric binary Slepian-Wolf problem, also referred to as lossless source cod-

ing with side information at the decoder, was the focus of the previous subsection.
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Table III. Comparison of [3] with our LDPC and Conventional Turbo Code Results

R1 0.125 0.250 0.500
H(X|Y ) [3] 0.089 0.189 0.381

H(X|Y ) (LDPC) 0.091 0.204 0.466
H(X|Y ) (conventional turbo) 0.084 0.194 0.453

Its correspondence to channel coding has been established [16, 17, 27] and Slepian-

Wolf limit approaching codes based on this correspondence were designed for the

binary setup in the previous subsection. This approach will also be further extended

to the asymmetric Slepian-Wolf problem of more than two sources [28] in the next

subsection.

The way asymmetric Slepian-Wolf coding can be used for Slepian-Wolf coding

of two or more correlated sources is through time-sharing. However, sometimes time-

sharing might not be desirable or practical and symmetric Slepian-Wolf coding might

be needed. Symmetric Slepian-Wolf coding refers to the case of having both sources

coded instead of one and the other one available as side information as in the case

asymmetric Slepian-Wolf coding. Some first approaches of Slepian-Wolf coding have

been first suggested in [1, 29], with [29] trying to provide a more general setup for

binary systematic codes.

The purpose of this subsection is to clarify this general binary setup of [29] so that

advanced channel codes can be employed to yield good symmetric binary Slepian-Wolf

codes. We first start with the systematic setup of [29] and continue with practical

code designs based on systematic turbo and irregular repeat-accumulate (IRA) codes

[30].
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a. Systematic Codes

To simplify things we start with the completely symmetric Slepian-Wolf scenario, i.e.,

both encoders use the same rate. However, the generalization to any rate allocation

between the sources and to any number of sources is straightforward. In fact the

asymmetric Slepian-Wolf scenario of the previous subsection is a special case of this

symmetric scenario.

As in [29], we start with an (n, k) binary channel code C, whose k×n generator

matrix G is

G = [Ik P ] (2.34)

Ik is a k×k identity matrix and P is a k×(n−k) matrix. For completely symmetric

Slepian-Wolf, we assume that k is an even number.

Let m = k
2
. Two (n,m) subcodes C1 and C2 of C can be defined with generator

matrices G1 and G2, respectively,

G1 = [Im Om,m P 1] (2.35)

G2 = [Om,m Im P 2] (2.36)

where Om,m is an m ×m all-zeros matrix and P T =
[
P T

1 P T
2

]
. It is easy to see

that if c1 is any codeword of C1 and c2 is any codeword of C2 then c1 + c2 is always

a codeword of C, where “+” means addition in GF(2).

Two simple choices for the (n−m)× n parity-check matrices H1 and H2 of C1
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and C2, respectively, can be shown to be

H1 =




Om,m Im Om,n−k

P T
1 On−k,m In−k


 =




Om,m

P T
1

In−m


 (2.37)

H2 =




Im Om,m Om,n−k

On−k,m P T
2 In−k


 (2.38)

since both H1 and H2 have rank n−m and H1G
T
1 = H2G

T
2 = On−m,m .

To use these subcodes for totally symmetric SW, we have to form syndromes for

each of the binary n-tuples x and y at the output of each source. To do so, we write

x and y in the form

x = [u1 u2 q1] (2.39)

y = [v1 v2 q2] (2.40)

where u1, u2, v1, v2 are all row-vectors of length m and q1, q2 are row-vectors of

length n− k = n− 2m .

The length n−m syndromes s1 and s2 formed by the two subcodes are

sT
1 = H1 xT =




uT
2

P T
1 uT

1 + qT
1


 (2.41)

sT
2 = H2 yT =




vT
1

P T
2 vT

2 + qT
2


 (2.42)



43

We define the length n row-vectors t1 and t2 as

tT
1 =




Om,1

uT
2

P T
1 uT

1 + qT
1




(2.43)

tT
2 =




vT
1

Om,1

P T
2 vT

2 + qT
2




(2.44)

Then the length n row-vectors x + t1 and y + t2 are codewords of the codes C1 and

C2, respectively.

So by sending s1 and s2 from the two encoders to the joint decoder, the decoder

finds the codeword in C that is closest to t1 + t2 , since the binary words x and y are

correlated through the binary symmetric model and thus, with high probability their

sum x + y has small weight. If there is no error in decoding, this codeword should

be x + t1 + y + t2 . The corresponding û1 and v̂2 are then known as the systematic

part of the codeword. But u1G1 = x + t1 and so

x̂ = û1G1 + t1 (2.45)

Similarly

ŷ = v̂2G2 + t2 (2.46)

So if the binary code C is approaching the capacity of the BSC, when used as

above this code will approach the Slepian-Wolf limit in the binary symmetric setup,

as long as the correlation between x and y can be modelled with the same BSC. In

other words, the above described approach is the extension of the syndrome scheme

(Wyner’s scheme) to the symmetric Slepian-Wolf scenario for systematic codes. Es-
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pecially for the BSC correlation model, we should not expect performance differences

when using either asymmetric or completely symmetric coding based on the same

channel code.

A note about the difference of this approach to [1, 29]. [1] sends as above half

of the systematic bits from the one encoder and half from the other encoder. But

these systematic bits are used in encoding in [1], unlike the syndrome scheme above.

But the main differences in [1] are first that parity bits instead of syndrome bits are

sent and second that the two subcodes are quite separate (each subcode is a different

turbo code forming a big turbo code with four component codes).

As for [29] which has inspired this work, the systematic approach is not so well

handled in the sense that the component codes appear to be systematic but not the

overall code C. So this work is actually just a more clear and detailed formulation of

what was suggested in [29], which is enough to allow us to extend the approach to

symmetric Slepian-Wolf codes based on advanced channel codes.

It is clear from the above how by using m1 6= m2 with m1 + m2 = k instead of

m1 = m2 = m = k
2

could allow any asymmetric rate. Furthermore, by using three

subcodes with m1 +m2 +m3 = k or more, the same approach could be generalized to

any number of sources and any asymmetric rate combination. This observation, made

for the first time here, is perhaps the real advantage of this generalized symmetric

approach, as a single code can be used to approach the joint entropy limit. However,

there are some problems with the symmetric approach in the case of more than two

sources, which will be address in more detail in the subsection on Slepian-Wolf coding

of more than two sources.
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b. Nonsystematic Codes

The above approach can also be extended to nonsystematic codes by expressing the

nonsystematic (n, k) binary channel code C with its k × n generator matrix G in

the form

G = [A P ] (2.47)

where A is a k × k invertible matrix and P is a k × (n − k) matrix. If the first k

columns of the generator matrix G are not linearly independent, the columns of G

can be rearranged so that the first k columns become linearly independent.

Then through A and its inverse, the same approach as before can be used, i.e.,

splitting the source output sequences x and y as in equations (2.39) and (2.40),

respectively, the compressed sequences sent to the decoder have the form

sT
1 =




uT
2

P T A−T [u1 O1,m]T + qT
1


 (2.48)

sT
2 =




vT
1

P T A−T [O1,m v2]
T + qT

2


 (2.49)

instead of (2.41) and (2.42), respectively, where the superscript −T denotes inverse

transpose matrix.

At the decoder the vectors t1 and t2 are formed by inserting m zeros just after

the m first bits of s1 and at the beginning of s2, respectively. Then decoding is done

over the code C for the most likely codeword given t1 + t2. If no decoding error

occurs, the decoded codeword of C is x+y + t1 + t2, from which knowing v1 and u2,

u1 and v2 are determined and from these and s1 and s2, q1 and q2.

Another approach using a parity check matrix of the channel code C instead

of the generator matrix of C used here was independently introduced in [31] for
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nonsystematic codes. However, this approach did not address some of the practical

issues arising due to the matrix inversion, which are discussed next.

c. Practical Systematic Codes

It is straightforward to use any systematic practical codes, e.g., IRA codes, for com-

pletely symmetric Slepian-Wolf coding. For an (n, k) such code, the information part

is split into two length m = k
2

parts. At the first encoder, the length n source output

x is split into three parts in the form

x = [u1 u2 q1] (2.50)

where u1, u2 are row-vectors of length m and q1 is a row-vector of length n − k =

n− 2m .

To determine s1, the graph of the (n, k) IRA code is used and first u1P 1

is determined by setting the values of the systematic IRA variable nodes equal to

[u1 O1,m] . In other words half of the systematic part is set equal to zero to determine

u1P 1 .

But the length n−m syndrome s1 that has to be formed by this first encoder is

sT
1 = H1 xT =




uT
2

P T
1 uT

1 + qT
1


 (2.51)

So q1 has to be added to u1P 1 and by appending u2 to u1P 1 + q1 , we get s1.

Similarly, s2 is formed at the second encoder. At the joint decoder, the same

procedure is followed as described in the previous part on systematic codes. Again

everything can be generalized to any rate allocation scenario with any number of

sources. Furthermore, similarly, i.e., by setting half of the systematic bits equal

to zero at each encoder, the same symmetric Slepian-Wolf coding approach can be
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extended to any systematic code, e.g., systematic turbo codes. Simulation results

presented in [32] for systematic IRA and turbo codes show that indeed the code

design works as well as expected.

For nonsystematic codes to avoid the complexity of inverting a matrix, convolu-

tional and concatenated convolutional codes could be used, since, as in asymmetric

Slepian-Wolf coding, the matrix inversion can be performed through the path selec-

tion on the code trellis. Parallel concatenation seems to be more suitable than serial

concatenation in this symmetric coding setup, because the information sequence is

passed through a single component code in parallel concatenated codes instead of two

in the serial concatenation and thus, the inversion can be performed just through this

single component code.

As a result, if a linear code is used that can approach the capacity of a BSC, then

if the same BSC models the correlation between x and y, the resulting Slepian-Wolf

coding scheme based on the above setup will also approach the Slepian-Wolf limit for

any rate allocation between the two encoders. When more than two sources are used,

modelling the exact correlation model with a channel is more involved. Therefore, it

might be more difficult to find good codes for symmetric SW coding of more than

two sources, as discussed next.

3. Coding for More Than Two Sources

In this subsection, we will discuss how the Slepian-Wolf coding problem can be ex-

tended to more than two sources. We will first consider the binary symmetric model

for three sources and then see how it can be generalized. Just for this subsection we

will use the notation Xi, i = 1, 2, . . . , M , for the output random variable of the ith

binary source, where M is the number of sources.
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a. Three Sources

Assuming three binary sources with equiprobable outputs X1, X2, X3 and Pr[X2 6=
i|X1 = i] = p, i = 0, 1, imposing the symmetry condition, i.e., requiring that Pr[X3 =

i|X1 = j, X2 = k] =Pr[X3 = 1 − i|X1 = 1 − j, X2 = 1 − k], for all i, j, k ∈ {0, 1},
produces

Pr[X3 = 0|X1 = 0, X2 = 0] = a (2.52)

Pr[X3 = 1|X1 = 0, X2 = 0] = 1− a (2.53)

Pr[X3 = 0|X1 = 0, X2 = 1] = b (2.54)

Pr[X3 = 1|X1 = 0, X2 = 1] = 1− b (2.55)

Pr[X3 = 0|X1 = 1, X2 = 0] = 1− b (2.56)

Pr[X3 = 1|X1 = 1, X2 = 0] = b (2.57)

Pr[X3 = 0|X1 = 1, X2 = 1] = 1− a (2.58)

Pr[X3 = 1|X1 = 1, X2 = 1] = a (2.59)

(2.52)-(2.59) result from just imposing the symmetry condition on all these binary

conditional probabilities. However, this condition is so strong that they also satisfy

both the uniform marginal probabilities for all three sources X1, X2, X3 and the con-

ditional probabilities Pr[X2 6= i|X1 = i] = p, i = 0, 1. So the model has actually three

degrees of freedom (parameters) p, a, b.

This becomes clear when expressing the corresponding conditional probabilities
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Pr[X1 = i,X2 = j|X3 = k], i = 0, 1, j = 0, 1, k = 0, 1

Pr[X1 = 0, X2 = 0|X3 = 0] = a(1− p) (2.60)

Pr[X1 = 0, X2 = 1|X3 = 0] = bp (2.61)

Pr[X1 = 1, X2 = 0|X3 = 0] = (1− b)p (2.62)

Pr[X1 = 1, X2 = 1|X3 = 0] = (1− a)(1− p) (2.63)

Pr[X1 = 0, X2 = 0|X3 = 1] = (1− a)(1− p) (2.64)

Pr[X1 = 0, X2 = 1|X3 = 1] = (1− b)p (2.65)

Pr[X1 = 1, X2 = 0|X3 = 1] = bp (2.66)

Pr[X1 = 1, X2 = 1|X3 = 1] = a(1− p) (2.67)

There is a way to reduce the degrees of freedom from three to one and simplify

the whole problem by imposing even stronger symmetry, i.e., require both Pr[X3 6=
i|X1 = i] = p, i = 0, 1 and Pr[X3 6= i|X2 = i] = p, i = 0, 1. Imposing this stronger

symmetry conditions we get b = 1/2 and a =
(
1− 3

2
p
)
/(1 − p) and (2.60)-(2.67)

become

Pr[X1 = 0, X2 = 0|X3 = 0] = 1− 3

2
p (2.68)

Pr[X1 = 0, X2 = 1|X3 = 0] =
p

2
(2.69)

Pr[X1 = 1, X2 = 0|X3 = 0] =
p

2
(2.70)

Pr[X1 = 1, X2 = 1|X3 = 0] =
p

2
(2.71)

Pr[X1 = 0, X2 = 0|X3 = 1] =
p

2
(2.72)

Pr[X1 = 0, X2 = 1|X3 = 1] =
p

2
(2.73)

Pr[X1 = 1, X2 = 0|X3 = 1] =
p

2
(2.74)

Pr[X1 = 1, X2 = 1|X3 = 1] = 1− 3

2
p (2.75)
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Fig. 20. Binary symmetric correlation model for Slepian-Wolf coding of three sources

given in the form of an equivalent discrete memoryless channel.

We will consider this model to be the extension of the binary symmetric model as-

sumed throughout the chapter to three sources. The equivalent discrete memoryless

channel (DMC) which can be used to describe the correlation of the three sources, as

given in equations (2.68-2.75) is shown in Fig. 20.

Assuming that X1 is available at the decoder as side information, from the ex-

tension of the Slepian-Wolf theorem [8] to multiple sources [28, 33], the source coding

rates R2 and R3 (in compressed bits per uncompressed bit) for the compression of X2

and X3, respectively, have to satisfy all the three following inequalities [28]

R2 ≥ H(X2|X1, X3), (2.76)

R3 ≥ H(X3|X1, X2), (2.77)

R2 + R3 ≥ H(X2, X3|X1). (2.78)

Trying to minimize the rate R3, i.e., bring it as close as possible to the theoretical

limit H(X3|X1, X2), from (2.76) and (2.78), we get that the rate R2 has to satisfy the
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inequality R2 ≥ H(X2|X1). This corresponds to the corner point of the achievable

region, i.e., to asymmetric Slepian-Wolf coding of more than two sources.

Expressing both limits in terms of p for the binary symmetric correlation model

(stricter symmetry), we get

H(X2|X1) = H(p) ≡ −p log2 p− (1− p) log2(1− p), (2.79)

H(X3|X1, X2) = pH

(
1

2

)
+ (1− p) H

(
p/2

1− p

)

= 1 + (1− p) log2(1− p)−
(

1− 3

2
p

)
log2(2− 3p)

− p

2
log2 p. (2.80)

We have plotted both (2.79) and (2.80), i.e., H(X2|X1) and H(X3|X1, X2) respec-

tively, as a function of p, in Fig. 21.

Using syndromes [7] or equivalently Wyner’s scheme [16, 17], explained in the

part on asymmetric Slepian-Wolf coding of two sources previously in this section, we

can use the same approach here for the above setup of the three binary sources to

get rates R2 close to H(X2|X1). Then this approach can be extended to get R3 close

to H(X3|X1, X2) and obtain the rate savings predicted by the theoretical limits of

Fig. 21.

The rate savings are expected due to the improvement of the associated channel

modelling the correlation between X3 and the pair X1, X2, which is the DMC shown

in Fig. 20, compared to the BSC. This rate savings have been confirmed through

LDPC code designs matched to this DMC [34].

b. More Than Three Sources

The binary symmetric model discussed in the previous part can further be extended

to more than three sources and it can also be extended to nonbinary sources, when
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each nonbinary symbol is represented with bits [35].

The only difference for more than three sources is that there are more than one

parameters describing the statistical model. E.g., for four binary sources the binary

symmetric model is described by p and a second parameter 0 ≤ r ≤ p
2

[35]. In general

as the number M of the binary uniform sources increases, the number of parameters

describing the binary symmetric model, which results from the uniformity and from

having BSC correlation between any two pairs of sources, i.e., Pr[Xj 6= i|Xk = i] =

p, i = 0, 1, j 6= k, j, k = 1, 2, . . . , M , is also expected to increase.

c. Symmetric Coding

So far in this subsection we have not talked about symmetric Slepian-Wolf coding,

as all the approaches focused on approaching the corner points. The problem with

symmetric coding is that the way it was introduced in the previous subsection, it

only applied to statistical models of sources with binary equiprobable outputs whose

correlation is completely captured by their binary sum (BSC correlation).

This model is not practical for more than two sources, sometimes even for two

sources it might not perform well enough. E.g., in the binary symmetric model with

three sources, assuming that one of them, e.g., X1, is available as side information

at the decoder and trying to perform symmetric Slepian-Wolf coding of the other

two sources X2 and X3 to approach the any point on the theoretical limit given

by equations (2.76)-(2.78), it is not clear how the symmetric Slepian-Wolf coding

approach for two sources in Subsection 2 should be modified to work well.

As long as in this simple setup symmetric Slepian-Wolf cannot be applied ef-

ficiently, which is still an open problem, it cannot be considered as efficient as the

asymmetric coding approach, which can capture any correlation. Recently, other

symmetric Slepian-Wolf approaches have been proposed independently of this work
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[36, 37]. However, none of these approaches could match the elegance of using a

single channel code as was done in the symmetric Slepian-Wolf coding approach for

two sources in Subsection 2.

C. Asymmetric Slepian-Wolf Coding over Noisy Channel†

The Slepian-Wolf theorem [8] states that the lossless compression of the output of two

correlated sources that do not communicate their outputs to each other, can be as

efficient as if they communicated their outputs. This is true when their compressed

outputs are jointly decompressed at a decoder. A system exploiting this property is

shown in Fig. 1, where Z = [Z1, Z2, . . . , Zr] and W = [W1,W2, . . . ,Wm] are the com-

pressed versions of the source output X = [X1, X2, . . . , Xn] and Y = [Y1, Y2, . . . , Yn],

respectively. Z and W are sent through channels to the joint decoder which yields X̂i

and Ŷi with negligible probability of X̂i 6= Xi and Ŷi 6= Yi. An important assumption

of the Slepian-Wolf theorem is that the channels through which Z and W are sent to

the decoder are perfect. Practical schemes exploiting the potential of the Slepian-Wolf

theorem were introduced in the previous section based on advanced channel codes.

Although LDPC codes seem to work better for the distributed compression prob-

lem, at least for binary sources, no similar approach has been proposed for distributed

joint source-channel coding until now. Extra loss is introduced in this case due to

the channel capacity of the nonideal channel(s). Only turbo codes have been used

so far both for distributed joint source-channel coding of equiprobable memoryless

correlated binary sources [3, 38] and the special case of source-channel coding of a

single nonequiprobable memoryless binary source [39, 40, 41, 42]. Parallel to this

† c©2002 IEEE. Reprinted, with permission, from “Joint Source-Channel Coding
of Binary Sources with Side Information at the Decoder Using IRA Codes”, Angelos
D. Liveris, Zixiang Xiong, and Costas N. Georghiades, in Proc. 2002 IEEE Workshop
on Multimedia Signal Processing (MMSP ’02), Dec. 2002, pp. 53-56.



55

work and independently, another approach with concatenated low-density generator

matrix (LDGM) codes was proposed [43, 44], which employs two LDPC codes per

source instead of a single one.

Furthermore, due to the nonideal channel(s), the asymmetric case [3, 39, 40, 41,

42], i.e., joint source-channel coding with perfect side information at the decoder, is

not equivalent to the symmetric case [38, 43, 44] (distributed joint source-channel

coding). The asymmetric case employs one noisy channel, whereas the symmetric

case two.

Here we focus on the asymmetric case, i.e., joint source-channel coding with

side information at the decoder. It is not straightforward to apply LDPC codes in

this case, not only due to their “conventional” channel encoding problems but also

due to their design process which cannot take two different equivalent channels into

account. On the other hand, systematic irregular repeat-accumulate (IRA) codes [30]

seem to solve both problems. First, systematic IRA codes are a special form of LDPC

codes without any “conventional” channel encoding problems, allowing similar design

(optimization) procedure and suffering a very small loss in performance. Second,

systematic IRA codes offer the potential of code design with different initialization

for the systematic and parity part, which has already been used in [45].

In this section, we show how we can exploit these advantages when applying sys-

tematic and nonsystematic IRA codes to joint source-channel coding of an equiprob-

able memoryless binary source with side information at the decoder. The main idea

is to view the system as transmitting the source over two channels. The first one

is the actual channel through which the source-channel coded bits are sent to the

decoder and describes the distortion experienced by the parity bits of the systematic

IRA code. The second channel could be either a combination of the actual and the

correlation channel (enhanced actual channel) or the correlation channel depending
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on whether the systematic part of the IRA code used is transmitted or not trans-

mitted, respectively. This channel describes the distortion of the information bits.

Taking the difference between the two channels into account in the design of the IRA

codes, we obtain codes that perform better than turbo codes over the binary sym-

metric channel (BSC), the additive white Gaussian noise (AWGN) channel and the

flat Rayleigh fading channel.

This section is organized as follows; Subsection 1 describes the overall system and

introduces the equivalent way to view it through the two channels. In Subsection 2

the encoding, decoding and code design procedures for the IRA codes are explained

and in Subsection 3 IRA codes are simulated and compared with turbo codes.

1. Problem Setup and the Two Channels

We consider the system of Fig. 1 with the following assumptions, which are used for

the rest of this section:

• X = [X1, X2, . . . , Xn], Y = [Y1, Y2, . . . , Yn], where the Xi’s are i.i.d. equiprob-

able binary random variables and so are the Yi’s.

• Xi and Yi are correlated with Pr[Xi 6= Yi] = p < 0.5.

• Y is available losslessly at the joint decoder and we try to compress X as

efficiently as possible. Since the rate used for Y is its entropy nRY = nH(Yi) =

n bits, the theoretical limit for lossless compression of X over an ideal channel

is (from the Slepian-Wolf theorem [8]) H(Z) = r = nRX ≥ nH(Xi|Yi) =

nH(p) = n(−p log2 p − (1 − p) log2(1 − p)), where Z = [Z1, Z2, . . . , Zr] is the

source-channel encoder output when the input is X. For the nonideal channel,

the channel capacity C in bits per channel use, has to be accounted for, and so

the limit becomes r = nRX ≥ nH(p)/C [46], assuming BPSK modulation.
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The first two assumptions are the same as those made at the beginning of this

chapter (binary symmetric model). Imposing all the above three assumptions to the

system of Fig. 1 we end up with the problem of joint source-channel coding of an

equiprobable memoryless binary source with side information or asymmetric Slepian-

Wolf coding over a noisy channel, shown in Fig. 2. A special case of this problem is

when the binary source is nonequiprobable with entropy H(p) = H(Xi) and then the

side information Yi is set equal to the most probable value of Xi.

There is an equivalent way one can view the system of Fig. 2 to allow the use

of systematic channel codes, i.e., codes with codewords [X |P ] including all the in-

formation bits X plus the parity bits (redundancy) P . To use an equivalent model

of the system, we consider source-channel encoders with input X and output either

Z = P or Z = [X |P ] based on a systematic channel code with codewords of the

form [X |P ]. When Z = P , we have a nonsystematic source-channel code (NSSCC)

and when Z = [X |P ] a systematic source-channel code (SSCC). In the systematic

case, the source-channel code rates are limited to RX = r/n ≥ 1, which does not

restrict the design when the channel is very noisy.

The correlation between Xi and Yi can be modeled with a BSC as discussed in

the previous sections; Xi will be the input to this BSC and Yi its distorted output. For

the NSSCC, only the parity bits Z = P are transmitted through the actual channel.

In this case, we can view the overall system as transmission of a single codeword over

two different channels; the systematic part X goes through the binary symmetric

correlation channel and the parity part Z = P through the actual channel, as shown

in Fig. 22. For the SSCC, the source-channel encoder output Z = [X |P ] passes

through the actual channel. So the systematic part X can be viewed as passing

through an “enhanced” channel (combination of actual and correlation channel) and

the parity bits P through the actual channel. For both SSCCs and NSSCCs, the



58

Actual Channel

Nonsystematic
Joint Source-

Channel
Encoder

Source X
X

Z U

Joint Source-
Channel
Decoder

(Systematic
Channel
Decoder)

Xˆ

YBinary Symmetric
Correlation Channel

X

Systematic
Channel Encoder

Fig. 22. The two equivalent channels for nonsystematic joint source-channel coding of

X with side information Y at the decoder.

systematic irregular repeat-accumulate (IRA) codes are expected to perform very

well, as they can be designed to have their systematic and parity part transmitted

over two different channels.

2. Joint Source-Channel Coding with IRA Codes

Systematic IRA codes were introduced in [30] combining the advantages of LDPC

codes (message-passing iterative decoding, code design, superior performance) and

turbo codes (linear time encoding). They have a more constrained structure than

LDPC codes and an ensemble of systematic IRA codes is described by the degree

distribution polynomials λ(x) =
∑J

i=2 λix
i−1 and ρ(x) = xα−1 [30]. A specific sys-

tematic IRA code is determined by its bipartite graph, which specifies the connections

between the systematic bits and the check nodes.

a. Encoding

To jointly source-channel encode an information sequence of length n using an IRA

code with degree distribution λ(x) and ρ(x) = xα−1 and a given realization of the

bipartite graph, we first determine the corresponding parity bit sequence P of length
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r = n/
(
α

∫ 1

0
λ(x)dx

)
for an arbitrary input sequence X of length n. This is the

output of the source-channel encoder sent through the channel if the source-channel

code is nonsystematic (NSSCC). An encoding example for a NSSCC is given in Fig. 23.

For a SSCC both X and P are transmitted through the actual channel.

b. Decoding

To explain the decoding algorithm we assume initially that the source-channel code

is nonsystematic (NSSCC). The decoder tries to estimate X from Y and U , the

output of the actual channel when the input is Z. The message-passing iterative

decoding algorithm can be used where both the r parity nodes (corresponding to U )

and the n systematic nodes (corresponding to Y ) can be handled as variable (left)

nodes [30]. The only difference is in the initialization of the algorithm with the log-

likelihood ratios (LLRs) from the correlation or the actual channel. The LLR at the

ith systematic node is

q
(sys)
i,0 = log

Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1− 2yi) log

1− p

p
, (2.81)

i = 1, 2, . . . , n, due to the binary symmetric correlation channel. The LLR at the ith

parity node is [47]

q
(par)
i,0 = log

Pr[zi = 0|ui]

Pr[zi = 1|ui]

=





(1− 2ui) log 1−q
q

, BSC

4
√

Es

N0
ui, AWGN ,

4γi

√
Es

N0
ui, Rayleigh fading

(2.82)

i = 1, 2, . . . , r, where for the BSC q is the crossover probability and for the additive

white Gaussian noise (AWGN) and the flat independent Rayleigh fading channel,

BPSK signaling is assumed, i.e., if zi = 0 then
√

Es is transmitted and if zi = 1
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Fig. 23. Encoding with a NSSCC based on a systematic IRA code using the bipar-

tite graph: at each check (square) node all the connected information nodes

(cycles on the left) are added modulo 2 and the corresponding values of

the parity nodes (cycles on the right) are determined. Here n is only 6,

λ(x) = 0.25x + 0.75x2, ρ(x) = x3 and the rate of the associated systematic

IRA code is 0.6, yielding a compression ratio of 3 : 2 = 1.5 for the NSSCC.
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then −√Es is transmitted. Furthermore, for the fading channel, perfect channel

knowledge is assumed and so γi is a Rayleigh random variable with E[γ2
i ] = 1, i.e., with

probability density function pΓ(γ) = 2γe−γ2
. It is easy to see that in the SSCC, the

parity nodes are initialized in the same way, but the information nodes are initialized

by the sum of the LLRs of (2.81) and (2.82).

c. Code Design

The possibility of designing systematic IRA codes with different channel conditions

for the systematic and the parity part is the main advantage of using IRA codes

in joint source-channel coding with side information. We will follow the Gaussian

approximation approach of [30]. So we start by defining the function φ(t) as

φ(t) =
1√
4πt

∫ ∞

−∞
tanh

(a

2

)
e−(a−t)2/4t da. (2.83)

Assuming that the maximum allowable systematic node degree is J , the linear

optimization of the systematic node degree distribution λ(x) =
∑J

i=2 λix
i−1 for a

given check node degree distribution ρ(x) = xα−1 is done by maximizing
∑J

i=2
λi

i

subject to the conditions [30]

λ(1) = 1, (2.84)

F (x) > x, ∀x ∈ [x0, 1], (2.85)

where F (x) is defined as [30]

F (x) =
J∑

i=1

λi φ

(
µsys + (i− 1) φ−1

(
φ2(f(x))

xα+1

))
, (2.86)

and x0 = φ(µsys). The function f(x) is determined from the equation φ (f(x)) =

xα φ (µpar + f(x)) [30].
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The only parameters we did not define in the above linear optimization procedure

are the initial LLRs obtained from the channel for the systematic part µsys and the

parity part µpar. This procedure works well for Gaussian channels and initially [30]

it was introduced for a single Gaussian channel where both parts of the systematic

IRA codeword had the same channel LLR µsys = µpar = 4Es/N0. The smallest value

of Es/N0 that achieves a code rate R (R is an increasing function of
∑J

i=1 λi/i) is the

threshold (Es/N0)th = R(Eb/N0)th of this ensemble of systematic IRA codes, i.e., the

smallest value at which they can yield arbitrarily small bit error probability for large

codeword length and large number of iterations.

In our case, we need to use different channel LLRs for the systematic part and

the parity part, the former from the correlation channel and the latter from the actual

channel. This is the property of systematic IRA codes we try to exploit in this joint

source-channel coding scenario. Fixing the LLR corresponding to the correlation

channel, we will try to minimize the threshold with respect to the actual channel.

In addition, the above procedure works well when both channels are Gaussian. As

all non-AWGN channel models used here are related to the AWGN channel (the

BSC as an AWGN channel with quantized output and the flat independent Rayleigh

fading channel as a time-varying AWGN channel), an approximate way to design the

code, based on first mapping the channel parameters of one channel to the other

[20] and then using the process outlined above, is expected to work reasonably well.

Due to these approximations, to compare designs with different α, we evaluate the

corresponding threshold using discretized density evolution [20].

We will consider three different correlation-actual channel combinations: BSC-

BSC, BSC-AWGN and BSC-fading. For both the AWGN and fading actual channels

the same codes will be used. So for the two different cases (BSC-BSC and BSC-

AWGN/fading), we need to use a way of mapping the BSC threshold LLRs to the
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AWGN ones. This is done based on the equality of the stability functions for the two

channels [20] (
Es

N0

)

eq

= − log
(
2
√

q(1− q)
)

, (2.87)

where q is the BSC crossover probability and (Es/N0)eq is the equivalent AWGN

channel parameter. In [20] it was observed that this equality of the stability functions

yielded reasonable threshold mappings between the channels for several regular and

irregular LDPC codes. As for the enhanced channel (combination of correlation and

actual channels for SSCCs), the equality of the stability functions yields

(
Es

N0

)

eq

=
Es

N0

− log
(
2
√

q(1− q)
)

, (2.88)

where Es/N0 is the parameter of the actual AWGN channel.

3. Simulation Results

a. Binary Symmetric Channel

We first designed codes when the actual channel is a BSC, in order to compare with

results in [3]. The BSC crossover probability is q = 0.03 and based on the method

discussed in Subsection 2, the following rate 2/3 systematic IRA code resulted from

the design process

λ(x) = 0.27847x2 + 0.25695x11 + 0.02840x12

+ 0.02454x47 + 0.10160x48 + 0.31004x49, (2.89)

ρ(x) = x15. (2.90)

In the design, here and for the other channels, we did not allow any degree 2 infor-

mation nodes and considered a maximum variable degree of 50. The corresponding

NSSCC of (2.89) and (2.90) achieves 2 : 1 compression. The theoretical limit for this
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Table IV. Gap of Eb/N0 = RXEs/N0 from Theoretical Limit in dB at BER= 10−5 for

the AWGN and Rayleigh Fading Channels

RX = 2 AWGN Rayleigh
p Turbo Turbo IRA IRA Turbo Turbo IRA

SSCC [40] NSSCC [41] SSCC NSSCC SSCC [40] NSSCC [42] NSSCC
0.3 0.87 - 0.77 0.85 1.16 - 0.95
0.2 1.56 0.87 1.36 0.83 1.88 1.11 1.36
0.1 2.61 1.05 2.37 0.78 2.99 1.15 1.10

code rate RX = 0.5 over the BSC with q = 0.03 is H(Xi|Yi) = H(p) ≤ RX · CBSC =

RX(1 − H(q)) = 0.403 bits. Using a length n = 105 for X, we were able to get

Pr[X̂i 6= Xi] < 10−6 at about H(p) = 0.351 bits (100 iterations in the decoder), which

is closer to the limit than the H(p) ≈ 0.29 of the turbo code design of [3]. To get this

result 108 bits were simulated, i.e., 1000 blocks. More accurate optimization for the

BSC is expected to increase the gains over turbo codes.

b. Additive White Gaussian Noise Channel

Our source-channel codes could outperform or come very close to the optimized turbo

codes in [40, 41, 42] as shown in Table IV for the AWGN channel. In [40, 41, 42] the

notation Rc = 1/RX is used for the channel code rate. We used up to 200 iterations

in the decoder and an information sequence length of n = 105. The results refer to

information bit error rate of less than or equal to 10−5 for 1000 simulated frames (108

simulated bits). The IRA codes used are given in Table V.

SSCCs exhibit the same behavior as the turbo codes of [40], i.e., the smaller the

correlation between the source and the side information, the closer they get to the

theoretical limit. Our SSCCs have slightly improved performance compared to the
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Table V. IRA Codes Used for the RX = 2 Results of Table IV

RX = 2
SSCC NSSCC

p 0.3 0.2 0.1 0.3 0.2 0.1
α 8 9 11 3 5 7
λ3 0.25223 0.21391 0.15969 0.40416 0.19759 0.11892
λ10 0.00033 0.04857
λ11 0.09645 0.04624 0.05405 0.00483 0.14062
λ12 0.25906 0.29977 0.02768 0.28033 0.06640
λ13 0.18146
λ14 0.38910
λ31 0.01889
λ32 0.05029
λ33 0.04113 0.02004
λ34 0.02192 0.02314 0.00472
λ35 0.02492 0.01978 0.01857
λ36 0.01086 0.01681 0.0333
λ37 0.00716 0.01704 0.02793
λ38 0.00564 0.02133
λ39 0.00131 0.00834
λ40 0.01152
λ41 0.21709 0.00355
λ44 0.33599
λ49 0.39929 0.06314
λ50 0.14360 0.51725 0.67406

SSCCs based on turbo codes. NSSCCs are more appropriate for higher correlation

and seem to have a constant gap from the theoretical limit because of the IRA code

structure imposed as well as the approximate IRA code design. This advantage of

NSSCCs was independently observed in [41] and also lead to the improved results for

turbo NSSCCs of Table IV.
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c. Rayleigh Fading Channel

For the flat independent Rayleigh fading channel with perfect channel state informa-

tion using the same NSSCCs as in Table V, we get the results of Table IV. There

is again some improvement over those of [40] and about the same performance with

[42]. The number of iterations in the decoder, the information sequence length and

the number of simulation bits are the same as for the AWGN channel. For the SS-

CCs we do not use the ones designed for the AWGN channel, since the combining

of the fading and BSC for an enhanced channel has to be done differently than the

AWGN-BSC combination.

D. Binary Wyner-Ziv Coding†

In the previous sections of this chapter we considered several binary Slepian-Wolf

coding schemes which perform close to the corresponding theoretical limits. We

focused more on asymmetric Slepian-Wolf coding, for which an equivalent channel

coding problem could be defined and good code designs from conventional channel

coding could be employed to help us approach the Slepian-Wolf limit.

The link between asymmetric Slepian-Wolf coding and conventional channel cod-

ing was established based on Wyner’s scheme [16, 17], i.e., using syndromes. Wyner’s

scheme suggested modelling the correlation between the source output and the side

information with a channel and using syndromes [16, 17] to convert this source coding

problem to an equivalent channel coding problem. Through this link between the two

problems, whatever effort was made to come close to capacity in conventional linear

† c©2003 IEEE. Reprinted, with permission, from “Nested convolutional/turbo
codes for the binary Wyner-Ziv problem”, Angelos D. Liveris, Zixiang Xiong, and
Costas N. Georghiades, in Proc. 2003 IEEE International Conference on Image Pro-
cessing (ICIP ’03), Sept. 2003, pp. 601-604.
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channel coding could be exploited in lossless source coding with side information at

the decoder (SCSID) or asymmetric Slepian-Wolf coding to approach the Slepian-Wolf

limit with the same closeness.

A more general approach to lossless SCSID (asymmetric Slepian-Wolf coding)

is lossy SCSID, for which the theoretical limit was given by Wyner and Ziv [26]

and thus, it will also be referred to as Wyner-Ziv coding. We are going to focus on

the binary case, which was treated as an example in [26]. For binary lossy SCSID

(binary Wyner-Ziv coding), it turns out that theoretically there is some small loss

compared to the case in which the side information is available at the encoder as well.

A theoretical solution for this binary problem, was recently given by Shamai, Verdú

and Zamir [17, 48], as an extension/generalization of Wyner’s scheme to the lossy

case. Shamai, Verdú and Zamir suggested using nested linear codes, where a subcode

of a good linear source code is a good linear channel code [17, 48].

However, to our knowledge, apart from the practical nested schemes in [27, 49],

which refer to continuous Gaussian sources, there have not been any other practical

designs for nested codes. Introducing such a novel turbo scheme by building and

improving upon [27, 49] and the asymmetric Slepian-Wolf codes based on concate-

nated codes that were presented earlier in this chapter is the main contribution of

this section.

In [27, 49] it has already been shown how the Shamai-Verdú-Zamir scheme can

lead to nested convolutional codes. All the uncompressed bits are encoded by the

source code, which is a convolutional code, using the Viterbi algorithm. Encoding

means that the uncompressed bits are “quantized” to the nearest convolutional code-

word in Hamming distance sense [50]. Using the index of this codeword, syndrome

bits are generated following the asymmetric Slepian-Wolf coding approach. The syn-

drome bits are then used together with the side information bits at the decoder to
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recover the “quantized” bits.

The approach can be extended to concatenated convolutional codes to make the

channel subcode stronger as already suggested in [49]. However, the design in [49]

when operating close to the Wyner-Ziv limit encountered the following difficulty:

when trying to further improve the source code, the channel code became worse.

Here we show how to avoid this difficulty by combining the approaches in [27, 49]

based on the previous section of this chapter on asymmetric Slepian-Wolf coding with

concatenated codes.

1. System Setup and the Shamai-Verdú-Zamir Scheme

We consider the system of Fig. 6 with the binary symmetric assumptions, which have

been used throughout this chapter. We repeat these assumptions here for convenience,

where because of using convolutional codes later on in this section, we use capital N

to denote the source output blocklength and the side information blocklength:

• X = [X1, X2, . . . , XN ], Y = [Y1, Y2, . . . , YN ] and the Xi’s are i.i.d. equiprobable

binary random variables and so are the Yi’s.

• Xi and Yi are correlated with Pr[Xi 6= Yi] = p < 0.5.

The additional assumptions we make in this section is that Y is available loss-

lessly at the joint decoder (side information) and we try to compress X as efficiently

as possible allowing some distortion d =Pr[X̂i 6= Xi]. The theoretical limit for lossy

compression of X is [26] nR = H(Z) ≥ nRWZ(d) = ng∗(d) where g∗(d) is given from

[17, 26]

g∗(d) = l.c.e. {H(p ∗ d)−H(d), (p, 0)} , (2.91)

for 0 ≤ d ≤ p, where H(u) = −u log2 u−(1−u) log2(1−u), u∗v = u(1−v)+v(1−u)

and l.c.e. stands for the lower convex envelope of the function H(p ∗ d)−H(d) and
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the point (p, 0). A plot of RWZ = g∗(d) together with the rate-distortion function for

joint encoding and decoding (Y available at both encoder and decoder), which is

RX|Y (d) =





H(p)−H(d), 0 ≤ d ≤ p

0, d ≥ p
, (2.92)

is given in Fig. 24 for p = 0.1 and p = 0.3. In Fig. 24 the small loss because of not

having the side information at the encoder results in the gap between the two curves.

The system of Fig. 6 with the above assumptions defines the problem of lossy

source coding with side information at the decoder (SCSID) for a binary equiprobable

memoryless source. This problem is also called the binary Wyner-Ziv coding problem.

In the lossless case d ≈ 0 (practically d ≤ 10−5), an equivalent way to view

the system of Fig. 6 in order to allow the use of channel codes is by modelling the

correlation between Xi and Yi with a binary symmetric channel (BSC) with crossover

probability p. Xi will be the input to the channel and Yi its output and the compressed

version of X, i.e., Z, can be used to make X look like a codeword of a channel code.

Using a linear (N,K) binary block code in this binary case, there are 2N−K

distinct syndromes, each indexing a set of 2K binary words of length N . We call

the linear block code (all-zeros syndrome set) the original code. All the 2N−K sets

are disjoint and in each set the Hamming distance properties of the original code

are preserved, i.e., all codes have the same performance over the binary symmetric

correlation channel. In compressing, a sequence of N input bits is mapped into its

corresponding (N − K) syndrome bits. Thus, the compression ratio achieved with

this scheme is N : (N −K). This approach, known as Wyner’s scheme [16, 17] for

some time, has been used in [27] for the design of simple codes and in the previous

sections for the design of turbo and LDPC codes.
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Fig. 24. RWZ(d) = g∗(d) and RX|Y (d) as a function of d =Pr[X̂i 6= Xi]. The limit for

no correlation 1 − H(d) (no side information) is also plotted as well as the

time sharing lines between the zero-distortion (Slepian-Wolf) and the zero-rate

points. dC is the largest d for which g∗(d) = H(p ∗ d)−H(d), i.e., for d > dC ,

g∗(d) < H(p ∗ d)−H(d).

From Fig. 24 we can see that Wyner’s scheme allows us to come close to the

zero-distortion theoretical limits (points along the vertical axis of Fig. 24). Further-

more, with simple time sharing between the zero-distortion points (vertical axis) and

the zero-rate points (horizontal axis), Wyner’s scheme suffices to approach the inter-

mediate theoretical limits (nonzero-distortion and nonzero-rate) for the case of high

correlation (p ≤ 0.1). However, for low correlation, such as p = 0.3 in Fig. 24, this

time sharing can be even worse than the case of independent coding of X (not using
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the side information), so Wyner’s scheme (for Slepian-Wolf coding) with time sharing

can no longer bring us close to the limits.

To approach the Wyner-Ziv limit in this case, Shamai, Verdú and Zamir gener-

alized Wyner’s scheme using nested linear binary block codes [17, 48]. According to

this nested scheme, a linear (N, K2) binary block code is again used to partition the

space of all binary words of length N into 2N−K2 sets of 2K2 elements, each indexed

by a unique syndrome value. Out of these 2N−K2 sets only 2K1−K2 (K1 ≥ K2) are

used and the elements of the remaining 2N−K2 − 2K1−K2 sets are “quantized” to the

closest, in Hamming distance sense, binary word of the allowable 2K1−K2 × 2K2 = 2K1

ones. This “quantization” can be viewed as a linear (N, K1) binary block source code.

Then the linear (N, K2) binary block code can be considered to be a channel code

which is a subcode of this source code (nesting).

To come close to the Wyner-Ziv limit with the Shamai-Verdú-Zamir scheme, both

codes in the nested scheme have to be good, i.e., a good source code is needed with

a good channel subcode [17, 48]. Knowing how to employ good channel codes based

on Wyner’s scheme (K1 = N) from the previous sections, we propose a scheme based

on concatenated codes, where from the constructions based on syndromes the use of

good channel codes is guaranteed. As for the source code, its operation resembles the

operation of trellis coded quantization (TCQ) [50] and hence, it is expected to be a

good source code.

Another remark about the Shamai-Verdú-Zamir scheme is that it can approach

the theoretical limit when d ≤ dC in Fig. 24 [26], since for this range RWZ(d) =

H(p ∗ d)−H(d). Thus, a good source code of rate RS = K1

N
can be used to approach

the limit 1 − H(d) (RS ≥ 1 − H(d)) and a good channel code of rate RC = K2

N
to

approach the limit 1−H(p ∗ d) (RC ≤ 1−H(p ∗ d)), resulting in a Wyner-Ziv code

rate of R = K1−K2

N
= RS −RC ≥ H(p ∗ d)−H(d). From Fig. 24 this means that the
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Shamai-Verdú-Zamir scheme works better for higher rates, e.g., with R ≥ 0.342 bit

for p = 0.3, while for lower rates probably the best approach is time sharing between

a good higher-rate nested code and the zero-rate point.

2. Nested Convolutional/Turbo Codes

The main thing that the extended Wyner’s scheme made very clear is that the parity-

check equations imposed by the binary quantizer should be complemented by the

syndrome former so that the overall set of parity-check equations, i.e., those imposed

by the quantizer together with those of the selected coset code, define a powerful

binary channel code.

However, the theoretical description of this scheme does not provide enough

details about its practical implementation. Since no other practical coding scheme

has been proposed before for binary Wyner-Ziv coding, we look into several code

possibilities in the following subsections. For instance, one thing that was not clear

enough was whether all the source output bits have to be quantized, i.e., participate

in the source code parity-check equations, or whether quantizing only a part of them

suffices.

In the following we assume that we have a source output realization represented

by a bit sequence x of length N and we discuss the encoding and decoding procedures

for each practical scheme. We also try to analyze each scheme in an effort to identify

its possible advantages or disadvantages.

a. Parallel Concatenation

A parallel concatenated Wyner-Ziv coding scheme is based on the assumption that

not all the source output bits are quantized, as one of the component code is used

for quantization of the source bits and the other component code is used just as a
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Fig. 25. The first parallel concatenated scheme (“parallel 1”) analyzed for binary Wyn-

er-Ziv coding; it looks very similar to the syndrome former for parallel con-

catenated codes (Fig. 17) with the difference that the first component code

does not generate any syndrome bits. Instead, the first component code forces

the syndromes of the first part of the source output sequence x to one of the

codewords of the linear convolutional code C1 through quantization.

syndrome former, as shown in Fig. 25. This assumption is a result of the syndrome

forming approach we followed for parallel concatenated codes in the previous section,

i.e., that the information sequence can be determined by one component code and

used by the other component code to form the rest of the syndrome bits.

So, part of the bits in the sequence x of length N are quantized by a convolutional

code quantizer (CCQ) [50], say α %. We denote the CCQ with C1 and its code rate

is assumed to be k1

n1
. We further assume that α N = m1 n1, where m1 is a positive

integer. Then the resulting m1 k1 index quantization bits b can be interleaved to form

b′.
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b′ is used as the information sequence into a second component code C2 of rate k2

n2
.

Assuming that this component code C2 is only used to to generate syndrome bits from

the remaining (unquantized) (1 − α) N = m2 n2 bits of the sequence x. Following

the syndrome forming approach of the previous section for parallel concatenated

interleaved codes, we get (1−α) N = m2 n2 syndrome bits from this second component

code, which are all the syndrome bits generated by this scheme.

It is not difficult to analytically derive the best possible performance of this code

construction. To do so, we consider the rate-distortion bound for the code rate of the

employed binary quantizer C1 which is [9]

k1

n1

≥ 1−H
(
d̃
)

(2.93)

where H(·) is the binary entropy function and

d̃ = Pr
[
Xi 6= X̃i

]
=

1

α N

m1 n1−1∑
i=0

|xi − x̃i| (2.94)

is the average quantization over the α N bits of the sequence x that are quantized

using the code C1.

The code rate of the channel code that according to the extension of Wyner’s

scheme, should consist of all the source code parity-check equations as well as the

parity-check equations used by the syndrome formers is in this case

m1 k1

N
=

m1 k1

α N
α =

m1 k1

m1 n1

α =
k1

n1

α (2.95)

This channel code rate is limited by the sum of the capacities of the “vir-

tual” correlation channel between the (1 − α) N unquantized source output bits

xα N , . . . , xN−1 and the side information, which is a BSC with crossover probabil-

ity p, and the “virtual” correlation channel between the α N quantized source output

bits x0, x1, . . . , xα N−1 and the side information, which is well approximated by two
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cascaded BSCs with crossover probability d̃ and p, respectively, or an equivalent BSC

with crossover probability d̃ ∗ p. The BSC approximation of the quantization error

is good enough if the CCQ C1 operates close to the rate-distortion limit 1 − H
(
d̃
)

[17]. So the channel code rate k1

n1
α can be bounded by

k1

n1

α ≤ (1− α) [1−H(p)] + α
[
1−H

(
p ∗ d̃

)]
(2.96)

Solving this last inequality for (1−α), which is the Wyner-Ziv coding rate used,

as (1− α) N syndrome bits are transmitted for N source output bits, we get

(1− α) ≥
k1

n1
+ H

(
p ∗ d̃

)
− 1

k1

n1
+ H

(
p ∗ d̃

)
−H(p)

≥
H

(
p ∗ d̃

)
−H

(
d̃
)

H
(
p ∗ d̃

)
−H

(
d̃
)

+ 1−H(p)
(2.97)

where in the last inequality we used equation (2.93).

Assuming that both the above inequalities can be made equalities, i.e., C1 is a

very good source code C1 operating at the rate-distortion limit (second inequality)

and C1 and C2 are combined to form a very good channel code operating almost at

the capacity of the two “virtual” BSCs (first inequality),

(1− α∗) =
H

(
p ∗ d̃

)
−H

(
d̃
)

H
(
p ∗ d̃

)
−H

(
d̃
)

+ 1−H(p)
(2.98)

is the lowest possible Wyner-Ziv coding rate that can be achieved by this parallel

concatenated system. The distortion of this scheme at this rate is

d = α∗ d̃ (2.99)

The lowest possible Wyner-Ziv coding rate (1− α∗) for this first parallel concate-

nated scheme has been plotted in Fig. 26 as a function of the distortion d it achieves

for p = 0.27, denoted as “parallel 1”. It is clear that this scheme is not good as it is

equal to the Wyner-Ziv limit only for very small distortion d and for higher distortion
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side information) is also plotted as well as the time sharing lines between the

zero-distortion (Slepian-Wolf) and the zero-rate points.

it is worse than time-sharing and worse than conventional binary quantization not

utilizing the side information.

In this first scheme we assumed that each unquantized bit from the source output

sequence x yields a syndrome bit and the “information sequence” a of length m1 k1

was determined only by the quantized source output bits. We can generalize further

this parallel concatenated scheme by allowing it to have three component codes as

shown in Fig. 27. The component codes C1 and C2 operate as before, doing quan-



77

tization of α N = m1 n1 source output bits and syndrome forming of m2 n2 source

output bits given the information sequence a of length m2 k2, respectively, but the

component code C3 is now used to also determine part of the information sequence

and form some additional syndrome bits.

In this more general parallel scheme, the interleaver length is K = m2 k2 =

(m1 k1+m3 k3), the number of unquantized source output bits is (m2 n2+m3 n3) = (1−
α) N and number of syndrome bits formed is m2 n2+m3 (n3−k3) = (1−α) N−m3 k3.

Working similarly as before, we have the same inequality (2.93) for the rate of the

CCQ C1 and for the rate of the overall parallel concatenated channel code, we have

m2 k2

N
=

m1 k1 + m3 k3

N
=

k1

n1

α +
m3 k3

N
≤ (1− α) [1−H(p)] + α

[
1−H

(
p ∗ d̃

)]

(2.100)

After some calculations, the last inequality can be rewritten as

(
1− α− m3 k3

N

)
≥ k1

n1

α + (1− α) H(p)− α
[
1−H

(
p ∗ d̃

)]

≥ H(p) + α
[
H

(
p ∗ d̃

)
−H(p)−H

(
d̃
)]

(2.101)

where in the last inequality we used equation (2.93).

Assuming that both the above inequalities can be made equalities, i.e., C1 is a

very good source code operating at the rate-distortion limit (second inequality) and

C1, C2, and C3 are combined to form a very good channel code operating almost at

the capacity of the two “virtual” BSCs (first inequality),

(
1− α− m3 k3

N

)∗
= H(p) + α

[
H

(
p ∗ d̃

)
−H(p)−H

(
d̃
)]

(2.102)

is the lowest possible Wyner-Ziv coding rate that can be achieved by this parallel
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Fig. 27. The second more general parallel concatenated scheme (“parallel 2”) analyzed

for binary Wyner-Ziv coding; it includes one more component code compared

to the parallel concatenated scheme of Fig. 25. This extra component code de-

termines part of the information sequence a and the other part is determined

by the CCQ C1.
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concatenated system for a given α. The distortion of this scheme at this rate is

d = α d̃ (2.103)

The lowest possible Wyner-Ziv coding rate
(
1− α− m3 k3

N

)∗
for this second and

more general parallel concatenated scheme has been plotted in Fig. 26 as a function of

the distortion d it achieves for p = 0.27 with α = 60% and α = 90%. It is denoted as

“parallel 2”. It is clear that this scheme is better than the first one (“parallel 1”) but

still not good enough as it is equal to the Wyner-Ziv limit only for small distortion d.

Actually, the larger the percentage α of the quantized source output bits the smaller

the loss of this scheme. However, only for α = 100% is the theoretically expected

loss equal to zero, as equation (2.102) also shows. For α = 100% the only way to

create a powerful channel code is through serial concatenated scheme, which will be

considered next.

Before proceeding, we should note that the above analysis can be extended to

cover cases where syndrome bits are also formed to modify the first component con-

volutional code C1 that performs quantization. This modification might be needed

to make the overall parallel concatenated scheme stronger as a channel code.

b. Serial Concatenation

The results of the previous subsection suggest that the whole binary source output

sequence x has to be quantized and then syndromes can be formed based on the

quantized version x̃ of x or based on the quantization index b.

The only concatenated structures that have been proposed before on the Gaus-

sian Wyner-Ziv problem are [27, 49], which correspond to serially concatenated codes

with and without an interleaver. Here we are going to combine and improve both

these structures to achieve very good performance for the binary Wyner-Ziv coding
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Fig. 28. The encoder of the serially concatenated nested scheme consists of three com-

ponent codes and an interleaver. The component code C1 (rate R1 = k1

n1
) is a

convolutional code quantizer and the other two codes C2 (rate R2 = k2

n2
) and

C3 (rate R3 = k3

n3
) are used to generate syndromes.

problem.

Encoding : The general structure of the encoder of our scheme is shown in Fig. 28.

The novelty of the scheme in Fig. 28 is the use of three component codes C1, C2 and

C3 as opposed to the two component codes used in [27, 49]. In [27] C1 and C3 were

only used and in [49] only C1 and C2.

The encoding in Fig. 28 starts with the convolutional code C1, which quantizes

the uncompressed source output x, which is a binary word of length N , to its nearest

convolutional codeword in Hamming distance sense [50]. The corresponding index

b of this convolutional codeword is the output of this convolutional code quantizer

(CCQ) and is a binary sequence of length K1.

The binary word b is then used to generate (K1−K3) syndrome bits (first part of

s) from the convolutional code C3, which has rate R3 = k3

n3
= K3

K1
. The convolutional
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code RC,1 also generates K3 information sequence bits a. a is then interleaved and

used to generate (K3 − K2) more syndrome bits (second part of s) with respect to

the code C2 with rate R2 = k2

n2
= K2

K3
code. So overall for N uncompressed bits x,

(K1−K2) syndrome bits s are generated, i.e., the Wyner-Ziv code rate is R = K1−K2

N
.

Decoding : The decoder structure of our nested scheme is shown in Fig. 29. The

fact that the encoder has three component codes, whereas the decoder only two

component decoders, is a result of joint decoding of the component convolutional

codes C1 and C3. C1 and C3 are merged into a single convolutional code C ′
1 with

rate R′
1 = K3

N
as shown in Fig. 29. Due to this merging of the two codes, taking

into account the first part of the syndromes s in the C ′
1 decoder should be done

as described in [27] for systematic trellis codes, which can be generalized to the

nonsystematic convolutional codes used here.

Initially, the decoder for C ′
1 takes the length-N side information bit sequence y

and the length-(K1−K3) syndrome bit sequence (first part of s) as input. It produces

two outputs, the length-N bit sequence x̂ (the estimate of the quantized version of

x) and extrinsic information for the length-K3 bit sequence a [51]. This extrinsic

information is interleaved and passed together with the (K3 − K2) syndrome bits

(second part of s) to the decoder for C2. The decoder for C2 produces its extrinsic

information for a which can be used as a third input to the decoder for C ′
1 and the

decoding process can be continued iteratively.

Code Design: The main advantage of the above serially concatenated nested

scheme is that by using three component codes, it allows greater flexibility in the

code design than [27, 49]. There are two design guidelines. First, a good CCQ (code

C1) should be chosen from [50] that achieves a specific distortion d as close as possible

to the rate distortion limit 1−H(d). Then the codes C2 and C3 are chosen so that the

concatenated scheme of C ′
1 and C2 is a good channel code [51]. In our designs, given
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Fig. 29. The decoder of the turbo nested scheme consists of two component decoders.

The component code C ′
1 of rate R′

1 = K3

N
is the convolutional code correspond-

ing to the concatenation of the convolutional codes C1 (rate R1 = K1

N
) and C3

(rate R3 = K3

K1
) and the code C2 (rate R2 = K2

K3
) is the same as the one used

at the encoder.
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in the next subsection, the convolutional code C1 has a large number of states, 16 or

32, and C3 is a very simple convolutional code, which results in a lower complexity C ′
1,

having only 4 states. This is an important requirement for good serially concatenated

codes [51] and was causing problems in the channel coding performance in the design

of [49]. The C2 code is taken as a simple repetition code, which actually is one of the

best choices for an outer code in a good serially concatenated code [51].

3. Simulation Results

For the simulation results we use p = 0.27 for the correlation, for which dC = 0.110

and RWZ(dC) = 0.405. Therefore, we select the convolutional codes from TABLE VI

in [50] that achieve distortion d < 0.110, i.e., codes C1 with R1 = 2/3 and R1 = 3/4,

and for a specific rate, we pick the code with the smallest d. So we end up with two

CCQs, a 16-state R1 = 2/3 and a 32-state R1 = 3/4 [50]. The performance of these

two CCQs in independent lossy source coding of an equiprobable binary source is

given with the square points in Fig. 30.

For the simulation results of our nested scheme in Fig. 30, we took the R3 =

1/2 4-state [1/(1 + D2), 1/(1 + D2)] code for R1 = 2/3 and the R3 = 1/3 2-state

[1/(1 + D), 1/(1 + D), 1/(1 + D)] code for R1 = 3/4. The corresponding C ′
1 codes

are the R′
1 = 1/3 4-state [1, 1/(1 + D2), D/(1 + D)] code and the R′

1 = 1/4 4-state

[(1 + D + D2)/(1 + D), 1, (1 + D + D2)/(1 + D), 1/(1 + D)] code, respectively. The

C2 codes were repetition codes of rates R2 = 1/4 and R2 = 1/3, respectively. Thus,

the nested schemes with R1 = 2/3 and R1 = 3/4 used Wyner-Ziv coding rates of

R = 7/12 and R = 2/3, respectively.

The simulation results of our nested turbo scheme are shown in Fig. 30, for

N = 3 ·105 and 50 iterations. The two Wyner-Ziv codes are only 0.083 and 0.085 bits

away from the theoretical Wyner-Ziv limit, respectively, and outperform by 0.023



84

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

R
  (

bi
ts

)

Correlation p=Pr[X
i
≠Y

i
]

joint encoding limit R
X|Y

(d), p=0.27
Wyner−Ziv limit R

WZ
(d), p=0.27

time sharing, p=0.27
no side information
d

C
=0.110, p=0.27

independent coding, simulation
our nested scheme, simulation

Fig. 30. The simulated performance of our nested scheme together with the simu-

lated performance of the CCQ (rate R1) used, for correlation p = 0.27.
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limit 1−H(d) and dC are also shown. For the simulation results of our nested

scheme N = 3 · 105.
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and 0.015 bits, respectively, the time sharing scheme (between Slepian-Wolf and the

zero-rate point).

E. Discussion and Conclusions

Throughout this chapter we proposed several distributed coding schemes focusing

more on the coding with side information at the decoder problems. The connection

of all the presented schemes with classical channel coding and source-channel coding

problems was the key idea that led to the improved performance of the proposed

schemes when compared to their competing counterparts which were missing the

classical coding analog, especially in the channel coding component.

Our model was limited to the binary symmetric case but this forms the basis for

the extension to nonsymmetric binary scenarios [52, 53] and to nonbinary scenarios,

which have to be used when quantizing continuous-valued sources, e.g., Gaussian

[3, 27, 49, 54, 55, 56], in Wyner-Ziv problems.

The suggested coding schemes find very interesting applications in several classi-

cal and network communications problems, e.g., optimization of retransmissions [57]

and distributed source-channel over multiple access channels [58]. Another promising

application of distributed coding is Wyner-Ziv coding for video [59, 60, 61, 62].
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CHAPTER III

QUANTIZATION OF CODED CHANNEL MEASUREMENTS

In this chapter, we study the effects of quantization at the output of an additive

white Gaussian noise (AWGN) channel on the achievable rates through the system

and on the performance of several channel codes. We focus more on the binary in-

put AWGN (BIAWGN) channel and on low-density parity-check (LDPC) codes. The

channel decoder works with unlimited precision. The quantizer design is based on

optimizing either the mean squared error (MSE) between the input and the output

of the quantizer, or the equivalent channel cutoff rate or the equivalent channel mu-

tual information. We start by considering uniform scalar quantizers and gradually,

better quantization performance is considered with more complex quantizer designs.

Nonuniform scalar quantizers are designed trying to approach the best theoretically

achievable performance for given precision. All the approaches are compared for sev-

eral channel codes in search of the most appropriate quantizer design criterion at

given quantization complexity.

A. Introduction

The outstanding performance of turbo codes resulted in their use for practical appli-

cations, such as the third generation wireless communication systems. When applying

them in such systems, more implementation issues need to be studied, with quanti-

zation being one of the most important among them. Significant work has already

been done in this field considering quantization of either the received channel values

alone [63, 64] or both the received channel values and the internal values in the de-

coder [65, 66, 67, 68, 69]. More recently, the reinvention of low-density parity-check

(LDPC) codes with performance superior to that of turbo codes led to similar work
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on quantization for LDPC codes [70, 71].

Quantization of the received channel values or channel measurements has pre-

viously been studied for convolutional codes [72, 73] and for block codes [74]. This

problem has also been studied in a more general context, irrespective of channel codes,

by examining the loss on the achievable rate through the limited-precision communi-

cation system and other important fundamental quantities [75, 76, 77, 78, 79].

Another very related problem to the quantization of channel measurements is

the “integer metrics” problem [80, 81], which imposes some additional practical con-

straints on the quantizer.

All this previous work led to the conclusion that the quantizers for the chan-

nel output values should not be designed conventionally, i.e., trying to minimize the

mean squared error (MSE) between the input and the output of the quantizer. In-

stead, considering the optimization of other quantities, such as the equivalent channel

cutoff rate and mutual information, yields better decoding performance. However,

there are still a number of open questions regarding the effect of quantizing only the

channel output values even with unlimited decoder precision. How meaningful would

it be to introduce a more complex quantizer, i.e., are there any gains compared to

simple uniform scalar quantization? How do more complex quantizer designs based

on different criteria compare? Do cutoff rate maximization and mutual information

maximization still exhibit a clear advantage over MSE minimization, even for more

complex quantization schemes? How robust are all these quantizers, i.e., which of the

criteria leads to the same quantizer being able to perform similarly over a range of

SNRs? These questions are the motivation for this work.

We investigate the throughput loss in a binary input additive white Gaussian

noise (BIAWGN) channel for given limited precision at its output. To get a better

idea of the ultimate limits, we study the gains of complex quantization schemes.
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Although such an approach might not look so meaningful, i.e., lowering the complexity

by quantizing the channel output to a limited number of levels but increasing it with

a sophisticated quantizer, it is justified from two different perspectives.

First, it is an interesting theoretical problem to come closer to the maximum

possible achievable rates of a system with a single constraint, the limited precision

at the channel output. Second, this maximum throughput will show whether there is

anything to gain when replacing a simple uniform scalar quantizer with a nonuniform

quantizer or an even more complex quantizer.

We design several uniform and nonuniform, MSE minimizing, cutoff rate max-

imizing and mutual information maximizing scalar quantizers and compare them in

terms of MSE, capacity and cutoff rate. Then these quantizers are compared by sim-

ulating several LDPC codes and examining the effect of the quantizer choice on the

code performance. The purpose of this work is to ascertain which criterion is the

most appropriate for the design of channel output quantizers in the case of power-

ful soft-input decoding codes. Furthermore, we find it very interesting to examine

whether a more complex quantizer results in better (lower) bit error rate (BER) at

the output of the channel decoder and to study the robustness of each criterion for a

wide SNR range.

The chapter is organized as follows. We start with the definition of the sys-

tem model in Section B and the introduction of the three quantization criteria, the

MSE, the cutoff rate and the mutual information. In Section C different uniform

scalar quantizers are designed based on the three different criteria of mutual informa-

tion maximization, cutoff rate maximization and MSE minimization and compared.

Nonuniform scalar quantizers are then designed in Section D, based on the three dif-

ferent criteria, and compared not only between themselves but also to their uniform

counterparts of Section C. Section E presents simulation results for the performance
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of LDPC codes with several of the quantizers presented in the previous sections. The

conclusions sum up the chapter and discuss still open directions of this problem.

B. System Model

As already established in [63, 64, 66, 75, 77, 78, 79, 80], scalar quantization of the

output of the BIAWGN channel with q bits, produces an equivalent channel with 2

inputs and L = 2q outputs, as shown in Fig. 31. We will assume that L takes any

positive integer value greater than one, so q is not necessarily an integer.

For soft-input processing of the quantized outputs, the only parameter of interest

in these L outputs is the probability with which each one of them occurs, unlike the

conventional minimum mean squared error (MMSE) quantization where the quan-

tizer levels are also important. We will follow the notation of [64] for the transition

probabilities Pij

Pij ≡ Pr [yk ∈ Tj|xk = i] =

∫

Tj

p(yk|xk = i)dyk, i = 0, 1, j = 0, 1, . . . , L−1, (3.1)

where xk and yk are respectively the transmitted value and the unquantized received

value at the time instant k, Tj = (aj, aj+1) is the jth quantization interval, j =

0, 1, . . . , L − 1, with a0 = −∞ and aL = ∞ and p(yk|xk = i) is the conditional

probability density function for the received unquantized value yk, given that xk =

i, i = 0, 1 was transmitted.

For the BIAWGN channel with BPSK modulation, i.e., yk = 1 − 2xk + nk and
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nk ∼ N(0, σ2), it is

P0j =
1√

2πσ2

∫ aj+1

aj

e−
(u−1)2

2σ2 du =





Q
(

1−aj+1

σ

)
−Q

(
1−aj

σ

)
, aj+1 ≤ 1

1−Q
(

aj+1−1

σ

)
−Q

(
1−aj

σ

)
, aj ≤ 1 ≤ aj+1

Q
(

aj−1

σ

)
−Q

(
aj+1−1

σ

)
, aj ≥ 1

,

(3.2)

where Q(t) = 1√
2π

∫∞
t

e−u2/2 du.

We should note that this BIAWGN model is introduced here for simplicity. How-

ever, we will sometimes also use the more practical model y′k = (1− 2xk)
√

Es + n′k

with n′k ∼ N
(
0, N0

2

)
, where changing the SNR means changing the transmitted en-

ergy and not varying the noise power. Whenever this latter more practical model is

used, it will be explicitly stated and the affected quantities will be denoted with ′,

e.g., the noise sample is denoted with n′k in the practical model, as opposed to nk in

the default model because it has different variance. For the same SNR Es

N0
= 1

2σ2 , the

transition probabilities Pij in both models are the same and if in the default model
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a set of boundaries {aj} is chosen, the equivalent set of boundaries in the practical

model is
{
a′j

}
=

{
aj

√
Es

}
.

Assuming equiprobable binary input to the BIAWGN channel and symmetric

quantization around zero, we need to select the probability distribution of the L = 2q

outputs of the quantizer. Due to the symmetry of the problem under these assump-

tions, aj = −aL−j, j = 0, 1, . . . , L, and so we need to determine dL/2e − 1 region

boundaries a1, a2, . . . , adL/2e−1 instead of L − 1, where dL/2e is the smallest integer

that is greater than or equal to L/2 , to account for both odd and even L.

The quantities that are modified by this choice are the MSE between the input

and the output of the quantizer, the cutoff rate of the equivalent channel of Fig. 31 and

the mutual information between the input and the output of the equivalent channel,

i.e., the information rate that can pass through the limited precision system. In the

next sections, we will try to determine the set of boundaries {aj} that optimizes each

of these quantities. So, we will get a set of {aj} that minimizes the MSE, another set

{aj} that maximizes the cutoff rate, and another set {aj} that maximizes the mutual

information.

Before proceeding with the quantizer design we provide the expressions for each

of these quantities in the following subsections.

1. Mean Squared Error

In the case of minimum mean squared error (MMSE) quantization, the quantizer

is not only determined by its region boundaries aj, j = 1, 2, . . . , L − 1, but also by

the values (levels) vj, j = 0, 1, . . . , L− 1 representing each region Tj. In general, the

Lloyd-Max algorithm [82] should be used to optimize the quantization boundaries and

levels. For a general L-level scalar quantizer, uniform or nonuniform, the quantization
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MSE DB,L is

DB,L =
L−1∑
j=0

∫ aj+1

aj

(vj − yk)
2 p(yk) dyk (3.3)

with a0 = −∞, aL = ∞ and p(yk) = (p(yk|xk = 0) + p(yk|xk = 1)) /2. Substituting

for p(yk) and using (3.1), (3.3) becomes

DB,L = 1 + σ2 −
L−1∑
j=0

vj (c0j + c1j) +
1

2

L−1∑
j=0

v2
j (P0j + P1j) , (3.4)

where cij =
∫ aj+1

aj
yk p(yk|xk = i) dyk, i = 0, 1, j = 0, 1, . . . , L−1. Due to the quantizer

symmetry, which means that P0j = P1(L−1−j), vj = −vL−1−j and c0j = −c1(L−1−j),

the last expression of DB,L can also be written as

DB,L = 1 + σ2 − 2
L−1∑
j=0

vj c0j +
L−1∑
j=0

v2
j P0j (3.5)

After some computations we can also express cij as

cij =





(1− 2i) Pi0 − σ√
2π

e−
(a1−1+2i)2

2σ2 for j = 0

(1− 2i) Pij + σ√
2π

(
e−

(aj−1+2i)2

2σ2 − e−
(aj+1−1+2i)2

2σ2

)

for j = 1, 2, . . . , L− 2

(1− 2i) Pi(L−1) + σ√
2π

e−
(aL−1−1+2i)2

2σ2 for j = L− 1

(3.6)

Since this MSE minimization quantization problem has been well studied in a

source coding perspective, we can approximately determine the minimum theoreti-

cally achievable MSE D∗
B,q of a quantizer with rate q bits from rate distortion theory.

Note that we use the quantizer rate q instead of the number of quantization levels L
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to allow for the most general rate distortion function. The equality q = log2 L holds

only for scalar fixed-rate quantizers.

We are not aware of any exact expression of the distortion-rate function of this

bimodal Gaussian distribution, but we can use the bounds of [9, p. 370, problem 8],

according to which

1

2πe
22 (h(Y )−q) ≤ D∗

B,q ≤ 2−2q σ2
Y (3.7)

where Y = 1 − 2 X + N is the output of the BIAWGN channel with input X and

noise N , and σ2
Y = 1 + σ2 is its variance, where σ2 is the variance of the noise N .

The differential entropy h(Y ) of Y can be determined numerically from

h(Y ) = −
∫ ∞

−∞

p(y|x = 0) + p(y|x = 1)

2
log

(
p(y|x = 0) + p(y|x = 1)

2

)
dy

= 1 +
1

2
log2

(
2πeσ2

)− 1√
2π

∫ ∞

−∞
e−

u2

2 log2

(
1 + e−

2
σ2− 2u

σ

)
du (3.8)

Both the upper and lower bounds on D∗
B,q have been plotted in Fig. 32, from

where it is clear that for lower Es

N0
= 1

2σ2 the two bounds coincide but not for higher

SNRs. We will use both bounds as a reference to the MSE achieved by different

quantizer designs in the next sections.

The MSE is the only quantity of the three to be optimized, i.e., the MSE, the

cutoff rate and the mutual information, that is affected by the choice of the statistical

model. This means that if we use the more practical model with Es being the energy

per transmitted coded bit and N0

2
the noise variance, instead of 1 and σ2 = N0

2Es
,

respectively, used to generate the curves in Fig. 32, all the curves in Fig. 32 have to

be scaled by Es, i.e., D
′ ∗
B,q = Es D∗

B,q. The results are shown in Fig. 33, where the

more practical model has been used and the bounds on the minimum possible scaled

MSE D
′ ∗
B,q/N0 have been plotted. Equivalently, one can think of Fig. 32 being scaled
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by Es

N0
to yield Fig. 33.

2. Cutoff Rate

From [63, 73, 75, 76] the cutoff-rate for the equivalent equiprobable binary input

discrete memoryless channel of Fig. 31 is

RB,L = 1− log2

(
1 +

L−1∑
j=0

√
P0jP1j

)
(3.9)

where the Pij are defined in (3.1).

Unfortunately, there is no such reference as the cutoff rate for a given quantizer

rate q, similar to the distortion-rate function of the previous subsection. So, the
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Fig. 33. The upper and lower bounds on the minimum achievable scaled MSE D
′ ∗
B,q/N0

of a rate q bits quantizer, as a function of Es/N0 for q = 1, log2 3, 2, 3 bits

using the more practical model.

only reference we will be using to compare with the cutoff rate achieved by several

quantizer designs is the cutoff rate of the unlimited precision BIAWGN channel RB,∞,

which is

RB,∞ = 1− log2

(
1 + e

−Es
N0

)
(3.10)
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3. Mutual Information

The mutual information IB,L of the equivalent channel of Fig. 31 with equiprobable

and independent binary inputs and a symmetric quantizer is

IB,L = I(X; Z) = H(Z)−H(Z|X) = −
L−1∑
j=0

pj log2(pj) +
L−1∑
j=0

P0j log2(P0j) (3.11)

where Z denotes the output of the equivalent channel, i.e., the quantized version of

the output of the BIAWGN channel Y , pj = Pr[yk ∈ Tj] , and in the last equality we

used the fact that due to the quantizer symmetry P0j = P1(L−1−j) . Since Pr[xk =

i] = 0.5, i = 0, 1 , pj = 0.5(P0j + P1j) = 0.5(P0j + P0(L−1−j)) , and so

IB,L =
L−1∑
j=0

P0j log2(P0j) + 1− 0.5
L−1∑
j=0

(P0j + P0(L−1−j)) log2(P0j + P0(L−1−j))

= 1−
L−1∑
j=0

P0j log2

P0j + P0(L−1−j)

P0j

(3.12)

which agrees with the result of [77].

Similarly to the cutoff rate, the only reference that will be used in the next

sections to compare the mutual information achieved by different quantizer designs,

will be the unquantized BIAWGN mutual information IB,∞ which is

IB,∞ = I(X; Y ) = h(Y )− h(Y |X) = h(Y )− 1

2
log2

(
2πeσ2

)
(3.13)

where h(Y ) can be expressed as in equation (3.8).

C. Uniform Scalar Quantization

Due to the symmetry of the quantizer, the problem of optimizing the MSE DB,L,

the cutoff-rate RB,L, or the mutual information IB,L, with respect to the quantization

boundaries a1, a2, . . . , aL−1, is (dL/2e−1)-dimensional. For uniform quantization, this
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problem can be made one-dimensional since aj = (j−L/2)τ, j = 1, 2, . . . , L− 1, τ ∈
R, τ > 0. In this Section, we design several L-level uniform scalar quantizers with

step τ that either minimize the MSE Du
B,L, or maximize the cutoff-rate Ru

B,L, or

maximize the mutual information Iu
B,L. The superscript u is used to denote uniform

quantization.

1. MSE Minimization

Uniform quantization in the MMSE sense is defined as having all boundaries aj, j =

1, 2, . . . , L − 1, spaced by the quantizer step τ and all reconstruction values vj, j =

0, 1, . . . , L−1, spaced by the same τ [82], i.e., for the inner intervals the reconstruction

values vj, j = 1, 2, . . . , L − 2, are the midpoints of the intervals Tj = (aj, aj+1), j =

1, 2, . . . , L − 2. So aj =
(
j − L

2

)
τ, j = 1, 2, . . . , L − 1 and vj =

(
j − L−1

2

)
τ, j =

0, 1, 2, . . . , L− 1 .

One way to determine the quantization step τ minimizing the MSE Du
B,L is to

use the Lloyd-Max algorithm [82]. An equivalent way that we are going to use here

is to set the derivative of the MSE Du
B,L with respect to τ equal to zero and find

the solution of the resulting equation. It is shown in Appendix A that the resulting

equation is
L−1∑
j=0

(
j − L− 1

2

) [(
j − L− 1

2

)
τ P0j − c0j

]
= 0 (3.14)
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where

c0j =





P00 − σ√
2π

e−
[(1−L

2 ) τ−1]
2

2σ2 for j = 0

P0j + σ√
2π

(
e−

[(j−L
2 ) τ−1]

2

2σ2 − e−
[(j+1−L

2 ) τ−1]
2

2σ2

)

for j = 1, 2, . . . , L− 2

P0(L−1) + σ√
2π

e−
[(L−1−L

2 ) τ−1]
2

2σ2 for j = L− 1

(3.15)

The advantage of expressing the results in the form of a nonlinear equation

in τ over using the Lloyd-Max algorithm to optimize τ in this case is that τ can

be numerically determined directly, e.g., using the function fzero in MATLAB. It

allows a more general approach to quantizer optimization based on different criteria,

as similar nonlinear equations for τ will be determined in the next subsections. This

approach gave the same scalar quantizer step τ as the Lloyd-Max algorithm. These

τ ’s have been plotted in Fig. 34 (dotted curves) as a function of Es/N0 = 1
2σ2 . The

top dotted curve corresponds to the τ of an L = 3−level quantizer, the second dotted

curve from the top to the τ of an L = 4−level quantizer and so on, down to the

bottom dotted curve, which corresponds to the τ of an L = 8−level quantizer

Since the reconstruction levels vj do not play an important role, we could ex-

tend the uniform scalar quantizer definition to uniformly spaced boundaries aj =
(
j − L

2

)
τ, j = 1, 2, . . . , L− 1 , but with representation levels vj corresponding to the

centroids of the Voronoi regions Tj = (aj, aj+1). In Appendix A it is shown that in

this case the nonlinear equation in the uniform quantizer step τ becomes

L−1∑
j=1

(vj−1 − vj)

(
vj−1 + vj − 2

(
j − L

2

)
τ

) (
j − L

2

)
e−

τ j

2σ2 [(j−L) τ−2] = 0 (3.16)
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Fig. 34. The step τ of the uniform scalar quantizers that either minimize the MSE

Du
B,L, or maximize the cutoff rate Ru

B,L, or maximize the mutual information

Iu
B,L, as a function of Es/N0 for L = 3, 4, 6, 8 levels.

where vj =
c0j−c0(L−1−j)

P0j+P0(L−1−j)
, for j = 0, 1, 2, . . . , L − 1 and the c0j are the same as in

equation (3.15). These τ ’s have been plotted in Fig. 34 (dashed curves) as a function

of Es/N0 = 1
2σ2 . It can be seen in Fig. 34 that minimizing the MSE with either

approach results in about the same uniform quantizer.

This is further confirmed in Fig. 35, where the MSE of both approaches has been

plotted as a function of Es/N0 = 1
2σ2 . For a fair comparison centroid quantization

levels were used to determine the MSE of both quantizers. The MSE curves of the two

quantizers almost coincide, i.e., the difference in the resulting MSE is not noticeable.

However, the MSE does not really have much to do with the limited precision
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Fig. 35. The MSE Du
B,L of the uniform scalar quantizers that minimize the MSE Du

B,L,

as a function of Es/N0 for L = 3, 4, 8 centroid levels.

system performance, as we will see next. Actually, the only conclusion we can draw

so far by comparing the uniform quantizer step τ of Fig. 34 for several quantization

criteria, is that worse uniform MSE quantizers might be closer to the mutual informa-

tion maximizing quantizers, i.e., they can result in higher information rates through

the system than better uniform MSE quantizers.

Before proceeding with the other two criteria we give the scaled versions of

Figs. 34 and 35 in Figs. 36 and 37, respectively. Figs. 36 and 37 show the scaled

uniform quantizer step τ ′√
N0

and the corresponding scaled MSE
D
′ u
B,L

N0
, respectively, in

case the more practical model is used. In other words, Fig. 36 resulted from Fig. 34

by scaling with
√

Es

N0
, since τ ′ = τ

√
Es, and Fig. 37 resulted from Fig. 35 by scaling
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Fig. 36. The scaled step τ ′√
N0

of the uniform scalar quantizers that either minimize

the MSE Du
B,L, or maximize the cutoff rate Ru

B,L, or maximize the mutual

information Iu
B,L, as a function of Es/N0 for L = 3, 4, 6, 8 levels using the

practical model.

with Es

N0
, as D

′ u
B,L = Es Du

B,L.

2. Cutoff Rate Maximization

Taking the derivative of the cutoff rate Ru
B,L with respect to the uniform quantizer step

τ and setting it equal to zero, we can get an equation for the step τ that maximizes

the cutoff rate of the equivalent channel. The simplest form into which we could bring



102

−6 −5 −4 −3 −2 −1 0 1 2 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
uniform scalar quantizer with L=3,4,8 levels (top to bottom)

E
s
/N

0
  (dB)

sc
al

ed
 M

S
E

  D
B

,L
’ u

 / 
N

0  (
dB

)

MSE for L=2                 
MSE minimization (uniform)  
MSE minimization (centroids)
distortion−rate upper bound 
distortion−rate lower bound 

Fig. 37. The scaled MSE
D
′ u
B,L

N0
of the uniform scalar quantizers that minimize the MSE

Du
B,L, as a function of Es/N0 for L = 3, 4, 8 centroid levels using the practical

model.

the resulting equation is

L−1∑
j=1

(κj−1 − κj)

(
j − L

2

)
e−

τ j

2σ2 [(j−L) τ−2] = 0 (3.17)

where κj =
√

P1j

P0j
for j = 0, 1, . . . , L − 1. The proof for this equation is given in

Appendix B. Again, this last equation is nonlinear in τ , so its solution can only be

determined numerically. Solving numerically this nonlinear equation for several L

and SNRs, we always got a single numerical solution and this solution corresponds

to the global maximum of the cutoff rate, although we have not been able to prove

this observation.
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Fig. 38. MSE for quantized channel measurements based on MSE minimization, cutoff

rate maximization and mutual information maximization as a function of

Es/N0 for L = 3, 4, 8 centroid levels. The bounds on the minimum MSE of

the BIAWGN channel output and the MSE of the L = 2−level BIAWGN

quantized channel are also plotted.

The corresponding results for the cutoff rate maximizing quantization step τ are

given in Figs. 34 and 36 with dash-dot curves. Our results exhibit a 3 dB difference

in Fig. 34 from those in [63, 76, 79] due to the definition of Es

N0
. Here, Es

N0
= 1

2σ2 , while

in [63, 76, 79], Es

N0
= 1

σ2 . Another significant difference is that to our knowledge, this

is the first time the practical model was combined with the cutoff rate maximization

to observe that the corresponding uniform quantizer step remains almost constant,

as Fig. 36 shows. Using the simplified model instead of the practical one in both

[63, 79], this fact has never been noticed before.
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Fig. 39. Scaled MSE for quantized channel measurements based on MSE minimization,

cutoff rate maximization and mutual information maximization as a function

of Es/N0 for L = 3, 4, 8 centroid levels using the more practical model. The

bounds on the minimum scaled MSE of the BIAWGN channel output and the

scaled MSE of the L = 2−level BIAWGN quantized channel are also plotted.

The corresponding MSE, scaled MSE (for the practical model) and cutoff rate

based on the quantizers of all the criteria considered have been plotted in Figs. 38, 39

and 40, respectively.

3. Mutual Information Maximization

Taking the derivative of the mutual information Iu
B,L with respect to the uniform

quantizer step τ and setting it equal to zero, we can get an equation for the step τ

that maximizes the mutual information of the equivalent channel. The simplest form
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Fig. 40. Cutoff rate for quantized channel measurements based on MSE minimization,

cutoff rate maximization and mutual information maximization as a function

of Es/N0 for L = 3, 4, 8 levels. The cutoff rates of the unquantized BIAWGN

channel (L = ∞) and of the L = 2−level BIAWGN quantized channel are

also plotted.

into which we could bring the resulting equation is

L−1∑
j=1

[
log

(
1 + κ2

j−1

)− log
(
1 + κ2

j

)] (
j − L

2

)
e−

τ j

2σ2 [(j−L) τ−2] = 0 (3.18)

where κj =
√

P1j

P0j
for j = 0, 1, . . . , L − 1. The proof for this equation is very similar

to the cutoff rate in Appendix B. Again, this last nonlinear equation in τ can only

be solved numerically, and again, for several L and SNRs, we always got a single nu-

merical solution that corresponds to the global maximum of the mutual information,
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Fig. 41. Mutual information for quantized channel measurements based on MSE min-

imization, cutoff rate maximization and mutual information maximization as

a function of Es/N0 for L = 3, 4, 8 levels. The mutual information of the

unquantized BIAWGN channel (L = ∞) and of the L = 2−level BIAWGN

quantized channel are also plotted.

although we have not been able to prove this observation.

The resulting τ ’s have been plotted in Figs. 34 and 36 with solid curves. The

results in Fig. 34 agree with those in [78, 79], again with a 3 dB difference. Fig. 41

shows the mutual information between the input and the output of the equivalent

channel with the different quantizers.
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4. Comparison

From Figs. 34, 36, 40 and 41, we see that although the values of τ for cutoff rate max-

imization and mutual information maximization are different, the resulting difference

of the corresponding mutual information and cutoff rate of the equivalent channels

is negligible. This was also observed in [79] for L = 3. This means that both the

cutoff rate and the mutual information can be used to design quantizers that allow

about the same information rate through the limited precision system. This is not

the case for the uniform quantizer designs based on the MSE. In fact, smaller MSE

might actually incur a larger information rate loss.

Before proceeding with nonuniform scalar quantization and check whether similar

conclusions hold in this case, we should make a remark about the robustness of

uniform scalar quantization. So far we assumed that a different optimized quantizer

is used for each Es

N0
. But since for a fixed Es

N0
a quantizer with step τ anywhere between

the mutual information maximizing τ and the cutoff rate maximizing τ is expected

to yield about the same information rate and cutoff rate, the same uniform scalar

quantizer is expected to exhibit good performance over a range of SNRs. The practical

model is especially helpful when looking at robustness. The cutoff rate maximizing

uniform quantizer is almost the same for all the SNRs we considered here (Fig. 36). In

fact from Fig. 36 we can conclude that any constant quantizer step between the cutoff

rate maximizing and the mutual information maximizing one is expected to do well

over the whole range of SNRs considered in Fig. 36. The robustness of the channel

measurements quantizer had only been noticed before in [72] by BER simulations

of convolutional codes, but it is the first time the Fig. 36 has been used to justify

such robustness through the cutoff rate, the mutual information and the practical

statistical model. This quantizer robustness will be further confirmed later in this
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chapter through simulations.

D. Nonuniform Scalar Quantization

Due to the symmetry of the quantizer, the problem of optimizing the MSE DB,L,

the cutoff-rate RB,L, or the mutual information IB,L with respect to the quantization

boundaries a1, a2, . . . , aL−1, is (dL/2e− 1)-dimensional for a nonuniform scalar quan-

tizer. In the previous section we dealt only with uniform scalar quantization. This

raises the question: how much better can we do with a nonuniform scalar quantizer?

How much more is there to gain, if we allow for a more complex quantizer design?

This section is motivated by these questions. We design several L-level nonuniform

scalar quantizers that either minimize the MSE Dnu
B,L, or maximize the cutoff-rate

Rnu
B,L, or maximize the mutual information Inu

B,L. The superscript nu is used to denote

nonuniform quantization.

1. MSE Minimization

This problem is the conventional nonuniform quantizer design problem where a dis-

tortion measure is involved, e.g., the mean squared error (MSE). In conventional

nonuniform quantization both the boundaries and the quantization levels have to

be optimized and this allows the use of the iterative Lloyd-Max algorithm for the

nonuniform quantizer design, which is based on optimizing first the boundaries for

given quantization levels and then the quantization levels given the boundaries and

repeating until the process converges.

However, again to allow for a more general treatment that can be extended to the

nonuniform quantizer design problems of the next two subsections, we will take all

partial derivatives of the MSE Dnu
B,L with respect to the (dL/2e − 1) different bound-
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Fig. 42. The two positive boundaries a4, a5 of the uniform and nonuniform scalar quan-

tizers that either minimize the MSE DB,L, or maximize the cutoff rate RB,L,

or maximize the mutual information IB,L, as a function of Es/N0 for L = 6

levels.

aries a1, a2, . . . , adL/2e−1, assuming that the representation levels are the centroids vj

of the intervals Tj = (aj, aj+1). It can be shown following an approach similar to that

of Appendix A that this approach yields the following system of nonlinear equations

vj−1 + vj = 2 aj , j = 1, 2, . . . ,

⌈
L

2

⌉
− 1 (3.19)

where vj =
c0j−c0(L−1−j)

P0j+P0(L−1−j)
, for j = 0, 1, 2, . . . , L − 1, and the c0j are the same as

in equation (3.6). These equations were expected since the nonuniform Lloyd-Max

quantizer has centroid quantization levels and boundaries the midpoints between

neighboring quantization levels.
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Fig. 43. The three positive boundaries a5, a6, a7 of the uniform and nonuniform scalar

quantizers that either minimize the MSE DB,L, or maximize the cutoff rate

RB,L, or maximize the mutual information IB,L, as a function of Es/N0 for

L = 8 levels.

The solution of this nonlinear system of equations was determined using the

MATLAB function fsolve. The positive boundaries aj, i.e., abL
2 c+1, abL

2 c+2, . . . , aL−1,

for L = 6−level and for L = 8−level quantization have been plotted in Figs. 42 and 43,

respectively.

As can be seen from Figs. 42 and 43, as well as Fig. 44, which shows the MSE

achieved by uniform and nonuniform scalar quantizers, nonuniform MSE minimizing

quantization is almost uniform and achieves practically the same MSE as uniform

MSE minimizing quantization.

Using the practical model to replot the results of Figs. 42, 43 and 44, we get
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Fig. 44. MSE for uniform and nonuniform quantization of channel measurements based

on MSE minimization, cutoff rate maximization and mutual information max-

imization as a function of Es/N0 for L = 6, 8 centroid levels. The bounds on

the minimum MSE of the BIAWGN channel output are also plotted.

Figs. 45, 46 and 47, respectively.

2. Cutoff Rate Maximization

Here we are dealing with a nonconventional quantization problem where only the

quantization boundaries have to be optimized and an iterative design procedure, such

as the Lloyd-Max algorithm, cannot be applied. A design algorithm for nonuniform

scalar quantizers based on the cutoff-rate maximization was introduced in [76]. This

design algorithm can equivalently be expressed as a nonlinear system of equations,

similarly to what was done for the MSE in the previous subsection. So, taking the
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Fig. 45. The two positive boundaries (scaled)
a′4√
N0

= a4

√
Es

N0
and

a′5√
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= a5

√
Es

N0
of

the uniform and nonuniform scalar quantizers that either minimize the MSE

DB,L, or maximize the cutoff rate RB,L, or maximize the mutual information

IB,L, as a function of Es/N0 for L = 6 levels using the practical model.

partial derivatives of the cutoff rate Rnu
B,L with respect to the

⌈
L
2

⌉ − 1 boundaries

a1, a2, . . . , adL
2 e−1 we get the following system of nonlinear equations [76]

κj−1 κj = e−
2 aj

σ2 , j = 1, 2, . . . ,

⌈
L

2

⌉
− 1 (3.20)

where as in uniform quantization κj =
√

P1j

P0j
.

The positive quantization boundaries abL
2 c+1, abL

2 c+2, . . . , aL−1 have been plotted

in Figs. 42 and 43 for L = 6−level and for L = 8−level quantization, respectively.

The L = 8−level nonuniform quantization results agree with those of [63, 76], again

with the 3 dB difference. In Figs. 45 and 46 the positive quantization boundaries have
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Fig. 46. The three positive boundaries (scaled)
a′5√
N0

= a5

√
Es

N0
,

a′6√
N0

= a6

√
Es

N0
and

a′7√
N0

= a7

√
Es

N0
of the uniform and nonuniform scalar quantizers that either

minimize the MSE DB,L, or maximize the cutoff rate RB,L, or maximize the

mutual information IB,L, as a function of Es/N0 for L = 8 levels using the

practical model.

been scaled and replotted using the practical model. The MSE and the scaled MSE of

these quantizers are plotted in Figs. 44 and 47, respectively, and the cutoff rate of the

equivalent channel corresponding to all the quantizers considered so far with L = 6

and L = 8 levels in Fig. 48. From all these figures one can see that the uniform and

the nonuniform cutoff rate maximizing quantizers do not differ much from each other

in terms of their boundaries (Figs. 42, 43, 45 and 46), the MSE between their input

and output (Figs. 44 and 47) and the cutoff rate of the equivalent channel they define

(Fig. 48). Fig. 49 shows that the corresponding mutual information of the input and
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Fig. 47. Scaled MSE for uniform and nonuniform quantization of channel measure-

ments based on MSE minimization, cutoff rate maximization and mutual

information maximization as a function of Es/N0 for L = 6, 8 centroid levels.

The bounds on the minimum MSE of the BIAWGN channel output are also

plotted. For all curves the practical model has been used.

the output of the equivalent channel of both quantizers is also practically the same.

3. Mutual Information Maximization

Working similarly as in the previous subsection, i.e., taking the partial derivatives of

the mutual information Inu
B,L with respect to the

⌈
L
2

⌉−1 boundaries a1, a2, . . . , adL
2 e−1
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Fig. 48. Cutoff rate for uniform and nonuniform quantization of channel measurements

based on MSE minimization, cutoff rate maximization and mutual information

maximization as a function of Es/N0 for L = 6, 8 levels. The cutoff rates of

the unquantized BIAWGN channel (L = ∞) are also plotted.

we can get the following system of nonlinear equations

e
2 aj

σ2
[
log

(
1 + κ2

j−1

)− log
(
1 + κ2

j

)]
= log

(
1 +

1

κ2
j

)
− log

(
1 +

1

κ2
j−1

)
(3.21)

j = 1, 2, . . . ,

⌈
L

2

⌉
− 1

where as in uniform quantization κj =
√

P1j

P0j
.

The positive quantization boundaries abL
2 c+1, abL

2 c+2, . . . , aL−1 have been plotted

in Figs. 42 and 43 for L = 6−level and for L = 8−level quantization, respectively. In

Figs. 45 and 46 the positive quantization boundaries have been scaled and replotted
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using the practical model. The MSE, the scaled MSE and the cutoff rate of these

quantizer are plotted in Figs. 44, 47 and 48, respectively. The mutual information

between the input and the output of the equivalent channel corresponding to all the

quantizers considered so far with L = 6 levels is given in Fig. 49. From all these figures

one can see that the uniform and the nonuniform mutual information maximizing

quantizers do not differ significantly from each other in terms of their boundaries

(Figs. 42, 43, 45 and 46), the MSE between their input and output (Figs. 44 and 47),

the cutoff rate and the mutual information of the equivalent channel they define

(Figs. 48 and 49).

4. Comparison

Comparing all the scalar quantizers we have considered so far, uniform or nonuniform,

MSE minimizing, cutoff rate maximizing and mutual information maximizing, we can

conclude that allowing a more complex design, i.e., nonuniform versus uniform, does

not really yield noticeable gains neither in terms of the cutoff rate nor in terms of

the mutual information. Another important fact is that improving the MSE through

nonuniform MSE-minimizing quantization can result in lower mutual information and

cutoff rate than uniform MSE minimizing quantization.

Regarding the robustness of the nonuniform quantizers, they exhibit similar ro-

bustness to their uniform counterparts. This can be seen in Figs. 45 and 46, as all

the boundaries of a mutual information maximizing nonuniform scalar quantizer at

a specific Es

N0
remain below the cutoff rate maximizing nonuniform quantizer bound-

aries. We expect that any scalar quantizer with boundaries between the respective

cutoff rate maximizing boundaries and mutual information maximizing boundaries

will not suffer any noticeable loss in terms of the mutual information or the cutoff

rate of the equivalent channel. Furthermore, the nonuniform cutoff rate maximizing
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Fig. 49. Mutual information for uniform and nonuniform quantization of channel mea-

surements based on MSE minimization, cutoff rate maximization and mutual

information maximization as a function of Es/N0 for L = 6, 8 levels. The

mutual information of the unquantized BIAWGN channel (L = ∞) is also

plotted.

quantizers seem to be very robust, similarly to their uniform counterparts.

E. Simulation Results

In this subsection, we simulate low-density parity-check (LDPC) codes designed for

the unquantized BIAWGN channel [20] with quantized channel measurements us-

ing MSE minimizing, cutoff rate maximizing and mutual information maximizing,

uniform and nonuniform, quantizers and compare their performance. It is straight-

forward to see that the only difference in the message passing decoding algorithm
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when the output of the channel is quantized while the decoder can operate at infinite

precision, lies in the channel log-likelihood ratios (LLRs). More precisely, when using

L levels to quantize the channel measurements and the kth unquantized received value

yk lies in the jth quantization interval Tj, the corresponding channel LLR Lch,k is

Lch,k = log
Pr [yk ∈ Tj|xk = 0]

Pr [yk ∈ Tj|xk = 1]
= log

P0j

P1j

= log
P0j

P0(L−1−j)

, j = 0, 1, . . . , L− 1, (3.22)

where log is the natural logarithm. If δ(t) is the Dirac delta function, the probability

density function of the channel LLRs conditioned on the transmission of the all-zeros

codeword, is

P (l) =
L−1∑
j=0

P0jδ (l − fj) . (3.23)

with fj = log
P0j

P0(L−1−j)
.

We consider two rate 1/2 LDPC codes, the regular (3,6) LDPC code and the

simplest irregular code of [20]

λ(x) = 0.234029x + 0.212425x2 + 0.146898x5

+0.102840x6 + 0.303808x19 (3.24)

ρ(x) = 0.71875x7 + 0.28125x8. (3.25)

In Fig. 50, we can see how 2-bit and 3-bit uniform quantization with different

criteria affect the decoding performance for the regular (3, 6) LDPC code. All simula-

tion points assume either 100 frame errors or decoding of 2000 frames. From Fig. 50,

first we can see that with 3-bit (L = 8) quantization the loss from the unquantized

performance (L = ∞) can be as low as 0.1 dB. Furthermore, capacity maximization

works slightly better than cutoff-rate maximization and both are significantly better
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Fig. 50. Simulated BER for the length 104 regular (3,6) LDPC code with different

uniform quantization criteria for 50 decoding iterations.

than MSE minimization.

A similar performance comparison is shown in Fig. 51 for the irregular code of

(3.24) and (3.25). The code parameters are the same as those of Fig. 50 and from the

simulation results, the superiority of mutual information maximization as a criterion

for quantizer design is established.

In Figs. 52 and 53, the simulated performance of the regular and irregular LDPC

codes with 3-bit quantization is plotted for all possible quantizers, i.e., both uniform

and nonuniform for each quantization criterion and a robust uniform quantizer with

step τ = 0.35
√

N0 for all simulated SNRs. This value for the robust quantizer was
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Fig. 51. Simulated BER for the length 104 irregular LDPC code of (3.24) and (3.25)

with different uniform quantization criteria for 50 decoding iterations.

chosen as a value between the cutoff rate maximizing uniform quantizer step and

the mutual information maximizing uniform quantizer step in Fig. 36 being a little

closer to the latter as Figs. 50 and 51 show that there is a slight advantage in the

performance of mutual information maximization.

Both Figs. 52 and 53, show that there is very little to gain by using nonuniform

instead of uniform quantizers and there is almost no loss when the same uniform

quantizer is used over a range of SNRs.
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Fig. 52. Simulated BER for the length 104 regular (3,6) LDPC code with different

uniform and nonuniform quantization criteria for 50 decoding iterations and

L = 8 quantizer levels.
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F. Conclusions and Discussion

In this chapter we studied several uniform and nonuniform scalar quantizers for quan-

tization of coded channel measurements. The first conclusion of this study is that

maximizing the mutual information or the cutoff rate of the equivalent channel yields

better performance both in terms of the allowable throughput through the limited

precision system and in terms of the BER of powerful channel codes, than minimizing

the MSE between the input and the output of the quantizer. The difference between

cutoff rate maximization and mutual information maximization is negligible.

The second conclusion is that the advantage of nonuniform scalar quantization

over uniform scalar quantization is not noticeable, neither in the throughput nor

in the BER. The last conclusion and probably the most important one for practical

applications is that the same quantizer can be used over a wide range of SNRs without

sacrificing in performance or throughput. This is observation is made here for the

first time and is due to the more appropriate statistical model used.

Most of the above assumptions apply to almost all soft-input decoding channel

codes, as the cutoff rate is directly related to the exponent of the union bound and

so its maximization is expected to improve the channel decoding performance. The

only channel codes that might be a little sensitive to the quantization effect are high

rate codes. However, for most of the cases we think that our extensive comparison of

all the criteria provided most of the answers to this quantization problem.

We believe there are only still two open directions remaining in this subject.

The first is whether more complex quantization, i.e., variable-rate quantization [83]

or nonscalar (vector) quantization [83], can yield significant gains. As we discuss

in Appendix C, these gains, are mainly of theoretical interest, i.e., they will mainly

serve as an answer to the still open problem of what the theoretical limits of the
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throughput through the limited precision system when complexity at the quantizer

is not an issue.

The second open and more practical direction is how the extensive comparisons

in this chapter can be extended to nonbinary modulation schemes and to different

channels. The only results we are aware of for the case of any nonbinary modulation

is in [84] and there has also been some work on quantization of PSK constellations

[85, 86]. All this work assumes AWGN channels and cutoff rate maximization.

More work has been done for binary input Rayleigh fading channels [66, 67,

68, 69, 77, 78, 80, 81]. However, again an extensive study of all the quantization

approaches is missing, as well as any type of quantizer design for nonbinary input

Rayleigh fading channels.
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CHAPTER IV

FASTER-THAN-NYQUIST SIGNALING†

Faster-than-Nyquist signaling (FNS) introduces intersymbol interference (ISI), but in-

creases the bit-rate while preserving the signaling bandwidth. For sinc pulses, it has

been established that with a small increase in the signaling-rate beyond the Nyquist

rate there is no reduction in the minimum Euclidean distance for binary signaling.

In this chapter we generalize these observations to the family of raised-cosine pulses.

The structure of the error events that reduce the minimum distance is examined and

constrained coding ideas are suggested that theoretically allow even faster signaling.

Then we propose ways of practically achieving these gains by designing appropri-

ate constrained codes and through equalization and iterative joint equalization and

decoding (turbo equalization).

A. Introduction

We consider the communication system of Fig. 4. At the transmitter one information

symbol ak is generated every τ seconds, passed through a transmit filter g(t) and

sent through an additive white Gaussian noise (AWGN) channel. The matched-

filter samples at the signaling rate, which form a sufficient statistic for the sequence

estimation problem, are then

y(nτ) =
∑

k

ak x ((n− k)τ) + n′(nτ). (4.1)

† c©2003 IEEE. Reprinted, with permission, from “Exploiting faster-than-Nyquist
signaling”, Angelos D. Liveris and Costas N. Georghiades, IEEE Trans. Commun.,
Sept. 2003, pp. 1502-1511.
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where x(t) = g(t) ∗ g∗(−t) is assumed to be strictly bandlimited to W Hz, and n′(t)

is a zero-mean, Gaussian process with autocorrelation Rn′n′(u) = x(u)N0/2.

For intersymbol interference (ISI) free transmission over an ideal AWGN channel

of bandwidth W , Nyquist’s criterion dictates that x(iτ) = 0 for i 6= 0 and the

signaling rate 1/τ cannot exceed the Nyquist rate of 2W signals/s. Thus, to avoid

ISI, τ ≥ 1/(2W ) with equality achieved only with ideal sinc pulses

x(t) = Es sinc

(
t

T

)
= Es

sin(πt/T )

πt/T
, (4.2)

where x(0) = Es is the energy per transmitted symbol and since we assume baseband

transmission throughout this paper, T = 1/(2W ). The sinc pulse is a special case of

the general family of raised-cosine pulses

x(t) = Es sinc(t/T )
cos(παt/T )

1− (2αt/T )2
, (4.3)

with 0 ≤ α ≤ 1 being the roll-off factor and W = (1 + α)/(2T ) the bandwidth they

occupy. ISI free transmission for these pulses means τ = T = (1+α)/(2W ) ≥ 1/(2W ).

In faster-than-Nyquist signaling (FNS) information symbols are transmitted at

a rate higher than that suggested by the Nyquist criterion, i.e., 1/τ > 2W and,

therefore, ISI is unavoidable. Signaling above the Nyquist rate comes at the expense

of higher receiver complexity and higher transmitted power since more information

symbols are sent per second. Since it was first studied in [87], the usefulness of FNS

has not yet been determined. Several receivers have been suggested, some implying

the feasibility of FNS [88, 89] and other not considering it worthwhile [90, 91].

The asymptotically optimum performance with respect to sequence error prob-

ability is determined by the minimum Euclidean distance between all possible wave-

forms at the (noiseless) output of the channel [4, 92, 93, 94]. In the literature, min-

imum distance numerical results [94] and more exact analytical bounding methods
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[95, 96] have already been used for sinc pulses to establish that signaling approxi-

mately 25% above the Nyquist rate does not reduce the minimum Euclidean distance

for the binary case.

In this chapter we take another look at FNS by applying some of the recent pow-

erful iterative equalization, turbo coding and constrained coding techniques to the

problem [97, 98]. Our aim is to exploit FNS by converting some or all of the through-

put gains into coding gains by use of coding with appropriate decoding/equalization

techniques. In Section B the minimum distance results for sinc pulses are extended

numerically to the more general raised-cosine pulses. In Section C, the error patterns

that cause the minimum distance to decrease are examined in more detail and ways of

avoiding their occurrence through constrained coding are suggested, thus extending

the range of the minimum distance “gains”. A simple code is then constructed based

on a finite state machine (FSM) implementing the necessary constraint using results

from [98, 99]. In Sections D and E the minimum distance gains achieved through FNS

are practically translated into higher signaling rates by use of suboptimum equaliza-

tion, or into coding gains by employing high rate single parity-check codes and turbo

equalization. The performance in the first case comes very close to that of optimum

antipodal ISI-free signaling over an AWGN channel and in the second case, to that

of optimum decoding over an ISI-free AWGN channel. In Section F, the relationship

between bandwidth and throughput of FNS is explored and in Section G it is shown

that the sampling rate at the output of the matched-filter can be lower than the

signaling rate of FNS. The conclusions sum up the chapter.
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B. Minimum Distance Estimation

In the system of Fig. 4, let the row vector a = [ak] represent the input sequence to

the transmit filter and

sa(t) =
∑

k

akg(t− kτ) (4.4)

the corresponding transmitted signal. It is easily established that the following Eu-

clidean distance relates closely to the probability of mistaking a transmitted sequence

a to some other sequence b :

d2(a, b) =

∫ ∞

−∞
[sa(t)− sb(t)]

2 dt =
∑

k

∑

l

ekelx ((k − l)τ) = eXet = d2(e) (4.5)

where ek = ak− bk (e.g., ek ∈ {0,±2} for the binary case), i.e., e = a−b is the input

difference (error) sequence, and X = [xij = x((i − j)τ)] is a Toeplitz matrix formed

by the values of the overall pulse x(t) at the sampling instants nτ, n ∈ Z. Using

this last expression we can numerically estimate the minimum Euclidean distance

for various signaling alphabets, pulse shapes and signaling rates over all difference

sequences e 6= 0. We define the normalized minimum Euclidean distance dmin as

dmin = min
e6=0

d(e)

2
√

Eb

(4.6)

which determines to a large extent the performance of the optimum receiver that

tries to combat the introduced ISI, especially for high signal-to-noise ratios [4, 92,

93, 94].1 Eb is the energy per information bit and equals Es only for uncoded binary

transmission.

In this chapter we focus on raised-cosine pulses which are the most often used

in practice, but the results can be extended to other bandlimited pulses, includ-

1Note that this definition of dmin is different by a factor of
√

2 from its usual
definition in the associated literature as d2

min = d2/(2Eb).
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ing quadratic and trapezoidal roll-off, for all of which (theoretically) ISI has infinite

length. In this case, the results of [4, 92] do not apply as they assume finite ISI,

but dmin can still be used to determine a lower bound on sequence error probability

[93, 94]. Furthermore, as already established in [94, 95, 96] and from our numerical

results (see the next section), the difference sequences minimizing the distance for

small roll-off factor α have length of at most 12 for the region of interest, which is

up to and a little beyond the point where the minimum distance starts decreasing.2

The numerical results for uncoded binary signaling, are presented in Fig. 54 for three

roll-off factors α = 0%, 10%, 20%. The minimum distance is plotted as a function of

the bandwidth efficiency R/W , i.e., the ratio of the signaling rate R = 1/τ to the

utilized bandwidth W = (1 + α)/(2T ) (measured in bits/sec/Hz). The ISI free sig-

naling rate is 1/T corresponding to a bandwidth efficiency of 2/(1 + α) bits/sec/Hz.

The highest ISI-free bandwidth efficiency is 2 bits/sec/Hz, achieved by the ideal sinc

pulse (α = 0).

Fig. 54 suggests that an optimum detector does not suffer any distance loss up

to signaling rates about 25% higher than Nyquist. For the sinc pulse, this was first

noticed in [94] and then proven in [95, 96]. For nonzero roll-off factors the behavior

of dmin is similar, but due to the excess bandwidth, the range of FNS rates without

dmin reduction is more limited. That is why we only focus on the more bandwidth

efficient raised-cosine pulses. Ways to extend this dmin behavior to higher rates by

use of constrained coding are discussed in the following section. Then practical ways

of exploiting the dmin gains of Fig. 54 are suggested in Sections D and E, to our

knowledge for the first time.

2Actually, for all minimum distance plots all possible values of e of length 14 were
considered for each point, i.e., 314 ≈ 4.8 · 106, which is enough to describe the dmin

properties being exploited in our applications.



130

2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R/W (bits/sec/Hz)

d m
in

 (
no

rm
al

iz
ed

)

d
min

 vs R/W with minimizing error patterns

1
3
4
5
6
7
8
a
b
c
d
α=0%
α=10%
α=20%

Fig. 54. Minimum Euclidean distance dmin as a function of the bandwidth efficiency

for binary faster-than-Nyquist signaling (FNS) for the sinc pulse (α = 0%)

and the raised-cosine pulses with roll-off α = 10%, 20%. The error sequences

emin are also shown. The numbers show the length of the single alternating

block emin (e.g., 5 = ±(. . . 000 − + − + − 000 . . .)) and the letters stand for

emin containing more than one block (a = ±(. . . 000 − + − 0 + − + 000 . . .),

b = ±(. . . 000−+0−+0−+000 . . .), c = ±(. . . 000−+0−+00−+0−+000 . . .),

d = ±(. . . 000−+0−+000 . . .)).



131

C. Error Events and Constrained Coding

In Fig. 54, as long as there is no change in dmin compared to the ISI-free case, the

error sequence emin that yields dmin is one with only a single nonzero component;

i.e., a pair of input binary sequences is at dmin if the two sequences differ at a single

position. Surprisingly, the error patterns emin that first cause degradation in dmin

in Fig. 54 contain a single long block of alternating polarity and, more generally,

they consist of one or more blocks of alternating polarity, as Fig. 54 shows. This

was also observed in [94, 95, 96] for sinc pulses. It seems that the FNS system is

more vulnerable to higher frequency error events whose frequency content partly lies

outside the utilized strictly bandlimited spectrum.

These error events emin are depicted in Fig. 54 for all three roll-off factors. The

numbers in the legend stand for error sequences containing a single block of alternating

polarity of this length; for example, 5 represents the error pattern ±(. . . 000 − + −
+ − 000 . . .), where + and − correspond to ek = 2 and ek = −2, respectively. Each

letter corresponds to an error pattern consisting of more than one block. Thus,

a = ±(. . . 000 − + − 0 + − + 000 . . .), b = ±(. . . 000 − +0 − +0 − +000 . . .), c =

±(. . . 000−+0−+00−+0−+000 . . .), d = ±(. . . 000−+0−+000 . . .). Close to the

“knee”, the point where dmin starts decreasing, the dmin error event is a single block

of alternating polarity, while for higher rates, first its length is reduced and then it

starts splitting into two or three alternating blocks. Of course, it is obvious that such

patterns can only arise from a pair of binary sequences that include alternating blocks

of some length with opposite polarity.

Due to this structured form of error events and the associated binary sequences,

constrained codes [98, 99] not allowing the occurrence of input sequences to the trans-

mit filter that generate such error events, become very attractive. Employing such
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codes would keep dmin constant for even higher signaling rates, at the expense of some

rate loss. Not allowing the occurrence of alternating blocks of length 3 and more in

the error sequence, we repeat the numerical computations of dmin and emin for this

constrained case. The results are shown in Fig. 55.

The increase in dmin in Fig. 55 was combined with the code rate due to the

constraints imposed on the input sequences to yield some gains over the unconstrained

case. For the constraints imposed, one way of determining the maximum possible code

rate used in Fig. 55 is by constructing a finite state machine (FSM) and determining

its capacity. The FSM employed is depicted in Fig. 56(a) (higher rate FSMs that

exclude longer sequences of alternating bits can similarly be obtained). The capacity

of an FSM with r states is found from the adjacency matrix of the FSM, i.e., the r×r

matrix A with elements aij equal to the number of edges from state i to state j, as

the logarithm (base 2) of the largest real eigenvalue of A [98, 99]. For the FSM of

Fig. 56(a), A =




1 1 0
0 0 1
1 0 1


 and thus, its capacity is 0.8114.

The constrained coding approach allows even faster signaling, around 50% FNS,

at the expense of a small performance loss of around 1 dB compared to ISI-free sig-

naling and slightly increased complexity.

However, the complexity of designing a code of high rate, close to capacity, is

relatively high, especially when it is to be combined with a suboptimum detector

trellis. Therefore, we start with a simple initial code design of rate 2/3 following

the guidelines of [99], which has the form of Fig. 56(b), where some of the possible

transitions between the FSM states have been dropped to yield a rate 2/3 code.

The criteria for deciding which of the transitions to keep and which to drop, as

well as for choosing the input-output mapping, still require further investigation and

optimization.



133

2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R/W (bits/sec/Hz)

d m
in

 (
no

rm
al

iz
ed

)

d
min

 vs R/W with minimizing error patterns (constrained)

1
2
b
c
d
e
f
α=0%
α=10%
α=20%

Fig. 55. Minimum Euclidean distance dmin as a function of the bandwidth efficiency for

constrained binary FNS showing the error sequences emin. The numbers show

the length of the single alternating block emin (e.g., 2 = ±(. . . 000−+000 . . .))
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Fig. 57. Decoder trellis based on the FSM of Fig. 56(b).

Here we used systematic mapping, as this seems to yield a slightly smaller infor-

mation bit error rate. Furthermore, the last two codeword bits over each transition,

which constitute the systematic part, also determine the next state. So without loss

of optimality, we can represent each state with the input leading to this state, i.e.,

state 1 with 01, state 2 with 11 and state 0 with either 00 or 10 or both. In the case

that we use both 00 and 10 to represent state 0, the decoder trellis can take the form

of Fig. 57.

We should note that it is possible to have a decoder trellis with only three

states when using a single state to represent state 0, but the four-state trellis can be
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better combined with the detector trellis, discussed next, and this justifies the slightly

increased complexity. In fact, it hardly increases the complexity, when combined

with a reduced-state detection technique, as for small performance deviations from

the optimum performance, the suboptimum scheme includes a reasonable number of

states. Thus, the reduced-state detection trellis can contain the whole decoder trellis,

as we will see next.

1. Detector Trellis and Simulation Results

We will use the trellis of Fig. 57 as the detector trellis in our scheme. We assume

α = 10%, τ/T = 0.75, i.e., R/W = 2T/τ/(1 + α) = 2.424 bits/sec/Hz, and the

one-side duration of the raised-cosine pulse extends to LT = 100T , where T is the

no-ISI signaling interval. For this case, from Figs. 54 and 55, we see that although

the minimum distance starts decreasing, applying even the highest possible rate con-

strained code, i.e., a constrained code with rate equal to the capacity of the FSM of

Fig. 56(a), does not yield any dmin gains. However, this refers to optimum detection

and not to the suboptimum receiver structures actually employed. As the simula-

tion results of Fig. 58 for systems with similar complexity show, even the rate 2/3

code can yield some gains, even after being penalized for its rate. The comparison is

made with respect to the truncated version of Ungerboeck’s Viterbi algorithm [4, 5]

(see also Subsection 1 in Section D) and the improved truncated version employing

decision feedback to cancel the residual ISI [6]. The performance is given in terms

of information bit error rate as a function of Eb/N0. All detectors of Fig. 58 operate

directly on the matched-filter output samples and have about the same complexity in

terms of number of transitions in a single trellis step. It is worth mentioning that in-

corporating decision feedback in the constrained coded system is expected to further

improve its performance.
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constrained coding (cc) scheme is based on the detector trellis of Fig. 57 (4

states but same number of transitions as the other two detectors) and has

been penalized for its code rate.
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Let us discuss in a little more detail the recursive processing in the reduced-state

detector (plot marked “Viterbi, 4-states, cc” in Fig. 58). The trellis used is that of

Fig. 57. This means that compared to the ordinary truncated detector based on [4],

it is like performing three recursive computations for each transition, as each of them

involves processing of three received symbols. Furthermore, there is some difference

in the number of neighboring taps considered when canceling the ISI at each of the

three symbols of each transition. This is because for the first of these three symbols

the ISI of just the two past symbols indicated by the starting state of the transition

can be cancelled, whereas for the second and third symbol the ISI of three and four,

respectively, past symbols can be considered; apart from the two symbols of the

starting state, the preceding symbols of the transition can also be considered. So the

implemented recursive metric computation has the form

Jn+1(a3n+1, a3n+2) = Jn(a3n−2, a3n−1) + a3n

(
y(3nτ)−

2∑

k=1

x(kτ)a3n−k

)

+ a3n+1

(
y ((3n + 1)τ)−

3∑

k=1

x(kτ)a3n+1−k

)

+ a3n+2

(
y ((3n + 2)τ)−

4∑

k=1

x(kτ)a3n+2−k

)

= Jn(a3n−2, a3n−1) +
3n+2∑
i=3n

aiy(iτ)

−
3n+2∑
i=3n

ai

i+2−3n∑

k=1

x(kτ)ai−k . (4.7)

It is straightforward to generalize this metric computation to a larger number of states

and to higher rate codes.

Despite all the possible improvements that can be made to the constrained coded

system, like incorporating decision feedback and using higher rate codes, for this low

complexity it outperforms the other reduced-state detection schemes. The reason is
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that for such low complexity, not only the minimum distance error event but also other

error events with a little larger distance affect the asymptotic performance. These

can partly be predicted by looking at the error events that minimize the Euclidean

distance for slightly faster signaling. For instance, we observed that the most frequent

error events for large SNRs for the 8-state decision feedback scheme were those with

a single block with length 5 and not those with length 6 or 7 as Fig. 54 indicates.

This changes when higher complexity can be tolerated, e.g., 64 states instead

of 8. Then the optimum detector analysis is expected to be more precise and the

constrained coding approach can only help as much as it was predicted. A practical

system exploiting the gains for higher complexities or lower signaling rates would

probably include some of the ideas of the systems proposed in the next sections that

achieve the unconstrained gains.

D. Suboptimum Equalization

The focus of the previous section was how to prevent dmin from decreasing and how

to use low complexity receiver structures that can work well at these increased FNS

rates. The focus of this and the next section, however, has to do with exploiting

the dmin gains that are shown at Fig. 54 at slightly lower FNS rates, i.e., at rates

for which dmin is still the same as in the ISI-free case. The analysis was based on

dmin between different transmitted sequences when employing the strictly bandlimited

raised cosine pulse shape and from that we concluded for the binary case that there

is no degradation in dmin at rates up to approximately 25% above the Nyquist when

compared to the ISI-free case. However, although these gains have been discussed in

the literature [94, 95, 96], no way of actually exploiting them has been suggested so

far. This is the motivation for the work in this and the following section.
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Referring to Fig. 4, the maximum-likelihood sequence detector selects the se-

quence a that maximizes the log-likelihood function

`(a) =
∑

n

an y(nτ)− 1

2

∑

k

∑
n

an an−k x(kτ). (4.8)

If τ = T , the system satisfies the Nyquist criterion, i.e., there is no ISI and the

optimum detector is the sign-detector. However, when τ < T , the Nyquist criterion

is violated, ISI-free transmission is not possible and the optimum way of dealing with

the ISI is maximum likelihood sequence estimation, which can be implemented with

the Viterbi algorithm (VA) [4, 92] if the infinite ISI is truncated to some finite length.

Before proceeding with the equalizer structures, it is worth mentioning that a

sampling rate at the output of the matched-filter lower than the signaling rate can

be adequate. For strictly bandlimited pulses to W Hz, like the raised-cosine family,

the matched filter output bandwidth is also strictly bandlimited to W Hz. Therefore,

using interpolation, it is still optimum to process the Nyquist rate samples, i.e.,

sampling at 2W = (1+α)/T . The advantage would be a constant sampling rate even

with varying FNS rate, which would be accounted for by adapting the coefficients

in the optimum detector. The price paid would be a small loss due to the nonideal

interpolation. The sampling rate is discussed in more detail in Section G.

We should also note that we already used some of the equalizer structures that

will be presented next, in the previous section. But as Fig. 58 shows, these structures

cannot outperform the coded performance and are quite far from the ISI-free perfor-

mance for such high rates. Here the FNS rates are a little lower, thus the ISI-free

performance can very closely be approached with these suboptimum schemes and this

is the first reason they are studied in more detail in this section. The second reason is

that these structures can be combined with decoding in an iterative receiver scheme

allowing the translation of the increased signaling rates into coding gains.
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1. The Truncated Optimum Equalizer

We use the modified VA (MVA) of [4] which allows operating directly on the matched-

filter samples at the faster 1/τ > 2W rate. If yn = y(nτ) is the sample of the matched-

filter output at time t = nτ , L is the number of interfering symbols preceding the

current symbol an and Jn(an−L+1, . . . , an) is the metric of the state an−L+1, . . . , an at

time t = nτ , the recursive relationship of the MVA is [4]

Jn(an−L+1, . . . , an) = Jn−1(an−L, . . . , an−1) + an

(
yn −

L∑
i=1

x(iτ) an−i

)
, (4.9)

where we dropped the common terms for all states. A trellis of 2L states is needed

for optimum equalization. The problem, of course, is that here the ISI is very long,

theoretically infinite, so that the VA would be too complex. In the system of Fig. 4,

we will use α = 10%3 and truncate the theoretically infinite raised-cosine waveform

x(t) to 80T seconds (40T before the peak and 40T after it), which is quite accurate

for all practical purposes, i.e., the optimum VA should have more than 240 ≈ 1012

states.

The first step towards a suboptimum approach is to decrease L, the length of the

ISI due to the preceding or following symbols considered by the VA, to a reasonable

number [5] which will also depend on our system parameters α and q ≡ τ/T < 1.

The spectral efficiency of the FNS system is thus:

R

W
=

1/τ

(1 + α)/(2T )
=

2

q(1 + α)
bits/s/Hz. (4.10)

Thus, the percentage improvement, ∆, in spectral efficiency compared to a system

3All numerical results reported hereon are for α = 10%, chosen as a value used in
high efficiency systems.
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operating at no ISI is

∆ =
1− q

q
× 100%. (4.11)

For a roll-off factor α = 10%, which we will use throughout this and the next

section, the spectral efficiency of the ISI-free system is 1.82 bits/s/Hz. We will con-

sider two different τ ’s, 9T/10 and 5T/6, which correspond to spectral efficiencies

R/W = 2.02 and R/W = 2.18 bits/s/Hz, i.e., 1% and 9% higher than the Nyquist

rate and ∆ = 11% and ∆ = 20% higher than their ISI-free rate, respectively. For

both these bandwidth efficiencies, there is no dmin reduction, as shown in Fig. 54. For

α = 10% and τ = 9T/10 and τ = 5T/6, the neighboring four symbols from each side

contribute more to the ISI than the more distant ones. Thus, we form a truncated

modified VA (TMVA) with 16 states (L = 4).

The general performance analysis of the TMVA can be found in [5], but the

general expression is quite involved. A simpler way to approximate the performance

of this detector is to assume that the residual ISI (RISI) [5]

In =
∑

|k|>L

an−kx(kτ), (4.12)

behaves almost like additive Gaussian noise, since it is a linear combination of a large

number of independent zero-mean unit variance random variables ak. The variance

of this almost Gaussian random variable In is

ρ = E[I2
n] = E


∑

|i|>L

∑

|k|>L

an−ian−kx(iτ)x(kτ)


 (4.13)

=
∑

|k|>L

x2(kτ) = 2
∑

k>L

x2(kτ). (4.14)

Convergence in the sum above is guaranteed by the convergence of
∑

k>0 |x(kτ)|.
This “noise” term (the residual ISI) results in an increase in the overall noise vari-
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ance and thus worsens the theoretically optimum performance Q
(√

2Eb/N0

)
, where

Eb/N0 = x(0)/N0 in our system. The modified argument in the Q-function using ρ will

consider the increased noise variance x(0)N0/2+ρ, i.e., Eb/N
′
0 = x(0)/(N0+2ρ/x(0)),

and so the approximate error probability for the truncated modified Viterbi detector

will be

Pr(error) ≈ Q

(√
2Eb/N0

1 + 2(Eb/N0)ρ/x2(0)

)
. (4.15)

This last approximate expression not only shows that the truncated equalizer exhibits,

as expected, worse performance compared to the optimum (no-ISI performance), but

also that it might exhibit an error floor at low probabilities of error. Through ρ,

the value of the SNR where the error floor effect starts degrading the performance

significantly is a function of both L and τ . And although the situation becomes better

for increasing L (lower error floor), the dependence on τ yields several local minima

and maxima. The degradation in the performance can be seen in the simulation results

of Figs. 59 and 60, when comparing the TMVA curve with the ISI free antipodal

signaling curve (marked “uncoded, no ISI”). In these plots one can also see that the

approximate expression (4.15) is quite close to the simulated performance.

2. Nearly Optimum Equalization

The performance loss of TMVA can be reduced by taking the residual ISI (RISI)

into account. We name the filter that cancels the RISI the RISI canceller (RISIC).

The idea and the name are borrowed from the interference cancellation techniques in

multiuser detection systems. The first operation performed by the RISIC is to form

a RISI estimate by passing the output of the TMVA through a linear filter whose tap

weights are the same as the ISI tap weights, apart from the nine central ones that have

already been accounted for in the TMVA (four taps from each side of the central tap
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proximated by (4.15) with ρ = 0.0126x2(0), compared to the optimum

Q(
√

2Eb/N0) (TMVA=Truncated Modified VA, SOTMVA=Soft-Output

TMVA, RISIC=Residual ISI Canceller).
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2Eb/N0) (TMVA=Truncated Modified VA, SOTMVA=Soft-Output
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and the central tap), which are set to zero. To make the RISI estimate more reliable

and, of course, to make the combining of the TMVA output with the RISI estimate

possible, it is necessary that the TMVA provides soft-output values. The reason we

expect that linear cancellation can improve the equalization results, is that the soft-

output values in an optimum equalizer could be split into the sum of two terms: the

first term is the scaled version of the input to the equalizer, the channel reliability,

here yn4Eb/N0, and the second is the extrinsic information of the equalizer, i.e.,

the “SNR-increase” it achieves by cancelling the ISI. In our suboptimum truncated

detector, we make the assumption that the extrinsic information manages to cancel

out the neighboring interference almost completely in the channel reliability term

yn4Eb/N0, so the linear filtering tries to cancel the residual ISI in this term.

Using the same approach as in [100], it is straightforward to modify the TMVA

to a soft-output TMVA (SOTMVA) based on the TMVA trellis. If J1n and J2n are

the metrics of the two merging paths at one state with J1n ≥ J2n (J1n corresponds

to the surviving path), which are computed from (4.9) at the nth time instant, and

∆n = J1n − J2n ≥ 0, the probability of selecting the wrong survivor path at the nth

time instant is [100]

psn =
1

1 + exp(2∆nEb/N0)
≤ 0.5 (4.16)

where we took into account the proportionality factor from the derivation of (4.9) in

[4] (exponent of the corresponding conditional Gaussian pdf). The error probabilities

for the bits of the surviving path 1 (metric J1n) are the same as before for all bits

that are the same in paths 1 and 2,4 and for the bits where the two paths differ, the

4We could further improve the soft-output values by considering the “corrected”
SOVA [101].
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updated bit error probabilities of the surviving path 1 are obtained from [100]

pjn = pjn−1(1− psn) + (1− pjn−1)psn (4.17)

where j varies over all the positions path 1 and path 2 are different. Since pjn is the

probability of the jth bit being in error at the nth time instant, we consider pj = pjj+δ

to be the output of our version of the SOVA, which is obtained with some delay

δ = n − j (here we took δ = 6(L + 1) as in the case of convolutional codes). Then

the corresponding log-likelihood ratio Lj is

Lj = ln

(
1− pj

pj

)
(4.18)

and the corresponding j-th soft-output value is

Λj = âjLj (4.19)

where âj ∈ {−1, +1} is the hard-output of the VA.

The way we can improve the RISI estimate is to provide to the filter input the

expected values of the âj’s based on their reliability values |Λj| = Lj. Since from

the definition of the log-likelihood ratio Λj = ln(P (âj = +1|y)/P (âj = −1|y), the

expected value of âj can be computed from

E[âj|y] =
eΛj − 1

eΛj + 1
. (4.20)

The proposed equalizer structure is shown in Fig. 61. We just note that the RISI

estimate is first scaled by 4Eb/N0 and then subtracted from the delayed SOTMVA-

output to yield the overall equalizer output, which with a sign detector would give

the final bit decisions.

The scaling is required because of the way the matched filter output samples

are related to the log-likelihood ratio. As already mentioned, at the output of the
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of the ISI, which is theoretically infinite but here we take M = b40T/τc
(TMVA=Truncated Modified VA, SOTMVA=Soft-Output TMVA).

SOTMVA, the Λj’s can approximately be split into two terms: the channel reliability

4ynEb/N0 and the extrinsic information resulting from the equalization of the 2L-ISI

taps. Since the RISIC unit cancels the rest of the ISI taps, the estimated RISI in yn

must be multiplied with 4Eb/N0 as well.

The performance of the equalizer with the RISI cancellation has been presented

in Figs. 59 and 60, where we see that for both cases the two-stage scheme (SOTMVA-

RISIC) performs better and quite close to the theoretically optimum ISI-free antipodal

signaling performance for moderate to high SNRs. The results indicate that it is

possible to signal at rates higher than Nyquist with almost no performance loss, at

the expense of higher complexity and higher transmitted power (as in the case of

multilevel modulation schemes).

E. Bandwidth Efficient Turbo Equalization

1. System Description

The bit-rate gains of the previous section can be partly or wholly translated into

coding gains by using codes of suitable rate, i.e., code rates that result in information
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spectral efficiencies that are at least as high as in the ISI free case. This means

rates r ∈ [q, 1], where the lower rate limit q = τ/T sacrifices all the excess bit-rate

gain and the upper limit, 1, retains the full excess bit-rate (no coding). Code rate

values between the above two limits result in trade-offs between bit-rate gains and

coding gains. In what follows, we will only use r = q, i.e., we will trade-off all of the

throughput gain for a coding gain.

The system we will use is shown in Fig. 62. The interleaver between the encoder

and transmit-filter attempts to decorrelate the ISI error events so that the decorrelated

events can more efficiently be handled by a quite weak (due to its high rate) code.

The interleavers are block N ×N interleavers where N is the codeword length of the

code and the transmission is continuous, meaning that due to the long ISI, bits from

neighboring N ×N blocks are interfering. The turbo-equalizer unit in Fig. 62 refers

to the combined iterative equalizer-decoder, analyzed in the following subsection.

We only employ single parity-check codes which have flexible-rate and allow for low-

complexity soft-input-soft-output (SISO) decoding. They are assumed to satisfy even

parity in each codeword (even number of +1’s).

The system uses the same transmit and receive filters as in Fig. 4 where now the

ak’s are the coded symbols and the coded system is energy-penalized with the code

rate r = (N − 1)/N for a fair comparison.
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2. The Turbo Equalizer

The principle of turbo equalization is the same as turbo decoding where the inner

decoder is substituted with an equalizer [97]. Both the equalizer and the decoder have

to process soft-input and provide soft-output for better performance. The equalizer

used is the soft-output truncated modified Viterbi algorithm (SOTMVA), presented

earlier. Its output is deinterleaved and then decoded using a soft-input soft-output

(SISO) decoder. Such a decoder for the single parity check codes works well with the

simple low-complexity Max-Log-MAP rule described in [102]. The output λj of the

Max-Log-MAP SISO decoder is [102]

λj =





sj(|Λj|+ mink 6=j |Λk|), even parity satisfied

sj(|Λj| −mink 6=j |Λk|), even parity not satisfied
(4.21)

where Λj is the deinterleaved output of the SOTMVA, sj = sign(Λj), j, k vary over

all N indices that correspond to a single codeword of length N and whether the

even parity of the codeword under consideration is satisfied or not is checked by

using just the signs of the coded bits sj, j = 1, 2, . . . , N . From (4.21) we see that

the output λj of the SISO decoder is the sum of two terms: the input Λj and the

extrinsic information λe
j = ±sj mink 6=j |Λk|. If we wanted to stop and not process

the decoder output further, then the signs of the λj’s for the K information bits in

every codeword would be the most reliable estimate of the transmitted information

bits5. But there is significant performance improvement if the extrinsic information

together with some kind of RISI estimate are fed back to the SOTMVA and the

detecting-decoding process is repeated at least once more. The residual ISI is better

5If the received sequence was passed just once through the detector-decoder, we
could probably also try cancelling the RISI at the output of the decoder with linear
filtering similarly to Subsection 2 in Section D.



151

SOTMVA
Λn

Deinterleaver
Λkyn

SISO
λk

+

Interleaver
λn

_

+

λn
e

RISI-filter

(Length 2M+1)1e

1e
( )

( )

+

−
[ ]naE _

+

Delay δ+2N
2
+ν+M

+

Delay M
0S/N4E

1
+

+

+

y'
n

SOTMVA +

Λ'n
Deinterleaver

Λ'k
SISO

λ'k+
-

^



Fig. 63. Two-stage turbo equalizer for coded FNS (equivalent to a twice iterated

one-stage turbo equalizer with feedback).

estimated at the feedback due to the higher reliability of the λj’s compared to that

of the Λj’s.

The corresponding turbo equalizer structure is shown in Fig. 63, where the

pipelined structure of two identical turbo equalizers instead of a single iterative one is

depicted for better illustration of its continuous-time operation. The RISI-filter used

is the same as the one discussed in Subsection 2 of Section D. The delay line for the

matched filter output samples yn’s considers the delay δ of the SOTMVA, the 2N2

delay due to the deinterleaving-interleaving, the delay ν because of the SISO-decoder

and the M -symbol delay of the RISI-filter. No scaling is needed this time for the

RISI estimate, since it is subtracted directly from the matched-filter output.

The only thing still to be addressed is the extension of the SOTMVA, so that it

also takes into account the a priori information, i.e., the decoder extrinsic information.

This was done by Ungerboeck in Appendix II of [4]. Adjusting the proportionality

factors to our case and expressing the a priori probabilities in terms of the extrinsic
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log-likelihood ratios, we get for the recursive relationship [4]

Jn(an−L+1, . . . , an) = Jn−1(an−L, . . . , an−1) + an

(
yn −

L∑
i=1

x(iτ) an−i

)

+
N0

2Es

ln[P (an = j)], (4.22)

where j = ±1 and Es/N0 = rEb/N0 is the SNR per coded bit.

Since we are going to use estimates of P (an = j) based on λe
n ≈ ln(P (an =

+1|decoding)/P (an = −1|decoding), P (an = ±1) can be approximated by

P (an = −1) ≈ 1

1 + eλe
n
, (4.23)

P (an = +1) ≈ eλe
n

1 + eλe
n
, (4.24)

which can be written as

ln[P (an = j)] ≈ j + 1

2
λe

n − ln(1 + eλe
n), j = ±1. (4.25)

Dropping all common terms in (4.25) and substituting in (4.22), the recursive

metric relationship becomes

Jn(an−L+1, . . . , an)=Jn−1(an−L, . . . , an−1)

+ an

(
yn +

λe
n

4Es/N0

−
L∑

i=1

x(iτ) an−i

)
, (4.26)

i.e., the scaled extrinsic information can be added to the matched-filter output samples

directly, as shown in Fig. 63.

The scheme of Fig. 63 is equivalent to a single turbo-equalizer iterated twice.

Its output information bit error rate, as well as that for one and more than two

iterations are plotted in Figs. 64 and 65 for the single parity check codes with rates

9/10 and 5/6, respectively. Thus, the symbol spectral efficiencies, i.e., the coded bit
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rates, are respectively Rs/W = 2.02 bits/sec/Hz and Rs/W = 2.18 bits/sec/Hz, while

the information spectral efficiency (information bit rate) is in both cases Rb/W =

1.82 bits/sec/Hz. In the plots of Figs. 64 and 65 the simulated performance of a coded

system without ISI is presented (lower information rate for the same bandwidth) as

is the analytical uncoded ISI-free performance. The first term of the union bound

(smallest distance) for single parity check codes,

P (e) ≈ (N − 1)Q

(√
4rEb

N0

)
, (4.27)

is also plotted. In Fig. 64, because of the quite weak 9/10 parity check code, the

number of iterations was limited to two since more iterations would not produce

significant performance improvement. In any case, most of the gain of the second

iteration even for the stronger 5/6 code results from the RISI cancellation and not

from the extrinsic information. For both codes the gains are more than 1dB at a

bit-error-rate of 10−4 and about 1.5dB at 10−5 for the 9/10 case compared to ISI-free

transmission and for the same bandwidth and bit-rate. In other words, the increased

signaling rate has been translated into a coding gain. The larger deviation of the

5/6 code from the optimum is a consequence of both the insufficient 6-by-6 block

interleaving (not sufficient decorrelating of the long error events which start affect-

ing performance) and the slightly worse performance of the suboptimum equalizer

(Fig. 60) in this case. It is important to note that the turbo equalizer for both cases

almost achieves the optimum ISI-free coded performance after two iterations for the

same bandwidth, power and information rate as the uncoded ISI-free system (when

the ISI-free system uses the same raised-cosine pulse shape).

We finally mention one example application of this turbo equalization scheme

for q < r < 1. When one coded bit is transmitted every τ = 5T/6, instead of using

the 5/6 parity check code, we could use an 11/12 parity check code. For the rolloff
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Fig. 64. Simulated performance of turbo equalizer for coded FNS (parity-check code

9/10, τ/T = 9/10) after 1 and 2 iterations compared with the ISI free uncoded

and ISI free coded systems (approximation refers to (4.27)).
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and ISI-free coded systems (approximation refers to (4.27)).
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factor α = 10%, this corresponds to a signaling rate of Rs/W = 2.18b/s/Hz and

an information rate of Rb/W = 2.00b/s/Hz, i.e. the excess bandwidth is accounted

for by signaling faster and at the same time we expect to have some coding gain

due to the 12-by-12 block interleaving. With this simple coding scheme only part of

the higher signaling rate could be translated into coding gain and still communicate

at a higher information rate. All these practical gains could possibly be extended

by employing more powerful codes, like Hamming codes or punctured convolutional

codes with precoding, at the price of increased decoding complexity. But, of course,

the question of what the ultimate limits of FNS are, will still be unanswered.

F. Bandwidth and Achievable Throughput

In this section we try to determine the throughput of faster-than-Nyquist signaling

(FNS) with the help of the power spectral density (PSD) of the transmitted signal.

The whole analysis is based on the ideal sinc pulses (“brickwall” spectrum). It turns

out that for i.i.d. zero-mean Gaussian input, signaling faster is equivalent to increasing

the average signaling power. In what follows, we consider the ideal sinc pulses of

bandwidth W

g(t) =
√

2WEs sinc(2Wt) =
√

2WEs
sin(2πWt)

2πWt
(4.28)

which are normalized to energy Es. The Fourier transform of g(t) is

G(f) =

√
Es√
2W

Π

(
f

2W

)
=





√
Es√
2W

, |f | < W,

0, |f | > W.

(4.29)

The Nyquist signaling rate for these pulses is 2W and in this case is the same as the

ISI-free rate (no roll-off). Assuming baseband transmission, the transmitted signal
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v(t) has the form

v(t) =
∞∑

n=−∞
an g(t− nτ) (4.30)

where throughout this section the input symbols an are assumed (real) zero-mean,

independent and identically distributed (i.i.d.) with unit variance , i.e., E[an+man] =

δm. Signaling faster-than-Nyquist (FNS) in this context means that 1/τ > 2W . The

most important result in this section is that, for Gaussian input, the effect of FNS on

the achievable information rates is equivalent to increasing the transmitted average

power P = Es/τ by reducing τ while keeping Es fixed, i.e., it is an alternative

to increasing the average symbol energy Es and keeping τ fixed. In the following

subsection we will reach some more precise conclusions about the power spectral

density (PSD) of v(t) starting from the general ones of [103]. Then, based on these

results, we will try to determine the information rates achieved by this FNS scheme.

1. Power Spectral Density of Transmitted Signal

According to [103], the process v(t) is in general cyclostationary, since its autocorre-

lation function

Rvv(t + u, t) = E[v(t + u) v(t)] =
∞∑

n=−∞
g(t + u− nτ) g(t− nτ), (4.31)

is periodic in t with period τ . Due to its periodic nature, a Fourier series expansion

of Rvv(t + u, t) in t is possible

Rvv(t + u, t) =
∞∑

k=−∞
Rk(u) ej2π k

τ
t, (4.32)

where Rk(u) can be determined from

Rk(u) =
1

τ

∫ τ/2

−τ/2

Rvv(t + u, t) e−j2π k
τ

t dt . (4.33)
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Using (4.31) and changing the integration variable we obtain

Rk(u) =
1

τ

∞∑
n=−∞

∫ nτ+τ/2

nτ−τ/2

g(t + u) g(t) e−j2π k
τ

t dt

=
1

τ

∫ ∞

−∞
g(t + u) g(t) e−j2π k

τ
t dt

=
1

τ

[
G(f) ej2πfu ∗G(f)

]
f=k/τ

=
Es

2Wτ

∫ W

−W

Π

(
k
τ
− x

2W

)
ej2πux dx. (4.34)

where in the last step we used (4.29). From the last expression for Rk(u), it is clear

that for 1/τ ≥ 2W , i.e., for rates greater than or equal to the Nyquist rate, Rk(u) = 0

for all k 6= 0. For k = 0

R0(u) =
Es

τ
sinc(2Wu). (4.35)

Thus, for sinc pulses, for zero-mean i.i.d. input and for signaling at least at the

Nyquist rate, the autocorrelation of v(t) is actually a function of u alone, i.e., v(t) is

a wide-sense stationary (WSS) process. (It is straightforward to generalize this result

to any strictly bandlimited pulse shape to W when signaling at 1/τ > 2W .) The

autocorrelation and PSD of this WSS process are respectively

Rvv(τ) =
Es

τ
sinc(2Wu), (4.36)

Svv(f) =
Es

2Wτ
Π

(
f

2W

)
, (4.37)

i.e., they are equal to the average autocorrelation and PSD when the cyclostationary

approach of [103] is used. However, the actual autocorrelation and PSD are more

directly linked to the statistics of the signal and can help us reach more conclusions

as will be shown next.
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2. Throughput of FNS

The surprising fact about the result of the previous section is the fact that sampling

the transmitted process at the Nyquist rate 2W , the samples are uncorrelated as

(4.36) shows. Assuming an additive white Gaussian noise (AWGN) channel and a

brickwall (matched) filter g(t), this property still holds at the matched filter output.

The PSD at the matched filter output is

Syy(f) =

(
Es

2Wτ
+

N0

2

)
Es

2W
Π

(
f

2W

)
, (4.38)

and so the variance σ2
y of the Nyquist rate samples, i.e., at time instants n/2W , n ∈ Z,

is

σ2
y =

∫ ∞

−∞
Syy(f) df =

E2
s

2Wτ
+

N0Es

2
. (4.39)

At the same time these samples are sufficient statistics of the received signal, since it

is strictly bandlimited to W Hz. In Section G, we will show how these samples can

be used to derive the same log-likelihood function as in (4.8) for the sinc pulses and

for a discrete input alphabet.

However, for the rest of this section we will consider Gaussian input symbols an

in (4.30). Then the matched filter output Nyquist-rate samples are also Gaussian,

as a linear combination of Gaussian random variables, and because they are uncorre-

lated, they are independent. For this case it is easy to determine the corresponding

information rates of this FNS scheme. Starting from I(X; Y ) = h(Y ) − h(Y |X),

where X represents the sequence of the information (input) symbols (length N),

Y the sequence of the matched filter output samples (length (2Wτ)N ≤ N) and

I(·; ·) , h(·) refer to the mutual information and differential entropy respectively, we

get due to the independence of the components of Y and their associated noise parts
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Zi ∼ N(0, EsN0/2)

I(X; Y ) =

(2Wτ)N−1∑
i=0

h(Yi)−
(2Wτ)N−1∑

i=0

h(Zi)

= NWτ log2

(
σ2

y

EsN0/2

)

= NWτ log2

(
1 +

Es

WτN0

)
, (4.40)

where in the last step we substituted from (4.39). Hence, the information rate in bits

per transmitted symbol is Wτ log2(1 + Es/(WτN0)), whereas in bits per matched

filter output sample it is log2(1+Es/(WτN0))/2. The throughput in bits per seconds

is

CFNS = W log2

(
1 +

Es

WτN0

)
, (4.41)

i.e., the effect of FNS in this system is like an alternative way of increasing the

transmitted power by signaling faster instead of increasing the symbol energy. In

other words, the importance of this result lies in the fact that there is no loss in the

best possible bandwidth efficiency when employing an FNS scheme. Of course, this

is only a small step towards the final result we wish to obtain, which is to compare

the achievable throughput of practical constellation schemes with and without FNS

as well as the design of receivers able to operate with matched filter output samples

taken at the Nyquist rate.

G. Sampling at Constant Rate

In this section we try to determine some possible simplifications in implementing

faster-than-Nyquist signaling (FNS), focusing more on the sampling rate at the re-

ceiver. The whole analysis is based on the ideal sinc pulses (“brickwall” bandwidth).

It turns out that for the usual binary i.i.d. input FNS system, sampling faster at the
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receiver, i.e., at a rate equal to the signaling rate, is equivalent to sampling at exactly

the Nyquist rate. The equivalence is asymptotical and is established by getting the

same expression both for the Euclidean distance of two distinct data sequences and

for the metric used in the Viterbi algorithm of the optimum detector, no matter which

of the two sampling rates was used.

1. Log-Likelihood Function at the Nyquist Sampling Rate

The Nyquist-rate samples y
(

n
2W

)
are sufficient statistics of the received signal, as

shown in Subsection 2 of Section F, and at the same time their noise components are

independent with variance Es
N0

2
. Apart from the practical aspects of this sampling

rate, like keeping the constant sampling rate in a variable signaling rate system,

accommodating the varying rate by adapting the system coefficients, due to the white

noise samples it is simpler to express the conditional joint probability density function

(pdf) in the discrete time domain. This conditional joint pdf of the matched-filter

output samples yn = y
(

n
2W

)
which is

p(y|a) =
N∏

n=−N

p(yn|a) =
1

(
√

πN0Es)2N+1
exp

(
−

∑N
n=−N(yn − fn(a))2

N0Es

)
, (4.42)

where the number of output samples (2N + 1) is very large, we will consider it to be

infinite from now on, and

fn(a) =

N/(2Wτ)∑

j=−N/(2Wτ)

hn,j aj, (4.43)

with hn,j = Es sinc(n − j2Wτ) and 1/τ > 2W being the faster rate. The input

symbols are assumed to be zero-mean i.i.d. and to belong to a discrete alphabet.

As we see from (4.42) and (4.43), there are two side effects: first of all, the

interference pattern is different from sample to sample (periodically repeating if 2Wτ
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is rational) and there are less samples than input symbols (for every N/(2Wτ) input

bits, we get N matched-filter output samples).

Maximizing the pdf of (4.42) is equivalent to maximizing

`′(a) =
∑

n

[
yn fn(a)− 1

2
f 2

n(a)

]
, (4.44)

over all possible a, with fn(a) as in (4.43). Substituting from (4.43), the last expres-

sion becomes

`′(a) =
∑

n

∑
j

[
yn hn,j aj − 1

2
hn,j aj

∑

k

hn,k ak

]

=
∑

j

aj

∑
n

yn hn,j − 1

2

∑
j

∑

k

aj ak

∑
n

hn,j hn,k. (4.45)

Using properties of the sinc function, it can be proven that
∑

n hn,i hn,k =

Es h0,i−k and that
∑

n yn hn,j = Es y(jτ). For the former, we take the discrete time

Fourier transform (DTFT) of sinc(n− θ), i.e.

Dθ(ω) = F {sinc(n− θ)} = e−jωθ Π
( ω

2π

)
, (4.46)

and then apply Parseval’s theorem for the inner product of the left hand side

∑
n

hn,i hn,k = E2
s

∑
n

sinc (n− i2WT ) sinc (n− k2WT )

= E2
s

1

2π

∫ π

−π

Di2WT (ω) D∗
k2WT (ω) dω

= E2
s

1

2π

∫ π

−π

ejω(k−i)2WT dω

= E2
s sinc ((i− k)2WT ) = Es h0,i−k. (4.47)

As for
∑

n yn hn,j = Es y(jτ), the left hand side is the interpolation formula for

the reconstruction of y(t) at the time instants t = jτ with sinc functions and its
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samples at t = n
2W

. So the equivalent expression to be maximized becomes

`′(a) = Es

∑
j

aj y(jτ)− Es

2

∑
j

∑

k

aj aj−k h0,k, (4.48)

which is equivalent to (4.8) (the difference in the multiplicative factors can be can-

celled out).

However, in the proofs we used two key relationships,
∑

n hn,i hn,k = Es h0,i−k and
∑

n ynhn,j = Es y(jτ). Although both assume that we operate on infinite sequences,

the latter one really causes a practical problem as it assumes infinite delay. Therefore

other means of interpolation might be more desirable, yielding an estimate ŷ(jτ) of

y(jτ). The small associated loss is the prize paid for having a system able to operate

at variable signaling rates.

Based on the same assumptions, a similar conclusion can be drawn about the

Euclidean distance d(a, b) between two sequences a and b, i.e., regardless whether

the output of the matched-filter is sampled at the constant Nyquist rate 2W , or the

FNS rate 1
τ
≥ 2W , d(a, b) remains the same.

H. Conclusions and Discussion

From all the presented results, we can conclude that for ideally bandlimited systems

with constrained average power, FNS appears to be a way of trading off performance

(smaller Es) to higher information rates (smaller τ) practically without any loss. Most

of this chapter had to do with methods of exploiting the more practical gains that

come up from the minimum distance estimation of the binary FNS system. First,

with the use of constrained coding, ways of extending the theoretical dmin gains to

even higher signaling rates were suggested. Then using soft interference cancellation

techniques combined with turbo equalization, we can realize some of the theoretically
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predicted gains. In particular, our results using raised-cosine pulses with small roll-

off, indicate practically implementable throughput gains and/or performance gains by

using coding. We also ended up with an interesting recursive metric for the detector

operating with Nyquist rate samples, but we did not implement such a scheme.

Some interesting extensions of the reported results are the use of more powerful

codes to achieve better trade-offs of throughput gains for coding gains, the opti-

mization within the class of raised-cosine signaling pulses with respect to the system

parameters (roll-off α, length of ISI L in the TMVA, ratio τ/T ) and the FNS-oriented

study and design of pulses.

Even more promising gains from FNS could probably be obtained by employing

some form of precoding, like faster partial response signaling [104, 105] or FNS ori-

ented precoding [106, 107, 108]. Another related extension of FNS can involve M−ary

signaling with M > 2, where with some increased complexity in the analysis and the

design, some FNS gains are expected with the same receiver structures. However, the

nonbinary case [108] has not been studied as well as the binary case in the literature,

leaving the question of the corresponding FNS gains open.

An interesting open issue is how binary or nonbinary FNS compares to other

bandwidth efficient schemes like nonbinary modulation at the Nyquist rate. Asso-

ciated results in the literature exist only for the uncoded case [89, 90, 91] and are

slightly in favor of Nyquist-rate systems. But even if the comparison was clearly in fa-

vor of the Nyquist-rate system in both the uncoded and the coded case, FNS schemes

would still find applications in scenarios where higher bandwidth power efficiency is

desirable without the possibility to expand the constellation.

A last significant issue, throughput analysis, i.e., determining the achievable

information rate for FNS, with practical input symbols, like binary or M−ary, has

still not been addressed.
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CHAPTER V

SUMMARY

This dissertation included three parts: distributed coding, quantization of coded

channel measurements, and faster-than-Nyquist signaling. The contribution of each

of these parts is summarized in the following three sections.

A. Distributed Coding

In the first part of this dissertation we studied three distributed coding problems.

The first was Slepian-Wolf coding, including both asymmetric and symmetric coding,

as well as coding of multiple sources. All the proposed Slepian-Wolf codes converted

the Slepian-Wolf coding problem, i.e., a lossless distributed source coding problem,

into an equivalent channel coding problem. So the use of good classical channel

codes guaranteed good performance for the corresponding Slepian-Wolf codes. Thus,

exploiting the progress in the mature field of classical channel code design, the pro-

posed Slepian-Wolf coding schemes in this dissertation could come very close to the

theoretical limits.

The second distributed coding problem in this part of the dissertation was asym-

metric Slepian-Wolf coding over a noisy channel. This source-channel coding problem

can be converted to an equivalent systematic channel coding problem over two paral-

lel channels, i.e., it has a channel coding equivalent which is not conventional. Taking

into account the two parallel channels in the channel code design however, enables

the design of good source-channel coding schemes for this problem.

The last distributed coding problem considered in this dissertation was Wyner-

Ziv coding. This source coding problem could be converted to a source-channel coding

problem and several approaches to code design where presented and analyzed, leading
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to the one with the best performance. No other results have been reported in the

literature for the binary Wyner-Ziv problem considered here.

B. Quantization of Coded Channel Measurements

The second part of this dissertation studied several quantizer design approaches for

quantization of the sampled received values at the receiver in a coded point-to-point

communication system. The main contribution of this part of the dissertation has

been the extensive comparison of the quantization criteria for uniform and nonuni-

form scalar quantization. This comparison establishes the advantage of cutoff rate

and mutual information over MSE and this advantage is further confirmed through

simulations of powerful LDPC codes.

Two interesting results of the comparison between the different quantizers are the

negligible gains of nonuniform quantization over uniform and the strong robustness

of good quantizers, i.e., by appropriately choosing a quantizer it can be used over a

wide range of SNRs without noticeable performance loss. Both these results are again

confirmed by simulations.

C. Faster-than-Nyquist Signaling

The third part of this dissertation studied several ways of signaling faster than the

Nyquist rate without suffering any loss in the performance due to the higher signal-

ing rate and the induced intersymbol interference. The interference was mitigated

through reduced complexity equalization combined with constrained coding when it

was severe or just reduced complexity equalization when it was less severe.

The bit rate gains that were achieved were also translated into coding gains by

employing channel coding and turbo equalization. For the first time it was exhib-



167

ited that faster-than-Nyquist signaling has some potential as an alternative signaling

scheme.
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APPENDIX A

DERIVATIVE OF MSE FOR UNIFORM SCALAR QUANTIZATION

Uniformly Spaced Levels

In this appendix we will show how setting the derivative of the MSE Du
B,L with respect

to the uniform scalar quantizer step τ yields equations (3.14) and (3.15) assuming

uniform spacing between the quantizer levels.

Since for uniform scalar quantization aj =
(
j − L

2

)
τ , for i = 0 (3.6) can be

rewritten as (3.15).

Taking the derivative of (3.5) yields

∂Du
B,L

∂τ
= −2

L−1∑
j=0

v′j c0j − 2
L−1∑
j=0

vj c′0j + 2
L−1∑
j=0

vj v′j P0j +
L−1∑
j=0

v2
j P ′

0j (A.1)

where v′j =
∂vj

∂τ
, c′0j =

∂c0j

∂τ
, and P ′

0j =
∂P0j

∂τ
.

Now, from equation (3.2), P0j can be written as follows, for a uniform scalar

quantizer with aj =
(
j − L

2

)
τ for j = 1, 2, . . . , L− 2,

P0j =
1√

2πσ2

∫ (j+1−L
2 ) τ

(j−L
2 ) τ

e−
(u−1)2

2σ2 du

=
1√

2πσ2

∫ (j+1−L
2 ) τ

−∞
e−

(u−1)2

2σ2 du− 1√
2πσ2

∫ (j−L
2 ) τ

−∞
e−

(u−1)2

2σ2 du (A.2)

while P00 is

P00 =
1√

2πσ2

∫ (1−L
2 ) τ

−∞
e−

(u−1)2

2σ2 du (A.3)
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and P0(L−1) is

P0(L−1) =
1√

2πσ2

∫ ∞

(L
2
−1) τ

e−
(u−1)2

2σ2 du = 1− 1√
2πσ2

∫ (L
2
−1) τ

−∞
e−

(u−1)2

2σ2 du (A.4)

So, P ′
0j can be written as

P ′
0j =

j + 1− L
2√

2πσ2
e−

[(j+1−L
2 ) τ−1]

2

2σ2 − j − L
2√

2πσ2
e−

[(j−L
2 ) τ−1]

2

2σ2 (A.5)

for j = 1, 2, . . . , L− 2, while P ′
00 is

P ′
00 =

1− L
2√

2πσ2
e−

[(1−L
2 ) τ−1]

2

2σ2 (A.6)

and P ′
0(L−1) is

P ′
0(L−1) = −

L
2
− 1√
2πσ2

e−
[(L

2 −1) τ−1]
2

2σ2 (A.7)

Using the last three equations and regrouping inside the sum
∑L−1

j=0 v2
j P ′

0j, we

get the equivalent expression

L−1∑
j=0

v2
j P ′
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1√
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where in the last step we used the fact that vj =
(
j − L−1

2

)
τ .

Working similarly with c′0j we can get

c′0j =

(
j + 1− L

2

)2
τ√
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for j = 1, 2, . . . , L− 2, while c′00 is

c′00 =

(
1− L

2

)2
τ√

2πσ2
e−

[(1−L
2 ) τ−1]

2

2σ2 (A.10)
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and c′0(L−1) is

c′0(L−1) = −
(

L
2
− 1
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τ√
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2 −1) τ−1]

2

2σ2 (A.11)

Using the last three equations and regrouping inside the sum
∑L−1

j=0 vj c′0j, we get the

equivalent expression

L−1∑
j=0

vj c′0j =
τ√

2πσ2

L−1∑
j=1

(vj−1 − vj)

(
j − L

2

)2

e−
[(j−L

2 ) τ−1]
2

2σ2

= − τ 2

√
2πσ2

L−1∑
j=1

(
j − L

2

)2

e−
[(j−L

2 ) τ−1]
2

2σ2 (A.12)

From this last equation and (A.8) we get that

L−1∑
j=0

v2
j P ′

0j = 2
L−1∑
j=0

vj c′0j (A.13)

so these two sums are canceled in (A.1) yielding

∂Du
B,L

∂τ
= −2

L−1∑
j=0

v′j c0j + 2
L−1∑
j=0

vj v′j P0j

= 2
L−1∑
j=0

(
j − L− 1

2

) [(
j − L− 1

2

)
τ P0j − c0j

]
(A.14)

where we used the fact that vj =
(
j − L−1

2

)
τ and thus, v′j = j − L−1

2
. Setting this

last expression of
∂Du

B,L

∂τ
equal to zero, we get equation (3.14).

Centroid Levels

In this part of this Appendix we will show how taking the derivative of the uniform

MSE Du
B,L with respect to the uniform scalar quantizer step τ yields equation (3.16),

assuming centroid quantization levels. It is straightforward to find that the centroid
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levels vj can be expressed as

vj =
c0j + c1j

P0j + P1j

=
c0j − c0(L−1−j)

P0j + P0(L−1−j)

(A.15)

where the Pij and the cij are defined in equations (3.2) and (3.6), respectively, and

in the last step we used the fact that due to the quantizer symmetry P1j = P0(L−1−j)

and c1j = −c0(L−1−j).

Because of this last expression for the quantization levels vj, we can rewrite the

general MSE DB,L of equation (3.4) as

DB,L = 1 + σ2 − 1

2

L−1∑
j=0

(c0j + c1j)
2

P0j + P1j

(A.16)

So far we have not made any assumptions for uniform quantization and therefore,

we can use this last expression in more cases as in the case of nonuniform MSE-

minimizing quantization.

Now, assuming uniformly spaced quantization boundaries aj =
(
j − L

2

)
τ for

j = 1, 2, . . . , L− 1 and taking the derivative of the last expression of the MSE Du
B,L

with respect to τ yields

∂Du
B,L

∂τ
=

L−1∑
j=0

vj

(
c′0j + c′1j

)− 1

2

L−1∑
j=0

v2
j

(
P ′

0j + P ′
1j

)

= 2
L−1∑
j=0

vj c′0j −
L−1∑
j=0

v2
j P ′

0j (A.17)

where in the last step we used the quantizer’s symmetry around zero.

Using the expressions of P ′
0j and c′0j from Appendix A and rearranging inside the
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sums of the last expression for the
∂Du

B,L

∂τ
we get

∂Du
B,L

∂τ
= 2

L−1∑
j=1

(vj−1 − vj)

(
j − L

2

)2

τ e−
[(j−L

2 ) τ−1]
2

2σ2

−
L−1∑
j=1

(
v2

j−1 − v2
j

) (
j − L

2

)
e−

[(j−L
2 ) τ−1]

2

2σ2

=
L−1∑
j=1

(vj−1 − vj)

(
j − L

2

)[
2

(
j − L

2

)
τ − vj−1 − vj

]
e−

[(j−L
2 ) τ−1]

2

2σ2

(A.18)

Setting the last expression equal to zero and dropping some common terms results in

(3.16).
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APPENDIX B

DERIVATIVE OF CUTOFF RATE FOR UNIFORM SCALAR QUANTIZATION

In this appendix we will show how setting the derivative of the cutoff rate RB,L with

respect to the uniform scalar quantizer step τ yields equation (3.17).

Starting from equation (3.9), we get

∂RB,L

∂τ
= − 1

log 2

∑L−1
j=0

P ′0jP1j+P0jP ′1j

2
√

P0jP1j

1 +
∑L−1

j=0

√
P0jP1j

(B.1)

where P ′
ij =

∂Pij

∂τ
. Setting the derivative

∂RB,L

∂τ
equal to zero, we can simplify the

above expression to get the equation

L−1∑
j=0

P ′
0jP1j + P0jP

′
1j√

P0jP1j

= 0 (B.2)

Defining κj =
√

P1j

P0j
, we can rewrite the last equation as

L−1∑
j=0

(
P ′

0j κj + P ′
1j

1

κj

)
= 0 (B.3)

Due to the quantizer symmetry, P0j = P1(L−1−j) and thus, P ′
0j = P ′

1(L−1−j) and

κj = 1
κL−1−j

. Therefore,
∑L−1

j=0 P ′
1j

1
κj

=
∑L−1

j=0 P ′
0j κj and equation (B.3) is further

simplified to
L−1∑
j=0

P ′
0j κj = 0 (B.4)

Substituting the three expressions (A.2)-(A.4) of P0j in the sum on the left side
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of (B.4) and regrouping before differentiating we get

L−1∑
j=0

P ′
0j κj =

L−1∑
j=1

(κj−1 − κj)
∂

∂τ

(
1√

2πσ2

∫ (j−L
2 ) τ

−∞
e−

(u−1)2

2σ2 du

)

=
1√

2πσ2

L−1∑
j=1

(κj−1 − κj)

(
j − L

2

)
e−

[(j−L
2 ) τ−1]

2

2σ2 (B.5)

By setting the last expression equal to zero, and canceling whatever can be factored

out of the sum, we get (3.17).



188

APPENDIX C

VARIABLE-RATE SCALAR QUANTIZATION AND VECTOR QUANTIZATION

Variable-Rate Scalar Quantization

The scalar quantizers used in Chapter III are called fixed-rate because the quantizer

output rate is measured as the logarithm of the number of the quantization levels,

i.e., q = log2(L). Variable-rate scalar quantization, also called entropy-coded scalar

quantization, is a simple way of improving the performance of a fixed-rate scalar

quantizer [83]. It refers to a scalar quantizer followed by a variable rate encoder,

e.g., a Huffman encoder, that takes into account the nonequal probabilities of each

quantizer level to obtain significant rate savings. The entropy of the quantizer output

levels is the lower bound on the rate that an variable rate code can achieve, and since

a Huffman code can be shown to come quite close to this limit [83], the quantizer

output rate is given by the entropy of the quantizer output.

It is not difficult to realize that variable-rate scalar quantization can yield some

throughput gains for higher SNRs, since it allows a larger number of levels in the

scalar quantizer. Limiting both the fixed-rate and the variable-rate scalar uniform

quantizer to at most 2 bits the results are shown in Fig. 66. For both quantizers the

mutual information maximization criterion has been used.

The design process for such quantizers is more involved, as it has to include a

Lagrange multiplier, and the addition of the variable-rate code makes the quantizer

more complex. Furthermore, to exploit the gains of Fig. 66, the number of levels in the

quantizer has to be changed for different SNR, which makes variable-rate quantization

nonpractical and excludes any notion of robustness.
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Fig. 66. Maximum mutual information IB,q as a function of Es/N0 for a fixed-rate

uniform scalar quantizer with L = 2q = 2, 4 levels and for a variable-rate

uniform scalar quantizer with rate q = 2 bits.

Vector Quantization

Although variable-rate uniform scalar quantization provided us with some gains, it

could not improve the fixed-rate uniform scalar quantization throughput for low chan-

nel SNRs. At these low SNRs the output of the BIAWGN channel, i.e., the bimodal

Gaussian pdf, looks more uniform and thus, the statistics of the quantization levels

cannot yield rate savings.

However, in conventional quantization there are ways to improve the quantizer

performance even for uniform sources by quantizing the source samples in groups of

k instead of one at a time [83]. This type of performance gain is associated with

the distortion metric used to measure the quantizer’s performance in representing

a source and not with the statistics of the source [83]. Such quantizers are called
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vector quantizers and both fixed-rate and variable-rate vector quantization has been

considered and analyzed before.

Here we are not dealing with a conventional quantization problem as the distor-

tion metric, i.e., the mutual information or the cutoff rate of the equivalent channel,

is associated only with the probabilities of each quantization region and not with the

values of the quantizer levels. Hence, whether such a “space-filling” gain from vector

quantization exists, does not appear to have an intuitive answer.

Considering just two-dimensional quantization, i.e., two channel measurements

are quantized at the same time, the quantizer designs should fill the two-dimensional

space at least as good as uniform scalar quantizers. One should note that the equiv-

alent channel of a system with a 2-D quantizer is different from the one shown in

Fig. 31. Now the equivalent channel has two input bits, instead of just one, and the

equivalent channel output, i.e., the 2-D quantizer output, has L2 = 22q levels, so that

the quantizer output rate equals 2q
2

= q bits per quantized channel measurement.

This problem seems to be equivalent to designing a limited precision demodulator

for a 4-QAM or QPSK constellation with the objective to maximize the mutual

information rate. This problem has been studied before [84, 85, 86, 109], in the cutoff

rate maximizing context.

Lee [84] established a necessary condition for the optimality in the cutoff-rate

sense for the quantizer boundaries. According to this condition, for all points r on the

boundary between two adjacent quantization regions A and B the following equality

must hold:

M−1∑
m=0

[
1√

P (B|xm)

M−1∑
i=0

√
P (B|xi)− 1√

P (A|xm)

M−1∑
i=0

√
P (A|xi)

]
p(r|xm) = 0

(C.1)

with M = 2n being the number of the different messages that can be transmitted as
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n bits are considered together, i.e., n is the dimension of the vector quantizer, and

xm is the binary length-n representation of the message m. In other words, we only

consider Lee’s necessary condition [84] for constellations of 1 bit/dimension (simplex

signals).

When using a scalar quantizer it can be shown that if the scalar quantizer sat-

isfies Lee’s necessary condition for an one-dimensional constellation, then any n-

dimensional vector quantizer that is the cartesian product of this scalar quantizer

also satisfies this necessary condition for the n-dimensional constellation that is the

cartesian product of the one-dimensional constellation. This means that the scalar

quantizer results in a local maximum for the cutoff rate even if we allow for higher

quantizer dimensionality. What is not possible to show is whether this local mini-

mum is the global one or not. We tried several two-dimensional quantizers for the

BIAWGN channel but could never exceed the throughput of a scalar quantizer.

The practical problems with vector quantization is that it correlates the two or

more channel measurements that are quantized together and this should be taken

into account in the channel code design. In addition, the channel decoding algorithm

should take this correlation into account and thus, becomes more complex.
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