
MODELING HIGH-GENUS SURFACES

A Dissertation

by

VINOD SRINIVASAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2004

Major Subject: Architecture

MODELING HIGH-GENUS SURFACES

A Dissertation

by

VINOD SRINIVASAN

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Ergun Akleman
(Chair of Committee)

Donald H. House
(Member)

Michael K. Lindell
(Member)

Jianer Chen
(Member)

Phillip J. Tabb
(Head of Department)

May 2004

Major Subject: Architecture

iii

ABSTRACT

Modeling High-Genus Surfaces. (May 2004)

Vinod Srinivasan, B.Tech., Indian Institute of Technology, Madras, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Ergun Akleman

The goal of this research is to develop new, interactive methods for creating very

high-genus 2-manifold meshes. The various approaches investigated in this research

can be categorized into two groups – interactive methods, where the user primarily

controls the creation of the high-genus mesh, and automatic methods, where there is

minimal user interaction and the program automatically creates the high-genus mesh.

In the interactive category, two different methods have been developed. The

first allows the creation of multi-segment, curved handles between two different faces,

which can belong to the same mesh or to geometrically distinct meshes. The second

method, which is referred to as “rind modeling”, provides for easy creation of surfaces

resembling peeled and punctured rinds.

The automatic category also includes two different methods. The first one auto-

mates the process of creating generalized Sierpinski polyhedra, while the second one

allows the creation of Menger sponge-type meshes.

Efficient and robust algorithms for these approaches and user-friendly tools for

these algorithms have been developed and implemented.

iv

To the pursuit of knowledge and peace

A;sa;ta;ea ma;a .sa;�ç Å +ma;ya Á

ta;ma;sa;ea ma;a .$ya;ea;�a;ta;gRa;ma;ya Á

mxa;tya;ea;ma;Ra A;mxa;tMa;ga;ma;ya Á

? Za;a;�////�a;nta: Za;a;�////�a;nta: Za;a;�////�a;nta: Á Á

Lead us from untruth to truth,

from ignorance to enlightenment,

from death to immortality!

May there be peace in all three worlds!

v

ACKNOWLEDGMENTS

I would like to thank my parents and my family for supporting me through

the long years of completing my Ph.D. I would also like to thank Dr. Seema Endley

for providing the psychological boost that one needs every so often, especially when

working on a doctoral degree.

I would like to thank Dr. Ergun Akleman for accepting me as his student and

for his invaluable guidance and assistance throughout the duration of my research. I

would also like to thank Dr. Donald House, Dr. Michael Lindell and Dr. Jianer Chen

for serving on my committee and for their help and guidance with several aspects of

my research.

I am grateful to the staff of the Visualization Lab at Texas A&M University for

their valuable assistance with equipment and computers. I would also like to thank

students in the Visualization Lab who have contributed to the development of the

software and helped me improve it through their constructive feedback.

I would also like to thank the staff and my colleagues at the Ocean Drilling

Program, especially Rakesh Mithal and David Fackler, for providing me with a means

of support and for being extremely accomodative during the last few years of my Ph.D.

I will forever be grateful to Gary Hufford for introducing me to the wonderful

concept of object-oriented analysis, design and development.

vi

TABLE OF CONTENTS

CHAPTER Page

I MOTIVATION AND INTRODUCTION 1

I.1. High-genus objects from China 3

I.2. High-genus objects from contemporary artists 4

I.3. High-genus man-made objects 4

I.4. High-genus objects from mathematics 5

I.5. Current modeling tools 6

I.6. Organization of this document 6

II BACKGROUND . 8

II.1. Topological concepts 8

II.2. Previous work in high-genus modeling 9

II.3. Data structures for mesh representation 9

II.4. Mesh operators . 10

II.5. Fundamental operators 11

III HIGH-LEVEL MESH MODELING OPERATORS 16

III.1. DeleteEdgeWithCleanup(e) 16

III.2. (e1, e2) = SubDivideEdge(e) 18

III.3. CreatePipe(c1, c2) . 19

III.4. (ff , fb) = CreateFaceManifold(p0, p1, . . . , pN−1) 20

III.5. ConnectEdges({e1, f1}, {e2, f2}) 22

III.6. CollapseEdge(e) . 23

IV MULTI-SEGMENT CURVED HANDLES 25

IV.1. Creating multi-segment handles 27

IV.2. Curved handles . 29

IV.3. Face morphing . 30

IV.3.1. Face morphing in 2D 31

IV.4. Implementation . 33

IV.5. Examples . 36

V RIND MODELING . 39

V.1. Simple algorithm for rind modeling 41

V.2. Problems with the naive algorithm 42

V.2.1. Offset surface creation 43

vii

CHAPTER Page

V.2.2. Hole punching 44

V.2.3. Peeling . 44

V.3. Improved rind modeling algorithm 47

V.3.1. Automatic step: Offset surface creation 48

V.3.2. Interactive step: Hole punching and peeling . . . 50

V.4. Examples . 51

VI GENERALIZED SIERPINSKI POLYHEDRA 54

VI.1. Current construction approach 55

VI.2. Alternative approaches 56

VI.3. Generalization of Mandelbrot’s alternative Sierpin-

ski triangle construction 57

VI.3.1. Extension to 3D 58

VI.4. 3D version of generalized Sierpinski triangle construction 58

VI.5. Sierpinski subdivision algorithm 59

VI.6. Examples . 63

VII GENERALIZED MENGER SPONGES 68

VII.1. Current construction approaches 68

VII.2. Construction approach based on set difference 70

VII.3. Generalized Menger sponge algorithm 72

VII.4. Conditions for edge collapse 76

VII.5. Special cases . 82

VII.5.1. Non-planar faces 82

VII.5.2. Non-convex polygons 83

VII.5.3. Winged corners 84

VII.5.4. Non-convex edges 86

VII.6. Examples . 87

VIII CONCLUSIONS . 90

VIII.1. Summary . 90

VIII.2. High-genus mesh modeling tools 91

VIII.3. Implementation details 92

VIII.4. Ideas for future work 94

REFERENCES . 95

VITA . 100

viii

LIST OF FIGURES

FIGURE Page

1 Nested elephant sculpture from India. 1

2 Nested swan and rabbit sculptures. 2

3 Two views of a high-genus nested sculpture from China. 3

4 Examples of man-made high-genus objects. 5

5 More examples of high-genus sculptures. 6

6 Structure of a point sphere. 13

7 InsertEdge and DeleteEdge operators. 14

8 The DeleteEdgeWithCleanup operator. 17

9 The SubDivideEdge operator. 18

10 The CreatePipe operator. 20

11 The CreateFaceManifold operator. 21

12 The ConnectEdges operator. 23

13 The CollapseEdge operation. 24

14 Unity knot. 25

15 Multi-segment handle creation. 28

16 Hermitian curves. 30

17 Face morphing in 2D. 33

18 Multi-segment curved handle creation. 34

19 Two examples of creating handles between faces with different

number of vertices. 36

ix

FIGURE Page

20 Examples that show face morphing for different choice of corners. . . 37

21 Examples that show face morphing between non-star shaped faces. . 38

22 High-genus head meets high-genus elephant. 39

23 A genus zero rind surface created using the rind modeling tool. . . . 40

24 An example of the need for peeling. 42

25 Problem of creating the rind using the naive algorithm for a high-

genus surface. 43

26 X-ray view of a rind teapot model created using the naive algorithm. 44

27 Deletion of an infinitely thin pipe by deleting only two edges. 45

28 The effect of two-gons in smoothing with subdivision. 46

29 Two-gons are removed by deleting one of their edges. 47

30 Avoiding self intersection for high thickness values. 49

31 Examples of spherical rind shapes. 51

32 Two views of a shape that can be created by the rind modeling

approach, but does not look like a rind shape. 52

33 A rind-shaped teapot. 53

34 The Sierpinski gasket. 54

35 Generalization of Mandelbrot’s alternative Sierpinski triangle con-

struction to convex polygons. 57

36 The Sierpinski subdivision algorithm. 60

37 Two topological renderings of a hexagonal face that looks like a

triangle. 62

38 Connection of the hexagonal faces shown in Figure 37 allows the

creation of non-manifold looking manifold structures. 62

x

FIGURE Page

39 Two shapes created using the generalized algorithm. 63

40 Generalized Sierpinski algorithm applied to a shape with only 3-

valence convex vertices and non-planar faces. 64

41 Generalized Sierpinski algorithm applied to a mesh with star and

concave vertices. 65

42 Generalized Sierpinski algorithm applied to a mesh with planar vertices. 66

43 Smoothed Sierpinski tetrahedron. 67

44 Smoothed Sierpinski cube. 67

45 The Sierpinski carpet. 68

46 Menger sponge after 1 iteration. 69

47 Menger sponge algorithm based on set difference. 71

48 Entities used for determining edge collapse conditions. 77

49 Annotated cross-sectional view used for explaining edge collapse

situations. 77

50 Conditions for edge collapse, case 1: φ < 90◦. 78

51 Conditions for edge collapse, case 2: φ = 90◦. 78

52 Conditions for edge collapse, case 3: 90◦ < φ < 180◦. 79

53 Conditions for edge collapse, case 4: φ = 180◦. 80

54 Conditions for edge collapse, case 5: 180◦ < φ < 270◦. 80

55 Conditions for edge collapse, case 6: φ ≥ 270◦. 81

56 Problem of creating the remeshing face for non-planar polygons. . . . 82

57 Problem of creating the remeshing face for non-convex polygons. . . 83

58 Corrected remeshing face for non-convex polygons. 84

xi

FIGURE Page

59 Problem of creating the remeshing face for a polygon with a

winged corner. 85

60 Computing the remeshing face for a polygon with a winged corner. . 85

61 Avoiding self-intersections for non-convex edges. 86

62 Generalized Menger sponge algorithm applied to a cube. 87

63 Menger sponge example with a different thickness parameter. 88

64 Generalized Menger sponge algorithm applied to non-cubic shapes. . 89

65 Model of a cup created using both rind modeling and multi-

segment curved handle tools. 92

66 Model created using a combination of the generalized Sierpinski

tool and the generalized Menger sponge tool. 93

67 Model created using a combination of the generalized Menger

sponge tool and rind modeling. 93

1

CHAPTER I

MOTIVATION AND INTRODUCTION

Fig. 1. Nested elephant sculpture from India.

The inspiration for this research came from looking at models such as the elephant

sculpture shown in Figure 1. Models such as these are carved from a single marble

block. In this particular instance, the belly of the elephant is made into a shell. Holes

are then punched in the shell. Through these holes a smaller elephant is then sculpted

inside the shell. The exceptional skills of the artisan are evident from the intricate

details in the models. Figure 2 shows some more examples of this kind of sculpture,

all carved from soapstone. Wood sculptures of this kind are also common.

The journal model is IEEE Transactions on Visualization and Computer
Graphics.

2

Fig. 2. Nested swan and rabbit sculptures.

The most prominent feature of these models, which sets them apart from other

sculptures of similar objects, are the holes in the surface of the model. From a

topological perspective, the holes make these models high-genus surfaces. A rigorous

definition of topological terms such as genus is given in Chapter II. For now, the

genus of an object can be correlated with the number of holes in the object – the

higher the number of holes, the higher the genus.

Robust modeling of 2-manifold polygonal meshes with arbitrary topology (such

as high-genus meshes) has always been a challenge in computer graphics. When we

introduce the requirement for interactivity in the modeling process, the problem is

complicated further, primarily because we are trying to work on three-dimensional

objects through a two-dimensional interface.

In computer graphics, we are not only interested in being able to model objects,

we would also like to produce high quality renderings of those models. In recent years,

subdivision surfaces have gained prominence as a useful modeling and rendering tool in

the computer graphics industry. One of the requirements of most subdivision schemes

3

is that the surface be a valid 2-manifold mesh [10, 12, 43]. Ensuring topological

consistency during modeling has thus become more important.

Another important application in computer graphics is physically based model-

ing, which includes physical simulations of natural processes using computer models.

In the real world, every object is an orientable 2-manifold surface, which in simple

terms means that the object has a well defined interior and exterior. This is because it

is physically impossible to have a thickness of zero. Thus manifold representations of

real-world objects are also useful functional models, since they can be used in physical

simulations without having to simulate a manifold surface programmatically.

I.1. High-genus objects from China

Fig. 3. Two views of a high-genus nested sculpture from China.

Figure 3 shows two views of a Chinese sculpture which contains sixteen nested

balls. Each inner ball has been carved through the holes in the outer balls. An

important feature of this model, which makes it different from the sculptures shown

earlier, is that the inner balls are completely disconnected from the outer ball. Each

4

ball can freely rotate independent of the other balls. From a modeling perspective

this can be easily achieved by simply combining scaled copies of the outer shell. That

still leaves us with having to create the outer shell which is a high-genus surface.

I.2. High-genus objects from contemporary artists

The domain of artistic high-genus objects is not restricted to India and China. The

famous artist M.C. Escher has also created several drawings of objects which have

very high genus [13]. The Möbius Strip and Cube with Ribbons [8] are two of the more

interesting examples. Several of sculptor George Hart’s creations [23], which include

sculptures made from materials such as oak, brass and acrylic, are also examples of

high-genus objects. Sculptor Helaman Ferguson has also created several high-genus

objects from a range of materials including marble, bronze and stone [15].

I.3. High-genus man-made objects

The examples of high-genus objects given above are all from art. However, high-genus

objects are much more common in the real world. Numerous man-made objects have

high genus. Buildings are high-genus objects when one considers doors and windows

as holes in the building structure. Communication towers, perforated wood and

stone screens, decorative window panes, bridges, gates and automobiles are some

more examples of high-genus man-made objects. The ubiquitous computer monitor,

without which there is not much to do in computer graphics, is also a high genus

object, with the large number of holes in the casing for heat dissipation. Figure 4

shows some examples of such objects.

5

Fig. 4. Examples of man-made high-genus objects.

I.4. High-genus objects from mathematics

In the last two decades, fractal geometry has emerged as one of the major mathemati-

cal approaches for designing unusual 3D shapes. Examples of such shapes introduced

by fractal geometry include the Sierpinski gasket, the Menger sponge, the Mandelbrot

set and Julia sets [27].

Fractal geometry shapes are artistically intriguing and aesthetically pleasing [27].

Fractals have also been used to model naturally occurring objects such as snowflakes

and clouds. The Menger Sponge has been used to model the porous structure of soil

for simulation of various geophysical processes [32, 36].

The shapes from fractal geometry provide unique challenges for the development

of robust and computationally efficient shape construction approaches. The simple set

of rules that govern the construction of fractal shapes lend themselves to automatic

modeling of such shapes. Of interest in this research is the ability to automatically

create high-genus shapes.

6

I.5. Current modeling tools

In spite of the prevalence of high-genus objects all around, surprisingly, there aren’t

many software tools for efficient and interactive modeling of such objects. Although

it is possible to create high-genus meshes using currently available three-dimensional

modeling packages, the process is cumbersome and time consuming, especially for

shapes like the ones shown earlier. Software such as Alias Wavefront’s Maya do

provide some topological operations [4], but the operations are not designed for high-

genus modeling. Moreover, the available operations are not necessarily manifold

preserving, and do not guarantee topological consistency, both of which are very

important in three-dimensional modeling [1].

I.6. Organization of this document

Fig. 5. More examples of high-genus sculptures.

What started out as an exploration of tools to model objects such as the ones

shown in Figure 5 has led to an extensive set of algorithms and tools which have ap-

7

plications beyond just high-genus modeling. Figuratively speaking, the ideas hatched

from the eggs in the figure have matured and grown into an impressive collection of

tools for mesh modeling.

Chapter II explains various concepts and terms used in this dissertation and talks

about previous work in this area. It also talks about data structures and fundamental

mesh modeling operators.

Chapter III gives details of the various High-level Mesh Modeling Operators that

are made use of by the high-genus modeling tools.

The tools that have been developed in this research can be grouped into two

categories – interactive tools and automatic tools. Chapter IV describes the first tool

in the interactive category, namely, the creation of Multi-Segment Curved Handles.

The second interactive tool, Rind Modeling is described in Chapter V.

The next two tools fall into the automatic category. Chapter VI presents an

automated approach for creating Generalized Sierpinski Polyhedra, while Chapter VII

presents a tool for automatic construction of Generalized Menger Sponges.

Finally, Chapter VIII summarizes the work done in this research and presents

results and conclusions. Some ideas for future work are also given.

8

CHAPTER II

BACKGROUND

In this chapter, various concepts relevant to this research and terms used in this

dissertation are explained. Previous work done in the area of high genus modeling

is also mentioned. Topological mesh modeling operators, which are fundamental to

developing high-genus modeling tools, are discussed. A minimal set of fundamental

operators through which any topological operation can be performed is also presented.

II.1. Topological concepts

Topology primarily concerns itself with the qualitative characteristics of a geometrical

object rather than its quantitative dimensions [22]. Topological mesh modeling op-

erators are thus greatly simplified since geometric considerations become secondary.

This in turn simplifies the development of the tools needed for this research, since

they are primarily topological in nature. To get a better understanding of how the

tools work, it is useful to have some knowledge of the topological concepts involved.

Fundamental to this research is the topological concept of a 2-manifold. A 2-

manifold or a 2-dimensional manifold is a topological space where every point has a

neighborhood topologically equivalent to an open disk. In other words, the geomet-

rical object resembles the plane locally [22].

A closed surface is a connected, closed, 2-manifold [22]. That is, it consists of a

single piece and has no edges (boundaries). A closed surface is orientable if it does

not contain a Möbius band [19, 22]. In simpler terms, an orientable surface is one

which has a well defined interior and exterior. The Möbius strip is an example of

a non-orientable surface – one can walk around and reach any point on the surface

9

without ever leaving the surface or passing through the surface. In contrast, such a

traversal is not possible on a sphere or a torus, both of which are orientable surfaces.

All 2-manifolds in this research are assumed to be orientable unless explicitly

stated otherwise. A 2-manifold in general consists of a number of surfaces, each

of which is homeomorphic (topologically equivalent) to a sphere with zero or more

handles. The number of handles on the sphere is called the genus of the surface.

Equivalently, one could define the genus to be the number of holes in the surface.

The genus of a 2-manifold is the sum of the genera of its component surfaces [19].

Thus a high-genus surface is one which has a large number of handles or holes.

II.2. Previous work in high-genus modeling

The creation of very high genus, smooth, 2-manifold surfaces has been an ongoing

area of research interest in computer graphics and shape modeling [17]. Ferguson,

Rockwood and Cox used Bezier patches to create high-genus 2-manifold surfaces

[14]. Welch and Witkin used handles to design triangulated free-form surfaces [40].

Takahashi, Shinagawa and Kunii developed a feature-based approach to create smooth

2-manifold surfaces with high genus [35].

II.3. Data structures for mesh representation

Meshes are commonly used in computer graphics to represent objects [25]. Several

data structures have been proposed to represent 2-manifold mesh structures. Some

of these are “face-based” in which mesh faces are explicitly given in consistent and

oriented directions [5, 29], while others are “edge-based” in which adjacency rela-

tionships around each edge are given [7, 9, 42, 38, 28, 20, 21, 26, 37]. Baumgart’s

winged-edge structure [7] is the most well known edge-based representation, based on

10

which several variants have been proposed, including Weiler’s edge based structure

[38], Mäntylä’s half-edge structure [28] and Guibas and Stolfi’s quad-edge structure

[20].

Several of the above data structures, including Weiler’s radial-edge structure [39],

Karasick’s star-edge structure [26] and Vanecek’s edge-based data structure [37] can

support a wide range of non-manifold surfaces. Mäntylä’s half-edge representation [28]

is one data structure that is designed to support manifold meshes. It is possible to

make the internal representation of the objects valid orientable 2-manifold sturctures

even when the corresponding geometric shapes appear to be non-manifold [24].

II.4. Mesh operators

Since this research is about modeling meshes, operators on meshes are of primary con-

cern. Mäntylä made a systematic study of mesh modeling operators [28] and studied

the Euler operators proposed by Baumgart [7]. Guibas and Stolfi also proposed a set

of operations on 2-manifold structures [20].

An important consideration in topological mesh modeling is that the operations

on 2-manifold structures be manifold preserving. That is, the operations should result

in valid 2-manifold structures.

Akleman and Chen recently introduced a topologically robust mesh modeling

approach [1] by adopting topological graph theory [11, 19] to computer graphics and

shape modeling. Their 2-manifold mesh modeling scheme is based on a minimal

set of manifold preserving operators [1] that are simpler, more intuitive and more

user-friendly when compared to previously proposed schemes.

The minimal set of fundamental operators that have been identified are : Cre-

ateVertex, which inserts a new vertex into the mesh, DeleteVertex, which

11

removes an existing vertex from the mesh, InsertEdge, which inserts an edge be-

tween two existing corners of the mesh and DeleteEdge, which deletes an existing

edge from the mesh [1]. This set of operators is more uniform in comparison to other

previously proposed operator sets, both from the point of view of modeling systems

and end users. A modeling system using these operators only needs to deal with the

internal representation and does not have to worry about the topological integrity of

the mesh. Using these operators does not require understanding the internal imple-

mentation and only requires identifying corners in the mesh structure, which are the

operands of the above mentioned operators.

II.5. Fundamental operators

The mesh modeling approach introduced by Akleman and Chen [1] will be followed

in this research. In their approach, they make use of the Doubly Linked Face List

(DLFL), originally developed by Chen [11]. This is used as the underlying data

structure for representing meshes in this research.

The DLFL structure consists of a list of vertices, edges and faces. Vertex, edge

and face refer to the internal representations of a point in three-dimensional space,

a line segment connecting two points and a sequence of points respectively. For

brevity and simplicity we will not make an explicit distinction between the internal

representation and the actual geometric entity unless required. Thus, vertex will be

used to refer to both the geometric entity as well as the topological entity (the internal

representation) except where the reference is not clear from the context of the usage.

To simplify operations on the mesh, an additional entity, namely a corner, is

also introduced. A corner is a vertex-face pair, c = {v, f}, where v is one of the

vertices in f . Formally, a corner is a subsequence of the face boundary walk. That

12

is, if f = (v0, v1, . . . , vN−1) is a face, ci = {vi−1, vi, vi+1} is the corner referring to the

vertex vi in f . A corner is associated with only one face, but several corners can refer

to the same vertex.

Internally, each face is represented as an ordered sequence of corners each of

which contains a pointer back to the face. Every corner also has a pointer to the

vertex it refers to and every vertex contains a list of corners which refer to it. An

edge contains pointers to two corners, one for each end of the edge. For each end of

the edge there are two possible choices for the corners. The edge stores the corners

at which the edge originates1 in the two faces which are on either side of the edge.

Each corner in turn has a pointer to the edge which originates there.

Based on the minimal set of operators mentioned above, high-level operators can

be developed, which will allow the user to easily and intuitively perform topologi-

cal and homeomorphic operations on a given 2-manifold mesh structure [2]. Before

exploring the various high-level operators that have been developed, we will take a

more detailed look at the minimal set of fundamental operators.

1. (v, f) = CreateVertex(p) creates a 2-manifold surface with one vertex v and

one face f which will be referred to as a point sphere. The geometric coordinates

of the vertex v are given by p which is a point in three-dimensional space.

The operation is the same as the Euler operation MV FS [28] and effectively

adds a new surface component to the current 2-manifold. The CreateVertex

operator is essential in the initial stage of the creation of a new mesh and creates

a new surface component in the given 2-manifold. In particular, this operator is

necessary when a new surface component is to be created in an empty manifold.

1Since each face is an ordered sequence of corners, we can talk of an edge as
originating at a particular corner in a face.

13

Fig. 6. Structure of a point sphere.

Figure 6 illustrates the structure of a point sphere. With respect to the formal

definition of a corner given above, we can consider the preceeding and succeeding

vertices to be the same as the lone vertex in the face. Thus if c = {v, f} is the

lone corner in the face, it can also be written as c = {v, v, v}.

2. DeleteVertex(v) is the complement of the CreateVertex operator. It re-

moves a point sphere from the mesh structure. If v is not part of a point-sphere,

the operator returns without making any changes to the mesh. The operation

is the same as the Euler operation KV FS [28] and effectively removes an ex-

isting surface component from the current 2-manifold. The DeleteVertex

operator is essential for cleaning up the mesh structure to prevent unwanted

visual artifacts from appearing.

3. e = InsertEdge(c1, c2) inserts a new edge e into the mesh structure between

two corners c1 and c2 as shown in Figure 7.

If InsertEdge inserts an edge between two corners of the same face, the new

edge divides the face into two faces without changing topology. On the other

hand, if InsertEdge inserts an edge between corners of two different faces

(this includes the situation in which an endpoint or both endpoints of the new

14

Fig. 7. InsertEdge and DeleteEdge operators.

15

edge correspond to point spheres), the new edge merges the two faces into one

and changes the topology of the 2-manifold.

4. DeleteEdge(e) deletes the edge e from the mesh structure.

This is the inverse of the InsertEdge operator. In general, if f1 and f2 are

the faces on either side of the edge e, then deleting e combines f1 and f2 into a

single face. But if f1 and f2 refer to the same face f (as will be the case if e is

the result of an InsertEdge operation between corners of two different faces),

then deleting e separates f into two faces, thereby changing the topology of the

mesh. Figure 7 illustrates this operator.

The various high-level operators developed using these fundamental operators

are described in the next chapter.

16

CHAPTER III

HIGH-LEVEL MESH MODELING OPERATORS

The fundamental operators introduced in the previous chapter form the core of the

topological mesh modeling system. All operations on the mesh can be executed as

a sequence of the four fundamental operators, CreateVertex, DeleteVertex,

InsertEdge and DeleteEdge.

High-level operators combine a sequence of the fundamental operators, usually

along with one or more non-topological operations (such as loops or mathematical

calculations) into a single unit. They simplify the user interface since most operations

on a mesh involve more than just application of the basic operators. They also simplify

the development of more complex operations on a mesh such as those that will be

introduced in later chapters.

III.1. DeleteEdgeWithCleanup(e)

As described earlier, the DeleteEdge operator removes an edge from the mesh. If

the faces on either side of the edge are the same, then the operator splits the face

into two. In the special case when one end of the edge is a valence-1 vertex1, one

of those faces (corresponding to the valence-1 vertex) becomes a point sphere. If

both ends of the edge are valence-1 vertices, then deleting the edge creates two point-

spheres. In either situation, the point-spheres can cause visual artifacts, especially

when smoothing the mesh.

The point-spheres can be automatically cleaned up since all the necessary infor-

mation is readily available. The DeleteEdgeWithCleanup operator does exactly

1The valence of a vertex is the number of edges incident to that vertex.

17

that. It deletes the specified edge and if there are any point-spheres created by the

deletion, it cleans them up using the DeleteVertex operator. Figure 8 illustrates

its operation. The red edges in the first image are to be deleted. Using only the

DeleteEdge we get the mesh in the bottom right image in which a point sphere

still remains. The DeleteEdgeWithCleanup operator performs the additional

step of removing the point sphere to produce the mesh shown in the final image.

Fig. 8. The DeleteEdgeWithCleanup operator.

The algorithm for DeleteEdgeWithCleanup proceeds as follows:

1. Find the two faces on either side of the edge e, f1 and f2.

2. DeleteEdge(e).

18

3. If f1 is a point-sphere

(a) Find the vertex v1 corresponding to the point sphere f1.

(b) DeleteVertex(v1).

4. If f2 6= f1 and f2 is a point-sphere

(a) Find the vertex v2 corresponding to the point sphere f2.

(b) DeleteVertex(v2).

III.2. (e1, e2) = SubDivideEdge(e)

The SubDivideEdge operator, as the name implies, subdivides the given edge into

two equal halves. The operation introduces a new vertex at the middle of the original

edge and increases the number of edges in the mesh by one. The topology of the

mesh remains unchanged. This operator is very useful for remeshing the faces of a

mesh. Figure 9 illustrates the working of this operator.

Fig. 9. The SubDivideEdge operator. In the third step, the original edge is shown

curved for clarity.

19

The algorithm proceeds as follows:

1. Let v1 and v2 be the vertices connected by e. Compute the mid-point of the

edge pm = v1+v2

2
.

2. (vm, fm) = CreateVertex(pm). This creates a point-sphere at pm. Let cm =

{vm, fm}.

3. Let f be one of the faces adjacent to e. Let c1 and c2 be the corners in f

corresponding to the vertices v1 and v2.

(a) e1 = InsertEdge(c1, cm). This creates an edge between v1 and the newly

created vertex, vm.

(b) e2 = InsertEdge(c2, cm). This creates an edge between v2 and vm.

After the first InsertEdge operation, there will still be only one corner refer-

ring to vm, namely cm. Thus, for the second InsertEdge operation, we can

use the same corner.

4. DeleteEdge(e). This removes the original edge from the mesh.

III.3. CreatePipe(c1, c2)

The InsertEdge operator inserts an edge between two corners. In the situation when

the corners belong to different faces, it connects the two faces with an infinitely thin

handle or pipe, thereby increasing the genus of the surface by one. The CreatePipe

operator is a natural extension to the InsertEdge operator, where every matching

corner of two different faces is connected to produce a solid handle or pipe as shown

in Figure 10. This operation still increases the genus of the surface only by one, but

produces cleaner geometry which is better suited for subdivision and remeshing.

20

Fig. 10. The CreatePipe operator.

Formally, the CreatePipe operator connects the two faces which contain the

corners c1 and c2 such that there is an edge between c1 and c2 and there is an edge

between other matching corners (with reference to c1 and c2) of the two faces.

It is assumed that the two corners belong to topologically distinct faces with

equal number of corners. The latter assumption is not really a restriction, since a

pre-processing step can be used to make the face-valences2 equal by sub-dividing the

edges of the face with smaller number of corners [3].

III.4. (ff , fb) = CreateFaceManifold(p0,p1, . . . ,pN−1)

The CreateFaceManifold operator creates a manifold surface consisting of two

faces which share the same vertices but are turned in opposite directions as shown in

Figure 11. The vertex coordinates of the faces are given by points (pi) specified as

input. Of the two faces created, one will contain the input points in the given order,

2The term “face-valence” is used to refer to the number of corners in a face

21

Fig. 11. The CreateFaceManifold operator.

22

(p0, p1, . . . , pN−1), and the other will contain the same points in the reverse order. We

can think of the first face as the front face (ff) and the second one as the back face

(fb).

1. for i = 0 to N − 1 do

(vi, fi) = CreateVertex(pi);

Let ci = {vi, fi}.

2. for i = 0 to N − 1 do

e = InsertEdge(ci, c(i+1) mod N).

III.5. ConnectEdges({e1, f1}, {e2, f2})

The ConnectEdges operator is another extension to the InsertEdge operator.

Given two half-edges3, the operator inserts two edges into the mesh as illustrated in

Figure 12.

If {e1, f1} and {e2, f2} refer to the two half-edges, the first edge is inserted be-

tween the corner in f1 where e1 starts and the corner in f2 where e2 ends. The

starting and ending corners are determined according to the rotation order in the

respective faces. If f = (v0, v1, . . . , vN−1) and e is an edge in the face between the

vertices vi and vi+1, then e is said to start at ci and end at ci+1 where ci = {vi, f}

and ci+1 = {vi+1, f}.

The operator creates a new face in the mesh bounded by e1, e2 and the two newly

inserted edges. If f1 and f2 refer to the same face as shown in Figure 12, the operator

effectively splits the face into 3 smaller faces, one of which will be the new face. If f1

and f2 refer to different faces (not shown), then the first InsertEdge operation will

3The term “half-edge” is used to refer to an {edge, face} pair

23

Fig. 12. The ConnectEdges operator.

introduce a handle and combine the two faces into one, thus changing the topology

of the mesh. The second InsertEdge operation will split this face into two. The

number of faces in the mesh will thus remain the same as before.

III.6. CollapseEdge(e)

The CollapseEdge operator removes an edge from the mesh and merges the two

vertices at the end of the mesh into a single vertex. The merged vertex is positioned

at the mid-point of the edge.

In the following implementation, one of the end points is retained and the other

end point is merged into the first one. The merged vertex is then repositioned at the

mid-point of the edge.

1. Let v1 and v2 be the end points of e. Compute the midpoint of e, vm = v1+v2

2
.

24

2. Let E2 be the list of edges pointing to v2. Let C1 and C2 be the list of corners

pointing to v1 and v2 respectively.

3. Among the corners in C1 find the corner c1 at which e starts.

4. For every corner c2,i = {v2, fi} in C2

(a) Let c′2,i be the corner following c2,i in fi.

(b) if c′2,i does not point to v1, InsertEdge(c′2,i, c1).

5. For every edge e2,i in E2, DeleteEdgeWithCleanup(e2,i).

Since the edge e will also be in E2 we do not have to delete it separately.

6. v1 = vm. This re-positions v1 at the mid-point of e.

Fig. 13. The CollapseEdge operation.

Figure 13 illustrates the above sequence of operations. The edge shown in red

is the edge that is to be collapsed. The edges inserted in step 4 are shown in blue

color. The vertex v2 does not have to be separately deleted – the DeleteEdge-

WithCleanup operator automatically deletes it when the last edge pointing to it is

deleted.

25

CHAPTER IV

MULTI-SEGMENT CURVED HANDLES

This chapter presents the first of the two interactive high-genus modeling tools that

have been developed, namely creation of multi-segment, curved handles. The tool

allows the creation of such handles between two faces belonging to two orientable

2-manifold meshes. Figure 14 shows an example of an object created using this tool.

Fig. 14. Unity knot. The image on the right was created using the multi-segment

handle tool.

Creation of a handle between two faces of the same mesh increases the genus of

the mesh by one. On the other hand, if the two faces belong to distinct mesh surfaces,

then the two surfaces are connected but the genus does not increase.

26

It needs mentioning that handle creation is different from a loft between two

faces, although visually they produce similar results. A loft creates an additional

surface component, topologically equivalent to a 2-manifold with a boundary, which

then has to be “stitched” to the original mesh. Handle creation is a topological

operation and directly alters the topology of the mesh. Thus topological consistency

becomes important for handle creation. The present approach not only guarantees

the 2-manifold property of the final mesh, but the constructed meshes preserve the

2-manifold property at every stage of the handle creation process.

The CreatePipe operator, described in Section III.3, has emerged as one of the

most useful high-level operators developed. However, a drawback of this operator is

that the length of the edges in the handle can be much longer than other edges in the

mesh. A straightforward solution to this problem is to split the handle into multiple

segments, such that the edges in each individual segment are similar in length to the

edges in the rest of the mesh. A useful side effect of this solution is that it allows the

creation of a handle with an overall curvature, although individual segments of such

a handle will still be straight.

An algorithm to create multi-segment handles followed by a modification which

allows curved handles are presented in the following sections. For simplicity of ex-

planation it is assumed that the two faces between which the handle is to be created

have the same number of vertices. However, as in the case of the CreatePipe op-

erator, this is not a restriction and faces with different number of vertices can easily

be handled by a pre-processing step.

27

IV.1. Creating multi-segment handles

The algorithm to create multi-segment handles, shown graphically in Figure 15, pro-

ceeds as follows for a given mesh M and corners c1 = {v1, f1} and c2 = {v2, f2}:

1. for i = 1 to k − 1 where k is the number of segments required in the handle

(a) Compute the positions (p′i,0, p
′
i,1, . . . , p

′
i,N−1) of the vertices in face f ′

i based

on a linear interpolation between the original faces f1 and f2. The corre-

spondence between vertices in the two faces is determined by the corners

c1 and c2 and the rotation system defining the orientation of the faces.

(b) (f ′
i,f , f

′
i,b) = CreateFaceManifold(p′i,0, p

′
i,1, . . . , p

′
i,N−1). This creates

the two faces which form the boundary between segment i and segment

i + 1 in the handle.

This step creates a sequence of face pairs starting from (f ′
1,f , f

′
1,b) and ending at

(f ′
k−1,f , f

′
k−1,b) as shown in Figure 15B. One vertex in each of the intermediate

faces will lie on the line segment connecting v1 and v2.

2. Starting from f ′
0,f = f1 and ending at f ′

k,b = f2, going through the sequence of

face pairs (f ′
1,f , f

′
1,b), (f

′
2,f , f

′
2,b), . . . (f

′
k−1,f , f

′
k−1,b) created above, apply the Cre-

atePipe operator to each pair of adjacent faces whose normals point towards

each other. The front face of one pair (f ′
i,f) and the back face of the next pair

(f ′
i+1,b) will satisfy this requirement. The corners chosen for the CreatePipe

operation will be the ones corresponding to the vertices which lie on the line

segment between v1 and v2. Figures 15C – 15F illustrate this step.

28

A B

C D

E F

Fig. 15. Multi-segment handle creation.

29

IV.2. Curved handles

Now that we have a handle with multiple segments, one is naturally inclined to

explore the possibility of creating a curved handle made of piecewise linear segments.

An extension to the algorithm presented in the previous section which allows the

creation of a curved handle is described in this section. A simple approach, using

readily available geometric information, is used to create the handle. Essentially

the only change in the algorithm described earlier is in the way the positions of the

vertices in the intermediate faces are computed.

As before, two corners c1 = {v1, f1} and c2 = {v2, f2} are assumed to be given.

In addition two weights w1 and w2, both of which can be specified by the user, are

also defined. If f1 and f2 are star shaped faces with the same number of vertices, the

goal is to create a multi-segment curved handle between them.

A Hermitian curve is used to determine the overall shape of the handle. The

curve is defined by the following equation:

H(t) = p1h1(t) + p2h2(t) + w1n1h3(t)− w2n2h4(t). (4.1)

where t is the independent parameter which typically varies from 0.0 at the starting

point of the curve (p1) to 1.0 at the end point of the curve (p2).

Here p1 and p2 are the centroids and n1 and n2 are the average unit normals of

f1 and f2 respectively. h1(t), h2(t), h3(t) and h4(t) are the Hermite basis functions.

This Hermitian curve starts from the centroid of face f1 in the direction of the face

normal (n1) and ends at the centroid of face f2, in a direction opposite to the face

normal (−n2).

The weights w1 and w2 are applied to the face normals n1 and n2 respectively.

The weights provide limited control over the shape of the handle, since they affect

30

the shape of the Hermitian curve. Note that w1 and w2 can also be negative, which

can be used to create holes instead of handles. Figure 16 shows two Hermitian curves

illustrating how the normals affect the shape of the curve.

Fig. 16. Hermitian curves.

IV.3. Face morphing

The Hermitian curveH(t) determines the overall shape of the handle. To compute the

actual positions of the vertices in the intermediate faces, the shape of the cross-section

of the handle at each segment as it goes from f1 to f2 needs to be determined.

This problem strongly resembles the problem of 2D shape blending [34] (more

widely known as 2D morphing). Therefore, in this approach, the problem is first

simplified into a 2D problem. To morph the shape of the faces from f1 to f2 in 2D,

a reference plane R is first determined and both faces are rotated to that reference

plane. The choice of R is arbitrary and does not by itself affect the algorithm.

However care must be taken to ensure that no degeneracies occur when performing

the rotation. For example if the normal to the reference plane is exactly opposite to

31

the face normal, the rotation vector to rotate the face onto the reference plane cannot

be determined, since the cross product between the two normals becomes zero.

The vector from the centroid of the first face to the centroid of the second face is

used to determine the unit normal vector nR to the reference plane R. f1 is rotated

onto R around its centroid using the rotation axis n1 × nR. f2 is similarly rotated.

Each vertex of the rotated f1 and f2 is then moved to the reference plane R, to

ensure that the transformed faces are planar. The faces are then translated to make

their centroids coincide with the origin of the coordinate system. Thus, after applying

the above operations, the two faces will be co-planar and both of their centroids will

be at the origin.

As mentioned above, there is a possibility that the rotation vector becomes zero,

namely when either n1 •nR = −1 or −n2 •nR = −1. This special case, where there is

more than one possible solution for the overall shape of the handle, has been ignored.

IV.3.1. Face morphing in 2D

Under the assumption that these faces are star shaped and their centroids are star

centers (i.e. any ray emanating from the centroid intersects with the face at most

once), the morphing problem is simpler than the general 2D shape blending problem

[34, 33]. However, care still needs to be taken to avoid self intersections. For instance,

if a linear interpolation is performed directly between the vertices of the two faces,

self intersections can occur.

Instead of linear interpolation between the vertex coordinates, the interpolation

is done in polar coordinates. This interpolation guarantees that intermediate faces

do not self-intersect. Using a reference axis system on the plane R, every vertex v of

f1 and f2 is resolved into a distance-angle pair (r, θ), where r is the distance of v from

32

the centroid of the face (which is now the origin) and θ is the angle that v (treated as

a vector) makes with the X axis. The choice of the reference axis system is arbitrary

and has no influence on the final results. Without loss of generality, the vector from

the origin to the mid-point of the last edge in f1 is taken to be the X axis. The Y

axis is then defined by the cross product between nR and the X axis.

Care is taken to ensure that the angles within the same face always increase

monotonically, going from the first vertex to the last one. This is necessary to avoid

self intersections as we transition from f1 to f2, and also gives a smooth transition.

The difference in angles for the first vertices is also restricted to be less than 180

degrees. This prevents unwanted twists in the pipe (along the axis of the pipe).

Let

f1 = (v1,0, v1,1, . . . , v1,N−1)

f2 = (v2,0, v2,1, . . . , v2,N−1)

v1,j = (r1,j, θ1,j), j = 0 to N − 1

v2,j = (r2,j, θ2,j), j = 0 to N − 1

(4.2)

be the resolved representations of the two transformed faces f1 and f2, where N is

the number of vertices in each face.

A linear interpolation of the distance-angle pairs is then performed using the

same parameter t as used for the Hermitian curve, such that t = 0 corresponds to the

transformed f1 and t = 1 corresponds to the transformed f2. Let

f(t) = f ′
i = (v′i,0, v

′
i,1, . . . , v

′
i,N−1) (4.3)

be an interpolated face corresponding to the parameter t, where

v′i,j = (r′i,j, θ
′
i,j), j = 0 to N − 1

r′i,j = (1− t)r1,j + tr1,j

θ′i,j = (1− t)θ1,j + tθ2,j

(4.4)

33

Figure 17 illustrates how the face morphing is done.

Fig. 17. Face morphing in 2D.

Using the Hermitian curve H(t), a point p(t) and a tangent vector n(t) are

obtained for the given parameter t. f(t) is then rotated such that its normal points

in the same direction as n(t) and is translated so that its centroid coincides with p(t).

From this point, the process is identical to the second half of the multi-segment

handle creation algorithm described in Section IV.1.

IV.4. Implementation

An outline of the implementation of the algorithm described above is given below.

Two corners c1 = (v1, f1) and c2 = (v2, f2) and two weights w1 and w2 are the inputs

to the algorithm. Figure 18 illustrates the operation of the algorithm.

1. Let N be the number of vertices in the f1 and f2.

34

A B

C D

E F

Fig. 18. Multi-segment curved handle creation.

35

2. (a) Reverse face f2.

(b) Using the centroids p1 and p2 and weighted normals n1 and n2 of the two

faces, compute a Hermitian curve H

3. (a) Compute the reference plane R with normal nR.

(b) Transform f1 and f2 into f ′
1 and f ′

2 such that the normals of f ′
1 and f ′

2 are

in the same direction as nR and their centroids are at the origin.

(c) Resolve f ′
1 and f ′

2 into distance-angle pairs. (Equation 4.2).

4. for i = 1 to k − 1 where k is the number of segments required in the handle

(a) Compute t = i/k

(b) Compute a point pi and tangent ni on the curve H for t

(c) Perform a linear interpolation between f ′
1 and f ′

2 using t as the parameter

to obtain f ′
i = (p′i,0, p

′
i,1, . . . , p

′
i,N−1) (Equations 4.3 and 4.4)

(d) Transform f ′
i to f ′′

i = (p′′i,0, p
′′
i,1, . . . , p

′′
i,N−1) such that the normal to f ′′

i

points in the direction of ni and its centroid coincides with pi.

(e) (f ′′
i,f , f

′′
i,b) = CreateFaceManifold(p′′i,0, p

′′
i,1, . . . , p

′′
i,N−1)

5. Starting from f ′′
0,f = f1 and ending at f ′′

k,b = f2, going through the sequence of

face pairs (f ′′
1,f , f

′′
1,b), (f

′′
2,f , f

′′
2,b), . . . (f

′′
k−1,f , f

′′
k−1,b) created above, apply the Cre-

atePipe operator to each pair of adjacent faces whose normals point towards

each other. The front face of one pair (f ′′
i,f) and the back face of the next pair

(f ′′
i+1,b) will satisfy this requirement. The corners chosen for the CreatePipe

operation will be the ones corresponding to the vertices which lie on the curve

between v1 and v2.

36

IV.5. Examples

In the following figures, the faces to be connected have a darker shade and the selected

corners in those faces are indicated as white dots.

Figure 19 shows two examples of creating a handle between two faces which

originally have different number of vertices. Three examples of face morphing for

different choices of corners are shown in Figure 20. Notice that by varying the choice

of corners, a twist is automatically introduced into the handle.

Fig. 19. Two examples of creating handles between faces with different number of

vertices.

The morphing algorithm used in the handle creation cannot guarantee absence of

self-intersections for handles between non-star faces. However, it can still be used in

some situations as shown in Figure 21, where the handles do not self-intersect inspite

of the end faces being non-star shaped.

To create the segments of a handle, the Hermitian curve is sampled using t = i/k

where k is the number of segments in the curve and i is the index of the current

segment and varies from 0 to k − 1. As can be expected this produces segments

of unequal length, with shorter segments in regions of high curvature and longer

37

Fig. 20. Examples that show face morphing for different choice of corners.

segments in other regions. To improve the quality of the handles alternative sampling

strategies were tested, such as using an appropriate step length with respect to the

curvature of the Hermitian curve. The results were not significantly different in terms

of visual appearance.

The main problem occurs when the handle intersects itself. However, if the Her-

mitian curve intersects with itself for the user selected weight values w1 and w2, there

is no solution to this problem. Since both high curvature and curve self-intersection

occur for larger values of w1 and w2, it is easier to reduce the values of these pa-

rameters. A very small number of segments is usually sufficient to construct handles.

Unless the curvature is extremely high, a small number of segments do not intersect

each other. In interactive applications users can easily avoid self intersection by either

decreasing the values of w1 and w2 or using less segments.

38

Fig. 21. Examples that show face morphing between non-star shaped faces.

39

CHAPTER V

RIND MODELING

For the second interactive approach to high-genus modeling, we return to the sculp-

tures that provided the inspiration for this research. In this chapter, we will look at

a tool to create high-genus rind shapes of the kind shown in Figure 22 below and

Figures 1, 2, 3 and 5 in Chapter I. Figure 22 also shows a high-genus model (the

floating head) created using the rind modeling tool. A rind shape can be thought of

as a shell enclosing a volume. When we think of a rind shape as an orientable surface,

the interior of the surface is the region between the two surfaces which make the shell

and not the volume enclosed by the shell itself.

Fig. 22. High-genus head meets high-genus elephant. The head model was created

using the rind modeling tool.

Among Escher’s drawings are three rind shaped figures, titled Study for Rind,

Rind and Bond of Union [8]. All three images actually depict genus zero surfaces,

40

but their structure is such that they can be modeled using the same approach as used

for high-genus rind models. Figure 23 shows an example of a genus zero rind surface

created using the rind modeling tool.

Fig. 23. A genus zero rind surface created using the rind modeling tool.

Rind shapes are also extremely common in the world of man-made objects. Ex-

amples include bottles, teapots, masks, boxes and even houses, many of which are not

high-genus objects, but readily suggest an approach based on high-genus modeling.

The process of creating a rind shape starting from a 2-manifold mesh surface

can be split into two steps. In the first step an offset surface is created for the given

mesh. In the second step holes are punched in the shell or crust produced in the first

step. Punching a series of holes adjacent to each other can be considered as a form

of peeling, similar to peeling the rind of an orange.

Although the process appears to be a simple one, there are several issues to

consider, especially when we consider topological consistency of the mesh surface and

user interactivity. These issues are discussed later in this chapter.

41

V.1. Simple algorithm for rind modeling

At first glance, it appears that creating a rind for any given shape is an easy process.

A naive algorithm for the construction of high-genus rind surfaces might proceed as

given below. For the second stage, the algorithm makes use of the CreatePipe

operator described in Section III.3.

Stage 1: Offset surface creation. This stage consists of two steps.

1. Duplicate the initial mesh and scale the vertices of the new mesh about

their centroid so that they lie completely inside the first mesh. This oper-

ation creates two nested surfaces, the initial mesh and the newly created

offset mesh with each face in the outer surface having a matching face in

the inner surface.

2. Reverse the normals of the faces of the offset mesh. This operation changes

the inside and outside of a 2-manifold mesh by changing the rotation orders

of faces. This step is necessary to produce a topologically valid rind surface.

Stage 2: Hole punching and peeling. From the user’s point of view, peeling is

identical to hole punching. However the two are topologically different as de-

scribed below.

Hole punching This involves connecting a face in the initial mesh to its cor-

responding face in the offset mesh using the CreatePipe operator. The

process can be repeated to produce as many holes as desired.

The first hole that is punched combines the inner and outer surfaces into

a single surface. Formally, the first CreatePipe operation changes the

topology of the object, but it does not increase the genus of the object.

42

Subsequent application of the CreatePipe operator changes the topology

as well as increases the genus by one [3].

Peeling As explained earlier, punching a series of holes adjacent to each other

is essentially a peeling operation. But punching holes as described above

does not automatically create a peeled effect.

Punching holes in two neighboring faces leaves an infinitely thin wall or

slab (like a thin membrane) between two neighboring holes as shown in

Figure 24. Users have to delete such walls to create a peeled look.

Fig. 24. An example of the need for peeling. (A) shows an initial mesh and (B) shows

infinitely thin walls left over by hole punching. The mesh shown in (C) is

obtained after deleting these infinitely thin walls.

V.2. Problems with the naive algorithm

Theoretically, it is possible to create almost any high-genus manifold rind shape with

algorithm described above. But there are several usability problems with the above

approach as explained below.

43

V.2.1. Offset surface creation

For simple convex meshes, the naive algorithm can produce an offset mesh which is

completely inside the initial mesh. But if the object is not convex or star-like, it may

be necessary to move different vertices by different amounts to produce the offset

mesh just to ensure that the offset surface is completely inside the initial mesh. This

can be extremely cumbersome and time consuming even for simple objects with a

large number of faces.

The problem becomes more complicated when we want to create a rind of uniform

thickness. For high-genus initial meshes, using the above approach can result in

intersections between the inner surface and the outer surface as shown in Figure 25.

Fig. 25. Problem of creating the rind using the naive algorithm for a high-genus

surface.

Figure 26 shows an x-ray view of a teapot model created using the naive algo-

rithm. Although the model is a valid manifold, it is far from satisfactory since the

thickness of the rind is highly non-uniform, as is evident from the x-ray image.

44

Fig. 26. X-ray view of a rind teapot model created using the naive algorithm.

V.2.2. Hole punching

As mentioned above, hole punching makes use of the CreatePipe operator. Recall

that this operator requires two corners of the mesh to be specified. For hole punching,

one corner will be from a face in the outer mesh and the other will be from the

matching face in the inner mesh.

Selecting the correct corner from the inner surface is not easy, since the the inner

surface is only partially visible even through holes which have already been punched.

For punching the first hole the difficulty is even more pronounced since the inner

surface is completely invisible from outside.

V.2.3. Peeling

As mentioned earlier, punching holes in two neighboring faces leaves an infinitely thin

wall. Users have to delete such walls to create a peeled look. Visually, it appears

as though the wall is made up of a single two-sided quadrilateral. But a two sided

quadrilateral is not a valid entity in an orientable 2-manifold surface and cannot be

created using the four fundamental topology change operators. In terms of the mesh

structure, the wall actually consists of two coincident quadrilaterals. Since all the

45

edges are straight, the existence of more than one edge in the same location is not

visually apparent.

To illustrate the problem with deleting the thin wall, the edges of one of the

quadrilaterals is assumed to be curved as shown in Figure 27A. Although this figure

does not make sense geometrically, it helps to conceptually visualize the structure of

the infinitely thin wall.

From the figure it can be seen that the infinitely thin wall is in fact a handle.

This handle can be deleted by deleting the two edges e1 and e2 as shown in Figure 27.

Deleting e1 combines the two quadrilaterals and creates a hexagonal face [3]. This

hexagon is still a handle, which is eliminated after the deletion of e2, thus separating

the hexagon into two two-gons.

(B)
Successive edge deletions

One
hexagon

(A)
An infinitely
thin wall with
curved edges

Two
quad−
rila−
terals

Two
Two−gonse1

e2

e5

e6

e3

e4

Fig. 27. Deletion of a an infinitely thin pipe by deleting only two edges. Initially this

infinitely thin pipe consists of two quadrilaterals.

Deleting the two edges is not an easy process from the user interface point of

view. The first edge (e1 or e2) can be easily deleted. However, it can be difficult

to delete the second edge, since the first edge deletion creates a non-planar hexagon

which cannot be properly rendered. After the first edge has been deleted, the second

46

edge becomes visible only from some orientations.

After the two edges have been deleted, we are left with two two-gons. These two-

gons do not carry any extra visual or geometric information, since they are identical

(visually and geometrically) to a single straight edge. Although these two-gons do not

cause any apparent problems for creating rind shapes, they do cause visual artifacts

when subdivision schemes are applied to the mesh as can be seen in Figure 28B.

Therefore it is desirable to delete these two-gons from the mesh.

Fig. 28. The effect of two-gons in smoothing with subdivision. (A) shows a subdivided

version of 24B and (B) and (C) show subdivided versions of 24C with and

without two-gons. Note that the version with two-gons shows tangent discon-

tinuities. In all cases, Catmull-Clark [10] subdivision was applied twice.

Figure 29 illustrates how deletion of one edge of a two-gon eliminates the two-

gon. With reference to Figure 27, deleting e3 and e4 will eliminate the two-gons.

However, this operation is not easy since their existence cannot be visually inferred

and deleting one edge of a two-gon does not produce any visual change. Moreover,

the edges of two-gons are usually very short and therefore it is very difficult to select

and delete them by hand. In other words, even if the user tries to delete all such

edges, some may still be overlooked.

47

Fig. 29. Two-gons are removed by deleting one of their edges. In order to show the

actual mesh structure, one of the edges of every two-gon is drawn curved.

V.3. Improved rind modeling algorithm

In this section, an approach which addresses all of the above mentioned problems and

provides a simple interactive method is presented. The usability problems described

in the previous section are resolved through a semi-automatic approach as outlined

below.

1. The offset surface is created automatically by the system based on a user speci-

fied thickness parameter. This addresses the problem of non-uniform rind thick-

ness obtained using the naive algorithm.

2. The system automatically establishes a correspondence between the faces of the

outer mesh and the inner mesh. Thus punching and peeling only require the

selection of a face in the outer mesh. The invisibility or partial visibility of the

inner mesh becomes a non-issue since the user no longer has to select matching

corners in the inner mesh and the outer mesh.

It must be mentioned that the problem of invisibility of the inner surface can

be addressed by using transparency when rendering the mesh. Although this

alleviates the problem to some extent, this is not an effective solution in very

dense meshes where transparency can create difficulties in distinguishing faces

48

of the inner mesh from those of the outer mesh.

3. Since the system has access to the internal structure of the mesh, the infinitely

thin wall between neighboring holes is automatically eliminated. The system

also cleans up the two-gons to achieve a smooth, peeled rind.

A more detailed description of the above approach follows. The algorithm can

be split into two parts - an automatic step and an interactive step.

V.3.1. Automatic step: Offset surface creation

This step is automatically initiated when the system enters the rind modeling mode

and proceeds as follows:

1. Duplicate the initial mesh to create an offset mesh, reverse the normals and

compute average unit normals for each vertex.

2. Create a correspondence table which maps each face in the initial mesh to its

matching face in the offset mesh. The face correspondence also establishes

matching corners in the two faces.

3. Move each vertex of the offset mesh a distance equal to the thickness value in

the direction of its average normal vector.

The offset surface construction problem for 2-manifold meshes is very different

from offset surfaces in solid modeling [30, 18] since the shapes of faces of 2-manifold

meshes do not have to be well-defined. For 2-manifold meshes a distance function

cannot be defined. Therefore a “correct” offset surface cannot be rigorously defined.

Thus, any procedure to create offset surfaces for 2-manifold meshes must be somewhat

ad hoc.

49

The above procedure may result in self intersection for high values of the thick-

ness parameter. It is possible to accommodate the self intersection by changing the

topology and mesh structure as shown in Figure 30. However such a change in the

topology of the rind surface means that some metric (such as distance between faces

and their relative orientation) will have to be used to find matching faces between

the initial mesh and the offset mesh. This could potentially result in a one-to-many

correspondence between faces in the initial mesh and those in the offset mesh. It also

means that there will be some faces in the initial mesh for which a matching face in

the offset mesh doesn’t exist and vice versa.

(A) (B)

Fig. 30. Avoiding self intersection for high thickness values (A) requires a change in

topology as shown in (B).

The procedure is greatly simplified if the initial and the offset surfaces have the

same mesh structure and a one-to-one correspondence exists between faces in the

initial mesh and the offset mesh. In this approach, self intersections can be avoided

simply by using smaller thickness values. This procedure is practically useful and

successfully creates acceptable offset surfaces for a wide range of initial meshes. An

advantage of this procedure is that it is extremely simple, and therefore, suitable for

interactive applications.

50

V.3.2. Interactive step: Hole punching and peeling

Once the offset surface has been created, the interactive step is initiated. During the

interactive step, the system can be in two modes: hole punching or peeling. The

mode can be changed during the interactive process. In either mode, the user can

punch holes or peel simply by selecting faces of the mesh. Selecting a face which was

created by a previously punched hole does not have any effect.

Hole punching mode The algorithm for punching a hole is extremely simple. Let

f1 be the face selected by the user and T be the correspondence table created

in the automatic step.

1. If T contains f1 find the matching face f2 and the matching corners in the

two faces c1 and c2.

If T does not contain f1 the selection is ignored and the hole punching

procedure stopped. Control is returned to the user to select another face.

2. CreatePipe(c1, c2)

Peeling mode The first part of the algorithm for peeling is identical to the algorithm

for hole punching. In the second part, the infinitely thin wall and the two-gons

are cleaned up. The second part makes use of the fact that for every edge in the

selected face, there is a matching edge, in the matching face obtained through

the correspondence table.

1. If T contains f1 find the matching face f2 and the matching corners in the

two faces c1 and c2.

If T does not contain f1 the selection is ignored and the hole punching

procedure stopped. Control is returned to the user to select another face.

51

2. CreatePipe(c1, c2)

3. For every edge e1,i in f1 find the matching edge e2,i in f2.

4. If the two faces adjacent to e1,i are the same as the two faces adjacent to

e2,i, then we have a thin wall which has to be cleaned up. This merely

involves deleting all the edges of one of the faces adjacent to either e1,i or

e2,i.

V.4. Examples

Figure 31 shows examples of rind shapes created using this approach. The models

have been smoothed by applying a subdivision scheme to the rind surface.

Fig. 31. Examples of spherical rind shapes. The nested structures are obtained by

duplicating, scaling and rotating the outer rind shapes.

52

Fig. 32. Two views of a shape that can be created by the rind modeling approach,

but does not look like a rind shape.

The rind modeling method can also be used to create shapes that do not neces-

sarily look like rind shapes. An example of such a shape is shown in Figure 32. The

surface in this figure looks more like an extruded surface than a rind surface, but it

cannot be created as a simple extrusion because of its branching structure.

As mentioned earlier, manifold models are also functional models. The teapot

shown in Figure 33 is an example of a functional model that can be created by the

rind modeling tool. As can be seen from the x-ray and cut away images, this teapot

has a real not just an apparent hole to let the water pour from the spout, allowing

the model to be used in physical simulations.

53

Fig. 33. A rind-shaped teapot. (A) and (B) show two different views of the manifold

mesh. (C) is an X-ray image using transparency. (D) is sliced to show the

interior.

54

CHAPTER VI

GENERALIZED SIERPINSKI POLYHEDRA

The Sierpinski tetrahedron is the three-dimensional version of the Sierpinski gasket

(Figure 34). A Sierpinski polyhedron is a generalization of the Sierpinski tetrahedron

where the overall shape can be any polyhedron.

Fig. 34. The Sierpinski gasket. The sequence shows the construction up to 4 iterations

using the union operation.

Most shape construction algorithms for fractal geometry are given by a set of

rules that are applied to an initial shape [6]. However, the limit surfaces are often in-

dependent of the initial shapes and the algorithms are geometric in nature and hard

to generalize. Subdivision schemes provide a fresh alternative to fractal construc-

tion algorithms. They are conceptually similar to fractal constructions, i.e., they are

also given by a set of rules that are applied to an initial shape. However, subdivi-

sion schemes have three advantages: (1) their underlying rules (remeshing schemes)

are mesh topological in nature, (2) the rules can be easily applied to any manifold

55

polygonal mesh, (3) the limit shapes depend on the initial shapes.

In this chapter a scheme to construct generalized Sierpinski polyhedra is pre-

sented. Most current Sierpinski tetrahedron construction schemes create either an

infinite set of disconnected tetrahedra or a non-manifold polyhedron. In contrast,

the scheme described here creates one connected and manifold polyhedron. The new

scheme can be applied to any manifold polyhedral mesh. Depending on the shape

of the initial polyhedron, the new scheme can construct a wide variety of Sierpinski

polyhedra.

VI.1. Current construction approach

Most fractal geometrical shapes, including the Sierpinski tetrahedron are self-similar,

i.e. parts of the shape have the same form as the entire shape. This self-similarity

property [6] is exploited by algorithms for construction of such shapes. One of the

most common approaches is to create the fractal shape by repetitively taking the

union of geometrically transformed copies of an initial shape, as shown for the Sier-

pinski gasket in Figure 34. For example, if a self-similar fractal shape is given as

S =
K⋃

k=0

AkS

where Ak is a transformation matrix in a homogeneous coordinate system, then con-

structing such a shape involves creating a series of shapes starting from an initial

surface S0 as

Sn =
K⋃

k=0

AkSn−1

.

In the actual implementation of such algorithms, the union operation is usually

ignored, since it is impossible to visually distinguish between a shape constructed

56

using disconnected copies placed at the correct locations and one that makes use

of the union operation. This results in the number of copies of the initial shape

increasing geometrically – i.e. by a constant factor (K in the above equations) – in

each iteration, giving a good approximation of the limit surface after a few iterations.

This approach is widely used because of its simplicity. The procedure is also dimension

independent, i.e. the same conceptual algorithm can be used in 2D as well as 3D.

The algorithm is also independent of the actual representation of the shape, which

can be a set of points, a polygonal mesh or an implicit surface.

VI.2. Alternative approaches

As mentioned earlier, algorithms based on the above approach are specific to the

target (limit) shapes and they are independent of the shape of the initial object, i.e.

each algorithm approaches its target shape whatever be the initial shape.

There exist alternative approaches for constructing fractal shapes. These are

usually dimension dependent and are hard to implement in 3D. As such, they have

not been widely used in 3D applications. However, using these alternative approaches,

a variety of fractal shapes can be constructed from different initial shapes. A notable

example is one of Mandelbrot’s alternative Sierpinski triangle constructions that relies

upon “cutting out tremas” as defined by Mandelbrot [27]. This particular approach

is built upon in the following sections to develop a generalized Sierpinski polyhedron

construction algorithm.

57

VI.3. Generalization of Mandelbrot’s alternative Sierpinski triangle con-

struction

Although not explicitly stated by Mandelbrot, the above construction scheme does

not require that the initial shape be a uniform triangle. The scheme can be applied

to any convex polygon by simply restating the construction algorithm as “from each

convex polygon cut a convex polygon that is created by connecting the midpoints of

each edge” (see Figure 35). Notice that, after the first application of this modified

algorithm, all polygons become triangles, and the original scheme can be applied

without modification.

Fig. 35. Generalization of Mandelbrot’s alternative Sierpinski triangle construction to

convex polygons.

58

VI.3.1. Extension to 3D

To be able to generate polyhedra, it will be useful if this algorithm can be extended to

three dimensions. However, it is difficult to extend this algorithm to three dimensions

using set operations. Construction of a generalized Sierpinski polyhedron requires a

set-difference of the initial polyhedron with a polyhedron that is constructed by con-

necting midpoints of each edge in the original polyhedron. This poses two problems:

1. Unlike the union operation, which can be visually implied without any imple-

mentation as such (we simply have to render all the objects), the set difference

operation needs to be implemented. In this particular case set difference is

particularly hard to implement since it creates non-manifold shapes [24].

2. Construction of a polyhedron by connecting the midpoints of each edge of the

initial polyhedron can also be hard in solid modeling. In the case of a tetrahe-

dron, the problem is easy since the shape that is constructed is an octahedron

in which the faces are triangular and therefore planar. But for the general case,

the faces may not be triangular and hence may not be planar, complicating the

set-difference procedure even further.

VI.4. 3D version of generalized Sierpinski triangle construction

This section presents an overview of an algorithm that provides a three-dimensional

version of the generalized Sierpinski triangle construction. The scheme is very similar

to subdivision schemes [43, 31, 12, 10]:

• Like every subdivision scheme, the algorithm is based on a simple remeshing

scheme.

• The algorithm can be applied to any polygonal manifold mesh.

59

• Subdivision schemes creates regular regions that approach parametric surfaces

such as cubic B-Spline surfaces. This algorithm also creates regular regions that

approach Sierpinski tetrahedra.

• Similar to subdivision surfaces, this scheme has extraordinary points. Initial

valence-n vertices continue to exist as a part of n-sided pyramids. The newly

created pyramids are all 3-sided, i.e., tetrahedral.

The algorithm differs from subdivision schemes in that it changes the topology

of the initial mesh. However, unlike algorithms for self-similar fractals, this algorithm

does not create disconnected surfaces. Each connected component in the initial mani-

fold mesh remains connected after application of the algorithm. It must be mentioned

that this property is important to be able to produce topological high genus surfaces –

constructing a polyhedron with disconnected components does not increase the genus

of the resulting object, although visually it does appear to have high genus. With

the new scheme, after the first iteration, the genus of the mesh increases by a factor

of four with every subsequent iteration.

VI.5. Sierpinski subdivision algorithm

Let V be the list of vertices, E the list of edges and F the list of faces in the original

mesh. An edge whose end points (vertices) are the same is referred to as a self-loop.

Figure 36 provides a visual representation of the algorithm described below.

1. For every edge ei in E that is not a self-loop, subdivide ei at its mid-point. Let

Vm be the list of all newly created edge mid-points.

2. For every vertex vi in V

60

(A) (B)

(C) (D)

Fig. 36. The Sierpinski subdivision algorithm. (A) is the initial mesh, in (B), each edge

is subdivided and midpoints are connected by inserting edges (shown as blue)

to create new faces. In (C), an edge (shown as red) is inserted between two

corners of each midpoint vertex. The yellow faces are automatically eliminated

and new (white) faces are created.

61

(a) For every corner ci = {a, vi, b} which points to vi, insert an edge (shown

as blue edges in Figure 36B) between the corners {c, a, vi} and {vi, b, d},

where {c, a, vi, b, d} forms a sub-sequence of vertices defining a face in the

mesh.

This will subdivide each face f in the original mesh into as many triangles

as the number of vertices in f plus one central face (shown as yellow faces in

Figure 36D) which will have the same number of vertices as f .

3. For each vertex vi in Vm

(a) Find the corners c1 and c2 pointing to vi that are also part of one of the

central faces created in the previous step.

(b) Insert an edge (shown as red edges in Figure 36C) between c1 and c2.

After step 3 in the above process, all the central faces created in step 2 will no

longer exist and we will have holes in their place. The restriction on edges not being

self-loops in step 1 is necessary for recursive operation, since the edges inserted in

step 3 above will all be self-loops.

Notice that the back faces (shown as white faces Figure 36.D) are automatically

created in this algorithm. Each one of these faces has one self-loop on each one of its

vertices. Since (in practice) the self-loop edges have zero length and are not visible,

the resulting faces look like they have n number of sides instead of 2n. For instance

a face which looks like a triangle is actually a hexagon as shown in Figure 37.

The self-loops act like boundaries that allow the connection of adjacent tetrahe-

dra. The topological structure of one such connection between two hexagons (that

look like triangles) is illustrated in Figure 38. Although the resulting shapes are valid

manifolds, they appear to be non-manifold since the self-loops cover zero area.

62

Fig. 37. Two topological renderings of a hexagonal face that looks like a triangle.

Fig. 38. Connection of the hexagonal faces shown in Figure 37 allows the creation of

non-manifold looking manifold structures.

63

VI.6. Examples

Figure 39 shows two shapes created using the new algorithm, one of which is the

familiar Sierpinski tetrahedron.

A B

Fig. 39. Two shapes created using the generalized algorithm. Initial shapes are a

tetrahedron (A) and a cube (B).

In the following discussion of the examples, self-loops are ignored, since they are

only useful for simplification of the algorithm and are otherwise invisible to viewers.

For instance, a hexagon with three self-loops is referred to as a triangle for ease of

illustration.

For evaluation of the results, the vertices have been classified into 5 categories.

The classification is based on the pyramid created by the straight edges (ignoring

self-loops) that share the vertex in question:

1. Convex vertex. The tip of the pyramid is convex.

64

2. Star vertex. The tip of the pyramid is star.

3. Concave vertex. The tip of the pyramid is concave.

4. Planar vertex. The tip of the pyramid is flattened.

5. Saddle vertex. The tip of the pyramid is a saddle point.

Based on this classification, the following cases have been identified.

• If the initial mesh consists of only 3-valence convex vertices such as in a do-

decahedron or a cube [41], after the first iteration, the resulting mesh consists

of only tetrahedral shapes. Since in a tetrahedral shape, each face is a triangle

there is no problem in rendering. Note that the faces of the convex polyhedron

with 3-valence vertices do not have to be planar as shown in Figure 40.

A B

Fig. 40. Sierpinski algorithm applied to a shape with only 3-valence convex vertices

and non-planar faces. The resulting shape after 4 iterations is shown in B.

65

• If the initial mesh includes some non-3-valence convex vertices such as in an

icosahedron or an octahedron [41], the resulting mesh always includes non-

triangular faces. The planarity of these faces depends on the vertex positions in

the initial mesh, although non-planar faces become more and more planar with

each iteration.

• If the initial mesh includes some star vertices, the resulting mesh always includes

star shaped faces as shown in Figure 41. Even if these faces are planar, hardware

rendering can sometimes create visual artifacts when they are converted to

triangles.

A B

Fig. 41. Generalized Sierpinski algorithm applied to a mesh with star and concave

vertices. The resulting shape after 4 iterations is shown in B.

• If the initial mesh includes some concave vertices, each one of these concave

vertices creates a geometrically inverted pyramid (Figure 41), i.e. normal vec-

tors points inside of the pyramid instead of outside. This problem is not easily

66

visible and can be corrected easily by inverting the normals.

• If the initial mesh includes some planar vertices, each one of these planar vertices

creates a flattened pyramid, as shown in Figure 42. This problem can be visually

annoying but cannot be corrected. The number of flattened pyramids increases

with each iteration.

(A) (B)

Fig. 42. Generalized Sierpinski algorithm applied to a mesh with planar vertices. The

resulting shape after 4 iterations is shown in B.

• If the initial mesh includes some saddle vertices, each one of these saddle ver-

tices creates a self-intersecting pyramid. This problem can also be be visually

annoying and cannot be corrected. However, the number of self-intersecting

pyramids stays the same in each iteration and in every iteration they become

smaller and visually less annoying.

The algorithm produces connected and manifold polyhedra. Thus, applying a

smoothing subdivision scheme such as Doo-Sabin or Catmull-Clark [12, 10], produces

a smoothed shape which remains connected as shown in Figures 43 and 44.

67

Fig. 43. Smoothed Sierpinski tetrahedron. 3 iterations of Sierpinski subdivision were

applied to a tetrahedron and the resulting mesh smoothed using Doo-Sabin

subdivision.

Fig. 44. Smoothed Sierpinski cube. 3 iterations of Sierpinski subdivision were applied

to a cube and the resulting mesh smoothed using Doo-Sabin subdivision.

68

CHAPTER VII

GENERALIZED MENGER SPONGES

The Menger sponge is the three-dimensional analog of the two-dimensional Sierpinski

carpet (Figure 45). Both are examples of self-similar fractal shapes as described in

the previous section. Schemes for their construction are also similar to those that

were described earlier (page 55).

Fig. 45. The Sierpinski carpet. The sequence shows the construction up to 2 iterations

using the set difference operation.

In this section, a scheme to construct generalized Menger sponge-type shapes is

presented. For brevity, such shapes will be referred to as generalized Menger sponges.

Along the lines of the algorithm for generalized Sierpinski polyhedra described earlier,

the algorithm described here produces connected and manifold polyhedra and can be

applied to any manifold polyhedron.

VII.1. Current construction approaches

The Menger sponge can be constructed using an algorithm that exploits the self-

similarity property. For the Sierpinski carpet and the Menger sponge, schemes based

69

on set operations are common. An example of such an algorithm for creating the

Menger sponge, starting from a cube is given below.

1. Start with any given shape.

2. Duplicate the shape 27 times and translate the copies to form a 3× 3× 3 cube.

3. Discard the copies at the center of each side as well as the one at the center of

the cube..

4. Take the union of the remaining objects.

5. Repeat the above steps with the new object.

In most implementations, the union is achieved simply by placing the shapes next

to each other, which produces a set of disconnected polyhedra as shown in Figure 46

where the initial shape is a cube. The algorithm always produces the same limit

shape (cubic Menger sponge) regardless of the initial shape.

Fig. 46. Menger sponge after 1 iteration. The image on the right shows the mesh

after applying a subdivision scheme.

70

VII.2. Construction approach based on set difference

In this section, a different approach to the construction of the Menger sponge is de-

scribed. The algorithm uses a remeshing scheme, similar to subdivision schemes, but,

unlike subdivision schemes, changes the topology of the initial mesh. The algorithm

is similar to those based on set difference. However, it uses polygonal mesh mod-

eling operators and can be easily generalized to any initial shape. It also produces

connected and manifold polyhedra.

An overview of the algorithm for the case where the initial shape is a cube is

given below.

1. Subdivide each face of the cube into 9 equal size squares.

2. Duplicate the center square in each face and offset it by a distance equal to

one-third of the edge length of the cube, towards the interior of the cube.

3. Combine the offset faces to form a new cube at the center of the original cube.

Once the inner cube has been created, reverse its normals to produce a correctly

oriented object. The new cube will have an edge length which is one-third of

the edge length of the original cube and every face of the new cube corresponds

to a center face on the original cube.

4. Using the CreatePipe operator connect each center face on the original cube

with its corresponding face in the inner cube.

Figure 47 illustrates the above algorithm. Note that there are no cubes in the

resulting mesh. Obviously the above algorithm, as described, cannot be re-applied to

the new mesh. Fortunately, the actual implementation of the algorithm does allow

it to be applied recursively as will be shown in the next section. It also allows the

algorithm to be generalized to initial shapes which are not cubes.

71

A B

C D

E

Fig. 47. Menger sponge algorithm based on set difference.

72

VII.3. Generalized Menger sponge algorithm

Let V be the list of vertices, E the list of edges and F the list of faces in the original

mesh. Let D be a thickness parameter specified by the user.

For simplicity, all faces are assumed to be convex. We shall also assume that

the initial shape to which the algorithm is applied is a convex polyhedron (it is not

restricted to a cube). The algorithm proceeds as follows:

1. For every face fi in F , create a new face pair (f ′
i,f , f

′
i,b) as follows:

Let (p0, p1, . . . , pN−1) be the coordinates of the vertices in fi, where N is the

number of vertices in fi. Let (p′0, p
′
1, . . . , p

′
N−1) be the coordinates of the vertices

in the new faces. The new face pair will be referred to as the remeshing face

pair since the faces will be used for remeshing the original faces in a later step.

For simplicity, the modulus operator has been omitted when referring to the

vertex index in the following steps.

(a) for j = 0 to N − 1 do

i. Compute two unit edge vectors originating at pj and pointing towards

the two vertices adjacent to pj in fi.

~e1 = pj+1−pj

|pj+1−pj |

~e2 = pj−1−pj

|pj−1−pj |

ii. p′j = pj + D(~e1 + ~e2).

(b) Create the remeshing face pair using the CreateFaceManifold opera-

tor and the coordinates computed above.

(f ′
i,f , f

′
i,b) = CreateFaceManifold(p′0, p

′
1, . . . , p

′
N−1).

The remeshing faces will be similar in shape to the original face fi and smaller.

73

The front face, fi,f , points outward in the same direction as fi and the back

face, fi,b, points into the object opposite to that of fi.

2. For every remeshing face pair (f ′
i,f , f

′
i,b) created above, create an offset face pair

(f ′′
i,f , f

′′
i,b) as follows:

Let (p′′0, p
′′
1, . . . , p

′′
N−1) be the coordinates of the points in the offset faces. Let

~ni be the average unit normal vector for face fi.

(a) for j = 0 to N − 1 do

p′′j = p′j −D~ni.

(b) (f ′′
i,f , f

′′
i,b) = CreateFaceManifold(p′′0, p

′′
1, . . . , p

′′
N−1).

The offset faces will be identical to the remeshing faces but offset towards the

interior of the object. f ′′
i,f points outward, similar to f ′

i,f and fi, while f ′′
i,b points

into the object, similar to f ′
i,b.

Every face fi in the original mesh is now associated with four faces: the remesh-

ing face pair, (f ′
i,f , f

′
i,b) and the offset face pair (f ′′

i,f , f
′′
i,b). Every edge in the

original mesh has two matching edges (corresponding to the two faces it bor-

ders) among the remeshing faces as well as two matching edges among the offset

faces.

3. Combine the offset faces into a single surface as follows:

(a) For every edge ei in E

i. Find the two matching edges among the edges that make up the offset

faces. Let the matching edges be e′′1 and e′′2.

ii. Each edge has two faces adjacent to itself. In this case, among the two

faces adjacent to e′′1 and e′′2, one points inwards and the other points

74

outwards. Let the outward pointing faces adjacent to e′′1 and e′′2 be fO
1

and fO
2 respectively.

iii. ConnectEdges(e′′1, f
O
1 , e′′2, f

O
2).

Note that the outward pointing faces are chosen for the ConnectEdges

operation. This will produce a surface that points inwards in relation to

the original surface, thus creating an orientable 2-manifold.

Also note that e′′1 and e′′2 may geometrically be in the same position. This

depends on the angle that the two faces adjacent to ei in the original mesh

make with each other. If the angle is 90 degrees the two edges will be

coincident, otherwise they will be geometrically separate.

(b) Collapse edges that were inserted by the ConnectEdges operation in

the previous step, if necessary.

If the edge to be collapsed is a self-loop, the edge is simply removed from

the mesh and there is no need for any vertices to be merged. This operation

reduces the number of edges in the mesh by one. If the edge was not a

self-loop, the number of vertices in the mesh also decreases by one.

The criteria for determining if an edge has to be collapsed are discussed in

Section VII.4.

At this stage, only the inward pointing offset faces f ′′
i,b will remain.

4. Remesh the original faces (the outer surface). This will make use of the remesh-

ing faces created in Step 1.

(a) For every edge ei in E

i. Subdivide ei into three parts.

75

ii. Adjust the coordinates of the two new points created, such that they

are at a distance D (the thickness parameter) from the ends of the

edge.

At the completion of the above steps, every edge in the original mesh would

have been trisected into three parts, with the length of the end segments

equal to the specified thickness parameter D.

(b) For every face fi in F

Let Efi
be the list of edges in fi.

For every edge ej in Efi

i. If ej is the middle segment of an original edge

A. Find the remeshing face pair (f ′
i,f , f

′
i,b) corresponding to fi.

B. Find the edge e′j in the remeshing face pair which corresponds to

the original edge in fi of which ej is the middle segment.

C. ConnectEdges(ej, fi, e
′
j, f

′
i,b).

Note that the inward pointing remeshing face is used for the ConnectEdges

operation. This ensures that we create a correctly oriented 2-manifold. This

step subdivides every face of the original mesh into 2k quadrilaterals, where k

is the number of vertices in the original face, as well as a central face which has

the same number of vertices as the original face.

At this stage, only the outward pointing remeshing face f ′
i,f will remain.

5. Connect each outward pointing remeshing face f ′
i,f to the corresponding inward

pointing offset face f ′′
i,b.

For every face fi in F

76

(a) Find the remeshing face f ′
i,f and offset face f ′′

i,b corresponding to fi.

(b) Find one pair of matching corners c′i and c′′i in f ′
i,f and f ′′

i,b respectively. The

matching corners are easily obtained because of the face correspondence

established in Step 2.

(c) CreatePipe(c′i, c
′′
i).

VII.4. Conditions for edge collapse

All the edges which were inserted in Step 3a are candidates for being collapsed.

However, in some situations collapsing the edge will cause self-intersections and in

some situations the edge will have to be collapsed to avoid self-intersections. In

certain cases, the decision can be left to the user or be made using some local metric

of the mesh.

Let e′′12 be the edge under consideration. Let f ′′
1 and f ′′

2 be the two offset faces

between which e′′12 was inserted. Further, let f1 and f2 be the faces in the original

mesh corresponding to f ′′
1 and f ′′

2 respectively and let e12 be the edge adjacent to

both f1 and f2. Let φ be the interior angle between f1 and f2 at each corner of their

intersection along e12.

Figure 48 illustrates the various entities under consideration. Remeshing faces

are not shown in this figure. A cross-sectional view along the blue edge, as shown in

Figure 49 will be used to explain the various edge collapse situations.

The decision on whether an edge is to be collapsed or not is made based on

the value of φ. The possible scenarios and the corresponding decisions are described

below.

77

Fig. 48. Entities used for determining edge collapse conditions.

Fig. 49. Annotated cross-sectional view used for explaining edge collapse situations.

78

1. φ < 90◦.

Fig. 50. Conditions for edge collapse, case 1: φ < 90◦.

In this situation f ′′
1 and f ′′

2 intersect causing a self-intersection in the interior

surface. Collapsing e′′12 will eliminate this self-intersection, as shown in Fig-

ure 50.

2. φ = 90◦.

Fig. 51. Conditions for edge collapse, case 2: φ = 90◦.

In this case (Figure 51), f ′′
1 and f ′′

2 intersect at one of their edges. The end

points of e′′12 will be geometrically identical, although they are shown as being

geometrically distinct to emphasize that e′′12 it is not a self-loop. Since e′′12 does

not add any visual or topological information to the mesh, it should always be

79

collapsed.

3. 90◦ < φ < 180◦.

Fig. 52. Conditions for edge collapse, case 3: 90◦ < φ < 180◦.

In this situation f ′′
1 and f ′′

2 do not intersect as shown in Figure 52. e′′12 does

not have to be collapsed. However, in some situations it might be desirable

to collapse the edge. The decision can be based on the length of e′′12. Or

equivalently it can be based on the angle which the end points of e′′12 subtend at

e12, which is directly related to the angle between f1 and f2. The decision can

be based on either of these criteria, with the end user deciding the threshold

length or angle.

4. φ = 180◦.

f ′′
1 and f ′′

2 are co-planar as shown in Figure 53. As in the previous case, f ′′
1

and f ′′
2 do not intersect. In this situation, e′′12 does not have to be collapsed. In

80

Fig. 53. Conditions for edge collapse, case 4: φ = 180◦.

most cases it is desirable to not collapse e′′12. Specifically for creation of a cubic

Menger sponge e′′12 should not be collapsed.

5. 180◦ < φ < 270◦.

Fig. 54. Conditions for edge collapse, case 5: 180◦ < φ < 270◦.

In this situation e12 is a non-convex edge. Although f ′′
1 and f ′′

2 do not intersect,

the distance of the offset surface from the original surface in the region becomes

81

smaller than the specified thickness as can be seen in Figure 54. Collapsing

the edge only exaggerates this non-uniformity. The problem can be fixed by

inserting a new vertex in e′′12 as described later.

6. φ ≥ 270◦.

Fig. 55. Conditions for edge collapse, case 6: φ ≥ 270◦.

This is similar to the previous situation, except that e12 now intersects the outer

surface, as can be seen in Figure 55. Collapsing the edge makes the intersection

more pronounced. This problem can also be fixed by introducing a new point.

82

VII.5. Special cases

The above algorithm is, in general, applicable to most polyhedral meshes. However,

the algorithm, as described, does not work well in some situations. Some modifications

in the algorithm are required to produce acceptable results in those situations.

VII.5.1. Non-planar faces

Fig. 56. Problem of creating the remeshing face for non-planar polygons.

Figure 56 illustrates the problem of creating the remeshing face for a non-planar

face. The face shown in red color is a non-planar face and the face shown in blue

color is the remeshing face created by the algorithm. The problem does not have any

simple solution. However this is not really a restriction, since in most applications

we rarely come across such faces. Even when we have faces that are non-planar,

the skew is usually very minimal and the above algorithm still produces acceptable

results. Moreover, non-planar faces can always be triangulated to make them planar.

83

VII.5.2. Non-convex polygons

In the above algorithm, all faces are assumed to be convex polygons. This greatly

simplifies the calculation of the remeshing face from the original face. However, for

non-convex polygons, the algorithm produces a remeshing face that intersects the

original face as shown in Figure 57.

Fig. 57. Problem of creating the remeshing face for non-convex polygons.

If the non-convex corners of the face can be identified, the problem is easily

handled. A convex corner is one where the two edges incident at the corner subtend

an interior angle less than 180 degrees. All other corners are non-convex corners. For

such corners, we merely have to reverse the unit edge vectors used (blue arrows in

Figure 57) to compute v′j from vj in step 1 of the algorithm.

Thus the step for the computation of v′j (page 72) is modified as follows:

1. (a) iii. If vj is a non-convex corner of fi

v′j = vj −D~vo,j

else

v′j = vj + D~vo,j

84

Fig. 58. Corrected remeshing face for non-convex polygons.

With the modification, the remeshing polygon is computed as shown in Figure 58.

VII.5.3. Winged corners

There is a special case of a non-convex corner for which the above modification is not

sufficient. This is the situation when the angle between the two edges incident at the

corner is exactly 180 degrees. That is, the two edges are co-linear. Such corners will

be referred to as winged corners. For a winged corner, the offset vector ~vo,j computed

when creating the remeshing face becomes the zero vector. Figure 59 illustrates the

problem of creating the remeshing face for a face with such a corner.

The offset vector has to be computed differently for a winged corner. The offset

vector should move the vertex towards the interior of the face. The normal vector to

the face can be used to compute the offset vector. The following modification to the

algorithm will allow it to handle this special case.

1. (a) ii. Compute the offset vector ~vo,j.

Let ~ni denote the unit normal to the face fi

If vj is a winged corner

85

Fig. 59. Problem of creating the remeshing face for a polygon with a winged corner.

~vo,j = ~ni × ~e1

else

~vo,j = ~e1 + ~e2

The × symbol represents the cross product between two vectors. For a winged

corner, the offset vector is essentially the cross product between the unit normal to

the face and the unit edge vector originating at the corner and pointing towards the

next vertex in the face. The existence of a consistent rotation system for each face is

implicitly assumed.

With the modification the remeshing face for a face with a winged corner is

computed as shown in Figure 60.

Fig. 60. Computing the remeshing face for a polygon with a winged corner.

86

VII.5.4. Non-convex edges

As mentioned in Section VII.4 above, non-convex edges can cause self-intersections

when creating the offset faces for the inner surface (see Figure 55 on page 81). If

the interior angle φ is exactly 270◦ the intersection happens along the edge e12 in the

original mesh (outer surface) and will not be visually evident, although subsequent

operations are likely to introduce visual artifacts. If φ > 270◦ the intersection is more

pronounced. In both situations, collapsing the edge e′′12 does not help and in the latter

case it actually exacerbates the problem as can be seen from Figure 55.

The intersection can be eliminated by inserting two new vertices (for each end

of the edge e′′12) as shown in Figure 61. In the figure the black dots represent the new

vertices and the green lines are the edges which replace e′′12 (red lines). A new edge

also has to be inserted between the two new vertices (this will be perpendicular to the

plane of the paper along the black dot). Implementing this fix is not straightforward

and complicates the algorithm, especially when collapsing edges, and has therefore

been ignored in the present work.

Fig. 61. Avoiding self-intersections for non-convex edges.

87

VII.6. Examples

Figure 62 shows the result of applying the generalized Menger sponge algorithm twice

to a cube, using a thickness parameter that is one-third of the edge length at each

stage. The result outwardly resembles the classic Menger sponge after two iterations,

although as explained above, the two are not identical in the interior regions.

Fig. 62. Generalized Menger sponge algorithm applied to a cube. The thickness pa-

rameter is equal to one-third of the edge length.

In Figure 63, the starting shape is still a cube, but a different thickness parameter

has been used. Figure 64 shows two examples where the algorithm has been applied

to non-cubic shapes. The initial shapes are a dodecahedron and a tetrahedron. The

image also shows the shapes after application of a subdivision scheme.

88

Fig. 63. Menger sponge example with a different thickness parameter. The starting

shape is a cube.

89

Fig. 64. Generalized Menger sponge algorithm applied to non-cubic shapes. Initial

shape on the left is a dodecahedron, on the right a tetrahedron.

90

CHAPTER VIII

CONCLUSIONS

VIII.1. Summary

The primary focus of this research was on developing tools for high genus mesh

modeling. The inspiration for this subject came from art and was pushed further

along by mathematics. In Chapter II basic topological concepts, data structures

and fundamental mesh modeling operators were explored. Chapter III built on the

fundamental operators to present several high-level operators for topological mesh

modeling. Maintaining topological consistency of the models has been an important

consideration in the development of all the tools.

In Chapter IV we looked at the first of four tools for high genus mesh modeling,

namely the creation of multi-segment curved handles. Chapter V presented a tool

for creating high genus rind shapes. Both of these interactive tools allow the user to

create artistic and functional high genus models.

Chapters VI and VII introduced two automatic approaches to creating high genus

models, namely, creation of generalized Sierpinski polyhedra and generalized Menger

sponges, respectively. Both tools derive inspiration from fractal geometry and allow

the user to easily create very high genus models.

Examples of models created using these tools were also presented in each chapter,

along with a discussion of their limitations and possibilities for improvements.

A summary of the modeling tools developed and a few examples of their usage

follows.

91

VIII.2. High-genus mesh modeling tools

The four tools developed in this research can be grouped into two categories – inter-

active tools and automatic tools. Interestingly, the first set of tools were inspired by

art forms, while mathematics provided the inspiration for the tools in the second set.

The tool for creating multi-segment curved handles is the first one in the inter-

active category. It allows the creation of handles between two faces of a manifold

surface. A Hermitian curve is used to define the shape of the handle. The user can

control the shape by adjusting the weights of normals used in the Hermitian equation

as well as the number of segments in the handle. The tool also allows the user to

introduce twists in the handle by appropriate selection of corners in the two faces.

The rind modeling tool allows the creation of high genus rind shapes. Considering

the complexity of the models that can be created, the implementation and operation

of this tool is surprisingly simple. The user can control the thickness of the rind and

punches holes in the rind by merely selecting faces in the mesh. By punching holes in

adjacent faces, the user can also created models that look like peeled rinds. Although

the tool was developed for high genus modeling, low or zero genus surfaces which

resemble rinds can also be created.

Both of the interactive tools can be used in succession to create functional models

such as the cup shown in Figure 65. The body of the cup was first created using rind

modeling and the handle was added using the curved handle creation tool.

The generalized Sierpinski polyhedra tool allows the creation of very high genus

polyhedra that are similar to the Sierpinski tetrahedron. The Menger sponge tool

creates generalized Menger sponge-type polyhedra of high genus. In contrast to sev-

eral existing approaches, both tools produce connected and manifold polyhedra and

can be applied to any initial shape. Figure 66 shows an example of an object created

92

Fig. 65. Model of a cup created using both rind modeling and multi-segment curved

handle tools.

using both of these tools in succession.

Figure 67 shows an example of an object created using a combination of the

automatic and interactive tools.

VIII.3. Implementation details

The algorithms presented in this research were developed using the Doubly Linked

Face List data structure and the minimal set of fundamental operators introduced

in Chapter II. The algorithms were implemented in C++, using OpenGL for the

graphics and the freely available GUI toolkit, FLTK [16] for the user interface. All

code development was done on SGI IRIX and Linux workstations.

Most of the images in this document are screen-shots from the program. Some

images were rendered using the 3D modeling, animation and rendering package, Maya.

For this the models are exported as Wavefront object files from the program and

imported into Maya. Post-processing on the images was done using Adobe Photoshop

and GIMP. Photographs of the sculptures and other objects were taken by the author.

93

Fig. 66. Model created using a combination of the generalized Sierpinski tool and the

generalized Menger sponge tool.

Fig. 67. Model created using a combination of the generalized Menger sponge tool

and rind modeling. The starting shape was a cube.

94

VIII.4. Ideas for future work

The research has provided new insights into topological modeling and its applica-

tions in computer graphics. Several interesting ideas for future work have developed

through the course of this research. Some of these are improvements to overcome

the limitations in the current tools, while others explore new directions in high genus

modeling.

1. In the multi-segment curved handle tool, currently, the user has only limited

control over the shape of the handle. The range of shapes is also limited by

the use of Hermitian curves. Having the ability to create arbitrarily shaped

handles would be a useful addition to this tool. The problem is primarily one

of developing the appropriate user interface and the core of the current tool can

still be used.

2. The user can currently create a handle between two faces. The ability to create

handles between multiple faces would provide interesting modeling capabilities.

3. In the rind modeling tool, the algorithm currently creates a rind surface and

then allows the user to punch holes in the rind. In some situations, the ability to

punch holes on surfaces that already resemble rind shapes would be very useful.

An algorithm for such a tool would have to be primarily based on geometrical

considerations, which increases the complexity of the problem.

4. As explained in Chapter VII, the generalized Menger sponge tool is currently

limited to two iterations because of visual artifacts that are produced with

higher iterations. The algorithm also does not create an exact replica of the

Menger sponge. Implementing solutions for these problems would be a welcome

addition to the tool.

95

REFERENCES

[1] E. Akleman and J. Chen, “Guaranteeing the 2-manifold property for meshes

with doubly linked face list,” International Journal of Shape Modeling, vol. 5,

pp. 149–177, 2000.

[2] E. Akleman, J. Chen, and V. Srinivasan, “A new paradigm for changing topol-

ogy during subdivision modeling,” Proc. 8th Pacific Conference on Computer

Graphics and Applications, pp. 192–201, 2000.

[3] E. Akleman, J. Chen, and V. Srinivasan, “A prototype system for robust, inter-

active and user-friendly modeling of orientable 2-manifold meshes,” Proc. Inter-

national Conference on Shape Modeling and Applications, pp. 43–50, 2002.

[4] Alias Systems. (2004, Jan.) Maya 5 technical features. [Online]. Available:

http://www.alias.com

[5] G. Barequet and S. Kumar, “Repairing CAD models,” Proc. IEEE Visualization

’97, pp. 363–370, 1997.

[6] M. Barnsley, Fractals Everywhere. San Diego, CA: Academic Press, Inc., 1988.

[7] B. Baumgart, “Winged-edge polyhedron representation,” Stanford University,

Tech. Rep., 1972.

[8] F. Bool, J. Kist, J. Locher, and F. Wierda, M.C.Escher, His Life and Complete

Graphic Work. New York, NY: Harry N. Abrams, Inc., 1992.

[9] I. Braid, R. Hillyard, and I. Stroud, “Stepwise construction of polyhedra in geo-

metric modeling,” in Mathematical Methods in Computer Graphics and Design,

K. Brodlie, Ed., pp. 123–141. Orlando, FL: Academic Press, 1980.

96

[10] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on arbitrary

topological meshes,” Computer Aided Design, vol. 10, pp. 350–355, 1978.

[11] J. Chen, “Algorithmic graph embeddings,” Theoretical Computer Science, vol.

181, pp. 247–266, 1997.

[12] D. Doo and M. Sabin, “Behavior of recursive subdivision surfaces near extraor-

dinary points,” Computer Aided Design, vol. 10, pp. 356–360, 1978.

[13] M. Escher, M.C.Escher: The Graphic Work. New York: Barnes and Noble

Books, 1994.

[14] H. Ferguson, A. Rockwood, and J. Cox, “Topological design of sculptured sur-

faces,” Computer Graphics, vol. 26, pp. 149–156, 1992.

[15] H. Ferguson. (2004, Jan.) helaman ferguson sculpture: Gallery. [Online].

Available: http://www.helasculpt.com/gallery/index.html

[16] (2004, Jan.) The Fast Light Toolkit. [Online]. Available: http://www.fltk.org

[17] A. Fomenko and T. Kunii, Topological Modeling for Visualization. New-York:

Springer-Verlag, 1998.

[18] M. Forsyth, “Shelling and offsetting bodies,” Proceedings of Solid Modeling’95,

pp. 373–381, May 1995.

[19] J. Gross and T. Tucker, Topological Graph Theory. New York: Wiley Inter-

science, 1987.

[20] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivision

and computation of Voronoi diagrams,” ACM Transactions on Graphics, vol. 4,

pp. 74–123, 1985.

97

[21] P. Hanrahan, “Topological shape models,” PhD Dissertation, University of Wis-

consin, Madison, 1985.

[22] V. Hansen, Geometry in Nature. Wellesley, MA: A K Peters, Ltd., 1993.

[23] G. Hart. (2004, Jan.) Geometric Sculpture of George W. Hart. [Online].

Available: http://www.georgehart.com/sculpture/sculpture.html

[24] C. Hoffmann, Geometric and Solid Modeling, An Introduction. San Mateo, CA.:

Morgan Kaufman Publishers, Inc., 1989.

[25] C. Hoffmann and G. Venecek, “Fundamental techniques for geometric and solid

modeling,” Manufacturing and Automation Systems: Techniques and Technolo-

gies, vol. 48, pp. 101–165, 1990.

[26] M. Karasick, “On the representation and manipulation of rigid solids,” PhD

Dissertation, McGill University, Montreal, Canada, 1988.

[27] B. Mandelbrot, The Fractal Geometry of Nature. New York: W. H. Freeman

and Co., 1980.

[28] M. Mäntylä, An Introduction to Solid Modeling. Rockville, MA: Computer

Science Press, 1988.

[29] T. Murali and T. Funkhouser, “Consistent solid and boundary representations

from arbitrary polygonal data,” Proc. 1997 Symposium on Interactive 3D Graph-

ics, pp. 155–162, 1997.

[30] J. Rossignac and A. Requicha, “Offsetting operations in solid modeling,” Com-

puter Aided Geometric Design, vol. 3, no. 2, pp. 129–148, Aug. 1986.

98

[31] M. Sabin, Subdivision Surfaces: Tutorial Notes, 2001 International Conference

on Shape Modeling and Applications, Genoa, Italy, May 2001.

[32] C. Schols and B. Mandelbrot, Eds., Fractals in Geophysics. Basel, Germany:

Birkhäuser Verlag, 1989.

[33] T. W. Sederberg, P. Gao, G. Wang, and H. Mu, “2-d shape blending: an intrinsic

solution to the vertex path problem,” Computer Graphics, vol. 27, pp. 15–18,

1993.

[34] T. W. Sederberg and E. Greenwood, “A physically based approach to 2d shape

blending,” Computer Graphics, vol. 26, pp. 25–34, 1992.

[35] S. Takahashi, Y. Shinagawa, and T. Kunii, “A feature-based approach for smooth

surfaces,” Proc. Fourth Symposium on Solid Modeling, pp. 15–18, 1997.

[36] D. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd ed. Cambridge,

United Kingdom: Cambridge University Press, 1997.

[37] G. Vanecek, “Set operations on polyhedra using decomposition methods,” PhD

Dissertation, University of Maryland, College Park, MD, 1989.

[38] K. Weiler, “Edge-based data structures for solid modeling in curved-surface envi-

ronments,” IEEE Computer Graphics and Applications, vol. 5, pp. 21–40, 1985.

[39] K. Weiler, “Topological structures for geometric modeling,” PhD Dissertation,

Rensselaer Polytechnic Institute, Troy, NY, 1986.

[40] W. Welch and A. Witkin, “Free-form shape design using triangulated surfaces,”

Computer Graphics, vol. 28, pp. 247–256, 1994.

99

[41] R. Williams, The Geometrical Foundation of Natural Structure: A Source Book

of Design. New York, NY: Dover Publications, Inc., 1979.

[42] F. Yamaguchi and T. Tokieda, “Bridge edge and triangulation approach in solid

modeling,” in Frontiers in Computer Graphics: Proceedings of Computer Graph-

ics Tokyo’84, T. Kunii, Ed., pp. 44–65. Berlin, Germany: Springer-Verlag,

1985.

[43] D. Zorin and P. Schröder, Subdivision for Modeling and Animation: Course

Notes, 27th International Conference on Computer Graphics and Interactive

Techniques, New Orleans, LA, July 2000.

100

VITA

Vinod Srinivasan, of Chennai, India, earned the degree of Bachelor of Technol-

ogy in aerospace engineering at the Indian Institute of Technology, Madras in August

1996. Following that, he received a scholarship to continue his studies in aerospace

engineering at Texas A&M University, College Station and earned the degree of Mas-

ter of Science in December 1999. He started his Ph.D. in architecture in January

2000 under the guidance of Dr. Ergun Akleman in the Visualization Laboratory at

Texas A&M University. He can be reached care of:

K. Srinivasan

MIG 276A, NH 1, Velliveedhyar Street

MaraimalaiNagar, Tamil Nadu 603 209

INDIA

