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ABSTRACT 
 
 
 

A Numerical Study of Heat and Momentum  

Transfer Over a Bank of Flat Tubes. (August 2004) 

Haitham M. S. Bahaidarah, B.S.; M.S., King Fahd  

University of Petroleum and Minerals, Saudi Arabia 

Co-Chairs of Advisory Committee: Dr. Nagamangala K. Anand 
     Dr. Hamn-Ching Chen 

 
 
 The present study considers steady laminar two-dimensional incompressible flow 

over both in-line and staggered flat tube bundles used in heat exchanger applications. 

The effects of various independent parameters, such as Reynolds number (Re), Prandtl 

number (Pr), length ratio (L/Da), and height ratio (H/Da), on the pressure drop and heat 

transfer were studied. 

 A finite volume based FORTRAN code was developed to solve the governing 

equations. The scalar and velocity variables were stored at staggered grid locations. 

Scalar variables (pressure and temperature) and all thermophysical properties were stored 

at the main grid location and velocities were stored at the control volume faces. The 

solution to a one-dimensional convection diffusion equation was represented by the 

power law. The locations of grid points were generated by the algebraic grid generation 

technique. The curvilinear velocity and pressure fields were linked by the Semi-Implicit 

Method for Pressure Linked Equations (SIMPLE) algorithm. The line-by-line method, 
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which is a combination of the Tri-Diagonal Matrix Algorithm (TDMA) and the Gauss-

Seidel procedure, was used to solve the resulting set of discretization equations. 

 The result of the study established that the flow is observed to attain a 

periodically fully developed profile downstream of the fourth module. The strength 

increases and the size of the recirculation gets larger as the Reynolds number increases. 

As the height ratio increases, the strength and size of the recirculation decreases because 

the flow has enough space to expand through the tube passages. The increase in length 

ratio does not significantly impact the strength and size of the recirculation. 

 The non-dimesionalized pressure drop monotonically decreased with an increase 

in the Reynolds number. In general, the module average Nusselt number increases with 

an increase in the Reynolds number. The results at Pr = 7.0 indicate a significant increase 

in the computed module average Nusselt number when compared to those for Pr = 0.7. 

The overall performance of in-line configuration for lower height ratio (H/Da = 2) and 

higher length ratio (L/Da = 6) is preferable since it provides higher heat transfer rate for 

all Reynolds numbers except for the lowest Re value of 25. As expected the staggered 

configurations perform better than the in-line configuration from the heat transfer point 

of view.  
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NOMENCLATURE 
 
 
 A  area 

 a  base vector, coefficients 

 b  source term coefficient 

 Cp  specific heat 

 D  diameter, Diffusional conductance  

 Da  small diameter 

 Db  long diameter 

 e  unit vector 

 f  friction factor 

 F  flow rate though control volume 

 h  metric scale factor, heat transfer coefficient  

 H  height  

 J  total flux 

 Ja  Jacobian of transformation  

 k  thermal conductivity 

 L  length 

 LMTD  Log-Mean Temperature Difference 

 Nu  Nusselt number 

 P  Point, Pressure, Peclet number 

 Q  total heat flux 



 xix

 r  vector 

 Re  Reynolds number 

 S  source term, surface 

 t  time 

 T  temperature 

 u, v  Cartesian velocity components, velocity projection 

 V  velocity vector, volume 

 x, y, z  Cartesian coordinates 

E, W, N, S adjacent points to the main point P 

e, w, n, s adjacent faces to the main point P 

 

Superscript 

 *  guessed value 

 ‘  corrected value 

 

Subscript 

 av  average 

 b  bulk 

 H  hydraulic 

 in  inlet 

 max  maximum 

 min  minimum 



 xx

 nb  neighboring points 

 NO  non-orthogonal 

 P  primary flux, main point 

 S  Secondary flux 

 w  wall 

 

Greek 

 ξ, η, ζ  Curvilinear coordinates 

 α  primary area 

 β  secondary area 

 Γ  diffusion coefficient 

 φ  general dependent variable 

 ρ   mass density 

 µ   viscosity 

 ν  kinematic viscosity   

 θ  non-dimensional temperature 
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CHAPTER I 

INTRODUCTION 

1.1  Background 

Tubular heat exchangers are used in many energy conversion and chemical 

reaction systems ranging from nuclear reactors to refinery condensers. The most 

important design variables of tubular heat exchangers are the outside heat transfer 

coefficient of the tube and the pressure drop of the fluid flowing externally. Based on 

previous studies reported in the literature, the effects of tube shape and arrangement 

have indicated that they could have a positive influence on heat transfer (Ota et al., 1984, 

1986; Wung et al., 1986). 

It has been of interest to many researchers to investigate the fluid flow and heat 

transfer over objects of different shapes. Flat tubes have not been investigated to the 

same extent, although they play an important role in many technical applications such as 

modern heat exchangers and automotive radiators. Flat tube designs have recently been 

introduced for use in automotive air conditioning evaporators and condensers. Recent 

developments in automotive brazed aluminum manufacturing technology have made the 

cost of the flat tube heat exchanger construction more favorable (Webb, 1993). 
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Flat tube heat exchangers are expected to have lower air-side pressure drop and 

better air-side heat transfer coefficients compared to circular tube heat exchangers. The 

pressure drop is expected to be lower than that for circular tubes because of a smaller 

wake area. For the same reason, vibration and noise is expected to be less in flat tube 

heat exchangers compared to circular tube heat exchangers. 

The development of computers has resulted in the use of numerical simulations 

of heat and momentum transfer problems in tubular heat exchangers. Numerical analysis 

of fluid flow and heat transfer in complex geometrical domains has been the focus of 

quite a few researchers in the past decade. Such flows typically are representative of 

those situations occurring in a numerous variety of practical engineering problems. 

Examples can be found in such diverse areas as aerodynamics, meteorology, nuclear 

reactor design, compact heat exchangers, turbo-machines, and the cooling of electronic 

packages. The numerical prediction of fluid flow has evolved over the last two decades 

into an established field known as Computational Fluid Dynamics and often referred to 

by the acronym CFD. 

CFD codes are structured around the numerical algorithms that deal with fluid 

flow problems. There are four major streams of numerical solution techniques: finite 

difference, finite volume, finite element, and spectral methods. All numerical methods 

that form the basis of the solver follow the same steps. These steps are: (1) Domain 

Discretization: division of the computational domain into several control volumes, 

location of nodes at the geometric center of the control volumes, and systematic 

numbering of nodes constitutes domain discretization. Nodes are the locations (points) 
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where unknowns are calculated. (2) Development of Discretization Equations: in this 

step the exact mathematical operations, such as partial derivatives, are converted to 

approximate algebraic expressions at various nodes. (3) Solution of Discretization 

Equations: A set of linear equations, obtained as a result of step (2), are solved (inverted) 

to obtain the values of the variables at various nodes. The manner in which the 

discretization equations are obtained determines the technique. For example in the finite 

difference technique the discretization equations are obtained by differentiation. In the 

finite element technique the discretization equations are obtained by integration. In the 

finite volume technique the discretization equations are obtained by a combination of 

differentiation and integration.  

Finite difference and finite element are the two methodologies employed most 

commonly in Computational Fluid Dynamics (CFD). With regard to the task of 

computing flows in complex geometries, the finite element method appears to be the 

most natural tool, because of its better geometric flexibility. However, the finite 

difference method takes advantage of coordinate transformations and grid generation 

techniques to exploit its simplicity and efficiency as mentioned by Napolitano and 

Orlandi (1985). 

The finite volume method was originally developed as a special case of finite 

difference formulation. The numerical algorithm consists of the basic procedures 

available in any numerical solution technique. It integrates the governing equations of 

fluid flow over all the finite control volumes of the solution domain. The terms in the 

integrated equation, representing the flow processes such as convection, diffusion, and 
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source, need to be discretized which involves the substitution of a variety of finite 

difference approximations. This converts the integral equations into a system of 

algebraic equations which need to be solved by an iterative method. Therefore, the work 

in this thesis will adopt this most well established and thoroughly validated general 

purpose CFD technique. It is central to several commercially available CFD codes such 

as PHOENICS, FLUENT, FLOW3D, and STAR-CD. 

Finite volume techniques are increasingly being used for computing 

incompressible flow in arbitrary geometries because of the recent developments in grid 

generation methods. Some of the earlier finite volume approaches were developed for 

orthogonal coordinate systems due to fewer terms resulting from a coordinate 

transformation. Sharatchandara (1995) mentioned that this approach is limited due to the 

difficulty of maintaining orthogonality throughout the entire domain and the undesirable 

grid clustering that results from the forced orthogonality constraints. The generalized 

non-orthogonal coordinate system approach appears to be the most appropriate choice 

for the majority of the recent finite volume approaches. This is not only on account of its 

generality, but also due to the fact that it is possible to orient the dependant variable 

along the grid lines conforming to the shape of the domain and therefore usually along 

principal streamlines, which will minimize the chance of false diffusion (Patankar, 

1980). 

The choice of a proper grid arrangement is closely related to that of the 

dependent variables in the momentum equations. The configuration should be such that 

it does not admit spurious solutions such as a checkerboard pressure field. The staggered 
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grid arrangement wherein scalar variables are stored at cell nodal centers and velocity 

components at cell faces, has long been preferred on account of its desirable pressure-

velocity coupling characteristics as described by Patankar (1980). 

When Cartesian velocity components are retained as dependent variables and the 

coordinates are transformed, such formulation of the governing equations is considered 

partial transformation. This has been extensively used in the past, primarily on account 

of its simplicity. The Cartesian velocity components have been widely used as the 

dependent variables in non-orthogonal coordinate systems (Maliska and Raithby, 1984, 

and Shyy et al., 1985). The curvilinear components of velocity change their directions 

and tend to "follow" the grid lines. This feature makes them more attractive for highly 

non-orthogonal grids and geometries with strong curvature. However, due to the changes 

in their direction the governing equations are very complicated and involve curvature 

source terms that account for the fact that momentum is conserved along a straight line. 

These source terms can also be derived by using tensor analysis.  

1.2  General Curvilinear Coordinate System 

1.2.1 Body-Fitted Coordinate 

The Cartesian coordinate system is the most common coordinate system used to 

describe the location of a point in space. It takes advantage of the three base vectors that 

characterize the system of an orthonormal system. Computational Fluid Dynamics 

methods, based on Cartesian or cylindrical coordinate systems, have certain limitations 

in irregular geometries. When the boundaries of the domain of the physical problem are 



 6

not aligned along the Cartesian base vector directions, the use of the Cartesian 

coordinate system is inconvenient and often impractical. However, it can only be 

approximated in Cartesian coordinate systems by treating surfaces in a stepwise manner 

as illustrated in Fig. 1.1a.  

The cylindrical surface has to be replaced by a step approximation to calculate 

the flow over the circular cylinder. One may consider that the more stair-steps are used a 

closer approximation is obtained to the exact boundary shape. This procedure has 

considerable disadvantages since the approximate boundary description is tedious to set 

up and introduces errors, especially if the wall shear stresses need to be calculated to 

good accuracy as mentioned by Versteeg and Malalasekera (1995). This is accompanied 

by an increase in the computer storage resources due to the higher number of 

computational nodes required in the analysis. The introduction of a fine Cartesian grid in 

a specific area of particular interest could result in unnecessary refinement in the other 

region of minimal interest. 

The above referred problems can be avoided by using a coordinate system where 

principal coordinate directions are aligned along the domain boundaries of any physical 

problem. Such a system is referred to as a body-fitted coordinate system and is specific 

to the particular domain of interest. Methods based on the body-fitted grid or non-

orthogonal grid system have been developed and used increasingly in the present CFD 

procedure, for details one can refer to Rhie and Chow, 1983; Peric, 1985; Demirdzic et 

al, 1987; Shyy et al, 1988; and Karki and Patankar, 1988. 
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The advantages of using a body-fitted coordinate system are illustrated in Fig 

1.1b. The flexibility offered by body-fitted grid techniques is useful in the modeling of 

practical problems involving irregular geometries. All geometrical details can be 

accurately incorporated and the grid properties can be controlled to capture useful 

features in the region of interest. However, the governing equations using the body-fitted 

coordinate system are much more complex than their Cartesian counterpart. The major 

differences between the two formulations are based on the grid arrangement and the 

choice of dependant variables in the momentum equations. Detailed discussion of the 

available methods of formulating the governing equations can be found in Demirdzic 

(1982) and Shyy and Vu (1991). 

 

(a)

(b)

Flow

Flow

 

Fig. 1.1 Grid arrangement of flow over a circular cylinder in: (a) stepwise 
approximation and (b) real domain. 
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1.2.2 Generalized Coordinate Transformation 

The well-known Cartesian coordinate system is characterized by the three base 

vectors, which have preferable properties of orthogonality and spatial invariance. 

However, in the General Curvilinear Coordinate System, each coordinate needs to be 

described by two sets of base vectors. Sharatchandara (1995) explained that one of the 

base vectors will be parallel to the coordinate lines and the second one will be normal to 

the coordinate surfaces, in order to characterize the system. Fig. 1.2 shows the covariant 

(tangential to a line along which the coordinate ξ varies) base vector in the ξ direction 

and the contravariant (normal to the surface S(η,ζ) on which ξ is constant) base vector 

associated with the ξ coordinate direction. Covariant and contravariant base vectors may 

be similarly described for the other two coordinate directions (η,ζ). 

 

ξ

S (η,ζ)

ξ

Pξa

a

 

Fig. 1.2 Covariant and contravariant base vectors. 

 

The coordinate system will be considered as non-orthogonal, if the surfaces of 

the constant ξ are not normal to the lines along which the coordinate ξ varies, even if the 
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coordinate system is orthogonal at some points of the domain. It has to be noted that if 

the surface S(η,ζ) is perpendicular to the line ξ at point P, then there will be no 

distinction between  the covariant and contravariant base vectors as can be seen in Fig. 

1.2.  

When the covariant and contravariant base vectors, at different locations, are 

oriented in different directions, the body-fitted coordinate system is not spatially 

invariant. It is more preferable to have a spatially invariant basis for the representation of 

the base vectors at all points of the domain. The Cartesian coordinate basis, the only 

such basis in three-dimensional space, is generally used in the representation of the base 

vectors in a general curvilinear non-orthogonal coordinate system. 

Fig. 1.3 shows a non-uniform non-orthogonal physical plane x-y which is to be 

transformed to a uniform orthogonal computational plane ξ-η. Where ξ and η are known 

to be as: ( , )x yξ ξ=  and ( , )x yη η= . It is highly recommended that this transformation 

be one-to-one and invertible. It is this kind of mapping transformation from the x-y plane 

to the ξ-η plane where every single-point in the physical domain has its own 

corresponding point in the computational domain. By following this procedure, we will 

end up with a number of rows and columns in the computational domain that correspond 

to rows and columns in the physical domain as mentioned by Sharatchandara (1995).  

1.3  Grid Generation Methods 

The field of grid generation is very wide and the number of studies on this 

subject are numerous. Thompson (1982) and Thompson et al. (1985) present a 
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comprehensive introduction to the methods of grid generation. Grid generation in one 

dimension is straightforward. The two boundaries (i.e., end points) of the physical space 

must be defined, and the problem reduces to determining the grid spacing in one 

dimension. One-dimensional grid generation is important in itself for the use of one-

dimensional problems and in two-dimensional grid generation, where the boundaries of 

two-dimensional space consist of several one-dimensional spaces, and so forth. Grid 

generation within two- and three-dimensional spaces is considerably more complicated 

than one-dimensional grid generation (Hoffman, 1992). 

 

x

y

ξ

η

(a) Physical domain (b) Computational domain
 

Fig. 1.3 Transformation from (a) physical to (b) computational space. 
 

Available grid generation techniques can be generally classified into three 

general categories: (i) Conformal mapping, (ii) Algebraic methods, and (iii) Differential 
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equation methods. Conformal mapping is based on a complex variable theory, which has 

limitations to two-dimensional problems. Consequently, this method is not as general as 

the other methods and will not be considered further. Algebraic methods and differential 

equation methods can be applied to both two- and three-dimensional spaces. 

Consequently, they are the methods of choice.  A brief overview of both of these will be 

mentioned next. 

1.3.1 Algebraic Methods 

The algebraic grid generation technique is based on the specification of algebraic 

equations for the Cartesian coordinates x, y, and z in terms of general curvilinear 

coordinates ξ, η, and ζ. Karki (1986) summarized the algebraic features of such 

equations as stretching transformation, shearing transformation, and blending function or 

isoparametric transformation. For example, the shearing transformation is a linear 

transformation used to non-dimensionalize the distance between two physical 

boundaries. The physical domain illustrated in Fig. 1.4a can be discretized using the 

algebraic sheared transformation. The x-coordinate can be transformed by any one-

dimensional transformation, if needed. It is simply discretized into equally spaced 

points. The y-coordinate is then discretized into equally spaced points at each x location 

by the normalizing transformation technique as: 

 

max

1 ( )
1

y Y xη
η
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
  max(1 )η η≤ ≤    (1.1) 
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where Y(x) is the upper boundary. The results of the complete transformation are 

illustrated in Fig. 1.4b. The reader is referred to Hoffman (1992) for further information. 
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Fig. 1.4 Grid generation using normalizing transformation technique (a) physical 
domain and (b) grid point distribution. 



 

 

Transfinite interpolation is considered to be a highly advanced method of 

algebraic grid generation technique as described by Gordon and Hall (1973). The 

location of the grid points inside the domain is determined by a series of uniform 

variation interpolations between the boundaries. The degree of freedom of the blending 

function can be either linear or higher order which controls the grid spacing and angles 

at the intersection. The choice of higher order is preferable because it gives more 

flexibility in controlling the gridline spacings and the angles at which grid lines meet the 

boundaries. However, this may create an overlapping and crossover of the grid lines. For 

further information the reader may refer to Thompson et al. (1985). 

1.3.2 Differential Equation Methods 

Algebraic grid generation techniques mentioned above have some disadvantages 

associated with the grid. Discontinuities at the intersection of cell faces, crossover of the 

gridlines, and undesirable gridline spacings are some of them. A more consistent method 

to overcome these problems is the use of a system of partial differential equations to 

obtain a higher degree of grid smoothness. Grid generation using partial differential 

equations involves the following steps: (i) determining the grid point distributions on the 

boundaries of the physical domain, and (ii) specifying the interior grid points by using 

partial differential equations that satisfies the grid point distributions on the boundaries. 

Any of the three classical types of partial differential equations (i.e., elliptic, 

parabolic, or hyperbolic) may be used as the governing grid generation equation. The 

13 
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elliptic grid generation technique discussed by Thompson et al. (1985) is considered as 

the well-known method in this field. The most common elliptic partial differential 

equation is the Poisson equation (in two-dimensional domain): 

2 ( , )xx yy Pξ ξ ξ ξ η∇ = + =      (1.2) 

2 ( , )xx yy Qη η η ξ η∇ = + =      (1.3) 

using the inverse transformation and some mathematical manipulations, one can derive 

the following elliptic partial differential equations for the Cartesian coordinates: 

22 ( )x x x Ja Px Qxξξ ξη ηη ξ ηα β γ− + = − +     (1.4) 

22 ( )y y y Ja Py Qyξξ ξη ηη ξ ηα β γ− + = − +     (1.5) 

where  

2 2x yη ηα = +       (1.6) 

x x y yξ η ξ ηβ = +      (1.7) 

2 2x yξ ξγ = +       (1.8) 

and Ja is the Jacobian of the coordinate transformation defined as:  

Ja x y x yξ η η ξ= −      (1.9)  

These sets of equations need to be solved numerically, for x and y with respect to 

ξ and η, with the known prior boundary condition specifications. The parameters or 

control functions that can control the coordinate line spacing are P and Q. 

The three-dimensional grid generation method is a combination of a series of 

two-dimensional grid slices, as referenced by many researchers. For both internal and 
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external flows, the elliptic grid generation method works fine. However, the hyperbolic 

grid generation method is preferred for external flow since the hyperbolic equations can 

be solved by non-iterative marching techniques as proposed by Steger and Sorenson 

(1980). 

1.4  Numerical Simulation Process and Accuracy 

The starting point of any numerical simulation process is the physical system 

which should be described. Fig. 1.5 shows schematically the whole procedure that will 

be performed in a numerical simulation. First, a mathematical formulation for the 

behavior of the physical system has to be described. This step will yield the first of the 

three types of systematic errors involved in the simulation procedure as mentioned by 

Breuer (1998). The formulation error describes the difference between the behavior of 

the physical system and the exact solution of the mathematical formulation. 

After the mathematical formulation, the basic equations have to be discretized 

because often no analytical solution exists for a non-linear system of equations. This 

introduces the second type of error, called discretization error, defined as the difference 

between the exact solution of the mathematical formulation and the exact solution of the 

discretized equations. In Computational Fluid Dynamics, the size of this error can be 

minimized by choosing the proper discertization method and a sufficiently fine grid. 

Finally the third type of error, called convergence error, is due to the difference between 

the iterative and the exact solution of the discertized equations. It depends on the solver 

and the convergence criteria chosen.  
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These types of errors should be clearly distinguished even though they are in 

general completely mixed up in the numerical solution of a physical problem. However, 

one should be aware of these errors that strongly affect the quality of any CFD 

simulation. 

Physical Problem

Mathematical Formulation

Discretized Equations

Solution of Discretized 
Equations

Governing Equations 
Boundary Conditions

Discretization 
Resolution

Convergence Criteria
Solver

Formulation
 Error

Convergence
 Error

Discretization
 Error

 

Fig. 1.5 Different types of errors involved in a numerical simulation. 

 

1.5  Outline of the Dissertation 

In this chapter a brief introduction is presented to the huge field of fluid flow 

computations in complex geometries. The essential concept involved in the various 
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numerical methodologies and grid generation concerning body-fitted coordinates has 

been summarized. Chapter II presents the literature relevant to the computation of flow 

in irregular geometries. In addition, the objective of the present dissertation will be 

clearly stated and explained. 

In Chapter III, various methodologies of dependent variable selections have been 

outlined with a brief section about grid configurations. The theory of coordinate 

transformation is described in Chapter IV followed by a detailed description of the 

mathematical formulation used in this study. 

In Chapter V, demonstrations of the accuracy of and reliability of the calculations 

are presented by means of computing some standard benchmark test cases and 

comparing the results to those of previous investigations as well as established solutions. 

Chapter VI presents the test problem studied in this work as well as the effect of 

changing parameters on fluid flow and heat transfer characteristics. Chapter VII will 

present the conclusions of this study and outlines some recommendations for further 

studies.  
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CHAPTER II 

PRIOR WORK AND PRESENT OBJECTIVES 

2.1  Grid Arrangement and Velocity Components 

2.1.1  Orthogonal Coordinate 

Orthogonal grid formulation is the most employed scheme for computing fluid 

flow in complex geometrical domains. This type of grid is popular because either the 

domain of interest can be mapped onto orthogonal coordinates or nearly orthogonal grids 

can be generated by using an advanced grid generation technique such as elliptic 

differential equations. The merit of such a formulation is the simplicity of the governing 

equations of fluid flow when compared to its non-orthogonal grid counterparts. 

Additional terms arise because of the non-orthogonality of the coordinate system which 

would vanish if an orthogonal system were to be employed.  

The derivation of the orthogonal formulation is quite similar to the standard 

Cartesian coordinates with using additional geometric quantities and source terms. An 

implicit finite difference method using orthogonal coordinates was presented by Hung 

and Brown (1977). They applied it to two-dimensional corrugated channel flow using a 

non-conservative form of momentum equations and pressure was solved by the 

differential Poisson equation. Raithby et al. (1986) have developed a new orthogonal 

coordinate formulation technique in which it becomes more flexible to cover a broad 

range of geometrical applications, but it requires more computer storage. In this 
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technique, the discretization equations retained the stress tensor instead of the formal 

way of replacing them in terms of strain rate tensor. Another robust orthogonal 

coordinate formulation is the approach developed by Kadja (1987) to compute the flow 

in constricted tube banks. 

The disadvantage of using orthogonal grid generation is the limitation of its 

applicability. In two-dimensional, not to mention three-dimensional, the controlling of 

the gridline spacings is hard even if special techniques were to be used. The generality of 

the non-orthogonal coordinate formulation makes it more favorable. Hence, a non-

orthogonal grid is adopted in this study. 

2.1.2  Non-Orthogonal Coordinates with Staggered Grid Arrangement 

Non-orthogonal coordinate formulation techniques are classified based into two 

categories: (i) grid arrangement and (ii) the velocity components used in the momentum 

equations as the dependent variables. Early methods for non-orthogonal coordinate 

formulation involve Cartesian velocity components, as the dependent variables in the 

momentum equations, in a staggered grid arrangement in which they were stored at each 

control-volume face. 

Shyy et al. (1985) employed elliptic equations for the grid generation to compare 

three different differencing schemes. In their method, one Cartesian velocity component 

was stored at each cell face in a two-dimensional staggered grid arrangement. The terms 

arising due to the non-orthogonality of the coordinates were neglected in the solution of 

the pressure correction equation. This approach is limited to the domains that have 

aligned boundaries to the Cartesian plane coordinates. 



 20

The limitation mentioned above can be removed by storing all Cartesian 

velocities at all cell faces. This method has been developed by Maliska and Raithby 

(1984) to compute flow in a square cavity with a moving wall. This arrangement is not 

free of difficulties. The resulting pressure equation in this case is not diagonally 

dominant and may prevent the use of an iterative solver for highly non-orthogonal 

coordinates. Shyy and Vu (1991) have shown that the use of Cartesian velocity 

components on staggered grids would give, in general, an acceptable solution. However, 

they have agreed on certain conditions that if such an approach were to be used to 

analyze flow in a 90O pipe bend, false oscillations could occur. 

2.1.3  Non-Orthogonal Coordinate with Non-Staggered Grid Arrangement 

The simplicity of using the non-orthogonal grid formulation led to significant 

developments in this approach. The approach proposed by Hsu (1981) modified special 

interpolation procedures to calculate the cell face velocities instead of using the 

straightforward central differencing. This approach may be considered as being the first 

attempt to eliminate the false oscillations linked with the use of non-orthogonal grid 

formulation. However, the use of Cartesian velocity components may result in the 

prevention of diagonal dominance. 

Rhie and Chow (1983) presented a novel way of treating the convective terms in 

the momentum equations. They used the pressure difference between adjacent nodes 

instead of alternate nodes to calculate the cell face velocities.  This is equivalent to the 

linear interpolation of the velocity components. The non-orthogonal terms in the 
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pressure equation were ignored in the calculation, which may be essential for geometries 

of high curvatures. Thus, the scheme may have limited applicability.  

2.1.4  Curvilinear Velocity Components 

The drawbacks related to the approaches presented above guided the researchers 

to test the implementation of the curvilinear velocity components on different grid 

configurations. The covariant (tangential component) or contravariant (normal 

component) velocity components are the viable option because they change their 

direction in the computational domain as if they lean to follow the grid lines. With all 

these positive aspects of using covariant or contravariant velocity components, the 

complications of such formulation would make its use less popular or a bit limited. 

Demirdzic et al. (1980) presented a finite volume methodology involving 

contravariant velocity components which solve the semi-strong form of the Navier-

Stokes equations. They used a staggered grid arrangement and the negative coefficients 

in the pressure equation were neglected to ensure diagonal dominance. Another finite-

difference technique was proposed by Faghri et al. (1984) in which one curvilinear 

coordinate was used for problems where one boundary of the domain was not aligned 

along either of the Cartesian coordinates. Their method was based on an algebraic 

transformation using covariant velocities as the dependent variables, where such a 

method is limited in applicability. 

Yang et al. (1988) have derived a formulation involving non-orthogonal grid 

with spatially invariant metrics for buoyant flows in parallelopiped enclosures. Their 

approach is based on an expansion of the orthogonal methodology of Raithby et al. 
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(1986) for conditions concerning grid skewness. A study conducted by the same team 

later by Yang et al. (1990) has removed the restriction of spatial invariance, but the weak 

formulation was retained. They have studied natural convection in a horizontal cylinder 

with annular baffles. 

Karki (1986) derived the discretization equations in terms of covariant velocity 

components directly from the corresponding discretization equations in terms of the 

Cartesian velocity components. The SIMPLER algorithm was used in this formulation to 

couple velocity and pressure fields. The formulation was accomplished by projecting the 

Cartesian velocity components, in a strong conservation form, in the direction of the 

curvilinear base vectors. The benefit of the above method is that no orientations need to 

be made to the differential form of the scalar transport equation in terms of curvilinear 

velocities. It has to be noted, that the above mentioned projections do not produce a 

formulation in terms of velocity components and that transformation or interpolations 

will still be required to evaluate the cell face contravariant mass flux terms.  

The study of Sharatchandra and Rhode (1994a & b) was based on maintaining 

the conservation form of the Navier-Stokes equation, by means of a straight 

discretization of the vector momentum equation. The necessity of a transformation to 

obtain the interface mass flux terms was eliminated due to the use of contravariant 

velocity components as the dependent variables. It is well shown as to how the choice of 

base vector directions, in which the discretized vector equation may be projected, affects 

the stability of the computational scheme. They have demonstrated the efficiency of the 
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formulation by means of comparison with preceding computations for some standard 

benchmark test problems.  

2.2  Geometry and Flow Conditions 

Tubular heat exchangers are found in many energy conversion applications 

ranging from nuclear reactors to refinery condensers. The heat transfer coefficient of the 

tube and the pressure drop of the fluid flowing externally are the most important design 

variables for the tubular heat exchangers. Based on studies, reported in literature, the 

effects of tube shape and arrangement have indicated that they could have a positive 

influence in the heat exchanger Ota et al. (1984); Ota et al. (1986); and Wung et al. 

(1986). 

It has been of interest to many researchers to investigate fluid flow and heat 

transfer over objects of many different shapes. Flat tubes have not been investigated to 

the same extent, although they play an important role in many engineering applications 

such as modern heat exchangers and automotive radiators. Flat tube designs have 

recently been introduced for use in automotive air conditioning evaporators and 

condensers. Developments in automotive brazed aluminum manufacturing technology 

have made the construction cost of the flat tube heat exchangers more favorable (Webb, 

1993). 

A brief preview of different studies involving flow over a variety of shapes with 

various types of flow conditions is worth mentioning at this time for the reader. The 

effect of flow past bluff bodies, especially cylinders, has been a major attraction for fluid 

mechanics investigations for a long time. Most of these studies were concerned with the 
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flow over a circular cylinder. Williamson (1996) and Zdrakovich (1997) wrote 

comprehensive reviews on this topic. 

Chang et al. (1989) has developed a numerical scheme to predict the heat transfer 

and pressure drop coefficient in cross flow through rigid tube bundles. The scheme uses 

the Galerkin finite element technique. The conservation equations for laminar steady-

state flow are cast in stream-function and vorticity form. A Picard iteration method was 

used for the solution of the resulting system of non-linear algebraic equations. Results 

for heat transfer and pressure drop coefficients are obtained for tube arrays of pitch 

ratios of 1.5 and 2. Very good agreement, of the predicted numerical results and 

experimental data obtained, was observed up to Reynolds number (Re = 1000).  

Chen and Weng (1990) numerically studied flow and thermal fields in forced 

convection over a heated cylinder for both incompressible and compressible flow. The 

governing system of equations included full two-dimensional Navier-Stokes momentum, 

energy, and continuity equations in body-fitted coordinates. The effect of the Reynolds 

number was investigated. In their study, a grid generation technique proposed by 

Thomas and Middecoff (1980) was adopted to handle an arbitrary shaped domain by 

which a body-fitted coordinate system was generated and the irregular physical domain 

was transformed into a square meshed computational domain. The finite difference 

approximation for the transformed conservation equation was obtained by the integration 

over the control volume and subsequently discretized it in the transformed coordinate 

system. The upwind scheme was adopted for the convection term and the central 

difference scheme for the diffusion term. The velocity and pressure fields were linked by 
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the Semi-Implicit Method for Pressure Linked Equation (SIMPLE) algorithm (Patankar, 

1980). 

Kundu et al. (1991a & b) numerically studied heat transfer and fluid flow over a 

row of in-line cylinders placed between two parallel plates. Incompressible, two-

dimensional, and laminar flow was considered. The spacing between cylinders causes 

three different separation patterns. When the spacing is small, the separated flow 

between cylinders is stable. As the spacing increases, flow in the separated zone 

becomes periodic. At higher values of spacing, the separated flow is local and does not 

extend to the next cylinder. The cylinder and plate temperatures were assumed to be 

constant but not necessarily the same. The spacing between cylinders alters the flow in 

the separated zone and subsequently affects the heat transfer. The heat transfer data for 

different aspect ratios and Reynolds numbers are reduced to form a single formula for 

ease of interpolation. In general, the pressure drop and heat transfer were spatially 

periodic, indicating periodically fully developed characteristics. 

Numerical solutions were obtained, by Grannis and Sparrow (1991), for the fluid 

flow in a heat exchanger consisting of an array of diamond shaped pin-fins. The model 

that underlines the solutions was based on the concept of the periodically fully 

developed regime, whereby the velocity field repeats itself from row to row and the 

pressure drop per module remains constant. Implementation of the model was 

accomplished via the finite element method, whereby the solution domain was 

discretized by subdividing it into an assemblage of two-dimensional, nine-noded 

quadrilateral elements. As a prelude to the final numerical solution, a systematic study 
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was performed to establish the number of elements needed for the attainment of accurate 

results. For validation purposes, solutions were run for arrays of circular cylindrical pin-

fins (i.e., tube bank) and specific arrays of diamond shaped pin-fins to enable 

comparison of pressure drop prediction with available experimental data. The final set of 

numerical solutions encompassed 18 different arrays. The parameters were the vertex 

angle of the diamond shaped fins, dimensionless transverse, and longitudinal center to 

center distance between the fins. The result included representative streamline maps and 

isobar and an in depth display of pressure drop information. The results were presented 

as a function of the Reynolds number. 

Yu et al. (1995) applied the weighted residuals method to analyze mixed 

convection heat transfer in a 3x3 in-line horizontal tube bundles placed between two 

vertical parallel plates. The flow regimes of Reynolds numbers up to 500 and Grashof 

numbers up to 53,000 were investigated and the local data of the different geometries 

were reported. Data for both pure forced and mixed convection were presented for the 

purpose of comparison. It was shown that the thermal performance for the front sector of 

downstream cylinders was strongly affected by the presence of the upstream cylinders, 

while the backward sector of downstream cylinders remains basically uninfluenced by 

the upstream cylinders. The average Nusselt number for the array increases 20-30% 

when streamwise spacing was increased by 50%. 

Flow and conjugate heat transfer in a high-performance finned oval tube heat 

exchanger element have been calculated for a thermally and hydrodynamically 

developing three-dimensional laminar flow by Chen et al. (1998a & b). The influence of 
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Reynolds numbers in the range 100-500 was studied. Computations were performed 

with a finite volume method based on the SIMLPEC algorithm for pressure correction. 

Flow patterns and pressure distributions were presented. A helical vortex in the tube 

wake was observed. The shape of the separation zone in the tube wake shows a 

paraboloid. Also, heat transfer characteristics were presented, including heat flux in the 

tube, fin temperatures, fin Nusselt numbers, heat flux distributions, fin efficiency, 

Colburn J factor, and apparent friction factors (fapp). For the investigated configuration, 

the ratio of heat transfer on the tube to that on the fin remain under 10%. The fin 

temperature and fin efficiency were found to depend weakly on fin parameter. 

Breuer et al. (2000) investigated in detail the confined flow around a cylinder of 

square cross-section mounted inside a plane channel (blockage ratio B = 1/8) by two 

entirely different numerical techniques, namely a Lattice-Boltzmann Automata (LBA) 

and a finite volume method (FVM). In order to restrict the approach to 2D computations, 

the largest Reynolds number chosen was Re = 300 based on the maximum inflow 

velocity and chord length of the square cylinder. The LBA was builtup on the (D2Q9) 

model and the single relaxation time method called the Lattice-BGK method. The finite-

volume code was based on an incompressible Navier-Stokes solver for arbitrary non-

orthogonal, body-fitted grids. Both numerical methods are of second-order accuracy in 

space and time. Accurate computations were carried out on grids with different 

resolutions. The results of both methods were evaluated and compared in detail. Both 

velocity profiles and integral parameters such as drag coefficient, re-circulation length, 
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and Strouhal number were investigated. Excellent agreement between the LBA and 

FVM computation was found. 

2.3  Present Objectives and Aim of this Work 

The main objective of this work is to develop a computer code to predict the heat 

transfer and pressure drop characteristics of flows around or through rigid complex 

geometry, namely domains whose boundaries do not coincide with coordinate lines of a 

Cartesian or any simple coordinate system. The present study considers steady laminar 

two-dimensional incompressible flow past flat tube bundles found in heat exchanger 

applications. The effects of various independent parameters such as Reynolds number 

(Re), Prandtl number (Pr), length ratio (L/Da), and height ratio (H/Da) on pressure drop 

and heat transfer were studied. 

The use of a staggered grid arrangement is preferable for solving the 

incompressible Navier-Stokes equations in generalized coordinates. Therefore, this kind 

of grid arrangement will be adopted for this study. The schemes which store one 

Cartesian velocity component at each face have limited applicability. The most 

appropriate choice for the dependent variables in the momentum equations are the 

covariant and contravariant physical components of velocities. Hence it will be the 

choice in this study. 
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CHAPTER III 

DEPENDENT VARIABLES AND GRID CONFIGURATION  

 

Transformation relations from the Cartesian system of physical plane to a general 

two-dimensional coordinate system will be shown in this chapter. In numerical solutions, 

the curvilinear gradients in these expressions are represented by differences along the 

coordinate lines. Hence, the derivatives can be expressed in terms of points along the 

coordinate lines without requiring any interpolation. The expressions will be obvious if 

one refers to the general element as shown in Fig. 3.1. Four curved lines are the 

boundaries of this element, each of which lies on a surface where one of the curvilinear 

coordinates is constant.  

 

η = η2

η = η1

ξ = ξ1 ξ = ξ2

ξ = const.

P

x

y

r

 

Fig. 3.1 General element with the position vector of a general point P(x,y). 
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The tangent (covariant) and the normal (contravariant) base vectors were 

described in physical terms in Section 1.2.2. It is necessary, from a computational point 

of view, to have a mathematical representation of the coordinate base vectors. 

Consideration of the curvilinear and non-orthogonal nature of the coordinate systems would 

make the generalized tensor notation the appropriate choice; however, for simplicity, the 

Cartesian vector notation will be used throughout this study. This will be shown in the 

next section. 

3.1  Mathematical Representation of Base and Unit Vectors 

3.1.1 Covariant and Contravariant Base Vector 

The covariant base vector in the ξ or η coordinate direction at point P in a two-

dimensional plane, as shown in Fig. 3.2, is defined as the tangent vector to the ξ or η 

coordinate line at P, respectively. Following the mathematical definition of the tangent 

vector, as the directional derivative of the position vector rG , the covariant base vector in 

the ξ and η coordinate direction may be expressed as: 

 

x y
r x ya e eξ ξ ξ ξ

∂ ∂ ∂
= = +

∂ ∂ ∂

GG G G     (3.1) 

x y
r x ya e eη η η η

∂ ∂ ∂
= = +

∂ ∂ ∂

GG G G     (3.2) 

The contravariant base vector in the ξ or η coordinate direction at point P in a 

two-dimensional plane, as shown in Fig. 3.2, is defined as the normal vector to the ξ or η 
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coordinate line at P, respectively. The normal vector can be expressed mathematically as 

the cross product of the directional derivative of the position vector rG of the other 

coordinate and the base vector zeG  normal to the two-dimensional plane. The 

contravariant base vector in the ξ and η coordinate direction (Karki, 1986) may be 

expressed as: 

 

1 1
z x y

r y xa e e e
Ja Ja

ξ

η η η
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= × = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

GG G G G    (3.3) 

1 1
z x y

r y xa e e e
Ja Ja

η

ξ ξ ξ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= × = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

GG G G G    (3.4) 

 

where Ja , given earlier in Equation (1.9), is the Jacobian of the transformation. It 

represents either the area of a two-dimensional control volume or the volume of a three-

dimensional control volume. For easier reference it will be given here as: 

 

z
r r x y y xJa e
ξ η ξ η ξ η

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= × = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

G G Gi    (3.5) 

 

It may be observed that the covariant and the contravariant base vectors were 

expanded in the Cartesian basis. It is the most suitable reference basis because the 

Cartesian base vectors constitute a spatially invariant orthonormal set in three-

dimensional space. The above expressions for covariant and contravariant base vectors 

are similar to those which can be written in the tensor notation. 
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P

a η
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a ξ

η

a ξ

ξ

η

 

 

Fig. 3.2 The covariant and contravariant base vectors in a two-dimensional plane. 
 

The planar two-dimensional coordinate system, shown in Fig. 3.2, illustrates the 

covariant and the contravariant base vectors on the ξ and η coordinate directions. It 

represents an important relationship between the covariant and the contravariant base 

vectors. The covariant base vector in the ξ coordinate direction, aξ
G , is perpendicular 

(normal) to the contravariant base vector in the η coordinate direction, aηG . However, the 

covariant base vector in the ξ coordinate direction, in general, is not parallel to the 

contravariant base vector in the ξ coordinate direction, aξG . The orthogonality among 
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aξ
G and aηG and between aη

G  and aξG as well, can be clarified by taking the dot (inner) 

product of the two as follows: 

 

0x y x y
x y y xa a e e e eη

ξ ξ ξ ξ ξ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

G G G G G Gi i    (3.6) 

 

If tensor notation is used in this formulation, it will result in the appearance of 

the Kronecker delta and the Identity tensor which represents an important relationship 

between the covariant and the contravariant base vectors. These will be very useful tools 

in determining expressions for the gradient and divergence operators in a curved space 

as well as the curvilinear components of the velocity vectors. This work is adopting the 

Cartesian notation. Therefore, tensor notation will not be discussed any further.  

3.1.2 Covariant and Contravariant Unit Vector 

It should be noted that the magnitude of the base vectors (i.e., aξ
G , aη

G  etc.) are 

not in general equal to unity, due to the involvement with metric scale factors resulting 

from the partial derivatives in the mathematical representations.  Therefore, it is 

appropriate to bring in unit base vectors by scaling the base vectors with the suitable 

metric scale factors (in the ξ or η coordinate direction). The unit covariant (tangent) base 

vectors in the ξ and η  directions are defined as:  
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x y
r x ye e

e
hrξ

ξ

ξ ξ ξ

ξ

∂ ∂ ∂
+

∂ ∂ ∂= =
∂
∂

G G G
G

G     (3.7) 

x y
r x ye e

e
hrη

η

η η η

η

∂ ∂ ∂
+

∂ ∂ ∂= =
∂
∂

G G G
G

G     (3.8) 

 

Similarly, the unit contravariant (normal) base vectors in the ξ and η directions 

are given by:  

 

x y
y xe e

e
h

ξ

η

η η
∂ ∂

−
∂ ∂=

G G
G      (3.9) 

x y
y xe e

e
h

η

ξ

ξ ξ
∂ ∂

−
∂ ∂=

G G
G      (3.10) 

 

where hξ  and hη  are the covariant and contravariant metric scale factors, respectively, 

defined as: 

1/ 22 2
x yhξ ξ ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

    (3.11) 

1/ 22 2
x yhη η η

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

    (3.12) 
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In most analyses, it is typical to consider the curvilinear coordinates as 

dimensionless quantities. Consequently the covariant and contravariant metric scale 

factors typically have physical units of length. In fact, hξ  and hη are the arc lengths along 

the coordinate lines. They are reciprocally related only in an orthogonal curvilinear 

coordinate system. 

 

3.2  Curvilinear Velocity Components and Projections 

3.2.1 Covariant and Contravariant Velocity Components 

Curvilinear velocity components are linked with base vector directions. They are 

conversely related. The covariant velocity components are aligned along the 

contravariant base vector directions and the contravariant velocity components are 

aligned along the covariant base vector directions. Sharatchandra (1995) discussed that 

the velocity components, in a generalized non-orthogonal coordinate system, along the 

base vector directions follow the “parallelogram law” while the projections do not. The 

Parallelogram law is a geometric interpretation of the way in which velocity 

components constitute a vector. These characteristics of non-orthogonal coordinate 

systems will address the issues of curvilinear velocity components and projections to 

put them in the proper perspective. 

Consider V
G

 as a velocity vector in a two-dimensional plane. Therefore, the 

covariant velocity components in general curvilinear coordinates can be defined as: 
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V V aξ ξ=
G Gi      (3.13) 

V V aη η=
G Gi      (3.14) 

 

Similarly, the contravariant velocity components in the general curvilinear 

coordinates can be defined as: 

 

V V aξ ξ=
G Gi      (3.15) 

V V aη η=
G Gi      (3.16) 

 

It has to be noted that since the base vectors (not the unit vectors) were used in 

the inner (dot) product with the velocity vector, the result would be the velocity 

components (not the projections) of V
G

 along the base vectors. This may be demonstrated 

by consideration of the geometric understanding of the inner (dot) product which states 

that V a
G Gi  is the product of the norms (lengths) of ,V a

G G , and the cosine of the included 

angle. While, the projection of V
G

 along aG  is simply the product of the norm (length) of V
G

 

and the cosine of the included angle between V
G

 and aG . 

The aforementioned velocity components are the non-physical components due 

to the involvement with the metric scale factor resulting from the partial derivatives in 

the mathematical representations as mentioned earlier. It is typically preferable to deal 

with physical components in the computational scheme. The physical components have 
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the same dimension of the velocity vector. Therefore, for the velocity vector V
G

 in a two-

dimensional plane, the physical covariant velocity components in the general curvilinear 

coordinates can be defined as: 

 

( )

h
V V

Ja
η

ξ ξ=      (3.17) 

( )

h
V V

Ja
ξ

η η=      (3.18) 

 

In the same way, the physical contravariant velocity components in the general 

curvilinear coordinates can be defined as: 

 

( )V V hξ ξ
ξ=      (3.19) 

( )V V hη η
η=      (3.20) 

 

With simple dimensional analysis, one can verify that the physical covariant and 

contravariant velocity components have the same dimension of the velocity vector. It 

has to be noted that the physical covariant velocity components are aligned along the 

contravariant base vector directions and vice versa. This will be clarified by referring to 

Fig. 3.3. 
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Fig. 3.3 The physical covariant and contravariant velocity components in a two-
dimensional plane. 

 

 

3.2.2 Covariant and Contravariant Velocity Projections 

The projections of the velocity vector V
G

 at any point in the flow field, in the 

directions of the unit covariant and contravariant base vectors, are known as the velocity 

projections. The projections of V
G

 in the direction of unit vectors entails that the 

projections are physical quantities and have the same dimensions of the velocity vector. 

The physical covariant velocity projections are formally defined as: 

   

/x yu V e u v hξ ξ ξξ ξ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠

G Gi     (3.21) 

/x yu V e u v hη η ηη η
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠

G Gi     (3.22) 
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Similarly, the physical contravariant velocity projections can be defined as: 

 

/y xu V e u v hξ ξ
ηη η

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠

G Gi     (3.23) 

/y xu V e u v hη η
ξξ ξ

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠

G Gi     (3.24) 

 

The directions of the various velocity components and projections in a general 

non-orthogonal coordinate system can be shown in Fig. 3.3 and 3.4. From a geometrical 

point of view, both figures illustrate a fundamental difference between velocity 

components and velocity projections. Velocity components follow the "parallelogram 

law" in yielding the velocity vector V
G

 as a linear combination of the associated base 

vectors, while velocity projections do not. The only exception comes into view in the 

case of an orthogonal coordinate system, in which both the velocity vector component 

and projection are coincident. 

3.3  Dependent Variables in Momentum Equations 

The dependent variables in momentum equations are the velocity components. 

Attention is now focused on certain possible choices. While in principal, the possible 

choices are many, only certain choices are meaningful from the standpoint of 

interpretation. For a simple coordinate system, such as a Cartesian or cylindrical, the 

choice of the dependent variable is clear.  However, in a non-orthogonal coordinate 

system, the selection of the dependent variable has no clear choice but has several 
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alternatives. To this end it is proper to introduce a brief discussion about the three 

choices used in the past: (i) velocity components in a Cartesian coordinate system, (ii) 

physical covariant or contravariant velocity components, or (iii) physical covariant or 

contravariant velocity projections. 

 

 

P

a η

a

a ξ

η

a ξ

V

u η

u η

u ξ

u ξ

 

Fig. 3.4 The physical covariant and contravariant velocity projections in a two-
dimensional plane. 

 

 

3.3.1 Velocity Components in a Cartesian Coordinate System 

The Cartesian velocity components u  and v  in the x- and y-directions have been 

widely used as the dependent variables in non-orthogonal coordinate systems as 

mentioned earlier in Maliska et al. (1984) and Shyy et al. (1985). The advantage of this 
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choice is that the formulation is relatively simple in terms of implementations and the 

solution of the momentum equations is very straightforward. However, for highly non-

orthogonal grid, these velocity components are typically not aligned along gridlines 

which may introduce the problem of false diffusion. Twice the number of momentum 

equations has to be solved because both velocity components must be stored at each face 

of a control volume which results in additional computational effort. 

The highly non-orthogonal grid introduces additional source terms in the 

pressure correction equation, as will be described in a later chapter. The explicit 

treatment of these source terms may cause convergence difficulty if iterative solvers are 

used, since the pressure correction equation is rather sensitive to small changes in the 

source terms. The formulation involving Cartesian velocity components has been widely 

popular on account of its simplicity in the implementation. Many prior investigators 

have shown reasonably good accuracy and convergence characteristics in the absence of 

high grid skewness and curvature. 

3.3.2 Physical Covariant or Contravariant Velocity Components 

The covariant and contravariant velocity components and projections change 

their directions and tend to "track" the grid lines. This characteristic makes them more 

attractive for highly non-orthogonal grids and geometries with strong curvature. 

However, due to the change in their direction, the governing equations are very 

complicated and involve curvature source terms that account for the non-orthogonality 

of the coordinate lines.  
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The physical contravariant velocity components in the ξ- and η-directions have 

been used as the dependent variables in a non-orthogonal coordinate system by 

Demirdzic et al. (1980). The main advantage of such formulation is the facilitation of the 

calculation of flow rate through a control-volume face. Furthermore, since these velocity 

components are aligned along the gridlines, the false diffusion will be minimized.  

There are however, some drawbacks related to this formulation. The existence of 

the cross pressure gradient terms, due to the non-orthogonality of the coordinate system, 

requires the use of nine point solvers or these extra terms need to be treated explicitly. 

The lack of diagonal dominance in the pressure equation comes as a result of using nine 

point solvers. Moreover, the explicit treatment of the cross pressure gradient terms could 

result in a source dominant condition in strongly pressure driven flows. This is not a 

desirable characteristic of any computational scheme. 

Another drawback of this formulation is the possibility of violating the 

“Scarborough Criterion” even with a slightly curved grid as illustrated in Fig. 3.5. The 

grid was generated by the normalization transformation method, mentioned earlier in 

section 1.3.1, to simulate flows in a gradual expansion channel. Here the contravariant 

base vector in the ξ-directions is spatially invariant while the covariant base vector 

changes their directions in a manner such that it tends to "follow" the grid lines.  

3.3.3 Physical Covariant or Contravariant Velocity Projections 

Since the solution of the pressure equation constitutes one of the most important 

ingredients of the overall solution strategy, the use of the physical covariant and 

contravariant projection is preferred in this work. Karki (1986) developed a finite 
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volume method for predicting viscous flows in complex geometries using covariant and 

contravariant projection as the dependent variable in the momentum equation. This 

formulation is still a well-known choice among studies employing curvilinear velocity 

projections as dependent variables. His formulation was based on the contravariant mass 

flux term at each face of a control volume. Then, each term was replaced or expressed as 

a linear combination involving both covariant velocity projections at that face of the 

control volume.  

 

η

ξ
P

E

S
W

N

e ξ

e ξ

 

 

Fig. 3.5   How covariant and contravariant unit vectors change their directions. 
 

 

The advantages of this formulation lie in the elimination of most of the 

drawbacks mentioned earlier. A less considerable and solvable drawback exists, which if 

ignored however, could lead to slow convergence or even divergence of the 
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computational scheme. The curvature source terms that arise due to the velocity 

components, which are used as the dependent variables, do not have a fixed direction. 

Therefore, these source terms could be avoided if the discretization is performed in a 

locally fixed coordinate system as mentioned by Karki (1986). This methodology is 

adopted in this work and will be explained in more detail in the next chapter.  

3.4  Grid Configuration 

The discrete location at which the variables are to be calculated are defined by 

the numerical grid which is essentially a discrete representation of the geometric domain 

on which the problem is to be solved. It divides the solution domain into a finite number 

of subdomains (e.g. control volumes). An appropriate choice of grid arrangement is as 

important as the choice of the dependent variables in the momentum equations. The 

configuration should be such that it does not let in unrealistic solutions such as a 

checkerboard pressure field. This section will give a detailed discussion on this subject.  

3.4.1 Structured and Unstructured Grid  

In case of very complex geometries, the most flexible type of grid is the 

unstructured grid which can fit an arbitrary solution domain boundary. Such grids could 

be used with any discretization scheme, but they are best adapted to the finite element 

and finite volume approaches. The control volume may have any shape (most often 

triangles or quadrilaterals in two-dimensional problems, and tetrahedral or hexahedral in 

three-dimensional problems). There is no restriction on the number of neighbor nodes or 

grids, the aspect ratio is easily controlled, and the grid may easily be locally refined.  



 45

However, grid generation and pre-processing are usually much more difficult. An 

example of a two-dimensional unstructured grid is shown in Fig. 3.6.  

 

Fig. 3.6   Example of a two-dimensional unstructured grid. 
 

Ferziger and Peric (1996) mentioned that the disadvantage of the unstructured 

grid is due to the irregularity of the data structure. The matrix of the algebraic equation 

system no longer has regular diagonal structure and the band width needs to be reduced 

by reordering the points. The solvers for the algebraic equations for such systems are 

always slower than those for regular grids. This drawback can be eliminated by using a 

structured grid.  

Regular or structured grids consist of sets of gridlines with the characteristic that 

cells or elements of a single set do not cross each other and intersect each cell of the 
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other set only once. This allows the lines of a given set to be numbered consecutively. 

The position of each grid point or control volume within the domain is uniquely 

identified by a set of indices (e.g. I, J, and K), in which it requires two in two-dimension 

and three in three-dimension. This simplifies the grid structure because each grid point 

has four adjacent neighbors in two-dimension and six in three-dimension. The index of a 

point P, in the domain, differs by 1 from the indices of each neighbor point to P. Fig. 3.7 

shows an example of a two-dimensional structured grid.  

 

Fig. 3.7   Example of a two-dimensional structured grid. 
 

The structured grid is not as flexible as the unstructured grid. However, the 

neighbor connectivity of a structured grid arranges the programming procedure and 

would make the matrix of the algebraic equation system have a regular structure which 

can be exploited in developing more efficient solvers. Such a grid facilitates the use of 
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line-by-line calculation procedures of discretized equations. These features make this 

technique more attractive than the other, and will be adopted in this work.  

3.4.2 Staggered and Non-Staggered Grid  

It is an issue to select the points in the domains at which the values of the 

unknown dependent variables are to be computed. The obvious choice is to store all the 

variables at the same locations and to use the same control volumes to all variables. Such 

a grid is called “collocated” or non-staggered grid. Since many of the terms in each of 

the discretized equations are essentially identical, the number of coefficients, that must 

be computed and stored, are reduced and the programming effort is simplified by this 

type of grid.  

The non-staggered grid arrangement also has significant advantages in 

complicated solution domains, particularly when the boundaries have slope 

discontinuities or the boundary condition itself is discontinuous. A set of control 

volumes can be intended to fit the boundary including the discontinuity. Other 

arrangements of the variables lead to some of the variables to be located at the 

singularities of the grid, which may lead to singularities in the discretized equation as 

mentioned by Ferziger and Peric (1996). However, a serious drawback of this 

arrangement is that it may give rise to a checkerboard pressure pattern and a wavy 

pressure field may be interpreted as uniform by the momentum equations as explained 

by Patanker (1980). 

Here comes the staggered arrangement, in which there is no need for all variables 

to share the same grid. It is a different arrangement that turns out to be more 
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advantageous. This arrangement is illustrated in Fig. 3.8. Several terms that require 

interpolation with the collocated grid arrangement, can be calculated without 

interpolation. Both the pressure and the diffusion terms are naturally approximated by 

central difference approximation without interpolation, since the pressure nodes are 

located at the center of the control volume and the velocity derivatives needed for the 

diffusive terms are promptly calculated at the control volume faces. Moreover, the 

calculation of the mass fluxes in the continuity equation on the face of the pressure 

control volume is straightforward. This type of grid arrangement is adopted in this work. 

The best advantage of the staggered arrangement is the strong coupling between 

the velocities and the pressure. This will help to avoid some convergence problems and 

oscillation in the pressure and velocity fields. To maintain strong coupling between the 

momentum equations and the pressure equation, the velocity control volumes of the 

adjacent grid points to the boundary have to be one and a half the size of the interior 

control volumes (if uniform control volumes are used).  
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Fig. 3.8   Example of staggered grid in two-dimension. 
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CHAPTER IV 

MATHEMATICAL FORMULATION AND NUMERICAL 

PROCEDURE 

 

4.1 Governing Equations 

The fundamental governing differential equations of fluid flow are the equations 

of conservation of mass and momentum. Moreover, the fundamental governing 

differential equation for heat transfer is the equation of conservation of energy. The 

equation of conservation of mass can be derived from a balance of the mass fluxes 

across a differential control element and the rate of mass accumulation within the 

element. The equation of conservation of momentum is derived from a force balance on 

the control element in conjunction with Newton's second law of motion. The 

conservation of energy equation is derived from an energy balance on the control 

element in conjunction with the first law of thermodynamics. The differential equations 

governing the conservation of mass, momentum, and energy can be cast into a general 

form as: 

( ) J S
t
ρφ∂

+∇ =
∂

G
i      (4.1) 

where 
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J Vρ φ φ= −Γ∇
G G

      (4.2) 

 

In these equations, φ is a general dependent variable, ρ is the mass density, Γ is 

the effective diffusion coefficient, V
G

 is the velocity vector, and S designates the 

volumetric source (or sink) of φ. In Equation 4.2, J
G

 corresponds to the total flux of φ, 

i.e., it takes account of both the convective and diffusive fluxes. For convenience, 

expressions in the Cartesian vector notation for steady-state incompressible flow are 

given below. 

 

Continuity:   0V∇ =
G
i      (4.3) 

Momentum:   2( )V V P Vρ µ∇ = −∇ + ∇
G G G
i    (4.4) 

Energy:    2( )PC V T k Tρ ∇ = ∇
G
i     (4.5) 

 

Equation 4.4 above is referred to as the Navier-Stokes equation for the general 

constant property incompressible flow of a Newtonian fluid. The Navier-Stokes equation 

in the above form constitute a system of two equations (in two-dimensional flow) with 

two unknowns, P and V
G

. Therefore, with a given set of boundary conditions for both 

variables on the boundary of a certain domain, the above equations may be solved (at 

least in principle) for the velocity vector and pressure field inside that domain. In this 

chapter, the finite volume technique has been used to discretize the general conservation 

equations. From this point onward, only steady state, incompressible, two-dimensional 
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problems will be considered. The extension to unsteady or three-dimensional flow 

formulation is quite straightforward.  

4.2  Control Volume Formulation 

The first step to derive the discretized equation from the general conservation 

equation is to divide the computational domain into a set of non-overlapping control 

volumes then the conservation equations are expressed in an integral form in each of 

these control volumes. The advantage of this control volume approach is to preserve the 

conservation property, which is important for engineering applications in which the 

overall balance of mass, momentum, and energy are usually of major significance. The 

formulation presented here is identical to the formulation proposed by Karki (1986).  

As mentioned earlier in Section 3.4.1, the neighbor connectivity of a structured 

grid arranges a programming procedure and enables the matrix of the algebraic equation 

system to have a regular structure which can be exploited in developing more efficient 

solvers. Therefore, the computational domain, in two-dimension, is divided into 

quadrilateral elements by using any of the grid generation techniques talked about a 

priori.  

Fig. 4.1 shows a typical two-dimensional discretized computational domain. The 

dashed lines divide the domain into a set of quadrilateral control volumes, in which each 

one of them preserves the conservation property. The grid points are placed at the 

geometrical centers of the quadrilateral control volumes. The way of treating the 

placement of the grid points and the control volume faces (practice B) was suggested by 

Patankar (1980). The main characteristic of this practice is that the control volume faces 
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are placed first then the grid points are located at the geometrical centers of these control 

volumes. This methodology makes the treatment of discontinuities easier in the 

boundary conditions. Moreover, it prevents “half” control volumes at grid points 

adjacent to the boundary which result in simplifications when handling the boundary of 

the domain.   

 

 

Fig. 4.1   A typical two-dimensional discretized computational domain. 
 

 

Now is the time to discretize the two-dimensional, steady state form of the 

generalized Equation 4.1. The equation being considered is 

 

  J S∇ =
G
i      (4.6) 

 

This equation will be discretized in terms of fluxes. Then, the general transport 

equation for property φ  is derived by using a proper profile assumption. The control 



 54

volume integration, which represents the main step of the finite volume technique, yields 

the following form: 

 

A V

J e ds SdVχ =∫ ∫
G Gi      (4.7) 

 

Where V  is the volume of a curvilinear element with a fixed boundary, 'A s  (the 

quadrilateral cell faces of P) as shown in Fig. 4.2 and e χG  is a general unit normal vector 

that can either be eξG  or eηG , in two-dimension, depending on the cell face. It has to be 

noted that the capital letters E, W, N, and S denote the nodal points while the small 

letters e, w, n and s represent the cell faces. 

The LHS of the above equation represents the total integrated fluxes through the 

control surfaces, which can be rewritten as: 

 

 e w n s
A

J e ds J J J Jχ = + + +∫
G Gi       (4.8) 

 

where the terms , ,e w nJ J J , and sJ  are the fluxes through each face of the elementary 

cell shown in Fig. 4.2. The methodology that will be followed to derive the mathematical 

expression for each one of these terms is similar. Therefore, one of these terms (i.e. Je) is 

derived below: 

I

e
A

J J e dsξ= ∫
G Gi        (4.9) 
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 where eξG  is the unit normal vector, mentioned earlier in Section 3.1.2, to IA surface. 

 

AI

AII

AIII

AVI

P

n

w

s

e
ξ

η

P

E

S

W

N

 

(a)      (b) 

Fig. 4.2 (a) General curvilinear control volumes in 2-D (b) Enlarged view showing 
the control volume with nodal center "P" and the location of the cell faces. 

 

 

As mentioned earlier that,  

x y
y xe e

e
h

ξ

η

η η
∂ ∂

−
∂ ∂=

G G
G       (4.10) 

and ds  is the length of elemental arc and can be expressed as ds h dη η= . The total flux 

J
G

can be written mathematically in vector notations as:  
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x x y y x yJ J e J e u e v e
x y
φ φρ φ ρ φ

⎛ ⎞∂ ∂⎛ ⎞= + = −Γ + −Γ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

G G G G G     (4.11) 

 

substituting Equations  (4.10) and (4.11) into Equation  (4.9) to obtain 

 

I

e
A

y x y xJ u v d
x y
φ φρ φ η

η η η η
⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= − −Γ −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫     (4.12) 

 

The gradient of a generic scalar field φ  is expressed in Cartesian coordinates and 

needs to be represented by their counterparts in the transformed (ξ , η ) physical plane. 

This can be accomplished by using the Chain-Rule as follows:  

 

1 y y
x Ja
φ φ φ

η ξ ξ η
⎛ ⎞∂ ∂ ∂ ∂ ∂

= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
     (4.13) 

1 x x
y Ja
φ φ φ

ξ η η ξ
⎛ ⎞∂ ∂ ∂ ∂ ∂

= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
     (4.14) 

 

Substituting these relationships (Eqs. 4.13 and 4.14) into Equation 4.12 and with 

some mathematical manipulations, the following expression is obtained: 

 

( ) ( )
2 2

e e
e e

h h h h
J u h e e

Ja h Ja h
ξ η ξ ηξ

η ξ η
ξ η

η ηφ φρ φ η
ξ η

⎛ ⎞ ⎛ ⎞∆ ∆Γ ∂ Γ ∂
= ∆ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

G Gi   (4.15) 
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The third term in the RHS of the above equation contains the value of ( )e eξ η
K Ki  

which appears due to the non-orthogonality of the coordinate system and would 

disappear in an orthogonal system. This value can be represented mathematically as 

follows:  

x x y y

e e e e
h h

ξ η
ξ η

ξ η

ξ η ξ η
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂= =K K K Ki i     (4.16) 

 

For simplicity Equation (4.15) can be rewritten as:  

 

, ,e P e S eJ J J= −      (4.17) 

where  

( ), ,P e ee
e

J u h
h

ξ
η ξ

ξ

φρ φ η α
ξ

⎛ ⎞Γ ∂
= ∆ − ⎜ ⎟⎜ ⎟∂⎝ ⎠

    (4.18) 

, ,S e e

e

J
hξ
η

φβ
η

⎛ ⎞Γ ∂
= − ⎜ ⎟⎜ ⎟∂⎝ ⎠

     (4.19) 

2h h
Ja

ξ η
ξ

η
α

∆
=       (4.20) 

( )e eξ ξ ξ ηβ α= K Ki      (4.21) 

The PJ  and SJ  are referred to as the primary flux and secondary flux, 

respectively. As shown in Equation (4.18), the first term of the RHS represents the 

effects of convection in fluid flow problems, while the second term symbolizes the 
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diffusion contribution. This implies that the primary flux has both convection and 

diffusion input. In Equation (4.19), the secondary flux is solely diffusive and comes up 

due to the non-orthogonality of the coordinate system and would disappear in an 

orthogonal coordinate system in which 0e eξ η =
K Ki , thus highlighting the fact that the non-

orthogonality is one of the many sources of false diffusion.  

Equations (4.20) and (4.21), for the quantities ξα and ξβ , express the primary 

and secondary areas, respectively. These quantities assist the calculation of normal flux 

through a face from the gradiant along the grid lines. It should be noted that the grid 

spacing η∆ , or ξ∆  that appear in calculations of the other fluxes (e.g. nJ ), being set 

equal to unity in the computational plane and can be ignored in this formulation. These 

procedures can be repeated in the calculation of the other fluxes (i. g. nJ  etc.) by 

switching to eηK  instead of eξK , such a procedure can be found in APPENDIX A. 

It has to be noted that the contravariant velocity projection was used in the 

primary flux Equation (4.18) to facilitate the calculation of flow rate through a control 

volume face, as explained in Section 3.3.2. It can be proven that the contravariant 

velocity projection can be expressed as a linear combination of both (ξ  and η ) 

covariant velocity projections at that face of the control volume to obtain the following:  

 

( )
y xu v u u

u V e
h h

ξ ξ ξ ηξ ξ

η η

α βη η
⎛ ⎞∂ ∂

−⎜ ⎟ −∂ ∂⎝ ⎠= = =
G Gi    (4.22) 
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The RHS of governing Equation (4.7) is the volumetric source term over the 

control volume and can be evaluated as: 

 

 ( )
V V

SdV S Jad dξ η=∫ ∫     (4.23) 

 

If the source term is assumed to be constant over the control volume, then 

Equation (4.23) can be rewritten as:  

 

( )
V

SdV SJa SJaξ η= ∆ ∆ =∫     (4.24) 

 

Combining the expression for various flux quantities and the volume integral of 

the source term into one equation as: 

 

( ) ( ) ( ) ( ), , , , , , , ,P e S e P w S w P n S n P s S sJ J J J J J J J SJa− − − + − − − =   (4.25) 

 

The secondary fluxes have to be calculated explicitly in order to avoid a nine-

point formulation. These terms turn out to be less significant if the grid is almost 

orthogonal. All terms that represent the secondary fluxes will be treated as a source term 

and the above equation can be rewritten as: 

 

, , , ,P e P w P n P s S NOJ J J J b b− + − = +     (4.26) 
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where  

Sb SJa=       (4.27) 

 

, , , ,NO S e S w S n S sb J J J J= − + −     (4.28) 

 

Equation (4.27), for bS, denotes the volumetric source term and bNO, Equation 

(4.28), represents the source term due to the non-orthogonality of the coordinate system.  

The primary flux in Equation (4.18) includes the value of φ  and its gradient at 

the control volume interface. From a computational point of view, it is more convenient 

to express the cell fluxes in terms of nodal quantities. The next section explains how 

the interface fluxes may be properly and consistently expressed in terms of nodal 

values.  

4.3 Differencing Scheme  

Equation (4.26) represents the conservation of a generic transport equation over a 

control volume in terms of interface quantities.  In order to find an equation involving φ  

in terms of the neighboring grid points, an appropriate profile assumption expressing the 

variation of φ  at the interface is required. Several schemes are available for this 

intention, which have lead to the study of the properties of differencing schemes.  
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4.3.1 Properties of Differencing Schemes 

Conservation is one of the most important properties of a differencing scheme. 

To ensure conservation of φ  for the entire solution domain the flux of φ  leaving a 

control volume across a particular face must be equal to the flux of φ  entering the 

neighboring control volume through the same face. The flux through a common face 

must be represented in a consistent manner in adjacent control volumes. Consequently, 

such a scheme will maintain the conservation of the property of φ . 

The discretized equations at each grid point correspond to a set of algebraic 

equations that need to be solved. In general, iterative numerical techniques are used to 

solve these sets of equations. These techniques initiate the solution process from a 

guessed value for φ  in the entire domain of interest, and then a successive update is 

carried out until convergence is achieved. The condition for the convergent iterative 

technique, known as Scarborough criterion, is expressed in terms of the values of the 

coefficients of the discretized equations. If the differencing scheme results in 

coefficients that fulfill this criterion, the resulting matrix of coefficients is diagonally 

dominant. Diagonal dominance is a desirable feature for satisfying the convergence 

criterion, and if the discretization scheme does not satisfy this requirement it is possible 

that the solution converges slowly or does not converge at all.  

The transport property of fluid flow can be illustrated by considering the non-

dimensional cell Peclet number as a measure of the relative strengths of convection and 

diffusion.  In case of pure diffusion the fluid is stagnant and the property φ  will be 

spread equally in all directions, in which a simple central differencing scheme would be 
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a good choice. However, as the Peclet number increases, the property φ  at a certain 

nodal point becomes increasingly influenced towards the upstream direction and the 

central differencing scheme is not a choice here. It is very important that the differencing 

scheme bear out the relationship between the magnitude of the Peclet number and the 

flow direction. 

It has to be noted that all of the available schemes are concerned with the 

calculation of the primary fluxes due to the combination of two different natures of 

fluxes (e.g. convection and diffusion fluxes). The gradients in the secondary fluxes are 

typically evaluated by simple central differences across the cell faces. The assumption of 

a linear profile is inappropriate in convection-diffusion flow especially if the convection 

term is dominant. Hence, another profile that accounts for the “upwind” influence nature 

of convection must be considered.  

4.3.2 Upwind Differencing Scheme 

In central differencing, the value of a property φ  at a cell face is always 

influenced by both nodal points adjacent to that face. The inability of sensing the flow 

direction associated with the central differencing scheme underestimates the value of this 

scheme. The above treatment is unsuitable in case of a strong convective flow because 

the cell face should receive more influence from the upstream nodal point. The upwind 

differencing scheme considers the flow direction when assigning the cell face value. The 

property φ  at a cell face is set to be equal to the value of the upstream nodal point.  
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The upwind differencing scheme has a consistent expression and the formulation 

is conservative. The coefficients of the discretized equations construct a diagonally 

dominant matrix which ensures convergence. Since the scheme is based on the backward 

differencing formulation, its accuracy is only first order on the basis of Taylor series 

truncation error which accounts for wide applications in early CFD applications. The 

major drawback of this scheme is that it produces false diffusion terms in the calculation 

when the flow is not aligned with the grid lines. In flows of high Reynolds numbers, 

false diffusion can be large enough to result in physically incorrect solutions. Therefore, 

the upwind differencing scheme is not totally suitable for accurate flow calculations and 

an improved discretization scheme has been sought.  

4.3.3 Power-law Scheme 

The power law scheme presented by Patankar (1980) is a very popular scheme 

used in finite volume methods and produces better results than the upwind scheme. It is 

actually a curve fit to the exact exponential solution of the steady state one-dimensional 

convection-diffusion problem with constant diffusivity and no source term. The power 

law scheme has the ability to switch between a central differencing scheme and an 

upwind differencing scheme depending on the value of the Peclet number. This scheme 

has proved to be useful in practical flow calculations and has been used by some 

commercial computer cods.  



 64

Following Patankar’s formulation, the primary flux ,P eJ  (Eq. 4.18) which 

combines both convective and diffusive fluxes is evaluated by using a polynomial 

expression in terms of the cell Peclet number as follows: 

 

, ( ) ( )P e e E e e P EJ F A P Dφ φ φ= + −    (4.29) 

 

where ( )eA P  is the polynomial expression defined by Patankar (for interface e ) as: 

 

( ) ( )5max 0, 1 0.1e eA P P= −c fd ge h    (4.30) 

 

The non-dimensional cell Peclet number, P , is defined as the measure of the 

relative strengths of the flow rate through a control surface, F , and the diffusional 

conductance, D , as follows: 

 

e
e

e

FP
D

=      (4.31) 

where 

( ) ( )e e ee
F u h u uξ

η ξ ξ ξ ηρ ρ α β= = −    (4.32) 

and 

e

e

D
h

ξ

ξ

α⎛ ⎞Γ
= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (4.33) 
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It has to be noted that equation (4.29) represents the total flux at interface e  in 

terms of the nodal points adjacent to it unlike Equation (4.18). It may be recalled that on 

account of the grid spacing, ξ∆ and η∆  being set equal to unity in the computational 

plane, they do not appear in the above equations. Equations (4.29-4.33) can easily be 

repeated for other interfaces (i.e., w, n and s) and they can be found in APPENDIX B.  

Now is the time to find the discretization equations that constitute a set of linear 

algebraic equations which are solved to get the value of φ  at nodal points in the 

calculation domain. This will be discussed in the following section.  

 

4.4 Discretization Equation for a Generic Transport Property φ  

Before finding the generic transport property φ  in the discretized form, the 

source term S , in Equation (4.25), needs to be discretized first. In a practical situation, 

the source term S  is a function of the dependent variable Pφ  itself, and this relationship 

should be employed in constructing the discretization equations. Since the linear algebra 

method is used to solve the algebraic equations, only a linear relationship can be 

considered as an acceptable choice. The linearized source term is expressed as 

C P PS S S φ= +  where CS  is a constant and PS  must be negative to fulfill the 

Scarborough criterion.  

Substituting the expression for the primary fluxes and the source term, the 

discretization equation for φ  can be written as:  
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baaaaa SSNNWWEEPP ++++= φφφφφ    (4.34) 

 

where 

 

a b( ) max 0,E e e ea D A P F= + −     (4.35) 

a b( ) max 0,W w w wa D A P F= +     (4.36) 

a b( ) max 0,N n n na D A P F= + −    (4.37) 

a b( ) max 0,S s s sa D A P F= +     (4.38) 

 

P E W N S Pa a a a a S Ja= + + + −    (4.39) 

 

The source b  in Equation (4.34) can be expressed as S NOb b b= +  where 

S Cb S Ja=  and NOb  is given earlier in Equation (4.28).  

Following the same procedure, the discretized continuity equation can be easily 

derived as follows: 

 

0e w n sF F F F− + − =     (4.40) 
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4.5 Discretization of the Momentum Equations  

Equation (4.4) represents the governing equations of the conservation of 

momentum. These equations can be discretized along the same steps outlined in the 

above sections if Cartesian velocity components were used, irrespectively of the choice 

of the dependent variables in the momentum equations. On the other hand, when 

choosing the curvilinear velocity components or projections as the dependent variables 

in the momentum equations the procedure is slightly different. The differential equations 

for curvilinear velocity will have curvature source terms because these velocity 

components/projections do not have a fixed direction.  

Karki (1986) presented a formulation in which the curvature source terms are 

obtained by algebraic manipulation of the discretization equations. This would eliminate 

the complications and difficulties of programming these extra terms if the discretization 

equations were obtained by the conventional method. These curvature source terms 

could be avoided if discretization is carried out in a locally fixed coordinate system. In 

his formulation, the derived discretization equation includes parallel velocities, instead 

of the actual velocities, at the neighboring points for the velocity  ,Puξ  in a local 

coordinate system, as shown in Fig. 4.3.  
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Fig. 4.3 Actual and parallel neighboring velocity to ,Puξ . 

 

 

For a highly non-orthogonal grid, the numerical scheme of the discretization 

equation as such may not give a converged solution. This problem can be eliminated by 

adding and subtracting the actual velocities in the discretization equation, as follows:  

 

( ) ( )
( ) ( )

, , , , ,

, , , ,

, , , ,

P P E E W W N N S S

E E E W W W

N N N S S S

a u a u a u a u a u b

a u u a u u

a u u a u u

ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

= + + + +

+ − + −

+ − + −

   (4.41) 
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where the source term b  represents the external body force (e.g., pressure gradient) and 

the terms ,Euξ , ,Wuξ , ,Nuξ , and ,Suξ  are the neighboring velocity components parallel to 

,Puξ . Thus, ,Euξ , as an example, can be expressed as: 

 

, ,
,

E E
P P

E E P
P

x yu v
u V e

hξ ξ
ξ

ξ ξ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

+⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦= =
G Gi     (4.42) 

 

It has to be noted that the last four terms in RHS of Equation (4.41) represent the 

curvature source terms and are equivalent to the discretized non-orthogonal source 

terms. The same procedure can be used to find the discretized equation in η-direction 

which is given here for ease of reference:  

 

( ) ( )
( ) ( )

, , , , ,

, , , ,

, , , ,

P P E E W W N N S S

E E E W W W

N N N S S S

a u a u a u a u a u b

a u u a u u

a u u a u u

η η η η η

η η η η

η η η η

= + + + +

+ − + −

+ − + −

   (4.43) 

 

Equation (4.41) and (4.43) represent the momentum discretization equations in ξ-

and η-direction, respectively, to be solved for the velocity field. An additional equation 

is needed to be solved for the pressure field. Discretization of the continuity Equation 

(4.40) cannot be considered as the governing equation for the pressure variable. In this 
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case, coupling between the velocity and continuity equations is needed to come up with 

a proper equation for the pressure variable and this will be discussed in the next section.  

 

4.6 Coupling of the Momentum and Continuity Equations  

Solving the momentum equations would give the solution of the velocity field if 

the pressure gradient is known a priori. Hence, the resulting velocity field should satisfy 

the continuity equation. In general principle of flow computations, the calculation of the 

pressure field is part of the solution and its gradient is not typically known in advance. 

Coupling between pressure and velocity initiates a constraint on the solution of the flow 

field because all equations are highly coupled since every velocity component appears in 

each momentum equation and the continuity equation.  

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm 

of Patankar and Spalding (1972) is an iterative solution strategy, in which the convective 

fluxes through cell faces are evaluated from a so-called guessed velocity field. 

Moreover, a guessed pressure field is employed to solve the momentum equations and a 

pressure correction equation, constructed from the continuity equation, is solved to get a 

pressure correction field which is sequentially used to update the velocity and pressure 

field. This process is repeated until convergence is achieved for the velocity and pressure 

fields.  
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To start the SIMPLE calculation process a guessed pressure field *p  is assumed 

first. Then, the guessed velocity *uξ , at point e , can be obtained from the following 

momentum equation: 

 

*
* *

, ,e e nb nb
dpa u a u V b
dxξ ξ= − ∆ +∑    (4.44) 

 

where the subscript nb  stands for the neighboring points. The guessed pressure field *p  

is corrected by adding the correction pressure field 'p  as follows: 

 

*P P P′= +      (4.45) 

 

Similarly, the velocity correction field uξ′  can be related to the correct velocity 

and to the guessed velocity *uξ  as follows: 

*u u uξ ξ ξ′= +      (4.46) 

 

Substitution of the correct pressure field p  into the momentum equation yields 

the correct velocity field uξ  by solving the following equation:  

 

, ,e e nb nb
dpa u a u V b
dxξ ξ= − ∆ +∑     (4.47) 
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From Equation (4.46), the relationship between the pressure correction and the 

velocity correction can be found by subtracting Equation (4.44) from Equation (4.47) as 

follows: 

 

, ,e e nb nb
dpa u a u V
dxξ ξ

′
′ ′= − ∆∑      (4.48) 

 

The first term in the RHS of the above equation will be omitted. This omission is 

considered as the main approximation of the SIMPLE algorithm. In fact, the omission of 

such terms does not affect the final solution because both pressure and velocity 

correction will be zero in a converged solution. Therefore, Equation (4.48) can be 

rewritten as:  

,e
e

V dpu
a dxξ

′∆′ =       (4.49) 

 

It has to be noted that ea  is not the same as Ea . The quantity ea  represents the 

summation of the neighboring coefficients at that node e , and Ea were given earlier in 

Equation (4.35). So far, the pressure gradient in Equation (4.49) is in the differential 

form and has to be discretized. The discretization of the continuity Equation requires the 

value of the pressure gradient at a location midway between the nodes. A quasi-one-

dimensional central differencing scheme is appropriate in this case (Karki 1986). The 

pressure gradients at the interface e , for example, can be written as follows: 
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E P

e

P PP
x x

−∂⎛ ⎞ =⎜ ⎟∂ ∆⎝ ⎠
    (4. 50) 

 

Therefore, the velocity correction in Equation (4.49) can be written as: 

 

( ),e e P Eu d p pξ′ ′ ′= −     (4. 51) 

 

where  

 

e
e

Vd
a x
∆

=
∆

     (4. 52) 

 

The discretized continuity equation given in Equation (4.40) represents the 

summation convective fluxes through all interfaces of an element. The flux through 

interface e , for example, is given earlier as: 

 

( )e e e
F u uξ ξ ξ ηρ α β= −     (4. 53) 

 

As can be seen, the flow rate at the interface involves two velocities. The term 

involving the secondary area β  arises due to the non-orthogonality of the coordinate 

system. The first term can be treated as guessed and corrected velocity as follows:  
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( ) ( )*
, ,e e e ee e

u u uξ ξ ξ ξ ξρ α ρ α ′= +     (4. 54) 

 

The velocity corrections are related to the pressure corrections by Equation 

(4.51). Substituting these terms back in the flow rate expression, Fe can be expressed as: 

 

( )*
, , , , ,e e e e e e P E e eF u d P P uξ ξ ξ ξ ηρ α α β′ ′⎡ ⎤= + − −⎣ ⎦    (4. 55) 

 

Expressions similar to this equation are obtained for the other flow rates and 

substituted in the discretized continuity equation to derive an expression involving the 

pressure corrections. Rearranging the terms, the result is the pressure correction equation 

and can be cast into the following form: 

P P E E W W N N S S NOa P a P a P a P a P b b′ ′ ′ ′ ′= + + + + +    (4. 56) 

 

where 

 

,E e e ea dξα ρ=       (4. 57) 

,W w w wa dξα ρ=      (4. 58) 

,N n n na dηα ρ=       (4. 59) 

,S s s sa dηα ρ=       (4. 60) 
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P E W N Sa a a a a= + + +     (4. 61) 

and 

 

( ) ( ) ( ) ( )* * * *

w e s n
b u u u uξ ξ ξ ξ η η η ηα ρ α ρ α ρ α ρ= − + −    (4. 62) 

( ) ( ) ( ) ( )NO e w n s
b u u u uξ η ξ η η ξ η ξβ ρ β ρ β ρ β ρ= − + −    (4. 63) 

 

Equations (4.41), (4.43), and (4.56) should be solved iteratively until 

convergence is achieved. The resulting solution would give the pressure and velocity 

field of the domain of interest if the boundary conditions were specified. The 

discretization of the boundary control volume depends on the given boundary 

conditions. This will be discussed in the following section. 

 

4.7  Boundary Conditions  

It is important to specify the boundary conditions correctly because they play a 

significant role in all CFD problems. This section describes the implementation of 

various kinds of boundary conditions that will be encountered in this study. The 

boundary conditions can be classified as: (i) inlet, (ii) outlet, (iii) wall, and (iv) 

symmetry conditions. 
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4.7.1 Inlet Boundary Conditions 

Normally the values of the various variables in the computational domain 

entrance are known a priori. Therefore, a direct substitution of these values into the 

disceretization equations for the boundary control volume can easily be done with no 

further complications. It has to be noted that the boundary condition for pressure is not 

necessary as a result of employing the staggered grid arrangement. 

4.7.2 Outlet Boundary Conditions 

Limiting the computations to a predetermined region can be done by applying an 

artificial boundary condition at the outflow boundary. The location of the outlet has to be 

set in a position far away from the physical boundary to attain a fully developed state 

where no change takes place in the flow direction. Therefore, the position of such a 

boundary would not affect the results in the domain of interest. With such a boundary 

condition, the streamwise gradients of all variables is set to zero. 

4.7.3  Wall Boundary Conditions 

The most common boundary condition that comes across in a confined fluid flow 

problem is the wall boundary condition. The no-slip condition, valid for viscous flows, 

can be enforced for the velocities. Consequently, the velocity of the fluid at the wall 

must be equal to the velocity of the wall (i.e., zero in most of the cases). Two types of 

conditions are available for temperature, either constant wall temperature or constant 

heat flux. 
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4.7.4 Symmetry Boundary Conditions 

The condition is similar to the wall boundary conditions, in a sense, as no flow 

crosses the boundary. Therefore, the normal component of velocities and the normal 

gradient of the parallel component of velocity is zero. This can be achieved by setting 

the appropriate coefficient ( Na , Ea ,.. etc. ) to zero. 

At this point the explanation of the entire scheme is completed, and it is time to 

discuss the way this scheme can be implemented. In the next chapter, the convergence 

criteria along with the code validations will be presented. 
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CHAPTER V 

 CODE VALIDATION 

 

A finite volume formulation was explained in the previous chapter for flows in a 

general curvilinear coordinate system. In order to validate the developed FORTRAN 

code, several test problems were solved and predictions using the developed code were 

compared with either exact or experimental solutions for the benchmark problems 

available in literature. In some cases the code was validated by comparing numerical 

predictions against the numerical solutions available in literature. The benchmark 

problems chosen for the purpose of validation are: (1) developing a flow in a parallel 

plate channel subjected to constant wall temperature; (2) viscous flow in gradual 

expansion; (3) flow through a wavy channel; and (4) flow over a series of circular 

cylinders confined in a parallel plate channel.  

 

5.1 Convergence Criteria  

Before going into the details of each test problem, the convergence criteria needs 

to be discussed. Since an iterative solution technique is used in this calculation, the 

widely used method to check for convergence is to compare the values of the field 

variables at successive iterative steps. However, low under-relaxation factors coupled 

with a small magnitude of field variables led to very slow and small changes in the 
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variables. These imply that this particular technique is unsuitable for declaring 

convergence criteria. 

Another technique proposed by Patankar (1980) is to check the magnitude of the 

source term in the pressure equation, which is the mass residue in each control volume. 

The convergence could be declared if the maximum of the absolute value of the mass 

residue is less than a very small number ε (e.g. 10-5). In this study, convergence is 

declared by monitoring the sum of the residues at each node. Since the magnitude of uξ  

and uη  are not known a priori, monitoring the relative residuals are more meaningful. 

The relative convergence criteria for  uξ  and uη  are defined as follows: 

 

 
, ,

,

( )
NOe e nb nb u e P E

nodes
u

e e
nodes

a u a u b A P P
R

a uξ

ξ ξ

ξ

ε
− − − −

= ≤
∑ ∑

∑
   (5.1) 

 

, ,

,

( )
NOn n nb nb u n P N

nodes
u

n n
nodes

a u a u b A P P
R

a uη

η η

η

ε
− − − −

= ≤
∑ ∑

∑
   (5.2) 

 

In the pressure equation, it is appropriate to check for mass imbalance in the 

continuity equation. The convergence criterion for pressure is defined as follows:  

 

P NO
nodes

R b b ε= + ≤∑      (5.3) 
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where b  and NOb  were defined previously and will be written again for the sake of 

convenience: 

 

( ) ( ) ( ) ( )* * * *

w e s n
b u u u uξ ξ ξ ξ η η η ηα ρ α ρ α ρ α ρ= − + −    (4. 62) 

( ) ( ) ( ) ( )NO e w n s
b u u u uξ η ξ η η ξ η ξβ ρ β ρ β ρ β ρ= − + −    (4. 63) 

 

The convergence criterion for temperature is defined as follows: 

 

,T P P nb nb T NO
nodes

R a T a T b ε= − − ≤∑ ∑     (5.4) 

 

The numerical iteration criterion required that the normalized residuals of mass, 

momentum, and energy be less than 10-6 for all test problems. 

 

5.2 Test Problem #1: Flow Through Straight Channel Subjected to Constant 

Wall Temperature 

The domain of interest in this test problem consists of an orthogonal rectangular 

grid as depicted in Fig. 5.1a. The main purpose of this part of this validation is to prove 

that all the non-orthogonal terms would vanish for an orthogonal grid and to show that 



 81

the code is capable of working in both orthogonal and non-orthogonal domains. These 

terms were explained earlier in the previous chapter. 

 As expected from classic results about this problem, the flow will be developing 

in the entrance region until it reaches a fully developed condition where no further 

changes in velocity profile takes place in the streamwise direction. Developing flow 

behavior is shown in Fig. 5.1b.  

 

(a) Rectangular orthogonal grid. 

 

(b) Velocity profiles. 

Fig. 5.1 Flow through a parallel plate channel: (a) Rectangular orthogonal grid (b) 
Velocity profiles. 
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Since the gradient of pressure at a fully developed region is constant, the velocity 

profile is parabolic where the point of maximum velocity is located along the centerline 

and equal to 1.5 of the mean velocity as shown in Fig. 5.2. The Nusselt number for a  

fully developed region between two parallel plates subjected to a constant wall 

temperature is 7.56 which agrees favorably with the Nusselt number 7.54 mentioned by 

many authors such as Incropera and DeWitt (1996). 
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Fig. 5.2 Centerline velocity and Nusselt number distributions. 

 

5.3  Test Problem #2: Flow Through a Gradual Expansion  

The flow situation with smooth expansion was proposed as a test problem for the 

workshop of the International Association for Hydraulic Research (IAHR) by the 

Working Group on Refined Modeling of Flow in Rome (Napolitano and Orlandi 1985). 
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Fifteen different groups were involved separately in solving this problem and each result 

was compared with the benchmark solution. The computational schemes incorporated 

both finite difference (volume) and finite element techniques with either pressure-

velocity coupling or vorticity-stream function formulation. 

The shape of the channel wall was defined by the hyperbolic tangent function as: 

 

tanh(2 30 / Re) tanh(2)
2w

xY − −
=     (5.5) 

where     0 Re/ 3outx x< < =  

 

As can be seen from Equation (5.5), the geometry of this domain or the boundary 

of the solid wall of the channel depends on the value of the Reynolds number (Re). The 

geometry is depicted in Fig. 5.3 for Re = 10 and becomes longer and smoother as the Re 

increases.  

Half of the domain is studied because of the symmetric geometry. The governing 

equations for the flow are the continuity and momentum equations, the well-known 

Navier-Stokes equations in Cartesian coordinates. A no-slip boundary condition was 

specified at the wall boundary and both velocity components were assigned a value of 

zero. At the symmetry line, the transverse velocity and the normal gradient of the 

streamwise velocity are zero as follows: 

 

0uv
y
∂

= =
∂

     (5.6) 
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inflow

outflow

y

x

wall

Symmetry Line
 

Fig. 5.3 Shape of gradual expansion channel for Re=10 with a discretized domain. 
 

At the outflow boundary, an artificial boundary was set to pre-assumed 

(extrapolated) values for all variables from the interior of the computational domain. The 

flow is assumed to be fully developed at the inflow boundary and the velocity profile is 

given by the following expression: 

 

2(0, ) 3(1 ) (3 / 2)(1 )u y y y= − − −     (5.7) 

 

The discretized domain in Fig. 5.3 was generated algebraically using a 

normalizing transformation technique which was explained earlier in Section 1.3.1. The 

results presented in the workshop were obtained using 21x21 mesh with equal spacing 

between the grid points. The characteristic length is taken to be the channel half height at 
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the inflow boundary and the characteristic velocity is taken to be the bulk velocity at the 

inlet. 

Solutions to the problems were requested from several researchers for both Re = 

10 and Re = 100 and all results were assembled in one paper by Napolitano and Orlandi 

(1985). Among these results, the Solution by Cliffe et al. obtained by using the finite 

element technique on a 60x30 grid was the chosen (Benchmark) solution as it was 

believed to be grid independent. Values at locations 0x =  and outx x=  were excluded 

from all presented results to minimize the impact of the singularity at the inlet and the 

arbitrariness of the outflow boundary condition.  

The quantity used for comparison of the results was the predicted values of the 

pressure distribution at the solid wall of the channel. It was decided to fix the value of 

the pressure equal to zero on the wall at the mid section, where / 2outx x= . Fig. 5.4a and 

b show the pressure distribution along the solid wall computed on a 21x21 staggered 

grid for Re = 10 and Re = 100, respectively. The predictions using the developed code 

(present work) were compared with the CJG which refers to the benchmark 

(interpolated) solution by Cliffe et al. (cited by Napolitano and Orlandi, 1985).  

It was determined at the Rome conference to define the error estimates based on 

the deviation of the computed wall pressure from those of CJG as follows: 

20
,

2 ,

100
18

i i CJG
P

i i CJG

P P
P

ε
=

−
= ∑     (5.8) 
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The above error estimate is based on computed values at 19 equally spaced points. Both 

solutions for Re = 10 and 100 are seen to be remarkably accurate, despite the coarseness 

of the grid, even in the region with the steepest gradient. The average percentage error 

Pε  is found to be 3.34 and 2.06 for Re = 10 and 100, respectively. Errors are reduced by 

significantly reducing skewness and curvature of the generated grid at Re = 100. 
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(a) Re = 10. 

Fig. 5.4 Pressure distribution along the solid wall with gradual expansion at (a) 
Re = 10 (b) Re = 100. 
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(b) Re = 100. 

Fig. 5.4 (Continued). 

 

5.4  Test Problem #3: Flow Through Wavy Channels 

Niceno and Nobile (2001) studied numerically the two-dimensional steady and 

time-dependent fluid flow and heat transfer through periodic, wavy channels, for fluid 

with a Prandtl number of 0.7, by means of an unstructured co-volume method. The two 

geometrical configurations considered are the sinusoidal channel and the arc-shaped 

channel for Hmin/Hmax = 0.3 and L/a = 8 which are shown in Fig. 5.5a and 5.5b, 

respectively.  

The numerical method used in their study is based on a time-accurate, control 

volume (CV) approach. The main characteristic of this method is the use of two families 

of CVs which are mutually orthogonal, and called complementary volumes or co-

volumes for short. The computational domain is subdivided into a finite number of non-
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overlapping polygon CVs for which a circumcircle can be defined. This family of CVs is 

called the primal grid. The other family of CVs (dual grid) is obtained by connecting the 

circumcenters of the primal grid polygons. For further information the reader may refer 

to Niceno and Nobile (2001). 

Hmax

L

Hmin

2a

 

(a) Sinusoidal channel. 

Hmax

L

Hmin

2a

 

(b) Arc-shaped channel. 

Fig. 5.5 Geometrical configurations of wavy channel (a) sine-shaped channel, (b) 
arc-shaped channel. 
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The flow is assumed to be two-dimensional and incompressible. For simplicity 

constant thermo-physical properties were assumed. Under these assumptions, the 

governing equations for fluid flow and energy transport can be written as:  

 

Continuity:   0V∇ =
G
i        (5.9) 

Momentum:  21( )V V V P V S
t

ν
ρ

∂
+ ∇ = − ∇ + ∇ +

∂

G G G G
i    (5.10) 

Energy:    2( )T V T T
t

α∂
+ ∇ = ∇

∂

G
i     (5.11) 

 

where V
G

 is the velocity field, τ  is the time, ρ  is the density, ν  is the kinematic 

viscosity, S  is the source term, T  is the temperature and α  is the thermal diffusivity. In 

this study, attention will be given only to the steady state solution part of their work. 

The flow and temperature fields were studied under the assumption of a fully 

developed flow, which means that the flow repeats itself from module to module, and 

the heat transfer coefficient has reached its asymptotic value. Based on this assumption 

Niceno and Nobile (2001) analyzed only one module of the geometry. In this work, six 

consecutive modules were studied instead. The fully developed condition could be 

reached at the second or the third module and the results are comparable to those of 

Niceno and Nobile (2001).  

A no-slip condition for velocity is enforced on the walls of the channels. For the 

temperature field, the channel was subjected to a constant wall temperature condition. A 
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non-dimensional temperature is introduced for the solution of the temperature field as 

follows: 

( ) ( )
( )

w

b w

T x T
x

T x T
θ

−
=

−
     (5.12) 

 

where Tw is the wall temperature, and Tb is the bulk temperature defined by: 

 

( )
( )

H
b

H

T x V ndy
T x

V ndy

⋅
=

⋅

∫

∫

G G

G G      (5.13) 

 

The heat transfer rate is represented by the Nusselt number, which is defined as: 

 

HhDNu
k

=      (5.14) 

 

where DH is the hydraulic diameter, defined as twice the average channel height (Hav = 

Hmax/2 + Hmin/2). The space-averaged heat transfer coefficient h , is given simply as a 

Riemann sum, which is defined as: 

 

( )( )2
Qh

L LMTD
=      (5.15) 

 



 91

with Q being the instantaneous, total heat flux in the module, and defined as follows: 

 

( ) ( )( )P b b
H

Q C T MI T MO V ndyρ= − ⋅∫
G G    (5.16) 

 

and LMTD is the log-mean temperature difference in a module, and defined as follows: 

 

( )( ) ( )( )
( )( ) ( )( )ln

b b

b b

Tw T MO Tw T MI
LMTD

Tw T MO Tw T MI
− − −

=
− − −

   (5.17) 

 

where MI and MO stand for module inlet and module outlet, respectively. The friction 

factor was computed based on its standard definition: 

 

 ( )
( )( )2

( ) ( )
2

m m av

av

P MI P MO H
f

L uρ
−

=     (5.18) 

 

where Pm is the mean pressure and uav is the average mean velocity of one module in the 

channel. The Reynolds number is defined as: 

Re av avu H
ν

=      (5.19) 

Structured symmetric grids were used for the computations similar to the ones 

shown in Section 3.4.1 to ensure symmetric solutions. A grid refinement study was 

performed in order to assess the accuracy of the results. Table 5.1 gives a summary of a 
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grid independence test for both channels at different Reynolds numbers. It can be seen 

from the results that the values of the friction factor (f) and Nusselt number (Nu), 

obtained at different grids, vary by less than 1.8%, thus demonstrating the adequacy of 

the grid adopted and the numerical accuracy of the method.  

 

TABLE 5.1 Results of grid independence test for test problem #3. 

Sine-Shaped Channel Grid 1 
(1681 grid pts)

Grid 2 
(3721 grid pts )

Grid 3 
(6561 grid pts)

10
0 f 0.4153 0.4124 0.4115

R
e= Nu 9.176 9.1527 9.1463

15
0 f 0.3096 0.3039 0.301

R
e= Nu 9.4428 9.3689 9.3355

Arc-Shaped Channel Grid 1 
(1681 grid pts)

Grid 2 
(3721 grid pts )

Grid 3 
(6561 grid pts)

25 f 1.3907 1.4366 1.4651

R
e= Nu 8.0156 7.7906 7.668

50 f 0.8061 0.8258 0.8407

R
e= Nu 8.2336 7.9797 7.8408

 

 

All calculations presented here were obtained with the finest grid (6561 grid 

points). Figs. 5.6 and 5.7 show the calculated streamlines and the isotherms (normalized 

temperature) for the fourth module of both Sinusoidal-shaped and Arc-shaped channels 

at different Reynolds numbers. 
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Fig. 5.6 Contours of stream functions (left) and normalized temperature (right) of 
the fourth module for a sine-shaped channel at various Reynolds numbers: (a) Re = 
25; (b) Re = 50; (c) Re = 100. 
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Fig. 5.7 Contours of stream functions (left) and normalized temperature (right) of 
the fourth module for an arc-shaped channel at various Reynolds numbers: (a) Re 
= 25; (b) Re = 50; (c) Re = 100. 
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The flow is seen to separate with an increase in Re, and the recirculation bubble 

increases in size and shifts downstream. Wang and Vanka (1995) presented a 

comparison of the calculated separation and reattachment points with the experimental 

data of Nishimura et al. (1990). They also presented the Nusselt number distributions 

along the walls of the sine-shaped channel. Fig. 5.8 shows the local Nusselt number 

presented by Wang and Vanka (1995) for one Periodically Fully Developed (PDF) 

module and the results generated from the present work of six consecutive modules. 

Disregarding the first module, the next five modules show that the flow has reached the 

fully developed condition as they have the same behavior and the results of PDF can fit 

to any one of them. 
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Fig. 5.8 Local Nusselt number along the walls of a sine-shaped channel. 
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The results obtained for the Sine-Shaped geometry are summarized in Fig. 5.9, 

where the Nusselt number (Nu) and the friction factor (f) for the periodically fully 

developed flows are given as a function of the Reynolds number (Re). The results 

obtained with the developed code agree with the numerical results of Niceno and Nobile 

(2001) and the experimental observations of Nishimura et al. (1990).  

Re

f

101 10210-2

10-1

100

101
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Niceno and Nobile 2001
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(a) Friction factor 

Fig. 5.9 Code validation test problem #3 (a) Friction factor (b) Nusselt number. 
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(b) Nusselt number as a function of Re. 

Fig. 5.9 (Continued). 

 

5.5  Test Problem #4: Flow Over Circular Cylinders 

Fluid flow and heat transfer over a row of in-line cylinders placed between two 

parallel plates was studied numerically by Kundu et al. (1991a). A two-dimensional flow 

field is shown in Fig. 5.10. Kundu et al. (1991a) computed the flow field using a finite 

difference method. The physical domain was transformed into a computational domain 

so that a rectangular domain could be used. The fluid was assumed to be incompressible 

with constant thermophysical properties.  
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Fig. 5.10 Test problem #4: Two-dimensional flow field over a row of in-line 
cylinders placed between two parallel plates. 

  

 

The numerical results were obtained by solving the vorticity and the 

streamfunction equations in the dimensionless form. Those equations were given as: 

 

2 2

2 2

1
Re

u v
t x y x y
ζ ζ ζ ζ ζ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

   (5.20) 

 

where ζ  is the vorticity defined by the following relation: 

 

v u
x y

ζ ∂ ∂
= −
∂ ∂

      (5.21) 

 

and the relation between the stream function ψ  equation and vorticity is: 

 



 99

2 2

2 2x y
ψ ψ ζ∂ ∂

+ = −
∂ ∂

     (5.22) 

 

where /u yψ= ∂ ∂  and /v xψ= −∂ ∂ . Finally, the energy equation was given as: 

 

2 2

2 2

1u v
x y Pe x y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

   (5.23) 

 

where Pe is the Peclet number known as Re PrPe = , and θ  is the normalized 

temperature given as follows: 

 

in

w in

T T
T T

θ −
=

−
     (5.24) 

 

where Tw is the wall temperature of both plates and cylinders, and Tin is the inlet 

temperature. 

The inlet boundary condition was assumed to be fully developed, and the 

velocity profile was assumed to be parabolic (v = 0). Since u and v were known at the 

inlet, the values of ζ  and ψ  can be estimated from the definition of the vorticity and the 

streamfunction given in the above equations. A no-slip condition was assigned at the 

plates and the cylinder walls. So, u and v were both zero. It was assumed that v = 0 and 

/ 0xζ∂ ∂ =  at the exit. The boundary conditions for the normalized temperatures were 
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0θ =  at the entrance, 1θ =  on the surface of both plates and cylinder walls, and 

/ 0xθ∂ ∂ =  at the exit. 

The numerical solution of the governing equation was carried out in the 

transformed plane on a rectangular field with a rectangular mesh. Transformed grid 

equations were discretized using central differencing and the resulting equations were 

solved by the successive over-relaxation method (SOR). A grid size of 233x31 was used 

to study flow and heat transfer over a five cylinder array. The distribution of the grid 

points was not uniform in the physical domain, however, the computational domain was 

maintained with a uniform rectangular grid. For further information the reader may refer 

to Kundu et al. (1991a). 

The main purpose of their research was to study the effect of different aspect 

ratios and Reynolds numbers on the pressure drop and heat transfer rate as they play an 

important role in designing heat exchangers. The entire domain was divided into several 

Heat Exchanger Modules (HEMs). Each HEM contains one cylinder and bound by two 

fictitious surfaces located at the mid section between two consecutive cylinders. Except 

for the first and the last HEM, the pressure drop and Nusselt number across a HEM are 

almost constant for any specified Re. 

Fig. 5.11 provides the results of the dimensionless pressure difference 

( * 2/ bP P Uρ∆ = ∆ ) for the third HEM as a function of the Reynolds number when L/D = 3 

and H/D = 2. Both numerical (Kundu et al. 1991a) and experimental (Kundu 1989) data 

were presented and compared with the results generated from the developed code. 
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Notice that there is good agreement between the pressure data as they monotonically 

decrease with the increase in Reynolds number.   
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Fig. 5.11 Normalized pressure difference across the third HEM. 

 

The average heat transfer coefficient and the corresponding Nusselt number 

across the HEMs were also computed and studied. The computed enthalpy between the 
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HEMs was integrated to calculate the normalized bulk temperature ,b iθ  at the inlet and 

exit of each HEM. The heat flow iQ  for each HEM was computed by calculating the 

local heat flux and integrating the results over all the surfaces of the HEM. The average 

heat transfer coefficient h  was introduced so that  

 

, , 1 ,( ) (1 )(2 )i P b i b i m i P iQ mc h A Aθ θ θ−= − = − +�    (5.25) 

 

where the subscript i represents the module number, A is the area of the circular 

cylinder, AP is the area of the plate and ,m iθ  is the average of the normalized bulk 

temperatures at the inlet and exit of each HEM defined as: 

 

, , , 10.5( )m i b i b iθ θ θ −= +      (5.26) 

 

Table 5.2 shows the heat transfer rate that is summarized by the Nusselt number 

(Nu). The Nusselt number is defined earlier in Equation (5.14) and the hydraulic 

diameter DH is defined as the channel height (H). The geometric parameter values were 

L/D = 3 and H/D = 2 for the cases considered for validation. It is evident from Table 5.2 

that the numerical predictions of heat transfer using the developed code agrees well with 

the numerical predictions of Kundu et al. (1991).  
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TABLE 5.2 Average Nusselt number for L/D = 3 and H/D = 2. 

Re = 50 2nd HEM 3rd HEM 4th HEM

Kundu (1991a) 9.4 9.4 9.8

Present work 9.228 9.229 9.229

Re = 200 2nd HEM 3rd HEM 4th HEM

Kundu (1991a) 12.5 12.6 12.8

Present work 12.44 12.43 12.42
 

 

 

This scheme was applied to several two-dimensional incompressible fluid flow 

and heat transfer situations. The numerical results have been compared with the 

analytical solutions, numerical, or experimental results whenever available in literature. 

On the basis of the results presented earlier, it can be concluded that the validation task 

has been accomplished. Although the test problems discussed in this chapter do not 

cover the entire range of possible fluid flow and heat transfer cases, a strong confidence 

to apply the developed code to study heat and momentum transfer over a bank of flat 

tubes is established. The study of fluid flow and heat transfer over a flat tube bank will 

be discussed in the following chapter. 
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CHAPTER VI 

 RESULTS AND DISCUSSION 

 

The test problems solved in the previous chapter serve the useful purpose of 

validation and evaluation of the formulation given earlier in Chapter IV. To this end, 

having sufficiently proven the accuracy and reliability of the formulation, it is time to 

demonstrate its potential for solving, the problem mentioned in the objective earlier in 

Chapter I, the flow field and heat transfer over a bank of flat tubes. 

 

6.1  Geometry Configuration 

Fluid flow and heat transfer over a bank (bundle) of tubes in cross flow is 

relevant to numerous industrial applications, such as steam generation in a boiler or air 

cooling in the coil of an air conditioner. The two-dimensional geometric configuration is 

shown in Fig. 6.1. The tube rows of a bank are either aligned (in-line) or staggered in the 

direction of the fluid velocity. The configuration is characterized by the transverse pitch 

ST and the longitudinal pitch SL measured between the tube centers. 

Fig. 6.2 shows an enlarged view of two rows of an in-line flat tube bank that 

illustrates the domain of interest. The rows in the flow geometry are assumed to be of 

infinite extent in the direction perpendicular to the paper so that the flow pattern can be 

considered as two-dimensional. Therefore, the computational domain is limited to the 
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one shown in Fig. 6.2 by the dashed lines. The longitudinal tube diameters Db is twice 

the length of a circular cylinder with diameter Da. The height H is equivalent to the 

transverse distance between two rows or the height of one module and L is the 

longitudinal distance between the tube centers of two successive cylinders or the length 

of one module. 

 

 

ST

SL

 

(a) In-line position of flat tube banks. 
 

 

SL ST

 

(b) Staggered position of flat tube banks. 

 

Fig. 6.1 Flat tube banks: (a) In-line and (b) Staggered arrangements. 
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H

Db
Da

L

 

Fig. 6.2 Enlarged view of two rows of in-line position of flat tube banks. 
 

The main purpose of this work is to study the effect of different aspect ratios and 

Reynolds numbers of different fluids on pressure drop and heat transfer. Thus, four main 

configurations are studied. All these configurations are considered with different values 

of H/Da and L/Da. Therefore, nine in-line positions and nine staggered position designs 

are studied. Then, five different values of Re are applied for each of the two different 

values of Prandlt number. The four main configurations for one single module are shown 

in Fig. 6.3. The values of H/Da and L/Da will be given in a later section of this chapter. 

Each case is studied for Re = 25, 50, 100, 200, and 400 and for Pr = 0.7 and 7.0 (i.e., air 

and water) to finish with a total of 180 cases. The Re is defined as: 

 

Re b Hu D
ν

=      (6.1) 

 

where DH is taken to be twice the height H. 
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The value L/Da for the module of an in-line configuration is taken to be 4 as 

shown in Fig. 6.3a. The other three configurations are all staggered in position and the 

L/Da values are 7, 6, and 5 as shown in Figs. 6.3b, c, and d, respectively. Although half 

of the domain of the in-line position can be studied because of symmetry, the entire 

domain is studied to make sure that the results are symmetric. 

(a) (b)  

(c) (d)  

Fig. 6.3 The main configurations for one module of (a) in-line L*4, (b) staggered 
L*7, (c) staggered L*6, (d) staggered L*5. 

 

6.2  Grid Configuration 

In the development of the numerical procedure, the first step is to determine a 

grid distribution over the flow domain. In each configuration, the domain needs to be 

discretized into a structured grid by using one of the grid generation techniques. 

However, the Geometry And Mesh Building Intelligent Toolkit (GAMBIT) has been 

used for this task to handle the arbitrary shaped domain by which a body-fitted 
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coordinate system was generated and the irregular physical domain was discretized into 

numerous square volumes. The resulting grid distribution for one module of in-line 

configuration is illustrated in Fig. 6.4.  

 

A B C D

EFGH

 

Fig. 6.4 Grid distribution for one in-line configuration module. 
 

The computational domain was divided into three individual regions. These 

regions are the entry region, the flat tube modules and the exit region. A uniform 

orthogonal grid was used for both entry and exit regions.  The grid distribution shown 

above (Fig. 6.4) can be repeated successively to generate the domain of flat tube 

modules. In this study, six consecutive flat tubes are included in the computational 

domain. 
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In Fig. 6.4, the surfaces BC and FG are the top wall of the bottom tube and the 

bottom wall of the top tube, respectively. A no-slip boundary condition was assigned for 

these two surfaces. The lines AB, CD, EF, and GH are lines of symmetry where no flow 

crosses these boundaries and the normal component of velocities and the normal 

gradient of the parallel component of velocity are set to zero. Finally, the lines AH and 

DE are recognized as the module inlet and module outlet, respectively.  

6.3  Grid Independence Test 

A grid refinement study (i.e., grid independence test) was performed in order to 

assess the accuracy of the results presented. The following parameters were considered 

in the grid independence test; Db/Da = 2, H/Da = 4, L/Da = 4 and Pr = 0.7 at the highest 

Reynolds number Re = 400 for the in-line configuration. The grid independence test was 

done for several grid sizes per module. These grids are 101x101, 101x121, 126x121, 

126x151, and 151x151 per module for ten modules, in addition to the uniform grid 

points in the entry and exit regions. The one with the smaller number of grid points 

(101x101) was chosen throughout this study in order to save time and computational 

effort.  

A summary of the grid independence study is presented in Tables 6.1 and 6.2. 

Establishing the grid independence test provides strong evidence of the reliability of the 

present method. In the following section, results of the parametric runs based on the grid 

independent solution will be presented.  
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6.4 Post-Processing of Calculations 

Prior to the discussion of results, selected dimensionless groups of heat and mass 

transfer need to be introduced. Once the converged solution for velocities, pressure and 

temperature fields are found, the calculations for these dimensionless numbers are 

carried out. 

6.4.1 Calculation of Streamlines 

The values of the streamlines can be computed from the streamfunction which is 

based on the velocity field as follows: 

 , , 0 0

y

x y x y udyψ ψ == − ∫      (6.2) 

 

the term, , 0x yψ = , is an arbitrary value and can be set to zero. Since a non-dimensional 

form is more appropriate to be presented, the non-dimensionalized streamfunction, *ψ , 

should be introduced as follows: 

*

oHU
ψψ =      (6.3) 

 

where H is the height of one module as shown in Fig. 6.2 and Uo is the uniform inlet 

velocity. The non-dimensional streamfunction was defined to be 0 and 1 at Y/H = 0 and 

1, respectively. However, some computed values of *ψ  were found to be lower than 

zero right behind the lower tubes and higher than the ones behind the upper tubes. 
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6.4.2 Calculation of Dimensionless Pressure Drop 

The dimensionless pressure drop per module length is normalized by dividing the 

pressure difference by dynamic pressure as follows: 

 *
2

( ) ( )m m

b

P MI P MOP
uρ

−
∆ =     (6.4) 

where the subscript b stands for bulk value while, MI and MO stand for module inlet and 

outlet, respectively. The bulk velocity can be calculated as follows: 

0

0

H

b H

udy
u

dy
= ∫

∫
     (6.5) 

similarly, the mean pressure at a given cross-stream location can be calculated as 

follows: 

 0

0

H

m H

Pdy
P

dy
= ∫

∫
     (6.6) 

 

6.4.3 Calculation of Isotherms 

A non-dimensional temperature is introduced for the disscusion of the 

temperature field as follows: 

( ) ( )
( )

t

b t

T x T
x

T x T
θ

−
=

−
     (6.7) 

 

where Tt is the tube temperature, and Tb is the bulk temperature defined by: 



  

 

113

 

( )
( )

H
b

H

T x V ndy
T x

V ndy

⋅
=

⋅

∫

∫
     (6.8) 

 

6.4.4 Calculation of Module Average Nusselt Number 

The heat transfer rate per module is summarized by the Nusselt number, which is 

defined as: 

i H
i

h DNu
k

=       (6.9) 

 

where DH is the hydraulic diameter, defined as twice the height (H). The module average 

heat transfer coefficient ih , is given as: 

 

( )( ),

i
i

b m t t

Qh
T T A

=
−

     (6.10) 

 

where At is the area of the tube interface with the flow, Tb,m is the average of the module 

inlet and outlet bulk temperatures, and Qi being the total heat flux gained by the fluid in 

a module, and defined as follows: 

 

( ) ( )( )i P b bQ mC T MI T MO= −     (6.11) 
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6.5 Discussion of Results  

The governing independent parameters influencing the fluid flow and heat 

transfer over a bank of flat tubes are the Reynolds number (Re), Prandlt number (Pr), 

height ratio (H/Da), length ratio (L/Da), the aspect ratio of the tube (Db/Da), and the 

configuration or the positioning of the tubes (i.e., in-line or staggered). Table 6.3 shows 

all configurations considered in this study. Each case is assigned with a different name 

and studied for a different combination of the following values of Reynolds number (Re 

= 25, 50, 100, 200, and 400) and two different fluids (i.e., air or water) represented by 

Prandlt number (Pr = 0.7 and 7.0). 

 

 

TABLE 6.3 In-line and staggered configurations considered in this study. 

Configurations H/Da L/Da Configurations H/Da L/Da

In-line H*2-L*4 2 4 Stagg. H*2-L*5 2 5

In-line H*2-L*5 2 5 Stagg. H*2-L*6 2 6

In-line H*2-L*6 2 6 Stagg. H*2-L*7 2 7

In-line H*3-L*4 3 4 Stagg. H*3-L*5 3 5

In-line H*3-L*5 3 5 Stagg. H*3-L*6 3 6

In-line H*3-L*6 3 6 Stagg. H*3-L*7 3 7

In-line H*4-L*4 4 4 Stagg. H*4-L*5 4 5

In-line H*4-L*5 4 5 Stagg. H*4-L*6 4 6

In-line H*4-L*6 4 6 Stagg. H*4-L*7 4 7
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Although 180 different parametric runs were made, only representative results 

are presented in this thesis. The effect of each parameter on the velocity profile, 

streamline, and normalized temperature field will be discussed separately in the 

following sections. 

6.5.1 Velocity Profile 

Fig. 6.5 shows the streamwise developing velocity profiles along the exit of each 

module. The velocity distribution is normalized by the value of the uniform inlet 

velocity Uo and given as a function of Y/H, for H/Da = 2 and L/Da = 4 for five different 

values of Reynolds number for an in-line arrangement. It can be established that as the 

Reynolds number increases, the maximum velocity in the passage increases while, the 

negative velocity downstream, right behind the tubes, increases in magnitude to satisfy 

continuity.  

The velocity profile is nearly symmetric and repeats itself for other modules 

except the first and the last. The flow is not fully developed in the first module. Its 

profile is similar to other modules at low values of Reynolds number. At the exit of the 

last module, the velocity profile is slightly different due to the absence of additional 

tubes downstream. The symmetric condition is no longer applicable as the staggered 

arrangement comes into consideration. The velocity profile that can be seen in Fig. 6.6 – 

6.8 are for different spacing between the upper and lower tubes as given earlier in Fig. 

6.2.  
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Fig. 6.5 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) for an in-line arrangement, H/Da 
= 2 and L/Da = 4: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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Fig. 6.6 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) of a staggered arrangement, H/Da 
= 2 and L/Da = 5: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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Fig. 6.7 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) of a staggered arrangement, H/Da 
= 2 and L/Da = 6: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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Fig. 6.8 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) of a staggered arrangement, H/Da 
= 2 and L/Da = 7: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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The changes in results are more noticeable for the inner four modules with the 

first and the last especially at higher values of Reynolds numbers (Re = 200 and 400). It 

has to be noted that the location of maximum velocity has been shifted slightly to the top 

due to the absence of an obstacle (i.e., flat tube) at the top. As the longitudinal spacing 

(SL) between the upper and lower tubes decrease the velocity tends to have higher values 

at the location of the maximum velocities as well as the negative velocity due to small 

tube spacing. This can be noticed by comparing Fig. 6.6e, 6.7e, and 6.8e with each other. 

Comparison of Fig. 6.5 with Figs. 6.9 and 6.10 shows the most noticeable 

changes in velocity profiles. These changes are due to the increase in the height ratio. 

The maximum velocity in the middle of (Y/H) the passage considerably decreases 

because of a larger flow area. The negative velocity in magnitude, downstream right 

behind the tube, increases as the height ratio decreases. Furthermore, the periodically 

fully developed profile can be reached in upstream modules as the height ratio decreases. 

For instance, when Re = 400 at H/Da = 2 the flow attains a periodically fully developed 

profile downstream of the second module as illustrated in Fig. 6.5e. However, at the 

same Re with H/Da = 3 or 4 the flow attains a periodically fully developed profile 

downstream of the fourth module as illustrated in Figs. 6.9e and 6.10e.  

Figs. 6.11 and 6.12 show the velocity profiles for higher length ratios i.e., L/Da = 

5 and 6, respectively, which can be compared with Fig. 6.5. The maximum velocity 

decreases slightly as the length ratio increases. For this case, the most changes occur at 

the lowest value of Re. The velocity profile flattens as the length ratio increases. This is 

because the flow has enough length to recover to the condition of uniform inlet 
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Fig. 6.9 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) for an in-line arrangement, H/Da 
= 3 and L/Da = 4: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 



  

 

122

(a) (b)

(c) (d)

(e)

U/Uo

Y
/H

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Module 1
Module 2
Module 3
Module 4
Module 5
Module 6

Re = 25

U/Uo

Y
/H

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Re = 50

U/Uo

Y
/H

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Re = 100

U/Uo

Y
/H

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Re = 200

U/Uo

Y
/H

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Re = 400

 

Fig. 6.10 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) for an in-line arrangement, H/Da 
= 4 and L/Da = 4: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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Fig. 6.11 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) for an in-line arrangement, H/Da 
= 2 and L/Da = 5: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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Fig. 6.12 Effect of Reynolds number on the developing velocity profiles along the 
transverse direction of each module outlet (MO) for an in-line arrangement, H/Da 
= 2 and L/Da = 6: (a) Re =25, (b) Re =50, (c) Re =100, (d) Re =200, and (e) Re =400. 
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velocity profile before being interrupted with the presence of the next tube module. This 

behavior is evident in Figs. 6.5a, 6.11a, and 6.12a. For higher length ratios, all cases 

attain periodically fully developed flow profile downstream of the first module. 

 

6.5.2 Streamlines 

As can be seen from the velocity profiles given in the earlier subsection, most of 

the cases attain periodically fully developed profiles downstream of the first module 

(fourth in some cases). Thus, discussion of the fourth module will be enough to show 

most of the details needed for examining the streamlines instead of showing the entire 

domain with dense repeated information. Fig. 6.13 shows the effect of Reynolds number 

on the non-dimensional stream function for the fourth module for an in-line 

arrangement, when H/Da = 2 and L/Da = 4. 

Table 6.4 lists the minimum and maximum values of the non-dimensional stream 

function corresponding to Fig. 6.13. A close examination of Fig. 6.13 and Table 6.4 

would disclose certain distinct characteristics. Flow separation can hardly be detected 

when Reynolds number as low as 25. As Reynolds number increase, the separated flow 

covers a smaller portion of the domain until it completely covers the area between two 

consecutive tubes at higher Reynolds number. In fact, the entire area between two 

consecutive tubes is occupied by recirculation at Re = 200 and 400, though the center of 

the recirculation is shifted slightly to the right closer to the next tube at Re = 400. This 

significant difference is a result of a higher flow speed which pushes the recirculation 

downstream a bit. 
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Fig. 6.13 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for an in-line arrangement, H/Da = 2 and L/Da = 4: (a) Re = 25, 
(b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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TABLE 6.4 The minimum and maximum values of *ψ , H/Da = 2 and L/Da = 4. 

Re Ψ∗ min Ψ∗ max

25 -0.00019823 1
50 -0.00199013 1.00142

100 -0.0101553 1.00831
200 -0.019797 1.01666
400 -0.0264667 1.02241  

 

 

The streamlines shown in Fig. 6.13 are symmetric, however, their magnitudes are 

not as the streamfunctions are set to 0 and 1 at Y/H = 0 and 1, respectively. For the 

staggered arrangement, this condition is not pronounced. Figs. 6.14 – 6.16 show the 

effect of Reynolds number on the non-dimensional stream function for the fourth 

module for a staggered arrangement for different values of tube spacing between the 

upper and lower rows, (i.e., H/Da = 2 and L/Da = 5, 6, and 7). The strength and size of 

the recirculation bubble gets larger as the Reynolds number increases. However, the 

recirculation behind the upper tube is smaller in size when compared to the one behind 

the lower tube as can be seen in Figs. 6.14c and d. This is due to the fact that half of the 

lower tube is located vertically in the same position as the recirculation behind the upper 

tube which would push the streamlines toward the top. This would restrict the upper 

recirculation and results in minimizing its size due to the reduction in the flow cross 

sectional area. 
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Fig. 6.14 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for a staggered arrangement, H/Da = 2 and L/Da = 5: (a) Re = 
25, (b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.15 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for a staggered arrangement, H/Da = 2 and L/Da = 6: (a) Re = 
25, (b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.16 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for a staggered arrangement, H/Da = 2 and L/Da = 7: (a) Re = 
25, (b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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The spacing between the upper and lower tubes can be increased by shifting the 

lower tube toward the right. When the entire lower tubes push the streamlines to the top, 

the recirculation behind the upper tubes would become smaller and even disappear at 

moderate Reynolds number (Re = 100) which can be seen by comparing Figs. 6.15c with 

6.14c. Further increase in the spacing between the upper and lower tubes would not 

decrease the upper recirculation. In fact, the recirculation would increase because there 

is enough distance between the rear edge of the upper tube and the front edge of the 

lower tube for the flow to expand as shown in Fig. 6.16. This fact is documented in 

Table 6.5 which lists the minimum and maximum values of non-dimensional stream 

function found in Figs 6.14, 6.15, and 6.16 at Re = 400.  

 

TABLE 6.5 The minimum and maximum values of *ψ , for staggered 
configuration, H/Da = 2, Re = 400. 

L/Da Ψ∗ min Ψ∗ max

4 -- --
5 -0.0513913 1.01914
6 -0.0275414 1.00666
7 -0.0176458 1.0077  

Figs 6.17 and 6.18 are representative results to study the variation of the non-

dimensional stream function for the fourth module for an in-line arrangement at H/Da = 

3 and 4, respectively. The length ratio (L/Da) was fixed at 4. These results can be 

compared with the results discussed earlier in Fig. 6.13 for H/Da = 2. As the height ratio 

increases, the strength and size of the recirculation bubble, right behind the tube (both 

upper and lower), would decrease as the flow has enough space to expand through the
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Fig. 6.17 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for an in-line arrangement, H/Da = 3 and L/Da = 4: (a) Re = 25, 
(b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.18 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for an in-line arrangement, H/Da = 4 and L/Da = 4: (a) Re = 25, 
(b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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 passage. The recirculation almost disappeared as can be seen by comparing Fig. 6.18c 

with Fig. 6.13c. Table 6.6 lists the minimum and maximum values of the non-

dimensional stream function found in Figs. 6.13e, 6.17e, and 6.18e for different height 

ratio variations.  

 

TABLE 6.6 The minimum and maximum values of *ψ , for an in-line 
configuration, with L/Da = 4 and Re = 400. 

H/Da Ψ∗ min Ψ∗ max

2 -0.0264667 1.02241
3 -0.0068874 1.00557
4 -0.00273447 1.00198  

 

Figs 6.19 and 6.20 are representative results to study the effect of variation of the 

non-dimensional stream function for the fourth module for an in-line arrangement for 

L/Da = 5 and 6, respectively. The height ratio (H/Da) was fixed at 2. These results can 

be compared with the results presented earlier in Fig. 6.13 for L/Da = 4. The increase in 

length ratio does not significantly alter the strength and size of the recirculation right 

behind the tube (both upper and lower). The recirculation almost remains the same as 

can be seen in Figs 6.13, 6.19, and 6.20. this is also reflected in Table 6.7 which lists the 

minimum and maximum values of the non-dimensional stream function as a result of 

length ratio (L/Da) variations at Re = 400 and H/Da = 2.  
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Fig. 6.19 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for an in-line arrangement, H/Da = 2 and L/Da = 5: (a) Re = 25, 
(b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.20 Effect of Reynolds number on the non-dimensional stream function for 
the fourth module for an in-line arrangement, H/Da = 2 and L/Da = 6: (a) Re = 25, 
(b) Re = 50, (c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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TABLE 6.7 The minimum and maximum values of *ψ , for an in-line 
configuration, with H/Da = 2 and Re = 400.  

L/Da Ψ∗ min Ψ∗ max

4 -0.0264667 1.02241
5 -0.0263192 1.0225
6 -0.0267858 1.02284
7 -- --  

 

6.5.3 Isotherms 

Fig. 6.21 shows the effect of Reynolds number on the normalized temperature 

lines (isotherms). All isotherms are ranging from 0 to 1 that represents a low fluid 

temperature at the inlet to higher fluid temperature as it reaches the hot tube surface. As 

the Reynolds number increases the lower value isotherms penetrate deeper which means 

the colder fluid is getting closer to the hot surface. As a result of this behavior, the heat 

transfer would be increased as will be shown later in the computed Nusselt number. The 

symmetric condition is preserved because of symmetric geometry which is not the case 

for the staggered arrangement with different length spacing as shown in Figs. 6.22 – 

6.24. It is clear that the flow is pushed up as a result of the presence of the lower tube. 

A comparison of Figs. 6.25 and 6.26 with Fig. 6.21 shows the effect of varying 

the height ratio on the isotherms. The increase in height ratio would make the cold 

isotherms penetrate further downstream as clearly shown in Figs. 6.21, 6.25, and 6.26 c 
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Fig. 6.21 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 2, L/Da = 4, and Pr = 0.7: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.22 Effect of Reynolds number on isotherms for the fourth module for a 
staggered arrangement, H/Da = 2, L/Da = 5, and Pr = 0.7: (a) Re = 25, (b) Re = 50, 
(c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.23 Effect of Reynolds number on isotherms for the fourth module for a 
staggered arrangement, H/Da = 2, L/Da = 6, and Pr = 0.7: (a) Re = 25, (b) Re = 50, 
(c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.24 Effect of Reynolds number on isotherms for the fourth module for a 
staggered arrangement, H/Da = 2, L/Da = 7, and Pr = 0.7: (a) Re = 25, (b) Re = 50, 
(c) Re = 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.25 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 3, L/Da = 4, and Pr = 0.7: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.26 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 4, L/Da = 4, and Pr = 0.7: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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and d. However, the colder isotherms are farther from the hot tube surface which implies 

lower heat transfer. 

Comparison of Fig. 6.21 with Figs 6.27 and 6.28 shows the effect of varying the 

length ratio (L/Da) on the isotherms. The impact of varying length ratio is minimal on 

isotherms and thus does not have much of an impact on heat transfer. All isotherms 

given above, Figs. 6.21- 6.28, are for air (Pr = 0.7). Fig. 6.29 has the same parameters 

given in Fig. 6.21 except the Prandlt number. Increase in Pr significantly impacts 

distribution of isotherms. At a higher value of Pr the isotherms are more densely packed 

implying better heat transfer. This behavior is more pronounced at higher Reynolds 

numbers (Re = 400). 

6.5.4 Normalized Pressure Drop 

Since the velocity profile is nearly symmetric (for the in-line arrangement only) 

and repeats itself for other modules, the pressure drop across the modules has a spatially 

periodic behavior. This is the primary reason that the computed pressure drop is nearly 

constant for all modules except for the first and the last. Numerical data for 

dimensionless pressure differences across the interior modules for the in-line 

arrangements can be found in Table 6.8. The dimensionless pressure differences for the 

staggered arrangements are presented in Table 6.9. The data shows that the values are 

nearly constant for a given Reynolds number and a fixed set of aspect ratios. Therefore, 

it is reasonable to present the pressure drop across one module as a function of the 

Reynolds number. Minor variations were detected for the first and the last modules due 

to end effects.  
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Fig. 6.27 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 2, L/Da = 5, and Pr = 0.7: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.28 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 2, L/Da = 6, and Pr = 0.7: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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Fig. 6.29 Effect of Reynolds number on isotherms for the fourth module for an in-
line arrangement, H/Da = 2, L/Da = 4, and Pr = 7.0: (a) Re = 25, (b) Re = 50, (c) Re 
= 100, (d) Re = 200, and (e) Re = 400. 
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TABLE 6.8 Modules *P∆ for in-line arrangements at selected Reynolds numbers.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 4

2 25 9.094 9.102 9.114 9.125
100 2.665 2.652 2.649 2.647
400 1.049 0.968 0.970 0.941

3 25 3.336 3.338 3.339 3.339
100 0.942 0.914 0.912 0.912
400 0.375 0.314 0.284 0.269

4 25 2.055 2.059 2.060 2.060
100 0.584 0.549 0.543 0.542
400 0.233 0.202 0.180 0.167

L/Da = 5
2 25 9.201 9.199 9.191 9.181

100 2.823 2.817 2.816 2.817
400 1.083 0.975 0.958 1.002

3 25 3.449 3.448 3.443 3.436
100 1.014 0.996 0.996 0.997
400 0.423 0.352 0.324 0.320

4 25 2.165 2.166 2.168 2.170
100 0.633 0.604 0.602 0.602
400 0.250 0.216 0.198 0.192

L/Da = 6
2 25 9.212 9.212 9.210 9.207

100 2.928 2.924 2.923 2.922
400 1.154 1.028 1.032 1.046

3 25 3.490 3.489 3.486 3.482
100 1.061 1.049 1.050 1.051
400 0.408 0.310 0.286 0.300

4 25 2.217 2.221 2.226 2.231
100 0.665 0.643 0.642 0.643
400 0.273 0.232 0.216 0.215  
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TABLE 6.9 Modules *P∆ for staggered arrangements at selected Reynolds number.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 5

2 25 7.845 7.844 7.840 7.836
100 2.490 2.484 2.484 2.483
400 1.115 0.943 0.925 0.921

3 25 3.568 3.563 3.562 3.561
100 1.079 1.052 1.055 1.055
400 0.465 0.363 0.341 0.330

4 25 2.379 2.371 2.372 2.372
100 0.690 0.662 0.661 0.661
400 0.285 0.233 0.212 0.200

L/Da = 6
2 25 4.702 4.696 4.686 4.676

100 1.628 1.627 1.627 1.628
400 0.746 0.673 0.655 0.652

3 25 3.025 3.023 3.023 3.022
100 0.993 0.976 0.976 0.976
400 0.465 0.367 0.344 0.335

4 25 2.305 2.295 2.295 2.295
100 0.710 0.685 0.685 0.685
400 0.312 0.245 0.225 0.215

L/Da = 7
2 25 3.278 3.276 3.276 3.277

100 1.258 1.256 1.254 1.254
400 0.579 0.524 0.511 0.508

3 25 2.412 2.412 2.415 2.420
100 0.861 0.851 0.852 0.853
400 0.416 0.346 0.322 0.314

4 25 2.026 2.018 2.017 2.017
100 0.671 0.650 0.650 0.649
400 0.310 0.244 0.224 0.213
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Fig. 6.30 provides the normalized pressure drop for the fourth module for in-line 

configurations. Figs 6.30 a, c, and e show the impact of height ratio on the normalized 

pressure drop at fixed length ratio (L/Da = 4, 5, and 6, respectively). As the height ratio 

increases the normalized pressure drop decreases. Figs 6.30 b, d, and f show the impact 

of length ratio on the normalized pressure drop at fixed height ratio (H/Da = 2, 3, and 4, 

respectively). It can be clearly stated that the length ratio has very little effect or even a 

negligible effect on pressure drop. As expected the normalized pressure drop decreased 

with an increase in Re. Fig. 6.31 presents the dimensionless pressure difference for the 

fourth module for staggered configurations. The normalized pressure drop behavior for a 

staggered configuration is similar to that for an in-line configuration. 

6.5.5 Module Average Nusselt Number 

Tables 6.10 and 6.11 show the computed average Nusselt number for the interior 

modules for Pr = 0.7 for in-line and staggered arrangements, respectively. From these 

tables, it is evident that for a given Reynolds number the module average Nusselt 

number remains fairly constant thus signifying the existence of a thermally periodically 

fully developed flow condition. Fig. 6.32 shows the average Nusselt number as a 

function of Reynolds number for the fourth module for in-line configurations for Pr = 

0.7. Fig. 6.32a, c, and e show the effect of height ratio on the average Nusselt number for 

fixed length ratios. Fig. 6.32b, d, and f show the effect of length ratio on the average 

Nusselt number for fixed height ratios. In general, the module average Nusselt number 

increases with an increase in Reynolds number.  



  

 

151

(a) (b)

(c) (d)

(f)(e)

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*2-L*4
In-line H*3-L*4
In-line H*4-L*4

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*2-L*4
In-line H*2-L*5
In-line H*2-L*6

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*3-L*4
In-line H*3-L*5
In-line H*3-L*6

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*2-L*5
In-line H*3-L*5
In-line H*4-L*5

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*2-L*6
In-line H*3-L*6
In-line H*4-L*6

Re

N
or

m
al

iz
ed

Pr
es

su
re

D
ro

p

150 300 45010-2

10-1

100

101

In-line H*4-L*4
In-line H*4-L*5
In-line H*4-L*6

 

Fig. 6.30 Normalized pressure drop across the fourth module for in-line 
arrangements: (a) In-line L*4, (b) In-line H*2, (c) In-line L*5, (d) In-line H*3, (e) 
In-line L*6, and (f) In-line H*4 configurations. 
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Fig. 6.31 Normalized pressure drop across the fourth module for staggered 
arrangements: (a) Stagg. L*5, (b) Stagg. H*2, (c) Stagg. L*6, (d) Stagg. H*3, (e) 
Stagg. L*7, and (f) Stagg. H*4 configurations. 
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TABLE 6.10 Average Nusselt number for interior modules, in-line arrangements, 
Pr = 0.7.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 4

2 25 10.38 10.38 10.39 10.39
100 14.61 14.60 14.60 14.60
400 18.07 17.33 17.29 17.44

3 25 10.75 10.75 10.75 10.75
100 12.86 12.82 12.82 12.82
400 16.14 14.74 14.21 14.02

4 25 10.85 10.85 10.85 10.85
100 12.42 12.24 12.23 12.23
400 16.14 14.50 13.67 13.27

L/Da = 5
2 25 10.43 10.44 10.44 10.43

100 15.16 15.16 15.16 15.15
400 19.41 18.73 18.59 18.54

3 25 11.05 11.05 11.05 11.05
100 13.75 13.73 13.73 13.74
400 17.24 15.97 15.62 15.52

4 25 11.46 11.46 11.47 11.47
100 13.49 13.38 13.38 13.38
400 17.55 15.82 15.12 14.80

L/Da = 6
2 25 10.44 10.45 10.44 10.44

100 15.51 15.51 15.51 15.51
400 20.07 19.59 19.49 19.45

3 25 11.15 11.15 11.15 11.15
100 14.36 14.35 14.35 14.35
400 18.21 17.03 16.74 16.61

4 25 11.72 11.72 11.73 11.73
100 14.26 14.19 14.19 14.19
400 18.60 16.93 16.31 16.08  
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TABLE 6.11 Average Nusselt number for interior modules, Staggered 
arrangements, Pr = 0.7.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 5

2 25 9.99 9.99 9.99 9.99
100 14.63 14.63 14.63 14.63
400 19.75 18.78 18.73 18.71

3 25 10.94 10.94 10.94 10.94
100 13.79 13.74 13.75 13.76
400 17.45 16.30 15.95 15.86

4 25 11.52 11.51 11.51 11.51
100 13.63 13.50 13.50 13.50
400 17.74 16.05 15.35 15.07

L/Da = 6
2 25 8.77 8.78 8.78 8.78

100 13.37 13.40 13.40 13.41
400 18.09 17.54 17.49 17.49

3 25 10.46 10.46 10.46 10.46
100 13.97 13.95 13.96 13.97
400 18.35 17.10 16.82 16.77

4 25 11.54 11.53 11.54 11.54
100 14.31 14.21 14.22 14.23
400 18.88 17.16 16.57 16.35

L/Da = 7
2 25 7.80 7.80 7.81 7.81

100 12.59 12.64 12.65 12.65
400 17.48 17.03 16.98 16.98

3 25 9.79 9.80 9.80 9.80
100 13.80 13.84 13.87 13.87
400 18.73 17.55 17.29 17.25

4 25 11.25 11.25 11.26 11.26
100 14.58 14.54 14.57 14.57
400 19.69 17.96 17.43 17.25  
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Fig. 6.32 Average Nusselt number for the fourth module, Pr = 0.7, for in-line 
arrangements: (a) In-line L*4, (b) In-line H*2, (c) In-line L*5, (d) In-line H*3, (e) 
In-line L*6, and (f) In-line H*4 configurations. 
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The overall performance of an in-line configuration with a lower height ratio 

(H/Da = 2) is preferable since it provides higher heat transfer rate for all length ratios 

and Reynolds numbers except for the lowest value (Re = 25) as shown in Fig. 6.32a, c, 

and e. This fact was established earlier when isotherms were discussed for different 

height ratios. The vicinity of colder isotherms to the hot tube surface would imply high 

heat transfer. On the other hand, an increase of the length ratio would result in a slight 

increase in the module average Nusselt number at a lower height ratio (H/Da = 2) and 

quite a significant increase at a higher height ratio (H/Da = 2) as shown in Fig. 6.32b, d, 

and f. In staggered configurations, the one with minimum spacing between the upper and 

lower tubes appears to give a higher module average Nusselt number if the height and 

length ratios are maintained at the lowest value (H/Da = 2 and L/Da = 5) as shown in 

Fig. 6.33a and b, respectively. However, at higher height and length ratios (H/Da = 4 

and L/Da = 7) the staggered configuration with the higher spacing gives a higher module 

average Nusselt number as shown in Fig. 6.33e and f, respectively. 

Tables 6.12 and 6.13 show the module average Nusselt numbers for the inner 

modules when water is used as a working fluid (i.e., Pr = 7.0) for in-line and staggered 

arrangements, respectively. The presented results indicates an increase in the module 

average Nusselt number when compared with the data presented in Table 6.10 or Table 

6.11 for Pr = 0.7. Both in-line and staggered configurations do not attain a periodically 

fully developed condition at Re = 400.  
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Fig. 6.33 Average Nusselt number for the fourth module, Pr = 0.7, for staggered 
arrangements: (a) Stagg. L*5, (b) Stagg. H*2, (c) Stagg. L*6, (d) Stagg. H*3, (e) 
Stagg. L*7, and (f) Stagg. H*4 configurations. 
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Fig. 6.34 shows the module average Nusselt number for in-line arrangements at 

Pr = 7.0. Figs 6.34a, c, and e are showing the effect of height ratio on module average 

Nusselt number for a fixed length ratios (L/Da = 4, 5, or 6 respectively). Figs 6.34 b, d, 

and f show the effect of length ratio on module average Nusselt number for a fixed 

height ratios (H/Da = 2, 3, or 4 respectively). The configuration with lower height ratio 

(H/Da = 2) provides the highest values of module average Nusselt number. The impact 

of further increase in height ratio (H/Da = 3 or 4) was found to be negligible on the 

module average Nusselt number as can be seen in Fig. 6.34a, c and e. Small changes can 

be detected as a result of length ratio increase for the configuration with the highest 

height ratio (H/Da = 4) as shown in Figs 6.34 b, d and f. The module average Nusselt 

number for staggered arrangement at Pr = 7.0 can be seen in Fig. 6.35. The qualitative 

behavior of module average Nusselt number for Pr = 7.0 is similar to those for Pr = 0.7  

6.5.6 Heat Transfer Enhancement and Performance Ratios 

The effectiveness of using flat tube was evaluated by studying the ratio of the 

module average Nusselt number for periodically fully developed flow of flat tube 

configurations and the module average Nusselt number for periodically fully developed 

flow for circular tube configurations. Henceforth, this ratio will be referred to as the heat 

transfer enhancement ratio ( , ,/i i Flat i CircularNu Nu Nu+ = ). It has to be noted that the 

circumference of a flat tube is equal to that of a circular tube in order to establish a valid 

comparison. 
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TABLE 6.12 Average Nusselt number for interior modules for in-line 
arrangements, Pr = 7.0.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 4

2 25 15.70 15.46 15.44 15.44
100 21.06 19.16 18.37 17.99
400 43.46 37.33 34.88 34.44

3 25 14.19 13.48 13.31 13.27
100 19.37 17.27 16.21 15.57
400 35.20 31.17 28.46 26.82

4 25 14.14 13.11 12.74 12.61
100 19.87 17.44 16.21 15.43
400 32.67 29.89 27.26 25.59

L/Da = 5
2 25 16.57 16.41 16.40 16.40

100 22.00 20.37 19.69 19.39
400 46.16 39.72 35.94 33.01

3 25 15.25 14.66 14.54 14.52
100 20.84 18.74 17.69 17.07
400 36.07 31.58 29.48 28.14

4 25 15.35 14.41 14.12 14.03
100 21.54 19.09 17.83 17.05
400 36.37 31.83 29.41 27.68

L/Da = 6
2 25 17.17 17.06 17.06 17.06

100 23.01 21.45 20.83 20.57
400 48.11 40.32 36.72 33.62

3 25 16.00 15.53 15.45 15.43
100 22.04 19.99 18.96 18.37
400 38.33 33.56 31.43 29.23

4 25 16.23 15.42 15.19 15.13
100 22.90 20.48 19.23 18.46
400 38.31 33.24 30.52 28.83  
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TABLE 6.13 Average Nusselt number for interior modules for staggered 
arrangements, Pr = 7.0.  

H/Da Re 2nd 3rd 4th 5th
L/Da = 5

2 25 15.97 15.83 15.82 15.82
100 22.05 20.64 20.17 20.00
400 52.19 41.95 39.98 39.28

3 25 15.32 14.71 14.59 14.56
100 21.49 19.35 18.37 17.83
400 36.91 34.43 32.17 31.11

4 25 15.59 14.59 14.29 14.19
100 22.08 19.57 18.33 17.57
400 36.33 32.85 30.27 28.87

L/Da = 6
2 25 14.54 14.48 14.49 14.49

100 21.01 19.80 19.36 19.20
400 40.92 36.81 35.37 34.78

3 25 15.48 15.02 14.95 14.94
100 22.40 20.31 19.37 18.85
400 39.06 35.19 33.11 32.12

4 25 16.36 15.46 15.22 15.16
100 23.57 21.01 19.77 19.00
400 38.66 34.63 32.15 30.79

L/Da = 7
2 25 13.53 13.52 13.54 13.55

100 20.26 19.24 18.85 18.70
400 38.92 35.19 33.71 33.09

3 25 15.16 14.84 14.81 14.81
100 22.51 20.66 19.79 19.31
400 40.35 35.64 33.50 32.40

4 25 16.54 15.82 15.65 15.61
100 24.29 21.85 20.65 19.92
400 40.76 35.81 33.28 31.81  
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Fig. 6.34 Average Nusselt number for the fourth module, Pr = 7.0, for in-line 
arrangements: (a) In-line L*4, (b) In-line H*2, (c) In-line L*5, (d) In-line H*3, (e) 
In-line L*6, and (f) In-line H*4 configurations. 
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Fig. 6.35 Average Nusselt number for the fourth module, Pr = 7.0, for staggered 
arrangements: (a) Stagg. L*5, (b) Stagg. H*2, (c) Stagg. L*6, (d) Stagg. H*3, (e) 
Stagg. L*7, and (f) Stagg. H*4 configurations. 
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Table 6.14 shows the heat transfer enhancement ratio of the fourth module for 

both in-line and staggered configurations with fixed height ratio (H/Da = 3) and length 

ratio (L/Da = 5 and 6). The heat transfer enhancement ratio is less than unity which 

indicates that circular tubes out performs flat tubes. The heat transfer enhancement ratio 

decreases with an increase in Reynolds number, signifying that the increase in the 

Nusselt number is higher for circular tubes when compared to flat tubes. As expected the 

staggered configurations perform better than the in-line configurations from a heat 

transfer point of view.  

The effectiveness of using flat tubes can also be studied by evaluating the heat 

transfer performance ratio. The heat transfer performance ratio is defined as the ratio of 

heat transfer enhancement to unit increase in pumping power, which can be written as: 

( * 1/3
, ,/( / )i i i Flat i CircularNu Nu f f+= ). The friction factors are raised to the one-third power as 

the pumping power is proportional to the one-third power of the friction factor. For 

applications wherein the pumping ratio is of concern the heat transfer performance ratio 

should be greater than unity. As evident from Table 6.15 this ratio is always higher than 

one, signifying the importance of such an application from the pumping power point of 

view.  
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TABLE 6.14 Heat transfer enhancement ratio (Nu+). 
Re In-line H*3-L*5 In-line H*3-L*6 Stagg. H*3-L*5 Stagg. H*3-L*6
25 0.942 0.937 0.944 0.972
50 0.932 0.929 0.931 0.955
100 0.918 0.922 0.918 0.939
200 0.881 0.896 0.889 0.912
400 0.833 0.830 0.785 0.891  

 

 

 

 

 

TABLE 6.15 Heat transfer performance ratio (Nu*). 
Re In-line H*3-L*5 In-line H*3-L*6 Stagg. H*3-L*5 Stagg. H*3-L*6
25 1.154 1.143 1.105 1.056
50 1.165 1.154 1.116 1.070
100 1.175 1.180 1.140 1.096
200 1.152 1.172 1.144 1.125
400 1.067 1.131 1.065 1.323  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1  Review of the Dissertation 

Initially, available relevant literature on the subject was explored. Then, the 

explanation of covariant and contravariant base vectors were summarized followed by a 

brief discussion about dependent variable selection in momentum equations. The 

appropriate choice of grid arrangement was presented. Following that, the theory of 

coordinate transformations was outlined as well as a detailed explanation of the 

mathematical formulation adopted in this study was presented. The numerical 

procedures were validated with several test problems available in the literature. 

 Finally, a detailed numerical study was conducted on a two-dimensional flow 

and heat transfer over flat tube bundles found in heat exchanger applications. Both in-

line and staggered arrangements were considered in the study. The effects of the 

Reynolds number (Re), Prandtl number (Pr), length ratio (L/Da), and height ratio (H/Da) 

on the developing velocity profiles, streamlines, isotherms, pressure drops, and module 

average Nusselt numbers (Nu) were examined. 

 

7.2 Conclusions 

As the Reynolds number increases the maximum velocity in the passage between 

the upper and lower tubes increases, while the negative velocity downstream, right 
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behind the tubes, increases in magnitude. The increase in the negative velocity is a direct 

result of conservation of mass. The maximum velocity in the flow passage considerably 

decreases with an increase in height ratio for a fixed Reynolds number. The maximum 

velocity decreases as the length ratio increases. 

Flow is observed to attain a periodically fully developed profile downstream of 

the first module (the fourth in a few cases). The strength and size of the recirculation 

itself gets larger as the Reynolds number increases in all cases considered in this study. 

The separated flow covers a smaller portion of the flow field, right behind the tubes, at 

lower Reynolds numbers (Re = 50). At higher Reynolds numbers (Re = 200 or 400) the 

area between two consecutive tubes gets covered by the recirculation bubble. An 

interesting observation was found when staggered configurations were studied. An 

increase in the spacing between the upper and lower tubes would decrease the 

recirculation bubble downstream of the upper tube up to a value of 6 and then again 

increase to a value of 7. As the height ratio increases, the strength and size of the 

recirculation decreases. The increase in length ratio does not significantly impact the 

strength and size of the recirculation. 

Isotherms show that the colder fluid comes in contact with the hot tube surface as 

the Reynolds number increases. Accordingly heat transfer increases with an increase in 

the Reynolds number. As the height ratio increases, the colder isotherms shift farther 

from the hot tube surface which implies a lower heat transfer. A small change in the heat 

transfer rate can be predicted since the isotherms have almost the same behavior when 

the length ratio is increased. The most drastic changes (i.e., increase) on isotherms took 
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place with an increase in Pr. In general, it is advantageous to use a higher Pr fluid for 

better heat transfer.  

Numerical data for the dimensionless pressure difference for the interior modules 

shows that the values are nearly constant for a given Reynolds number and a fixed set of 

geometric ratios. Minor variations were detected for the first and the last modules due to 

end effects. In all cases, non-dimensionalized pressure drop monotonically decreased 

with an increase in Reynolds number. The length ratio was found to have very little or 

even negligible effect on dimensionless pressure drop. 

The computed module average Nusselt number at Pr = 0.7 for both in-line and 

staggered arrangements are nearly constant for a given Reynolds number and the 

geometric ratios for all inner modules due to the existence of a periodically fully 

developed flow condition. In general, the module average Nusselt number increases with 

an increase in the Reynolds number. The results at Pr = 7.0 indicate an increase in the 

computed module average Nusselt number when compared to those for Pr = 0.7. For 

both in-line and staggered configuration, the flow did not attain a periodically fully 

developed condition at Pr = 7.0 and Re = 400. 

The overall performance of the in-line configuration for lower height ratio (H/Da 

= 2) and higher length ratio (L/Da = 6) is preferable since it provides a higher heat 

transfer rate for all Reynolds numbers except for the lowest Re value of 25. The heat 

transfer enhancement ratio is less than unity which indicates that circular tubes out 

perform flat tubes from a heat transfer point of view. However, the heat transfer 

performance ratio is always higher than one, signifying the importance of such 
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application from the pumping power point of view. As expected the staggered 

configurations perform better than the in-line configurations from a heat transfer point of 

view.  

7.3  Recommendations for Future Studies 

Useful extensions to the present work could be achieved by implementing the 

following suggestions: 

1. Since the present study is limited to two-dimensional analysis, future study can 

be devoted to obtaining the flow and heat transfer performances of a three-

dimensional system.  

2. Modify the formulation to accommodate an unstructured grid, in which context 

the use of more advanced linear system solvers like the conjugate gradient 

method could be explored.  

3. Extend the analysis to the computation of transient flow. 

4. Since this study considered the developing flow of a repeated geometry, it 

required a large number of grid points.  This problem can be solved by using the 

Periodically Developed Flow (PDF) formulation. 
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APPENDIX A 

CONTROL VOLUME FORMULATION 

 

The control volume integration, which represents the main step of the finite 

volume technique, yields the following form: 

 

A V

J e ds SdVχ =∫ ∫
G Gi      (A.1) 

 

The LHS of the above equation represents the total integrated fluxes through the 

control surfaces, which can be rewritten as: 

 

 e w n s
A

J e ds J J J Jχ = + + +∫
G Gi       (A.2) 

 

where the terms , ,e w nJ J J  and sJ  are the fluxes through each face of the elementary cell 

shown in Fig. 4.2. The methodology that will be followed to derive the mathematical 

expression for each one of these terms is similar. Since ( Je) was derived earlier, ( Jn) is 

derived below: 

II

n
A

J J e dsη= ∫
G Gi       (A.3) 
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 where eηG  is the unit normal vector, mentioned earlier in Section 3.1.2, to IIA surface. 

 

Recall that,  

y x
x ye e

e
h

η

ξ

ξ ξ
∂ ∂

−
∂ ∂=

G G
G       (A.4) 

and ds  is the length of elemental arc and can be expressed as ds h dξ ξ= . The total flux 

J
G

can be written mathematically in vector notation as:  

 

x x y y x yJ J e J e u e v e
x y
φ φρ φ ρ φ

⎛ ⎞∂ ∂⎛ ⎞= + = −Γ + −Γ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

G G G G G    (A.5) 

 

substituting Equations  (A.4) and (A.5) into Equation  (A.3) to obtain 

 

II

n
A

x y x yJ v u d
y x
φ φρ φ ξ

ξ ξ ξ ξ
⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= − −Γ −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫    (A.6) 

 

The gradients of a generic scalar field φ  are expressed in Cartesian coordinates 

and need to be represented by their counterparts in the transformed (ξ , η ) physical 

plane. This can be accomplished by using the Chain-Rule as follows:  

 

1 y y
x Ja
φ φ φ

η ξ ξ η
⎛ ⎞∂ ∂ ∂ ∂ ∂

= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
     (A.7) 
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1 x x
y Ja
φ φ φ

ξ η η ξ
⎛ ⎞∂ ∂ ∂ ∂ ∂

= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
     (A.8) 

 

Substituting these relationships (Eqs. A.7 and A.8) into Equation A.6 and with 

some mathematical manipulations, the following expression is obtained: 

 

( ) ( )
2 2

n n
n n

h h h h
J u h e e

Ja h Ja h
ξ η ξ ηη

ξ ξ η
η ξ

ξ ξφ φρ φ η
η ξ

⎛ ⎞ ⎛ ⎞∆ ∆Γ ∂ Γ ∂
= ∆ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

G Gi   (A.9) 

 

The third term in the RHS of the above equation contains the value of ( )e eξ η
K Ki  

which appears due to the non-orthogonality of the coordinate system and would 

disappear for an orthogonal system. This value can be represented mathematically as 

follows:  

x x y y

e e e e
h h

ξ η
ξ η

ξ η

ξ η ξ η
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂= =K K K Ki i    (A.10) 

 

Equation (A.9) can be rewritten in terms of Primary and Secondary fluxes as:  

 

, ,n P n S nJ J J= −     (A.11) 

 

where  
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( ), ,P n nn
n

J u h
h

η
ξ η

η

φρ φ ξ α
η

⎛ ⎞Γ ∂
= ∆ − ⎜ ⎟⎜ ⎟∂⎝ ⎠

    (A.12) 

 

, ,S n n

n

J
hη
ξ

φβ
ξ

⎛ ⎞Γ ∂
= − ⎜ ⎟⎜ ⎟∂⎝ ⎠

     (A.13) 

 

2h h
Ja

ξ η
η

ξ
α

∆
=       (A.14) 

 

( )e eη η ξ ηβ α= K Ki      (A.15) 
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APPENDIX B 

PRIMARY FLUXES USING POWER-LAW SCHEME 

 

Following Patankar’s (1980) formulation, the primary fluxes PJ   which 

combines both convective and diffusive fluxes is evaluated by using a polynomial 

expression in terms of the cell Peclet number. The following is the primary flux at 

each interface: 

 

, ( ) ( )P e e E e e P EJ F A P Dφ φ φ= + −    (B.1) 

, ( ) ( )P w w W w w W PJ F A P Dφ φ φ= + − −    (B.2) 

, ( ) ( )P n n N n n P NJ F A P Dφ φ φ= + −    (B.3) 

, ( ) ( )P s s S s s S PJ F A P Dφ φ φ= + −    (B.4) 

 

where ( )A P  is the polynomial expression defined by Patankar (1980) as: 

 

( ) ( )5max 0, 1 0.1e eA P P= −c fd ge h    (B.5) 

( ) ( )5max 0, 1 0.1w wA P P= −c fd ge h    (B.6) 

( ) ( )5max 0, 1 0.1n nA P P= −c fd ge h    (B.7) 
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( ) ( )5max 0, 1 0.1s sA P P= −c fd ge h    (B.8) 

The non-dimensional cell Peclet number, P , is defined as the measure of the 

relative strengths of the flow rate through a control surface, F , and the diffusional 

conductance, D , as follows: 

 

e
e

e

FP
D

=      (B.9) 

w
w

w

FP
D

=      (B.10) 

n
n

n

FP
D

=      (B.11) 

s
s

s

FP
D

=      (B.12) 

where 

( ) ( )e e ee
F u h u uξ

η ξ ξ ξ ηρ ρ α β= = −    (B.13) 

( ) ( )w w ww
F u h u uξ

η ξ ξ ξ ηρ ρ α β= = −    (B.14) 

( ) ( )n n nn
F u h u uη

ξ η η η ξρ ρ α β= = −    (B.15) 

( ) ( )s s ss
F u h u uη

ξ η η η ξρ ρ α β= = −    (B.16) 

 

and 
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e

e

D
h

ξ

ξ

α⎛ ⎞Γ
= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (B.17) 

w

w

D
h

ξ

ξ

α⎛ ⎞Γ
= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (B.18) 

n

n

D
h

η

η

α⎛ ⎞Γ
= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (B.19) 

s

s

D
h

η

η

α⎛ ⎞Γ
= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (B.20) 
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