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ABSTRACT

Wyner-Ziv Coding Based on TCQ and LDPC Codes

and Extensions to Multiterminal Source Coding. (August 2004)

Yang Yang, B.S., Tsinghua University

Chair of Advisory Committee: Dr. Zixiang Xiong

Driven by a host of emerging applications (e.g., sensor networks and wireless

video), distributed source coding (i.e., Slepian-Wolf coding, Wyner-Ziv coding and

various other forms of multiterminal source coding), has recently become a very active

research area.

In this thesis, we first design a practical coding scheme for the quadratic Gaus-

sian Wyner-Ziv problem, because in this special case, no rate loss is suffered due to

the unavailability of the side information at the encoder. In order to approach the

Wyner-Ziv distortion limit D∗
WZ(R), the trellis coded quantization (TCQ) technique

is employed to quantize the source X, and irregular LDPC code is used to implement

Slepian-Wolf coding of the quantized source input Q(X) given the side information

Y at the decoder. An optimal non-linear estimator is devised at the joint decoder

to compute the conditional mean of the source X given the dequantized version of

Q(X) and the side information Y . Assuming ideal Slepian-Wolf coding, our scheme

performs only 0.2 dB away from the Wyner-Ziv limit D∗
WZ(R) at high rate, which

mirrors the performance of entropy-coded TCQ in classic source coding. Practical

designs perform 0.83 dB away from D∗
WZ(R) at medium rates. With 2-D trellis-coded

vector quantization, the performance gap to D∗
WZ(R) is only 0.66 dB at 1.0 b/s and

0.47 dB at 3.3 b/s.

We then extend the proposed Wyner-Ziv coding scheme to the quadratic Gaus-
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sian multiterminal source coding problem with two encoders. Both direct and indirect

settings of multiterminal source coding are considered. An asymmetric code design

containing one classical source coding component and one Wyner-Ziv coding compo-

nent is first introduced and shown to be able to approach the corner points on the

theoretically achievable limits in both settings. To approach any point on the theoreti-

cally achievable limits, a second approach based on source splitting is then described.

One classical source coding component, two Wyner-Ziv coding components, and a

linear estimator are employed in this design. Proofs are provided to show the achiev-

ability of any point on the theoretical limits in both settings by assuming that both

the source coding and the Wyner-Ziv coding components are optimal. The perfor-

mance of practical schemes is only 0.15 b/s away from the theoretical limits for the

asymmetric approach, and up to 0.30 b/s away from the limits for the source splitting

approach.
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CHAPTER I

INTRODUCTION

Distributed source coding, ignited by the landmark paper by Slepian and Wolf [1],

targets at various types of applications that deal with the transmission of multiple

sources over multiple channels, to a single destination (e.g., distributed sensor net-

works and wireless video). Compared to conventional point-to-point communication,

performance gains are promised with distributed source coding at the cost of increased

complexity. From the lossless Slepian-Wolf coding problem, to the lossy Wyner-Ziv

coding problem, and to the more general multiterminal source coding problem, a lot

of works have been done to find the theoretical performance limits and to build coding

schemes that approach these limits. However, most results are still at the theoretical

level, which has limited the potential applications of distributed source coding theory

in practice. This thesis focuses on the design of practical codes for distributed source

coding. Specifically, Wyner-Ziv code design and multiterminal source code design are

the two topics considered in this thesis.

A. Wyner-Ziv Code Design

Wyner-Ziv coding [2] refers to lossy source coding with side information (SCSI) at

the decoder. It is more general than the Slepian-Wolf coding [1] problem of lossless

SCSI. There is usually a rate loss with Wyner-Ziv coding when compared to lossy

coding of source X when the side information Y is available at both the encoder and

the decoder (see for example the binary Wyner-Ziv problem in [2]). One exception is

The journal model is IEEE Transactions on Automatic Control.
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when X and Y are jointly Gaussian with MSE measure, there is no rate loss1 with

Wyner-Ziv coding. In this thesis, we only consider this quadratic Guassian case,

which is of special interest in practice because many image and video sources can be

modeled as jointly Gaussian (after mean subtraction).

Because we are introducing distortion to the source with Wyner-Ziv coding,

source coding is needed to quantize X. Usually there is still correlation remaining

in the quantized version Q(X) and the side information Y , channel coding (e.g.,

Slepian-Wolf coding) should be employed to exploit this correlation to reduce the

rate from H(Q(X)) to H(Q(X)|Y ). Thus, Wyner-Ziv coding is a source-channel

coding problem. There is quantization loss due to source coding and binning loss due

to channel coding. In order to reach the Wyner-Ziv limit, one needs to employ both

source codes (e.g., TCQ [4]) that can achieve the granular gain and channel codes (e.g.,

turbo [5] or LDPC codes [6]) that can approach the Slepian-Wolf limit. In addition,

the side information Y can be used in jointly decoding and optimally estimating X̂ at

the decoder to help reduce the average distortion E[d(X, X̂)], especially at low rate.

Zamir and Shamai [7] first outlined some constructive mechanisms for quadratic

Guassian Wyner-Ziv coding using a pair of nested lattice codes. Servetto [8] pro-

posed explicit nested lattice constructions based on similar sublattices for the high

correlation case. Research on trellis-based nested codes as a way of realizing high-

dimensional nested lattice codes has just started recently [9, 10, 11, 12].

Source and channel codes of about the same dimension are utilized in nested

lattice [8] or TCQ constructions [11]. However, in this setup, the channel code is

not strong enough in the sense that the performance gap of the source code to the

1Pradhan, Chou, and Ramchandran [3] recently extended the zero-rate-loss con-
dition for Wyner-Ziv coding to X = Y + Z, where Z is independently Gaussian but
Y (hence X) could follow more general distributions.
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rate-distortion function is much smaller than that of the channel code to the capac-

ity. A Slepian-Wolf coded nested quantization (SWC-NQ) paradigm was proposed in

[13] to rectify this shortcoming by following nested quantization with a second layer

of binning via Slepian-Wolf coding. At high rate, asymptotic performance limits of

SWC-NQ similar to those in classic source coding were established in [13], showing

that ideal Slepian-Wolf coded 1-D/2-D nested lattice quantization performs 1.53/1.36

dB worse than the Wyner-Ziv distortion-rate function D∗
WZ(R) with probability al-

most one. Performances close to the corresponding theoretical limits were obtained

by using 1-D and 2-D nested lattice quantization, together with irregular LDPC codes

for Slepian-Wolf coding.

To further explore the remaining 1.36 dB gap from Slepian-Wolf coded 2-D nested

lattice quantization to D∗
WZ(R), higher dimensional lattice quantization must be em-

ployed. Hence TCQ, an efficient technique to implement higher dimensional lat-

tice quantization, is combined with LDPC codes based Slepian-Wolf coding [14] for

Wyner-Ziv coding. The intuition that all the binning should be left to the Slepian-

Wolf code, allows the best possible binning (a high dimensional channel code). This

limits the performance loss of such a Wyner-Ziv code to that from source coding alone

[15]. Some interesting results were reported in [16], where assuming ideal Slepian-

Wolf coding and high rate the use of classic quantization seemed to be sufficient. Our

combined source-channel coding approach could be viewed as a form of nesting with

fixed finite source code dimension and larger channel code dimension. This general-

ized context can include the turbo-trellis Wyner-Ziv codes introduced in [12], where

the source code is a TCQ nested with a turbo channel code. However, the scheme in

[12] can be simply classified as a nested one. It performs 1.3 dB away from D∗
WZ(R)

at 1.0 b/s.

We show that at high rate, SWC-TCQ performs 0.2 dB away from D∗
WZ(R).
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This 0.2 dB gap is the same as that between the performance of entropy-coded TCQ

and the distortion-rate function DX(R) in classical source coding. This and results

in [13] establish the connection between performances of high-rate Wyner-Ziv coding

and classic source coding. Practical designs with TCQ, irregular LDPC code based

Slepian-Wolf coding and optimal estimation at the decoder can perform 0.83 dB away

from D∗
WZ(R) at medium bit rates (e.g., ≥ 2.3 b/s). With 2-D trellis-coded vector

quantization (TCVQ), the performance gap to D∗
WZ(R) is only 0.66 dB at 1.0 b/s

and 0.47 dB at 3.3 b/s. These results show that our designs come much closer to

the theoretical performance limit of Wyner-Ziv coding than any other previously

presented designs.

B. Multiterminal Source Code Design

Multiterminal source coding deals with separate lossy encoding and joint decoding

of multiple correlated sources. There are two classes of multiterminal problems. If

each sensor observes directly the source, we have direct multiterminal source coding

[17, 18]. On the other hand, if each sensor cannot observe directly the source which is

to be reconstructed at the decoder, but is rather provided only with one of its noisy

versions, then we speak of indirect (remote) multiterminal source coding (e.g., the

CEO problem [19, 20]).

The multiterminal problem consists of determining achievable rate region; that

is, the rates at which sources (or, noisy observations) can be separately compressed,

so that at the central unit they can be recovered jointly within a target distortion.

Though intense research efforts have been conducted in solving multiterminal prob-

lems, achievable rate regions, in general, are still unknown; only inner and outer
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limits have been provided so far [17, 21, 22, 23]2. The quadratic Gaussian case was

considered in [17, 21, 18] and [20, 24, 25] for the direct and indirect multiterminal

problem, respectively. In contrast to the direct problem, where even in this simple

case the inner and outer limits do not fully coincide, the latest result [25] shows that

the Berger-Tung achievable region is tight in the indirect problem.

Though a lot has already been done in providing the theoretical limits for the

multiterminal problems, achievements in designing practical codes that can approach

these limits are very modest. Based on the tight limit for indirect multiterminal

coding in the symmetric quadratic Gaussian case [25], Pradhan and Ramchandran [26]

provided a code design with fixed-rate scalar quantizers and trellis codes. Although

capable of trading off transmission rates among two encoders, the design in [26]

performs far away from the theoretical limits, especially at low rates. Note that for

direct multiterminal coding, no code design has been provided yet.

Inspired by the fact that Wyner-Ziv coding [2] is a special case of multiterminal

coding, we proposed in chapter IV an asymmetric coding system for both the direct

and indirect multiterminal coding problems that essentially relies on Wyner-Ziv cod-

ing. Our main idea is to quantize the first observation and apply Wyner-Ziv coding

on the other by using the quantized version of the first as side information in an

efficient asymmetric coding system. Specifically, we rely on TCQ for quantizing the

first observation and employ SWC-TCVQ for Wyner-Ziv coding of the second. While

we can trade off the rates among the two encoders under the distortion constraint

in our system, only one rate allocation scheme minimizes the sum-rate. We show

that this allocation corresponds to one of the two corner points on the theoretical

sum-rate limit given in [20, 24]. The other corner point can be achieved by symmetry

2All rate points within the inner limit are achievable, while those outside the outer
limit are not.
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of the two observations. Hence, our system is limited in the sense that it can only

approach the two corner points, that is why we call it asymmetric coding. In our prac-

tical code design, however, we are faced with several problems. First, the correlation

model among observations is different from that in the Wyner-Ziv problem. Second,

the decoder can only exploit the correlation among the quantized observations, rather

than the actual correlation among the observations. Finally, since the reconstructions

are not Gaussian, the linear estimator might not be optimal anymore. We propose

solutions that overcome these difficulties, and apply them to our SWC-TCQ/TCVQ

scheme. We report results that are significantly better than previously published [26]

and come very close to the theoretical limits.

Although the above asymmetric coding approach shows much better results than

those of [26], it is limited to approaching only the two corner points on the achievable

limit. However, very often, it is needed to vary the rates of individual encoders while

keeping the total sum rate constant; that is, to approach any point on the limit.

One way of achieving this is the source splitting method, first introduced in [27] in the

context of asynchronous Slepian-Wolf coding [1]. The main idea is to split two sources

into three and to transform any rate point on the sum rate limit for the two-source

Slepian-Wolf problem to a corner point for the three-source Slepian-Wolf problem.

A practical scheme for Slepian-Wolf coding based on source splitting was proposed

recently in [28]. The extension of source splitting from Slepian-Wolf coding to direct

multiterminal source coding with two encoders is suggested by Zamir, Shamai, and

Erez [29]. However, no practical code design was provided.

Based on the idea of [29], we provide a practical coding scheme containing a

classical source coding component and two Wyner-Ziv coding components. Entropy-

coded TCQ [31] with dithered uniform codebook is employed for classical source

coding, and the SWC-TCQ/TCVQ scheme [32] is used in each of the two Wyner-Ziv
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coding components. Assuming ideal source coding and ideal Wyner-Ziv coding, we

prove that this scheme is capable of achieving any rate point on the theoretical limits

for both the direct and indirect multiterminal problems in the quadratic Gaussian

setting. Practical designs based on entropy-coded TCQ for source coding and SWC-

TCQ/TCVQ for Wyner-Ziv coding significantly outperform those of [26] and come

very close to the theoretical limits in both multiterminal problems.

C. Summary of Contribution

The thesis work has advanced our knowledge on fundamental performance limits

of practical Wyner-Ziv code designs, bridged the gap between network information

theory and practical code design, and deepened our understanding of classical in-

formation theory and conventional approaches to point-to-point communications as

well. From a practical point of view, the proposed multiterminal source code designs

will make a plethora of applications promised by the theory a reality and pave ways

for the deployment of distributed sensor networks.

Specific contributions of this thesis include

• We provide a practical code design based on TCQ and LDPC code for Wyner-

Ziv coding. This design performs much closer to the theoretical performance

limit of Wyner-Ziv coding than any other previously presented design.

– We succeed to combine TCQ as a powerful source code and irregular LDPC

codes as near capacity channel codes for Wyner-Ziv coding, which is a joint

source-channel coding problem.

– We statistically analyze the relationship between the input (the source X

to be quantized) and the output (the TCQ indices Q(X)) of TCQ. Using

the joint statistics of the TCQ input-output pair, we design an optimal
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estimation algorithm without the assumption of Gaussian or independent

quantization noise.

– We show that with ideal Slepian-Wolf coding, our design performs only 0.2

dB from the Wyner-Ziv limit. This and results in [13] establish the con-

nection between performances of high-rate Wyner-Ziv coding and classic

source coding.

• We design an asymmetric coding scheme for both the quadratic Gaussian direct

and indirect multiterminal source coding problems. Our method is capable of

achieving the two corner points on the inner sum rate limits in both cases.

Practical results show a much smaller performance gap than best known results

in [26].

• We propose the first practical coding scheme for multiterminal source coding

based on source splitting, which can approach any point on the inner sum

rate limits for both the quadratic Gaussian direct and indirect multiterminal

problems.
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CHAPTER II

PRELIMINARIES

A. Notation

Throughout this thesis, random variables are denoted as capital letters, e.g., X, Y ,

. . ., or possibly with a subscript, hat ( ˆ ), or tilde ( ˜ ), e.g., Y1, Ŷ , Ỹ , . . .. They

take values from the sets X , Y , . . .. A length-n vector of samples drawn from a

random variable is denoted as the corresponding random variable with a superscript

n, e.g., Xn, Y n, Y n
1 , Ŷ n, . . .. Each of the n samples of a random vector (e.g., Ỹ n

1 ), are

denoted as the corresponding random variable with a subscript identifying its index

in the vector (e.g., Ỹ1,1), i.e.,

Ỹ n
1 = {Ỹ1,0, Ỹ1,1, . . . , Ỹ1,n−1}. (2.1)

B. Trellis Coded Quantization

Trellis coded quantization (TCQ) is an efficient way to implement high-dimensional

lattice quantization, which is capable of achieving the classical distortion-rate bound

as dimension n goes to infinity. It borrows the idea of set partitioning from trellis

coded modulation and uses specific designed trellises to construct high-dimensional

lattices. TCQ is often referred to as the most powerful source coding technique

because it can achieve very good MSE performance at modest complexity.

1. Fixed Rate TCQ

Suppose we need to quantize a continuous source X using rate R bit per sample. TCQ

first takes a codebook of size 2R+R̃, and partition it into 2R̃+1 subsets, each having 2R−1

codewords. Normally, R̃ is set to one. Hence, we have four subsets, denoted as D0,
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D1, D2, and D3. They are also referred to as cosets, and B0 = D0∪D2, B1 = D1∪D3

are called supersets. A example of the partitioning procedure is illustrated in Fig. 1.

From left to right, the consecutive codewords are labelled D0, D1, D2, D3, D0, D1,

D2, D3, . . .. The codewords are denoted as qj
i , i = 0, 1, 2, 3, j = 0, 1, . . . , 2R−1 − 1,

where i is called coset index, and j is called codeword index.

o
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 o
o
 o
o
o


q

0


q

2


q

0


q

2
q


1

q


3

q


1

q


3


D

0


D

0


D

3


D

3


D

1


D

1


D

2


D

2


0
 0
 1
0
 0
 1
 1
 1


Fig. 1. A example of partitioning of 8 codewords for a 2-bit TCQ.

A trellis is in fact a state transition diagram of a finite-state machine. In other

words, a trellis is a mapping from the current state Scurrent and input message I to

the next state Snext and output message O, i.e., (Scurrent, I) −→ (Snext, O).

(b)

D D

O 0

O 1

I
D D

O 0

O 1

I

(a)

Fig. 2. Examples of 4-state convolutional codes used for TCQ (a) Non-systematic form;

(b) Systematic form.

The trellises used in TCQ are usually based on a underlying convolutional code.

Examples of convolutional codes with four states and their state transition diagrams

are shown in Figure 2 and Figure 3, respectively. The non-systematic convolutional
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(b)

01

1110

00
0/10

0/11

1/11

1/10

1/01

0/00

0/01

1/00

10

1101

00
0/10

0/11

1/11

1/10

1/01

0/00

0/01

1/00

(a)

Fig. 3. State transition diagrams for the 4-state convolutional codes in (a) Figure 2(a)

(b) Figure 2(b).

code in Figure 3(a) corresponds to the parity check matrix Hnon = [1+D2 D], and the

systematic one in Figure 3(b) corresponds to the parity check matrix Hsys = [1 D
1+D2 ].

Although the block diagrams of the two are different, both codes generate the same

set of output sequences, hence they are essentially identical for TCQ. In the sequel,

we always focus on the rate-1
2

systematic convolutional codes because only the last

bit plane of the output sequences has memory in the systematic case. This is a very

desirable property when the output sequence is to be compressed.
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Fig. 4. An example of a multi-stage trellis.
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Based on a size-2R+1 codebook and a rate-1
2

N -state trellis, we can quantize

the source X using the Viterbi algorithm. For a length-n block of source samples

Xn = {X0, X1, . . . , Xn−1}, n stages of the N -state trellis are employed. Then we

have n + 1 columns of states which are connected by trellis transitions. For each

state, there are exactly two transitions to and from it. Each transition is assigned

with a coset Di, i = 0, 1, 2, 3 where i is the 2-bit output message corresponding to the

transition. An example of a multi-stage trellis is shown in Figure 4. Note that the

two transitions entering or leaving a state correspond to the two cosets of the same

superset (e.g., D0 and D2 are the two cosets for transitions leaving state-0, while D1

and D3 are the two cosets for transitions entering state-2). Hence only a half of the

2R+1 codewords are possible at each stage, and R bits are needed to represent these

2R possible codewords for each source sample. Speaking at block level, there are 2nR

code vectors available for a source vector Xn, and the Viterbi algorithm targets at

finding the code vector that is nearest to the source vector in the sense of minimizing

the MSE. The algorithm is given by:

The Viterbi Algorithm for Trellis Coded Quantization

1. Given a source vector Xn = {X0, X1, . . . , Xn−1}, initialize distortions for all the

states in stage -1 as d−1
0 = 0.0, d−1

1 = d−1
2 = . . . = d−1

N−1 = ∞, where superscript

0 is the stage number, and subscripts are the state number. Let i = 0.

2. For each state j (0 ≤ j ≤ N − 1) at stage i, find the two trellis transitions

entering it. Let (S(j, 0), S(j, 1)) denote the two starting states of the transitions,

and (O(j, 0), O(j, 1)) denote the corresponding outputs. Then find the codeword

in coset DO(j,0) that is nearest to the source sample Xi. Suppose q
ki,0

O(j,0) is the

nearest one with distortion d0 = (q
ki,0

O(j,0) − Xi)
2. Similarly, we find q

ki,1

O(j,1) with

smallest distortion d1 = (q
ki,1

O(j,1) −Xi)
2.
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3. Compare the two cumulate distortion di−1
S(j,0) +d0 and di−1

S(j,1) +d1, set the new cu-

mulate distortion to di
j = min{di−1

S(j,0) +d0, d
i−1
S(j,1) +d1}, and delete the transition

corresponds to the larger distortion.

4. After all the cumulate distortions di
j, 0 ≤ j ≤ N − 1 are found, set i = i + 1. If

i < n− 1, goto step 2, otherwise, proceed to step 5.

5. Find the final state Sfinal with the smallest cumulate distortion dn−1
Sfinal

among

dn−1
j , 0 ≤ j ≤ N − 1, and trace back from Sfinal to the starting state to find the

corresponding trellis path that produces dn−1
Sfinal

. Hence the length-n code vector

that produces dn−1
Sfinal

is also known.

6. For the i-th codeword qki
Ci

in the selected code vector, output ki using R − 1

bits, and then output the higher bit of Ci. Do this for each i, 0 ≤ i ≤ n− 1.

B

R−1

0 b
R−1

n−1 b
R−1

Trellis bit

Sequence

bitCodeword

Sequences

B i

b
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i

b
1

i
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i

..
..
..
.

b
R−1

i

b
1

i

b
0

i

B i

ib

....... .......B B

....... .......b
R−1

1

B 0 1

..
..
..
.

..
..
..
.

..
..
..
.
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..
..
.

..
..
..
.

..
..
..
.

b
1

b
0

..
..
..
.

....... .......b
1

0 b
1

1 b
1

n−1

....... .......b
0

0 b
0

1 b
0

n−1

n−1

b

Fig. 5. Rate-R TCQ index matrix for block length n.

To index the code vector found by the Viterbi algorithm, an R×n index matrix,

denoted as B, is needed. The R bits for the i-th sample are called the i-th TCQ index

and are denoted as Bi = {bR−1
i , . . . , b1

i , b
0
i }. The last bit b0

i is called the i-th trellis bit
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which specifies the surviving trellis transition (thus the corresponding coset index Ci)

between stage-(i− 1) and stage-i. The other R− 1 bits bi = {bR−1
i , . . . , b1

i } are called

codeword bits and they specify the nearest codeword in coset DCi
that is closest to

the source sample Xi. The length-n trellis bit sequences is denoted as b0, and the

other R − 1 codeword bit sequences are written as b1, . . . ,bR−1. Figure 5 shows a

rate-R TCQ index matrix for a block of n input samples.

TCQ


D
 D


0


1


1


0


1


1


1


{
Select


codeword

in coset


Determines


trellis path


}

MSBs of


codeword

index


LSBs of


codeword


index


}


R-
bit

TCQ index


(R
+1)-bit

codeword


index


+


Fig. 6. The quantization procedure of rate-R TCQ.

The quantization procedure is illustrated in Figure 6, and a simple example is

given as follows:

Example Let TCQ rate R = 2, block length n = 4. The codebook consists of eight

codewords {−7,−5,−3,−1, 1, 3, 5, 7} which are divided into four cosets D0 = {−7, 1},
D1 = {−5, 3}, D2 = {−3, 5}, and D3 = {−1, 7}. We use the 4-state trellis in Figure

2(b). Suppose the source samples are X4 = {−4.1, 2.2, 0.3,−2.5}, we apply the

Viterbi algorithm on X4, as shown in Figure 7. We skip the details and directly come

to the final quantization output given by a 2× 4 TCQ index matrix
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Fig. 7. The quantization of source block X4 = {−4.1, 2.2, 0.3,−2.5}.

B =





0 1 1 0

1 0 1 1





.

The performance of fixed rate TCQ with a 256-state trellis is about 0.2 dB away

from the distortion-rate bound for uniform sources, which is better than any vector

quantizer of dimension less than 69 [31]. However, the performance gap becomes

more than 0.5 dB for Gaussian sources. This larger gap can be further reduced by

entropy coding.

2. Entropy-Coded TCQ (ECTCQ)

When quantizing non-uniform sources using R-bit TCQ, the entropy rate of the out-

put TCQ index sequence is always less than the TCQ rate R. This is the motivation

for adding an entropy coding component after TCQ. However, the TCQ index se-

quence is of memory, thus cannot be compressed directly using Huffman coding or

arithmetic coding. Three approaches are introduced in [33] to explore the memory in

the TCQ index sequence and compute the encoding rate after entropy coding.
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1. Coset entropy (subset entropy).

Directly transmit the trellis bit sequence using one bit/sample. Then the de-

coder knows exactly the trellis path (thus the coset index Ci for each 0 ≤ i ≤
n − 1) with which the source vector Xn is quantized. Given the trellis path,

the R − 1 bit/sample codeword bit sequence are memoryless. Then the av-

erage encoding rate can be expressed as H(Q(X)|C) + 1, where Q(X) is the

quantized version of the source X, i.e., Q(X) = qj
i for some 0 ≤ i ≤ 3 and

0 ≤ j ≤ 2R−1 − 1; C is the random variable characterizing the coset indices

Ci’s. By definition, we have

H(Q(X)|C)

= −
3∑

i=0

P (Q(X) ∈ Di) ·
2R−1−1∑

j=0

P (Q(X) = qj
i |Q(X) ∈ Di) · log2 P (Q(X) = qj

i |Q(X) ∈ Di).(2.2)

Using the coset entropy approach to compress the TCQ index sequence is intu-

itive and easy to implement. However, the encoding rate is always larger than

one bit/sample, which is very inefficient at low rate.

2. State entropy

In the Viterbi algorithm for TCQ, given the current state and the selected

codeword, we know the coset index of the codeword, i.e., the output from current

state to next state, hence the next state is uniquely determined. Note that from

one state S, only half of the codewords are available to select, they are from

the same superset B0 or B1. Let the 2R codewords available for state S be

{q∗S,0, q
∗
S,1, . . . , q

∗
S,2R−1}, then the encoding rate can be expressed as

H(Q(X)|S)
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= −
N−1∑

s=0

P (S =s) ·
2R−1∑

j=0

P (Q(X)=q∗s,j|S =s) · log2 P (Q(X)=q∗s,j|S =s). (2.3)

The encoder designs N entropy codebooks for all the N states, and compresses

the i-th codeword index using the s-th entropy codebook where s is the current

state. At the decoder side, we know the starting state S−1 = 0, then the first

codeword index can be decoded using the entropy codebook designed for state

S−1. Given this codeword index and the starting state S−1 = 0, the second

state S0 can be found. Again, the second codeword index is decoded using

the entropy codebook designed for state S0. Proceeding in this way, all the

codeword indices can be decoded losslessly.

3. Superset entropy

Similar to the state entropy approach, because from one state S, only the code-

words from one superset of (B0, B1) are available, hence the encoding rate can

be expressed as (recall that B0 = D0 ∪D2, B1 = D1 ∪D3)

H(Q(X)|B)

= −
1∑

i=0

P (Q(X) ∈ Bi) ·
2R−1−1∑

j=0

1∑

k=0

P (Q(X)=qj
i+2k|Q(X)∈Bi) · log2 P (Q(X)=qj

i+2k|Q(X)∈Bi).(2.4)

In this approach, the encoder designs two entropy codebooks for B0 and B1,

and compresses each codeword index using the entropy codebook designed for

the corresponding superset. The decoding procedure is similar to (2). Because

given the current state, we know in which superset will the selected codeword

be; with this information, we can uniquely decode the codeword index; and the
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next state can be determined from the current state and the codeword index.

Hence, lossless decoding is ensured.

It is stated in [31] that “256-state entropy-coded TCQ can achieve MSE perfor-

mance within about 0.2 dB of the distortion-rate function at all rate R for any smooth

PDF,” and “uniform thresholds with centriod codewords are very near optimal.” We

also implement the ECTCQ scheme using both coset entropy approach and superset

entropy approach, and the simulation results verify the conclusions on ECTCQ in

[31].

C. Low Density Parity Check (LDPC) Codes

Low Density Parity Check (LDPC) codes are linear block codes with a “low-density”

parity check matrix in the sense that the number of non-zero elements in the parity

matrix is relatively small. If the parity check matrix satisfies

1. each column has j 1’s (normally j ≥ 3 to produce good performance), and

2. each row has k(> j) 1’s,

the corresponding code is referred to as regular LDPC code; if the numbers of 1’s

in the rows (or the columns) of the parity check matrix are not all equal, we have

irregular LDPC code.

A LDPC code can be represented using a Tanner graph. As an example, the

Tanner graph for a binary (6, 2)-LDPC code is shown in Figure 8, the corresponding
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parity check matrix H is

H =




1 0 1 1 0 0

1 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 1 1




(2.5)

Each circle at the left side of the graph is called a bit node which corresponds to a

column of the parity check matrix; each square at the right side of the graph is called

a check node which corresponds to a row of the parity check matrix. There exists a

connection between the i-th bit node and the j-th check nod only if the intersecting

entry of the i-th column and the j-th row of the parity check matrix is a one, and

each of these connections is called an edge. The degree of a node (bit or check) is

defined by the number of edges that are connected to it, while the left (right) degree

of an edge is the degree of the bit (check) nod that it connects.

6

1

V2

V3

V4

V5

V6

V1+V3+V4

V1+V2+V6

V3+V5

V4+V5+V

V

Fig. 8. The Tanner graph of a binary (6,2)-LDPC code.
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The degree profile (λ, ρ) of a LDPC code is defined by the sequence generating

functions λ(x) =
∑dlmax

i=2 λix
i−1 and ρ(x) =

∑drmax
i=2 ρix

i−1 where λi is the fraction of

edges with left degree i and ρi is the fraction of edges with right degree i; dlmax and

drmax are the maximum left degree and the maximum right degree of all the edges.

The rate of the code is then given by 1−
∫

ρ(x)∫
λ(x)

. For regular LDPC codes, λ(x) = xi−1

and ρ(x) = xj−1.

The encoding of LDPC codes is the classical encoding of linear block code, while

message-passing algorithm is employed in the decoding of LDPC codes. As the name

suggested, messages are exchanged between two ends of each branch in a message-

passing algorithm. The message going into or out of a variable node possesses the

“belief” of the value of that variable node. For binary LDPC codes, these messages

are typically in the form of log-likelihood ratios (i.e., log p(observation|Vi=1)

p(observation|Vi=0)
for the

messages passing into or out of the variable node Vi). Upon receiving the messages,

both variable and check nodes update the messages by combining the beliefs of the

messages, and send the new messages to the other ends. To avoid the belief in

a message is doubly counted, the message originated from the same branch is not

included in the update. The detailed algorithm is described in [34].

Given that the channel satisfies certain symmetry condition, the performance of

the LDPC code is independent of the input codeword to be transmitted. Hence, we

can assume any codeword to be sent when we analyze the LDPC code performance.

In specific, by assuming all-one codeword is sent and by tracking the density distri-

bution of the average beliefs of the variable nodes, we could estimate the probability

of decoding error after any number of iterations in theory. However, this cannot be

easily done for a specific LDPC code since each variable/check node can have differ-

ent degree. Nonetheless, if we consider an ensemble of codes which bear the same

degree profile in the sense that the fraction of nodes with any particular degree is
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the same, then the problem become tractable and this technique is commonly known

as density evolution. Density evolution can be employed for LDPC code design [35].

The basic idea is to adjust the degree profile interactively such that the decoding

error probability predicted by density evolution is smallest.
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CHAPTER III

WYNER-ZIV CODING BASED ON TCQ AND LDPC CODES

In this chapter, we consider TCQ and LDPC codes for the quadratic Gaussian Wyner-

Ziv problem. The main idea is to quantize the source input X using TCQ, and then

employ LDPC codes to implement Slepian-Wolf coding of the quantized source input

Q(X) given the side information Y at the decoder. Assuming ideal Slepian-Wolf cod-

ing in the sense of achieving the theoretical limit H(Q(X)|Y ), it will be shown that

Slepian-Wolf coded TCQ (SWC-TCQ) performs 0.2 dB away from the Wyner-Ziv

distortion-rate function D∗
WZ(R) at high rate. This result mirrors that of entropy-

coded TCQ in classic source coding and establishes the connection between perfor-

mances of high-rate Wyner-Ziv coding and classic source coding. Practical designs

with TCQ, irregular LDPC code (for Slepian-Wolf coding) and optimal estimation

at the decoder perform 0.82 dB away from D∗
WZ(R) at medium bit rates (e.g., ≥ 1.5

b/s). With 2-D tellis coded vector quantization, the performance gap to D∗
WZ(R) is

only 0.66 dB at 1.0 b/s and 0.47 dB at 3.3 b/s.

The organization is as follows. In Section A, we describe the Wyner-Ziv coding

problem and the Wyner-Ziv limit for the general case and for the quadratic Gaussian

case; the general framework of Slepian-Wolf coded quantization for Wyner-Ziv coding

is also discussed briefly. Then in Section B, the proposed SWC-TCQ scheme will be

presented in details. Section C focuses on the exploration of statistical properties

of the input-output pairs for TCQ and two-dimensional TCVQ. These statistics are

used in the decoding algorithms for the codeword bits that are given in Section D. An

optimal estimation algorithm is then presented in Section E. Simulation results with

TCQ and 2-D TCVQ are shown in Section F, with the conclusions drawn in Section

G.
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A. Wyner-Ziv Coding

Wyner-Ziv coding [2] refers to lossy source coding with side information at the de-

coder.

X Encoder X̂Decoder

Y

Fig. 9. Wyner-Ziv coding (source coding with side information at the decoder).

As illustrated in figure 9, the source X is to be compressed using rate R and

decompressed at the decoder with Y as side information. The reconstructed source

X̂ satisfies a distortion constraint

E{ 1

n

n−1∑

i=0

d(Xi, X̂i)} = E{d(X, X̂)} ≤ D, (3.1)

for a given target distortion D ≥ 0. The goal is to minimize the transmission rate R.

The general Wyner-Ziv rate-distortion function is given by [2]

R∗
WZ(D) = inf

Y→X→Z;E{d(X,X̂(Z,Y ))}≤D
I(X; Z|Y ), (3.2)

where Z is an auxiliary random variable and X̂(Z, Y ) is the decoding function.

Recall the classical rate-distortion function defined by

RX(D) = inf
E{d(X,U)}≤D

I(X; U), (3.3)

where U is an auxiliary random variable that satisfies the distortion constraint. Hence

the rate-distortion function of coding X given Y at both the encoder and the decoder
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can be expressed as

RX|Y (D) = inf
E{d(X,U)}≤D

I(X; U |Y ). (3.4)

In general, there is a rate loss with Wyner-Ziv coding, i.e., R∗
WZ(D) > RX|Y (D)

in most cases. This loss is up to 0.22 bit for binary sources with Hamming distance

and less than 0.5 bit/sample for continuous sources with MSE measure.

However, for jointly Gaussian sources with MSE distortion measure, Wyner-Ziv

coding suffers no loss due to the unavailability of the side information at the encoder.

Let X and Y be jointly Gaussian sources with covariance matrix

Λ =




σ2
x ρσxσy

ρσxσy σ2
y


 . (3.5)

Then the Wyner-Ziv limit R∗
WZ(D) can be shown to be equal to RX|Y (D), and

R∗
WZ(D) = RX|Y (D) =

1

2
log+ (1− ρ2)σ2

x

D
, (3.6)

where log∗ x = max{log x, 0}.

Encoder
Quantization

X
Estimator
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Decoder

Slepian−WolfSlepian−Wolf

M
3

M
4

M
1

M
2

W W X̂^

Y

Fig. 10. The general Slepian-Wolf coded quantization framework for Wyner-Ziv cod-

ing).

The general Slepian-Wolf coded quantization framework for Wyner-Ziv coding is

shown in Figure 10. The quantization part is a mapping

M1 : Rn → {1, 2, . . . , 2nRs}, (3.7)
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where Rs is the the source coding rate. M1 partitions the source space Rn into 2nRs

disjoint regions V = {V1, V2, . . . , V2nRs}. We refer to the region Vi to which Xn is

quantized as active region. The Slepian-Wolf encoder is a mapping

M2 : {1, 2, . . . , 2nRs} → {1, 2, . . . , 2nR}, (3.8)

where R is the the transmission rate. M2 aims at finding the index of the coset

of the channel code containing the index of the active region. This coset index is

often referred to as Syndrome. Hence a source code with 2nRs indices is partitioned

into 2nR cosets of a certain channel code which has a total number of code words

2nRc = 2nRs/2nR = 2n(Rs−R). The Slepian-Wolf decoder is a mapping

M3 : Rn × {1, 2, . . . , 2nR} → {1, 2, . . . , 2nRs}, (3.9)

which recovers the index of the active region in the specified coset by finding the most

likely region given the side information Y . The estimator is a mapping

M4 : Rn × {1, 2, . . . , 2nRs} → Rn, (3.10)

which finds the best estimate of Xn given the side information and the active region

Vi containing Xn. For MSE distortion measure, this best estimate is the conditional

mean E{Xn|Y n, Xn ∈ Vi}. Finally, the reconstructed source X̂n can be expressed as

X̂n = M4 {Y n,M3{Y n,M2[M1(X
n)]}} . (3.11)

B. Proposed SWC-TCQ Scheme

Assume X = Y + Z where Y ∼ N(0, σ2
Y ) and Z ∼ N(0, σ2

Z) are independent. For

a target bit rate, we aim to minimize E[d(X, X̂)]. Our proposed SWC-TCQ scheme

is shown in Figure 11. The input X is grouped into blocks of length 1000 samples
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before going through an R-bit TCQ [4] in the TCQ Encoder, which employs a stan-

dard Viterbi encoder and a uniform-threshold quantizer. The quantizer encoder has

2R+1 uniformly spaced codewords, which are partitioned into four cosets, each having

2R−1 codewords. Using the same notation as in chapter II(B), the R-bit TCQ index

sequence B consists of one trellis bit sequence b0 and R − 1 codeword bit sequences

{b1,b2, · · · ,bR−1}. Denote the i-th TCQ index as Bi, then Bi consists of a trellis

bit b0
i and an (R − 1)-bit codeword bi = {b1

i , b
2
i , · · · , bR−1

i }, i.e., Bi = {b0
i ,bi} =

{b0
i , b

1
i , · · · , bR−1

i }. The Syndrome Encoder compresses B = {b0,b1, · · · ,bR−1} into R

syndrome sequences S = {s0, s1, · · · , sR−1} using R LDPC code based Slepian-Wolf

codes of different rates [14]. We assume that S is revealed to the decoder via a

noiseless channel.

Encoder

Decoder

{s1, . . . , sR−1}

Encoder

TCQ

Encoder

Sydrome

Codeword

Estimator

LDPC

Decoder II

Channel

Error-free

Non-linear

Estimator

B

Estimator Decoder I

LDPCTrellis Bit

C

Y

SX

Y

X̂

s0LLR(b0|Y)

C

S

LLR(bri|b0i, . . . , br−1
i ,Y=yi,C=ci) {b1, . . . , bR−1}

Fig. 11. Block diagram of the SWC-TCQ scheme.
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At the decoder, the side information Y is fed into the Trellis Bit Estimator and

Codeword Estimator to compute the log-likelihood ratios (LLRs) of the trellis bits b0

and codeword bi given Y , respectively.

Since the trellis bits in b0 have memory and they exactly determine the trellis

path, computations in the Trellis Bit Estimator are carried out block by block. This

is done by randomly generating realizations of Z ∼ N(0, σ2
Z), quantizing Y + Z

with the same TCQ used in the encoder, and counting the number of 0’s and 1’s

in b0 to obtain LLR(b0|Y ). LDPC Decoder I runs the message-passing algorithm

based on LLR(b0|Y ) and the syndrome sequence s0 to reconstruct b0. Although

our estimation of LLR(b0|Y ) might not be optimal, experiments show that LDPC

Decoder I performs reasonably well except at low rate for the conditional entropy

H(b0|Y ) approaches one as R increases. With enough rate for s0, it is reasonable to

assume that b0 is recovered error free when decoding {b1,b2, · · · ,bR−1} or the bi’s.

To avoid the compression inefficiency of b0 due to the suboptimality in estimat-

ing LLR(b0|Y ), we employ 2-D TCVQ to make the rate of b0 fractional when the

target bit rate is low (e.g., one b/s). In this case, b0 is directly transmitted without

compression.

With b̂0 available at the decoder, the coset index sequence C of all samples is

known. Thus operation of the Codeword Estimator can be sample based instead of

block based. In Section C, we will look deeper into TCQ, extract key information from

it, and combine it with the side information Y at the decoder. Based on that, we will

devise in Section D a novel way of computing LLR(br
i |b̂0

i , · · · , b̂r−1
i , Y = yi, C = ci) for

1 ≤ r ≤ R−1. Using this LLR, LDPC Decoder II sequentially decodes b1
i , b

2
i , · · · , bR−1

i

with the help of transmitted syndrome sequences s1, s2, · · · , sR−1.

Finally, the Nonlinear Estimator reconstructs X̂ based on both {b̂0, b̂1, · · · , b̂R−1}
and Y at the decoder. The estimation algorithm used in [11, 12] is linear, which is
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good only when the quantization error Q(X) − X and Z are independent Gaussian

random variables [7]. We know, however, that Q(X)−X is not Gaussian unless Q(X)

is optimal in the sense that the resulting source code approaches the rate-distortion

performance. This is because the Gaussian source is the hardest to compress. Thus,

although TCQ is an efficient quantization technique, Q(X)−X is not Gaussian, espe-

cially at low rate. Using results developed in Section C again, we describe a powerful

and universal method of performing optimal estimation in Section E.

C. Statistics of TCQ/TCVQ Indices

1. Statistics of TCQ Indices

TCQ [4] is the source coding counterpart of TCM [30]. It can be thought of as being

a type of vector quantization because of the expanded signal set it uses. Since we

are concerned with SWC-TCQ, ECTCQ is more relevant to us. It is stated in [31]

that for ECTCQ, uniform thresholds with centroid codewords at the decoder are near

optimal. This leads us to the uniform-threshold quantizer. Let the quantized version

of the input sample xi be qbi
ci

, where ci ∈ {0, 1, 2, 3} is the coset index. Fig. 12 shows

the eight codewords of the quantizer encoder for a 2-bit TCQ.

q0
0

q q0 q00
1 2 3

q
0

q q q1 1 1 1
1 2 3

Fig. 12. A uniform-threshold quantizer with 8 codewords for a 2-bit TCQ.

It is a challenging task to achieve good Wyner-Ziv coding performance at low

rate because as the rate becomes scarce, it is imperative to explore the memory in the

trellis indices for compression and to perform optimal estimation at the joint decoder.
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Toward this end, we first look into P (Q(X) = qb
c |X): the conditional probability

that X is quantized to qb
c given the source X. This conditional probability builds

a connection between the input and output of TCQ, and characterizes the behavior

of the quantization procedure. To compute P (Q(X) = qb
c |X), we first partition

the granular region of our uniform-threshold quantizer into N length-δ mini-cells,

∆1, ∆2, . . . , ∆N , and denote wn as the mid-point of ∆n for 1 ≤ n ≤ N . The partition

is illustrated in Figure 13. Then the conditional probability P (Q(X) = qb
c |X) can

be approximated by P (Q(X) = qb
c |X ∈ ∆n) as N goes to infinity, where ∆n is the

mini-cell containing X.

..................

..................

∆n∆1 ∆N

wn

δ

∆n+1∆n−1 ∆n

δ

Fig. 13. Discretization of the granular region.

To compute the desired probability, a large number of simulations are run for

TCQ on the training data X ∼ N(0, σ2
X). We count the number of occurrences for

each possible input-output pair {(n, qb
c ) : X ∈ ∆n, Q(X) = qb

c }. Recall that at each

stage in the Viterbi algorithm of TCQ, for a given source sample X = x, only four

codewords are possible for Q(x), which are the nearest codewords to x in each of the

four cosets. In other words, given X ∈ ∆n and Q(X) ∈ Dc, c = 0, 1, 2, 3, Q(X) must

be the codeword in Dc that is closest to wn, the mid-point of ∆n (assume δ is very

small). We denote this codeword given X ∈ ∆n and Q(X) ∈ Dc as qb(n,c)
c . Hence, we

only need to count the number of occurrences for each pair {(n, c) : X ∈ ∆n, Q(X) ∈
Dc}. Let count(n, c) be the number of occurrences correspond to pair (n, c), then the
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desired probability becomes

P (Q(X) = qb(n,c)
c |X ∈ ∆n)

=
P (Q(X) = qb(n,c)

c , X ∈ ∆n)

P (X ∈ ∆n)

=
P (Q(X) ∈ Dc, X ∈ ∆n)

∑3
c′=0 P (Q(X) ∈ Dc′ , X ∈ ∆n)

≈ count(n, c)
∑3

c′=0 count(n, c′)
, (3.12)

and for other b 6= b(n, c), P (Q(X) = qb
c |X ∈ ∆n) = 0. Hence the conditional

probability P (Q(X) = qb
c |X ∈ ∆n) is available for all qb

c and n.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6
x 10

−3

Fig. 14. f(X|Q(X) = qbi
ci

) generated with the 2-bit TCQ shown in Fig. 12 with

q = 0.575 and σ2
X = 1.28. Dashed lines mark the centroids used in the

quantizer decoder.

We can also compute the conditional PDF f(X|Q(X) = qb
c ) based on the num-

bers {count(n, c), 1 ≤ n ≤ N, 0 ≤ c ≤ 3}, because this conditional PDF can be

approximated by P (X ∈ ∆n|Q(X) = qb
c ), which is computed using

P (X ∈ ∆n|Q(X) = qb(n,c)
c )

=
P (Q(X) = qb(n,c)

c , X ∈ ∆n)

P (Q(X) = qb
c )
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=
P (Q(X) ∈ Dc, X ∈ ∆n)

∑N
n′=1 P (Q(X) ∈ Dc, X ∈ ∆n′)

≈ count(n, c)
∑N

n′=1 count(n′, c)
, (3.13)

and P (X ∈ ∆n|Q(X) = qb
c ) = 0 for other b 6= b(n, c). From Figure 14, we clearly

observe the non-Gaussian shape of f(X|Q(X) = qb
c ) for limitary cells of a 2-bit TCQ.

Note that the values of the conditional probability P (Q(X) = qb
c |X ∈ ∆n) for each

{1 ≤ n ≤ N, 0 ≤ c ≤ 3} can be shared by both the encoder and the decoder using a

look-up table.

2. Statistics of TCVQ Indices

To avoid the compression inefficiency of the trellis bit sequence b0 due to the subopti-

mality in estimating P (b0|Y ), we employ TCVQ to make the rate (in b/s) of the trellis

bit fractional (e.g., for two-dimensional TCVQ, the rate of the trellis bit is 0.5 b/s)

when the target bit rate is low (e.g., one b/s). In this case, b0 is directly transmitted

without compression. However, the encoding-decoding complexity of such a TCVQ

based scheme will be significantly higher than the SWC-TCQ scheme. Hence we need

to reduce this coding complexity by exploring the symmetric properties among the

four cosets.

For a rate-(R + 1
2
) 2-D TCVQ, to quantize a length-n source block Xn, every

two source samples are grouped together as a 2-D source vector, and the resulting n
2

source vectors form a length-n
2

block of source vectors. We denote such a block as

~X
n
2 = { ~X0, ~X1, . . . , ~Xn

2
−1} =








X1

X0


 ,




X3

X2


 , . . . ,




Xn−1

Xn−2








. (3.14)

Then we construct a two-dimensional codebook with 2R+1 codewords in each
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Fig. 15. Rate-21
2

TCVQ codebook with 64 codewords.

dimension. The 22R+2 code vectors are also partitioned into four cosets D0, D1, D2,

and D3, each with 22R+1 code vectors. A code vector is denoted as qx,y
c , where

c = 0, 1, 2, 3 is the coset index, and x,y : 0 ≤ x,y ≤ 2R+1 − 1 are the indices of the

code vector in x direction and y direction. Figure 15 is an example of such a 2-D

uniform codebook for rate-21
2

TCVQ with 22∗2+2 = 64 code vectors. The quantization

procedure of 2-D TCVQ is almost the same as that of TCQ except that

1. The trellises used in TCVQ are designed for Z2 signals, while those in TCQ are

designed for Z1 signals.

2. The distortion is defined by the Euclidian distance between the code vector and

the source vector.

3. The TCVQ index of each source vector ~Xi consists of one trellis bit and 2R

“codeword bits”. Hence the TCVQ rate is 2R + 1 bits per two samples, i.e.,
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R + 1
2

b/s, among which only 1
2

b/s is used to specify the trellis path.

To efficiently decode the TCVQ index sequence given the side information, we

also need the conditional probability P (Q( ~X) = qx,y
c | ~X), i.e., P (Q( ~X) ∈ Dc| ~X). This

time, if we partition the whole granular region into N×N mini-cells, the computation

complexity will be intractable. Hence we only partition one Voronoi cell into M ×M

mini-cells (each of size δ×δ and is denoted as ∆x,y), and compute P (Q( ~X) = qx,y
c | ~X)

for all ~X that belongs to that Voronoi cell. An example of partition with M = 20

is shown in Figure 16. For the source vectors outside this Voronoi cell, symmetric

properties of the conditional probability P (Q( ~X) ∈ Dc| ~X) can be explored to map

each of them into the basic Voronoi cell that is partitioned, because in the Viterbi

algorithm, a source vector play its role via the distances from itself to the nearest

code vectors in the four cosets. Hence it is the relative position instead of the absolute

position of a source vector that really matters. For example, according to Figure 17,

{P (Q( ~X) ∈ Dc| ~X = ~xi) : 1 ≤ i ≤ 9} are equal for any c = 0, 1, 2, 3 because their

relative positions to the four cosets are the same.

q1,1
0

δ

δ

∆1,1

∆M,M

Fig. 16. Partition of a Voronoi cell with M = 20.
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~x3~x2

~x6
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~x7

~x1

~x11

~x12

Fig. 17. Symmetric properties of P (Q( ~X) = qx,y
c | ~X).

Note that we can further reduce the complexity by a factor of four by assuming

symmetry among the four cosets. For example,

P (Q( ~X) ∈ D2| ~X = ~x1) = P (Q( ~X) ∈ D2| ~X = ~x10)

= P (Q( ~X) ∈ D0| ~X = ~x11) = P (Q( ~X) ∈ D0| ~X = ~x12);
(3.15)

P (Q( ~X) ∈ D1| ~X = ~x1) = P (Q( ~X) ∈ D3| ~X = ~x10)

= P (Q( ~X) ∈ D1| ~X = ~x11) = P (Q( ~X) ∈ D3| ~X = ~x12);
(3.16)

. . . . . . .

Hence, we only need P (Q( ~X) ∈ Dc| ~X) for ~X in one quarter of a Voronoi cell. Prob-

abilities of any other point can be mapped into this quarter by symmetry. Figure

18 is an example of P (Q( ~X) ∈ Dc| ~X) for ~X in one Voronoi cell (we only compute

P (Q( ~X) ∈ Dc| ~X) for a quarter of it, and extend them by symmetry) with M = 40.

The shape is quite like that of a 2-D jointly Gaussian distribution.
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Fig. 18. P (Q( ~X) ∈ Dc| ~X) for ~X in one Voronoi cell.

D. Decoding Algorithms of the Codeword Bits

Based on the conditional probability P (Q(X) = qb
c |X ∈ ∆n) for TCQ and P (Q( ~X) ∈

Dc| ~X ∈ ∆m,n) for TCVQ, we design algorithms for both decoding of codeword bits

and estimation. Recall that the Code Estimator needs to output LLR(br
i |b0

i , · · · , br−1
i , Y =

yi, C = ci), which is related to P (Q(X) = qbi
ci
|Y = yi). Unlike the 1-D and 2-D cases

in [13], the main difficulty with SWC-TCQ is that P (Q(X) = qbi
ci
|Y = yi) cannot be

directly computed with integration. To solve this problem, we develop a novel method

by means of weighted summation. In this thesis, we only provide the algorithms for

TCQ based scheme, and those for TCVQ based scheme are just simple extensions to

the vector case.

We note that the decoder has a priori information about TCQ from P (Q(X) =

qb
c |X ∈ ∆n) and the side information Y . In addition, when decoding the codeword
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bits bi’s, the corresponding coset index ci has already been decoded. Then, because

Y → X → Q(X) forms a Markov chain, for each ci and all bi,

P (Q(X) = qbi
ci
|Y = yi)

=
N∑

n=1

P (Q(X) = qbi
ci

, xi ∈ ∆n|Y = yi)

=
N∑

n=1

P (Q(X) = qbi
ci
|xi ∈ ∆n)P (xi ∈ ∆n|Y = yi)

=
N∑

n=1

P (Q(X) = qbi
ci
|xi ∈ ∆n)

∫

∆n

fZ(x− yi)dx

≈ δ
N∑

n=1

P (Q(X) = qbi
ci
|xi ∈ ∆n)fZ(wn − yi). (3.17)

In 3.17 we have set xi to wn and the PDF fZ(x − yi) to fZ(wn − yi) when xi ∈ ∆n.

This approximation is accurate only for large N . Our experiments show that the SNR

gain of N=5000 over N=1000 is only 0.02 dB. Thus we set N=1000 throughout our

simulations. P (Q(X) = qbi
ci
|xi ∈ ∆n) in (1) comes from the look-up table {xi, q

bi
ci
}.

Another table for the exponential function in fZ(z) can also be employed to speed up

the computation.

E. Optimal Estimation

Based on the same conditional probabilities, we first derive the conditional probabil-

ities

P (xi ∈ ∆n|Q(X) = qbi
ci

, Y = yi)

=
P (xi ∈ ∆n, Q(X) = qbi

ci
|Y = yi)

P (Q(X) = qbi
ci
|Y = yi)

(a)
=

P (Q(X) = qbi
ci
|xi ∈ ∆n)P (xi ∈ ∆n|Y = yi)

P (Q(X) = qbi
ci
|Y = yi)

(b)≈ P (Q(X) = qbi
ci
|xi = wn)fZ(wn − yi)∑N

n=1 P (Q(X) = qbi
ci
|xi = wn)fZ(wn − yi)

, (3.18)
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where (a) is due to the Markov chain Y → X → Q(X) and (b) is from (1). Then the

optimal estimator is

E(X|Q(X) = qbi
ci

, Y = yi)

=
N∑

n=1

E(X|xi ∈ ∆n, Q(X) = qbi
ci

, Y = yi)

·P (xi ∈ ∆n|Q(X) = qbi
ci

, Y = yi)

=
N∑

n=1

wnP (xi ∈ ∆n|Q(X) = qbi
ci

, Y = yi). (3.19)

This estimator is universal as it does not assume Q(X) −X being Gaussian or

independence of Q(X)−X and Z. It outperforms the estimator in [11] that linearly

combines Q(X) and Y , especially at low rate.

F. Practical Slepian-Wolf Code Design Based on LDPC Codes

The goal of Slepian-Wolf coding is to achieve the conditional entropy H(Q(X)|Y )

after TCQ. By the chain rule,

H(Q(X)|Y ) = H(b0|Y ) + H(b1|b0, Y ) + · · ·+ H(bR−1|b0,b1, · · · ,bR−2, Y ). (3.20)

Practical designs are carried out to maximize the irregular LDPC code rates to com-

press b0 to H(b0|Y ) b/s and br to H(br|b1, · · · ,br−1, Y ) b/s for 1 ≤ r ≤ R − 1,

respectively [14]. Decoding of b0 relies on LLR(b0|Y ) as described in Section 2. To

decode br
i for 1 ≤ r ≤ R− 1, we compute

LLR(br
i |b̂0

i , · · · , b̂r−1
i , Y = yi, C = ci)

= log
P (br

i = 0|b̂0
i , · · · , b̂r−1

i , Y = yi, C = ci)

P (br
i = 1|b̂0

i , · · · , b̂r−1
i , Y = yi, C = ci)

= log

∑
br
i =0|b̂0i ,···,b̂r−1

i
P (Q(X) = qbi

ci
|Y = yi)

∑
br
i =1|b̂0i ,···,b̂r−1

i
P (Q(X) = qbi

ci
|Y = yi)

(3.21)
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based on (3.17) before running LDPC Decoder II. The multilevel LDPC codes based

Slepian-Wolf decoding procedure is shown in Figure 19. More details are in [14].
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Fig. 19. Multilevel LDPC codes based Slepian-Wolf decoding procedure.

G. Results

Extensive simulations have been carried out to evaluate our proposed SWC-TCQ

scheme. Assuming ideal Slepian-Wolf coding with rate computed from H(Q(X)|Y ),

we find out that SWC-TCQ perform 0.2 dB away from D∗
WZ(R) at high rate (e.g.,

3 b/s), and that SWC-TCQ and SWC-TCVQ with optimal estimation (2) perform

0.67 dB and 0.38 dB, respectively, away from D∗
WZ(R) at low rate (e.g., 1 b/s).

These results and those in [13] reveal that the performance gap of high-rate Wyner-

Ziv coding (with ideal Slepian-Wolf coding) to D∗
WZ(R) is exactly the same as that

of high-rate classic source coding (with ideal entropy coding) to the distortion-rate

function DX(R). This interesting and important finding is highlighted in Table I.

There is also a schematic connection between entropy-coded quantization for classic
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source coding and Slepian-Wolf coded quantization (e.g., SWC-NQ [13] and SWC-

TCQ) for Wyner-Ziv coding if one replaces a classic entropy coder by a syndrome

based entropy coder using turbo or LDPC codes.

Table I. High-rate Wyner-Ziv coding vs. high-rate classic source coding in terms of

the gap to the theoretical performance limit.

Classic source coding Wyner-Ziv coding

ECSQ 1.53 dB SWC-NSQ 1.53 dB

ECLQ (2-D) 1.36 dB SWC-NQ (2-D) 1.36 dB

ECTCQ 0.2 dB SWC-TCQ 0.2 dB

With practical Slepian-Wolf coding based on irregular LDPC codes of length

106 bits, our SWC-TCQ coder performs 0.83 dB away from D∗
WZ(R) at medium bit

rates (e.g., ≥ 2.3 b/s) and 1.46 dB away from D∗
WZ(R) at 1.1 b/s when σ2

Y = 1 and

σ2
Z = 0.28. Our SWC-TCVQ coder performs 0.47 dB away from D∗

WZ(R) at 3.3 b/s

and 0.66 dB away from D∗
WZ(R) at 1.0 b/s when σ2

Y = 1 and σ2
Z = 0.10. These

results and more details are given in Figure 20 and Figure 21.



40

1 1.5 2 2.5 3 3.5 4 4.5
−30

−25

−20

−15

−10

rate in bit per sample

M
S

E
 in

 d
B

σ2
Y
=1,σ2

Z
=0.28,X=Y+Z

256−state TCQ with practical Slepian−Wolf coding
TCQ with ideal Slepian−Wolf coding (simulation)
Wyner−Ziv distortion−rate function for coding X

2−bit TCQ         
H(Q(X)|Y)=0.97 b/s
Rate = 1.10 b/s   
Gap = 1.46 dB     

3−bit TCQ         
H(Q(X)|Y)=1.63 b/s
Rate = 1.72 b/s   
Gap = 0.92 dB     

4−bit TCQ         
H(Q(X)|Y)=2.25 b/s
Rate = 2.34 b/s   
Gap = 0.83 dB     

5−bit TCQ         
H(Q(X)|Y)=3.04 b/s
Rate = 3.14 b/s   
Gap = 0.82 dB     

6−bit TCQ         
H(Q(X)|Y)=3.74 b/s
Rate = 3.84 b/s   
Gap = 0.81 dB     0.20 dB 

0.67 dB 

Fig. 20. Wyner-Ziv coding results based on TCQ and Slepian-Wolf coding. At high

rate, ideal Slepian-Wolf coded TCQ performs 0.2 dB away from the theoretical

limit. Results with practical Slepian-Wolf coding based on irregular LDPC

codes are also included.
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H(Q(X)|Y)=0.95 b/s
Rate = 1.0 b/s
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Rate = 1.53 b/s
Gap = 0.54 dB 

5.5 b/s TCVQ
H(Q(X)|Y)=2.29 b/s
Rate = 2.33 b/s
Gap = 0.52 dB 

6.5 b/s TCVQ
H(Q(X)|Y)=3.29 b/s
Rate = 3.32 b/s
Gap = 0.47 dB 

0.38 dB 

Fig. 21. Wyner-Ziv coding results based on TCVQ and Slepian-Wolf coding. At high

rate, ideal Slepian-Wolf coded TCVQ performs 0.2 dB away from the theo-

retical limit.
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CHAPTER IV

ASYMMETRIC MULTITERMINAL SOURCE CODE DESIGN

A. Gaussian Multiterminal Source Coding

The direct/indirect Gaussian multiterminal source coding system is depicted in Figure

22. Let X be a Gaussian random variable taking values in the real line R with

Channel
Lossless

+

+ Encoder I

Encoder II

Indirect(remote) MT coding

Direct MT coding

Decoder Estimator
X̂

Y1

Y2

N1

N2

R1

R2

W1

W2

X

Ŷ2

Ŷ1

Fig. 22. Direct/indirect multiterminal source coding setup

variance σ2
x. N1 and N2 are independent Gaussian random variables with the same

variance σ2
n. Y1 and Y2 are two noisy versions of X defined by Y1 = X + N1 and

Y2 = X + N2. The covariance matrix Λ between Y1 and Y2 is

Λ =




σ2
x + σ2

n σ2
x

σ2
x σ2

x + σ2
n


 (4.1)

The variances of Y1 and Y2 are σ2
y1

= σ2
y2

= σ2
y = σ2

x + σ2
n, with the correlation

coefficient ρ = σ2
x/(σ

2
x + σ2

n). In the indirect (remote) multiterminal problem, X

represents the source which is symmetrically corrupted by noises N1 and N2, with

Y1 and Y2 as separate observations. In the direct case, Y1 and Y2 themselves are
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assumed to be jointly Gaussian sources defined by Λ. In both cases, Y1 and Y2 are

separately encoded into W1 and W2 using rates R1 and R2, respectively. Let Y n
1 =

{Y1,0, Y1,1, . . . , Y1,n−1}, Y n
2 = {Y2,0, Y2,1, . . . , Y2,n−1} be n independent samples drawn

from Y1 and Y2. The coded messages are denoted as W1 = E1(Y
n
1 ) and W2 = E2(Y

n
2 )

with the encoder functions E1(·) and E2(·) defined by

E1 : Rn → {1, 2, . . . , 2nR1}
E2 : Rn → {1, 2, . . . , 2nR2}

(4.2)

Passed through noiseless channels, W1 and W2 are jointly decoded to form the re-

constructions of both Y1 and Y2, denoted as Ŷ1 = D1(W1,W2) and Ŷ2 = D2(W1,W2).

Hence, the decoder functions D1(·, ·) and D2(·, ·) are defined as

D1 : {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR2} → Rn

D2 : {1, 2, . . . , 2nR2} × {1, 2, . . . , 2nR2} → Rn
(4.3)

Given Ŷ1 and Ŷ2, indirect multiterminal system needs another step to estimate the

source Xn = {X0, X1, . . . , Xn−1} while direct multiterminal system does not. The

estimator function S(·, ·), which reconstructs Xn to X̂n = S(Y1, Y2), is a mapping

S : Rn ×Rn → Rn (4.4)

Written in a single formula, the encoding, decoding, and estimation functions for

direct/indirect multiterminal coding system can be combined as

direct : Ŷi = Di(E1(Y1), E2(Y2)) for i = 1, 2

indirect : X̂ = S(D1(E1(Y1), E2(Y2)),D2(E1(Y1), E2(Y2))) = D(E1(Y1), E2(Y2))

(4.5)

where D(·, ·) is the concatenated decoder function for remote case.
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Let the distortion measure be the MSE, i.e.,

d(Xn, Y n) =
1

n

n−1∑

i=0

(Xi − Yi)
2. (4.6)

For a target distortion D, the achievable rate region of indirect multiterminal problem

is the set of all the rate pairs (R1, R2) for which there exist functions E1(·), E2(·), and

D(·, ·) such that

E[d(X, X̂)] ≤ D. (4.7)

Similarly, the achievable rate region of direct multiterminal problem is defined for

given distortion pairs (D1, D2), with two distortion constraints

E[d(Y1, Ŷ1)] ≤ D1, E[d(Y2, Ŷ2)] ≤ D2. (4.8)

B. Achievable Rate Region

The inner bound for the direct multiterminal setting is given in [17, 21] as

R1 ≥ I(Y1; Z1)− I(Z1; Z2), (4.9)

R2 ≥ I(Y2; Z2)− I(Z1; Z2), (4.10)

R1 + R2 ≥ I(Y1Y2; Z1Z2), (4.11)

where Z1 and Z2 are auxiliary random variables satisfying a Markov chain Z1 →
Y1→Y2→Z2, and there exist functions Ŷ1 = g1(Z1, Z2) and Ŷ2 = g2(Z1, Z2) such that

distortion constraints (4.8) are satisfied. The inner bound for the indirect case [22, 23]

is also given by (4.9) – (4.11) where Z1 and Z2 are such that Z1→Y1→X→Y2→Z2

holds, and there exists a function X̂ = g(Z1, Z2) satisfying distortion constraint (4.7).
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1. Quadratic Gaussian Indirect Multiterminal Problem

Using test channels Ŷi = Yi + Qi, i = 1, 2, where Qi is an i.i.d. variable independent

of Yi and Qi ∼ N (0, σ2
qi
), Yamamoto and Itoh [22] report the following achievable

rate region:

R1 ≥ 1

2
log

σ2
x(σ

2
n + σ2

q1
) + σ2

x(σ
2
n + σ2

q2
) + (σ2

n + σ2
q1

)(σ2
n + σ2

q2
)

σ2
q1

(σ2
x + σ2

n + σ2
q2

)
, (4.12)

R2 ≥ 1

2
log

σ2
x(σ

2
n + σ2

q2
) + σ2

x(σ
2
n + σ2

q1
) + (σ2

n + σ2
q2

)(σ2
n + σ2

q1
)

σ2
q2

(σ2
x + σ2

n + σ2
q1

)
, (4.13)

R = R1 + R2 ≥ 1

2
log

σ2
x(σ

2
n + σ2

q1
) + σ2

x(σ
2
n + σ2

q2
) + (σ2

n + σ2
q1

)(σ2
n + σ2

q2
)

σ2
q1

σ2
q2

, (4.14)

where σ2
q1

and σ2
q2

are selected so that

d =
1

1
σ2

x
+ 1

σ2
n+σ2

q1

+ 1
σ2

n+σ2
q2

. (4.15)

The optimal estimation function is given by g(Ŷ1, Ŷ2) = γ1Ŷ1 + γ2Ŷ2. Recently, it is

proved that this bound is tight [25].

In practice, it is usually desirable to minimize the sum rate R = R1 + R2. The

following lemma shows how to do it efficiently.

Lemma 1 The sum rate R = R1 +R2 is minimum iff σ2
q1

= σ2
q2

. The lemma is stated

in [26, 24]. For completeness, we give here the rigorous proof.

Proof: We prove the lemma by contradiction. Suppose that there exist σ∗2q1

and σ∗2q2
, such that σ∗2q1

6= σ∗2q2
and the sum rate (4.14) is minimum. Then, for any

σ2
q1

= σ2
q2

= σ2
q that satisfies (4.15) we have

1

2
log

(a + b∗1) + (a + b∗2) + (a + b∗1)(a + b∗2)
b∗1b∗2

≤ 1

2
log

2(a + b) + (a + b)2

b2
, (4.16)

where we set a = σ2
n/σ

2
x, b∗i = σ∗2qi

/σ2
x, i = 1, 2, and b = σ2

q/σ
2
x.
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Let further T1 = a + b∗1, T2 = a + b∗2, and T = a + b. Then, (4.16) can be written

in an equivalent form:

T + T + T 2

b2
≥ T1 + T2 + T1T2

b∗1b∗2
, (4.17)

or

b∗1b
∗
2T

2T + T + T 2

T 2
≥ b2T1T2

T1 + T2 + T1T2

T1T2

. (4.18)

On the other hand, since in both cases the distortion criterion must hold, we

have

T + T + T 2

T 2
=

T1 + T2 + T1T2

T1T2

. (4.19)

Using this, we can simplify (4.18) to

b∗1b
∗
2T

2 ≥ b2T1T2. (4.20)

From T = a + b and (4.19), b can be expressed as:

b =
2T1T2 − aT1 − aT2

T1T2

. (4.21)

By combining (4.20) and (4.21) we get

b∗1b
∗
2T1T2 ≥ (2T1T2 − aT1 − aT2)

2, (4.22)

or after replacing T1 and T2 by a + b∗1 and a + b∗2, respectively,

4b∗1b
∗
2(a

2 + ab∗1 + ab∗2 + b∗1b
∗
2) ≥ (ab∗1 + ab∗2 + 2b∗1b

∗
2)

2. (4.23)

From here, after simple calculations we obtain (b∗1 − b∗2)
2 ≤ 0. Since our assumption

is b∗1 6= b∗2, the last expression cannot be satisfied. Thus, we came to a contradiction.

For σ2
q1

= σ2
q2

= σ2
q the achievable bounds become:

Ri≥ 1

2
log+[

2σ2
x

σ2
x + D

· (1− σ2
n(σ2

x −D)

2σ2
xD

)−1], i=1, 2 (4.24)
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R1 + R2 ≥ 1

2
log+[

σ2
x

D
· (1− σ2

n(σ2
x −D)

2σ2
xD

)−2], (4.25)

where (X, N1, N2) are jointly Gaussian with variances (σ2
x, σ

2
n, σ2

n) and

log+ x = max{log x, 0}. (4.26)

In Figure 23 we present the achievable rate region given by inequalities (4.24) and

(4.12) (which is proved to be tight [25]) together with the sum rate bound (4.24) –

(4.25).
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Fig. 23. The achievable rate region (solid lines, tight) and the sum rate bound (dashed

lines) for indirect multiterminal source coding.

For a given fidelity criterion, the corner points A = (R∗
1, R

∗
2) and B = (R∗

2, R
∗
1)

are given by

R∗
1 =

1

2
log+[

σ2
x + D

2D
· (1− σ2

n(σ2
x −D)

2σ2
xD

)−1], (4.27)
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and

R∗
2 =

1

2
log+[

2σ2
x

σ2
x + D

· (1− σ2
n(σ2

x −D)

2σ2
xD

)−1]. (4.28)

It is interesting to see whether there exists a distortion d such that the sum rate

is minimum only for one rate pair (R1, R2); in this case, the line between A and B

reduces to a single point. The following lemma gives the answer to this question.

Lemma 2 Let R be the set of all achievable (R1, R2) pairs. Then, the solution of

the minimization problem min(R1,R2)∈R R1 + R2 is unique iff d ≥ σ2
x, and it is given

by R1 = R2 = 0.

Proof: It is shown in [24] that the sum rate R = R1 + R2 is minimum when

R1 = R2. Thus, it is enough to find the condition when the points A and B overlap.

Then, the result of the lemma immediately follows from (4.24) and (4.25) by setting

R1 + R2 = 2R1.

Thus, we have a unique solution to the minimization problem only in the trivial

case when nothing is transmitted. Whenever d < σ2
x, the bound has a line portion.

Recall that the achievability of the bound is proved using the test channels Ŷi =

Yi +Qi, i = 1, 2, where Qi is Gaussian and independent of Yi. Required independence

of the quantization error Qi suggests the use of a dithering signal. On the other hand,

infinite-dimension lattice codes produce Gaussian output. Thus, as shown by Zamir,

Shamai, and Erez [29], by exploiting entropy-coded dithered quantization (ECDQ)

with infinite-dimension nested lattice codes, the theoretical limit can be reached. We

attempt to approximately satisfy both requirements by using TCQ with a uniformly

distributed dither. However, since TCQ does not provide strictly Gaussian noise,

certain performance loss is expected.



49

2. Quadratic Gaussian Direct Multiterminal Problem

For the direct Gaussian multiterminal problem, where (Y1, Y2) are jointly Gaussian

with variances (σ2
y1, σ

2
y2) and correlation coefficient ρ = E[Y1Y2]

σy1σy2
, the inner bound is

[18]

R1 ≥ 1

2
log[

σ2
y1

D1

(1− ρ2 + ρ22−2R2)], (4.29)

R2 ≥ 1

2
log[

σ2
y2

D2

(1− ρ2 + ρ22−2R1)], (4.30)

R1 + R2 ≥ 1

2
log[(1− ρ2)

βmaxσ
2
y1

σ2
y2

2D1D2

], (4.31)

where

βmax = 1 +

√√√√1 +
4ρ2D1D2

(1− ρ2)2σ2
y1

σ2
y2

, (4.32)

And the outer bound [17, 21] is defined by (4.29), (4.30) and

R1 + R2 ≥ 1

2
log[(1− ρ2)

σ2
y1

σ2
y2

D1D2

]. (4.33)

We see that even in this special case, the inner bound and the outer bound do not

coincide. There is still an uncertainty region where achievability is unknown, the

width of the uncertainty region is 1
2
log[βmax

2
]. Figure 24 shows an example of the

inner and outer bounds for direct multiterminal setting.

C. Code Design for the Indirect Mmultiterminal Setting

We consider the quadratic Gaussian case, where the source X ∼ N (0, σ2
x) is observed

by two encoders. The encoders’ observations are given by: Yi = X+Ni, i = 1, 2, where

Ni ∼ N (0, σ2
n) is independent of X. At the first encoder, Y1 is quantized by TCQ1

and sent. The second encoder first quantizes Y2 by TCQ2, and then by exploiting

the remaining correlation between quantized observations, it attempts to reduce the
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Fig. 24. The inner (solid lines) and outer bounds (dashed lines) for direct multiterminal

source coding.

sending rate to H(Ŷ1|Ŷ2), where Ŷ1 and Ŷ2 are reconstructions of the observations

after TCQ decoding. Before the quantization, a dither uniformly distributed over a

Voronoi region corresponding to the uniform-threshold scalar quantizer is added to

make the quantization noise Q(Yi), i = 1, 2, independent of the input signal [29].

We explain in more details coding of Y2, which is depicted in Figure 25. Coding

is done in blocks of length N samples each. The samples are first independently

quantized with an R-bit TCQ quantizer. The obtained index sequence is given by

B = {b0,b}, where b0 is a trellis bit sequence and b = {b1,b2, · · · ,bR−1} denotes

codeword bit sequences. For i = 1, . . . , N , let Bi = {b0
i ,bi} = {b0

i , b
1
i , · · · , bR−1

i } be

the i-th such index.

The Syndrome Encoder compresses B bit-plain by bit-plain into R syndrome
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Fig. 25. Block diagram of TCQ-LDPC scheme for coding Y2.

sequences S = {s0, s1, · · · , sR−1} using R LDPC code of different rates [14].

At the receiver, Ŷ1 plays the role of side information. To get the use of the side

information, we must estimate remained correlation between Y2 and Ŷ1. Under the

assumption that (Y1Y2Ŷ1Ŷ2) are jointly Gaussian, we express Y2 as Y2 = αŶ1+Z, where

α = σ2
x−d

σ2
x+d

and Z ∼ N (0, σ2
z) is an i.i.d. random variable with variance σ2

z = 2σ2
xd

σ2
x+d

and

is independent of Ŷ1.

For SW decoding, the log-likelihood ratios (LLRs) of the trellis bits b0 and code-

word bi sequences given side information are needed [14]. To obtain this information,

we generate independent noise Z ∼ N (0, σ2
z), whose distribution is assumed to be

known at the decoder, and simulate TCQ2 of αŶ1 + Z. LDPC Decoder I then re-

constructs b̂0 from the syndrome sequence s0 and LLR(b0|Ŷ1) [14]. b̂0 determines

the reconstructed coset index sequence Ĉ. Using Ĉ and Ŷ1 the Codeword Estimator
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computes LLR(br
i |b̂0

i , · · · , b̂r−1
i , Ŷ1 = ŷ1i

, Ĉ = ĉi) for 1 ≤ r ≤ R − 1. This is done on

sample base by extracting key information from the trellis bits and combining it with

the available side information. Indeed, let the quantized version of the i-th input

sample be qbi
ĉi

, where ĉi ∈ {0, 1, 2, 3} is the coset index (we assume here a four coset

quantizer). Then, using the similar technique as in [32] for i-th source sample we get

P (Ŷ2 = qbi
ĉi
|Ŷ1 = ŷ1i

)

=
n∑

k=1

P (Ŷ2 = qbi
ĉi

, y2i
∈ ∆k|Ŷ1 = ŷ1i

)

=
n∑

k=1

P (Ŷ2 = qbi
ĉi
|y2i

∈ ∆k)P (Yi ∈ ∆k|Ŷ1 = ŷ1i
)

=
n∑

k=1

P (Ŷ2 = qbi
ĉi
|y2i

∈ ∆k)
∫

∆k

fZ(x− ŷ1i
)dx

≈ δ
n∑

k=1

P (Ŷ2 = qbi
ĉi
|y2i

∈ ∆k)fZ(wk − ŷ1i
), (4.34)

where we discretized the system by uniformly partitioning the granular region of our

uniform-threshold quanitizer into n length-δ mini-cells, ∆1, ∆2, . . . , ∆n, and denote

wk as the mid-point of ∆k for 1 ≤ k ≤ n. Note that, because bi is unique given ĉi for

any y2i
, the domain of Ŷ2 given that Ĉ = ĉi is the whole real number line R for each

ĉi. In (4.34) for y2i
∈ ∆k, we set y2i

= wk and the PDF of the noise Z to fZ(wk− ŷ1i
)

. Now, LLRs are computed as:

LLR(br
i |b̂0

i , · · · , b̂r−1
i , Ŷ1 = ŷ1i

, Ĉ = ĉi)

= log
P (br

i = 0|b̂0
i , · · · , b̂r−1

i , Ŷ1 = ŷ1i
, Ĉ = ĉi)

P (br
i = 1|b̂0

i , · · · , b̂r−1
i , Ŷ1 = ŷ1i

, Ĉ = ĉi)

= log

∑
br
i =0|b̂0i ,···,b̂r−1

i
P (Ŷ2 = qbi

ĉi
|Ŷ1 = ŷ1i

)
∑

br
i =1|b̂0i ,···,b̂r−1

i
P (Ŷ2 = qbi

ĉi
|Ŷ1 = ŷ1i

)
. (4.35)

Using this, LDPC Decoder II reconstructs codeword sequences b̂. Then, Ŷ2 is re-

covered by combining output of LDPC decoder and reconstructed coset index Ĉ.

Finally, we estimate the source using optimal linear estimator: X̂ = γŶ1 +γŶ2, where
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γ = 1
2
(1− d

σ2
x
).

By varying the rate allocation between the two encoders, the proposed scheme

can potentially reach all points on the dash lines in Figure 26. However, the rate

allocation point on the dash line which minimizes the sum rate corresponds exactly

to one of the corner points (A and B) of the achievable rate region which follows

directly from the achievability of the sum rate bound [22]. Thus, in the next section,

by minimizing the sum rate in our scheme we are able to approach points A and B.
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Fig. 26. The achievable rate allocations of our system (dashed lines) together with the inner

sum rate bound (solid lines).
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D. Results

In this section, we give our experimental results obtained with the scheme described

in Section 3. However, to achieve non-integer rates, we replaced TCQ2 by trellis

coded vector quantizer (TCVQ). In all our simulations, we assume that the source

signal X is i.i.d. Gaussian with zero mean and σ2
x = 1. Noisy observations are given

by: Y1 = X + N1 and Y2 = X + N2, where N1 and N2 are i.i.d. zero mean Gaussian

with variance σ2
n and are independent of each other and X. We refer to the ratio

σ2
x/σ

2
n as correlation signal to noise ratio (CSNR).

First we attempt to approach the corner points (A and B) on the achievable rate

region by using Lemma 1; that is, σ2
q = σ2

q1
= σ2

q2
. Then, for a fixed distortion d

and CSNR, by varying the step size of TCQ1, we obtained quantization noise given

by (4.15). The same quantization step size was used at the second encoder. Then,

we performed Wyner-Ziv coding of the second observation using the quantization of

the first as side information, as explained in the previous section. Obtained results

together with the achievable bound are presented in Figure 27. Average distortion is

d = −17.75 dB and CSNR=18 dB. Ideal results refer to ideal Slepian-Wolf coding. For

practical results, we used irregular LDPC codes of length 106; error-free transmission

was assumed if probability of error was less than 10−6. The first observation Y1 was

only quantized and transmitted. The loss to R∗
1 given by (4.27) was 0.03 bits per

sample (b/s), which matches the loss of TCQ to rate-distortion function. The gap

in Wyner-Ziv coding of Y2 to R∗
2 (4.28) assuming ideal Slepian-Wolf coding was 0.07

b/s. With the perfect Gaussian side information, the obtained loss was 0.063 b/s

[32]. Thus, a very small performance loss is observed due to the imposed Gaussian

approximation of the quantization noise. We had additional loss of 0.05 b/s due

to practical LDPC based Slepian-Wolf coding; this is comparable with the results
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Fig. 27. Obtained experimental results together with the achievable rate region for

CSNR=18 dB and d = −17.75 dB.

reported in [14], which justifies introduced Gaussian assumptions in the computation

of LLRs.

We next compare our scheme to that of [36, 26] for different CSNRs and the

sum rate equal to 4 b/s. We show results of the best scheme of [36, 26] which

exploits 8-level Lloyd-Max fixed-length scalar quanitizer and 32-state trellis codes; it

is employed in both the asymmetric and symmetric (the rates of both encodes are

equal) setup. Obtained average distortion performance as a function of CSNR for

our and the scheme of [36, 26] together with the achievable bound is presented in
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Fig. 28. Average distortion in dB as a function of CSNR for our TCQ-LDPC scheme,

the best scheme of [26], together with the theoretical bound. The sum rate is

4 b/s.

Figure 28. It can be seen that our scheme significantly outperforms that in [36, 26].

Moreover, for the used range of CSNR the loss to the theoretical bound was at most

0.5 dB. As it can be seen, the gap of our scheme to the bound slightly increases with

the CSNR increase. However, the loss in the sum rate was always around 0.15 b/s,

and the constant rate loss produces increasing gap to the distortion bound.
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CHAPTER V

MULTITERMINAL SOURCE CODE DESIGN BASED ON SOURCE SPLITTING

Although the asymmetric coding approach in chapter IV shows much better results

than those of [26], it is limited to approaching only the two corner points on the

achievable limit. In this chapter, based on the idea of [29], we provide a code design

based on source splitting for direct and indirect multiterminal coding problems which

contains a classical source coding component and two Wyner-Ziv coding components.

Entropy-coded TCQ [31] with dithered uniform codebook is employed for classical

source coding, and SWC-TCQ [32] is used in each of the two Wyner-Ziv coding

components. Assuming ideal source coding and ideal Wyner-Ziv coding, we prove

that this design is capable of achieving any rate point on the theoretical bounds for

both the direct and indirect multiterminal problems in the quadratic Gaussian setting.

Practical designs based on entropy-coded TCQ for source coding and SW-coded TCQ

for Wyner-Ziv coding significantly outperform those of [26] and come very close to

the theoretical limits in both multiterminal problems.

The organization is as follows. In section A, we introduce the proposed code

design for both the direct and indirect multiterminal problems, Theoretical analysis

and rigorous proofs of achievabilities of any point on the inner bounds are given in

section B. After practical code design and results shown and discussed in section C,

we conclude this chapter in the last section.

A. Proposed Code Design

In this section, we describe our code design (Figure 29) based on source splitting for

direct and indirect multiterminal source coding with two encoders. The sources, e.g.,

X, are grouped into blocks of length n, e.g., Xn ={X1, X2, . . . , Xn}, where Xi is the
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i-th sample in the block.
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Slepian−Wolf
Encoder II
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1

B̂n
21

B̂n
22

Fig. 29. Block diagram of the proposed multiterminal source coding scheme.

Our scheme consists of a classical source coder, two WZ coders, and a linear esti-

mator. High-dimensional entropy-coded dithered quantization (ECDQ) is employed

for source coding and high dimensional SW-coded dithered quantization is employed

for Wyner-Ziv coding. In the following analysis, we assume that both of them are

optimal in the sense of achieving the rate-distortion bound and the WZ bound.

First, Classical Source Encoder quantizes Y n
2 to Bn

21 = Q21(Y
n
2 ) using Dithered

Quantizer II, and compresses Bn
21 using Entropy Encoder. The output message W21

is transmitted at rate nR21≥H(Bn
21). At decoder side, W21 is losslessly decompressed

to B̂n
21=Bn

21 and Source Decoder II uses B̂n
21 to reconstruct Y n

2 as Ỹ n
21. By exploring

the remained correlation between Ỹ n
21 and Y n

1 , Slepian-Wolf Encoder I compresses

Bn
1 = Q1(Y

n
1 ), the quantization output of Y n

1 , from its entropy H(Bn
1 ) down to the

SW limit nR1 ≥ H(Bn
1 |Ỹ n

21). Using Ỹ n
21 as side information, Wyner-Ziv Decoder I

generates B̂n
1 , the reconstruction of Bn

1 , and decodes it to Ỹ n
1 . Then, Ỹ n

21 and Ỹ n
1 are
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linearly combined to Ỹ n
c (which will be used as side information for coding Bn

22), i.e.,

Ỹ n
c = α12Ỹ

n
21 + β12Ỹ

n
1 , (5.1)

where α12 and β12 are optimal estimation coefficients for Y n
2 . Finally, Bn

22 =Q22(Y
n
2 )

is compressed to rate nR22≥H(Bn
22|Ỹ n

c ). Wyner-Ziv Decoder II then sequentially

decodes B̂n
22 and Ỹ n

22. Given Ỹ n
21, Ỹ n

1 , and Ỹ n
22, Linear Estimator reproduces Y n

1 and

Y n
2 in the direct case, or Xn in the indirect case, using linear combination of the

inputs:

Ŷ n
1 = αy1Ỹ

n
1 + βy1Ỹ

n
21 + γy1Ỹ

n
22, (5.2)

Ŷ n
2 = αy2Ỹ

n
1 + βy2Ỹ

n
21 + γy2Ỹ

n
22, (5.3)

X̂n = αxỸ
n
1 + βxỸ

n
21 + γxỸ

n
22. (5.4)

Because optimal dithered quantization produces Gaussian quantization noise which

is independent of the source, we may assume that (Xi, Y1,i, Y2,i, Ỹ1,i, Ỹ21,i, Ỹ22,i, Ỹc,i)

are jointly Gaussian. This leads to the equality 1
n
H(Bn

22|Ỹ n
21, Ỹ

n
1 ) = 1

n
H(Bn

22|Ỹ n
c ),

hence no rate loss is introduced by using Ỹ n
c as side information for Bn

22. The linear

estimators (5.2), (5.3), and (5.4) are also optimal in this jointly Gaussian case.

B. Theoretical Analysis

Define the quantization errors of the three quantizers as

En
1 = Ỹ n

1 − Y n
1 , (5.5)

En
21 = Ỹ n

21 − Y n
2 (5.6)

En
22 = Ỹ n

22 − Y n
2 . (5.7)
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Then we can write the relations between one sample block of random variables in the

ideal jointly Gaussian case as:

Y n
1 = Xn + Nn

1 ; (5.8)

Y n
2 = Xn + Nn

2 ; (5.9)

Ỹ n
21 = Y n

2 + En
1 = Xn + Nn

2 + En
1 ; (5.10)

Ỹ n
1 = Y n

1 + En
2 = Xn + Nn

1 + En
2 ; (5.11)

Ỹ n
22 = Y n

2 + En
3 = Xn + Nn

2 + En
3 ; (5.12)

Ỹ n
c = α12Ỹ

n
2 + β12Ỹ

n
1 ; (5.13)

Ŷ n
1 = αy1Ỹ

n
2 + βy1Ỹ

n
1 + γy1Ỹ

n
22; (5.14)

Ŷ n
2 = αy2Ỹ

n
2 + βy2Ỹ

n
1 + γy2Ỹ

n
22; (5.15)

X̂n = αxỸ
n
2 + βxỸ

n
1 + γxỸ

n
22; (5.16)

where {Xn, Nn
1 , Nn

2 , En
1 , En

2 , En
3 } are mutually independent and a Markov chain Ỹ n

1 →
Y n

1 → Xn → Y n
2 → (Ỹ n

21, Ỹ
n
22) is satisfied. The covariance matrix of the vector of

random variables (X,Y1, Y2, Ỹ21, Ỹ1, Ỹ22)
T can be written as (see Table II)

Table II. The covariance matrix

E(·, ·) X Y1 Y2 Ỹ21 Ỹ1 Ỹ22

X σ2
x σ2

x σ2
x σ2

x σ2
x σ2

x

Y1 σ2
x σ2

x + σ2
n σ2

x σ2
x σ2

x + σ2
n σ2

x

Y2 σ2
x σ2

x σ2
x + σ2

n σ2
x + σ2

n σ2
x σ2

x + σ2
n

Ỹ21 σ2
x σ2

x σ2
x + σ2

n σ2
x + σ2

n + d21 σ2
x σ2

x + σ2
n

Ỹ1 σ2
x σ2

x + σ2
n σ2

x σ2
x σ2

x + σ2
n + d1 σ2

x

Ỹ22 σ2
x σ2

x σ2
x + σ2

n σ2
x + σ2

n σ2
x σ2

x + σ2
n + d22
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where d1, d21, d22 are the average quantization distortions defined by

d1 =
1

n

n∑

i=1

(Y1,i − Ỹ1,i)
2 =

1

n

n∑

i=1

E2
1,i, (5.17)

d21 =
1

n

n∑

i=1

(Y21,i − Ỹ21,i)
2 =

1

n

n∑

i=1

E2
21,i, (5.18)

d22 =
1

n

n∑

i=1

(Y22,i − Ỹ22,i)
2 =

1

n

n∑

i=1

E2
22,i. (5.19)

Given the covariance matrix, the jointly Gaussian random variables are completely

defined. Before we state the two theorems, we first derive the combination coefficients

which are the key parameters in the joint decoder. This is done by applying projection

theorem.

1. Compute α12 and β12 in Ỹc = α12Ỹ21 + β12Ỹ1 to minimize E{d(Ỹc, Y2)}.

Solution: Due to orthogonal properties for optimal estimation, we have





E{(Y2 − Ỹc)Ỹc} = 0

E{(Y2 − Ỹc)Ỹ1} = 0

⇒





(σ2
x + σ2

n + d21) α12 + σ2
x β12 = σ2

x + σ2
n

σ2
x α12 + (σ2

x + σ2
n + d1) β12 = σ2

x

⇒





α12 = (σ2
x + σ2

n)(σ2
x + σ2

n + d1)− σ4
x

β12 = σ2
xd21

/
∆ (5.20)

where ∆ = (σ2
x + σ2

n + d21)(σ
2
x + σ2

n + d1)− σ4
x.

2. Compute αy1, βy1, and γy1 in Ŷ1 = αy1Ỹ2+βy1Ỹ
∗
1 +γy1Ỹ

∗
22 to minimize E{d(Ŷ1, Y1)}.

Solution: 



E{(Y1 − Ŷ1)Ỹ21} = 0

E{(Y1 − Ŷ1)Ỹ1} = 0

E{(Y1 − Ŷ1)Ỹ22} = 0
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⇒





(σ2
x+σ2

n+d21) αy1 + σ2
x βy1 + (σ2

x+σ2
n) γy1 = σ2

x

σ2
x αy1 + (σ2

x + σ2
n+d1) βy1 + σ2

x γy1 = σ2
x+σ2

n

(σ2
x+σ2

n) αy1 + σ2
x βy1 + (σ2

x+σ2
n + d22) γy1 = σ2

x

⇒





αy1 = σ2
xd1

∆∗ ·
d∗2
d21

βy1 =
(σ2

x+σ2
n)(σ2

x+σ2
n+d∗2)−σ4

x

∆∗

γy1 = σ2
xd1

∆∗ ·
d∗2
d22

(5.21)

where d∗2 = d21d22

d21+d22
, ∆∗ = (σ2

x + σ2
n + d∗2)(σ

2
x + σ2

n + d1)− σ4
x.

3. Compute αy2, βy2, and γy2 in Ŷ2 = αy2Ỹ21 + βy2Ỹ
∗
1 + γy2Ỹ

∗
22 to minimize

E{d(Ŷ2, Y2)}.

Solution: 



E{(Y2 − Ŷ2)Ỹ21} = 0

E{(Y2 − Ŷ2)Ỹ
∗
1 } = 0

E{(Y2 − Ŷ2)Ỹ22} = 0

⇒





(σ2
x+σ2

n+d21) αy1 + σ2
x βy1 + (σ2

x+σ2
n) γy1 = σ2

x+σ2
n

σ2
x αy1 + (σ2

x + σ2
n+d1) βy1 + σ2

x γy1 = σ2
x

(σ2
x+σ2

n) αy1 + σ2
x βy1 + (σ2

x+σ2
n + d22) γy1 = σ2

x+σ2
n

⇒





αy2 = (σ2
x+σ2

n)(σ2
x+σ2

n+d1)−σ4
x

∆∗ · d∗2
d21

βy2 =
σ2

xd∗2
∆∗

γy2 = (σ2
x+σ2

n)(σ2
x+σ2

n+d1)−σ4
x

∆∗ · d∗2
d22

(5.22)

4. Compute αx, βx, and βx in Ŷ1 = αxỸ2 +βxỸ
∗
1 + γxỸ

∗
22 to minimize E{d(X̂, X)}.
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Solution: 



E{(X − Ŷ2)Ỹ21} = 0

E{(X − Ŷ2)Ỹ
∗
1 } = 0

E{(X − Ŷ2)Ỹ22} = 0

⇒





(σ2
x+σ2

n+d21) αy1 + σ2
x βy1 + (σ2

x+σ2
n) γy1 = σ2

x

σ2
x αy1 + (σ2

x + σ2
n+d1) βy1 + σ2

x γy1 = σ2
x

(σ2
x+σ2

n) αy1 + σ2
x βy1 + (σ2

x+σ2
n + d22) γy1 = σ2

x

⇒





αx = σ2
x(σ2

n+d1)
∆∗ · d∗2

d21

βx =
σ2

x(σ2
n+d∗2)

∆∗

γx = σ2
x(σ2

n+d1)
∆∗ · d∗2

d22

(5.23)

Due to rate-distortion theory and the WZ theorem [2], the transmission rates

(R1, R21, R22) of our scheme satisfy

nR1 ≥ I(Y n
1 ; Ỹ n

1 )− I(Ỹ n
1 ; Ỹ n

21), (5.24)

nR21 ≥ I(Y n
2 ; Ỹ n

21), (5.25)

nR22 ≥ I(Y n
2 ; Ỹ n

22)− I(Ỹ n
22; Ỹ

n
c ). (5.26)

Note that for jointly Gaussian random variables X and Y , I(X; Y ) = −1
2
log(1−ρ2

xy),

where ρ2
xy = E2(XY )

E(X2)E(Y 2)
. Hence we get

ρ2
Y2,Ỹ21

=
E2(Y2Ỹ21)

E(Y 2
2 )E(Ỹ 2

21)
=

(σ2
x + σ2

n)2

(σ2
x + σ2

n)(σ2
x + σ2

n + d21)
=

σ2
x + σ2

n

σ2
x + σ2

n + d21

; (5.27)

ρ2
Y1,Ỹ1

=
σ2

x + σ2
n

σ2
x + σ2

n + d1

; (5.28)

ρ2
Ỹ21,Ỹ1

=
σ4

x

(σ2
x + σ2

n + d21)(σ2
x + σ2

n + d1)
; (5.29)

ρ2
Y2,Ỹ22

=
σ2

x + σ2
n

σ2
x + σ2

n + d22

; (5.30)

ρ2
Ỹc,Ỹ22

=
(α12(σ

2
x + σ2

n)+β12σ
2
x)

2

(α2
12(σ

2
x+σ2

n+d21)+β12(σ2
x+σ2

n+d1)+2α12β12σ2
x) (σ2

x+σ2
n+d22)

.(5.31)
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Using (5.27) – (5.31) in (5.24) – (5.26), we derive the rates R1, R21, R22 as

R21 ≥ I(Y2; Ỹ21)

= −1

2
log

(
1− ρ2

Y2,Ỹ21

)
=

1

2
log

(
σ2

x + σ2
n + d21

d21

)
; (5.32)

R1 ≥ I(Y1; Ỹ1)− I(Ỹ21; Ỹ1)

=
1

2
log


1− ρ2

Ỹ21,Ỹ1

1− ρ2
Y1,Ỹ1


 =

1

2
log

(
∆

d1(σ2
x + σ2

n + d21)

)
; (5.33)

R22 ≥ I(Y2; Ỹ22)− I(Ỹc; Ỹ22)

=
1

2
log


1− ρỸc,Ỹ 2

22

1− ρ2
Y2,Ỹ22


 =

1

2
log

(
∆∗

∆
· d21

d∗2

)
; (5.34)

The overall average distortion can be expressed as

D = E
{
(X − X̂)2

}
= E

{
(X − αxỸ2 − βxỸ

∗
1 − γxȲ

∗
2 )2

}

=
σ2

x(σ
2
n + d∗2)(σ

2
n + d1)

∆∗ ; (5.35)

D1 = E
{
d(Y1 − Ŷ1)

}
= E

{
(Y1 − αy1Ỹ2 − βy1Ỹ

∗
1 − γy1Ȳ

∗
2 )2

}

=
d1((2σ

2
x + σ2

n)σ2
n + d∗2(σ

2
x + σ2

n))

∆∗ ; (5.36)

D2 = E
{
d(Y2 − Ŷ2)

}
= E

{
(Y2 − αy2Ỹ2 − βy2Ỹ

∗
1 − γy2Ȳ

∗
2 )2

}

=
d∗2((2σ

2
x + σ2

n)σ2
n + d1(σ

2
x + σ2

n))

∆∗ ; (5.37)

The following two theorems show that the proposed scheme can approach any

point on the inner sum rate bound in both direct and indirect multiterminal settings.

Theorem 1 (indirect case) Given the source variance σ2
x, the noise power σ2

n, and a

distortion constraint E[(X, X̂)2] ≤ D∗, any rate pair (R∗
1, R

∗
2) that satisfies

R∗
1, R

∗
2 ≥ r =

1

2
log+[

2σ2
x

σ2
x + D∗ · (1−

σ2
n(σ2

x −D∗)
2σ2

xD
∗ )−1], (5.38)

R∗
1 + R∗

2 = rsum =
1

2
log+[

σ2
x

D∗ · (1−
σ2

n(σ2
x −D∗)

2σ2
xD

∗ )−2], (5.39)
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is achievable with the proposed scheme.

Proof: We prove the theorem by construction. Let

d1 =
2σ2

xD
∗

σ2
x −D∗ − σ2

n, (5.40)

d21 =
σ4

x

σ2
x + σ2

n + d1(1− 22R∗1)
− σ2

x − σ2
n, (5.41)

d22 = (
1

d21

− 1

d21

)−1. (5.42)

Hence, d∗2 = d21d22

d21+d22
= d1. According to (5.32) – (5.35), we have

R1 ≥ 1

2
log

(
∆

d1(σ2
x + σ2

n + d21)

)

=
1

2
log

(
1

d1

(σ2
x + σ2

n + d1 − σ4
x

σ2
x + σ2

n + d21

)

)

=
1

2
log

(
1

d1

(σ2
x + σ2

n + d1 − (σ2
x + σ2

n + d1(1− 22R∗1)))
)

= R∗
1; (5.43)

R2 = R21 + R22 ≥ 1

2
log

(
σ2

x + σ2
n + d21

d21

· (∆
∗

∆
· d21

d∗2
)

)

=
1

2
log

(
∆∗

d∗2d1

)
− 1

2
log(

∆

d1(σ2
x + σ2

n + d21)
)

=
1

2
log

(
(σ2

x + σ2
n + d1)

2 − σ4
x

d2
1

)
−R∗

1

=
1

2
log

(
(σ2

x(σ
2
x + D∗)/(σ2

x −D∗))2 − σ4
x

(2σ2
xD

∗/(σ2
x −D∗)− σ2

n)2

)
−R∗

1

=
1

2
log

(
4σ6

xD
∗

(2σ2
xD

∗ − σ2
n(σ2

x −D∗))2

)
−R∗

1

=
1

2
log

σ2
x

D∗ − log

(
1− σ2

n(σ2
x −D∗)

2σ2
xD

∗

)
−R∗

1

= rsum −R∗
1

= R∗
2; (5.44)

D =
σ2

x(σ
2
n + d∗2)(σ

2
n + d1)

∆∗

=
σ2

x(σ
2
n + d1)

2

(σ2
x + σ2

n + d1)2 − σ4
x
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=
σ2

x(σ
2
n + d1)

2σ2
x + σ2

n + d1

=
σ2

x · 2σ2
xD

∗

2σ2
x(σ

2
x −D∗) + 2σ2

xD
∗

=
σ2

xD
∗

(σ2
x −D∗) + D∗

= D∗. (5.45)

Finally, it is easy to show that for any achievable triple (R∗
1, R

∗
2, D

∗), there exist quan-

tization step sizes such that quantization distortions d1, d21, d22 are positive. Thus,

we can approach any point on the sum rate bound (4.24) – (4.25).

Theorem 2 (direct case) For jointly Gaussian sources (Y1, Y2) with variances (σ2
y1, σ

2
y2)

and correlation coefficient ρ, given distortion constraints

E[(Y1, Ŷ1)
2] ≤ D∗

1, E[(Y2, Ŷ2)
2] ≤ D∗

2. (5.46)

any rate pair (R∗
1, R

∗
2) that satisfies

R∗
1 ≥ 1

2
log[

σ2
y1

D∗
1

(1− ρ2 + ρ22−2R∗2)], (5.47)

R∗
2 ≥ 1

2
log[

σ2
y2

D∗
2

(1− ρ2 + ρ22−2R∗1)], (5.48)

R1 + R2 = rsum =
1

2
log[(1− ρ2)

βmaxσ
2
y1

σ2
y2

2D∗
1D

∗
2

] (5.49)

is achievable with the proposed scheme.

Proof: Define

σ2
x = 1, σ2

n = σ2
x · 1−ρ

ρ
;

k1 =

√
σ2

x+σ2
n

σy1
, k2 =

√
σ2

x+σ2
n

σy2
;

D′
1 = k2

1D
∗
1, D′

2 = k2
2D

∗
2;

(5.50)

We first scale the sources (Y1, Y2) to (Y ′
1 = k1Y1, Y

′
2 = k2Y2), which are of the same

variance σ2
x + σ2

n and correlation coefficient ρ. Then we use the proposed scheme to
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compress (Y ′
1 , Y

′
2) according to target distortion pair (D′

1, D
′
2). Let

d1 =
(σ2

x + σ2
n + d∆

2 )(σ2
x + σ2

n)− σ4
x

(1− ρ2)d∆
2 βmax(σ2

x + σ2
n)2/(2D′

1D
′
2)− (σ2

x + σ2
n + d∆

2 )
;

=
2D′

1((σ
2
x + σ2

n)2 − σ4
x)

((σ2
x + σ2

n)2 − σ4
x)βmax − 2D′

1(σ
2
x + σ2

n)
(5.51)

d21 =
σ2

x

σ2
x + σ2

n + d1(1− 22R∗1)
− σ2

x − σ2
n; (5.52)

d22 = (
1

d∆
2

− 1

d1

)−1; (5.53)

where

d∆
2 =

2D′
2((σ

2
x + σ2

n)2 − σ4
x)

((σ2
x + σ2

n)2 − σ4
x)βmax − 2D′

2(σ
2
x + σ2

n)

and βmax is defined by (4.32) with σ2
y1 = σ2

y2 = σ2
x + σ2

n, i.e.,

βmax = 1 +

√√√√1 +
4ρ2D′

1D
′
2

(1− ρ2)2σ2
y′1

σ2
y′2

= 1 +

√√√√1 +
4ρ2D′

1D
′
2

(1− ρ2)2(σ2
x + σ2

n)2
(5.54)

In (5.51), we use the fact

β−1
max = (βmax − 2) · 4ρ2D′

1D
′
2

(1− ρ2)2(σ2
x + σ2

n)2
. (5.55)

Using (5.32), (5.33), (5.34), (5.36), and (5.37), we have

R1 ≥ 1

2
log

(
∆

d1(σ2
x + σ2

n + d21)

)

=
1

2
log

(
1

d1

(σ2
x + σ2

n + d1 − σ2
x

σ2
x + σ2

n + d21

)

)

= R∗
1; (5.56)

R2 = R21 + R22 ≥ 1

2
log

(
∆∗

d1d∗2

)
− 1

2
log

(
∆

d1(σ2
x + σ2

n + d21)

)

=
1

2
log

(
(σ2

x + σ2
n + d∗2)(σ

2
x + σ2

n + d1)− σ4
x

d1d∗2

)
−R∗

1

=
1

2
log

(
((σ2

x + σ2
n + d∗2)(σ

2
x + σ2

n)− σ4
x) + d1(σ

2
x + σ2

n + d∗2)
d1d∗2

)
−R∗

1
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=
1

2
log




(
(1−ρ2)βmax(σ

2
x+σ2

n)2 d∗2
2D′1D′2

−(σ2
x+σ2

n+d∗2)+(σ2
x+σ2

n+d∗2)
)
d1

d1d∗2


−R∗

1

=
1

2
log

(
(1− ρ2)βmax

(σ2
x + σ2

n)2

2D′
1D

′
2

)
−R∗

1

=
1

2
log

(
(1− ρ2)βmax

(σ2
x + σ2

n)2

2k2
1D1k2

2D2

)
−R∗

1

= rsum −R∗
1

= R∗
2; (5.57)

D1 =
d1 (((σ2

x + σ2
n)2 − σ4

x) + d∗2(σ
2
x + σ2

n))

∆∗

=
d1d

∗
2

∆∗ ·
(

((σ2
x + σ2

n)2 − σ4
x)βmax − 2D′

2(σ
2
x + σ2

n)

2D′
2

+ (σ2
x + σ2

n)

)

=
2D′

1D
′
2

(1− ρ2)βmax(σ2
x + σ2

n)2
· ((σ2

x + σ2
n)2 − σ4

x)βmax

2D′
2

= D′
1 (5.58)

D2 =
d∗2 (((σ2

x + σ2
n)2 − σ4

x) + d1(σ
2
x + σ2

n))

∆∗

=
d1d

∗
2

∆∗ ·
(

((σ2
x + σ2

n)2 − σ4
x)βmax − 2D′

1(σ
2
x + σ2

n)

2D′
1

− (σ2
x + σ2

n)

)

=
2D′

1D
′
2

(1− ρ2)βmax(σ2
x + σ2

n)2
· ((σ2

x + σ2
n)2 − σ4

x)βmax

2D′
1

= D′
2. (5.59)

Hence (R∗
1, R

∗
2) is achievable to compress (Y ′

1 , Y
′
2) such that

E[(Y ′
1 , Ŷ

′
1)

2] ≤ D′
1, E[(Y ′

2 , Ŷ
′
2)

2] ≤ D′
2. (5.60)

By scaling the reconstructed sources (Ŷ ′
1 , Ŷ

′
2) to (Ŷ1 = Ŷ ′

1/k1, Ŷ2 = Ŷ ′
2/k2), the distor-

tion constraints in (5.46) are satisfied. Thus, we can approach any point on the inner

sum rate bound (5.47) – (5.49).

The two corner points on the achievable sum rate bounds of both direct and

indirect multiterminal problems can be obtained when d21 or d22 is infinity. Indeed,
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to achieve the corner point (rsum−r, r) in indirect case, we set R∗
1 in (5.41) to rsum−r;

then d21 becomes infinity, and Wyner-Ziv Encoder-Decoder I degenerate to classical

source encoder-decoder. To achieve (r, rsum − r), we set R∗
1 = r; then d22 =∞, and

Wyner-Ziv Encoder-Decoder II disappear.In both cases, our scheme reduces to the

asymmetric coding scheme of [37]. Similar conclusions can also be made for direct

case.

C. Results

To implement high dimensional ECDQ, we resort to entropy-coded TCQ [31] scheme

with dithered uniform codebook. Because the total rate is divided into three parts,

we have to deal with low rate (e.g., less than one bit per sample) compression of

quantization indices. Hence, to achieve fractional rates we employed the SWC-TCVQ

scheme for Wyner-Ziv coding.

For the indirect multiterminal problem, source X and noises N1 and N2 are zero

mean, jointly Gaussian, and mutually independent with variances σ2
x = 1, σ2

n, and σ2
n,

respectively. Noisy observations are given by Y1 = X +N1 and Y2 = X +N2. We refer

σ2
x/σ

2
n as the correlation signal to noise ratio (CSNR). We attempt to approach the

middle point on the theoretical bound, that is R1 = R2, where R1 and R2 are rates

used for compressing Y1 and Y2, respectively. For a given target distortion D and

CSNR, by varying quantization step sizes of TCQ/TCVQ, we obtained quantization

noises d21, d21, d22 given by (5.40), (5.41), and (5.42), respectively. The transmission

rates with ideal Slepian-Wolf coding, i.e., R21 = 1
n
H(Bn

21), R1 = 1
n
H(Bn

1 |Ỹ n
21), and R22 =

1
n
H(Bn

22|Ỹ n
c ) are computed using Monte Carlo simulations. Practical SW encoders

are based on irregular LDPC codes of length 106. We assumed error-free transmission

if probability of decoding error was less than 10−6.
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Simulation results for the average distortion D∗ = −21.83 dB and CSNR=20dB

together with the sum rate bound are showed in Figure 30. For the middle point, the

loss in rate is about 0.29 bit per sample (b/s). Compared to results in [26] where the

gap to the bound was roughly 2 dB in average distortion at 6 b/s, our results showed

a much smaller gap of 0.22dB.

For the direct case, sources Y1 and Y2 are assumed to be jointly Gaussian with

variances σ2
y1 = σ2

y2 = σ2
x + σ2

n, and ρ = σ2
x

σ2
x+σ2

n
. For a given target distortion pair

(D21, D1), we compute σ2
n = 1−ρ

ρ
σ2

x, and the quantization distortions are set to the

values given by (5.51)-(5.54) by varying the step sizes. Results and the theoretical

bounds are shown in Figure 31. For the symmetric point, we lost 0.30 b/s in rate, or

0.91dB in distortion.

The loss of roughly 0.30 b/s for the middle point in both cases consists of a 0.03

b/s loss from classical source coding, two 0.13 b/s losses from Wyner-Ziv coding, and

a very small loss from the jointly Gaussian assumption. This corresponds to the 0.15

b/s loss for the corner points where only one WZ coder is employed.
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Practical result (3.01, 2.95) 
Loss in rate = 0.29 b/s      
Loss in distortion = 0.22 dB 

Symmetric point   
  (2.834, 2.834)  

   Corner point   
  (4.151, 1.516)  

   Corner point   
  (1.516, 4.151)  

Practical result (1.64, 4.18) 
Loss in rate = 0.15 b/s      
Loss in distortion = 0.12 dB 

Practical result (4.18, 1.64) 
Loss in rate = 0.15 b/s      
Loss in distortion = 0.12 dB 

Fig. 30. Experimental results together with the sum rate bound for the indirect mul-

titerminal problem. Target distortion is D = −21.83 dB and CSNR = 20

dB.



72

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

R
2

R
1

Practical result (3.01, 2.95) 
Loss in rate = 0.30 b/s       
Loss in distortion = 0.91 dB  

Symmetric point   
  (2.833, 2.833)  

   Corner point   
  (4.150, 1.515)  

   Corner point   
  (1.515, 4.150)  

Practical result (1.64, 4.18) 
Loss in rate = 0.15 b/s       
Loss in distortion = 0.34 dB  

Practical result (4.18, 1.64) 
Loss in rate = 0.15 b/s       
Loss in distortion = 0.34 dB  

Outer bound 

Inner bound 

Fig. 31. Experimental results together with the inner and outer bounds for the direct

multiterminal problem. Target distortions are D21 =D1 =−25.54 dB and ρ =

0.9901.
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CHAPTER VI

CONCLUSIONS

In this thesis, we first presented a SWC-TCQ scheme for quadratic Gaussian Wyner-

Ziv coding, established its performance limit, made the connection of SWC-TCQ

to ECTCQ, and performed practical code design. Practical designs perform 0.82 dB

away from D∗
WZ(R) at medium bit rates (e.g., ≥ 1.5 b/s). With 2-D tellis coded vector

quantization, the performance gap to D∗
WZ(R) is only 0.66 dB at 1.0 b/s and 0.47

dB at 3.3 b/s. Although SWC-TCQ is by far the best design, the small performance

loss in SWC-TCQ comes from three aspects: suboptimality of TCQ over infinite-

dimensional VQ, rate loss in practical LDPC code design, and inaccuracy of our

discretization scheme.

We also presented a practical coding scheme for the quadratic Gaussian multiter-

minal problem that can approach the two corner points of the achievable rate region.

It quantizes one observation and performs Wyner-Ziv coding on the second using

the quantized version of the first as side information. Experimental results showed

that performance of our scheme based on TCQ/TCVQ and irregular LDPC codes for

Slepian-Wolf coding comes much closer to the theoretical limits than any other pre-

vious solution. Indeed, for CSNR in the range of 15 to 22 dB, and the sum-rate of 4

b/s, the obtained results are more than 2 dB better than previously reported and are

within only 0.5 dB away from the theoretical limit. Such a competitive performance

of our design comes from a successful restoration of the correlation among quantized

observations, an efficient extraction of the key information from the encoding TCQ

bitstreams and their effective combination with the available side information.

Following the idea of [29], we then proposed the first practical coding scheme

based on source splitting, which can approach any point on the achievable bounds for



74

both the quadratic Gaussian direct and indirect multiterminal problems. We quantize

the first source using entropy-coded TCQ, and then exploit Wyner-Ziv coding on the

second source using the quantized version of the first as the side information at the de-

coder. The two quantized versions are linearly combined to form the side information

for a second stage Wyner-Ziv coding of the first source. Finally, we reconstruct the

source(s) using a linear estimator. We proved that in the ideal case when all random

variables are jointly Gaussian, in both direct and indirect multiterminal settings, the

proposed scheme is capable of trading off transmission rates among the two encoders

and achieving any point on the inner sum rate bound. Simulation results showed that

in the indirect case, our scheme based on TCQ/TCVQ and irregular LDPC codes for

Slepian-Wolf coding performs significantly better than the scheme of [26]. However,

to approach any non-corner point, we need two Wyner-Ziv coding components. This

causes a small performance loss compared to asymmetric coding (corner points) where

only one Wyner-Ziv coding is needed. Hence, we gained in flexibilities of rate allo-

cation at the cost of higher complexity and performance loss. Although the direct

and indirect multiterminal problems essentially differ, our scheme performs equally

well in both settings with only small adjustments. At sum rate of 5.96 b/s, we lost

roughly 0.30 b/s in both direct and indirect settings. This small performance loss,

due to suboptimality of TCQ, rate loss in practical LDPC coding, and limitations of

linear estimators can probably be further reduced by exploiting higher dimensional

TCVQ, using density evolution in LDPC code design, and constructing non-linear

estimators. Another possibility of improving the results is to employ channel code

partitioning method introduced for Slepian-Wolf coding in [38]. This is a part of our

ongoing research.
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