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ABSTRACT 

 

The use of fiber-optics in reservoir surveillance can bring valuable insights to fracture 

geometry and fracture-hit identification, stage communication, and perforation cluster 

fluid distribution in hydraulic fracturing processes. However, the complexity of multiple 

information streams associated with realistic field data makes interpretation challenging 

for engineers and geoscientists. In this work, I generate distributed strain sensing 

(DSS)/low-frequency distributed acoustic sensing (LF-DAS) synthetic data of a cross-well 

fiber deployment. This data incorporates the physics governing hydraulic fracturing 

treatments. Forward modeling streamlines the interpretation task by exploring data 

richness, which has the potential to improve completion design and optimize production. 

Forward modeling relies on analytical and numerical solutions. The analytical 

solution is developed by coupling two models: a 2D fracture (e.g., Khristianovic-

Geertsma-de Klerk [KGD]) and Sneddon’s induced stress. DSS is estimated using the 

plane strain approach that combines calculated stresses and rock properties (e.g., Young’s 

modulus and Poisson’s ratio). In turn, the numerical solution is implemented using the 

displacement discontinuity method (DDM) with net pressure and/or shear stress as the 

boundary condition. In this case, the fiber gauge length concept is incorporated deriving 

displacement (i.e., DDM output) in space to obtain DSS values. In both methods, LF-DAS 

is estimated by the differentiation of DSS in time. 

My simulator models classic features present in field data including: the heart-

shaped pattern from a fracture approaching the fiber, stress shadow, and fracture hits. 

Incorporating shear stress in simulation creates strain time histories that entail 

complexities beyond those observed in cases in which tensile stress is the unique failure 

mechanism, thus highlighting the significant impact promoted by natural fractures. 

Moreover, a large gauge length (i.e., popular 10 m size used in the field) can mask strain 

data richness, distorting intrinsic characteristics of fracture systems. Fracture corridor 

extension signature, occasionally observed in LF-DAS field data when pumping stops, is 

verified in synthetic results for small pressure drop gradients, revealing that fractures 
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continue to propagate in this scenario. Quantitatively, fracture geometry characterization 

is improved by estimating width in multiple locations as time increases, with the support 

of deep learning (DL) algorithms I developed using data from multiple monitor wells.    

The model framework captures a wide range of relevant phenomena and provides 

a solid foundation for generating accurate and rich synthetic data representing multiple 

distinct scenarios leading to interpretation optimization. Also, the development of specific 

packages (commercial or otherwise) that explicitly model DSS/LF-DAS, incorporating 

the impact of fracture opening and slippage, is still in its infancy. This project is novel in 

this regard, and it opens new avenues of research and applications of synthetic DSS/LF-

DAS in hydraulic fracturing processes.  
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LF-DAS Low-frequency distributed acoustic sensing  

𝑀𝐴𝐸 Mean absolute error (L1 loss) 

𝑀𝑆𝐸 Mean squared error (L2 loss) 
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𝑛 Total number of observations  

𝑛 Fiber core refractive index 

𝑃0 Linear coefficient of net pressure equation 

𝑃1 Angular coefficient of net pressure equation 
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𝑃𝑛𝑒𝑡 Net pressure 

𝑅 Geometric relation 

𝑟 Geometric relation 

𝑆𝐻𝑚𝑎𝑥 Maximum horizonal stress 

𝑆ℎ𝑚𝑖𝑛 Minimum horizontal stress 

𝑡 Time 

𝑡0 Initial simulation time 

𝑡𝑎𝑛ℎ Hyperbolic tangent activation function 

𝑢𝑥 Displacement along x-axis 

𝑢𝑦 Displacement along y-axis 

𝑤 Fracture width 

𝑥 x-axis cartesian coordinate system  

𝑥𝑓 Fracture half-length 

𝑦 y-axis cartesian coordinate system 

𝑌𝑖 True output 

𝑌𝑖̂ Predicted output 

𝑍 Unnormalized variable  

𝑍𝑚𝑎𝑥 Maximum variable value 

𝑍𝑚𝑖𝑛 Minimum variable value 

𝑍𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 Normalized variable (ranges between 0 and 1) 

 

Greek   

𝛽 Angle between global and local coordinate systems 

Δ𝑃𝑛𝑒𝑡 Change in net pressure 

Δ𝑆𝐻 Horizontal stress difference 

Δ𝑡 Time step 

Δσ𝑠 Change in shear stress 

Δ𝛷 Optical phase change 
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Δ𝛷̇ Optical phase change differentiated in time 

𝜖 or 𝜖𝑦 Absolute strain along fiber axis 

𝜖̇ or 𝜖𝑦̇ Strain rate 

Θ Geometric relation 

𝜃 Geometric relation 

𝜆 Laser light wavelength 

𝜇 Fluid viscosity 

𝜎𝑛 Normal stress 

𝜎𝑠 Shear stress  

𝜎𝑥𝑥 Stress along x-axis 

𝜎𝑥𝑦 Shear stress in cartesian coordinate system 

𝜎𝑦𝑦 Stress along y-axis 

𝜐 Poisson’s ratio 

𝜓 Pockels coefficient of fiber 

 

Superscript  

𝑖 i-th element 

𝑗 j-th element 

𝑛 Current time step 

𝑛 + 1 Next time step 
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1. INTRODUCTION 

 

1.1. Hydraulic Fracturing Technology and Surveillance Methods 

The combination of hydraulic fracturing and horizontal drilling technologies were the 

pillars for the hydrocarbon production boost in unconventional reservoirs in the US (i.e., 

shale revolution) (Wiley et al., 2004; Roudakov and Rohwer, 2006; Weijers et al., 2019). 

Multistage hydraulic fracturing (Salah et al., 2017), plug and perf completion technique 

(Jamaloei, 2021), and zipper fracturing (Schofield et al., 2015) speeded up the shale 

stimulation process. Completion designs were improved varying well, stage and cluster 

spacings (Huckabee et al., 2021). Nanoparticles improved the performance of fracturing 

fluids in high-pressure and high-temperature (HPHT) downhole conditions (Al-

Muntasheri et al., 2017). Advanced materials contributed for the development of high 

strength (required in deep wells) and ultra-lightweight (desirable to reduce proppant 

settling and increase the propped fracture length) proppants (Liang et al., 2015). These 

technologies significantly enhanced oil/gas production in tiny permeability reservoirs.  

 Monitoring of fracture propagation during the treatment is a fundamental task that 

has the potential to improve completion design and optimize production. Surveillance 

technologies used in fracturing operations include: downhole cameras to inspect 

perforation erosion, microseismic, distributed fiber-optic sensing, downhole 

pressure/temperature gauges, sealed wellbore pressure monitoring (SWPM), tracers, 

electromagnetic fluid monitoring, and borehole pressure-wave reflections (acoustics) 

(Gutierrez et al., 2010; Hickey et al., 2017; Dalamarinis et al., 2020; Haustveit et al., 2020; 

Filev et al., 2021; Cipolla et al., 2022a; Cipolla et al., 2022b ; McKimmy et al., 2022; 

Zang, 2022).   

 Microseismic based on geophone recording was for a long time the primary 

diagnostic for estimating stage-level fracture geometry. The need for technologies with 

high spatio-temporal resolution able to provide measurement details on cluster-level, 

influenced the application of distributed fiber-optic sensing in the stimulation process of 

unconventional reservoirs.  The popularity of this method is expanding rapidly, and the 
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deployment costs are reducing especially when disposable fiber is selected (Mantell et al., 

2022). Due to the relevance of this topic, the focus of this study is on distributed fiber-

optic sensing surveillance technology. 

 

1.2. Literature Review of Distributed Fiber-Optic Sensing  

Fiber-optic-based sensing is a versatile technology that is being adopted for monitoring 

by the oil and gas industry in many upstream areas such as: well stimulation (matrix 

acidizing and hydraulic fracturing), hydrocarbon recovery, production operations (flow 

monitoring and artificial lift), well integrity and geophysical surveys (seismic methods) 

(Koelman et al., 2011; Holley and Kalia, 2015; Hull et al., 2017; Jin et al., 2021). 

According to Molenaar et al. (2012) this surveillance technique was first introduced in 

wells in the 1990s with single point pressure and temperature sensors followed by 

distributed temperature sensing. 

According to Silixa (2019), the distinct advantages of distributed fiber-optics 

sensing compared to point sensors (i.e., geophones) include: (1) substantial spatial 

coverage capturing details maybe missed by geophones (Figure 1.1); (2) high resolution 

(e.g., sampling rate typically ranges from 5 to 10 kHz) collecting highly transient spatio-

temporal processes; (3) flexible deployment options including hazardous/harsh 

environments (e.g., measurements can be done in injector wells). This surveillance method 

is a single component sensor that primarily measures parallel microseismic signal arrivals 

to the fiber with sensitivity to influxes at oblique angles 𝜃 (Figure 1.2) decreasing roughly 

by 𝑐𝑜𝑠2𝜃 factor (Hartog, 2017; Hull et al., 2017; Sherman et al., 2019). According to 

Mateeva et al. (2014) it is possible to enhance fiber sensitivity by winding it into a helical 

structure, which would allow the cable to simultaneously sample signals over a great range 

of orientations. 
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Figure 1.1–Hypothetic deployment scenario of geophysical survey equipment (point and 

distributed sensors): on the top, smooth curve representing point sensors theoretical output data; 

on the bottom, conceptual curve rich in details (missed by geophones). Adapted from Silixa (2019). 

 

 
Figure 1.2–Signal arriving at oblique angle (𝜽) to the fiber-optic cable. Fiber has the greatest 

sensitivity to parallel arrivals (𝜽 = 𝟎°). 

 

Fiber-optic cable can be permanently cemented behind the casing or deployed in 

wellbores via retrievable wireline (Richter et al., 2019). The general principle associated 

with distributed sensing is briefly described as follows: (1) an interrogator unit generates 

a light pulse that propagates along the fiber and interacts with glass microscopic defects; 

(2) local conditions (thermal and acoustic) slightly affect the glass fiber changing its light 

transmission characteristics (Figure 1.3); (3) modified light signal (Brillouin, Raman and 

Rayleigh) is backscattered and recorded at the interrogator unit (Figure 1.4) (Dickenson 

et al., 2016). As shown in Figure 1.5, each measurement represents an average over a 

specific fiber interval, referred to as gauge length (GL), and the distance between two 



 

4 

consecutive measurements is called channel spacing (Karrenbach et al., 2017; Ugueto et 

al., 2019). 

 
Figure 1.3–Schematic showing typical distributed sensing system equipment (interrogator unit 

and glass fiber) and sources (thermal and acoustic) about which the backscattered light carries 

information. 

 

 
Figure 1.4–Spectrum of fiber-optics backscattered light (stokes and anti-stokes) detailing 

Rayleigh (DAS), Brillouin (DSS) and Raman (DTS) recorded signals based on frequency. 

Adapted from Silixa (2019). 

 

 
Figure 1.5–Schematic showing fiber-optic cable, measurement point associated with particular 

gauge length, and channel spacing defined as the distance between two consecutive 

measurements. 

 

 Rayleigh, Brillouin and Raman scatterings are traditionally associated with 

Distributed Acoustic Sensing (DAS), Distributed Strain Sensing (DSS) and Distributed 
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Temperature Sensing (DTS) techniques, respectively. During hydraulic fracturing 

treatments when wells are equipped with fiber-optic cable, DSS and DAS responses carry 

primarily acoustic information (in some instances thermal correction is required). Raw 

DAS data is registered in the form of optical phase change measured in radians, which at 

low-frequency band is directly related to strain perturbation (Lindsey et al., 2020) and it 

can be regarded as equivalent to strain rate according to Daley et al. (2016). On the other 

hand, Brillouin-based DSS data represents absolute strain, and it is obtained at frequency 

and levels of sensitivity lower than DAS (Kechavarzi et al., 2019). 

 According to Febus Optics (2019), one main advantage of DTS compared with 

DSS/DAS is the fact that it is only sensitive to temperature and consequently there is no 

need for strain correction. However, Raman scattered light is weak and hard to detect, so 

the frequency of acquisition of DTS signals is much smaller than DAS signals for instance 

(Johannessen et al., 2012). Pakhotina et al. (2020) mention the importance of acquiring 

temperature and strain fiber-optics data to support the interpretation process. 

 Jin and Roy (2017), Ichikawa et al. (2020), Li et al. (2020) and White et al. (2020) 

mention and show with field examples that different frequency bands of DAS signal can 

be used for various purposes in hydraulic fracturing operations: (1) low-frequency band 

(< 0.05 Hz) of cross-well fiber (Figure 1.6a) can be applied to assist fracture geometry 

characterization and identify fracture hits; (2) high-frequency band (> 1 Hz) of in-well 

fiber (Figure 1.6b) can be used to estimate perforation cluster fluid/proppant distribution 

and detect potential fracture communication. 
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Figure 1.6–(a) Cross-well (operation and monitor wells distancing 100 ft are depicted as 1 and 2, 

respectively), and (b) in-well (single well represented by 1, works simultaneously as operation and 

monitor well) fiber configurations. 

 

DSS (absolute strain) and low-frequency DAS (strain rate) are massive datasets 

with vast applicability in hydraulic fracturing operations. However, given the complexity 

associated with field data, its potential is not fully explored yet. Special techniques are 

required to assist engineers and geoscientists in the interpretation process of strain type 

data to improve completion design and, consequently, to optimize production of 

unconventional reservoirs. Numerical simulation is a potential tool that may add value in 

the qualitative and quantitative interpretation tasks of strain type of data acquired by 

distributed fiber-optics.    

Qualitatively, recent studies have modeled fiber-optic strain response considering 

the following points: 

1. Single and multiple hydraulic fractures (HF) failing in tensile mode using the 

Displacement Discontinuity Method (DDM) (Liu et al., 2020; Zhang et al., 

2020; Shahri et al., 2021). 

2. Single hydraulic fracture opening and associated with Discrete Fracture 

Network (DFN) integrating the Finite Element Method (FEM) and Finite 

Volume Method (FVM) (Sherman et al., 2019). 

3. Single and multiple hydraulic fractures failing in tensile mode, and single 

hydraulic fracture associated with DFN using FEM (Tan et al., 2021). 
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Quantitatively, Liu et al. (2021a, 2021b) has developed the Green’s function-based 

inversion model attempting to estimate fracture width in a single location (i.e., monitor 

well). 

 

1.3. Research Objectives 

In this work, I develop a simulation framework that relies on analytical and numerical 

solutions to model strain fields generated by hydraulic fracturing (i.e., DSS and low-

frequency DAS responses). The main goal is to assist specialists in the interpretation 

process of strain field data. 

 The synthetic data generated by the numerical simulator is used to train and test 

machine learning algorithms able to improve the fracture geometry characterization.  

 

1.3.1. Analytical Solution 

Evaluate the behavior of strain time histories in terms of fracture propagation speed (i.e., 

fracture hit), performing a sensitivity study on rock (i.e., Young’s modulus) and fluid (i.e., 

viscosity and flow rate) parameters.    

 

1.3.2. Numerical Solution 

1. Determine the influence of natural fracture geometry (e.g., orientation angle and 

length) on strain. 

2. Quantify fiber gauge length impact on strain time histories. 

3. Determine natural fracture impact on cluster efficiency using strain datasets. 

4. Characterize strain fields when pumping stops to verify the potential continuation of 

fracture extension. 

5. Identify fracture hit moment based on derivative of stress. 

6. Analyze stress shadow transmissibility with distance from fracture face. 
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1.3.3. Deep Learning Algorithm and Fracture Width Estimation 

1. Develop deep learning (DL) models to estimate the magnitude of strain fields for any 

spatio-temporal input, using synthetic data from multiple monitor wells generated by 

the numerical technique (fiber sensitivity is restricted to a region near the monitor 

well). 

2. Predict fracture width in multiple locations over time with the support of developed 

DL algorithm.  

 

1.4. Research Scope and Contributions  

For the first time, the strain problem is solved analytically by coupling a 2D fracture model 

(e.g., Khristianovic-Geertsma-de Klerk [KGD]) and the induced stress solution 

established by Sneddon (1946). The analytical technique can model a single hydraulic 

fracture failing in tensile mode. In turn, I implement the numerical technique using the 

Displacement Discontinuity Method (DDM), which is able to model multiple fractures 

failing in tensile mode and more complex scenarios not contemplated by previous studies 

considering shear failure of natural fractures.   

This work is one of the first to include hydraulic and natural fracture interactions 

when modeling fiber-optics strain response using the numerical solution. This leads the 

project to study the impact of natural fractures on DSS/LF-DAS data, which is often 

interpreted purely in terms of opening fractures.  

The model framework based on the numerical solution (i.e., DDM) captures a 

range of significant phenomena present in the field data and can be a foundation for the 

generation of rich strain synthetic data encompassing multiple scenarios: (1) planar 

hydraulic fractures; (2) hydraulic and natural fracture interactions; and (3) natural 

fractures with variable distribution and/or geometry. I suspect that this great volume of 

synthetic data combined with processed (filtered to remove noise and compressed to 

reduce memory size requirements) field data (Brankovic et al. 2021) can be used to train 

a deep learning image recognition model such as convolutional neural networks also 
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known as CNN or ConvNet (Bishop 2006; Krizhevsky et al. 2017; Géron 2019), to be 

applied in the test stage classifying the governing physical scenario associated with field 

data. This physics-based machine learning framework (Yao and Yang, 2016) can represent 

a positive breakthrough assisting engineers and geoscientists interpreting complex strain 

type of data coming from unconventional reservoirs. 

 

1.5. Organization 

This work is organized in four chapters. Chapter 1 corresponds to literature review of 

hydraulic fracturing technology and distributed fiber-optic sensing, along with research 

contributions and objectives. Chapter 2 describes the methodology adopted to model 

analytically and numerically strain fields generated during hydraulic fracturing treatments, 

and the approach based on deep learning algorithms developed using data from multiple 

monitor wells to improve the fracture geometry characterization. Chapter 3 summarizes 

the main results and discussions. Chapter 4 ends with conclusions and suggestions for 

future work. 
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2. METHODS 

 

In this work, I model absolute strain (DSS) and strain rate (low-frequency DAS) responses 

of parallel signal arrivals to fiber, examining a cross-well fiber deployment and 

considering a perfect mechanical coupling of fiber to surrounding media. Analytical and 

numerical solutions are used to generate fiber-optics strain synthetic data.  

 Synthetic data from the numerical technique is used to train and test deep learning 

(DL) models to predict strain fields in any position/time. Integration of DL algorithms and 

proposed “discontinuity length” method able to estimate fracture width in a single point, 

improves the fracture geometry characterization estimating such property in multiple 

locations as a function of time.  

 

2.1. Analytical Solution 

I apply the analytical technique to simulate a single hydraulic fracture opening. The 

solution is obtained coupling 2D fracture and induced stress models, represented in this 

study by Khristianovic-Geertsma-de Klerk (KGD) (Valkó and Economides, 1995) and 

Sneddon (1946), respectively. Assumptions include: (1) plane strain holding in horizontal 

plane (i.e., problem dimensionality reduction); (2) no fluid leak-off; (3) Newtonian fluid; 

(4) linear elastic deformation, which implies reversible changes; (5) homogeneous (i.e., 

uniform composition) and isotropic material (i.e., properties are independent of direction 

and two elastic constants are sufficient to describe the material behavior); (6) uniform 

stress on fracture face.  

Figure 2.1 shows a flowchart detailing the process to estimate DSS and LF-DAS 

based on the analytical solution. Inputs of the KGD fracture model are: (1) initial 

simulation time (𝑡0); (2) fracture height (ℎ𝑓) not exceeding reservoir height (i.e., controlled 

stimulation process); rock mechanical properties consisting of (3) Young’s modulus (𝐸) 

on the order of 106 psi and (4) Poisson’s ratio (𝜐) that is dimensionless and ranges between 

0 and 0.5; fluid mechanical properties such as (5) viscosity (𝜇) and (6) injection rate used 

in a single wing of symmetrical hydraulic fracture (𝑖). 
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Figure 2.1–Flowchart of DSS and LF-DAS calculation using the analytical solution. 

 

Net pressure (𝑃𝑛𝑒𝑡) on the order of 102 psi in the field, which is assumed uniform 

on the fracture face, and fracture half-length (𝑎 = 𝑥𝑓) are the estimates of the KGD model 

that I select to store1: 

𝑃𝑛𝑒𝑡 = 1.09(𝐸′2𝜇)
1
3𝑡−

1
3 , (1) 

𝑥𝑓 = 0.539 (
𝑖3𝐸′

𝜇ℎ𝑓
3 )

1
6

𝑡
2
3 , (2) 

where 𝐸′ is the plane strain modulus defined as:  

𝐸′ =
𝐸

1 − 𝜐2
 . (3) 

The average fracture width of the KGD model (in the field it generally assumes 

tiny magnitudes on the order of inches) can be estimated with the following equation in 

SI units: 

𝑤̅ = 2.53 (
𝜇𝑖𝑥𝑓

2

ℎ𝑓𝐸′
)

1
4

. (4) 

  At the end of each time step, I add a time (Δ𝑡) increment in the simulation and 

fracture continues propagating. Once 2D fracture model reaches last time step, stored 

 

1 Eqs. 1 and 2 in SI Units. 
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synthetic data is used to calculate induced stresses (Δ𝜎𝑥𝑥 and Δ𝜎𝑦𝑦) along fiber for the 

simulation time span applying Sneddon solution:  

𝛥𝜎𝑥𝑥 = 𝑃𝑛𝑒𝑡[𝑟𝑅−1 𝑐𝑜𝑠(𝜃 − Θ) − 1 − 𝑎2𝑟𝑅−3 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 3Θ] , (5) 

𝛥𝜎𝑦𝑦 = 𝑃𝑛𝑒𝑡[𝑟𝑅−1 𝑐𝑜𝑠(𝜃 − Θ) − 1 + 𝑎2𝑟𝑅−3 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 3Θ] , (6) 

where 𝑟, 𝑅, 𝜃 and Θ (Figure 2.2) are defined as follows: 

 
Figure 2.2–Geometric representation of a crack with parameters to estimate induced stresses. 

and parameters 𝑟𝑥, 𝑟𝑦, 𝜃𝑥 and 𝜃𝑦 can be obtained by: 

𝑟𝑥 = √𝑦2 + (𝑥 + 𝑎)2 , (11) 

𝑟𝑦 = √𝑦2 + (𝑥 − 𝑎)2 , (12) 

𝜃𝑥 = 𝑡𝑎𝑛−1
𝑦

𝑥 + 𝑎
 , (13) 

𝑟 = √𝑥2 + 𝑦2 , (7) 

𝑅 = √𝑟𝑥𝑟𝑦 , (8) 

𝜃 = 𝑡𝑎𝑛−1
𝑦

𝑥
 , (9) 

Θ =
𝜃𝑥 + 𝜃𝑦

2
 , 

(10) 
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𝜃𝑦 = 𝑡𝑎𝑛−1
𝑦

𝑥 − 𝑎
 . 

(14) 

These calculations result in incorrect estimates of induced stresses if any angle 

𝜃, 𝜃𝑥 and 𝜃𝑦 assume a negative value. Therefore, in such a case, 𝜋 should be added to the 

parameter.  

In the following step, using rock mechanical properties (𝐸 and 𝜐) and calculated 

induced stresses (Δ𝜎𝑥𝑥 and Δ𝜎𝑦𝑦), I assume a plane strain model (Economides and Nolte, 

1989) to estimate absolute strain (DSS) along the horizontal lateral placed in the y-

direction (𝜖𝑦):  

Once DSS is obtained, LF-DAS along the fiber is estimated by differentiation of 

absolute strain in time applying the forward difference approximation: 

𝜖𝑦̇ =
𝜖𝑦(𝑡𝑛+1) − 𝜖𝑦(𝑡𝑛)

𝑡𝑛+1 − 𝑡𝑛
 . (16) 

2.2. Numerical Solution 

The second method I use to model strain fields is a numerical solution based on the 

Displacement Discontinuity Method (DDM) (Crouch, 1976; Crouch and Starfield, 1983; 

Wu, 2014; Gurjao et al., 2021). In this case, complex scenarios composed of multiple 

fractures failing in tensile or shear mode can be included in simulations.   

 The DDM is modeled by distributing a series of constant displacement 

discontinuities (normal: 𝐷𝑛; shear: 𝐷𝑠) generated by opening/slippage of associated 

fractures, and of unknown magnitude over a finite segment (𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒) in an infinite 

elastic body (Figure 2.3). In this study, normal (𝜎𝑛) and shear (𝜎𝑠) stresses are assigned 

as boundary conditions for elements representing hydraulic fractures (tensile failure) and 

natural fractures (shear failure), respectively. 

𝜖𝑦 =
1 + 𝜐

𝐸
[(1 − 𝜐)Δ𝜎𝑦𝑦 − 𝜐Δ𝜎𝑥𝑥] . (15) 
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Figure 2.3–Representation of a crack (left) discretized by 𝑵 displacement discontinuities (right). 

 

Based on normal (i.e., net pressure) and shear stresses imposed on the 𝑖𝑡ℎ boundary 

element, shear and normal displacement discontinuities at any element 𝑗 can be computed 

solving the following system of equations for 𝑖 = 1 𝑡𝑜 𝑁 (total number of segments) using 

for instance the Gaussian elimination method (i.e., system of 2𝑁 simultaneous linear 

equations in 2𝑁 unknowns):  

𝜎𝑠
𝑖 = ∑ 𝐴𝑠𝑠

𝑖𝑗
𝐷𝑠

𝑗

𝑁

𝑗=1

+ ∑ 𝐴𝑠𝑛
𝑖𝑗

𝐷𝑛
𝑗

𝑁

𝑗=1

 , (17) 

𝜎𝑛
𝑖 = ∑ 𝐴𝑛𝑠

𝑖𝑗
𝐷𝑠

𝑗

𝑁

𝑗=1

+ ∑ 𝐴𝑛𝑛
𝑖𝑗

𝐷𝑛
𝑗

𝑁

𝑗=1

 , (18) 

where 𝑨𝒔𝒔
𝒊𝒋

,  𝑨𝒔𝒏
𝒊𝒋

,  𝑨𝒏𝒔
𝒊𝒋

 and 𝑨𝒏𝒏
𝒊𝒋

 are boundary influence coefficient matrices for the stresses 

defined respectively as: shear stress at element 𝑖𝑡ℎ induced by shear displacement 

discontinuity at element 𝑗𝑡ℎ, shear stress at element 𝑖𝑡ℎ  induced by normal displacement 

discontinuity at element 𝑗𝑡ℎ, normal stress at element 𝑖𝑡ℎ  induced by shear displacement 

discontinuity at element 𝑗𝑡ℎ, and normal stress at element 𝑖𝑡ℎ  induced by normal 

displacement discontinuity at element 𝑗𝑡ℎ. Finally, 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 displacements (𝑢) and 

stresses (𝜎) due to opening and/or slippage of discretized elements (𝑗 = 1 𝑡𝑜 𝑁) can be 

calculated for any arbitrary point in the domain using an appropriate coordinate system 

transformation and the principle of superposition associated with the following equations: 
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Displacement  

𝑢𝑥 = 𝐷𝑥[2(1 − 𝜐)𝑓𝑦 − 𝑦𝑓𝑥𝑥] + 𝐷𝑦[−(1 − 2𝜐)𝑓𝑥 − 𝑦𝑓𝑥𝑦] , (19) 

𝑢𝑦 = 𝐷𝑥[(1 − 2𝜐)𝑓𝑥 − 𝑦𝑓𝑥𝑦] + 𝐷𝑦[2(1 − 𝜐)𝑓𝑦 − 𝑦𝑓𝑦𝑦] , (20) 

 

Stress  

𝜎𝑥𝑥 = 2𝐺𝐷𝑥[2𝑓𝑥𝑦 + 𝑦𝑓𝑥𝑦𝑦] + 2𝐺𝐷𝑦[𝑓𝑦𝑦 + 𝑦𝑓𝑦𝑦𝑦] , (21) 

𝜎𝑦𝑦 = 2𝐺𝐷𝑥[−𝑦𝑓𝑥𝑦𝑦] + 2𝐺𝐷𝑦[𝑓𝑦𝑦 − 𝑦𝑓𝑦𝑦𝑦] , (22) 

𝜎𝑥𝑦 = 2𝐺𝐷𝑥[𝑓𝑦𝑦 + 𝑦𝑓𝑦𝑦𝑦] + 2𝐺𝐷𝑦[−𝑦𝑓𝑥𝑦𝑦] , (23) 

where 𝐺 is the shear modulus, 𝜐 is the Poisson’s ratio, and 𝐷𝑥 and 𝐷𝑦 are displacement 

discontinuities in 𝑥 and 𝑦 direction, respectively. Function 𝑓(𝑥, 𝑦) represents the solution 

of the constant displacement discontinuity problem with a segment length of 2𝑎: 

𝑓(𝑥, 𝑦) = −
1

4𝜋(1 − 𝜐)
[𝑦 (𝑡𝑎𝑛−1

𝑦

𝑥 − 𝑎
− 𝑡𝑎𝑛−1

𝑦

𝑥 + 𝑎
)

− (𝑥 − 𝑎) ln (√(𝑥 − 𝑎)2 + 𝑦2)

+ (𝑥 + 𝑎) ln (√(𝑥 + 𝑎)2 + 𝑦2)] . 

(24) 

DDM has 2 main advantages compared with Finite Element Method (FEM) for 

modeling fracture mechanics: (1) computation cost is relatively low since discretization is 

not required in the entire simulation domain, but only along crack segments; (2) fracture 

propagation does not involve potential remeshing issues and it is a simple process 

achieved by the addition of elements at the tip. On the other hand, shortcomings associated 

with DDM may include: (1) potential inability to deal with nonlinearities and 

heterogeneities; (2) linear elastic deformation, which might not be the most accurate 

assumption to be used in the fracture vicinity and tip. 

A flowchart detailing the process applied to estimate DSS and LF-DAS based on 

the numerical solution is present in Figure 2.4. DDM inputs are: (1) Young’s modulus 

(𝐸); (2) Poisson’s ratio (𝜐); (3) horizontal stress difference (𝛥𝑆𝐻 = 𝑆𝐻𝑚𝑎𝑥 − 𝑆ℎ𝑚𝑖𝑛); (4) 
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element length (𝐿𝑒); (5) net pressure or normal stress (𝑃𝑛𝑒𝑡) for hydraulic fracture elements 

(tensile failure); (6) shear stress (𝜎𝑠) for natural fracture elements (shear failure). At the 

end of each time step, the tangent displacement component (𝑢𝑦) (parallel to monitor well) 

is the DDM output that I select to store. 

 
Figure 2.4–Flowchart of DSS and LF-DAS calculation using the numerical solution. 

 

Hydraulic fracture propagation is represented in the simulation by adding 

rectangular elements (𝐿𝑒) at the fracture tip, and fluid mechanics associated with such 

fractures are incorporated in the analysis by a constant adjustment of net pressure (𝛥𝑃𝑛𝑒𝑡) 

in each element at the end of a time step.    

Taleghani and Olson (2014) proposed three different propagation-path scenarios 

that may take place when hydraulic and natural fractures interact: (a) hydraulic fracture 

crosses natural fracture and continues propagating along original path; (b) hydraulic 

fracture intersects natural fracture and diverts towards natural fracture system, creating a 

new fracture path at the end of the natural fracture; (c) hydraulic fracture intersects natural 

fracture and diverts along natural fracture path, however at some weak point it kinks out 

(Figure 2.5). 
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Figure 2.5–Represented by dashed lines, possible propagation pathways that hydraulic fractures 

(red) follow after intersecting natural fractures (dark aqua): (a) along its original direction, (b) 

along natural fracture creating a new path at the end, and (c) along natural fracture kinking out 

in a weak point. 

 

I assume interaction between hydraulic and natural fractures when the former 

crosses the latter and keeps propagating along maximum horizontal stress (𝑆𝐻𝑚𝑎𝑥) 

direction. The aftermath is fluid leak-off, natural fracture reactivation, and posterior 

slippage phenomenon (motion). Fluid leak-off is represented by a constant increase in 

natural fracture shear stress (𝛥𝜎𝑠), which is equivalently compared to a reduction in 

effective normal stress on the planar discontinuity due to pore pressure increase.   

In the next step of the simulation, when fracture propagation reaches the last time 

step, DSS is calculated. Absolute strain along the y-direction (𝜖𝑦) is defined as:  

Therefore, absolute strain at 𝑗𝑡ℎ position along the fiber is estimated deriving 

displacement in space by the application of central difference approximation and 

incorporation of fiber gauge length (𝐿𝐺) concept, which is a topic associated with data 

resolution and typically ranges from 1 to 10 m in the field (Hartog, 2017; Sherman et al., 

2019):     

𝜖𝑦 =
𝜕𝑢𝑦

𝜕𝑦
 . 

(25) 

𝜖𝑦
𝑗

=
𝑢𝑦

𝑗+
𝐿𝐺
2 − 𝑢𝑦

𝑗−
𝐿𝐺
2

𝑦𝑗+
𝐿𝐺
2 − 𝑦𝑗−

𝐿𝐺
2

=
𝑢𝑦

𝑗+
𝐿𝐺
2 − 𝑢𝑦

𝑗−
𝐿𝐺
2

𝐿𝐺
 . (26) 
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Once DSS is calculated, LF-DAS along the fiber is estimated using the same 

methodology applied in the analytical solution (Eq. 16).   

Time derivative of strain may enhance the numerical noise (Tan et al., 2021) of 

data acquired specially from simulations including hydraulic and natural fracture 

interactions. Thus, application of 2D Gaussian smoothing filter in some cases can simplify 

the interpretation process of waterfall plots. 

 

2.2.1. Numerical Solution Validation 

To validate the numerical solution, I performed a simulation of single fracture failing in 

tensile mode (Figure 2.6) and compared the magnitude of calculated normal displacement 

discontinuities (i.e., fracture width) with results obtained by the analytical method (Eq. 

27) (Olson, 1990; Valkó and Economides 1995).   

 
Figure 2.6–Map view (𝒙𝒚 − 𝒑𝒍𝒂𝒏𝒆) of strain at the end of numerical simulation 

(100 time steps) of a fracture with 500 ft half-length. 

 

𝑤(𝑥) =
4

𝐸′𝜋
[(𝑃0𝜋 + 𝑃1𝑎)√(𝑎2 −  𝑥2) + 𝑃1𝑥2 ln (

𝑎 + √(𝑎2 − 𝑥2)

𝑥
)] , (27) 

Where 𝑤(𝑥) is the fracture width as a function of space for a linear net pressure 

distribution in the fracture, 𝐸′ is the plane strain modulus (Eq. 3), 𝑎 is the fracture half-
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length, and 𝑃0 and 𝑃1 are the linear and angular coefficients of the net pressure equation 

(Eq. 28), respectively.   

𝑃𝑛𝑒𝑡(𝑥) = 𝑃0 + 𝑃1𝑥 . 
(28) 

In this case, 200 rectangular elements are used to discretize a fracture with constant 

net pressure (i.e., 𝑃𝑛𝑒𝑡 = 𝑃0). Consequently, Equation 27 is simplified to: 

𝑤(𝑥) =
4𝑃0

𝐸′
[√(𝑎2 − 𝑥2) ] . (29) 

 Table 2.1 shows the magnitude of variables used in the validation process of 

numerical solution.  

Table 2.1–Parameters used in the validation of numerical solution. 
Fracture half-length 

(ft) 

Net pressure 

(psi) 

Poisson’s Ratio 

(Unitless) 

Young’s Modulus 

(psi) 

500 50 0.25 4x106 

 

Figure 2.7 shows that fracture aperture estimated by the numerical solution is 

slightly above results obtained with analytical solution. The absolute error is negligible 

along fracture half-length, reaching maximum values near the fracture tip (i.e., 𝑥/𝑎 ratio 

close to 1).  
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Figure 2.7–Fracture width estimated by analytical and numerical methods are 

represented by full red curve and dashed red curve, respectively. The relative error at the 

end of a simulation comprised by 100 time steps is shown by the full black curve.  

 

2.3. Machine Learning and Deep Learning  

Machine learning is a field of study that gives computers the ability to learn without 

explicitly being programed (Samuel, 1967). The technology takes the approach of letting 

computers learn to program themselves through experience when exposed to data (i.e., 

training stage). The model performance is evaluated using data that is held out from the 

training data (i.e., testing stage). The result is a model that can be used in the future with 

different sets of data.  

 Successful machine learning algorithms may have three different functions 

(Malone et al., 2020): (1) descriptive, meaning that the system uses the data to explain 

what happened; (2) predictive, meaning the system uses the data to predict what will 

happen; or (3) prescriptive, meaning the system will use the data to make suggestions 

about what action to take.  

 According to James et al. (2021) there are three subcategories of machine learning 

models: (1) supervised, which is trained with labeled datasets and may be applied in 

regression or classification problems; (2) unsupervised, which looks for patterns or trends 
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in unlabeled data; and (3) reinforcement, which trains machines through trial and error to 

take the best action by establishing a reward system.   

Deep learning (DL) is a subset of machine learning in which the tasks are broken 

down and distributed onto algorithms that are organized in consecutive layers (Huang et 

al., 2019). Each layer builds up on the output from the previous layer. Together the layers 

constitute an artificial neural network (ANN) that mimics the distributed approach to 

problem-solving carried out by neurons in a human brain (Figure 2.8).  

 

Figure 2.8–Schematic architecture of a deep learning model. It is represented by a combination of 

input, hidden and output layers containing neurons. Adapted from Bahi and Batouche (2018). 

 

 The deep learning model is composed by input, hidden and output layers, each 

with multiple neurons. Weights are parameters connecting neurons from adjacent layers. 

The linear combination of neurons from input layer and respective weights is the input of 

a nonlinear activation function (e.g., Sigmoid, Hyperbolic Tangent [Tanh], Rectified 

Linear Unit [ReLU], Leaky ReLU, Exponential Linear Unit [ELU]), which outputs the 

neuron of a subsequent hidden layer (i.e., forward propagation) during the training process 

(Figure 2.9) (Alanis et al., 2019).   
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Figure 2.9–Linear combination of neurons from input layer and respective weights working as 

input of activation function. The function incorporates nonlinearities in the process and outputs 

one neuron of subsequent layer. 

 

 A specific loss function (e.g., mean squared error, mean absolute error) is selected 

to calculate the error between estimated and true output values at the end of a forward 

pass. The backward propagation is performed considering loss function derivatives with 

respect to weights coupled with a specific learning rate (e.g., gradient descent optimizer). 

The purpose of backward pass is to update the model weights and consequently minimize 

the loss function (Hastie et al., 2009). Therefore, the loss function magnitude of a model 

that works properly during training stage will tend to reduce as the number of 

forward/backward cycles (i.e., epochs) increases.   

 

2.3.1. Deep Learning Algorithm and Fracture Width Estimation 

In this project, the numerical framework generates all necessary data to train and test the 

deep learning (DL) algorithm. For fracturing scenarios composed of single and multiple 

hydraulic fractures, the DDM software performs simulations in which several observation 

wells are deployed in the field to monitor fracture propagation (Gurjao et al., 2022a). 

Tangent displacement component (𝑢𝑦) is the output I select to store for posterior 

application with the DL model.  

For each monitor well at a certain distance from the operation well (i.e., X 

location), data is generated in meshgrid style (i.e., image format). Each grid point is 

located at a specific position in space (X and Y) and has time (t); moreover, it is 

characterized by one 𝑢𝑦 value (Figure 2.10).  
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Figure 2.10–Generic meshgrid dataset for the specific case where monitor and operation wells are 

separated by distance X, with details for components of each grid point (i.e., space, time, and 

displacement y). 

In the next phase, I work with the Artificial Neural Network (ANN) algorithm. 

Space (X and Y) and time (t) are used as input features, and axial displacement (𝑢𝑦) as 

output variable (Gurjao et al., 2022b). The selected architecture of ANN is composed of 

seven hidden layers with the number of neurons varying from 10 to 100 per layer (Figure 

2.11).   

 
Figure 2.11– Selected architecture of ANN algorithm used in this project: (1) The input layer is 

composed of three features (X, Y, and time); (2) There are seven hidden layers with the number 

of neurons varying from 10 to 100; and (3) The output layer consists of the 𝒖𝒚 variable. 
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  I apply hyperbolic tangent (𝑡𝑎𝑛ℎ) as the nonlinear activation function in each 

hidden layer. The adaptive moment estimation (Adam) optimizer is used with a constant 

learning rate of 1e-4. The batch size and number of epochs are specified to be 1000. In 

terms of loss function, mean squared error (MSE) or L2 loss is used in the dataset 

representing the scenario composed by single hydraulic fracture, and mean absolute error 

(MAE) or L1 loss with data representing the scenario consisting of multiple hydraulic 

fractures:  

 

where 𝑛 is the total number of observations, 𝑌𝑖 is the true output, and 𝑌̂𝑖 is the predicted 

output from the ANN model.  

  Since I’m working with tiny outputs, squaring the difference between true and 

predicted values can result in negligible errors even when the magnitude of these elements 

is far from close, consequently some weights and biases of ANN may be barely updated, 

and the algorithm will tend to don’t present an optimum performance. Thus, in the dataset 

composed by multiple fractures opening, I use L1 instead of L2 loss function to examine 

if regression model could achieve better results. 

In data wrangling stage: (1) there is no need to clean up data since it is generated 

by my simulator; (2) image raw data is reorganized in column-wise format; and (3) ANN 

inputs and outputs are normalized to range between 0 and 1: 

 
𝑍𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑍 − 𝑍𝑚𝑖𝑛

𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛
. 

(32) 

In data splitting, out of 13 monitor wells, a dataset of 12 is used for training and 1 

for testing. The training stage is performed with two objectives: (1) avoid overfitting and 

(2) minimize ANN loss function as the number of epochs increases. During the testing 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

, (30) 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑌𝑖 − 𝑌̂𝑖|,

𝑛

𝑖=1

 (31) 
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stage, the trained model is applied to predict axial displacement in the left monitor well. 

Once 𝑢𝑦 is estimated, I calculate the relative error between estimated and true values 

(results are displayed in the waterfall plot). In the next step, low-frequency distributed 

acoustic sensing (LF-DAS) is calculated by deriving predicted tangent displacement 

component sequentially in space and time (Figure 2.12).  

 
Figure 2.12– Dataset of specific scenario composed by 3 hydraulic fractures. On the left, axial 

displacement component (𝒖𝒚) of 7 monitor wells deployed in different locations (i.e., X = 0, 100, 

200, 300, 400, 500 and 600 ft). On the right, corresponding LF-DAS data of each X position 

obtained deriving 𝒖𝒚 sequentially in space and time. 

I observe that 𝑢𝑌 is a continuous variable before fracture hit at monitor well 

(Figure 2.13), and it becomes discontinuous right at the hit moment (Figure 2.14). The 

former is interpreted as a direct effect of rock deformation, and the latter as a consequence 

of rock breakdown.   
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Figure 2.13–Dataset of specific fracture scenario characterized by: (1) single hydraulic fracture 

located at y = 100 ft; (2) monitor well placed at X = 300 ft (i.e., the distance between operation 

and monitor wells); and (3) fracture hit at t = 54.7 min. In this graph, predicted axial 

displacement of four time steps before fracture hit are plotted against channel location 

(continuous data). As time advances, fracture approaches the fiber and rock deformation at 

monitor well location increases. 

 

 
Figure 2.14–Dataset of specific fracture scenario characterized by: (1) single hydraulic fracture 

located at y = 100 ft; (2) monitor well placed at X = 300 ft (i.e., the distance between operation 

and monitor wells); and (3) fracture hit at t = 54.7 min. In this graph, predicted axial 

displacement of four time steps after fracture hit are plotted against channel location 

(discontinuous data). As time increases, rock pulls apart even more at monitor well location.  

Starting at the hit moment at a specific location, I measure for each time step the 

“discontinuity length” (term coined in this work) observed in the plot of predicted tangent 

displacement component versus channel location (Figure 2.15). Errors between this term 

and the true fracture width calculated by DDM software are negligible. Therefore, I 
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demonstrate for the first time that “discontinuity length” may be related to fracture 

aperture. 

 
Figure 2.15–Dataset of specific fracture scenario characterized by: (1) single hydraulic fracture 

located at y = 100 ft; (2) monitor well placed at X = 300 ft (i.e., the distance between operation and 

monitor wells); and (3) fracture hit at t = 54.7 min. In this graph, predicted axial displacement at t 

= 58 min (after fracture hit) is plotted against channel location (discontinuous data). The 

magnitude of “Discontinuity length” is 0.122 in, and it is approximately the fracture width. 

Using the developed spatio-temporal deep learning model, I predict the tangent 

displacement component in multiple X locations. The “discontinuity length” method is 

applied in each of these places to estimate fracture width along time, which leads to 

improvement of hydraulic fracture geometry characterization beyond the near wellbore 

region. Finally, the relative error between estimated and true widths is calculated.  

 

2.4. Fracture Width Estimation in the Field Using “Discontinuity Length” Method 

LF-DAS field data is acquired in the form of optical phase change (𝛥𝛷) in radian units 

(Lindsey et al., 2020), which is linear proportional to strain perturbation according to 

Lindsey and Martin (2021):  

 
𝛥𝛷 =

4𝜋𝑛𝐿𝐺𝜓

𝜆
𝜖, (33) 
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where 𝑛 is fiber core refractive index (≈1.45 for pure silica glass), 𝐿𝐺  is fiber gauge length 

in meters (known value in the field), 𝜓 is the Pockels coefficient of fiber (≈0.79 for pure 

silica glass), 𝜆 is the laser light wavelength that commonly falls in the near-infrared range 

(≈1,550nm), and 𝜖 is the unitless axial strain measurement along fiber axis. According to 

Liu et al. (2020), recorded optical phase change in the field should be differentiated in 

time (after filtering process to remove noise) in order to be linear correlated with strain 

rate along the fiber: 

where 𝛥𝛷̇ is optical phase change derived in time, and 𝜖̇ is strain rate. I can solve for strain 

rate multiplying 𝛥𝛷̇ by the constant 
𝜆

4𝜋𝑛𝐿𝐺𝜓
. Then, axial displacement can be calculated 

integrating strain rate sequentially in time and space:  

 
𝑢𝑦 = ∬ 𝜖̇𝑑𝑡𝑑𝑦. 

(35) 

Finally, I propose to use calculated field 𝑢𝑦 to estimate fracture width at monitor 

well location along time (starting at fracture hit instant) measuring discontinuity 

magnitudes (i.e., applying the “discontinuity length” method).    

 

 

 

 
𝛥𝛷̇ =

4𝜋𝑛𝐿𝐺𝜓

𝜆
𝜖̇, (34) 
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3. RESULTS AND DISCUSSIONS 

 

This chapter is divided in four sections: (1) analytical solution, (2) numerical solution, (3) 

deep learning algorithm and fracture width estimation, and (4) fracture width estimation 

using strain dataset from the stress shadow zone.  

I apply the analytical technique in a sensitivity analysis to evaluate the impact of 

rock and fluid parameters on strain time histories generated by single fracture failing in 

tensile mode. The numerical technique is used to model strain fields of advanced scenarios 

composed by multiple fractures failing in tensile and shear modes. In this case five 

objectives are listed: (1) determine the influence of natural fracture (NF) geometry on 

strain and cluster efficiency, (2) quantify fiber gauge length (GL) impact on strain, (3) 

characterize strain fields when pumping stops, (4) identify fracture hit moment based on 

stress derivative, and (5) analyze how stress varies as a function of perpendicular distance 

from the fracture face (i.e., stress shadow transmissibility).  

The third section is dedicated to develop deep learning (DL) models using 

numerical synthetic data (two scenarios: single and multiple hydraulic fractures) from 

multiple monitor wells to predict strain fields in any position and time. The goal is to 

integrate the DL model and “discontinuity length” method (proposed in this project) to 

improve fracture geometry characterization estimating width in multiple locations as a 

function of time. In the last section, synthetic data generated by the numerical model is 

used to train and test machine learning algorithms (e.g., multilinear regression, support 

vector regression, artificial neural network, and random forest) inputting strain fields from 

the stress shadow region and outputting fracture aperture.  

 

3.1. Analytical Solution 

In this work applying the analytical technique for simulation time span of 300 seconds, I 

consider a single perforation cluster opening and cross-well fiber deployment with 

monitor and operation wells distancing 100 ft. Fracture height and Poisson’s ratio are 

constant in all simulated scenarios assuming 150 ft and 0.25, respectively. In the 
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sensitivity analysis studies, Young’s modulus rages from 1x106 to 7x106 psi, fluid 

viscosity varies from 5 to 20 cp, and injection rate from 5 to 20 bbl/min. 

Table 3.1 shows rock property (i.e., Young’s modulus) and fluid properties (i.e., 

viscosity and injection rate) used in base case scenario.    

 

Table 3.1–Parameters used in base case scenario. 
Young’s Modulus 

(psi) 

Fluid Viscosity 

(cp) 

Injection Rate 

(bbl/min) 

4x106 10 10 

 

Typical characteristics present in field data (Figure 3.1) can be observed in the 

synthetic absolute strain (DSS) and strain rate (LF-DAS) waterfall plots (Figure 3.2a and 

Figure 3.2b) such as heart-shaped pattern from a fracture approaching the fiber, stress 

shadow (i.e., compression zone adjacent to an opening fracture) and fracture-hit. This 

comparison indicates that the analytical technique captures important features properly 

and represents its qualitative validation.  

Propagation of hydraulic fracture right after its hit in monitor well at t = 86.9 

seconds is revealed in LF-DAS synthetic data by hot colors that represent the extension 

phenomena. Furthermore, strain rate magnitude decreases following the hit, which is a 

direct effect of the net pressure reduction typically associated with KGD fracture model 

(Figure 3.2c). I recognize the potential artificiality of drop in net pressure estimated by 

KGD model and anticipate that the same principle applies to an increase in net pressure 

along time (i.e., it will result in an increase in strain magnitude along time after the hit).  



 

31 

 

 
Figure 3.1–Low-frequency DAS field data highlighting classic features associated with 

propagation of hydraulic fractures: (1) heart-shaped pattern, (2) fracture hits, and (3) stress 

shadow surrounding the opening fracture. Adapted from Richter et al. (2019). 

 

Figure 3.2–(a) DSS and (b) LF-DAS synthetic data of base case scenario applying the analytical 

solution. (c) Net pressure calculated using the 2D KGD fracture model for this specific case. Typical 

features present in field data are observed: heart-shaped pattern of a fracture approaching the 

fiber, stress shadow, and fracture-hit (t = 86.9s) followed by its propagation. 

  

a. Distributed Strain Sensing (DSS) b. Low-Frequency Distributed Acoustic Sensing 

(LF-DAS) 

 
c. Net pressure plot 
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I perform the first sensitivity analysis by varying Young’s modulus and keeping 

constant fluid viscosity and injection rate with the same values of the base case scenario. 

Table 3.2 shows parameters used in simulations. 

Table 3.2–Parameters used in sensitivity analysis 1. 

 
Young’s Modulus 

(psi) 

Fluid Viscosity 

(cp) 

Injection Rate 

(bbl/min) 

Scenario a 1x106 10 10 

Scenario b 7x106 10 10 

 

Figure 3.3 shows DSS and LF-DAS synthetic data obtained in Sensitivity Analysis 

1. Fracture hits monitor well at t = 122.9 seconds and t = 75.6 seconds in scenarios a and 

b, respectively. Comparing these results with the base case scenario (Table 3.1), where 

the hit takes place at t = 86.9 seconds, I observe that the fracture propagates faster in 

formations with high Young’s modulus. 

  
a. DSS → Scenario a b. LF-DAS → Scenario a 
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c. DSS → Scenario b d. LF-DAS → Scenario b 

Figure 3.3–DSS and LF-DAS results of Sensitivity Analysis 1. Fracture hits monitor well faster in 

scenario b where Young’s modulus is higher. 

Figure 3.4 shows that over time the fracture generated in scenario a (lower 

Young’s modulus) has greater average width. 

 
Figure 3.4–Average fracture width over time of scenarios a and b (Sensitivity Analysis 1: 

varying Young’s modulus). 

I perform the second sensitivity analysis by varying fluid viscosity and keeping 

constant Young’s modulus and injection rate with the same values of the base case 

scenario. Table 3.3 shows the parameters used in simulations.  

Table 3.3–Parameters used in sensitivity analysis 2. 
 Young’s Modulus 

(psi) 

Fluid Viscosity 

(cp) 

Injection Rate 

(bbl/min) 

Scenario a 4x106 5 10 

Scenario b 4x106 20 10 
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Figure 3.5 shows DSS and LF-DAS synthetic data obtained in Sensitivity Analysis 

2. Fracture hits monitor well at t = 73.1 seconds and t = 103.4 seconds in scenarios a and 

b, respectively. Comparing these results with the base case scenario (Table 3.1), where 

the hit takes place at t = 86.9 seconds, I note that the fracture propagates faster when low 

viscosity fluids are used.  

 

  
a. DSS → Scenario a b. LF-DAS → Scenario a 

  
c. DSS → Scenario b d. LF-DAS → Scenario b 

Figure 3.5–DSS and LF-DAS results of Sensitivity Analysis 2. Fracture hits monitor well faster in 

scenario a where the fluid viscosity is lower. 

Figure 3.6 shows that over time the fracture generated in scenario b (higher fluid 

viscosity) has greater average width. 
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Figure 3.6–Average fracture width over time of scenarios a and b (Sensitivity Analysis 2: 

varying fluid viscosity). 

I perform the third sensitivity analysis varying injection rate and keeping constant 

Young’s modulus and fluid viscosity with the same values of the base case scenario. Table 

3.4 shows the parameters used in simulations.   

 

Table 3.4–Parameters used in sensitivity analysis 3. 

 
Young’s Modulus 

(psi) 

Fluid Viscosity 

(cp) 

Injection Rate 

(bbl/min) 

Scenario a 4x106 10 5 

Scenario b 4x106 10 20 

Figure 3.7 shows DSS and LF-DAS synthetic data obtained in Sensitivity Analysis 

3. Fracture hits monitor well at t = 146.2 seconds and t = 51.7 seconds in scenarios a and 

b, respectively. Comparing these results with the base case scenario (Table 3.1), where 

the hit takes place at t = 86.9 seconds, I note that under the assumption of high fluid 

efficiency, the fracture propagates faster at injecting high rates. 
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a. DSS → Scenario a b. LF-DAS → Scenario a 

  
c. DSS → Scenario b d. LF-DAS → Scenario b 

Figure 3.7–DSS and LF-DAS results of Sensitivity Analysis 3. Fracture hits monitor well faster in 

scenario b where injection rate is higher. 

Figure 3.8 shows that over time the fracture generated in scenario b (higher 

injection rate) has greater average width. 
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Figure 3.8–Average fracture width over time of scenarios a and b (Sensitivity Analysis 3: 

varying injection rate). 

Table 3.5 summarizes qualitatively how an increase in Young’s modulus (𝐸), fluid 

viscosity (𝜇), or injection rate (𝑖) can impact the fracture propagation speed (i.e., fracture 

hit) detected in strain waterfall plots. These results (1) confirm important known trends 

(Valkó and Economides 1995), (2) indicate that strain type of data is sensitive to a series 

of properties associated with the hydraulic fracturing treatment, (3) reveal that assuming 

a high fluid efficiency, injection rate is the variable with greatest impact on fracture 

propagation speed and average fracture width, and (4) indicate that field data may be used 

to infer the magnitude of a variety of rock/fluid parameters.  

Table 3.5–Qualitative review of fracture propagation speed when the specified 

parameter is increased individually. 

Parameter Fracture propagation speed 

↑ 𝐸 High 

↑ 𝜇 Low 

↑ 𝑖 High 

 

The integration of DSS data and fracture geometry characteristics reveals: (1) if 

injection rate is constant, the heart-shaped pattern size is directly proportional to average 

fracture width, and (2) if injection rate varies, the heart-shaped pattern size is inversely 

proportional to average fracture width.  
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3.2. Numerical Solution 

I apply the numerical technique for simulation time span of 1 hour, to model multiple 

perforation clusters (e.g., 5) and a cross-well fiber deployment in the base case scenario. 

Both horizontal wells are drilled perpendicular to maximum horizontal stress (𝑆𝐻𝑚𝑎𝑥); 

consequently, transverse hydraulic fractures are generated in a non-reverse stress regime. 

Adopted fiber gauge length is on the order of 1 m. Pressure distribution in each perforation 

cluster is linear, decreasing from wellbore location towards the fracture tip. Fluid leak-off 

is represented by an adjustment of 1.75 psi in shear and normal stresses at the end of each 

time step. Completion and geomechanical parameters applied in simulations appear in 

Table 3.6.  

Table 3.6–Parameters used in numerical simulation. 

Completion Parameters Geomechanical Parameters 

Stage Length 

(ft) 

Cluster Spacing 

(ft) 

Poisson’s Ratio 

(Unitless) 

Young’s Modulus 

(psi) 

Hori. Stress Diff. 

(psi) 

200 50 0.25 4x106 1x103 

 

Hydraulic fracture propagation speed (Table 3.7) is predefined with HFs 1 and 5 

located respectively on top and bottom of the stage advancing with greatest speed, and HF 

3 placed in the center propagating with smallest speed due to stress shadow effect. 

Table 3.7– Hydraulic fracture propagation speed. 
HFs 1 and 5 

(ft/min) 

HFs 2 and 4 

(ft/min) 

HF 3 

(ft/min) 

2.75 2.45 2.05 

 

DSS and LF-DAS modeling results (Figure 3.9) properly represent classic features 

present in field data: the heart-shaped pattern from a fracture approaching the fiber, stress 

shadow (i.e., compression zone adjacent to an opening fracture), and fracture-hit.  
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a. Distributed Strain Sensing (DSS) b. Low-Frequency Distributed Acoustic Sensing 

(LF-DAS) 

 

Figure 3.9–(a) DSS and (b) LF-DAS modeling results of base case scenario consisting of 5 

perforation clusters. Typical characteristics present in field data can be observed more clearly in the 

LF-DAS waterfall plot: fracture approaching the fiber pictured as heart-shaped pattern, fracture 

hits, and stress shadow.  

Figure 3.10 shows four different examples of LF-DAS field data highlighting 

traditional patterns that are observed in the synthetic data. This comparison represents a 

qualitative validation of the numerical framework developed in this project to simulate 

strain fields generated during the propagation of fracture systems. 

  
a. LF-DAS [Adapted from Richter et al. (2019)]. b. LF-DAS [Adapted from Wang et al. (2021)]. 
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c. LF-DAS [Adapted from Elliott et al. (2022)]. d. LF-DAS [Adapted from Ugueto et al. (2022)]. 

Figure 3.10–Four LF-DAS field examples showing traditional features modeled by the numerical 

framework developed in this project: the heart-shaped pattern of a fracture approaching the fiber, 

stress shadow and fracture hit.  

  

The sum of strain rate is an approach that may be used to identify fracture hit 

location and estimate cluster spacing (Figure 3.11).   

 

Figure 3.11–Strain rate sum of base case scenario. Individual spikes and distance between 

consecutives spikes represent the cluster location and spacing, respectively. 

Reviewing the synthetic strain data from numerical and analytical techniques, I 

observe that both present different polarities in the fracture corridor immediately after the 

fracture hit. The former is associated with extension agreeing with field data, and the latter 

is associated with compression. This difference is related to the method applied in both 

techniques to measure strain fields. The fiber gauge length concept is used in numerical 

simulations and in field operations to estimate the approximate strain magnitude over a 
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specific length, whereas Hooke’s law approach is applied in analytical simulations to 

assess strain magnitudes pointwise.  

The presence of natural fractures (NF) in many unconventional reservoirs has been 

confirmed by several geological studies (Curtis, 2002; Gale and Holder, 2010). Many 

shale outcrops, cores, and image logs contain fractures or fracture traces, and microseismic 

event patterns associated with hydraulic fracture stimulation have been ascribed to natural 

fracture reactivation (Gale et al., 2014; Gamboa et al., 2014). Moreover, natural fractures 

have long been suspected as a factor impacting hydrocarbon production in shale reservoirs 

when the observed production exceeds expected rates (Gale et al., 2014).  

Natural fractures are a fundamental aspect of the geological structure of numerous 

unconventional reservoirs. Therefore, to study their potential impact in DSS and LF-DAS 

results, I model strain and strain rate considering the interaction between natural and 

hydraulic fractures failing in shear and tensile modes, respectively.  

Distribution of natural fractures in the field is an element with a high level of 

uncertainty. In reservoir simulation for instance, the traditional discrete fracture networks 

(DFN) is a probabilistic approach used to model such type of fractures. Since one of the 

purposes of this work is to investigate if strain results are affected by the modification of 

natural fractures geometric characteristics, I have designed natural fractures in which their 

configuration (e.g., orientation angle and length) can be controlled (not possible using 

DFN).  

In this case a sensitivity analysis consisting of three scenarios (Figure 3.12) is 

performed by varying the orientation angle (strike in 3D mode) and length of natural 

fractures. The simulation accounts for 10 natural fractures per cluster, the orientation 

varies from ±20 to ±60°, and the length ranges from 13.3 to 25 ft. 
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a. Scenario a: Orientation: ±20°, Length:13.3 ft b. Scenario b: Orientation: ±40°, Length:16.3 ft 

 

 

 

c. Scenario c: Orientation: ±60°, Length:25 ft  

Figure 3.12–Map view of lateral section of horizontal wells varying NF orientation and length. 

Figure 3.13 shows DSS and LF-DAS modeling results of scenarios a, b and c. 

 
 

a. DSS → Scenario a b. LF-DAS → Scenario a 
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c. DSS → Scenario b 

 

d. LF-DAS → Scenario b 

 

  
e. DSS → Scenario c f. LF-DAS → Scenario c 

Figure 3.13–DSS and LF-DAS modeling results of sensitivity analysis varying NF orientation and 

length. 

Evaluation of LF-DAS results in Figure 3.13 reveals the following:    

1. LF-DAS waterfall plots display details that are not observed in DSS waterfall 

plots. 

2. Interaction between natural and hydraulic fractures, results in DSS/LF-DAS 

time histories plots entailing complexities not observed in the base case 

scenario (Figure 3.9). Moreover, it modifies stress shadow effect impacting 

the generation of throughgoing hydraulic fractures from different clusters. 

3. Geometric details of natural fractures are not evident (lack of spatial 

resolution) if such planar discontinuities are located near in individual (i.e., 

scenario a) or adjacent clusters (i.e., scenario c).   
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3.2.1. Fiber Gauge Length Impact on Strain 

In the previous numerical simulations, I have modeled strain fields generated during 

hydraulic fracturing treatments applying a small fiber gauge length (i.e., 1 m), attempting 

to obtain time histories catching detailed geometric features of fractures failing in shear 

and tensile modes. In this section, scenario b (Figure 3.12b) is modeled by considering 5 

and 10 m gauge lengths to study the impact it may have on LF-DAS results (Figure 3.14).   

 
a. LF-DAS → 1 m fiber gauge length 

  
b. LF-DAS → 5 m fiber gauge length c. LF-DAS → 10 m fiber gauge length 

Figure 3.14–(a, b, c) LF-DAS waterfall plots using 1 m, 5 m, and 10 m gauge lengths, respectively. 

 

LF-DAS waterfall plots in Figure 3.14a, Figure 3.14b, and Figure 3.14c indicate 

that an increase in fiber gauge length has the potential to mask strain data richness. I can 

distinguish the effects associated with natural and hydraulic fractures using 1 m gauge 

length (Figure 3.14a). However, for the 10 m gauge length (Figure 3.14c), the heart-
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shaped pattern of a fracture approaching the fiber is completely distorted, and to make 

things worse, no details linked to natural fractures are observed. Consequently, in this 

case, I am inclined to interpret the data purely in terms of opening fractures (data 

misinterpretation).       

 

3.2.2. Natural Fracture Impact on Cluster Efficiency 

The increment of oil and gas production in nanopore reservoirs is a topic that has a great 

dependence on cluster uniformity, one of the main challenges behind fracturing operations 

(Fragachan et al., 2019). In order to create hydraulic fractures that grow evenly and 

ultimately contact the maximum reservoir area, completion activities should be optimized 

using specialized tools such as simulation.  

Natural fractures (NF) can be densely distributed in shale reservoirs, and they may 

have the potential to impact cluster efficiency (i.e., cluster uniformity). Romberg et al. 

(2021) published a Marcellus field case where clusters placed in naturally fractured rock 

were preferentially taking the treatment slurry and perforation clusters away from pre-

existing fractures stopped propagating. Since it is a topic of great importance, in this work 

I perform simulations modeling strain type of data to investigate peculiarities associated 

with such case.          

Simulations consist of a cross-well fiber deployment with monitor and operation 

wells distancing 100 ft, and 5 perforation clusters with only one located in naturally 

fractured area (i.e., central position) comprised by10 natural fractures oriented ±50° and 

±65°.     

Two scenarios are simulated varying natural fracture length and keeping constant 

its distribution and orientation (strike in 3D mode) as mentioned in the previous paragraph. 

Natural fractures in scenario a are 6.5 and 9.86 ft long while 19.4 and 29.6 ft in scenario 

b. Figure 3.15a and Figure 3.15c present adopted geometry of both scenarios (a and b). 
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a. Length: 6.5 and 9.86 ft → Scenario a b. LF-DAS → Scenario a 

 

  
c. Length: 19.4 and 29.6 ft → Scenario b d. LF-DAS → Scenario b 

Figure 3.15–Map view of lateral section of horizontal wells varying NF length (a and c) and 

respective LF-DAS modeling results (b and d). 

Simulation results in Figure 3.15b and Figure 3.15d comply with Marcellus field 

data and do not exhibit great complexity.  

  Evaluation of LF-DAS results in Figure 3.15b and Figure 3.15d reveals the 

following aspects: 

1. Scenario a: Small portion of clusters immediately above and below the 

naturally fractured rock closes. Therefore, the impact promoted by short 

natural fractures on stress shadow is limited.  

2. Scenario b: Increasing natural fracture length results in greater stress 

shadowing effect surrounding central cluster. Thus, clusters immediately 
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above and below naturally fractured formation close completely right after 

short opening. 

  The following interpretation is proposed for the phenomena shown in simulations: 

1. Fluid leaks-off perforation cluster placed in NF region and moves towards pre-

existing fractures promoting: (1) NF stress increase, (2) NF motion, and (3) 

stress shadow. 

2. Stress shadow impacts clusters away from NF. 

3. Clusters occupying region without NF need additional net pressure to keep 

propagating. 

4. Required net pressure is not achieved, consequently clusters located in region 

with no NF will stop propagating. 

  Simulation of low-frequency DAS may be a valuable tool to assist engineers 

defining proper cluster spacing in naturally fractured formations in order to avoid low 

cluster efficiency and thus optimize completion design. 

 

3.2.3. Characterization of Strain Fields When Pumping Stops 

At the end of the fracturing treatment, when pumps are turned off, specialists have reported 

(Bourne et al., 2021) based on field datasets (e.g., microseismic and fiber-optics) that 

fractures might continue to grow. For the first time using fiber synthetic data, I 

characterize strain fields when pumping stops and thus demonstrate the physics of this 

question.    

The simulation setup consists of a single hydraulic fracture and cross-well fiber 

deployment with operation and monitor wells distancing 300 ft. Fracturing lasts about 60 

min and, when pumping stops, fiber monitors 30 min strain fields of 6 pressure drop 

gradients representing distinct fluid leak-off scenarios (Figure 3.16). I perform two 

studies to determine the pair extension-compression (i.e., polarity changes) in LF-DAS 
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time history plots when pumping is over: in study 1 (Figure 3.17) fracture propagation 

terminates and, in study 2 (Figure 3.18) it does not.  

 
Figure 3.16–Net pressure profile at operation well location assumed in studies 1 and 2. Pressure: 

(1) increases linearly for 60 min when the pump is on; (2) Drops 20 psi immediately at the pump 

off instant; and (3) Lastly drops following a linear trend for 30 min. Six different pressure drop 

gradients are analyzed when pumping stops. 

 

   
a. Case 1: 0.75x pressure drop gradient b. Case 2: 1.0x pressure drop gradient c. Case 3: 1.25x pressure drop gradient 

   
d. Case 4: 1.5x pressure drop gradient e. Case 5: 1.75x pressure drop gradient f. Case 6: 2.02x pressure drop gradient 

Figure 3.17–LF-DAS results of study 1 (fracture propagation terminates when pumping is finished) 

for all six pressure drop gradients. 
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a. Case 1: 0.75x pressure drop gradient b. Case 2: 1.0x pressure drop gradient c. Case 3: 1.25x pressure drop gradient 

   
d. Case 4: 1.5x pressure drop gradient e. Case 5: 1.75x pressure drop gradient f. Case 6: 2.02x pressure drop gradient 

Figure 3.18–LF-DAS results of study 2 (fracture propagation doesn’t terminate when pumping is 

finished) for all six pressure drop gradients. 

Strain rate results of study 1 (Figure 3.17) indicate polarity changes immediately 

at the pump off instant for all fluid leak-off scenarios: (1) fracture corridor sign switches 

from extension (i.e., opening) to compression (i.e., closing) and (2) fracture neighboring 

sign shifts from compression to extension. On the other hand, the LF-DAS dataset of study 

2 (Figure 3.18) reveals that the fracture may not close at the monitor well location when 

pumping stops. The smaller the pressure drop gradient, the later the fracture begins to 

close. Therefore, I infer that after the treatment phase, the hydraulic fracture continues 

propagating if no compression signature is identified in the fracture corridor present on 

the LF-DAS waterfall plot.         

 

3.2.4. Identification of Fracture Hit Moment 

The bottomhole pressure gauge (BHPG) is a surveillance tool installed at the monitor well 

with the response as a function of stress shadow (Haustveit et al., 2022). In addition to 
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fiber-optic strain response (i.e., DSS/LF-DAS), the model framework developed in this 

project can generate induced stresses associated with fracture propagation (i.e., stress 

shadow). In this section, it is observed that the second derivative of induced stress has the 

potential to identify the fracture hit moment, and I anticipate that the same principle may 

be applied in the field with BHPG data.    

The simulation consists of three hydraulic fractures (HF) and cross-well fiber 

deployment with the operation and monitor wells distancing 300 ft. Figure 3.19 shows 

the LF-DAS results (10 m fiber gauge length) of four different cluster spacing (i.e., 25, 

50, 100, and 150 ft) evaluated in this work.   

  
a. Scenario a: Cluster spacing = 25 ft b. Scenario b: Cluster spacing = 50 ft 

  
c. Scenario c: Cluster spacing = 100 ft d. Scenario d: Cluster spacing = 150 ft 

Figure 3.19–LF-DAS results of four cluster spacing scenarios (i.e., 25, 50, 100, and 150 ft) in this 

study, consisting of three hydraulic fractures.  

LF-DAS dataset indicates that HF 1, 2, and 3 hit monitor well at 12. 7, 30.7, and 

48.7 min, respectively.   
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Figure 3.20 shows the second derivative of stress acquired by a channel located at 

y = -75 ft (closer to HF 3), and I note that cluster spacing may impact hit moment 

identification using this method. Three spikes (i.e., hits) are observed using small cluster 

spacing (i.e., 25 and 50 ft), and just one (associated with HF 3) applying large spacing 

(i.e., 100 and 150 ft).     

 
Figure 3.20–Plot of the second derivative of stress acquired by channel located at y = -75 ft. 

 

 Field data has a significant level of noise that is not observed in synthetic datasets. 

Therefore, large time intervals should be considered deriving field BHPG (i.e., 

smoothness process) in order to properly use this variable identifying the fracture hit 

instant.  

 

3.2.5. Stress Shadow Transmissibility 

In this section, I model a single hydraulic fracture considering a cross-well fiber 

deployment with the operation and monitor wells 700 ft apart (fracture propagation speed 

is 22.8 ft/min). Figure 3.21 presents DSS and LF-DAS results using 10 m fiber gauge 

length.  
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a. Distributed Strain Sensing (DSS) b. Low-Frquency Distributed Acoustic Sensing 

(LF-DAS) 

Figure 3.21–(a) DSS and (b) LF-DAS modeling results of a single hydraulic fracture. Following 

fracture hit at time = 30.7 min, DSS waterfall plot indicates that the extension sign surrounding 

opening fracture delays before switching to compression. This phenomenon is not observed in the 

LF-DAS plot, which presents an immediate polarity change above and below the fracture face. 

In Figure 3.22, I plot stress of 10 time steps after the fracture hit (time = 30.7 min) 

against distance from the fracture corridor. Stress drops following a nearly exponential 

trend as the distance from fracture increases (i.e., stress transmissibility), and stress at the 

fracture face (distance = 0 ft) is an estimate of net pressure. A particular event occurs at 

early time steps following the hit instant (i.e., from time = 33.7 to 42.7 min): stress drops 

and rises near the fracture face. This anomaly is an effect of the heart-shaped pattern 

extension signature that is delayed before switching to compression after the fracture hit, 

and it appears only in the DSS waterfall plot (Figure 3.21a).      

Many tightly spaced fractures have been observed by Raterman et al. (2018) and 

Fu et al. (2021) in the Eagle Ford and Midland Basin pilots (Figure 3.23 and Figure 3.24), 

respectively. However, the physics governing this phenomenon is not clear yet. When the 

fracture approaches the fiber, extension energy represented by the heart-shaped pattern in 

fiber-optic strain datasets is generated. Following the fracture hit, absolute strain synthetic 

data in Figure 3.21a shows residue of this extension sign near the main hydraulic fracture, 

which is an indication that rock might be failing in this region. Thus, I suspect that fracture 

swarms can be created with the heart-shaped pattern residue energy.   
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Figure 3.22– Stress of 10 time steps after fracture hit versus distance from fracture face (stress 

shadow transmissibility). 

 

 
Figure 3.23–Fractures observed in the Eagle Ford pilot. (a) Dipping fractures in the core; (b) 

Computed Tomography (CT) scan image of the same section of core shown in a; (c) 18 ft of an 

image log taken from the same well showing several closely spaced fractures. Adapted from 

Raterman et al. (2018). 
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Figure 3.24–Fractures observed in Midland Basin pilot. Top: 3-ft long core-back sample 

containing eight parallel/subparallel fractures. Bottom: CT scan image of corresponding core 

sample. Adapted from Fu et al. (2021). 

 

3.3. Deep Learning Algorithm and Fracture Width Estimation 

In this project I work with two datasets representing scenarios consisting of fractures 

failing in tensile mode. Cases 1 and 2 are composed by one and three hydraulic fractures, 

respectively. In both cases the lateral section (1000 ft) of horizontal wells (i.e., operation 

and monitor) is placed along y axis, and 13 monitor wells are deployed in increments of 

50 ft between X = 0 ft and X = 600 ft. 

 

3.3.1. Case 1: Single Hydraulic Fracture 

Fracture propagation spans approximately 2 hours in case 1, and the axial displacement 

waterfall plot for each monitor well is composed by 1,050,840 grid points (Figure 3.25). 

Thus, total dataset consisting of 13 monitor wells have 13,660,920 observations normally 

distributed (Figure 3.26).  
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a. Map view of lateral section of horizontal wells distancing 300 ft. b. True axial displacement generated with DDM code. 

Figure 3.25–(a) Map view of scenario composed by single hydraulic fracture located at y = 100 ft 

where operation and monitor wells are distancing 300 ft, and (b) corresponding true axial 

displacement obtained with DDM code. 

 

 
Figure 3.26–Histogram of axial displacement (machine learning algorithm supervisor variable) of 

scenario composed by single hydraulic fracture. The total number of observations is 13,660,920 

(normal distribution), with magnitudes ranging between -0.4 and +0.4 in, and greatest 

concentration around 0. 

During training stage of the DL model, 12,610,080 observations are used from 12 

monitor wells (X = 0, 50, 100, 150, 200, 250, 350, 400, 450, 500, 550, 600 ft) in order to 

develop an algorithm able to estimate tangent displacement component (strain fields) for 

any spatio-temporal input (X, Y and time). For each epoch (total n° of epochs: 1000) I test 

the trained model predicting 𝑢𝑦 of single monitor well (n° of observations: 1,050,840) 
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located at X = 300 ft. This phase is performed avoiding overfitting, and L2 loss continues 

pretty much steady after a significant drop at the beginning of process (i.e., before 200 

epochs) (Figure 3.27). The magnitude of loss function might reduce even more if a 

variable learning rate is applied (i.e., learning rate scheduler). 

 
Figure 3.27–Plot of L2 loss against n° of epochs obtained during training stage of dataset 

representing scenario composed by single hydraulic fracture. There is pretty much no overfitting 

and greatest reduction in error function occurs at the phase onset. 

Once the spatio-temporal machine learning scheme is developed (training stage is 

completed), official testing stage is performed predicting axial displacement along 

monitor well placed at X = 300 ft (Figure 3.28a). Comparing predicted and true 𝑢𝑦 values 

(Figure 3.28b), I observe that the relative error is negligible in the entire waterfall plot 

area, except at initial time steps where fracture treatment starts at operation well and 

magnitude of axial displacement collected at monitor well is very small on the order of 

10-6 or even lower. I suspect that such errors may be a consequence of the L2 loss function 

used training the DL model. Since I’m working with tiny outputs at initial times, squaring 

the difference between true and predicted values can result in negligible errors even when 

the magnitude of these elements is far from close, consequently some weights and biases 

of ANN may be barely updated during backpropagation phase and algorithm will tend to 

don’t present an optimum performance in such regions.  
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a. Predicted 𝑢𝑦 at X = 300 ft. b. Relative error between predicted and true 𝑢𝑦 values at X = 300 ft. 

Figure 3.28–(a) Predicted 𝒖𝒚 at monitor well location (X = 300 ft) using developed spatio-temporal 

machine learning scheme. (b) Relative error between predicted and true 𝒖𝒚 at X = 300 ft. DL model 

has an overall consistent performance: (1) error is negligible in the entire waterfall plot region 

(except at early time steps); and (2) instant of fracture hit is correctly captured (t = 54.7 min). 

  

Strain rate is calculated at X = 300 ft deriving predicted tangent displacement 

component sequentially in space and time (Figure 3.29). As expected, classic features 

associated with LF-DAS datasets are captured: (1) heart-shaped pattern from a fracture 

approaching the fiber; (2) fracture hit; and (3) stress shadow (i.e., compression zone 

adjacent to an opening fracture).  
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Figure 3.29–LF-DAS data calculated at X = 300 ft based on estimated 𝒖𝒚 with developed spatio-

temporal machine learning model (case 1). Classic features are observed: (1) hart-shaped pattern; 

(2) fracture hit; and (3) stress shadow.  

Starting at the hit instant in monitor well placed at X = 300 ft (t = 54.7 min), I 

estimate fracture width along time measuring the discontinuity length exhibited in the plot 

of axial displacement predicted by developed DL model versus channel location 

(“discontinuity length” method). Predicted width present a rising trend (Figure 3.30), 

which is an expected tendency since net pressure used in DDM simulator generating 

synthetic data increases constantly in time. Relative error between predicted and true 

width acquired from DDM code drops substantially reaching values near 0% right after 

an initial 15% at fracture hit moment.   
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Figure 3.30–Results obtained following fracture hit (t = 54.7 min) at monitor well location (X = 

300 ft). Red curve shows upward trend of predicted fracture width (estimated using proposed 

“discontinuity length” method), while green curve displays the relative error between predicted 

and true widths falling near 0% after an initial 15% at fracture hit instant. 

I apply the developed spatio-temporal machine learning scheme predicting axial 

displacement in multiple locations from X = 300 to near 700 ft (includes extrapolation 

procedure since DL model is trained with data up to X = 600 ft). Acquired data is used to 

estimate fracture width along time in each position applying the “discontinuity length” 

method proposed in this work (Figure 3.31). For each time step an elliptic curve 

resembling the hydraulic fracture shape is formed. Finally, I calculate the error between 

predicted and true width generated with DDM code (Figure 3.32) and observe that its 

magnitude decreases toward 0% in each X point as time goes up (i.e., right after fracture 

hit). The model developed with synthetic data is an incentive for the deployment of 

multiple monitor wells in the field to enhance beyond the near wellbore region geometric 

characterization of created fracture systems. 
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Figure 3.31–Plot of predicted fracture width (estimated using proposed “discontinuity length” 

method and data obtained from developed DL model) against position (X ranges from 300 to near 

700 ft) for 8 consecutive time steps (t varies from 85 to 126.7 min). For all time steps, curves have 

an elliptic shape resembling fracture contour. 

 

 
Figure 3.32–Plot of relative error between predicted width (estimated using proposed 

“discontinuity length” method and data obtained from developed DL model) and the true one 

(generated with DDM code) versus location (X ranges from 300 to near 700 ft) for 8 consecutive 

time steps (t varies from 85 to 126.7 min). Magnitude of error drops near 0% in each X location 

as time goes up (i.e., right after fracture hit). 

 

3.3.2. Case 2: Multiple Hydraulic Fractures 

Fracture propagation spans approximately 1 hour in case 2 (faster than case 1), and the 

axial displacement waterfall plot for each monitor well is composed by 500,400 grid points 
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(Figure 3.33). Thus, total dataset consisting of 13 monitor wells have 6,505,200 

observations normally distributed (less than case 1) (Figure 3.34).    

  
a. Map view of lateral section of horizontal wells distancing 300ft. b. True axial displacement generated with DDM code. 

Figure 3.33–(a) Map view of scenario composed by 3 hydraulic fractures located at y = -200, 0, +200 

ft where operation and monitor wells are distancing 300 ft, and (b) corresponding true axial 

displacement obtained with DDM code.  

 

 
Figure 3.34–Histogram of axial displacement (machine learning algorithm supervisor variable) of 

scenario composed by 3 hydraulic fractures. The total number of observations is 6,505,200 

(normal distribution), with magnitudes ranging between -0.4 and +0.4 in, and greatest 

concentration around 0. 

During training stage of the DL model, 6,004,800 observations are used from 12 

monitor wells (X = 0, 50, 100, 150, 200, 250, 350, 400, 450, 500, 550, 600 ft) in order to 

develop an algorithm able to estimate tangent displacement component (strain fields) for 
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any spatio-temporal input (X, Y and time). For each epoch (total n° of epochs: 1000) I test 

the trained model predicting 𝑢𝑦 of single monitor well (n° of observations: 500,400) 

located at X = 300 ft. This phase is performed avoiding overfitting, and the loss function 

(i.e., L1 loss) drops continually throughout the process (Figure 3.35).  

 
Figure 3.35–Plot of L1 loss against n° of epochs obtained during training stage of dataset 

representing scenario composed by 3 hydraulic fractures. There is pretty much no overfitting and 

error function drops consistently as n° of epochs increases. 

Once the spatio-temporal machine learning scheme is developed (training stage is 

completed), official testing stage is performed predicting axial displacement along 

monitor well placed at X = 300 ft (Figure 3.36a). Comparing predicted and true 𝑢𝑦 values 

(Figure 3.36b), I observe that the relative error is negligible in the entire waterfall plot 

area, except at initial time steps where fracture treatment starts at operation well and 

magnitude of axial displacement collected at monitor well is very small on the order of 

10-6 or even lower.  
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a. Predicted 𝑢𝑦 at X = 300 ft. b. Relative error between predicted and true 𝑢𝑦 values at X = 300 ft. 

Figure 3.36–(a) Predicted 𝒖𝒚 at monitor well location (X = 300 ft) using developed spatio-temporal 

machine learning scheme. (b) Relative error between predicted and true 𝒖𝒚 at X = 300 ft. DL model 

has an overall consistent performance: (1) error is negligible in the entire waterfall plot region 

(except at extremely early time steps); and (2) instant of fracture hit is correctly captured (HFs 1 

and 3 at t = 23.2 min, and HF 2 at t = 26.4 min).  

Comparing cases 1 and 2 waterfall plots of relative error specifically at early time 

steps, the latter presents much shorter region with data mismatch even though its DL 

model is trained with smaller dataset size representing a more complex fracturing scenario 

(i.e., 3 hydraulic fractures). I suspect that the major impact in case 2 results can be 

attributed to the application of L1 instead of L2 loss. Since I’m working with tiny outputs 

at initial times, errors estimated taking the absolute difference between true and predicted 

values will have a greater influence on loss function than the ones calculated by the 

squared difference method. Consequently, the updating process of ANN weights and 

biases (extremely dependent on loss function magnitude) during backpropagation phase 

will tend to be better executed leading the algorithm to present a superior performance. 

Strain rate is calculated at X = 300 ft deriving predicted tangent displacement 

component sequentially in space and time (Figure 3.37). As expected, classic features 

associated with LF-DAS datasets are captured: (1) heart-shaped pattern from a fracture 

approaching the fiber; (2) fracture hit; and (3) stress shadow (i.e., compression zone 

adjacent to an opening fracture). 
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Figure 3.37–LF-DAS data calculated at X = 300 ft based on estimated 𝒖𝒚 with developed spatio-

temporal machine learning model (case 2). Classic features are observed: (1) hart-shaped pattern; 

(2) fracture hit; and (3) stress shadow. 

 

3.4. Fracture Width Estimation Using Strain Dataset from the Stress Shadow Zone 

Propagation of fracture systems is characterized in LF-DAS waterfall plots by the fracture 

corridor and the stress shadow region, which are represented by extension and 

compression signs, respectively (Figure 3.38). The evolution of stress shadow zone is the 

immediate effect of fracture opening (i.e., width generation), therefore in this work I 

develop a machine learning model using synthetic data to estimate fracture width at the 

monitor well location based on strain fields from the stress shadow region.  



 

65 

 

 

Figure 3.38–LF-DAS waterfall plot detailing the fracture corridor and stress 

shadow region. Adapted from Jin and Roy (2017). 

 

 The strain response obtained in the field by distributed fiber-optics sensing 

technology is represented by a complex mixture of extension and compression signs. This 

dataset does not provide any direct indication of fracture width magnitude. Therefore, the 

great benefit associated with the machine learning model created in this project is the 

potential fracture width inversion from field data. 

 Estimation of fracture width at the monitor well location from fiber-optic strain 

response in the stress shadow zone is a regression problem. Thus, I use four different 

supervised machine learning algorithms in this work: multilinear regression, support 

vector regression (SVR), artificial neural network (ANN) and random forest.  

 The model inputs are phase change (units of LF-DAS data collected in the field) 

of ten channels in the stress shadow zone, and the output is fracture width of 2400 

observations (Figure 3.39). 
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Figure 3.39–Histogram of fracture width (output variable) of machine learning model. 

The total number of observations is 2400 (log-normal distribution), with magnitudes 

ranging between 3.3 x 10-5 and 0.34 in. 

 

 In data wrangling stage I perform feature standardization (𝜇 = 0 and 𝑠𝑡𝑑 = 1) 

before applying principal component analysis (PCA) to reduce the problem 

dimensionality. The first two principal components (PC1 and PC2) with explained 

variance of 99% are selected to be used as inputs in the machine learning algorithm. 

Therefore, applying PCA the number of features is reduced from ten to two.   

 In data splitting, 70% of data is used for training and 30% for testing.  

 The multilinear regression algorithm has no regularization (i.e., lasso, ridge and 

elastic net) technique. I use radial kernel with support vector regression. The artificial 

neural network model has three hidden layers, each with three neurons; LeakyRelu (𝛼 =

0.05) is the nonlinear activation function applied in each hidden layer; I select the adaptive 

moment estimation (Adam) as optimizer; Batch size is 2 and number of epochs is 500. The 

nonlinear random forest algorithm has 500 trees, and a single feature is selected as split 

candidate. The pairplots comparing true and predicted width values applying the four 

algorithms with testing dataset are shown in Figure 3.40.  
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a. Multilinear Regression b. Support Vector Regression 

  
c. Artificial Neural Network d. Random Forest 

Figure 3.40–Pairplots comparing true and predicted width values applying multilinear regression, 

SVR, ANN and random forest algorithms with the testing dataset. The R2 metric indicates random 

forest as champion model.  

 

 The model performance in testing stage is evaluated using R2 metric. Results 

indicate that the linear model (i.e., multilinear regression) width predictions are not as 

good as expected, R2 is the smallest (0.81). The application of machine learning 

algorithms incorporating nonlinearities (i.e., SVR with radial kernel, ANN and random 

forest) leads R2 values to increase up to 0.99 with random forest (champion model). This 

is an indication that width estimation using strain fields from the stress shadow zone is a 

nonlinear problem. Table 3.8 details the R2 and mean squared error (MSE) of each 

machine learning algorithm.  
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Table 3.8–Performance results of multilinear regression, SVR, ANN and random 

forest algorithms with testing dataset. 
Machine Leaning Algorithm R2 MSE 

Multilinear Regression 0.81 1.1 x 10-3 

Support Vector Regression 0.92 4.7 x 10-4 

Artificial Neural Network 0.97 1.6 x 10-4 

Random Forest 0.99 9.5 x 10-6 

 

Results obtained with the random forest model are promising, which makes this 

algorithm a great candidate for field applications (physics-based machine learning 

framework) estimating fracture width in an approximate real-time fashion. This fact is 

paramount to production optimization since fracture treatment parameters may be 

modified during the treatment based on fracture geometry estimates.  
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4. CONCLUSIONS 

 

Acoustic fiber-optics is an emerging surveillance technology in hydraulic fracturing 

treatments with acceptance expanding rapidly. This fact can be attributed to strain data 

versatility and wealth of detail, which have the potential to improve completion design 

and optimize production of unconventional reservoirs. However, field data carries 

complexities that puzzle engineers and geoscientists and limit them from fully exploring 

the richness of DSS/LF-DAS. In this work, I show that simulations applying forward 

modeling can provide a substantial perspective to specialists interpreting strain datasets.   

Below I highlight the main observations of this work:  

1. The analytical solution confirms important known trends. Single hydraulic 

fracture failing in tensile mode propagates faster in the following cases: (1) 

high Young’s modulus; (2) high injection rate; and (3) low fluid viscosity. 

2. The analytical solution indicates that strain datasets are sensitive to parameters 

associated with hydraulic fracturing treatments, and consequently, field data 

may be used inferring rock/fluid properties. 

3. The incorporation of shear failure in numerical simulation points out the 

significant impact natural fractures may have on DSS/LF-DAS datasets, which 

is often interpreted solely in terms of opening fractures.   

4. A large fiber gauge length can mask strain data richness, and I recommend the 

application of small values in field operations if the primary purpose is to 

investigate in detail signal arrivals at monitor well. 

5. Natural fractures influence stress shadowing effect and consequently the 

generation of throughgoing hydraulic fractures from different clusters (i.e., 

cluster efficiency). 

6. No sign of fracture closing on LF-DAS time history plots (i.e., corridor 

compression) when pumping is over indicates that the fracture system 

continues to propagate.  



 

70 

 

7. The second derivative of stress (BHPG response) can help us identify the 

fracture hit moment.  

8. Stress shadow transmissibility follows a nearly exponential trend. The model 

framework may be used to determine the approximate cluster spacing that 

creates evenly growing fractures contacting the maximum reservoir area.   

9. The heart-shaped pattern residue energy near the main hydraulic fracture after 

the hit (observed in DSS data), may be the mechanism linked to the generation 

of fracture swarms present in the Eagle Ford and Midland Basin pilots.    

10. The deep learning model demonstrates value of multiple monitor wells in the 

field, improving fracture geometry characterization by estimating widths in 

multiple locations as a function of time. 

11. Strain dataset from the stress shadow region is an important source of 

information associated with throughgoing hydraulic fractures. In this work, I 

show that it can be used with the support of a machine learning model to 

estimate fracture width (random forest algorithm provides the best results).  

 

4.1. Recommendations for Future Work 

To address important aspects of fiber-optics surveillance technology in hydraulic 

fracturing operations that are out of the scope of this project, I recommend the following 

future studies: 

1. Extend the numerical solution to 3D space to model strain fields considering 

the monitor well in vertical/slanted orientations, and the horizontal 

operation/monitor well pair in different layers to determine the minimum 

principal stress impact on strain results.  

2. Develop a numerical solution accounting for proppant transport modeling to 

determine how it may impact strain fields generated during fracturing 

operations, and if fiber-optics strain response has the potential to be used to 

estimate the effective conductivity of fracture systems. 
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3. Use field data in the testing stage of the machine learning model developed to 

estimate fracture width based on strain fields from the stress shadow zone. In 

addition, define a methodology to determine the confidence interval of fracture 

width values obtained from field data.  
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APPENDIX A 

DISPLACEMENT DISCONTINUITY METHOD SUPPLEMENTARY EQUATIONS 

 

Coordinate Transformation 

Let 𝑥𝑦 be the global coordinate, and 𝑥̅𝑦̅ (shear-normal) the local coordinate (Figure A. 

1). The transformation of displacement and stress from global to local coordinate system 

can be done using the following equations: 

 
Figure A. 1–Global (𝒙𝒚) and local (𝒙𝒚̅) coordinate systems separated by the angle 𝜷. 

 

Displacement  

𝑢𝑥̅ = 𝑢𝑥𝑐𝑜𝑠𝛽 + 𝑢𝑦𝑠𝑖𝑛𝛽 , (A.1) 

𝑢𝑦̅ = −𝑢𝑥𝑠𝑖𝑛𝛽 + 𝑢𝑦𝑐𝑜𝑠𝛽 , (A.2) 

 

Stress  

𝜎𝑥̅𝑥̅ = 𝜎𝑥𝑥𝑐𝑜𝑠2𝛽 + 2𝜎𝑥𝑦𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 + 𝜎𝑦𝑦𝑠𝑖𝑛2𝛽 , (A.3) 

𝜎𝑦̅𝑦̅ = 𝜎𝑥𝑥𝑠𝑖𝑛2𝛽 − 2𝜎𝑥𝑦𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 + 𝜎𝑦𝑦𝑐𝑜𝑠2𝛽 , (A.4) 

𝜎𝑥̅𝑦̅ = −(𝜎𝑥𝑥 − 𝜎𝑦𝑦)𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 + 𝜎𝑥𝑦(𝑐𝑜𝑠2𝛽 − 𝑠𝑖𝑛2𝛽) . (A.5) 

Boundary Influence Coefficients for Stress 

𝐴𝑛𝑠 = 2𝐺[2𝑓𝑥𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑥𝑥𝑠𝑖𝑛2𝛽 − 𝑦(𝑓𝑥𝑦𝑦𝑐𝑜𝑠2𝛽 + 𝑓𝑦𝑦𝑦𝑠𝑖𝑛2𝛽)] , (A.6) 
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𝐴𝑛𝑛 = 2𝐺[𝑓𝑦𝑦 + 𝑦(𝑓𝑥𝑦𝑦𝑠𝑖𝑛2𝛽 − 𝑓𝑦𝑦𝑦𝑐𝑜𝑠2𝛽)] , (A.7) 

𝐴𝑠𝑠 = 2𝐺[−𝑓𝑥𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑐𝑜𝑠2𝛽 − 𝑦(𝑓𝑥𝑦𝑦𝑠𝑖𝑛2𝛽 − 𝑓𝑦𝑦𝑦𝑐𝑜𝑠2𝛽)] , (A.8) 

𝐴𝑠𝑛 = 2𝐺[−𝑦(𝑓𝑥𝑦𝑦𝑐𝑜𝑠2𝛽 + 𝑓𝑦𝑦𝑦𝑠𝑖𝑛2𝛽)] , (A.9) 

Where 𝐺 is the shear modulus and can be calculated by: 

𝐺 =
𝐸

2(1 + 𝜐)
 . 

(A.10) 

Displacement and Stress in the Infinite/Elastic Body 

Displacement  

𝑢𝑥
𝑖 = ∑ 𝐷𝑥̅

𝑗
[2(1 − 𝜐)𝑓𝑦𝑐𝑜𝑠𝛽 − (1 − 2𝜐)𝑓𝑥𝑠𝑖𝑛𝛽 + 𝑦(𝑓𝑥𝑦𝑠𝑖𝑛𝛽 + 𝑓𝑦𝑦𝑐𝑜𝑠𝛽)]

𝑁

𝑗=1

+ 𝐷𝑦̅
𝑗
[−(1 − 2𝜐)𝑓𝑥𝑐𝑜𝑠𝛽 − 2(1 − 𝜐)𝑓𝑦𝑠𝑖𝑛𝛽 + 𝑦(−𝑓𝑥𝑦𝑐𝑜𝑠𝛽 + 𝑓𝑦𝑦𝑠𝑖𝑛𝛽)] , 

(A.11) 

𝑢𝑦
𝑖 = ∑ 𝐷𝑥̅

𝑗
[2(1 − 𝜐)𝑓𝑦𝑠𝑖𝑛𝛽 + (1 − 2𝜐)𝑓𝑥𝑐𝑜𝑠𝛽 − 𝑦(𝑓𝑥𝑦𝑐𝑜𝑠𝛽 + 𝑓𝑥𝑥𝑠𝑖𝑛𝛽)]

𝑁

𝑗=1

+ 𝐷𝑦̅
𝑗
[−(1 − 2𝜐)𝑓𝑥𝑠𝑖𝑛𝛽 + 2(1 − 𝜐)𝑓𝑦𝑐𝑜𝑠𝛽 + 𝑦(−𝑓𝑥𝑦𝑠𝑖𝑛𝛽 + 𝑓𝑥𝑥𝑐𝑜𝑠𝛽)] , 

(A.12) 

 

 

Stress  

𝜎𝑥𝑥
𝑖 = 2𝐺 ∑ 𝐷𝑥̅

𝑗
[2𝑓𝑥𝑦𝑐𝑜𝑠2𝛽 + 𝑓𝑥𝑥𝑠𝑖𝑛2𝛽 + 𝑦(𝑓𝑥𝑦𝑦𝑐𝑜𝑠2𝛽 − 𝑓𝑦𝑦𝑦𝑠𝑖𝑛2𝛽)]

𝑁

𝑗=1

+ 𝐷𝑦̅
𝑗
[𝑓𝑦𝑦 + 𝑦(𝑓𝑥𝑦𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑦𝑐𝑜𝑠2𝛽)] , 

(A.13) 

𝜎𝑦𝑦
𝑖 = 2𝐺 ∑ 𝐷𝑥̅

𝑗
[2𝑓𝑥𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑠𝑖𝑛2𝛽 − 𝑦(𝑓𝑥𝑦𝑦𝑐𝑜𝑠2𝛽 − 𝑓𝑦𝑦𝑦𝑠𝑖𝑛2𝛽)]

𝑁

𝑗=1

+ 𝐷𝑦̅
𝑗
[𝑓𝑦𝑦 − 𝑦(𝑓𝑥𝑦𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑦𝑐𝑜𝑠2𝛽)] , 

(A.14) 

𝜎𝑥𝑦
𝑖 = 2𝐺 ∑ 𝐷𝑥̅

𝑗
[𝑓𝑥𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑐𝑜𝑠2𝛽 + 𝑦(𝑓𝑥𝑦𝑦𝑠𝑖𝑛2𝛽 + 𝑓𝑦𝑦𝑦𝑐𝑜𝑠2𝛽)]

𝑁

𝑗=1

+ 𝐷𝑦̅
𝑗
[−𝑦(𝑓𝑥𝑦𝑦𝑐𝑜𝑠2𝛽 − 𝑓𝑦𝑦𝑦𝑠𝑖𝑛2𝛽)] . 

(A.15) 
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APPENDIX B 

MODELING OF STRAIN FIELDS INCORPORATING HYDRAULIC AND 

NATURAL FRACTURE INTERACTIONS 

 

I have modeled strain and strain rate responses of scenarios comprised by hydraulic and 

natural fractures considering two additional sensitivity analyses. The first sensitivity 

analysis with 3 different scenarios is performed varying natural fracture distribution and 

keeping constant its orientation (strike in 3D mode) and length. In this case the simulation 

accounts for 5, 10 and 20 natural fractures per cluster with ±40° orientation and 16.3 ft 

long. Figure B. 1 presents adopted geometry of all 3 scenarios (a, b and c).   

 

  

a. Scenario a: 5 NF in each cluster b. Scenario b: 10 NF in each cluster 

 

 

c. Scenario c: 20 NF in each cluster  

Figure B. 1–Map view of lateral section of horizontal wells varying the number of NF. 
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DSS and LF-DAS modeling results of first sensitivity analysis are shown in Figure 

B. 2.  

  

a. DSS → Scenario a b. LF-DAS → Scenario a 

  

c. DSS → Scenario b d. LF-DAS → Scenario b 

  

e. DSS → Scenario c f. LF-DAS → Scenario c 

Figure B. 2–DSS and LF-DAS modeling results of sensitivity analysis varying the number of NF. 
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 DSS/LF-DAS waterfall plots in Figure B. 2 present a great level of complexity 

compared to base case scenario (Figure 3.9) and generation of throughgoing hydraulic 

fractures from different clusters are affected by natural fractures. 

 Evaluation of LF-DAS results in Figure B. 2 reveals the following aspects: 

1. Scenarios a and b: For relatively small number of natural fractures in each 

perforation cluster (i.e., 5 or 10), geometrical details of such fractures are 

distinguishable in waterfall plots. 

2. Scenario c:  Increasing natural fracture distribution culminates in very complex 

outcomes to the point that fracture hits are difficult to be identified in waterfall 

plot. Therefore, sum of strain rate can be used as a tool to assist determining 

perforation cluster location (Figure B. 3). It is suspected that waterfall plot 

presents the commingle extension response of multiple natural fractures (lack 

of spatial resolution). It is important to mention that the magnitude of strain 

results increases in scenario c, therefore to avoid high saturation in Figure B. 

2e and Figure B. 2f , I increase the magnitude of maximum and minimum 

limits of color bar. 

 

 

Figure B. 3–Strain rate sum for scenario c of sensitivity analysis varying the 

number of NF. Spikes aid determining cluster location. 
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I include complexity in the study by the design of a new environment with clusters 

composed by natural fractures with variable orientation. Natural fractures in clusters 1, 3 

and 5 have ±50° and ±65° orientation angles while ±40° and ±55° in clusters 2 and 4. 

The second sensitivity analysis with 4 different scenarios is performed varying 

natural fracture length and keeping constant its orientation (strike in 3D mode) and 

distribution. In this case the simulation accounts for 10 natural fractures per cluster with 

orientation as mentioned in the previous paragraph and length ranging from 2.8 ft to 29.6 

ft. Figure B. 4 presents adopted geometry of all 4 scenarios (a, b, c and d). 

  

a. Scenario a: Length range: 2.8 ft  ̶  5.1 ft b. Scenario b: Length range: 5.5 ft  ̶  9.9 ft 

  

c. Scenario c: Length range: 10.9 ft   ̶ 19.7 ft d. Scenario d: Length range: 16.3 ft   ̶ 29.6 ft 

 

Figure B. 4–Map view of lateral section of horizontal wells varying NF length. 
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DSS and LF-DAS modeling results of second sensitivity analysis are shown in 

Figure B. 5. 

  

a. DSS → Scenario a b. LF-DAS → Scenario a 

  

c. DSS → Scenario b d. LF-DAS → Scenario b 

  

e. DSS → Scenario c f. LF-DAS → Scenario c 
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g. DSS → Scenario d h. LF-DAS → Scenario d 

Figure B. 5–DSS and LF-DAS modeling results of sensitivity analysis varying NF length. 

 

Similarly to DSS/LF-DAS results obtained in the first sensitivity analysis, 

DSS/LF-DAS waterfall plots in the second sensitivity analysis (Figure B. 5) indicate that 

natural fractures have the potential to impact the generation of throughgoing hydraulic 

fractures from different clusters. Furthermore, the outcome of scenario a with shortest 

natural fractures does not exhibit great complexity compared with results of scenarios b, 

c and d.  

Evaluation of LF-DAS results in Figure B. 5 reveals the following aspects: 

1. Scenarios a and b: Geometry details of natural fractures are not noticed in 

waterfall plots. It is suspected that natural fractures are too short that available 

spatial resolution is not enough to detect it. 

2. Scenario c: Geometrical peculiarities of natural fractures are observed in 

waterfall plot, which is believed to be a result of natural fracture length increase 

to the point that available spatial resolution can detect it. 

3. Scenario d: Shape of natural fractures cannot be clearly identified. It is 

suspected that as length increase to a certain degree, natural fractures of 

adjacent clusters will get close and consequently waterfall plot will tend to 

present commingle extension response of multiple natural fractures (lack of 

spatial resolution). 
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APPENDIX C 

MONITOR WELL SENSITIVITY TO STRAIN SIGNAL ARRIVALS 

 

This case is dedicated to study monitor well sensitivity to strain signal arrivals. The 

distance between monitor and operation wells is varied from 50 to 150 ft in intervals of 

25 ft. Details regarding natural fracture distribution and geometry are described in Table 

C. 1 and shown schematically in Figure C. 1.  

Table C. 1–Natural fractures details. 

Density per cluster Length range 
Orientation angle in 

clusters 1, 3 and 5 

Orientation angle in 

clusters 2 and 4 

10 16.3 – 29.6 ft ±50° and ±65° ±40° and ±55° 

 

 

 

Figure C. 1–Map view of lateral section of horizontal wells showing a particular configuration with 

100 ft well distance. 

Figure C. 2 shows absolute strain and strain rate results for a simulation time span 

of 1 hour, which considers 5 different configuration distances between observation and 

treatment wells: 50, 75, 100, 125 and 150 ft. I observe a great level of complexity 

associated with the time history plots, which may have a relevant contribution of 

reactivation of planar discontinuities failing in shear mode. Moreover, I suspect that such 

complexities are detected as a consequence of the small gauge length (i.e., on the order of 

1 m) applied in simulations.   
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a. DSS → 50 ft well distance b. LF-DAS → 50 ft well distance 

  

c. DSS → 75 ft well distance d. LF-DAS → 75 ft well distance 

  

e. DSS → 100 ft well distance f. LF-DAS → 100 ft well distance 
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g. DSS → 125 ft well distance h. LF-DAS → 125 ft well distance 

  

i. DSS → 150 ft well distance j. LF-DAS → 150 ft well distance 

Figure C. 2–DSS and LF-DAS results varying distance between monitor and operation wells. 

 

Comparing all 5 simulations, I note that extension and compression phenomenon 

as a consequence of fracture opening and slippage, are first identified in the case where 

distance between monitor and operation wells is the shortest (i.e., 50 ft) as seen in Figure 

C. 2a and Figure C. 2b. On the other hand, such attributes related to fracture propagation 

start to be observed lastly in the simulation where the distance between both wells is the 

largest (i.e., 150 ft), and consequently hydraulic fractures take the longest time to approach 

monitor well as seen in Figure C. 2i and Figure C. 2j. Therefore, I infer that DSS and 

LF-DAS responses obtained using the numerical technique are sensitive to a region near 

the monitor well, which is in accordance with the same type of data acquired by fiber-

optics in the field (Wu et al., 2021).     


