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ABSTRACT

In recent years the use of unmanned air systems (UAS) has seen extreme growth. These small,

often inexpensive platforms have been used to aid in tasks such as search and rescue, medicinal

deliveries, disaster relief and more. In many use cases UAS work alongside unmanned ground

vehicles (UGVs) to complete autonomous tasks. For end-to-end autonomous cooperation, the

UAS needs to be able to autonomously take off and land on the UGV. Current autonomous landing

solutions often use fiducial markers to aid in localizing the UGV relative to the UAS, an external

ground computer to aid in computation, or gimbaled cameras on-board the UAS. This thesis seeks

to demonstrate a vision-based autonomous landing system that does not rely on the use of fiducial

markers, completes all computations on-board the UAS, and uses a fixed, non-gimbaled camera.

Algorithms are tailored towards low size, weight, and power constraints as all compute and sensing

components weigh less than 100 grams. The foundation of this thesis extends upon current efforts

by localizing the UGV relative to the UAS using neural network object detection and camera

intrinsic properties instead of common place fiducial markers. An object detection neural network

is used to detect the UGV within an image captured by the camera on-board the UAS. Then a

localization algorithm utilizes the UGV’s pixel position within the image to estimate the UGV’s

position relative to the UAS. This estimated position of the UGV will be passed into a command

generator that sends setpoints to the on-board PX4 flight control unit (FCU). This autonomous

landing system was developed and validated within a high-fidelity simulation environment before

conducting outdoor experiments.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Research Problem Overview

This thesis presents an autonomous landing system that aims to increase the operational ca-

pability of cooperating autonomous air and ground vehicles. The ability for an Unmanned Air

System (UAS) to deploy from and return to an Unmanned Ground Vehicle (UGV) autonomously

increases the scope of possible cooperative missions as the UAS can perceive a larger portion of

the operational environment from its aerial perspective. Returning to the UGV also enables the

UAS to recharge it batteries, extending the duration of cooperative autonomous missions.

To enable autonomous landing this work aims to localize the UGV in a fixed inertial frame.

Thus, the UAS must be able to keep track of its body frame relative to the inertial frame, as well

as estimate the relation between its body frame and the frame of the landing target. Figure 1.1 is

generated form the simulation environment used in this work and depicts these three coordinate

frames where the UGV’s frame is estimated with an ArUcO [1] fiducial marker. The use of fiducial

markers is common in autonomous landing on both static [2, 3, 4, 5, 6, 7] and moving [8, 9, 10, 11]

targets as they provide a full six degree-of-freedom (DOF) pose estimate of the UGV [1, 12]. The

UGV may be able to transmit its location to the UAS, alleviating the need to estimate the frame of

the landing target relative to the UAS [13, 14]. However, this work assumes the UGV is unable to

broadcast its position to the UAS during the autonomous landing.

In tactical operational environments, the placement of a fiducial marker on the UGV may not be

permissible. Thus, the presented autonomous landing system aims to enable autonomous landing

of UAS on a moving UGV without the employment of fiducial markers. To accomplish this a

neural network based object detector [15, 16, 17] is used alongside an algorithm to estimate a three-

dimensional position of the detected object using the pixel coordinates, UAS altitude, and camera

intrinsic properties [18]. Alternative methods exist that estimate a three-dimensional bounding

box [19, 20, 21, 22, 23, 24]. These methodologies use a single neural network to detect the object
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(a) (b)

Figure 1.1: (a): UAS hovering over UGV wih ArUcO marker. (b): Inertial Frame, UAS Body
Frame, and ArUcO Marker Frame visualized.

as well as estimate its pose. However, their novelty and complexity create challenges due to the

difficultly in generating training data and implementation, and thus are not considered for use in

this work [25].

The computational expense of vision algorithms can limit their deployment on embedded plat-

forms such as small UAS. Many works avoid this issue by employing a ground computer to com-

plete all vision computations, and then broadcast only control commands to the UAS [26, 27]. This

thesis aims to alleviate this requirement by completing all necessary computations on-board the

UAS, akin to works such as [11, 28, 29]. While this work aims to land on a UGV, extensive efforts

have also investigated autonomous vision-based landing on maritime platforms [30, 31, 32, 33].

The maritime environment introduces the unique challenge of landing on a vessel that may be

perturbed by waves interacting with the vessel [32, 33]. The consideration of landing pad angular

oscillations is not encompassed in the scope of this work.

Once the UAS has localized the UGV, that information is passed to a setpoint command gen-

erator. The command generator is responsible for taking the UGV position estimates as an input
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and outputting setpoint commands to the UAS flight controller. Other works use a custom land-

ing controller to achieve increased performance [34], however this work will rely on the on board

PX4 [35] flight controller to achieve setpoint commands that result in an autonomous landing.

This approach requires the need for external positioning information for the UAS, such as Global

Positioning System (GPS). Other works have demonstrated fiducial marker based landings using

alternative positioning information such as Visual Inertial Odometry (VIO) [28] as well as com-

pletely removing the need for external positioning information [11]. However, this work will rely

on GPS for positioning during autonomous outdoor landings. Preliminary development of this

marker-less approach was completed in a simulation environment to avoid catastrophic failure be-

fore the autonomous landing was tested in an outdoor, unstructured environment.

1.2 Literature Review

This literature review will focus on three main areas: object detection, detection localization,

vision-based landing of UAS.

1.2.1 Object Detection

This section addresses the use of neural networks for detecting objects within images. Specifi-

cally, the state-of-the-art in object detection, and the advancements in deploying these methods in

real time on limited compute power embedded systems, such as UAS.

1.2.1.1 Neural Network Object Detectors

Neural networks, also called feedforward neural networks, or multilayer perceptrons (MLPs),

are said to be universal approximators [36, 37, 38, 39]. Inspired by biological neural networks [40],

neural networks utility lies in a few key attributes. The first being the ability to modify themselves

to represent a provided data set without the use of any predefined explicit function or distribution

in the network model [41]. Second, the ability to approximate any function given the network is

of sufficient size [41, 42]. Third, neural network models are nonlinear, meaning they are able to

learn, and approximate complex relationships often present in real world applications [41]. Neural

networks consist of a series of functional transformations where a linear combination of weights
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w is transformed for nonlinear activation functions h(.) along layers [43]. Layers often consist of

many units which act in parallel representing a vector-to-scalar function [43]. Bishop shows that

a neural network with D inputs, a single hidden layer consisting of M units, and K outputs can be

represented as shown in Equation 1.1 [36]. Figure 1.2 is reprinted from [36] and visually depicts

an arbitrary neural network.

yk(x,w) = σ

(
M∑
j=1

wk
(
j
2)h

(
D∑
i=1

wj
(
i
1)xi + wj

(
0
1)

)
+ wk

(
0
2)

)
. (1.1)

Figure 1.2: Representation of neural network with D inputs, one hidden layer consisting of M
units, and K outputs; reprinted from [36].

The activation function h(.) is responsible for the transformation of an input signal into an out-

put signal to be fed as input into the next layer of the neural network [44]. The activation function

must be selected carefully as the activation function can affect prediction accuracy [45]. Some

of the most common activation functions are Linear, Sigmoid, Hyperbolic Tangent (Tanh), Recti-
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fied Linear Unit (ReLU), and Leaky Rectified Linear Unit (Leaky ReLU). Table 1.1 summarizes

advantages and disadvantages of these common activation functions [44, 45].

Table 1.1: Comparison of Common Neural Network Activation Functions

Name Advantages Disadvantages

Linear Increased interpretability compared to
more complex activation functions.

During back-propagation, gradient is in-
decent of input due to constant deriva-
tive. Unable to identify complex data
patters.

Sigmoid Bounded output, small changes in input
result in large changes in output making
it ideal for classification

Derivative converges to 0 in positive and
negative directions killing gradient de-
scent

Tanh Bounded output, steeper derivative than
Sigmoid increasing learning efficiency,
and symmetric around the origin

Derivative also converges to 0 in positive
and negative directions killing gradient
descent

ReLU Not all neurons in the network are acti-
vated at once, increasing efficiency

Possible for large gradient shifts to cause
neurons to never activate

LReLU Similar to ReLU but attempts to keep
output from being stuck at 0 so that no
neurons are permanently inactive

Still possible for large gradient shifts to
cause neurons to never activate

Neural networks have been applied to forecasting, classification, clustering, approximation,

and other pattern recognition tasks. However, in recent years deep Convolutional Neural Networks

(CNNs) have proved to be incredibly powerful, vastly surpassing what is possible with a standard

neural network [46]. CNNs use a deep architecture consisting of many layers, enabling the ability

to learn more complex models. [47]. The increase in complexity that could be represented by these
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CNNs eventually led to their deployment for object detection.

In 2012 a group won the ImageNet [48] object detection challenge using a deep CNN [49],

sparking interest in the application of deep CNNs for object detection. Soon after in 2015 R. Gir-

shick et al. progressed the field by presenting the Regions with CNN features (RCNN) for object

detection [50]. The use of RCNNs increased the state-of-the-art by increasing accuracy achievable

with object detectors, however these RCNNs did not run fast enough to compute detections in real

time. RCNNs create proposed bounding boxes (potentially over 2000 boxers per single image)

and completed feature computations on each proposed box, leading to slow detection speed. Fast

RCNN increased accuracy of RCNN while achieving a detection speed over 200 times faster than

RCNN [51]. Soon after, Faster RCNN would be proposed as an improvement upon Fast RCNN

and become one of the first near-realtime deep learning detectors achieving detection at 17 frames

per second (fps) [52, 53].

All the aforementioned object detection methods could be classified as two-stage detectors as

the image is passed through the network multiple times to complete a detection. You Only Look

Once (YOLO) was proposed in 2015 as the first one-stage detector [54]. YOLO applies a single

neural network to the entire image and can achieve detections at 45 fps with the enhanced version

and 155 fps with the fast version [53, 54]. YOLO has been improved upon in subsequent v2 and v3

versions where accuracy is increased while the fast detection times are maintained [55, 56]. W. Liu

et al. proposed the second one-stage detector, Single Shot MultiBox Detector (SSD) [53, 57]. SSD

introduced multi-reference and multi-resolution detection techniques that increased the accuracy

of a one-stage detector, especially regarding the detection of small objects. SSD differs from other

one-stage detectors in that it detects different sized objects on different network layers, whilst

previous works completed all detections on their top layers [57].

Alongside the desire to increase the accuracy of detections, researchers have also aimed to

increase the speed at which detections are computed [58]. Reducing the size and complexity of

object detection schemes enables their deployment on less powerful mobile compute systems such

as laptops and mobile phones. MobileNet is a CNN for mobile vision applications such as object
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detection on mobile hardware akin to mobile phones or embedded computers [15, 16, 17]. Mo-

bileNet uses depthwise separable convolution to reduce computational expense within the first few

layers of the CNN greatly reducing computational expense per detection [15]. Depthwise separable

convolution uses separate layers for filtering and combining compared to a standard convolution

that completes both tasks in one layer [15]. This greatly reduced the computational expense of

object detection, facilitating its deployment on mobile compute platforms [15]. With similar goals

of deploying object detection on mobile compute platforms, modifications of the aforementioned

YOLO [54] framework were developed to reduce computational expense of detections by reducing

the complexity and size of the model. Fast YOLO demonstrated detections 3.3 times faster than

YOLOv2 while maintaining similar accuracy [59]. YOLO-LITE demonstrated detections 10 times

faster than YOLOv2 but was less accurate [60]. These reductions in computational expense of

object detection in recent years have been crucial in enabling object detection to run on mobile and

embedded compute systems.

1.2.1.2 Object Detection with UAS

Enabling a UAS to detect objects within its operational environment can enable autonomous

behaviors such as target tracking, and autonomous landing. As interest increases in introducing

visual sensor data into the control pipeline of UAS, object detection remains a prominent interest

in increasing autonomous capabilities. Prior works demonstrate the ability for vision-based target

tracking by using color-based blob detection instead of object detection [61]. This approach is

proven successful with lightweight color-based blob detection, but relying on color blob detection

can lead to problems in environments where the target does not contain unique red blue green

(RGB) values. Even before CNN based object detection, more dated object detection methods such

as Haar-Cascades [62], quadrilateral transformation [63], and Fisherfaces [64] were investigated

for use on UAS for target tracking applications [27]. While Boyers runs the object detection on an

off-board computer [27], Haar-Cascade face detection was successfully deployed on-board a UAS

[65].

In more recent years interest has increased in deploying deep CNN based object detection for
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use with UAS imagery, but the computational expense of large CNN object detectors can make

them difficult to deploy on mobile compute platforms such as UAS [66]. The computational power

limits of UAS can be avoided by completing defections off-board on a more powerful computer.

By streaming images captured by a UAS to a ground computer, CNN based object detection has

been performed without the need to run the detection on-board the vehicle [67, 68]. This approach

introduces the infrastructure requirement of having a ground computer connected to the UAS for

deployment. Cloud computing offers an alternative to avoid the use of a ground computer while re-

moving the need to complete the computations on-board the UAS. By keeping the UAS connected

to the internet in flight, images can be streamed to a remote computer that performs the object

detection and returns the result [69, 70]. While alleviating the need for a ground computer, cloud

computing still demands the infrastructure requirement of maintaining an internet connection dur-

ing operation. Running the detection on-board the UAS is ideal to allow the UAS to operate in

environments where a connection to a ground computer or the internet is not available.

Even if not running on-board, object detection still increases the capabilities of a UAS. CNN

based object detectors have been used with UAS to search for targets of interest, such as land-

mines [71] and excavators [72] in aerial images captured by UAS. The ability to send a UAS on an

autonomous mission and use the collected imagery to detect hazards such as landmines or excava-

tors digging near a pipeline provides utility in reducing the human workload required to manually

search for objects within captured images. Running object detection on UAS imagery has also

been used to create an autonomous system to monitor available parking spots in a parking lot,

again autonomously completing a task that normally would be completed manually by humans

[73]. MobileNet [15] has been used to detect a human target, enabling a follow-me algorithm to

follow the detected human target [67]. Detection of another autonomous agent can enable teaming

between autonomous agents when explicit communication between them is not available. Perez et

al. demonstrated the use of object detection on UAS imagery to detect a ground vehicle [74]. The

detection of a ground vehicle can facilitate coordination between the UAS and the ground vehicle

as demonstrated in [75]. Object detection has also been utilized to enable UAS to detect other
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UAS [76]. To enhance performance of UAS detection, a detection method combining RGB and

infrared sensor data proved to be effective at detecting UAS as well as distinguishing them from

birds [77]. Similar to the detection of ground vehicles, the detection of other UAS can serve as the

cornerstone for cooperation between UAS, or interception of an adversarial UAS [78].

1.2.2 Landing Target Localization

This section reviews vision techniques enabling autonomous systems to localize targets of in-

terest. Firstly, the use of fiducial markers commonly used in robotic applications. Secondly, alter-

native methods for localizing targets without the use of fiducial markers.

1.2.2.1 Fiducial Markers for Pose Estimation

Fiducial markers in a general sense are objects that provide a point of reference or measure-

ment within an image. The use of fiducial markers for estimating pose was popularized by the

Augmented Reality (AR) community for tracking objects within the AR environment [79]. By fix-

ing a fiducial marker to a location within the AR environment, any cameras with the marker in their

field of view (FOV) could localize themselves relative to the fixed tag, thus localizing themselves

in their environment as long as the fixed tags position is know a priori. This capability made its

way into the robotics community as fiducial markers can aid an autonomous system in localizing

itself within its environment, or localize itself relative to a target of interest [80]. Fiducial markers

such as the commonly used QR code often contain visually encoded information that is interpreted

by the detection algorithm. However, in the robotics community the amount of information that

can be encoded is often traded for increased detection robustness [81].

ARToolkit is a fiducial marker framework developed for AR, developed to overlay virtual im-

ages enabling user interaction with virtual objects [82]. ARToolkit was one of the earliest fiducial

marker frameworks to see use in the robotics community for pose estimation, and serves as a

foundation for most square-shaped markers used for pose estimation [80]. VisualCode is a fidu-

cial marker of a general square exterior shape with 83 internal square bits for encoding informa-

tion [83]. Instead of developing the marker separately form the detection system, the VisualCode
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marker was developed for use specifically with mobile hardware such as cell phones. Based on

ARToolkit, Rohs proposed binARyID markers using simpler patterns that were selected for ro-

bustness against marker rotation and varied lighting conditions resulting in increased accuracy and

reduced detection error [84]. ARTag is another ARToolkit based package and remains one of the

most widely used fiducial marker software packages [85, 86]. The interior of an ARTag consists of

a six-by-six grid enabling each marker to be identified by a unique 36-bit long word [85]. ARTag

also employs a gradient based line detection improving both detection reliability and detections

during partial tag occlusion [85]. Another marker framework AprilTag expands and improves

upon ARTag [12]. AprilTag utilizes an image segmentation algorithm that determines gradient

patterns in the image for line detection while also addressing misdetections occurring from rota-

tions and outdoor conditions [12]. This work is expanded further in AprilTag 2 which uses the

same coding scheme as AprilTag but increasing detector performance resulting in higher detection

rates [87]. Similar to AprilTag, ArUcO is yet another package based on ARTag and ARToolkit [1].

ArUcO allows the user to define the marker library to contain only the markers desired, resulting

in a smaller library of markers and thus higher detection rates. The size of a fiducial marker can

be an important consideration as smaller markers are able to be detected from a short distance

but not from farther distances. Large tags enable detection from farther distances, but cannot be

detected from short distances as all four corners of the square marker need to be within the image

frame. Fractal fiducial markers solve this problem by embedding smaller markers within a larger

marker to increase the detection range of the marker [88, 89, 90]. Fractal tags are useful in UAS

applications where the marker needs to be detectable when the UAS is at significant altitude as

well as lower altitude. Table 1.2 summarizes the comparison of some of the most common fiducial

markers used in robotics, Figure 1.2 provides visual examples of these markers as well as a fractal

marker [80].
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Table 1.2: Common Fiducial Markers for Pose Estimation

Name Key Features

ARToolkit One of the first square markers, hardly used in
modern efforts.

ARTag One of the most widely used packages, has a
large user base.

AprilTag Advanced segmentation provides increased de-
tection robustness.

ArUcO Configurable marker library can lead to faster
detection rates.

ARToolkit ARTag AprilTag ArUcO Fractal ArUcO

Figure 1.3: Examples of common fiducial markers for pose estimation.

1.2.2.2 Alternative Target Localization

While fiducial markers offer reliable and fast pose updates, the requirement of having a marker

on the target of interest may be undesirable in certain applications. Recent efforts have aimed to

utilize a two-dimensional bounding box from an object detector as the basis for extracting position
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or pose estimation of the detected object. The camera intrinsic properties of focal length and

principal point coordinates have been used to estimate a detected objects position and velocity

from a two-dimensional bounding box [91]. Other works combine the use of stereo cameras with

RGB cameras to estimate the position of detected objects [92, 93]. If the stereo and RGB sensors

are co-boresighted, the pixel coordinates from a bounding box generated using the RGB image

can be mapped to the depth map produced from the stereo sensors, thus giving a position estimate

of the detected object. The authors in [94] are able to estimate the pose of a detected object

from a bounding box by using a neural network to determine the rotational component of the

pose, while a set of equations are used to estimate the translational component. Cabrera et al.

demonstrated the use of a Hough Forest Regression [95] to generate a continuous probabilistic

pose estimate capable of estimating the pose of a detected object between detection frames [96].

An alternative approach is presented in [97] where the viewing angle of the image relative to

the object is estimated and used to generate a pose estimate of the detected object. Deformable

parts models have also been employed to generate pose estimates from two dimensional bounding

boxes [98]. The aforementioned efforts use a method separate from object detection to generate

pose estimates. However the computation of two-dimensional bounding boxes and pose estimation

have been combined into end-to-end approaches through the use of Structure Kernel Machines [99]

and deep Mask RCNNs [100].

Other efforts forego a two-dimensional bounding box and utilize models that can predict a

three-dimensional bounding box, providing a pose estimate of the detected object. Figure 1.4 is

reprinted from [25] to visually display both a two-dimensional and three-dimensional bounding

box, and how a three dimensional bounding box is used as a estimate of the detected objects pose.

Many of these approaches achieve three-dimensional bounding boxes by using stereo cameras

[19], RGB-Depth (RGB-D) cameras [20], Light Detection and Ranging (LiDAR) [21], and Radio

Detection and Ranging (RADAR) [22]. Serving as a improvement on the previously mentioned

methods that use additional sensors, various methods have been developed to estimate a three-

dimensional bounding box using only input from an RGB camera. The authors of [23] present
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Figure 1.4: Left Column: Two-dimensional bounding box. Middle Column: Three dimensional
bounding box, Right Column: Detected object pose estimate from three-dimensional bounding;
reprinted from [25].

a single model where a detector shares key features of the detected object with a pose estima-

tor, generating a three-dimensional bounding box. Similar approaches using a CNN with an en-

ergy minimization approach [24], and a CNN with structure motion techniques [101] can predict

three-dimensional bounding boxes with the assumption that the detected object is on the ground.

The assumption that the detected objects are on the ground stems from the development of these

methods for autonomous driving. It is worth noting the aforementioned works that use addition

sensors (LiDAR, stereo cameras, RGB-D cameras, and RADAR) do not rely on this assumption

[19, 20, 21, 22]. While these three-dimensional object detectors have proven successful, many of

the most popular methods have attributes such as the reliance on depth information, assumption

that objects are on the ground, lack of training data sets, and non-trivial implementation that are
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currently holding them back from seeing more wide spread usage [102].

1.2.3 Vision-based Landing of Unmanned Air Systems

Visual servoing is simply the use of vision sensor data as feedback to control robotic systems

[103, 104]. This sections reviews the use of visual sensor data by UAS for target tracking and

autonomous landing.

1.2.3.1 Autonomous Target Tracking

While this thesis intends to demonstrate an autonomous landing, the investigation of target

tracking efforts is worthwhile as many of the methods reviewed in this section are either similar to

common autonomous landing methods or could be extended to an autonomous landing problem.

Fiducial markers capable of providing an accurate pose estimate are common place in many target

tracking works. The authors of [105] demonstrate the capability of a UAS to detect a fiducial

marker and maintain a position directly above the maker, thus tracking the marker. The same

capability has been demonstrated in a multiple target environment and proven to be robust to

marker position disturbances [106]. While robustness to small movements is an improvement,

other works demonstrate the ability to track a moving fiducial marker target. In [107] the authors

demonstrate a UAS tracking a fiducial marker moving arbitrarily, however the movements are

bounded as to not exceed the capability of the tracking method. The tracking of an arbitrarily

moving fiducial marker target without bounded movements has also been demonstrated [108].

Many other efforts successfully demonstrate target tracking capability without the use of fidu-

cial markers. Pixel coordinates and the geometry of object detector generated bounding boxes have

been used as the input for a PID based target tracking controller capable of tracking moving targets

[109]. Using pixel coordinates and the geometry of the bounding box alleviates the need to local-

ize the target relative to UAS, potentially increasing computational efficiency of the target tracker.

Computation efficiency is an important consideration when using CNN based object detectors, as

their computational expense can result in the required use of a ground station computer. A CNN

based object detector has been used as the basis for both a Q-Learning target tracker [110], and a
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PID target tracker [68] which both utilized an off-board ground station computer. However, some

works have been able to achieve the tracking of a moving target using CNN based object detectors

while still completing all computations on-board the UAS [111, 112]. Methods not relying on

CNNs have also been deployed to successful track moving targets. In [61] color blob detection is

used as the basis for a Q-Learning [113] target tracking algorithm to track a moving red truck with

a fixed wing UAS. Specific visual features of a target of interest have also been used by an optical

flow algorithm to estimate the velocity of the target for tracking purposes [114].

1.2.3.2 Autonomous Landing

Early autonomous landing work demonstrated the use of Hu’s moments of inertia [115] to esti-

mate pixel coordinates of the target, and then use simple photogrammetry to estimate the position

of the target relative to the UAS [116]. The introduction of fiducial markers increased the per-

formance of autonomous landings as instead of using assumption restricted estimations of target

position, researchers have access to an accurate pose of the target. This capability is used to fa-

cilitate autonomous landing on a static fiducial marker using traditional control [2, 3, 4], a neural

network [5, 6], and Q-Learning [7]. Fiducial markers have also been used to enable autonomous

landing on moving targets, such as ground vehicles [8]. A model predictive controller has been

implemented with the use of a fiducial markers for target pose estimation, and a gimbaled camera

to enable a UAS to land on a ground vehicle moving at twelve meters per second but was only

demonstrated in simulation [34]. Other works have demonstrated autonomous landings on moving

fiducial markers [9, 10], just not at the speed that [34] was able to achieve in simulation. While

many previously mentioned works use GPS for UAS position estimation within its environment,

others have implemented autonomous landings on moving fiducial markers without the use of GPS

in simulation [117, 118], as well as on hardware in experiments [26, 11, 28, 29]. However, only

the authors of [11, 28, 29] were able to implement their methods on-board the UAS, whereas the

authors of [26] rely on a ground station computer to complete all vision computations. Some works

replace the position information provided by GPS with VIO [28], and others remove the require-

ment of external position information [11]. Most of the aforementioned works operate independent
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of their landing target. However, if the landing target is a UGV capable of communicating to the

UAS and vice versa, a collaborative framework between the two allows the UGV to broadcast its

GPS position to the UAS for use in autonomous landing [13]. This approach does require wireless

communication with the UGV, where purely visual approaches do not. The authors of [14] com-

bine the two approaches by having the UGV broadcast its GPS position to the UAS for use when

the UAS is far from the UGV, but utilize a fiducial marker on the UGV once the UAS is close

enough to visually detect the tag.

1.3 Research Objectives

The objective of this research is to develop a vision-based autonomous landing system enabling

a UAS to land on a moving UGV whilst satisfying four specific constraints. First, assume com-

munication between the UAS and UGV is either compromised or nonexistent. Second, complete

the autonomous vision-based landing without the use of fiducial markers for pose estimation of the

UGV. Third, all vision and control computations necessary to complete the landing must be com-

pleted on-board the UAS where all sensing and compute components weigh less than 100 grams.

Fourth, the camera used must be fixed to the UAS (not gimbaled).

1.4 Contributions

The key contribution of this work lies in the combination of vision and robotic tools to improve

the vision-based landing state of the art by alleviating the requirement of fiducial markers for

UGV detection and localization. While demonstrated in an vision-based landing use case in this

thesis, this methodology could be applied to other applications involving cooperating or adversarial

agents. The presented detection localization scheme could also facilitate robots detecting and

localizing objects of interest in their environment without the use of fiducial markers.

1.5 Organization

This thesis is organized as follows. Chapter 2 details the neural network-based object detection

methods used for detection of the UGV landing target within UAS captured images. Chapter 3

describes the method utilized to localize the detected UGV relative to the UAS and compares
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the presented method against a commonly used fiducial marker. Chapter 4 describes the command

generator algorithm responsible for generating setpoints that facilitate the autonomous landing, and

presents the results achieved in both simulation and experiments. Conclusions from the presented

work are summarized in Chapter 5, succeeded by recommendations for future work in Chapter 6.
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2. NEURAL NETWORK OBJECT DETECTOR

This chapter presents MobileNet SSD [15, 16, 17], the neural network object detector imple-

mented in this work for detecting the UGV landing target. An overview of the network model

is followed by specifics on the training of the network as well as the performance and results

achieved.

2.1 Problem Definition

As this work aims to move away from the reliance on fiducial markers for autonomous vision-

based UAS landings, the landing target must be detected and localized in an alternative fashion.

While fiducial markers offer detection and localization in one algorithm, this work will separate de-

tection and localization into two separate processes. MobileNet SSD object detection is employed

to address the former problem by detecting the UGV landing target within images and outputting

pixel coordinates of the detected UGV. This chapter aims to demonstrate MobileNet’s ability to

be trained on a set of UAS captured images to robustly detect the UGV landing target in near real

time at a rate sufficient to support the presented autonomous vision-based landing.

2.2 MobileNet Single Shot Detector Neural Network

MobileNets are a family of efficient, small, low latency models that achieve detection rates

fast enough to enable near real-time object detection on mobile and embedded compute platforms.

Their performance on limited compute power platforms, such as the UAS used in this work, makes

them an ideal option for the object detection portion of this autonomous landing work.

2.2.0.1 Depthwise Separable Convolution

MobileNetV1 significantly increased detection speed through the introduction of depthwise

separable convolution into the inferencing process [15]. While traditional convolution filters and

combines the input in a single step, depthwise separable convolution separates these two tasks to

increase efficiency[15]. To show this, the number of multiplications from a tradition convolution,
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mconvolution can be compared to the number of multiplications required by a depthwise separable

convolution, mdepthwise [15]. Figure 2.1 depicts traditional convolution, where an input is shown

on the left of dimensions F ∗F ∗M . Applying convolution of a kernel with shapeK∗K∗M results

in output shape C ∗C ∗1. C denotes the number of unique positions in which the kernel can be slid

across the input. If N such kernels are applied to the input, an output of C ∗ C ∗ N is generated.

For one convolution operation the number of multiplications is K2 ∗M . Since the kernel is slid

across the input, C convolutions are performed along the height and width of the input, making the

number of multiplications per kernel equal to C2 ∗K2 ∗M . Finally if this operation is performed

with N kernels, the total number of multiplications mconvolution for the described convolution is:

mconvolution = N ∗ C2 ∗K2 ∗M. (2.1)

Figure 2.1: Traditional Convolution.

For depthwise separable convolution, the first filtering stage is completed on each channel,

instead of all channels simultaneously. Figure 2.2 depicts this process by showing an input of

F ∗F ∗M whereM number ofK ∗K ∗1 kernels are used instead of the singularK ∗K ∗M kernel

used in traditional convolution. The product of this step is a data volume of size C ∗C ∗M . Since

convolutions are applied to each input channel, the number of multiplications per convolution is

K2 ∗ 1, or just K2. When applied over the entire input channel, this convolution is performed C
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times in height, and width of the input. This increases the multiplications required per channel to

C2 ∗K2, and when this is applied over all M input channels the total number of multiplications in

the first stage, defined as m1, is:

m1 =M ∗ C2 ∗K2. (2.2)

The second step of depthwise separable convolution, the pointwise convolution, is depicted in

Figure 2.3. The data volume produced in the first filtering stage of shape C ∗C ∗M is convoluted

with a kernel of shape 1 ∗ 1 ∗M , and if N such kernels are applied, the resulting output is a data

volume of shape C ∗N ∗N , resulting in the same output data volume that was achieved using

traditional convolution. The number of multiplications per convolution is 1 ∗ 1 ∗M , or just M .

Since the convolution is performed C times in both height and width across the input, the number

of multiplications per kernel is C2 ∗M . Finally, if there are N kernels applied, then the number

of multiplications required by the second stage, defined as m2, is:

m2 = N ∗ C2 ∗M. (2.3)

Thus, the total multiplications needed for a depthwise convolution, the sum of m1 and m2 can be

defined as:

mdepthwise =M ∗ C2(K2 +N). (2.4)

Figure 2.2: Depthwise Convolution, first stage of Depthwise Separable Convolution.
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Figure 2.3: Pointwise Convolution, second stage of Depthwise Separable Convolution.

The ratio of and mdepthwise and mconvolution,

mdepthwise

mconvolution

=
M ∗ C2(K2 +N)

N ∗ C2 ∗K2 ∗M
(2.5)

can be simplified to

mdepthwise

mconvolution

=
1

N
+

1

K2
. (2.6)

Equation 2.6 above displays the ratio of multiplications required for depthwise separable

convolution and traditional convolution. The ratio simplifies to the sum of reciprocal of the depth

of the output volume N , and the reciprocal of the kernel dimension K squared. Showing that for

any N and K greater than 1, depthwise convolution is more efficient in terms of multiplications

required, reducing computational expense of the convolution.

2.2.0.2 Linear Bottlenecks and Inverted Residuals

MobileNetV1 employed the use of depthwise seperable convolutions to increase performance

on mobile compute platforms, and MobileNetV2 expanded upon its predecessor by introducing

the use of linear bottlenecks and inverted residuals [15, 16].

In [16], the authors describe a "manifold of interest" as a set of layer activations for any layer

L for an input set of images. It is also stated that it can be assumed that the manifolds of interest

can be embedded in low-dimensional subspaces due to two key properties [16]:
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1. "If the manifold of interest remains non-zero volume after ReLU transformation, it corre-

sponds to a linear transformation."

2. "ReLU is capable of preserving complete information about the input manifold, but only if

the input manifold lies in a low-dimensional subspace of the input space".

This low-dimensionality of the "manifold of interest" can be captured via the insertion of linear

bottleneck layers into the conventional blocks. Results in [16] show that these linear bottlenecks

prevents non-linearity from destroying too much information, and in fact show that non-linear

bottleneck layers negatively affect performance. Other works also report on findings where the

removal of non-linearity from the input to a CNN block lead to improved performance [119].

Residual connections are often used in CNNs as they can improve the ability of a gradient to

propagate across multiple layers. Traditionally, residual connections are made between layers with

high number of channels. However, the authors in [16] show that residual connections between

bottleneck layers are considerably more memory efficient leading to improved performance [16].

Figure 2.4 is reprinted form [16] to visually demonstrate the difference between a traditional resid-

ual block and an inverted residual block. Note the hatched layers represent layers not using any

non-linearities [16].

Figure 2.4: Left: Traditional Residual Block. Right: Inverted Residual Block; reprinted from [16].
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2.2.0.3 Network Architecture Searches and Model Architecture Advances

MobileNetV3 expands further upon its predecessors by implementing hardware aware net-

work architecture searches (NAS) and model architecture advances [17]. NetAdapt [120] is the

NAS employed by MobileNetV3, and is capable of adapting a pre-trained deep neural architecture

for mobile platforms. The algorithm decreases the resource consumption by removing filters from

one layer during each iteration. It simplifies each layer individually and then selects the resulting

network with the highest accuracy. This iterative simplification is repeated until a predefined com-

putational resource budget is satisfied, then the simplified network is fine-tuned in a final step until

convergence is achieved. Figure 2.5 is reprinted from [120] and visually represents the NetAdapt

algorithm.

Figure 2.5: Left: Traditional Residual Block. Right: Inverted Residual Block; reprinted from
[120].

In addition to the implementation of a NAS, MobileNetV3 also implements novel architecture

advances. It expands upon the building block presented for MobileNetV2 (shown in Figure 2.4) by

23



including squeeze and excitation into the linear bottleneck layers as well as a modified activation

function. Squeeze and excitation blocks are novel architectural blocks that aim to increase the

representational power of a network by using inter channel dependencies to recalibrate the channel-

wise feature response [121]. Figure 2.6 reprinted from [17] visually displays the addition of a

squeeze and excitation block, shown as the solid blue blocks, to the linear bottleneck inverted

residual block presented MobileNetV2.

Figure 2.6: MobileNetV2 Linear Bottleneck Inverted Residual Block with Squeeze and Excitation
Block; reprinted from [17].

A new activation function is also used in MobileNetV3, hard-swish or h-swish. Works such

as [122, 123, 124] present a non-linearity called swish which serves as a drop-in replacement for

ReLU and provides a significant increase in neural network accuracy.

swish(x) = x ∗ σ(x), where σ(x) = 1

1 + e−x
(2.7)

While the swish function increases accuracy, the sigmoid function it relies on is computationally

expensive, and can hinder performance on mobile compute platforms. MobileNetV3 addresses

this by replacing the sigmoid function with its hard alternative, resulting in h-swish defined in

Equation 2.8 [17]. Figure 2.7 is reprinted form [17] and provides a comparison between hard and

standard versions of sigmoid and swish activation functions.
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h− swish(x) = x ∗ ReLU6(x+ 3)

6
(2.8)

It is observed that the benefits of swish activation are only realized in deeper layers of the

network, thus MobileNetV3 only employs h-swish in the second half of the model, ReLU is used

elsewhere [17].

Figure 2.7: Comparison of hard and standard versions of sigmoid and swish activation functions;
reprinted from [17].

2.2.1 Model Definition

MobileNetV3 SSD will be used for this work as its improvements provide improved perfor-

mance over its predecessors MobileNetV1, and MobileNetV2. MobileNetV3 consists of two mod-

els MobileNetV3-Small and MobileNetV3-Large, which are optimized for low and high compute

resource platforms respectively [17]. As this work aims to deploy the object detection on-board a

UAS with limited compute power, MobileNetV3-Small will be used.

2.2.1.1 Training and Performance

The object to be detected in this work is a Clearpath Robotics Warthog [125] with a custom

landing pad attached, as displayed in Figure 2.8. A model was also trained on just the landing pad

to enable experimentation without the Warthog UGV by placing the landing pad on a garden cart,

as displayed in Figure 2.9. Furthermore, a model was trained on the simulated UGV for use within

25



the simulation environment. All models were trained according to the specifications listed in the

subsequent sections.

Figure 2.8: Clearpath Robotics Warthog with Landing Pad attached.

Figure 2.9: Garden cart with Landing Pad attached.
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The deep-learning framework TensorFlow [126] was used in this work to aid in the training

and deployment of the object detector. TensorFlow was also used to convert the trained network to

a TFLite model, which enables the acceleration of inferencing on mobile and embedded compute

platforms. TensorFlow was also used to quantize the trained TFLite model to further increase

performance on mobile compute platforms.

The training data used is a set of 710 images captured by the VOXL m500 UAS [127] used in

this work. The software tool RoboFlow [128] was utilized to augment these images. Augmenting

images can aid in the training of neural network object detectors by increasing the robustness in

the presence of noise and distortion in images. Table 2.1 below summarizes the augments used,

and Figure 2.10 displays some examples of images before and after augmentation. The noise

augmentation parameter defines how many of the pixels within the image are replaced by either

white or black pixels. The location of these noise pixels is random. Rotation defines the amount

by which the image is rotated in degrees, the rotation amount is chosen randomly as a value within

the predefined bounds. Similarly, saturation augments the images by adjusting the saturation of

the image by a random amount within the predefined range. The training data set for this work

consisted of all original images without augmentation, as well as two sets of augmented images

bringing the total number of images used in training up to 2130. This number of training images

was sufficient to facilitate the training of the model to detect the UGV at an altitude of five meters.

Table 2.1: Augmentations Applied to Training Images

Augmentation Parameters

Noise 3%

Rotation ± 15 °

Saturation ± 35%
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Figure 2.10: Top Row: Raw images. Bottom Row: Examples of images augmented as defined in
Table 2.1.

Using this augmented set of training images, various network sizes were trained in an attempt

to observe if network size significantly affected speed or accuracy of the trained detector. Mo-

bileNetV3 defaults to a model size of 300 x 300. This model size and both one larger and one

smaller were trained. Large network sizes can more reliably detect smaller objects within an im-

age at the expense of increased computational cost. Two performance metrics were observed for

each model for comparison, inference speed, and mean average precision (mAP). Inference speed

is used as a metric to represent computational expense, high inference times indicate an increase

in computational expense. The same image was input into each trained network 30 times. Each

time the inference time was measured, and all 30 inference times for each trained network were

averaged to yield the values presented in Table 2.2. All inference times were measured on-board

the VOXL m500 UAS whose specifications are listed in Appendix A. mAP is a metric commonly

used to quantify object detection accuracy, and represents the accuracy of the trained model on the

training data set. Higher mAP value indicate higher accuracy, with the maximum mAP value being

1.0. Training was run until the mAP was observed to no longer increase in a span of 1500 training

steps.
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Table 2.2: Network Size Comparison

Network Size Inference (ms) mAP

200x200 16.5 0.744

300x300 27.1 0.774

400x400 37.7 0.802

As expected, increasing the network size increases the mAP achieved at the expense of in-

creased inference time. Examination of Table 2.2 shows that increases in network size yield incre-

mental increases in the mAP achieved at the expense of the increased inference time. Since neither

of the larger network sizes yield significant accuracy improvements, it was decided that a model

size of 200 x 200 is adequate for detecting the features of interest for the UGV landing target. In

summary, a model size of 200 x 200 is selected for this work as it proved successful in detecting

the UGV landing target, whilst minimizing the computational power required resulting in faster

inference times.

2.2.1.2 Quantization

Quantization of a neural network is the process of approximating the 32-bit floats represent-

ing fixed values such as trained weights with lower bit numbers, often 8-bit integers of 16-bit

floats. This process reduces model size and improves detection speed with little degradation to

model accuracy [126]. 16-bit quantization is used in this work as it is recommended by the Ten-

sorflow framework for models deployed on Graphics Processing Units (GPUs). By quantizing the

trained model to 16-bit floats from 32-bit floats, the model size and inference latency were reduced.

Specifics in these reductions are specified in Table 2.3.
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Table 2.3: Quantization Performance Change

Non-Quantized Model Quantized Model Percent Reduction

File Size 7,178,300 bytes 3,646,188 bytes 49.2 %

Inference Speed 16.5 (ms) 13.7 (ms) 17.0 %

The ability for quantization to reduce latency may lead to inquiries about using a larger model

for increased accuracy, and using quantization to reduce the incurred additional inference time.

This was not considered in this thesis as the reduction in latency from quantization was not signif-

icant enough to reduce the majority of additional latency of larger networks.

2.3 Object Detection Results

The resulting quantized, 200 x 200 size MobileNetV3 SSD object detector was selected for

the detection of the landing target portion of this work for the reasons summarized in subsequent

sections. Figure 2.11 displays a few example UGV detections completed on-board the VOXL

m500 UAS, and Figure 2.12.

Figure 2.11: Examples of UGV landing target detection.
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Figure 2.12: Examples of cart landing target detection.
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3. LOCALIZATION OF DETECTED GROUND TARGET

The method and software described in this chapter relies upon concepts existing within the ROS

package image_undistort [129]. The functionality provided by image_undistort was expanded

upon by Army Research Lab to create the software capable of estimating the three-dimensional

position of the UGV target, as described in this chapter [18].

3.1 Problem Definition

Object detection handles the localization of the landing target within an image; however, this

work also aims to estimate the UGVs position in three-dimensional space relative to the UAS.

Fiducial markers are often used in autonomy development and can a 6 DOF pose estimate of

the target. This thesis aims to alleviate the requirement of fiducial markers by estimating the

position of the UGV relative to the UAS by utilizing camera intrinsic properties. To accomplish

this, the camera must be modeled. This model was used in conjunction with the pixel coordinates

of bounding boxes generated from object detection to provide a position estimate of the UGV.

3.1.1 Camera Model

The cornerstone of this works ability to transfer pixel coordinates in the image frame into

three-dimensional coordinates in the world is the use of the pinhole camera model, as described

in [130]. The pinhole camera model is used to describe the mathematical relation between the

three-dimensional position of a point and its projection into the image frame of a camera. This

model is not without shortcomings as it does not account for geometric distortions, or any affects

caused by lenses, and apertures. Attempting to correct for any distortion in images captured can

negate some of the affects not captured by the pinhole camera model.

A visual depiction of the pinhole camera model is displayed in Figure 3.1. The model depicts a

point in three-dimensional space with coordinates of (X , Y , Z), and its projection on to the image

plane in pixel coordinates (u, v). The image plane exits parallel to the plane formed by the X and

Y axis of the coordinate system, and is a fixed distance f , the focal length, from the origin of the
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coordinate system.

Figure 3.1: Visualization of the pinhole camera model.

By examining the Y-Z plane formed in Figure 3.1, a relation using similar triangles can be

developed to generate an expression for the pinhole camera model. Figure 3.2 visually depicts

how similar triangles exist within the pinhole camera model. The blue right triangle formed to the

point (u, v) is similar to the red triangle formed to the point (X , Y , Z). Using the information that

these triangles are similar, and that the image plane exists at f along the Z axis, their relation can

be writeen as depicted in 3.1

u

f
=
Y

Z
, or u =

Y f

Z
(3.1)

In similar fashion, Equation 3.2 can be written to describe the same relationship, but in the X-Z

plane.

v

f
=
X

Z
, or v =

Xf

Z
(3.2)
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Figure 3.2: Visualization of similar triangles within the Y-Z plane of the pinhole model.

Equation 3.3 summarizes the expression for the pixel coordinates of a point in three-dimensional

space projected onto an image plane with a known focal length.

[
u v

]
=

[
Y f
Z

Xf
Z

]
(3.3)

To represent Equation 3.3 in a more usable form, homogeneous coordinates are introduced as

w and T [131]. This enables Equation 3.4 to be written in matrix form and map the projection of

a point in three-dimensional space onto an image plane. cx and cy account for the offset in origin

between the image plane and coordinate frame, as typically an image frame coordinate system’s

origin exists at the top left corner of the image plane as depicted in Figure 3.1.


v

u

w

 =


f 0 cx 0

0 f cy 0

0 0 1 0





X

Y

Z

T


(3.4)

By examining the results of Equation 3.4 it can be seen the resulting terms are:
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v = fX + cxZ , u = fY + cyZ , and w = Z. (3.5)

If this result is unhomogenized, that is u and v are divided byw, the same result is captured form

Equation 3.3 with the addition of the origin offset parameters cx and cy. It can also be observed

that the additional component T that is introduced during the homogenization of the coordinates

(X , Y , Z) has no effect on the result obtained, and is thus ignored to obtain the form presented

in Equation 3.6. This form is also convenient in the fact that the matrix is now square and can be

inverted. The resulting three by three matrix is defined as the camera intrinsic matrix, K.


v

u

w

 =


f 0 cx

0 f cy

0 0 1



X

Y

Z

 (3.6)

3.1.2 Landing Target Position Estimation

The pinhole camera model described in Equation 3.6 is often used to describe the projection

of a point onto the cameras image frame. However, this work is interested in estimating (X , Y ,

Z) given pixel coordinates (u, v) from object detection. Since the component Z is lost in the

projection, additional information will be required to recapture the full three-dimensional position

of the projected point. This section describes the method in which the full three-dimensional

position of the point of interest is estimated with the use of the UAS altitude.

First a unit vector originating from the origin O is defined to be oriented towards the point of

interest. This vector r is found by inverting the camera intrinsic matrix K and multiplying by the

homogenized pixel coordinates as shown in Equation 3.7.

r =


rx

ry

rz

 =


f 0 cx

0 f cy

0 0 1


−1 

v

u

w

 (3.7)
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Figure 3.3: Visualization of the vector r on the pinhole camera model.

X , and Y can be directly calculated if w is equal to Z. Since Z is unknown, for now w

is set to any value, in this work it was set to one. This defining of w is required to account

for the information that is lost during the projection of the three-dimensional point onto the two-

dimensional image plane. By observing the resulting expression for r in Equation 3.8 r can now be

described as a vector oriented towards the point (X , Y , Z), but does not have the correct magnitude

required to represent the point (X , Y , Z). r is normalized as the magnitude of r is not significant,

only its orientation. It can be seen in Equation 3.8 that r is in essence a function of w. Figure 3.3

visually depicts r as a green vector on the pinhole camera model.

r =


rx

ry

rz

 =


v
f
− cxw

f

u
f
− cyw

f

w

 (3.8)

Since r exists as a function of w, w needs to be estimated to calculate the position of the UGV

relative to the camera. As the image itself lacks any depth information, the UAS altitude will be
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used to provide the depth information required. The altitude estimate is used to create a plane at

the ground level, G. This plane G is then offset by a predetermined height h0 to account for the

height of the UGV with respect to the ground, as depicted in Equation 3.9. By using this approach

some limitations are placed such as the assumption that the UGV is operating on flat ground, and

the required prior knowledge of the height of the UGV. These limitations could be addressed by

replacing the plane G with the use of a point cloud generated from stereo vision or LiDAR, but

these approaches were not considered due to size weight, and computational power constraints of

the UAS used in this work. The vector r will serve as the basis for a parameterized line whose

intersection with G yields the position estimate of the UGV.

G = gx(X) + gy(Y ) + gz(Z) + h0 (3.9)

Next a vector l is defined as <0, 0, 100>. A quaternion qr defined to represent the orientation

of the unit vector r. Two points are generated as displayed in Equation 3.10.

p1 = (0, 0, 0) and p2 = qrl. (3.10)

p1 and p2 are the two endpoints of a line whose length is 100, and orientation equivalent to that

of r. Next a third order parameterized line p(t) is fit between p1 and p2, as defended in Equation

3.11.

p(t) = px(t) + py(t) + pz(t) (3.11)

The non-linearity included in the parametrization can aid in accounting for any distortion in

the image not accounted for by the camera intrinsic matrix K. For a camera that is accurately

calibrated, where K is populated with a high level of fidelity, a linear parameterized line p is

adequate. Given the simplified version of K employed in this thesis the non-linearity is employed

in the generation of p(t). Now that p(t) exists as a parameterized line that maintains the orientation

of r in the presented coordinate frame, the intersection of p(t) and G can be found. The respective
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components of p(t) can be substituted into Equation 3.9, and t can be solved for, as shown in

Equation 3.12.

gx(px(t)) + gy(py(t)) + gz(pz(t)) + h0 = 0 (3.12)

The resulting value of t is then substituted back into p(t) to yield the position estimate of the

UGV. The figures in this chapter have depicted the pinhole camera model with the Z axis in a

horizontal orientation. However in this work the camera is downward facing on-board the UAS,

meaning the Z axis of the pinhole camera model is oriented in a vertical fashion. Figure 3.4 depicts

this as well as provides a visual summary of the process depicted in this chapter.

Figure 3.4: Visualization of the detection localization approach used in this work.
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3.2 Localization Results

This section provides a few examples of the performance achieved by the presented method.

The data presented for each example was collected in a simulation environment in an attempt to

remove as many environmental variables as possible. Simulation can also provide exact position

differences between the UAS and UGV to be used as a ground truth. The error between this ground

truth data and the UGV position estimate from detection localization is plotted below for various

scenarios.

First, the UAS was commanded to hover directly over the UGV at an altitude of five meters.

The results from this demonstration are displayed in Figure 3.5, and Figure 3.6 displays a few

images captured during the experiment to visually represent the UGVs location within the UAS

image frame. It can be observed that while the UAS is hovering above a still UGV, the detection

localization method discussed in this chapter can yeild accurate position estimates of the UGV

relative to the UAS.

Second, the UAS was commanded to hover at an altitude of five meters while the UGV passes

underneath such that it enters the bottom of the image and exits the top. Figure 3.7 displays the

position error, and Figure 3.8 displays a few images captured during the experiment to visually

represent the UGVs path of travel in the UAS image frame. This experiment is a good represen-

tation of how image distortion can affect accuracy. When the UGV is near the edge of the image

the error increases as the distortion in the image is higher near the edges. Increasing the fidelity of

the camera intrinsic matrix will likely reduce the errors seen at edges of images due to distortion.

These errors are acceptable for this work as the UAS will eventually navigate to a position near

directly above the UGV.

The final experiment conducted is similar to the second, except that the UGV will move across

the image from left to right. Similar to the previous experiment, the closer the UGV is to the edge

of the image, the increase in distortion causes an increase in the error. Figure 3.9 displays the error

plot, and Figure 3.10 displays a few images of the UGVs path across the image. The error as the

UGV is near the edges of the image is higher than the previous experiment. This is because the
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image width is greater than the image height. As previously mentioned, image distortion becomes

worse as distance from the center of the image increases. The width of the image is greater than

the height, causing this distortion effect to become more significant as the UGV can travel further

from the center of the image.

Figure 3.5: Detection localization error with UAS hovering over static UGV.

t = 80 secs t = 85 secs t = 90 secs

Figure 3.6: Time series of the static UGV’s position within the image.
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Figure 3.7: Detection localization error with UAS hovering over moving UGV.

t = 77 secs t = 79 secs t = 81 secs

Figure 3.8: Time series of the UGV’s path across the image from bottom to top.
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Figure 3.9: Detection localization error with UAS hovering over moving UGV.

t = 41 secs t = 43 secs t = 45 secs

Figure 3.10: Time series of the UGV’s path across the image from left to right.

3.3 Comparison to Fiducial Markers

This work demonstrates autonomous landings without the use of fiducial markers, and thus a

brief comparison between the presented localization approach and the use of fiducial markers is

42



presented in the subsequent sections. Two points of comparison are investigated, the computational

expense of each method as well as the accuracy achieved.

3.3.1 Computational Expense

Computational expense of each method can be difficult to compare as the performance achieved

is heavily dependent on the hardware used. Difficulty aside, this section aims to provide a brief

comparison on the performance achieved with both an ArUcO fiducial marker and detection lo-

calization on two different hardware setups. The first hardware platform used for comparison is a

Dell® XPS Laptop with an Intel® i7-8750H Central Processing Unit (CPU), a Nvidia® GeForce™

GTX 1050Ti Graphics Processing Unit (GPU), and 32 gigabytes of Random Access Memory

(RAM). The second hardware platform is the ModalAI VOXL Flight computer. The VOXL Flight

is built around the Qualcomm® Snapdragon™ 821 chip-set [132] which contains Qualcomm®

Kyro™ CPU, a Qualcomm® Adreno™ 530 GPU, and 4 gigabytes of RAM.

The time it takes each method to complete a single iteration on the two computers was recorded

and is displayed in Table 3.1. In table 3.1 DL is sued to designate the presented detection local-

ization method. The time column indicates the time required for each method to complete a single

iteration of the respective algorithm. The use of ArUcO fractal fiducial markers was run on both

the workstation laptop, and the VOXL CPU. Detection Localization includes the same hardware

tests with the addition of GPU acceleration for the TensorFlow Lite object detection. GPU was

not utilized for any other tests as TensorFlow Lite models are not supported on desktop GPUs, and

GPU acceleration is not supported for the ArUcO ROS package used for fiducial marker detection.

Table 3.1: Computational Expense of Detection Localization vs. ArUcO Fractal Marker

Hardware Aruco-CPU (ms) DL-CPU (ms) DL-GPU (ms)

Dell Laptop 17 156 N/A

VOXL 44 1984 49
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It can be observed in Table 3.1 that the performance of detection localization on the VOXL’s

mobile grade CPU is much slower than the Fractal ArUcO marker. However, if GPU acceleration

is available, then the compute time between the two is similar with the ArUcO tag only being a

few milliseconds faster.

3.3.2 Accuracy

Experiments were run within the simulation environment to compare the accuracy achieved

with the ArUcO fiducial marker, and the presented detection localization method. The attitude

estimate of the target was not considered in this comparison as detection localization does not

produce attitude estimates of the target. Simulation was ideal for these experiments as ground truth

data describing the transformation between the UGV and the UAS was easily available. Simulation

also offers controlled and repeatable visuals, ensuring that changes in lighting or other external

factors between experiments does not affect the data collected. Three experiments with the same

format as described in Figures 3.6, 3.8, and 3.10 were performed with both ArUcO and detection

localization running simultaneously. This was possible as the object detection method was able

to detect the UGV even with an ArUcO marker on top. The collected results from each method

were then plotted against the ground truth data from the simulation environment. The altitude

of the UAS during the previous experiments was five meters. However, in these experiments the

altitude had to be lowered to three meters. This was caused by the low resolution of the simulated

camera struggling to detect and process the ArUcO marker from higher altitudes. The simulated

camera’s low resolution was a constraint caused by the compute power available on the workstation

computer used for this work. Figure 3.11 presents data collected as the UAS hovered over the UGV

at an altitude three meters. Figures 3.12, and 3.13 present the data collected in simulations where

the UAS hovered above the UGV at an altitude of three meters while the UGV moved through

the image frame from bottom to top, and left to right respectively. In some cases it may appear

that the data generated with the ArUcO marker is noisier than the detection localization data. This

can be attributed to detection localization’s use of the filtered altitude estimate from the PX4 flight

controller. ArUcO does not rely on any information from the flight controller, and thus its produced
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data is unfiltered.

Figure 3.11: Comparison of detection localization and ArUcO fiducial marker while UAS hovers
over static UGV.
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Figure 3.12: Comparison of detection localization and ArUcO fiducial marker while UAS hovers
over a UGV moving from bottom to top in the image.

Figure 3.13: Comparison of detection localization and ArUcO fiducial marker while UAS hovers
over a UGV moving from left to right in the image.
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3.3.3 Comparison Summary

The main difference between fiducial markers such as an ArUcO tag and the presented de-

tection localization method is the lack of attitude information provided by detection localization.

Fiducial markers can provide a full six-degree-of freedom pose estimate of the target, while de-

tection localization only provides a three-dimensional position estimate. Fiducial markers are also

more apt for deployment on a wider range of embedded systems as they do not require the GPU

acceleration that detection localization relies on for object detection. Deploying detection localiza-

tion without GPU acceleration resulted in a rather slow update rate of approximately 0.5 Hz on the

ModalAI VOXL Flight computer. However, with GPU acceleration available detection localization

nears the update rate achieved by the ArUcO fiducial marker running on the CPU. Both methods

achieve high accuracy when the target is near the center of the image and experience a decrease in

accuracy as the target nears the edge of the image. In summary, the detection localization method

can serve as an alternative to fiducial markers for small, low power embedded compute systems

if attitude information of the target is not needed, and GPU acceleration is available on-board the

embedded computer running detection localization. If deployed on a more capable embedded com-

pute platform the GPU acceleration of object detection may not be required to run the presented

detection localization method at an adequate rate to support autonomous landings.
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4. COMMAND GENERATOR

4.1 Problem Definition

Detection localization yields a three-dimensional position estimate of the UGV relative to the

UAS. This position estimate is to be used as input for a command generator, which generates

setpoint commands for the UAS to achieve using the on-board flight controller. The command

generator will need to consider the velocity of the UGV landing target as well as its position

relative to the UAS to produce setpoints that result in the UAS moving closer to the target as the

landing progresses. High level behavioral control of the UAS before the landing begins, during the

landing, and after the landing is managed by a state machine. This chapter describes a command

generator, as well as the high-level behavioral control used to facilitate the autonomous landing.

4.2 Autonomous Landing Framework

This work leverages the open source PX4 flight control software [35] running on the ModalAI®

Flight Core® Flight Control Unit (FCU). More details on the hardware used can be found in Ap-

pendix A. The subsequent sections describe the PX4 flight control software, the command gener-

ator, and the state machine utilized.

4.2.1 PX4 Controller

The PX4 open-source flight control software enables multirotor UAS to fly in a variety of

ways such as simple stabilized manual flight, manual flight whilst maintaining position, and end

to end autonomous missions. This thesis utilizes the setpoint controller PX4 provides alongside

the offboard mode functionality. Offboard mode allows a companion computer to send commands

to the FCU. This functionality enables the implementation of more computationally expensive

methods such as visual servoing. PX4 is responsible for all control of the UAS before, and during

the autonomous landing. A brief overview of the PX4 controller used is provided in the following

subsection.
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4.2.1.1 PX4 Setpoint Controller

The PX4 setpoint controller utilizes a cascaded control architecture, where the controllers used

are a mix of Proportional (P) and Proportional Integral Derivative (PID) controllers. The first set of

controllers evaluates position errors in the inertial frame and iterates at a rate of 50 Hz. A vector of

cartesian points, a setpoint Xsp, is passed into a P position controller that outputs a velocity vector

Vsp. Figure 4.1 visually depicts this position controller. PX4 saturates the commanded velocity

to ensure the commanded velocity lies within reasonable limits. The command velocity vector is

passed into a PID velocity controller which outputs an acceleration vector Asp, as shown in Figure

4.2. This PID loop utilizes a low pass filter (LPF) to reduce noise on the derivative path. The

integrator path implements an anti-reset windup to avoid the term from accumulating a significant

error if a large change occurs in the velocity setpoint. Similar to the velocity command, these

acceleration values are saturated to ensure they lie within reasonable limits. The inputted yaw

setpoint ψsp and Asp are then translated by PX4 from acceleration and yaw, into attitude, which

outputs a quaternion q̃sp and a thrust command δTsp. The vector component of q̃sp is passed into a

250Hz P control loop based on the work presented in [133]. The attitude control loop is responsible

for translating the inputted vector portion of the quaternion into angular rate commands Ωsp, as

shown in figure 4.3. In similar fashion to prior loops, these angular rate commands are saturated to

ensure they lie within a physically reasonable bound. The angular rate commands are passed into

the final control block, a 1 kHz K-PID angular rate controller depicted in Figure 4.4. K-PID con-

trollers utilize a form that is mathematically equivalent to standard PID but provide an advantage

by decoupling the proportional gain tuning from the integral and derivative gains [35]. This allows

the gains tuned for one UAS to be transferred to a new UAS of similar physical dimensions by

simply adjusting the K gain instead of re-tuning each of the proportional, integral, and derivative

gains. The angular rate controller also limits integral term authority to prevent wind up and uses

a LPF on the derivative path to reduce noise. Unlike the other blocks, this block does not saturate

the commands, as this is handled in a subsequent block. This final block outputs three commands

δAsp, δEsp, and δRsp. These three commands along with the aforementioned δTsp correspond
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to the main controls that would be used on a fixed wing aircraft: ailerons, elevators, rudder, and

thrust. PX4 uses a mixer to translate these commands into a vector of thrust commands for each

of the rotors on the vehicle, Tsp. The mixer is also responsible for bounding these commands and

ensuring they do not exceed the capabilities of the UAS. Figure 4.5 visually represents how all

the aforementioned controllers are cascaded for use in PX4 to achieve position setpoint control.

Figures 4.1 - 4.5 are reprinted from PX4’s documentation [35].

Figure 4.1: PX4 Multicopter Position Control Diagram; reprinted from [35].

Figure 4.2: PX4 Multicopter Velocity Control Diagram; reprinted from [35].
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Figure 4.3: PX4 Multicopter Attitude Control Diagram; reprinted from [35].

Figure 4.4: PX4 Multicopter Angular Rate Control Diagram; reprinted from [35].

Figure 4.5: PX4 Multicopter Architecture Control Diagram; reprinted from [35].
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4.2.2 Command Generator

The command generator employed is responsible for taking in position estimates of the UGV

relative to the UAS, and outputting setpoints for the PX4 flight controller in a fixed inertial frame.

While alternative methods such as fiducial markers can yield a full six DOF pose of the marker

relative to the UAS, the detection localization scheme discussed only provides position estimates

of the UGV.

The command generator used in this work is a modified version of the landing algorithm pre-

sented in [11] which was developed by Army Research Laboratory. In [11] fiducial markers are

used for localization of the UGV, and the inertial position of the UAS is unknown. Modifications

were made as necessary to account for the known UAS inertial position provided via GPS, and the

switch from fiducial markers to the detection localization scheme used in this thesis.

4.2.2.1 Frames and Transformations

The four frames considered within this work are b the UAS body frame, n an inertial frame,

c the camera frame, and ugv the estimated frame of the UGV landing target. The frame n exists

in the east-north-up (ENU) coordinate frame, b and ugv exist in the forward-left-up (FLU) frame,

and c is rotated from b such that the z direction of c is aligned with the cameras lens. n is fixed

at the location where the UAS was powered on, and b is centered on the UAS center of gravity

and rotates about all axis. ugv is centered on the landing pad and is rotated about its z axis to

align with the heading of the UGV. ugv is fixed in rotation about its x and y axis. The resulting

transformation from ugv to n is defined in Equation 4.1. Figure 4.6 visually depicts the frames

utilized in this work.

T n
ugv = T n

b T b
c T

c
ugv (4.1)

Throughout the entire landing mission the transformation between n and b, T n
b , is maintained

by PX4 and is always known. The transformation between b and c, T b
c , is static as the camera is

assumed to be rigidly fixed to the UAS, not gimballed. Upon detection of the ground target, the
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Figure 4.6: Visual depiction of the four frames defined in this thesis.

transformation from n to ugv is defined in Equation 4.1 where T c
ugv is provided from the detection

localization. A Kalman Filter is utilized in the maintenance of T n
ugv in an attmept to filter any

noise present from the detection localization or object detection methods implemented. Details of

this Kalman Filter are discussed in the subsequent subsection 4.2.2.3

4.2.2.2 Setpoint Definition

Setpoints for the UAS need be sent in a fixed frame, thus this work publishes all setpoints in

the inertial frame n. As mentioned above, this work utilizes the PX4 control stack. Specifically,

by passing setpoints to PX4 that when achieved result in a successful landing of the UAS on the

moving UGV landing target. These setpoints sent to the PX4 flight controller contain an inertial

position setpoint vector Psp, an inertial velocity setpoint vector Vsp, and an inertial yaw setpoint
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ψsp. This setpoint to be commanded, S, is defined in Equation 4.2.

S = [Psp Vsp ψsp], where Psp = [px py pz] and Vsp = [vx vy vz] (4.2)

4.2.2.3 Command Generator Algorithm

This algorithm begins running upon five successive UGV detections to ensure a single false

detection does not start the landing process before the UGV is in the image frame. Detection lo-

calization provides estimates of the UGVs position relative to the UAS camera, and this position

is transferred into the inertial frame via the transformation described in Equation 4.1. The inertial

UGV position estimate, P n
ugv, is utilized by a Kalman Filter [134] to estimate the UGVs position

and velocity in the inertial frame. Specifically, a kinematic, three-dimensional, first order (i.e.

constant velocity kinematics) Kalman Filter was used from the package FilterPy [135]. Higher

order kinematic filters such as constant acceleration and constant jerk were also evaluated, but per-

formed worse even when the UGV was moving with a non-constant velocity. This is likely due to

the UGVs velocity changing on a much slower time scale compared to the Kalman Filter’s itera-

tion rate, resulting in the velocity being near constant between Kalman Filter updates. Equation

4.3 describes the states of the filter, Equation 4.4 displays the state transition matrix of this filter F ,

and the process noise covariance matrix Q. Derivations of F and Q can be found in Appendix B.

Simulation and experimental results determined the filter performs well when the ratio of σ over

∆t is approximately 15.

x =

[
x ẋ y ẏ z ż

]
(4.3)
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F =



1 ∆t 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆t 0 0

0 0 0 1 0 0

0 0 0 0 1 ∆t

0 0 0 0 0 1


, Q =



∆t4

4
∆t3

2
0 0 0 0

∆t3

2
∆t2 0 0 0 0

0 0 ∆t4

4
∆t3

2
0 0

0 0 ∆t3

2
∆t2 0 0

0 0 0 0 ∆t4

4
∆t3

2

0 0 0 0 ∆t3

2
∆t2


σ2 (4.4)

Upon startup of the autonomous landing no prior information about the UGVs velocity is avail-

able. Thus, the Kalman Filter velocity states are initialized to zero, and the position states are

initialized to the first position estimate from detection localization:
[
xugv0 yugv0 zugv0

]
. The

state error covariance and measurement noise covariance matrices are initialized to identity. The

initialization details are summarized in Equation 4.5.

x̂0,0 =

[
xugv0 0 yugv0 0 zugv0 0

]
, P0,0 = I6x6, and R = I3x3 (4.5)

After initialization, the states and state error covriance matrix are predicted as shown in Equation

4.6 and 4.7 respectively.

x̂1,0 = F x̂0,0 (4.6)

P1,0 = FP0,0F
T +Q (4.7)

The filters measurements z and the measurement matrix H are defined in Equation 4.8. Upon

receipt of a measurement, the Kalman gain K is computed (Equation 4.9) and used to update the

states (Equation 4.10) and the state error covariance P (Equation 4.11).
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z =

[
xugv yugv zugv

]
, and H =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (4.8)

K1 = P1,0H
T (HP1,0H

T +R)−1 (4.9)

x̂1,1 = x̂1,0 +K1(z1 −Hx1,0) (4.10)

P1,1 = (I −K1H)P1,0(I −K1H)T +K1RK
T
1 (4.11)

After updating, the states and covariances are used to complete prediction again (Equation 4.12

and Equation 4.13). This Kalman Filter provides estimates of the UGV’s position and velocity

while mitigating effects of any noisy data output by detection localization.

x̂2,1 = F x̂1,1 (4.12)

P2,1 = FP1,1F
T +Q (4.13)

The inertial UGV position and velocity estimates output by the Kalman Filter are denoted

V n
ugv and P n

ugv respectively. V n
ugv is used to estimate the inertial heading angle of the UGV, ψ.

The estimate of ψ also serves as the as the yaw setopint sent to the flight controller, ψsp. The UGV

in this work is a wheeled vehicle, thus it is assumed that the the UGV’s velocity vector’s orientation

is equivalent to the heading angle of the UGV, ψ. This assumption proved reliable if the vehicle

is only given a forward or reverse throttle command. If the UGV changes from forward to reverse

quickly the resulting large oscillations in ψ hinder the landing performance. ψ is measured from

the x-axis of n such that positive ψ represents a counter-clockwise rotation about the z-axis of
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n. To estimate the heading of the UGV, the sign of the x and y components of V n
ugv were used

to feed logic filters that determined which quadrant of the XY-plane the velocity vector exists in.

Then the appropriate equation was selected for estimating heading angle in the ENU frame n.

Experimental and simulation results showed that V n
ugv often oscillated within the first three to five

seconds of the Kalman Filter running. A four second delay is enforced on the publication of ψsp

to the flight controller to ensure that no early oscillatory values are used. This delay can be seen

in Figures 4.15, 4.19, and 4.23. For hardware experiments, logic was implemented that ignores

the commanded yaw value unless the magnitude of the x and y components of V n
ugv exceed a

threshold of 0.5 meters per second. This logic is intended to keep any noise in V n
ugv from causing

oscillations in ψsp. Figure 4.7 visually depicts the four different possible quadrants in which the

x and y components of V n
ugv can exist. Table 4.1 summarizes the equations used to estimate the

heading angle where vx and vy denote the x and y components of V n
ugv respectively.

Figure 4.7: Visualization of Heading Angle Estimation
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Table 4.1: Summary of Heading Angle Estimation

Sign of vx Sign of vy Equation

Quandrant 1 + + ψ = arctan(Vy

Vx
)

Quandrant 2 − + ψ = − arctan(Vx

Vy
) + π

4

Quandrant 3 − − ψ = − arctan(Vx

Vy
)− π

4

Quandrant 4 + − ψ = arctan(Vy

Vx
)

P n
ugv serves as the origin for the frame ugv, and ugv is rotated around it’s z-axis by ψ such that

the x-axis on ugv aligns with the heading of the UGV. The maintenance of the frame ugv allows

for a landing trajectory to be computed relative to the landing pad, and transferred into the inertial

frame for use by the flight controller. This landing trajectory is scaled in the UGVs direction of

travel to help ensure the UGV remains in the UAS camera frame as the UAS pitches forward

to match the UGVs velocity. Four parameters are used to define the start and endpoints of the

trajectory in the XZ-plane of ugv. The first three z0, zf , and xf are defined in meters and the final

paramerter x0offset is defined in meters per meters per second such that the resulting calculated x0

has units of meters. x0offset is used in conjunction with a time history average of the magnitude

of V n
ugv, vavg, to scale the trajectory in the direction of travel. To define vavg a time history of the

15 most recent magnitudes of V n
ugv is stored. Then an average of this vector of prior magnitudes

is defined as vavg. The resulting scaled x0 is defined in Equation 4.14.

x0 = x0offset ∗ vavg (4.14)

The resulting trajectory exists as a line from the coordinates (x0,z0) to (xf ,zf ) in the frame

ugv, as depicted in Figure 4.8. The value selected for zf coincides with the UAS altitude at which

the UAS is too close to the UGV to reliably detect it using object detection. A position target,
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Ptarg =

[
xtarg 0 ztarg

]
, is defined as a point that translates down the trajectory over time

resulting in the UAS landing on the the UGV. During the first iteration ztarg is defined as z0 and

during later iterations ztarg is updated according to Equation 4.15, where dt is the time between

iterations. xtarg, is found by interpolation using ztarg and the defined trajectory line. Depending

whether or not the UAS is within an acceptance sphere around Ptarg, vdescent is defined . The

acceptance sphere’s radius is scaled linearly to decrease as the UAS progresses along the trajectory.

If ztarg is greater than z0, vdescent is set to 2.0 meters per second. Otherwise, if ztarg is less than

z0 but greater than zf , vdescent is set to 0.5 meters per second. If the UAS leaves the acceptance

sphere, vdescent is set to 0.0 meters per second until the UAS renters the acceptance sphere around

Psp. If the UAS is unable to detect the UGV for more than 0.5 seconds, ztarg is set back to z0

and the z component of Vsp is set to -1.0 m/s to increase altitude to search for the UGV. Given

the formulation of Equation 4.17, the velocity value of -1.0 will result in the vehicle increasing

in altitude as this negative value will be subtracted. The radii values for the acceptance sphere,

and the value for vdescent were determined through trial and error in both simulation and outdoor

experimentation. After Ptarg is updated, it is transferred from the frame ugv into n. This inertial

position setpoint is sent to the flight controller as Psp. Once the end point Ptarg =

[
xf 0 zf

]
is

reached, the UAS enters a final descent phase as shown in Figure 4.8. During this final descent the

UAS is commanded to maintain current attitude and a thrust command less than the thrust required

for hover is commanded until the landing is complete.

ztarg = ztarg − dt ∗ vdescent (4.15)

In the event that the UGV leaves the image frame for more than 0.5 seconds, the last known

position and velocity are used to extrapolated Psp in an attempt to recapture the UGV in the

image frame. Equation 4.16 defines this extrapolation where vlastx and vlasty represents the x

and y components of the most recent UGV velocity estimate, Plast defines the last UGV position

estimate, and c is predefined scalar.
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Psp = Plast + c ∗ [vlastx vlasty 0.0] ∗ dt (4.16)

The inertial velocity estimate V n
ugv is used in conjunction with vdescent to define the inertial

velocity setopint V n
ugv as defined in Equation 4.17. This formulation aims to have the UAS match

the UGVs velocity, and descend when appropriate.

Vsp = V n
ugv − [0 0 vdescent] (4.17)

The computation of Vsp completes the population of S. The process described in this section

is iterated until landing on the UGV is achieved. Figure 4.9 visually summarizes the landing

algorithm in a more technical sense, and the "Land on UGV" state in Figure 4.10 depicts the

lading algorithm in a more logic based perspective.

Figure 4.8: Generated landing trajectory in frame ugv.
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Figure 4.9: Visual summarization of the landing algorithm.

4.2.3 State Machine Description

A state machine is employed to manage high level behavioral control of the UAS. This state

machine is based on the ROS package smach [136]. Smach is a ROS independent Python library

that enables the hierarchical construction of state machines. In smach, the term "state" defines

a local state of execution, or equivalently a "state" corresponds to the system performing a task.

These smach states are constructed to provide one of a few predefined outcomes the state can

achieve. The outcome of the current state determines what state the system enters next. If all

states are completed, a final output of success is given when the UAS has landed on the UGV. The

majority of the states exist in such a way that once completed, the state machine transitions to the

next state (such as "Search for UGV" and "Land on UGV"). However, certain states such as the

"Safety Checks", and "Find Pad" states are concurrent states that are continuously checking some

condition. When they are successful, that is their condition is met, then the states within them are

enabled to be run. For example, in Figure 4.10 the state "Find Pad" enables the state of "Land on

UGV" to be executed. That is to say, "Land on UGV" succeeds "Search for UGV" is the mission
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hierarchy, but "Land on UGV" can only run if the condition for "Find Pad" is met. This is different

than other states as the condition checked by "Find Pad" continues running even after "Land on

UGV" has commenced. Meaning that even after the "Land on UGV" state has begun, if "Find Pad"

fails the state will be changed to "Search for UGV" as "Land on UGV" can only be executed while

"Find Tag" is successful. The same process concept is used for the passive state "Safety Checks".

Table 4.2 describes the states used, their function, and their possible outputs. Figure 4.10 visually

depicts the construction of the state machine where the "Land on UGV" state is expanded to show

the logic used to facilitate autonomous landings.

Table 4.2: Description of State Machine States.

State Function Possible Outcomes

Safety Checks Passive state constantly checking the UAS is

safe to continue autonomous mission.

"fail", "success"

Check Flying Determines if the UAS is already in flight. "fail", "success"

Get In Air UAS performs a takeoff. "fail", "success"

Follow Path UAS navigates to a defined setpoint. "fail", "success"

Search For UGV UAS hovers and waits for the UGV to be de-

tected.

"found ugv", "fail"

Find Pad Passive state constantly monitoring the transfor-

mation between UGV and UAS frames.

"fail", "success"

Land on UGV UAS begins the autonomous landing. "fail", "success"
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Figure 4.10: Flowchart depicting the state machine used in this work.

4.3 Landing Performance

This section presents the results achieved with the presented landing command generator. Re-

sults achieved with various UGV velocities in both simulation and during hardware experiments

are presented.

4.3.1 Simulation

All simulation experiments were completed within a Unity® simulation environment [137].Within

the simulation environment various UGV velocity cases were considered in the evaluation of the

presented autonomous landing approach. Simulation results are shown for two cases where the

UGV was traveling in a straight line at 1.0 and 3.0 meters per second. The final case shown
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presents results where the UGV was traveling at 1.0 m/s while turning at approximately 0.1 radi-

ans per second. Plots in the subsequent section reference UAS Position, UAS Velocity, and UAS

Yaw as well as the setpoint S. The values used for the UAS Position, UAS Velocity, and UAS

Yaw data plots were generated from the data produced by the PX4 flight controllers Extended

Kalman Filter (EKF). The setpoint data plots were generated by the command generator algorithm

described in this chapter. UGV position denotes the UGVs position as reported by the simulation

environment.

Table 4.4 summarizes the landing trajectory parameters used for these simulation experiments.

These values were experimentally determined through trial and error. Figure 4.11 displays a time

history of screenshots from the simulation environment during the first case, the UGV moving in

a straight line at 1.0 meter per second. Each image contains a picture in picture view where the

downward facing camera image from the UAS is overlaid on the view of both the UGV and the

UAS.

Table 4.3: Command Generator Parameters for Landings in Simulation

Parameter Value

x0offset 0.25 (m/m/s)

xf 0.10 (m)

z0 6.0 (m)

zf 1.25 (m)

4.3.1.1 UGV straight line at 1.0 meters per second

In this experiment the UGV was commanded to drive forward at a constant velocity of 1.0

meter per second. The UAS was commanded to takeoff to an altitude of six meters at a position
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Figure 4.11: Time series of screenshots from simulation with images from UAS downward facing
camera overlaid.

such that the UGV was out of the UAS image frame. The UGV was then commanded to start

moving forward. Upon the UGV entering the bottom of the UAS image frame, the autonomous

landing began. Figure 4.12 displays a 3D plot overlaying the UAS position, Psp, and the UGVs

path. Figure 4.13 presents the x, y, and z components of both the UAS position, as well as the x, y,

and z components of Psp. In similar fashion figure 4.14 presents the components of UAS velocity
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as well as the components of Vsp, and finally Figure 4.15 presents the UAS yaw angle and ψsp.

Figure 4.12: 3D Plot of the UAS position, commanded setpoint, and UGV path during moving
landing with UGV speed of 1.0 m/s.
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Figure 4.13: UAS position vs commanded position setpoint Psp during moving landing with UGV
speed of 1.0 m/s.

Figure 4.14: UAS velocity vs commanded velocity setpoint Vsp during moving landing with UGV
speed of 1.0 m/s.
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Figure 4.15: UAS yaw angle vs commanded yaw setpoint ψsp during moving landing with UGV
speed of 1.0 m/s.

4.3.1.2 UGV straight line at 3.0 meters per second

In this experiment the UGV was commanded to drive forward at a constant velocity of 3.0

meters per second. The UAS was commanded to takeoff to an altitude of six meters at a position

such that the UGV was out of the UAS image frame. The UGV was then commanded to start

moving forward. Upon the UGV entering the bottom of the UAS image frame, the autonomous

landing began. Figure 4.16 displays a 3D plot overlaying the UAS Position, Psp, and the UGVs

path. Figure 4.17 presents the x, y, and z components of both the UAS position, as well as the x, y,

and z components of Psp. In similar fashion figure 4.18 presents the components of UAS velocity

as well as the components of Vsp, and finally Figure 4.19 presents the UAS yaw angle and the yaw

setpoint ψsp.
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Figure 4.16: 3D Plot of the UAS position, commanded setpoint, and UGV path during moving
landing with UGV speed of 3.0 m/s.

Figure 4.17: UAS position vs commanded position setpoint Psp during moving landing with UGV
speed of 3.0 m/s.
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Figure 4.18: UAS velocity vs commanded velocity setpoint Vsp during moving landing with UGV
speed of 3.0 m/s.

Figure 4.19: UAS yaw angle vs commanded yaw setpoint ψsp during moving landing with UGV
speed of 3.0 m/s.

4.3.1.3 UGV traveling in circular path

In this experiment the UGV was commanded to drive in a circular path. Specifically the UGV

was commanded to maintain a body axis forward velocity of 1.0 meter per second and a body axis

angular velocity of 0.1 radians per second. This combination of translational and angular velocity
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commands resulted in the UGV traveling on a circular path with a radius of approximately 20

meters. The UAS was commanded to takeoff to an altitude of six meters at a position such that the

UGV was out of the UAS image frame. The UGV was then commanded to start moving. Upon the

UGV entering the bottom of the UAS image frame, the autonomous landing began. Figure 4.20

displays a 3D plot overlaying the UAS Position, Psp, and the UGVs path. Figure 4.21 presents the

x, y, and z components of both the UAS position, as well as the x, y, and z components of Psp. In

similar fashion figure 4.22 presents the components of UAS velocity as well as the components of

Vsp, and finally Figure 4.23 presents the UAS yaw angle and ψsp.

Figure 4.20: 3D Plot of the UAS position, commanded setpoint, and UGV path during moving
landing with UGV traveling in a circular path.
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Figure 4.21: UAS position vs commanded position setpoint Psp with the UGV traveling in a
circular path.

Figure 4.22: UAS velocity vs commanded velocity setpoint Vsp with the UGV traveling in a
circular path.
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Figure 4.23: UAS yaw angle vs commanded yaw setpoint ψsp with the UGV traveling in a circular
path.

4.3.1.4 Discussion

The results in the previous subsections depict successful landings in simulation with UGV

speeds up to 3.0 meters per seconds. These results verify the ability to detect and localize the UGV

at a sufficient enough rate to complete autonomous landings on the UGV while aligning the UAS

and UGV heading. Inspection of the z components of Figure 4.17 and 4.18 at approximately 55

seconds depicts the reset of ztarg to z0 and the increase of the z component of Vsp to 1.0 meters

per second in an attempt to increase altitude and search for the UGV upon loss of UGV detections.

Pauses in the descent as the UAS enters and exits the acceptance sphere around Ptarg are also

observable in the z components of Figures 4.14, 4.18, and 4.22. These results also verify that the

Kalman Filter’s ability to estimate the UGVs velocity as well as the utilization of this velocity

estimate to estimate the UGVs heading angle, ψ. Landings at speeds greater than 3.0 meters per

second were not tested but not successful in the space contained in the simulation environments.

The UAS was able to track the UGV at higher speeds but was not able to complete a landing within

the space of the simulation environment used.

4.3.2 Hardware

Hardware experiments were conducted in a similar fashion to the experiments in simulation.

Results are presented for two different cases. Both cases had the UGV moving at 1.0 m/s, the first

had the UGV travel in a straight path while the second had the UGV turn to travel on an arced path.

The landing work presented became unreliable at UGV speeds greater than approximately 1.0-1.5
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m/s, thus no results for faster experiments are included. Experiments were completed with both a

Warthog UGV as well as the cart with the pad pictured in Figures 2.8 and 2.9 respectively. In this

section the plots denoting the UGV paths are approximations of the path the UGV took as UGV

data wasn’t available. The values used for the UAS Position, UAS Velocity, and UAS Yaw data

plots were generated from the data produced by the PX4 flight controllers EKF. The setpoint data

plots were generated by the command generator algorithm described in this chapter. Discrepancies

in commanded altitude and the UAS response in plots can be observed. For example, in some cases

the UAS does not achieve its commanded takeoff altitude. Altitude estimation completed by PX4

was often erroneous causing these discrepancies.

Table 4.4 summarizes the landing parameters used for these outdoor hardware experiments.

Figure 4.24 displays a time history of images from experiments with the Warthog UGV, and Figure

4.25 displays a time history of images from experiments with the cart and landing pad. Each time

stamp contains a picture in picture view where the downward facing camera’s object detection feed

from the UAS is overlaid on the view of both the UGV and the UAS.

Table 4.4: Command Generator Parameters for Landings in Simulation

Parameter Value

x0offset 0.25 (m/m/s)

xf 0.10 (m)

z0 3.25 (m)

zf 1.0 for UGV, 0.5 for UGV surrogate (m)
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Figure 4.24: Visual time series of a landing experiment with the Warthog UGV. The UAS is marked
by the red box.

Figure 4.25: Visual time series of a landing experiment with the cart with landing pad attached.
The UAS is marked by the red box.

4.3.2.1 UGV straight line 1.0 meters per second

In this experiment the cart with landing pad was pulled forward via rope in a straight line

at as close to 1.0 m/s as possible. The UAS was commanded to takeoff to an altitude of four

meters at a position such that the UGV was in the UAS image frame. In this case, the UAS was

approximately 1.0 meter to the right of, and 0.5 meters behind the UGV. The state machine was

then commanded to start the landing, and the cart began moving forward. Figure 4.30 displays

a 3D plot overlaying the UAS Position, Psp, and a manual recreation of the UGV’s approximate

path. Figure 4.31 presents the x, y, and z components of both the UAS position, as well as the x, y,

and z components of Psp. In similar fashion figure 4.32 presents the components of UAS velocity

as well as the components of Vsp, and finally Figure 4.33 presents the UAS yaw angle and the yaw

setpoint ψsp.
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Figure 4.26: 3D Plot of the UAS position, commanded setpoint, and UGV path during moving
landing with UGV traveling in a circular path.

Figure 4.27: UAS position vs commanded position setpoint Psp with the UGV traveling in a
circular path.
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Figure 4.28: UAS velocity vs commanded velocity setpoint Vsp with the UGV traveling in a
circular path.

Figure 4.29: UAS yaw angle vs commanded yaw setpoint ψsp with the UGV traveling in a circular
path.

4.3.2.2 UGV traveling in circular path

In this experiment the cart with landing pad was pulled forward via rope in a arced path at as

close to 1.0 m/s as possible. The UAS was commanded to takeoff to an altitude of four meters at a

position such that the UGV was in the UAS image frame. In this case, the UAS was approximately
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0.75 meters to the right of the UGV. The state machine was then commanded to start the landing,

and the cart began moving forward. Figure 4.30 displays a 3D plot overlaying the UAS Position,

Psp, and a manual recreation of the UGV’s approximate path. Figure 4.31 presents the x, y, and

z components of both the UAS position, as well as the x, y, and z components of Psp. In similar

fashion figure 4.32 presents the components of UAS velocity as well as the components of Vsp,

and finally Figure 4.33 presents the UAS yaw angle and the yaw setpoint ψsp.

Figure 4.30: 3D Plot of the UAS position, commanded setpoint, and UGV path during moving
landing with UGV traveling in a circular path.
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Figure 4.31: UAS position vs commanded position setpoint Psp with the UGV traveling in a
circular path.

Figure 4.32: UAS velocity vs commanded velocity setpoint Vsp with the UGV traveling in a
circular path.
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Figure 4.33: UAS yaw angle vs commanded yaw setpoint ψsp with the UGV traveling in a circular
path.

4.3.2.3 Discussion

Changes in the z component of the UAS velocity can be observed to change from 0.0 to -0.5

m/s as the UAS enters and exits the acceptance sphere during the landing. Oscillations in the

early part of the x and y components of Vsp were commonly observed during experimentation.

Eventually the Kalman Filter converges to a near constant estimate of V n
ugv, but these oscillations

in V n
ugv can cause the vehicle to oscillate early in the landings, in turn causing errors with the yaw

estimation. During experimentation the surrogate UGV was pulled such that it turned at as close

to a constant rate as possible. Thus, the UGV’s expected heading angle estimate should increase

at a constant rate over time. The yaw results in Figure 4.33 depict the heading estimate decreasing

from approximately 39 to 43 seconds. It is not until after 43 seconds that the UGV’s heading

begins estimate increases as expected. This erroneous heading estimation can be attributed to the

Kalman Filter’s velocity estimates not converging to a near constant velocity until approximately

43 seconds.

Compute limitations proved challenging during experimentation, as occasionally the object

detection inferencing running on board would slow down to below 2 hz or fail. This verifies the

work was pushing the on board compute capability to its limit. The landings were also observed

to be sensitive to wind. Landings were demonstrated in winds blowing at 11 mph gusting up to 14

mph (measured with anemometer), but winds above approximately 8-10 mph significantly affected

performance. On a day with winds below 6 mph a 71% success rate was observed across 7 landing

attempts. Of these seven landings three landing completely on the pad, 2 resulted in the UAS on
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the pad but only partially, and the remaining 2 attempts resulted in the UAS missing the landing

pad. A potential solution to shadows in future work could be to paint the pad a more distinctive

color.

During landing experiments, the UGV’s shadow caused issues as it was commonly falsely

detected as the UGV. The shadow cast by the landing pad shifted the bounding box’s center away

from the center of the UGV landing pad causing errors in the landing target pose estimation.

Depending on the sun’s position this would either cause the UAS to either land near the edge of

the pad or miss the landing pad entirely. To address this the training data set had to be appended

with many images containing shadows. This improved shadow negation significantly, but shadows

still continued to cause issues with UGV detection.

4.4 Simulation vs. Hardware

Separate object detection models were trained for use in simulation and experimentation as

the UGV in simulation differs visually from the one used in experimentation. The models were

trained in the same fashion and with similar amounts of training data, yet MobileNetV3 object

detection proved much more accurate in simulation as bounding boxes almost always tightly con-

formed around the UGV. The high detection accuracy in simulation is attributed to the repeatable

visual environment achievable in simulation. Factors such as UGV shadows and lighting varia-

tions caused the detections during experiments to be far noisier, producing errors in T c
ugv. The

near perfect PX4 maintenance of T n
b in simulation also aided in performance in comparison to

experiments. During outdoor experimentation errors up to one meter were observed in T n
b . This

introduction of noise in both T c
ugv and T n

b during outdoor experiments limited the top UGV speed

at which experimental landings were successful to values below those achieved in simulation.
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5. CONCLUSIONS

The following conclusions are made based on the methods and results presented in the previous

chapters:

1. The presented work enabled vision based landings of a quadrotor UAS on a moving UGV

at speeds of 3.0 meters per second in simulation and 1.0 meters per second in a straight

line in simulation. Landings were also proven successful on a UGV traveling in an arced

path at 1.0 meters per second in both simulation and on hardware in outdoor experiments.

Outdoor experiments were successful in winds blowing 11 miles per hour and gusting to 14

miles per hour. A 71% success rate was achieved across a set of seven consecutive outdoor

experiments.

2. Neural network object detection and the utilized detection localization algorithm were demon-

strated to be a viable alternative to fiducial markers for autonomous landings. The presented

localization algorithm achieved an iteration time of 49 milliseconds when deployed on the

UAS on board computer, in comparison to the 44 milliseconds achieved with the fractal

ArUcO algorithm. The presented detection localization method was also shown to be com-

parable to the fractal ArUCO marker in terms of accuracy.

3. All computations were able to be completed on-board the UAS where all sensing and com-

puting components weigh less than 100 grams. This capability enables UAS to return to a

UGV host without needing the UGVs or any other ground computer to aid with computa-

tions.

4. The combination of modern robotic tools and a high fidelity simulation aided this research

tremendously. The ability to run the same algorithms in simulation and on hardware eased

the transition from simulation to hardware where catastrophic failure can be costly. Changes

were able to be tested in simulation, and rolled out onto the UAS in minutes.
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6. RECOMMENDATIONS

Multiple recommendations are made regarding the research in this thesis:

1. Consider the replacement or removal of GPS to provide inertial position estimates of the

UAS. This advancement to the work would enable operation in GPS denied environments.

Visual Inertial Odometry offers a potential GPS replacement for UAS position data, or the

command generation could be abstracted to just velocities to remove the need for UAS iner-

tial position information. Removal of GPS reliance extends the number of environments in

which the presented landing solution could be deployed.

2. Alleviate the necessity of assuming that the UGV is operating on flat and level ground would

also extend the number of environments in which this landing work could be deployed. By

estimating the UGVs position as the intersection of p(t) and a point cloud generated from

stereo vision, as opposed to the intersection p(t) and the ground plane G, this landing could

be deployed in environments where the UGV is not operating on flat and level ground.

3. Explore the potential for UGV/UAS communication to increase the accuracy of the vision

based UGV localization. The UGVs position could also be utilized for the UAS to locate the

UGV over long distances, then upon nearing the UGV the visual landing can be employed.

This could be accomplished by implementing communication between the UAS and UGV

such that the UGVs own state estimates could aid the landing trajectory generation. If com-

munication is unavailable, the landing could fall back to a purely vision-based solution to

avoid strict reliance on UGV/UAS communication.

4. Investigate the possibility of completing the landing target detection and localization si-

multaneously to reduce computational expense of the presented approach. Object detection

models exist that are capable of generating three dimensional bounding boxes for detected

objects [23, 24, 101]. These three-dimensional boxes offer a potential solution to combine
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the detection and localization of the landing target into a single process. This single model

approach could prove to be more computationally effecient that the presented detection lo-

calization method.

5. Investigate the use of gain scheduling for early and later portions of the landing trajectory.

Deploying a gain schedule that allows for more aggressive UAS gains when farther from the

UGV, and less aggressive gains when near the pad could improve performance and alleviate

the need to tune a specific set of gains that is appropriate for the entire landing.
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APPENDIX A

UNMANNED AIR SYSTEM DESCRIPTION

Appendix A provides details on the UAS used for experimental demonstration of the vision-

based autonomous landing presented. It contains an overview of the flight control unit (FCU), the

on-board companion computer, and details regarding sensors on-board the UAS. These details are

aimed to provide context on the capabilities of the UAS, and to be used as a frame of reference

for the performance achieved in the presented autonomous landing research. The UAS used for

this work was the VOXL® m500 developed by ModalAI® [127]. This vehicle was selected for its

suite of visual sensors, and its companion computer. The on-board companion computer contains

a GPU which aids in the acceleration of artificial intelligence computations, such as the use of

neural network object detectors. Figure 6.1 sourced from [127] displays the VOXL® m500 UAS.

Figure A.1: VOXL® m500 UAS from ModalAI®; reprinted from [127].
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A.1 Physical Description

The VOXL® m500 is a four rotor multi-rotor UAS, also known as a quadrotor. Table 6.1 be-

low summarizes the physical descriptions measurements provided by the manufacturer ModalAI®

[127].

Table A.1: Size and Weight Specifications of VOXL® m500 [127].

Specification VOXL m500

Weight 1075 grams
Payload Capacity 1 kg (effects endurance)
Endurance Approximatley 20 minutes
Length 15.5 inches
Width 15.5 inches
Height 8 inches
Propeller Diameter 10 inches

Minor modification to the vehicle was neccessary for this work. From the manufacturer the

suite of visual sensors on board the VOXL® m500 UAS faces forward during flight. As this work

aims to land on a UGV, the cameras need to be downward facing. To accomplish this, the entire

suite of visual sensors was removed, rotated 90 degrees into a downward facing orientation, and

reattached using a custom designed 3D printed part.

A.2 Flight Control Unit

The VOXL® m500 runs the open source PX4 flight controller [35]. PX4 is an open source flight

control software for UAS and other unmanned vehicles. PX4 exists as an ecosystem containing

the software and hardware needed to manually or autonomously fly UAS.
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A.2.1 Hardware

While PX4 can run on Linux computers as well as off the shelf Pixhawk® style flight controllers

[138], the VOXL® m500 employs the ModalAI ® Flight Core® [139]. The ModalAI® Flight Core®

is a PX4 flight controller based on the STM32F7 ARM micro-controller [140]. Flight Core®

contains three on-board Inetial Measurement Units (IMUs) and a barometer.

Figure A.2: ModalAI® Flight Core® FCU; reprinted from [127].

A.2.2 Software

PX4 software handles much of the overhead of UAS operation, allowing researchers to focus

on developing autonomous behaviors. PX4 handles critical functions such as managing data from

all on-board sensors, UAS state estimation, position, velocity and attitude control, as well as safety

and fail safe management. All of these features combined enable manual and autonomous flight of

UAS out of the box.

While capable of standalone flight, PX4 also allows for a companion computer to send com-

mands either over a serial connection on-board the vehicle, or over wireless communication from

a ground station computer. The use of external computers enable to deployment of more computa-

tional expensive autonomous systems such as vision-based control.

Another key feature of PX4 software is the ability to build PX4 within a desktop environment.
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This enables PX4 to be used in simulation environments, aiding in autonomy development as new

methods can be validated in simulation before they are tested on hardware.

A.3 Companion Computer

The VOXL® m500 also uses an on-board companion computer from ModalAI®, the ModalAI®

VOXL® [141]. The VOXL® m500 UAS actually utilizes a single printed circuit board (PCB)

containing both the Flight Core® FCU and the VOXL® companion computer, as shown in Figure

6.3 [142].

Figure A.3: ModalAI® VOXL® Flight, a combination of the Flight Core® FCU and the VOXL®

companion computer; reprinted from [127].

A.3.1 Hardware

The VOXL® computer is built around the Qualcom® Snapdragon™ 821 chip-set [132] which

contains a quad-core Qualcom® Kyro™ CPU with speeds up to 2.15 GHz, a Qualcom® Adreno™

530 GPU with speeds of up to 624 MHz, 4 gigabytes of LPDDR4 random access memory (RAM),

and 32 gigabytes of internal storage. The addition of a GPU aids in the acceleration of artificial

intelligence and vision processes such as object detection and visual inertial odometry (VIO). Wi-

Fi is supported by VOXL® enabling wireless communication by either acting as a stand alone

network, or by connecting to an existing network. VOXL® is also able to support both radio and

cellular communication for long range applications. The companion computer is also responsible

for managing all visual sensors on-board the UAS via its three Mobile Industry Processor Interface
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(MIPI) connectors, and hosts two IMU sensors in addition to the three IMUs on the FCU.

A.3.2 Software

Specifics on various software such as the autonomous landing algorithm, detection localization

algorithm, and the object detection are covered in their respective chapters. This section serves as

a brief summary of the major software tools running on-board the VOXL® computer to provide

insight as to what was accomplished with the defined hardware. VOXL® uses a Yocto Linux

operating system, enabling the use of common software tools used in UAS autonomy such as PX4

[35], ROS [143], OpenCV [144], and Docker [145]. This thesis uses ROS as the main framework

for the autonomous landing, as its structure and features ease the development of robotic systems.

VOXLs® integration with ROS eases the passing of image data between ROS nodes for visual

servoing. MAVROS [146] is a ROS package that takes the relevant data from PX4 and publishes

it to ROS topics, even further aiding in autonomy development as now image and FCU data is

easily accessible by any ROS node. For example, the detection localization process takes place

inside a ROS node that relies on both image data and altitude data frrom MAVROS. MAVROS

also facilitates the communication of commands from the off-board computer to the FCU for off

board control of the UAS. A ROS based Smach state machine also runs on-board the VOXL® to

facilitate high level behavioral control. Finally, a TensorFlowLite MobileNetV3 object detection

model is deployed on the VOXL® for detection of the UGV.

A.4 Sensors

A.4.1 Data Sensors

The Flight Core® FCU contains three on-board inertial measurment units (IMUs) for aid in state

estimation, as well as a barometer used for altitude estimation. Flight Core® supports additional

sensors that are commonly used for UAS autonomy. This work utilizes a GPS receiver for position

estimation as well as a laser rangefinder to aid in altitude estimation. The VOXL® companion

computer also ships with two additional IMUs. Table A.2 summarizes all on-board sensors.
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Table A.2: Sensors On Board the VOXL® m500 [127].

Sensor Name

FCU-IMU 1 ICM-20602 [147]
FCU-IMU 2 ICM-42688 [148]
FCU-IMU 3 BMI088 [149]

FCU-Barometer BMP388 [150]
GPS Pixhawk 4 GPS Module [151]

A.4.2 Visual Sensors

The VOXL® ships with four on-board visual sensors. The only visual sensor used in this work

is a full color high resolution Sony IMX214 camera. The remaining sensors are all Omivision

OVM7251 black and white sensors [152]. One is a higher field of view version denoted as the

tracking camera, and the other two are used to generate stereo disparity images for stereo vision

applications. Table A.3 summarizes details regarding all on-board visual sensors.

Table A.3: Visual Sensors On Board the VOXL® m500 [127].

Sensor Name Shutter Resolution Framerate

Hires Sony IMX214 [153] Rolling 4224 x 3200 Up to 60
Tracking Omnivision OVM7251 [152] Global 640 x 480 30, 60, 90, 120
Stereo Omnivision OVM7251 [152] Global 640 x 480 Up to 60
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APPENDIX B

KALMAN FILTER SPECIFICS

The Kalman Filter described in Chapter 4 is based on a three-dimensional constant velocity

kinematic model.

B.1 State Transition Matrix

Expressing the states evolution over time with constant velocity can be expressed with the

kinematic equations described in Equation B.1.

xt+1 = xt + ẋt∆t

ẋt+1 = ẋt

yt+1 = yt + ẏt∆t

ẏt+1 = ẏt

zt+1 = zt + żt∆t

żt+1 = żt

(B.1)

The formulation of these equations into matrix form yields the state transition matrix F such

that xt+1 = Fxt as depicted in Equation B.2.



xt+1

ẋt+1

yt+1

ẏt+1

zt+1

żt+1


=



1 ∆t 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆t 0 0

0 0 0 1 0 0

0 0 0 0 1 ∆t

0 0 0 0 0 1





xt

ẋt

yt

ẏt

zt

żt


(B.2)
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B.2 Process Noise Covariance Matrix

The process noise utilized in this filter is discrete, that is it is different at each time step but

constant between time steps. For the constant velocity kinematic Kalman Filter used, the process

noise covariance matrix is described in Equation B.3 where COV () denotes covariance.

Q =



COV (x, x) COV (x, ẋ) COV (x, y) COV (x, ẏ) COV (x, z) COV (x, ż)

COV (ẋ, x) COV (ẋ, ẋ) COV (ẋ, y) COV (ẋ, ẏ) COV (ẋ, z) COV (ẋ, ż)

COV (y, x) COV (y, ẋ) COV (y, y) COV (y, ẏ) COV (y, z) COV (y, ż)

COV (ẏ, x) COV (ẏ, ẋ) COV (ẏ, y) COV (ẏ, ẏ) COV (ẏ, z) COV (ẏ, ż)

COV (z, x) COV (z, ẋ) COV (z, y) COV (z, ẏ) COV (z, z) COV (z, ż)

COV (ż, x) COV (ż, ẋ) COV (ż, y) COV (ż, ẏ) COV (ż, z) COV (ż, ż)


(B.3)

By assuming that the states are only dependent on states of the same axis (either X , Y ,or Z)

many of the terms go to zero. The diagonal terms can also be expressed as variances, denoted as

V (). The resulting matrix Q is defined in equation B.4.

Q =



V (x) COV (x, ẋ) 0 0 0 0

COV (ẋ, x) V (ẋ) 0 0 0 0

0 0 V (y) COV (y, ẏ) 0 0

0 0 COV (ẏ, y) V (ẏ) 0 0

0 0 0 0 V (z) COV (z, ż)

0 0 0 0 COV (ż, z) V (ż)


(B.4)

Equation B.5, B.6, and B.7 describes the evaluation of a few terms in Equation B.4, where E()

denotes expected value. The remaining terms are calculated in the same fashion as the terms in

Equation B.5. The position and velocity variance and convariance are expressed in terms of random
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acceleration variance of the model, σa. The expected values used are determined by utilizing the

acceleration update component of constant acceleration kinematic equations.

V (x) = σ2
x = E(x2)− µ2

x = E((
1

2
a∆t2)2)− (

1

2
µa∆t

2)2 =
∆t4

4
(E(a2)− µ2

a) =
∆t4

4
σ2
a (B.5)

V (ẋ) = σ2
ẋ = E(ẋ2)− µ2

ẋ = E((a∆t)2)− (µa∆t)
2 = ∆t2(E(a2)− µ2

a) = ∆t2σ2
a (B.6)

COV (x, ẋ) = COV (ẋ, x) = E(xẋ)− µxµẋ = E(
1

2
a∆t2a∆t)− (

1

2
µa∆t

2µa∆t) = (B.7)

∆t3

2
(E(a2)− µ2

a) =
∆t3

2
σ2
a

Using the aforementioned terms, the final formulation ofQ exists as described in Equation B.8,

where σa is the user defined variance mentioned in Section 4.2.2.3, Equation 4.4.

Q =



∆t4

4
σ2
a

∆t3

2
σ2
a 0 0 0 0

∆t3

2
σ2
a ∆t2σ2

a 0 0 0 0

0 0 ∆t4

4
σ2
a

∆t3

2
σ2
a 0 0

0 0 ∆t3

2
σ2
a ∆t2σ2

a 0 0

0 0 0 0 ∆t4

4
σ2
a

∆t3

2
σ2
a

0 0 0 0 ∆t3

2
σ2
a ∆t2σ2

a


(B.8)
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