
BENCHMARKING RESOURCE MANAGEMENT FOR SERVERLESS 

COMPUTING 

An Undergraduate Research Scholars Thesis 

by 

LOGAN KEIM 

Submitted to the LAUNCH: Undergraduate Research office at 

Texas A&M University 

in partial fulfillment of requirements for the designation as an 

UNDERGRADUATE RESEARCH SCHOLAR 

Approved by 

Faculty Research Advisor: Dr. Dilma Da Silva 

 

May 2022 

Major: Computer Science 

 

Copyright © 2022. Logan Keim.



RESEARCH COMPLIANCE CERTIFICATION 

Research activities involving the use of human subjects, vertebrate animals, and/or 

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory 

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement 

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M 

facilities or institutions. In both cases, students are responsible for working with the relevant 

Texas A&M research compliance program to ensure and document that all Texas A&M 

compliance obligations are met before the study begins. 

I, Logan Keim, certify that all research compliance requirements related to this 

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor 

prior to the collection of any data used in this final thesis submission. 

This project did not require approval from the Texas A&M University Research 

Compliance & Biosafety office. 



TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................... 1 

DEDICATION ................................................................................................................................ 3 

ACKNOWLEDGEMENTS ............................................................................................................ 4 

NOMENCLATURE ....................................................................................................................... 5 

SECTIONS 

 

1. INTRODUCTION .................................................................................................................... 6 

1.1 Scheduling in Serverful Computing ............................................................................. 8 

1.2 Experimental Evaluation of Scheduling Algorithms .................................................... 8 

2. BENCHMARKING METHODS.............................................................................................. 9 

2.1 Creating a Development Environment ......................................................................... 9 
2.2 Developing an Understanding of faasd ...................................................................... 10 

2.3 Faasd Under the Hood ................................................................................................ 11 
2.4 Benchmarking ............................................................................................................. 13 

2.5 Simplifying the Benchmarking Experimentation ....................................................... 14 

3. EXPERIMENTAL RESULTS................................................................................................ 19 

4. CONCLUSION ....................................................................................................................... 25 

4.1 Benchmarking ............................................................................................................. 25 
4.2 Future Work ................................................................................................................ 26 

REFERENCES ............................................................................................................................. 27 



1 

 

ABSTRACT 

Benchmarking Resource Management                                                                                                   

for Serverless Computing 

Logan Keim 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Dilma Da Silva 

Department of Computer Science and Engineering 

Texas A&M University 

Serverless computing is a way in which users or companies can build and run 

applications and services without having to worry about acquiring or maintaining servers and 

their software stacks. This new technology is a significant innovation because server 

management incurs a large amount of overhead and can be very complex and difficult to work 

with. The serverless model also allows for fine-grain billing and demand resource allocation, 

allowing for better scalability and cost reduction. Academic researchers and industry 

practitioners agree that serverless computing is an amazing innovation, but it introduces new 

challenges. The algorithms and protocols currently deployed for virtual server optimization in 

traditional cloud computing environments are not able to simultaneously achieve low latency, 

high throughput, and fine-grained scalability while maintaining low cost for the cloud service 

providers. Furthermore, in the serverless computing paradigm, computation units (i.e., functions) 

are stateless.  Applications, specified through function workflows, do not have control over 

specific states or their scheduling and placement, which can sometimes lead to significant 



2 

 

latency increases and some opportunities to optimize the usage of physical servers. Overcoming 

these challenges highlights some of the tension between giving programmers control and 

allowing providers to optimize automatically. 

This research identifies some of the challenges in exploring new resource management 

approaches for serverless computing (more specifically, FaaS) as well as attempts to deal with 

one of these challenges. Our experimental approach includes the deployment of an open-source 

serverless function framework, OpenFaaS. We focus on faasd, a more lightweight variant of 

OpenFaaS. Faasd was chosen over the normal OpenFaaS due to not having the higher 

complexity and cost of Kubernetes. 

As researchers in academia and industry develop new approaches for optimizing the 

usage of CPU, memory, and I/O for serverless platforms, the community needs to establish 

benchmark workloads for evaluating proposed methods.  Several research groups have proposed 

benchmark suites in the last two years, and many others are still in development. A commonality 

among these benchmark tools is their complexity; for junior researchers without experience in 

the deployment of distributed systems, a lot of time and effort goes into deploying the 

benchmarking, hindering their progress in evaluating newly proposed ideas. In our work, we 

demonstrate that even well-regarded proposals still introduce deficiencies and deployment 

challenges, proposing that a simplified, constrained benchmark can be useful in preparing 

execution environments for the experimental evaluation with serverless services.     



3 

 

DEDICATION 

Dedicated to my parents who always supported me through my education. 

  



4 

 

ACKNOWLEDGEMENTS 

Contributors 

I would like to thank my faculty advisor, Dr. Dilma Da Silva for their guidance and 

support throughout the course of this research. 

Thanks also go to my friends and colleagues and the department faculty and staff for 

making my time at Texas A&M University a great experience.  

All other work conducted for the thesis was completed by the student independently.  

Funding Sources 

This work has been partially supported by NSF Award NSF-SPX- 1919181.  



5 

 

NOMENCLATURE 

FaaS  Function as a Service 

BaaS  Backend as a Service 

AWS  Amazon Web Services 

CLI  Command Line Interface 

SeBS  Serverless Benchmark Suite 

VM  Virtual Machine 

 



6 

 

1. INTRODUCTION 

 Serverless Computing is a relatively new innovation that allows a user or business to 

build and run applications without worrying about server management. This is especially useful 

because servers have an inherently complex programming and operating model. With serverless 

services, programmers can create applications using high-level abstractions that specify how the 

functions should run. Serverless computing also offers a pay-as-you-go cost model that heavily 

reduces expenses compared to the alternative of a reservation-based cost model. In addition to 

these qualities, serverless computing also has automatic, rapid, and unlimited scaling of 

resources to match the customer’s demand. Due to these beneficial qualities, many users are 

choosing to move to serverless computing services like Amazon Web Services (AWS) Lambda 

[2] or Microsoft Azure Functions [3].  Jonas et. al. [4], Schleier et. al. [5], and Castro et. al. [6] 

present detailed analyses of the challenges and opportunities of the serverless technology. 

Two important services fall under the label “serverless computing:” Function-as-a-

Service and Backend-as-a-Service [8]. Function-as-a-Service or FaaS [7] is a type of cloud 

computing service that allows customers to develop, run, and manage applications without 

having to maintain the infrastructure required to develop and launch an app. This means that the 

customer no longer has to worry about physical or virtual servers as well as the hosting process. 

The most common use of FaaS is building and launching microservice applications. Backend-as- 

a-Service is a cloud service model that lets developers outsource the behind-the-scenes aspects of 

a mobile or web application. This means that the developers only have to write and maintain the 

frontend portion of their application. Some of the common things this can be used for are user 



7 

 

authentication, database management, cloud storage, and push notifications. Together, FaaS and 

BaaS make up serverless cloud computing.  

Cloud functions allow applications to store an ephemeral state locally at each function. 

This is useful for caching and as working memory for the program. A serverless shared state can 

be saved in object storage or in key-value stores. The issue with these data services is that they 

incur overheads that have an adverse effect on low latency, low cost, high throughput, and fine-

grained access, which are all possible with server-based data services. Approaches such as 

temporary data storage for analytics [9] and stateful cloud functions [10] that integrate caching 

attempt to address these challenges and provide consistency guarantees. Because cloud functions 

transfer the responsibilities of scheduling from the user-managed virtual machine to the cloud 

provider, several consequences arise. Because the user no longer has control over when each 

function runs, passing states between cloud functions requires a pass-through shared storage. 

This access adds a significant amount of latency. Users also cede control over where their 

functions run, thus also ceding the ability to do optimizations like sharing common inputs 

between tasks and combining outputs before sending them over the network. Overcoming these 

challenges highlights the tension between giving programmers control and allowing cloud 

providers to pursue optimizations that lead to the economy of scale achieved with server-based 

cloud services. 

Both varieties of serverless computing can exhibit variable performance, which can cause 

issues if an application must meet strict performance guarantees. Part of this is due to serverless 

providers relying on statistical multiplexing to create the illusion of infinite resources. There 

always exists the chance that queueing delays can occur due to unfortunate timing.  



8 

 

1.1 Scheduling in Serverful Computing 

The need and exploration of optimized approaches for scheduling has also happened 

when the traditional (i.e., virtual machine (VM)-based) cloud services were introduced. A first 

wave of optimizations deployed new algorithms for VM placement that pursued energy savings 

or hardware savings [11]. Then the academic and industry research community explored 

optimizations that improved application performance by taking into consideration 

communication patterns between VMs [12]. Recent investigations address optimization in 

memory usage [13] and placement of VM at the end of the network [14]. 

1.2 Experimental Evaluation of Scheduling Algorithms 

The evaluation of system optimizations is a critical component of cloud computing 

research. It can be quite challenging to obtain experimental results that model system behavior 

[15]. There has been work based on models [16], regress test workloads [17], and simulators 

[18]. 

 For serverless computing, there is no consensus yet on the appropriate toolsets or 

workload generators. Proposals in the literature include [19], [20], [21], [22] and [32]. 

 

 

 

 

 

 



9 

 

2. BENCHMARKING METHODS 

The evaluation of resource management algorithms requires obtaining experimental data 

that captures performance characteristics that highlights differences in application latency, 

throughput, or resource consumption. The complexity of cloud platforms (both server-based and 

serverless) is quite high, and the deployment of an experimental setup requires considerable 

expertise. This chapter documents some of the steps in this research in creating a benchmarking 

environment. 

2.1 Creating a Development Environment 

The first step to being able to modify a serverless function framework is to select one, 

download it, install it properly, and develop an understanding of how to use it and how it works. 

For the purposes of this project, we chose to use OpenFaaS, an open-source Serverless 

framework that can be used for free and is supported on multiple platforms [24]. Specifically, we 

selected to use faasd [24], a lightweight version of OpenFaaS that does not require the use and, 

therefore, the complexity cost of Kubernetes [23].  

The next step is to decide where to install faasd and where to run all the functions using 

faasd. In order to emulate a real production environment, as well as to develop additional skills, 

we chose to use AWS [25] to run faasd and all of the serverless functions. Specifically,we use a 

Lightsail [26] instance running Linux, although there was some consideration to using an EC2 

[27] instance for more flexibility. The reason we chose to use Lightsail over EC2 was its simple 

deployment, predictable cost model, and its ability to simulate an environment where using faasd 

can be more appropriate than just using OpenFaaS. This is due to faasd being a better choice in 

lower resource environments where Kubernetes could be to heavy weight to use.  



10 

 

In addition to installing all the services and systems required by faasd to get it up and 

running in a realistic environment, we will also need some way to measure the effectiveness of 

both the standard version of faasd right out of the box as well as to measure the effectiveness of 

the changes made. In order to actually measure how efficient faasd is, we will need to exercise 

the system using some variety of benchmarking workloads. Following the theme of using open-

source software, we chose to use the Serverless Benchmark Suite, or SeBS for short. SeBS is a 

suite of diverse FaaS benchmarks that allows automated performance analysis of commercial and 

open-source serverless platforms [6]. One of the big benefits of using SeBS is that it not only 

works for big FaaS providers like AWS Lambda or Azure, but also works on custom Docker-

based frameworks like faasd. Due to information in the literature describing SeBS as a fairly 

simple option that actually works to benchmark serverless services, we decided to adopt SeBS  

as the benchmarking tool in this research. With experimental data generated through 

benchmarking both the original faasd software stack and versions that incorporate new 

alternatives being explored, we can compare the results to assess if the scheduling modifications 

improve faasd or if faasd performs better as it is. It could also be the case that changing the 

scheduling algorithm makes no significant difference either way.  

2.2 Developing an Understanding of faasd 

After deciding on the tools and software to be set up for experimentation, the next step in 

the research model is to get everything set up and working in the target development 

environment. This task is actually more difficult than it initially sounds, due to the inherent 

complexity of deploying distributed systems [28], [29]. Setting up realistic experimental 

environments is one of the main hurdles that impede progress in advancing serverless platforms. 

Getting faasd (and its component faas-cli) installed on the server is quite trivial, achieved by just 



11 

 

following the instructions on the faasd GitHub [33] and typing in the correct commands. Just 

installing faasd isn’t necessarily enough, however, due to its dependencies. One may need to 

install a newer version of the Go [30] runtime system than the one installed. Identifying the 

appropriate version configuration can be quite time-consuming. Figuring out how to use faasd, 

on the other hand, is fairly easy due to the workshops and documentation [33] created by the 

openfaas creators. They do, however, require a small amount of translation though when using 

the faasd version, as the documentation is designed with OpenFaaS in mind. By thoroughly 

following the tutorials and doing some experimentation, we were able to develop a good 

understanding of how to use faasd.  

The faasd deployment is only the initial step in the research process. Next, it is necessary 

to obtain an understanding of the faasd components. The available documentation focuses on the 

usage of faasd, not its internal design. After examining faasd code and figuring out how it works, 

we can proceed to actually modify its code and write our own resource management functions 

(e.g., implementing alternative scheduling algorithms) to change how faasd behaves. To do this, 

one has to learn the programming language go [30], since that is what faasd and the related 

libraries are all written in. This is, surprisingly, one of the easiest parts of the entire process, 

since Go is a programming language written by programmers, for programmers. This means that 

for experienced computer scientists with in-depth knowledge of other programming languages, it 

is fairly easy to read Go code and somewhat easier to write it. 

2.3 Faasd Under the Hood 

The next step towards changing the faasd scheduler was to figure out where (i.e., in 

which component) the scheduling is implemented. This is, once again, a more difficult task than 

it initially seems. After searching through the source code and adding output statements to trace 



12 

 

the runtime, we narrowed down where the scheduling actually takes place. Surprisingly, this 

does not occur within the code of faasd itself. Such design is especially confusing given that the 

diagrams from the OpenFaaS documentation [24] show that the Fass-Provider component is 

quite important. What these diagrams don’t show is that the FaaS-Provider does not actually do 

much in its own code. Instead, in the current implementation of faasd the scheduling of incoming 

function calls occurs within a library that faasd makes use of, containerd. Containerd is a Go 

library for running docker containers [31]. Containerd is quite a complex library, so creating an 

understanding of the library is challenging even for experienced software developers; for 

researchers, achieving the necessary understanding of the library can be incredibly difficult.  

Using a combination of the source code and the containerd documentation, we discovered 

that the default faasd software uses a fairly simple first-in, first-out (FIFO) scheduling algorithm 

for each container it controls. Making this scheduler more efficient by changing its algorithm to 

something like a round-robin algorithm could make the return time (i.e., latency) more consistent 

for concurrent calls to the faasd function, thereby improving the faasd scalability. As with every 

scheduling algorithm, there are trade-offs between optimizing service time and providing 

fairness. Still, if enough calls are made, then changing the basic algorithm could significantly 

improve the scalability for larger applications. It could also be possible that there is not 

significant difference between our proposed approach’s efficiency and that of containerd. To 

assess whether or not an algorithm is more efficient, benchmarking is necessary, as discussed in 

Chapter 1. We can run a benchmark suite (for example, SeBS) to exercise the original faasd and 

the proposed alternative algorithms. Through extensive experimental evaluation, we can comtrast 

the alternatives and determine which one ends up being more efficient. 



13 

 

2.4 Benchmarking  

As stated above, our method utilizes SeBS in order to assess the performance of Faasd. 

SeBS has been published recently at a prestigious conference and is now starting to be used by 

the research community. As commonly is the case with new software packages, there a few 

different issues with trying to use a middleware like SeBS. Many of the packages that SeBS 

needs to run properly are not mentioned in the installation instructions. Many of the packages 

that fall under “standard Linux tools” are not actually already installed with standard Linux 

distributions and are also not used very often for other tools. Some google packages, like the 

Google Cloud Functions, especially need to be installed manually. Since most of these packages 

do not appear in the installation scripts or the installation instructions, the only way to actually 

figure out that they need to be installed is through trial and error. This way lets us find out what 

package is missing and then install it manually. Repeating this process many times over will 

eventually result in all of the packages being installed.  

The incomplete description of package dependence is not the only roadblock with SeBS. 

While the documentation for SeBS is fairly sparse overall, it is especially lacking for running the 

FaaS benchmarking locally. A fair amount of experimentation was necessary to get some of the 

benchmarking tests running, but then the results of the tests did not seem to provide any relevant 

system behavior information. Because of the lack of relevant documentation for running local 

benchmarks, we moved into trying to benchmark one of the standard commercial serverless 

platforms like AWS Lambda or Microsoft Azure. After looking through the features and 

documentation of both, we chose to stay with AWS and use Lambda as the platform for 

benchmarking.  

 



14 

 

2.5 Simplifying the Benchmarking Experimentation  

Serverless environments, in particular open-source ones, are new and the research 

community lacks experience with them.  Due to the complexity of benchmarking tools like 

SeBS, we expected slow progress in utilizing SeBS. Difficulties in deploying such tools are 

likely to appear even within experienced researcher groups, but for people starting research in 

the field, the hurdle may seem unsurmountable.  To address such challenges in using complex 

tools like the ones currently available, we changed our focus towards developing a simpler guide 

to benchmarking serverless computing.  

The goal is to go back to the basics and create a simple “Hello World” type benchmark 

guide for AWS Lambda. Setting up stateless functions in Lambda is quite simple. The AWS 

Lambda infrastructure also offers a number of template functions and automatically tracks a few 

metrics whenever functions are invoked. These metrics are duration, billed duration, memory 

size, max memory used, and init (i.e., initialization) duration. Notably, init duration only appears 

for cold invocations, i.e., the function invocations that require the preparation of a new runtime 

environment to execute them. Consecutive invocations often end up having lower durations. This 

is due to the difference between “cold” invocations, the ones we are testing in our research, and 

“warm” invocations. Cold invocations occur when a function, in our case an AWS Lambda 

function, is called without any prior invocations. Proponents of serverless platforms argue that, 

in production environments, cold invocations are rare and not something developers need to be 

concerned about in terms of efficiency and function latency. Warm invocations occur when an 

AWS Lambda instance is already running when the Lambda function is invoked. The reason that 

these warm invocations are more common is that once an instance of AWS Lambda (or whatever 

serverless computing service you are using) is created, it will be kept active for a certain amount 



15 

 

of time. If the application throughput is at a high enough level, then the instance may be kept 

almost perpetually active. Within this reasoning, cold invocations are uncommon because many 

applications in real production environments present an invocation pattern that is fairly 

consistent.  

Since warm invocations may be more common in production environments, it seems 

counterintuitive that our work evaluates cold invocations. The main reason for choosing to focus 

on the cold invocations is similar to the thinking underlying many of the other design choices 

adopted in this study (e.g., faasd over OpenFaaS and AWS Lightsail over AWS EC2). We 

address serverless platforms for small-scale projects, like the ones that would use faasd, where 

cold invocations will be much more common and could possibly be the predominant type of 

invocation issued by the application.   

In order to demonstrate the basics of how simple benchmarking works, we set up a 

simple function in Python that returns “hello world”. Now that we have a simple function, just 

running it at various times of day can give some insight into the amount of time a function 

invocation will take during different times of day where traffic to AWS will be different. Having 

a simple function like this is useful because it eliminates package dependencies and won’t incur 

any real computation time. In general, using input/output operations introduce undesirable 

variability in execution time, and therefore should be avoided when benchmarking. But our goal 

is not to obtain performance data but to provide an initial entry point to experimenting with 

serverless benchmarking. The output operation makes it easier to confirm that the function is 

running as intended. Except for runtime variability, returning “Hello World” is trivial for an 

AWS Lambda function in terms of both time and computational complexity, and as an initial 

benchmarking step, it will not add any meaningful execution time to the invocation duration. 



16 

 

Since there is not much added time due to computational complexity, we can roughly assess how 

much time it takes for a cold invocation to start up an AWS Lambda instance to start the 

execution and return from a call. In addition to experimenting with such a simple function, it is 

also beneficial to perform the same assessments using a more complex function. There are a 

wide variety of “more complex” functions, but since the goal now is to make something simple, 

we will go with a function that is simple to implement but computationally intensive.  

The function we decided to implement for this purpose is a standard matrix multiplication 

function. There are a couple of ways to do this, but given the purpose of this research, we 

implement a naïve matrix multiplication algorithm for simplicity. Since the naïve matrix 

multiplication algorithm is fairly trivial to implement and has a computational complexity that is 

high enough to matter for the assessment (O(n3)), it is an appropriate choice. There are other 

ways to implement matrix multiplication (like the built-in functions for python), but these 

implementations are either more complex (straying away from the goal of simplicity) or vary by 

language of implementation. Since we aim at removing hurdles to this benchmarking method, we 

decided that sticking with the naïve method would be the simplest and most effective choice.  

 Now that we have decided upon our two functions of choice, the next step is to 

implement them in AWS Lambda. This task (unlike many of the previous steps), is actually 

fairly simple. The AWS Lambda service has better documentation than AWS Lightsail (likely 

due to Lightsail being less popular than its EC2 counterpart), making it fairly easy to diagnose 

any issues one might run into during use. AWS Lambda also has a fairly useful starter guide for 

making simple functions like the ones we will be using to conduct this research. When 

implementing these functions, there are a few different languages that can be used for the 

runtime of AWS Lambda functions. A few examples would be Go, Java, Node.js, Ruby, and 



17 

 

Python, as well as a few others, including custom bootstraps. For our functions, we chose to use 

Python in order to keep implementation simple and accessible to people lacking experience with 

more complex (and efficient) programming languages. Once the functions are implemented, 

testing them is easily achieved through the Lambda console. As shown in figure 2.1, there are 

specific features for the purpose of testing implemented Lambda functions One can also test the 

functions through specific triggers that will invoke a corresponding Lambda function. These 

triggers are very useful and are the main way these functions are actually used in practice, but for 

the purposes of this simplified benchmarking method, they are not necessary. Just using the test 

feature in the Lambda console returns the necessary information to make basic assessments 

about the runtime and invocation time of our simple function as well as our more complex 

function.  

Figure 2.1: AWS Lambda Console [2] 

The performance of function invocations also depends on the overall usage of physical 

servers and networks in the cloud provider’s datacenter, which varies over the hours and days. 



18 

 

Testing function invocations throughout the day will allow us to gather an idea of the time it 

takes to start up an AWS Lambda instance as well as the invocation time during different 

network traffic times. Presumably, there will be longer startup times during peaks in AWS 

traffic. These assessments show that our simplified method of benchmarking is an effective 

starting point for benchmarking various serverless systems.  

 

  



19 

 

3. EXPERIMENTAL RESULTS 

This chapter illustrates the usage of the proposed simplified benchmarking. We measure 

invocation time using simple functions on AWS Lambda, as described in the previous chapter. 

In order to obtain the data presented here, we utilized the function test feature present in 

AWS Lambda (shown in Figure 2.1). By creating a test event using the default settings, we run 

the function and receive information about the invocation time (as well as some other 

information not presented here) from AWS. Once the test event is created for both the matrix 

multiplication function and the hello world function, all that remains is to exercise the functions 

to collect performance information.  

Cloud platforms host services for a large number of customers, which, in turn, may host 

many different applications.  For example, the number of AWS users has been estimated to 

exceed 1 million [34], including companies from all economic sectors. In turn, each customer 

hosts many applications.  The variety of hosted workloads, each with its own usage pattern, often 

results in significant disparities in data center loads across hours or days of the week. We chose 

to collect invocation time for functions triggered at intervals of 1 hour over the course of a day. 

The data collected and presented here was collected from invocations performed on a Saturday. 

This choice was made arbitrarily for ease of data collection.  

Figure 3.1B depicts the code used for collecting invocation time for the simple “Hello 

World” function invocations over the course of a day. Figure 3.1A depicts the code used for 

collecting invocation time for the simple matrix multiplication function. The execution 

environment was an AWS Lambda instance. The Lambda instance used a 64-bit x86 architecture 

running Python 3.9. Given that AWS Lambda collects performance data with its data center 



20 

 

infrastructure, latency perturbations on wide-area or local networks  do not impact the 

experiments. 

      
Figure 3.1A: Code specifying the Matrix Multiplication function.  

                                                                  
Figure 3.1B: Code specifying the Hello World function. 

 

 



21 

 

Tables 3.1 and 3.2 show the data collect in the experiment. With the goal of capturing 

invocation time for cold invocations (i.e., invocations for which a runtime environment had not 

been prepared yet by the serverless provider), we show the invocation time corresponding to one 

invocation only, instead of the common average or median of multiple invocations to reduce the 

impact of ephemeral events such as operating system noise or variations in access to the storage 

when retrieving the code for the function to be invoked. Figures 3.2 and 3.3 display the same 

data in a graphical form. 

Table 3.1: Cold Invocation time for “Hello World” 

Time of day Time(ms) Time of day Time(ms) 

12:00 AM 1.21 12:00 PM 1.51 

1:00 AM 2.2 1:00 PM 1.01 

2:00 AM 1.24 2:00 PM 1.3 

3:00 AM 1.12 3:00 PM 1.21 

4:00 AM 1.11 4:00 PM 1.23 

5:00 AM 1.22 5:00 PM 1.11 

6:00 AM 1.04 6:00 PM 1.05 

7:00 AM 1.18 7:00 PM 1.1 

8:00 AM 1.5 8:00 PM 1.33 

9:00 AM 1.21 9:00 PM 1.06 

10:00 AM 1.23 10:00 PM 1.08 

11:00 AM 2.61 11:00 PM 1.08 

 



22 

 

 

Table 3.2: Cold Invocation for Matrix Multiplication 

Time of day Time(ms) Time of day Time(ms) 

12:00 AM 517.89 12:00 PM 555.5 

1:00 AM 503.86 1:00 PM 493.76 

2:00 AM 536.84 2:00 PM 515.78 

3:00 AM 490.82 3:00 PM 486.44 

4:00 AM 499.89 4:00 PM 507.97 

5:00 AM 536.95 5:00 PM 491.99 

6:00 AM 532.3 6:00 PM 518.96 

7:00 AM 556 7:00 PM 505.77 

8:00 AM 506.96 8:00 PM 545 

9:00 AM 544.5 9:00 PM 534.77 

10:00 AM 536.08 10:00 PM 484.4 

11:00 AM 532.04 11:00 PM 531.06 



23 

 

Figure 3.3: Invocations of Matrix Multiplication Function over the course of a day   

Figure 3.2: Invocations of “Hello World” over the course of a day 

0

0.5

1

1.5

2

2.5

3

12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM

In
vo

ca
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

Time of Day

480

490

500

510

520

530

540

550

560

12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM

In
vo

ca
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

Time of Day



24 

 

The data collected in Table 3.1 (Hello World function) shows that there is significant 

variance (as large as 237%) in the amount of time it takes to perform a cold invocation during 

various times of the day. There are two noticeable spikes, one before 12 pm and the other just 

after 12 am. Many factors may contribute to such a large variance in serverless function 

invocations, and it is not possible to discern the cause without access to proprietary information 

on how the serverless platform is implemented. A common one is related to the elasticity of the 

platform: when there are no more containers available to host functions, additional servers may 

be provisioned, introducing a significant delay. Other possible causes may arise in the telemetry 

(i.e., monitoring) infrastructure at the provider due to possible network or storage congestion.  

The data collected in Table 3.2, corresponding to the Matrix Multiplication function, 

exhibit much higher variance overall. In addition to the possible overhead sources identified with 

the Hello World experiment, the variance may also come from runtime aspects such as the level 

of co-tenancy in the platform. This highlights the complexity of assessing the performance of 

serverless functions, where the programmer has little control over the runtime.  

The data collected here, however, don’t track warm invocations. In order to have a better 

view of invocation time, it could be preferable to perform the same assessments as done already, 

but additionally repeatedly invoke the functions and take an average of the following 

invocations.  

These tables and figures illustrate the value of  the simplified benchmarking methods 

outlined in this research. Due to the simplicity and flexibility of this method, it can be adapted to 

other forms of serverless computing like Microsoft Azure or open-source versions like 

OpenFaaS. It also has a large amount of room for extension and expansion past the simple 

metrics assessed in our research.  



25 

 

4. CONCLUSION 

Due to the many issues that need to be dealt with when exploring serverless computing 

platforms, creating a simplified framework for actually getting started and setting up an 

experimental environment for serverless computing is likely to be helpful for researchers aiming 

at optimizing resource usage in these platforms. Since the setup of software like OpenFaaS and 

SeBS is non-trivial, a guide to getting to some initial experiments may reduce the hurdles in the 

initial stages, accelerating the onboarding of new researchers (such as undergraduate researchers) 

in the field.  

4.1 Benchmarking 

The research conducted in this thesis work reported on the difficulties of working with 

serverless computing and the associated benchmarking services. Because serverless computing 

and its associated tools are often complex, they can be very hard to work with for those without 

several years of experience. Benchmarking tools like SeBS, which come from research groups, 

do not prioritize usability; as a result, they can be especially complicated and hard to work with. 

Since the documentation and instructions for these can often be lacking, just getting the tools 

running can be time-consuming and require acquiring unrelated skills such as package 

configuration. To address this difficulty, this research created a framework for starting the 

exploration and benchmarking of serverless platforms. Since benchmarking and experimental 

evaluations are critical parts of serverless research, the simplified method that we propose may 

be helpful in expediting the training of new researchers. 



26 

 

4.2 Future Work 

In this thesis, we presented a simplified way of running experiments on serverless 

platforms with the goal of accelerating the initial training that researchers new to the area may 

need. The experimental plan we presented is fairly simplistic, therefore adding complexity to 

track additional features besides invocation duration is a natural progression.  

An important aspect of benchmarking training is to understand what makes an 

experimental evaluation solid from a scientific point of view. Our work could be extended to 

include best practices in benchmarking software systems, as defined by Heiser’s research group 

[35]. Our simple function invocation schemes can be an effective workload to learn about the 

intricacies of benchmarking. 

Towards the goal of expediting future work, the next step could be to move from 

execution in a cloud provider towards local execution. For this purpose, our work could be 

extended to create a faasd-based package streamlined to run simplistic workloads.  

Many benchmark platforms are currently being proposed. In this thesis, we examined a 

framework made available only six months ago. It is possible that the research community will 

reach a consensus over a specific system and accumulate experience that will remove the barriers 

we face when building an environment to run the benchmark. Even so, integrating our simplistic 

approach into a more complex framework could help new benchmark users by introducing 

simple workloads that can help identify configuration errors in a simpler environment. 

  



27 

 

REFERENCES 

[1] Jia, Zhipeng, and Emmett Witchel. "Boki: Stateful Serverless Computing with Shared Logs." 

In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, 

pp. 691-707. 2021 

[2] Amazon Web Services, "AWS Lambda Run code without thinking about servers or clusters." 

Available at https://aws.amazon.com/lambda/. Last visited in March 2022. 

[3] Microsoft Azure, "Azure Functions documentation.", Available 

at https://docs.microsoft.com/en-us/azure/azure-functions/. Last visited in March 2022. 

[4] Jonas, Eric, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, 

Qifan Pu, Vaishaal Shankar et al. "Cloud programming simplified: A berkeley view on 

serverless computing." arXiv preprint arXiv:1902.03383 (2019). 

[5] Schleier-Smith, Johann, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira, Neeraja J. 

Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and David A. Patterson. 

"What serverless computing is and should become: The next phase of cloud 

computing." Communications of the ACM 64, no. 5 (2021): 76-84. 

[6] Castro, Paul, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. "The rise of 

serverless computing." Communications of the ACM 62, no. 12 (2019): 44-54. 

[7] Van Eyk, Erwin, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon 

Eismann. "A SPEC RG cloud group's vision on the performance challenges of FaaS 

cloud architectures." In Companion of the 2018 acm/spec international conference on 

performance engineering, pp. 21-24. 2018. 

[8] Dudjak, Mario, and Goran Martinović. "An API-first methodology for designing a 

microservice-based Backend as a Service platform." Information Technology and Control 

49, no. 2 (2020): 206-223. 

[9] Pu, Qifan, Shivaram Venkataraman, and Ion Stoica. "Shuffling, fast and slow: Scalable 

analytics on serverless infrastructure." In 16th USENIX Symposium on Networked 

Systems Design and Implementation (NSDI 19), pp. 193-206. 2019. 

https://urldefense.com/v3/__https:/aws.amazon.com/lambda/__;!!KwNVnqRv!X6j34PnKJD_oSkpm5cDtW5PWcJLGrF9vDvu6ZeP0p3fLYpZnQu4yHGZitFf3191HN-TLug$
https://urldefense.com/v3/__https:/docs.microsoft.com/en-us/azure/azure-functions/__;!!KwNVnqRv!X6j34PnKJD_oSkpm5cDtW5PWcJLGrF9vDvu6ZeP0p3fLYpZnQu4yHGZitFf3190IwJdzKw$


28 

 

[10] Shillaker, Simon, and Peter Pietzuch. "Faasm: Lightweight isolation for efficient stateful 

serverless computing." In 2020 USENIX Annual Technical Conference (USENIX ATC 

20), pp. 419-433. 2020. 

[11] Silva Filho, Manoel C., Claudio C. Monteiro, Pedro RM Inácio, and Mário M. Freire. 

"Approaches for optimizing virtual machine placement and migration in cloud 

environments: A survey." Journal of Parallel and Distributed Computing 111 (2018): 

222-250. 

[12] Breitgand, David, and Amir Epstein. "SLA-aware placement of multi-virtual machine 

elastic services in compute clouds." In 12th IFIP/IEEE International Symposium on 

Integrated Network Management (IM 2011) and Workshops, pp. 161-168. IEEE, 2011. 

[13] Fuerst, Alexander, Stanko Novaković, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek Sharma, 

Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bianchini. 

"Memory-harvesting VMs in cloud platforms." In Proceedings of the 27th ACM 

International Conference on Architectural Support for Programming Languages and 

Operating Systems, pp. 583-594. 2022. 

[14] Satyanarayanan, Mahadev. "The emergence of edge computing." Computer 50, no. 1 

(2017): 30-39. 

[15] Heiser, Gernote. "Systems Benchmarking Crimes." Available 

at https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html. Last visited in 

March 2022. 

[16] Hwang, Kai, Xiaoying Bai, Yue Shi, Muyang Li, Wen-Guang Chen, and Yongwei Wu. 

"Cloud performance modeling with benchmark evaluation of elastic scaling strategies." 

IEEE Transactions on parallel and distributed systems 27, no. 1 (2015): 130-143. 

[17] Silva, Marcio, Michael R. Hines, Diego Gallo, Qi Liu, Kyung Dong Ryu, and Dilma Da 

Silva. "Cloudbench: Experiment automation for cloud environments." In 2013 IEEE 

International Conference on Cloud Engineering (IC2E), pp. 302-311. IEEE, 2013. 

[18] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar 

Buyya. "CloudSim: a toolkit for modeling and simulation of cloud computing 

environments and evaluation of resource provisioning algorithms." Software: Practice 

and experience 41, no. 1 (2011): 23-50. 

[19] Ustiugov, Dmitrii, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot. 

https://urldefense.com/v3/__https:/www.cse.unsw.edu.au/*gernot/benchmarking-crimes.html__;fg!!KwNVnqRv!X6j34PnKJD_oSkpm5cDtW5PWcJLGrF9vDvu6ZeP0p3fLYpZnQu4yHGZitFf3193ngryuTA$


29 

 

"Benchmarking, analysis, and optimization of serverless function snapshots." In 

Proceedings of the 26th ACM International Conference on Architectural Support for 

Programming Languages and Operating Systems, pp. 559-572. 2021. 

[20] Somu, Nikhila, Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. "Panopticon: A 

comprehensive benchmarking tool for serverless applications." In 2020 International 

Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 144-151. 

IEEE, 2020. 

[21] Kim, Jeongchul, and Kyungyong Lee. "Functionbench: A suite of workloads for serverless 

cloud function service." In 2019 IEEE 12th International Conference on Cloud 

Computing (CLOUD), pp. 502-504. IEEE, 2019. 

[22] Kuntsevich, Aleksandr, Pezhman Nasirifard, and Hans-Arno Jacobsen. "A distributed 

analysis and benchmarking framework for apache openwhisk serverless platform." In 

Proceedings of the 19th International Middleware Conference (Posters), pp. 3-4. 2018. 

[23] Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. "Borg, 

omega, and kubernetes." Communications of the ACM 59, no. 5 (2016): 50-57. 

[24] OpenFaaS Development Community. "faasd deployment - a lightweight & portable faas 

engine." Available at https://docs.openfaas.com/deployment/faasd/. Last visited in March 

2022. 

[25] Amazon. "AWS cloud computing services." Available at https://aws.amazon.com/. Last 

visited in March 2022. 

[26] Amazon. "Amazon Lightsail" Available at https://aws.amazon.com/lightsail/ . Last visited 

in March 2022. 

[27] Amazon. "Amazon EC2 Secure and resizable compute capacity for virtually any workload." 

Available at https://aws.amazon.com/ec2/. Last visited in March 2022. 

[28] Meseguer, José. "Taming distributed system complexity through formal patterns." Science 

of Computer Programming 83 (2014): 3-34. 

[29] Schantz, Richard E., and Douglas C. Schmidt. "Middleware for distributed systems: 

Evolving the common structure for network-centric applications." Encyclopedia of 

Software Engineering 1 (2001): 1-9. 

https://urldefense.com/v3/__https:/docs.openfaas.com/deployment/faasd/__;!!KwNVnqRv!S6xQcsC-KTIjvjODut6dvkutAvHIcsnCll0hDVZ0HCA8kxXsQ_8co2OtMyzHvRAw5InuzQ$
https://urldefense.com/v3/__https:/aws.amazon.com/__;!!KwNVnqRv!S6xQcsC-KTIjvjODut6dvkutAvHIcsnCll0hDVZ0HCA8kxXsQ_8co2OtMyzHvRD3CxdzLg$
https://urldefense.com/v3/__https:/aws.amazon.com/lightsail/__;!!KwNVnqRv!S6xQcsC-KTIjvjODut6dvkutAvHIcsnCll0hDVZ0HCA8kxXsQ_8co2OtMyzHvRAdw-NIZA$
https://aws.amazon.com/ec2/


30 

 

[30] Meyerson, Jeff. "The go programming language." IEEE software 31, no. 5 (2014): 104-104. 

[31] Cloud Computing Native Foundation. "containerd: An industry-standard container runtime 

with an emphasis on simplicity, robustness and portability.", Available 

at https://containerd.io/. Last visited in March 2022. 

[32] M. Copik, “SPCL/serverless-benchmarks: Sebs: Serverless benchmarking suite for 

automatic performance analysis of FAAS platforms.,” GitHub. [Online]. Available: 

https://github.com/spcl/serverless-benchmarks/. [Accessed: 25-Jan-2022] 

[33] A. Ellis, “Openfaas/workshop: Learn serverless for kubernetes with openfaas,” GitHub, 03-

Apr-2019. [Online]. Available: https://github.com/openfaas/workshop/. [Accessed: 30-

Mar-2022].  

[34] Gillard, M. (2022, March 31). Who's using Amazon Web Services? [2020 update]: Contino: 

Global transformation consultancy. Contino. Retrieved April 3, 2022, from 

https://www.contino.io/insights/whos-using-aws/.    

[35] van der Kouwe, E., Andriesse, D., Bos, H., Giuffrida, C., & Heiser, G. (2018, January 8). 

Benchmarking crimes: An emerging threat in systems security. arXiv.org. Retrieved April 

3, 2022, from https://arxiv.org/abs/1801.02381/.  

 

 

 

 

 

 

 

https://urldefense.com/v3/__https:/containerd.io/__;!!KwNVnqRv!S6xQcsC-KTIjvjODut6dvkutAvHIcsnCll0hDVZ0HCA8kxXsQ_8co2OtMyzHvRDRaxJxpA$
https://github.com/spcl/serverless-benchmarks/
https://github.com/openfaas/workshop/
https://www.contino.io/insights/whos-using-aws/
https://arxiv.org/abs/1801.02381/

