
ARTIFICIAL NEURAL NETWORK PERFORMANCE MODEL FOR PARALLEL PARTICLE

TRANSPORT CALCULATION

A Thesis

by

J. DILLON HERRING

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Marvin L. Adams
Committee Members, Jean C. Ragusa

Jim E. Morel
Andrea Bonito

Head of Department, Michael Nastasi

August 2021

Major Subject: Nuclear Engineering

Copyright 2021 J. Dillon Herring

ABSTRACT

There is a need to improve the predictive capability of high-fidelity simulations of physical

phenomena that include the transport of thermal radiation and/or other subatomic particles. There

are many ingredients of improved capability, including solution algorithms that more efficiently

use modern massively parallel computers. The most time-consuming element of many widely

used particle-transport methods is the transport sweep, in which the particle intensity—a function

of position, energy, and direction—is calculated given the most recent estimate for the collisional

source. The intensity in a given spatial cell depends on the intensity entering from neighboring

cells in the given direction, which imposes restrictions on the order of calculations and implies

that cells must communicate exiting intensities to their downstream neighbors. Such dependen-

cies and communication requirements make parallel execution more difficult. A parallel transport

calculation in Texas A&M’s state-of-the-art PDT code partitions the spatial domain across pro-

cessors as directed by partitioning parameters. It aggregates spatial cells into cellsets, directions

into anglesets, and energy groups into groupsets, as directed by aggregation parameters. A single

work unit during a sweep calculates particle intensities in a single cellset/angleset/groupset combi-

nation. At each “stage” of the sweep every processor with available work executes one work unit

and communicates outflow intensities to processors responsible for adjacent downstream cellsets.

The ingredients of the “optimal sweep” methodology developed by Texas A&M in collaboration

with the NNSA labs are: (i) a provably optimal scheduling algorithm, which executes the sweep in

the minimum possible number of stages for any given partitioning and aggregation factors; (ii) a

performance model that predicts sweep time for that execution; and (iii) an algorithm that chooses

partitioning and aggregation factors that minimize sweep time. Here we explore the use of Arti-

ficial Neural Networks (ANNs) for such a model, and its memory-use counterpart, and compare

against our previous models. We design simple networks that have the ability to replicate pre-

vious models but also to augment those models with nonlinear corrections if this better fits the

data. These simple nonlinear ANNs outperform our previous models, reducing average prediction

ii

errors from ≈ 41% to ≈ 21% for some problems of interest, although large maximum errors are

observed for both models. Additionally PDT reports unexpected results for parallel problems, pos-

sibly contribution to the large maximum observed errors. Despite this observation, both the ANN

based nonlinear model and our previous model show signs of fruitful practical use for an algorithm

such as the one described in (iii). The memory-usage model shows promising results predicting

memory usage within ≈ 0.024 GB for out of sample data points.

iii

DEDICATION

To my Mother and Father, for which this would not be possible without. To my lovely Fiancé,

Kylie, for her love and support through the long nights and missed dates.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Marvin Adams, advisor,

Professors Jean Ragusa and Jim Morel, of the Department of Nuclear Engineering and Professor

Andrea Bonito of the Department of Mathematics. We thank Dr. Mauricio Tano-Retamales and

Daryl Hawkins for many helpful discussions and patient tutorials. All other work conducted for

the thesis was completed by the student independently.

Funding Sources

This material is based upon work supported by the Department of Energy, National Nuclear

Security Administration, under Award Number(s) DE-NA0002376. Established by Congress in

2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for

enhancing national security through the military application of nuclear science. NNSA maintains

and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile

without nuclear testing; works to reduce global danger from weapons of mass destruction; provides

the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological

emergencies in the U.S. and abroad.

v

NOMENCLATURE

ReLU Rectified Linear Activation Function

PDT Texas A&M University’s state-of-the-art Particle Transport
Code

ANN Artificial Neural Network

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

1.1 Background and Motivation . 1
1.2 Transport Sweeps . 12

2. ANALYTIC PERFORMANCE MODELS . 17

2.1 PDT’s Current Analytic Performance Model . 17
2.2 PDT Performance Suite . 20
2.3 Finding the Time Constants . 35

3. ARTIFICIAL NEURAL NETWORKS . 41

3.1 Densely Connected Neurons. 41
3.2 Weight and Bias Tuning . 42
3.3 Activation Functions . 45
3.4 Rectified Linear 1D Lagrange Interpolation Polynomials. 45

4. IMPLEMENTATION OF ANN PERFORMANCE MODELS . 49

4.1 Grind time models . 49
4.2 Implementation of ANNs . 50
4.3 Memory usage models . 51

5. RESULTS. 55

5.1 Replicating PDT’s Current Sweep Time Model . 55

vii

5.2 Details of Grind Time Model Testing for Parallel Runs. 55
5.3 Performance of Grind Time Models . 56
5.4 ANN-Based Memory Models . 63

6. SUMMARY AND CONCLUSIONS . 66

6.1 Conclusion. 66

REFERENCES . 68

viii

LIST OF FIGURES

FIGURE Page

1.1 Particles at location ~r, moving in direction Ω̂ [3]. 2

2.1 Percent Error between Equation (2.7) and tabulated serial sweep times.. 38

2.2 Percent Error between Equation (2.11) and tabulated serial grind times. 39

2.3 Percent error between Equation (2.12) and tabulated serial grind times. 40

3.1 Example ANN architecture. 41

4.1 ANN that adds a nonlinear correction to the original linear model. Left: simplified
view. Right: detail “inside” the red neuron for the example of 7 ReLU neurons. 50

4.2 Mean squared error vs epoch number. Left: Normalized variables. Right: Unnor-
malized variables and data . 53

4.3 ANN structure for PDT ReLU memory usage model. Left: simplified view. Right:
detail “inside" the red neuron. 54

5.1 Zoomed views of linear model predictions vs PDT reported grind times for testing
data from second random split. Points inside red circles are members of the same
variant. 58

5.2 Zoomed views of nonlinear model predictions vs PDT reported grind times for
testing data from second random split. Points inside red circles are members of the
same variant.. 60

5.3 Zoomed views of nonlinear model with 4 ‘red neurons’ predictions vs PDT re-
ported grind times for training data from first random split. 61

5.4 Zoomed views of nonlinear model with 1 ‘red neurons’ predictions vs PDT re-
ported grind times for training data from first random split. 62

5.5 PDTs reported memory usage v Linear ANN predicted memory usage. Left: train-
ing data. Right: testing data . 64

5.6 PDTs reported memory usage v Nonlinear ANN predicted memory usage. Left:
training data. Right: testing data . 64

ix

LIST OF TABLES

TABLE Page

5.1 Time constants produced from the linear ANN and the linear least squares
(LS) model. 56

5.2 Performance of Linear and Nonlinear Grind Time Models. 57

5.3 Performance of Linear and Nonlinear Grind Time Models on the 1st Test-
Train Split . 59

5.4 Performance of Linear and Nonlinear ANN memory models . 65

x

1. INTRODUCTION

*

1.1 Background and Motivation

There are many challenges in the field of computational physics. One of them is simulating

the interactions between radiation and matter. The linearized Boltzmann equation describes the

transport of particles through background media and is widely used to model the transport of neu-

trons, photons, electrons, and other subatomic particles ([1],[2]). Applications range from nuclear

reactor design to photon distributions in the atmosphere. The linearized Boltzmann equation takes

the following form:

1

v(E)

∂ψ(~r, E, Ω̂, t)

∂t
+ Ω̂ · ~∇ψ(~r, E, Ω̂, t) + σt(~r, E, t)ψ(~r, E, Ω̂, t) = Q(~r, E, Ω̂, t). (1.1)

Equation (1.1) is a statement of particle conservation, expressing that change rate equals gain rate

minus loss rate. The quantity of interest, ψ(~r, E, Ω̂, t), is known as the angular flux. Assuming

cartesian geometry, ~r =< x, y, z >, the angular flux can be thought of as the total particle tracks

at position ~r, generated from particles moving in direction Ω̂, per unit volume xyz, per unit energy

E, per steradian sr, per unit time t. Commonly, the angular flux has units of n−cm
cm3−MeV−sr−s (we

will use n to represent particles). The dependencies of the angular flux describe what is known as

phase space. This is the 7 dimensional space required to fully describe the transport of particles,

composed of space (x, y, z); direction (sinθcosφ, sinθsinφ, cosθ); energy E; and time t. φ is the

azimuthal angle of particle travel and θ is the polar angle of particle travel. It is regularly referred

to as a 6 dimensional phase space at time t as opposed to a 7 dimensional phase space. This is

seen in Figure (1.1). It is convenient to refer to the angular flux as a particle track length rate

density. Here, particle track length refers to the n − cm units. We add in rate because it is per

*Reprinted with permission from “Artificial Neural Network Performance Models for Parallel Particle Transport
Calculation" by James D. Herring, 2021. M&C 2021, Copyright 2021 by M&C 2021.

1

unit time and density because it is per unit volume, per unit steradian, per unit energy. Notice, this

is per unit phase space. When dividing a quantity by a unit of phase space we will describe the

ratio as ‘quantity rate density’. This nomenclature will be adopted for the remainder of this thesis.

σt(~r, E, t) is the total macroscopic interaction cross section, and varies with location, particle

Figure 1.1: Particles at location ~r, moving in direction Ω̂ [3].

energy, and time.

It will be helpful to go through each term of Equation (1.1) and formulate a description. Each

term is a rate density. It will be convenient to explain each rate density in terms of its integral

over an interval of phase space, ∆x,∆y,∆z,∆E,∆Ω̂,∆t. Starting on the left hand side of Equa-

tion (1.1) we see 1
v(E)

∂ψ(~r,E,Ω̂,t)
∂t

. This term is the particle change rate density with corresponding

units of n
cm3−MeV−sr−s . When integrated over an interval of phase space it is the number of parti-

cles in the 6 dimensional phase space interval at time t+ ∆t minus the number of particles at time

t. Next we have Ω̂ · ~∇ψ(~r, E, Ω̂, t). This term is often referred to as the streaming term. It is a

particle rate density with units of n
cm3−MeV−sr−s . When integrated over an interval of phase space

2

it is the number of particles leaving the 6 dimensional phase space interval through its spatial sur-

faces over the time interval minus the number of particles entering the 6 dimensional phase space

interval through its spatial surfaces over the time interval. Then we have σt(~r, E, t)ψ(~r, E, Ω̂, t),

the collision rate density. When integrated over a phase space interval it is the number of collisions

between particles and the medium in the 6 dimensional phase space interval over the time interval.

Q(~r, E, Ω̂, t) is the source rate density with units of n
cm3−MeV−sr−s and when integrated over a

phase space interval is the number of particles born in the 6 dimensional phase space interval over

the time interval.

The source term Q(~r, E, Ω̂, t) commonly has the form:

Q(~r, E, Ω̂, t) =

∫ ∞
0

∫
4π

σs(~r, Ω̂
′ → Ω̂, E

′ → E, t)ψ(~r, E
′
, Ω̂
′
, t)dΩ̂

′
dE

′
+Qext(~r, E, Ω̂, t).

(1.2)

Here σs(~r, Ω̂
′ → Ω̂, E

′ → E, t) is the differential scattering cross section. It represents the prob-

ability that a particle moving in direction Ω̂
′ at energy E ′ undergoes a scattering interaction and

ends up in direction Ω̂ at energy E. "Scattering" is used here to include all interactions from

which one or more particles emerge. This cross section has units of 1
cm−sr−MeV

. Consequently∫∞
0

∫
4π
σs(~r, Ω̂

′ → Ω̂, E
′ → E, t)ψ(~r, E

′
, Ω̂
′
, t)dΩ̂

′
dE

′ is the total number of particles (including

within group scattering) that scatter into direction Ω̂ and energyE per unit volume, per unit energy,

per unit time. Typically the differential scattering cross section is expressed as a combination of

Legendre polynomials:

σs(~r, Ω̂
′ → Ω̂, E

′ → E, t) =
N∑
n=0

2n+ 1

4π
σs,n(~r, E

′ → E, t)Pn(Ω̂
′ · Ω̂). (1.3)

The n′th Legendre polynomial Pn can be expressed as:

Pn(Ω̂
′ · Ω̂) =

4π

2n+ 1

n∑
m=−n

Yn,m(Ω̂)Y ∗n,m(Ω̂
′
). (1.4)

Here Yn,m is the spherical harmonic function of polar order n and azimuthal order m and Y ∗n,m is

3

its complex conjugate [4]. When Equation (1.4) is substituted into Equation (1.3) we end up with:

σs(~r, Ω̂
′ → Ω̂, E

′ → E, t) =
N∑
n=0

n∑
m=−n

σs,n(~r, E
′ → E, t)Yn,m(Ω̂)Y ∗n,m(Ω̂

′
). (1.5)

Consequently Equation (1.2) can be expressed as:

Q(~r, E, Ω̂, t) =

∫ ∞
0

N∑
n=0

n∑
m=−n

σs,n(~r, E
′ → E, t)Yn,m(Ω̂)φn,m(~r, E

′
, t)dE

′
+Qext(~r, E, Ω̂, t),

(1.6)

with φn,m(~r, E
′
, t) =

∫
4π
Y ∗n,m(Ω̂

′
)ψ(~r, E

′
, Ω̂
′
, t)dΩ̂

′ .

For problems of interest Equation (1.1) does not have an analytic solution, which means we

must obtain an approximate solution through the use of discretization methods. First we will tackle

the angular dependence Ω̂. Often known as the SN method, we approximate
∫

4π
Y ∗n,m(Ω̂

′
)ψ(~r, E

′
, Ω̂
′
, t)dΩ̂

′

with a quadrature. Applied to Equation (1.1) we have:

1

v(E)

∂ψ(~r, E, Ω̂d, t)

∂t
+ Ω̂d · ~∇ψ(~r, E, Ω̂d, t) + σt(~r, E, t)ψ(~r, E, Ω̂d, t) =∫ ∞

0

N∑
n=0

n∑
m=−n

σs,n(~r, E
′ → E, t)Yn,m(Ω̂d)φn,m(~r, E

′
, t)dE

′
+Qext(~r, E, Ω̂d, t),

(1.7)

and

φn,m(~r, E
′
, t) =

D∑
d=1

Y ∗n,m(Ω̂
′

d)ψ(~r, E
′
, Ω̂
′

d, t)∆Ω
′

d. (1.8)

In Equation (1.8) we have approximated the angular integral inside the definition of φn,m with a

quadrature, with quadrature points Ω̂
′

d and corresponding quadrature weights ∆Ω
′

d. Next we take

care of the energy dependence E. First we break all possible energies that particles can have into

G intervals or groups. Then we define the gth angular and scalar fluxes as
∫

∆g
ψ(~r, E, Ω̂d, t)dE

and
∫

∆g
φ(~r, E, t)dE. If we integrate Equation (1.7) over ∆g we recognize that

σt,g(~r, t) =

∫
∆g
σt(~r, E, t)ψ(~r, E, Ω̂d, t)dE∫

∆g
ψ(~r, E, Ω̂d, t)dE

4

with a similar definition for σs,n,g′→g(~r, t), in order to obtain Equations (1.9) and (1.10):

1

vg

∂ψg(~r, Ω̂d, t)

∂t
+ Ω̂d · ~∇ψg(~r, Ω̂d, t) + σt,g(~r, t)ψg(~r, Ω̂d, t) =

g
′
=G∑

g′=1

N∑
n=0

n∑
m=−n

σs,n,g′→g(~r, t)Yn,m(Ω̂d)φn,m,g′ (~r, t) +Qext,g(~r, Ω̂d, t),

(1.9)

and

φn,m,g′ (~r, t) =
D∑
d=1

Y ∗n,m(Ω̂
′

d)ψg′ (~r, Ω̂
′

d, t)∆Ω
′

d. (1.10)

Now we will show that time dependent problems can be solved as sequential steady state problems.

We will use the backward Euler time discretization method here however the same conclusions

can be drawn using other time discretization methods. Applying backward Euler to Equation (1.9)

gives us:

1

vg
(
ψg(~r, Ω̂d, t+ ∆t)− ψg(~r, Ω̂d, t)

∆t
) + Ω̂d · ~∇ψg(~r, Ω̂d, t+ ∆t) + σt,g(~r, t+ ∆t)ψg(~r, Ω̂d, t+ ∆t) =

g
′
=G∑

g′=1

N∑
n=0

n∑
m=−n

σs,n,g′→g(~r, t+ ∆t)Yn,m(Ω̂d)φn,m,g′ (~r, t+ ∆t) +Qext,g(~r, Ω̂d, t+ ∆t).

(1.11)

If we move ψ(t) to the right hand side we have:

Ω̂d · ~∇ψg(~r, Ω̂d, t+ ∆t) + (σt,g(~r, t+ ∆t) +
1

vg∆t
)ψg(~r, Ω̂d, t+ ∆t) =

g
′
=G∑

g′=1

N∑
n=0

n∑
m=−n

σs,n,g′→g(~r, t+ ∆t)Yn,m(Ω̂d)φn,m,g′ (~r, t+ ∆t) +Qext,g(~r, Ω̂d, t+ ∆t) +
ψg(~r, Ω̂d, t)

vg∆t
.

(1.12)

Recognize that Equation (1.12) is recovered from Equation (1.9) if a steady state approximation is

made with two additional terms: a 1
vg∆t

added to the total cross section and the flux at the previous

time step acting as a source. Since these quantities are known Equation (1.12) demonstrates that

5

time dependent problems can be solved from sequential steady state problems. Consequently, for

the remainder of this thesis we will consider steady state problems of the form:

Ω̂d · ~∇ψg(~r, Ω̂d) + σt,g(~r)ψg(~r, Ω̂d) =

g
′
=G∑

g′=1

N∑
n=0

n∑
m=−n

σs,n,g′→g(~r)Yn,m(Ω̂d)φn,m,g′ (~r) +Qext,g(~r, Ω̂d).
(1.13)

To deal with the spatial dependence ~r we adopt a Discontinuous Finite Element Method (DFEM).

To begin we assume the spatial domain is broken into I cells with the ith cell having volume Vi.

We define a set of J basis functions bi,j for cell i. If we approximate the angular flux in cell i to

be a linear combination of the basis functions in that cell and the flux evaluated at support points j

we have:

ψi(~r, Eg, Ω̂d) =
J∑
j=1

bi,j(~r)ψi(~rj, Eg, Ω̂d). (1.14)

For the remainder of this section we will be dropping the full dependency expression. For example

we will refer to ψi,g(~rj, Ω̂d) as ψij,g,d. As is customary in finite element analysis, we will multiply by

a set of K weight functions wi,k for cell i, and integrate over cell i. Then we insert Equation (1.14)

into Equation (1.13). We begin with the second term on the left hand side of Equation (1.13).

J∑
j=1

∫
Vi

dV σt,g,iψ
i
j,d,gbi,j(~r)wi,k(~r), (1.15)

where σt,g,i is the total macroscopic interaction cross section in cell i for energy group g. Next we

consider the first term on the right hand side of Equation (1.13). We insert the DFEM approxima-

tion into our definition of φn,m,g(~r):

φin,m,g(~r) =
J∑
j=1

D∑
d′

Y ∗
n,m,d′

ψi
j,d′ ,g

bi,j(~r)∆Ωd′ . (1.16)

If we use Equation (1.16) in the first term on the right hand side of Equation (1.13), multiply by

6

our K weight functions, and integrate over the volume of cell i we get,

J∑
j=1

N∑
n=0

n∑
m=−n

G∑
g′

∫
Vi

dV wi,k(~r)σs,n,g′→g,iYn,m,d

D∑
d′=1

Y ∗
n,m,d′

ψi
j,d′ ,g′

bi,j(~r)∆Ωd′ =

J∑
j=1

N∑
n=0

n∑
m=−n

G∑
g′

∫
Vi

dV wi,k(~r)σs,n,g′→g,iYn,m,dφ
i
n,m,j,g

′ .

(1.17)

Or written as a vector equation:

N∑
n=0

n∑
m=−n

G∑
g′

Si,g′→g,nYn,m,d~φ
i
n,m,g′

, (1.18)

where element k, j of the matrix Si,g′→g,n is:

Sk,ji,g′→g,n =

∫
Vi

dV wi,k(~r)σs,n,g′→g,ibi,j(~r). (1.19)

~φi
n,m,g′

is the scattering source vector for cell i, polar scattering order n, azimuthal scattering order

m, scattering group g′ , of length J where element j is

φi
j,n,m,g′

=
D∑

d′=1

Y ∗
n,m,d′

ψi
j,d′ ,g′

∆Ωd′ . (1.20)

We note that Equation (1.20) expresses part of the right-hand side in terms of the solution, but

defer the explanation of how this is treated for later in this section. Next we discretize the source

term Qext(~r, Eg, Ω̂d). If we assume a form similar to Equation (1.14) we can write:

Qi
ext(~r, Eg, Ω̂d) =

J∑
j=1

bi,j(~r)Q
i
ext(~rj, Eg, Ω̂d). (1.21)

Substituting back into Equation (1.11), multiplying by our K weight functions, and integrating

over cell i:
J∑
j=1

∫
Vi

dV wi,k(~r)bi,j(~r)Q
i
ext(~rj, Eg, Ω̂d) = Qi~q

i
d,g, (1.22)

7

where the element k, j of the matrix Qi is:

Qk,j
i =

∫
Vi

dV wi,k(~r)bi,j(~r), (1.23)

and ~qid,g is the extraneous source vector for cell i, group g, and direction d, of length J . The

streaming term requires some extra steps. First we get the term in its weak form.

∫
Vi

wi,k(~r)(Ω̂d · ~∇ψd,g(~r))dV. (1.24)

Here we have multiplied the streaming term in Equation (1.11) by the set of weight functions and

integrated it over cell i. Gausses Divergence Theorem says:

∫
V

dV ~∇ · ~F =

∫
∂V

dA(ên · ~F). (1.25)

If we let F = Ω̂dwi,k(~r)ψd,g(~r) then the left hand side of Equation (1.25) becomes:

∫
Vi

dV ~∇ · Ω̂dwi,k(~r)ψd,g(~r) =∫
Vi

dV [Ωd,x
∂

∂x
(wi,k(~r)ψd,g(~r)) + Ωd,y

∂

∂y
(wi,k(~r)ψd,g(~r)) + Ωd,z

∂

∂z
(wi,k(~r)ψd,g(~r))].

(1.26)

Here, Ω̂d has been removed from the gradient operator, as it does not depend on space. We recog-

nize that Equation (1.26) can be expressed as:

∫
Vi

dV (Ω̂d · ~∇(wi,k(~r)ψd,g(~r))). (1.27)

If we expand the gradient operator using the product rule we get:

∫
Vi

dV (Ω̂d · (ψd,g(~r)~∇wi,k(~r) + wi,k(~r)~∇ψd,g(~r))) =

∫
Vi

dV (ψd,g(~r)(Ω̂d · ~∇wi,k(~r)))+∫
Vi

dV (wi,k(~r)(Ω̂d · ~∇ψd,g(~r))).
(1.28)

8

We recognize that the second term on the right hand side is Equation (1.24). Also, notice that the

left hand side is equal to the left hand side of Equation (1.26). Thus we get:

∫
Vi

dV (wi,k(~r)(Ω̂d · ~∇ψd,g(~r))) =

∫
Vi

dV ~∇ · Ω̂dwi,k(~r)ψd,g(~r)−
∫
Vi

dV (ψd,g(~r)(Ω̂d · ~∇wi,k(~r))).

(1.29)

Applying Divergence Theorem to the first term on the right hand side:

∫
Vi

dV (wi,k(~r)(Ω̂d · ~∇ψd,g(~r))) =

∫
∂Vi

dA(ên ·Ω̂dwi,k(~r)ψd,g(~r))−
∫
Vi

dV (ψd,g(~r)(Ω̂d · ~∇wi,k(~r))).

(1.30)

Inserting the DFEM approximation characterized by Equation (1.14) we have:

J∑
j=1

∫
Vi

dV (wi,k(~r)ψ
i
j,d,g(Ω̂d · ~∇bi,j(~r))) =

J∑
j=1

∫
∂Vi

dAψĩj,d,g(ên · Ω̂dwi,k(~r)bĩ,j(~r))−

J∑
j=1

∫
Vi

dV (ψij,d,gbi,j(~r)(Ω̂d · ~∇wi,k(~r))).

(1.31)

The consequences of Equation (1.31) have immediate impact on many widely used radiation trans-

port solution algorithms. Notice the first term on the right hand side (surface term) is a surface in-

tegral. That is, bi,j and wi,k will only be evaluated at the surface of cell i in that term. This presents

a problem because the DFEM approximation has allowed the angular flux to be discontinuous at

cell boundaries [5]. To deal with the discontinuities we have denoted ĩ to be the index of the cell

upstream of the surface under consideration. That is

ψd,g(~rl) =


ψd,g(~r

−
l) if Ω̂d · ên > 0

ψd,g(~r
+
l) if Ω̂d · ên < 0.

(1.32)

Here we have said that the angular flux evaluated at the surface of cell i characterized by ~rl is equal

to the flux evaluated just inside the surface (i.e. just inside cell i), ψd,g(~r−l), if the direction of

particle travel is outgoing, Ω̂d · ên > 0. If the direction of particle travel is incoming, Ω̂d · ên < 0,

9

then the flux is taken as the value evaluated just outside (i.e just inside the upstream cell) the

surface ψd,g(~r+
l). With the discontinuities handled we split the surface integral into the sum of two

integrals:

J∑
j=1

∫
∂Vi

dAψĩj,d,g(Ω̂dwi,k(~r)bĩ,j(~r) · ên) =
J∑
j=1

∫
∂V +

i

dAψij,d,g(Ω̂dwi,k(~r)bi,j(~r) · ên)+

J∑
j=1

∫
∂V −i

dAψ̃ij,d,g(Ω̂dwi,k(~r)b̃i,j(~r) · ên),

(1.33)

where

∂Vi =


∂Vi

+ if Ω̂d · ên > 0

∂Vi
− if Ω̂d · ên < 0,

and ψ̃id,g is the angular flux evaluated at direction d, group g, in the cell upstream of the surface

on cell i being considered. Similarly b̃i,j(~r) is the j′th basis function in the cell upstream of the

surface on cell i being considered. We can now express the right hand side of Equation (1.31)

vectorially as:

L+
i
~ψid,g +

f=F∑
f=1

L−i,f
~̃ψif,d,g − Li

~ψid,g. (1.34)

Here L+
i represents the outgoing surface matrix for cell i, where element k, j is

L+
i,k,j =

∫
∂V +

i

dA(Ω̂dwi,k(~r)bi,j(~r) · ên). (1.35)

L−i,f represents the incoming surface matrix for surface f on cell i, where element k, j is

L−i,f,k,j =

∫
f

dA(Ω̂dwi,k(~r)b̃i,j(~r) · ên). (1.36)

~̃ψif,d,g is the flux vector for the cell upstream of surface f on cell i. Li represents the remaining

10

terms of Equation (1.31) for cell i, where element k, j is

Li,k,j =

∫
Vi

dV (bi,j(~r)(Ω̂d · ~∇wi,k(~r))). (1.37)

Equation (1.34) produces a crucial result. Notice the first and last term in Equation (1.34) are

operating on the same vector, ~ψid,g. This is the vector of length J that corresponds to the angular

flux in cell i for quadrature direction d and energy group g, where element j is the angular flux at

support point j in cell i. The matrix for face f operates on ~̃ψif,d,g. This is the vector of length J

whose j′th element is the angular flux for quadrature direction d, energy group g, at support point

j in the cell upstream of surface f on cell i. Additionally, we can express Equation (1.15) as

Mi,g
~ψid,g, (1.38)

where Mi,g is referred to as the mass matrix. Collecting Equations (1.34, 1.38, 1.18, 1.22) we can

write the discretized steady state transport equation as:

(L+
i − Li + Mi,g)~ψ

i
d,g +

f=F∑
f=1

L−i,f
~̃ψif,d,g =

N∑
n=0

n∑
m=−n

G∑
g′

Si,g′→g,nYn,m,d~φ
i
n,m,g′

+ Qi~q
i
d,g. (1.39)

Equation (1.39) is the fully discretized neutron transport equation for cell i. In order to solve

Equation (1.39) one must know the incoming angular flux values for cell i, ~̃ψif,d,g for all F incoming

surfaces. One method is to solve each cell sequentially, starting from the boundary (the boundary

cell’s incoming flux values are determined by the boundary conditions). This technique is known

as a transport sweep [6]. Furthermore, in the definition of ~φi seen in Equation (1.20), we have

a dependence on the solution ~ψid,g. To deal with this we use a common technique called source

iteration [6]. Applying the iterative technique into Equation (1.39) we get:

(L+
i −Li+Mi,g)~ψ

i,`+1
d,g = −

f=F∑
f=1

L−i,f
~̃ψi,`+1
f,d,g +

N∑
n=0

n∑
m=−n

G∑
g′

Si,g′→g,nYn,m,d~φ
i,`

n,m,g′
+Qi~q

i
d,g, (1.40)

11

and the jth element of ~φi,`
n,m,g′

is

φi,`
j,n,m,g′

=
D∑

d′=1

Y ∗
n,m,d′

ψi,`
j,d′ ,g′

∆Ωd′ . (1.41)

where ` is the iteration index. Equations (1.40) and (1.41) tell us that for every cell, direction,

energy group combination, there are J unknowns to solve for. Consequently there are I × D ×

G×J unknowns in the problem. Furthermore, for accurate results in many interesting and difficult

problems typical values of I , D, G, and J are O(106), O(103), O(102), and O(101) [6]. This leads

to O(1012) unknowns for typical problems and more for some problems of particular interest. To

deal with the size of these problems massively parallel computers are usually employed.

1.2 Transport Sweeps

Equations (1.40) and (1.41) characterize the system of linear equations to be solved on each

cell for each energy group and each quadrature direction. Imagine a sequential series of rectangular

cells labeled cell 1 to cell I . If particles are restricted to movement in two directions, from cell

1 to cell I and from cell I to cell 1, then its trivial to see that the order in which particles enter

each cell is different for each direction. We will call this the sweep ordering. Consequently, solving

Equations (1.40) and (1.41) depend on the sweep ordering. A simple sequential solution algorithm

to solve these equations can be seen in Algorithm (1).

12

~φ` = ~φ0

while ||~φ`+1 − ~φ`|| > ε do

for d = 1 to D do
~φi,`+1 = ~0

for all i in sweep order d do

for g = 1 to G do

for all faces f, on cell i do

if f is a boundary face for direction d then
~̃ψi,`+1
f,d,g = ~ψBC,f,d,g

else
use the incoming flux values from upstream cells

end

end

~ψi,`+1
d,g = (L+

i − Li + Mi,g)
−1(−

∑f=F
f=1 L−i,f

~̃ψi,`+1
f,d,g +∑N

n=0

∑n
m=−n

∑G
g′ Si,g′→g,nYn,m,d~φ

i,`

n,m,g
′ + Qi~q

i
d,g)

~φi,`+1

n,m,g′
= ~φi,`+1

n,m,g′
+ Y ∗n,m,d

~ψi,`+1

d,g′
∆Ωd

Send all outgoing face flux values to downstream cells

end

end

end

~φ` = ~φ`+1

end

Algorithm 1: Simple transport solution algorithm.

A transport sweep on a single processor machine is characterized by the steps inside the while loop

in Algorithm (1). The idea is to solve each cell, direction, group combination sequentially, passing

outgoing flux information downstream once it is known. Notice the next iteration of the scattering

source vector for cell i, ~φi,`+1, is updated as the angular flux solutions in cell i for direction d and

group g become available. Algorithm (1) reveals an important detail. A downstream cell has all the

13

information it needs to solve for ~ψd,g once its upstream cells have finished solving Equation (1.40)

for direction d and group g. Consequently, it is not necessary to iterate through the entire g for

loop in Algorithm (1) before the sweep moves to the next cell in the sweep order.

Imagine a brick shaped spatial domain with brick shaped cells. On such a grid, all directions

within a given octant of directional space will have the same sweep ordering, which will begin

with a cell in one corner of the domain and end with the cell in farthest corner [6]. We can collect

those directions and call them an angle set. Angle sets are not required to contain all the angles

that have the same sweep ordering, however all angles in an angle set must have the same sweep

ordering. Previously, we stated that a downstream cell is ready to compute the angular flux for

direction d and group g once its upstream counterpart has finished computation. We can bundle all

of the groups an upstream cell computes before communicating results to downstream cells into a

group set. Similar logic can be applied to cells. The subset of cells in a specific sweep ordering

computed before communicating results to downstream cells in the sweep ordering can be bundled

into a cell set. Consider a problem with multiple angle sets, group sets, and cell sets with 2 angles

per angle set and 1 group per group set, An = 2 and Ag = 1. Additionally, unique processors

own all the cells in each cell set. The downstream cells in the sweep ordering (owned by another

processor) can begin solving Equation (1.40) for the first angle and first group while their upstream

counterparts are solving Equation (1.40) for the first angle and the second group. This logic, as

seen from a single processor is illustrated in Algorithm (2).

14

for all angle sets do

for all group sets do

for all cell sets in current sweep order do

if proc owns cells in cell set and boundary info is ready then

for i in cell set do

for all d in angle set do

for g in group set do

for all faces f, on cell i do

if f is a boundary face for direction d then
~̃ψi,`+1
f,d,g = ~ψBC,f,d,g

else
use the incoming flux values from upstream cells

end

end

Solve for ~ψi,`+1
d,g and ~φi,`+1

n,m,g′
using Equations (1.40) and (1.41)

end

end

end

Communicate outgoing face flux values to the processor that owns the next cell set

else if proc owns cells in cell set, but boundary info is not ready then
wait, then check again

else
continue

end

end

end

end

Algorithm 2: Simple parallelized sweep algorithm as seen from one processor.
15

It is demonstrated in [7] that the time it takes to execute a transport sweep, which we will call

the sweep time, depends on the sizes of the cell, angle, and group sets. The number of cells, angles,

and groups in a set are known as the aggregation parameters. Understanding the relationship

between sweep time and aggregation parameters is a key ingredient to solving radiation transport

problems efficiently. If we are able to predict the sweep time based on the aggregation parameters

then we can select the parameters that minimize sweep time. This provides motivation to produce

a sweep time model.

It was mentioned earlier that these problems are typically solved on massively parallel ma-

chines. In practice, jobs are submitted and placed in a queue. If your job has errors or violates

one of the machines operation constraints it will not run and the next job in the queue is executed.

One of these constraints to be aware of is memory limitations as it is frustrating to waste time in

the queues. As such there is a need to develop a model to predict the memory usage of a transport

problem as well.

This work explores the use of Artificial Neural Networks (ANNs) to model two features of the

transport sweep: (i) Sweep time; and (ii) Memory usage. As part of the exploration, ANN-based

models are compared against traditional analytic models. Sweep-time and memory models are two

critical ingredients in the development of optimal sweep algorithms. More details about optimal

transport sweeps are provided in [6].

16

2. ANALYTIC PERFORMANCE MODELS

* This section characterizes PDTs current sweep time model. The concept of “stages" is intro-

duced and used to simplify our sweep algorithm. Then we use that algorithm to derive a linear-

combination sweep time model. Researchers previously developed a scaling suite that executes

384 serial PDT runs and records their aggregation parameters, sweep time, and memory usage in

.csv format. Here we extend the suite to produce a set of parallel runs in addition to the serial

runs. The method of least squares is employed to determine the set of empirical time constants that

minimize the squared difference between what the linear combination model predicts and reality.

Equation (2.1) is then demonstrated to produce better results if we divide the entire relationship

by the number of unknowns in the problem, producing a relationship between the aggregation

parameters and the grind time.

2.1 PDT’s Current Analytic Performance Model

Consider again Algorithm (2). In the previous section we saw that using aggregation param-

eters allows us to parallelize the sweep algorithm. That is, the next cell set can begin working

before all the group sets are finished. Let’s define Acells, An, and Ag as the aggregation parameters

for cells, angles, and groups. Furthermore, let’s assume the job is running on Nprocs processors.

If we partition Ncells spatial cells evenly amongst the processors, then each processor owns Ncells

Nprocs

cells. If we extend our definition of aggregation parameters from the last section to our current

example then each processor will have to solve Equation (1.40) Acells × An × Ag times before it

communicates outgoing face flux values to downstream cells. We will call each Acells × An × Ag

block of solutions to Equation (1.40) a task. Then, each processor must complete NcellsNnNg

AcellsAnAgNprocs

tasks to solve for all of its unknowns. That is the number of angles sets time the number of group

sets times the number of cell sets. We also realize that processors that own downstream cells begin

their tasks later than their upstream counterparts. As such they will sit idly until the boundary flux

*Reprinted with permission from “Artificial Neural Network Performance Models for Parallel Particle Transport
Calculation" by James D. Herring, 2021. M&C 2021, Copyright 2021 by M&C 2021.

17

information they need is available. Moreover, the processors that own upstream cells will have to

wait idly after they solve for all of their unknowns due to downstream cells beginning their tasks

later than the upstream cells. It is demonstrated in [6] that the minimum number of idle tasks

required in a sweep for problems of interest is Nidle = Px + δx − 2 + Py + δy +Nk(Pz + δz − 2).

Here Pi is the number of processors along the axis ith coordinate axis, δu is 0 or 1 for Pu even or

odd, respectively, Nk = Nz

PzAz
, and Az is the aggregation parameter for the number of cells along

the z coordinate axis. We now define Nstages = Ntask +Nidle. The number of stages is how many

times we iterate through the angle sets, group sets, and cell sets, plus the number of times the pro-

cessor doesn’t have boundary information ready and must wait and check again, as illustrated in

Algorithm (2). With these definitions we can simplify our sweep algorithm seen in Algorithm (3).

for stages = 1 to Nstages do

if cell i has boundary information available then

for i in cell set do
Fetch data and prep

for d in angle set do
Form L matrices

for g in group set do
~ψi,`+1
d,g = (L+

i − Li + Mi,g)
−1(−

∑f=F
f=1 L−i,f

~̃ψi,`+1
f,d,g +∑N

n=0

∑n
m=−n

∑G
g′ Si,g′→g,m,n~φ

i,`

n,m,g′
+ Qi~q

i
d,g)

~φi,`+1

n,m,g′
= ~φi,`+1

n,m,g′
+ Y ∗n,m,d

~ψi,`+1

d,g′
∆Ωd

end

end

end

else
wait

end

Communicate outgoing face flux values to downstream cells

end
Algorithm 3: Simple sweep algorithm with aggregation parameters.

18

From Algorithm (3), we can write down an intuitive relationship for how long a sweep should

take. Starting inside the stages for loop there will be some time consumed from initializing all the

data structures to house the fluxes and matrices needed. We will call this Twf . We also see that

at the end of the stages loop we communicate all outgoing face flux values. The time associated

with this communication will be called Tcomm. We define Tcell, Tn, and Tg to be the time it takes to

execute each loop respectively. Tg includes the arithmetic operations associated with solving the

matrix equation for ~ψi,`+1
d,g . Tn is the time it takes to form the L matrices. Lastly, we will define Tm

as the time it takes to form the scattering source,
∑N

n=0

∑n
m=−n

∑G
g′ Si,g′→g,m,n~φ

i,`

n,m,g′
. With these

definitions we can write down a relationship for sweep time and aggregation parameters.

Tsweep = Nstages(Tcomm + Twf + Acells(Tcell + An(Tn + Ag(Tg + TmNm)))), (2.1)

where Tsweep is the time it takes to sweep across the problem domain, solving for the angular flux

in each cell, Nstages = NcellsNnNg

AcellsAnAgPxPyPz
+Nidle, Ncells is the number of spatial cells in the problem,

Nn is the number of directions in the problem, Ng is the number of energy groups in the problem,

Acells is the number of cells in a cell set, An is the number of angles in an angle set, Ag is the

number of groups in a group set, Pi is the number of processors along the ith coordinate axis, and

Nm is the number of scattering moments in the problem. Tcomm, Twf , Tcell, Tn, Tg, and Tm are

empirically determined constants, (using the method of least squares. See Section (2.3)) unique to

the machine on which the problem is being run.

Two adjustments are made to the sweep time model above to improve performance. More

details are provided in Section (2.3). The first adjustment introduces grind time. Grind time is

the sweep time per unknown in the problem. When the method of least squares is applied to the

model after this adjustment, the squared difference between grind times is minimized as opposed

to sweep times like before. The second adjustment is a normalization step. When the method of

least squares is applied after this adjustment the squared difference between the sweep time per

unknown per grind time and one is minimized.

19

2.2 PDT Performance Suite

There exists a suite of PDT problems used to study the code’s performance. This consists of 384

PDT runs, each one with a different combination ofNg,Nm,Acells, andAn. Each problem has 16×

16×16 cells and 168 total directions. The suite usesAcells values of 2, 4, 8, and 16 andAn values of

1, 3, 7, and 21. All angles in a given angle set are in the same octant, and each octant has 168
8

= 21

angles. The suite includes problems with 1, 3, 27, and 99 energy groups, Ng. In Equation (1.41)

there is a summation over N scattering moments. PDT sets this quantity using the scattering order

So, where N = (So + 1)2. The suite varies scattering order from 0 (isotropic scattering) to 5.

A python script launches all 384 jobs sequentially and writes the problem parameters (total cells,

total angles, scattering moments, number of processors, aggregation parameters, and sweep time)

to a .csv file.

As part of this work we develop a suite of PDT problems to study the codes parallel perfor-

mance. The problems cover the following Px × Py × Pz processor arrangements:

• 2× 2× 2

• 4× 4× 2

• 8× 2× 2

• 8× 4× 4

• 8× 8× 2

• 16× 4× 2

• 16× 8× 8

• 16× 16× 4

• 32× 2× 2

• 32× 16× 2

20

• 128× 4× 2

• 256× 2× 2

Each processor arrangement contains 5 suites, where each suite varies the number of cells per

processor and the number of angles. Furthermore, each suite contains variants that vary the number

of scattering moments and groups. Lastly, each variant has members that vary the number of cells

per cell set along the z axis and the number of angles per angle set. This gives us Pa × suites ×

variants(Pi)×members(Pi) PDT problems in the data set, where Pa is the number of processor

arrangements and Pi is the ith processor arrangement. Notice the number of variants and members

depends on the processor arrangement. The suites for each processor arrangement are described

below.

• 2× 2× 2

– S1

* (Nx, Ny, Nz) : (12, 12, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, (0, 1, 3, 4, 5)); (3, (0, 4)); (27, (0, 2, 5))

* Az, An : (1, (256, 128, 64, 32, 16, 8));

(2, (256, 128, 32, 8, 4)); (3, (256, 128, 16, 4, 2)); (6, (256, 64, 1))

– S2

* (Nx, Ny, Nz) : (12, 12, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, (0, 1, 3, 5)); (3, (0, 2)); (27, (0, 2, 5)); (99, 0)

* Az, An : (1, (64, 32, 16, 8, 4)); (2, (32, 8, 2)); (3, (16, 4, 1)); (6, (16))

– S3

* (Nx, Ny, Nz) : (12, 12, 12)

21

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (3, (0, 4)); (27, (0, 2, 5)); (99, 0)

* Az, An : (1, (16, 8, 4, 2, 1)); (2, (8, 2)); (3, (16, 4, 1)); (6, (16, 1))

– S4

* (Nx, Ny, Nz) : (12, 12, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (3, (0, 2, 4)); (27, (1, 5)); (99, 0)

* Az, An : (1, (16, 8, 4, 2)); (2, (8, 4)); (4, (16, 4, 2)); (8, (16, 8, 1));

(16, (16, 4, 1)); (32, (16, 1)); (64, (16, 1)); (128, (16, 4, 1))

– S5

* (Nx, Ny, Nz) : (12, 12, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (3, (0, 4)); (27, (1, 5)); (99, 0)

* Az, An : (1, (4, 2, 1)); (2, (4, 1)); (3, (4, 1)); (6, (4, 1))

• 4× 4× 2

– S1

* (Nx, Ny, Nz) : (24, 24, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (1, (16, 64, 32)); (3, (16, 64, 32)); (2, (16, 64, 32))

– S2

* (Nx, Ny, Nz) : (48, 48, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

22

* Az, An : (6, (2, 64, 16)); (3, (2, 64, 16)); (1, (2, 64, 16))

– S3

* (Nx, Ny, Nz) : (96, 96, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (2, (2, 4, 8)); (3, (2, 4, 8)); (1, (2, 4, 8))

– S4

* (Nx, Ny, Nz) : (24, 24, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (1, (16, 2, 1)); (2, (16, 2, 1)); (4, (16, 2, 1)); (8, (16, 2, 1));

(16, (16, 2, 1)); (32, (16, 2, 1)); (64, (16, 2, 1)); (128, (16, 2, 1))

– S5

* (Nx, Ny, Nz) : (96, 96, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (3, (2, 4, 1)); (1, (2, 4, 1)); (2, (2, 4, 1))

• 8× 2× 2

– S1

* (Nx, Ny, Nz) : (48, 12, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (2, 128, 4)); (3, (2, 128, 4)); (2, (2, 128, 4))

– S2

23

* (Nx, Ny, Nz) : (96, 24, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (6, (32, 2, 4)); (2, (32, 2, 4)); (3, (32, 2, 4))

– S3

* (Nx, Ny, Nz) : (192, 48, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (8, 2, 4)); (1, (8, 2, 4)); (6, (8, 2, 4))

– S4

* (Nx, Ny, Nz) : (48, 12, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (1, (2, 8, 16)); (2, (2, 8, 16)); (4, (2, 8, 16)); (8, (2, 8, 16));

(16, (2, 8, 16)); (32, (2, 8, 16)); (64, (2, 8, 16)); (128, (2, 8, 16))

– S5

* (Nx, Ny, Nz) : (192, 48, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1))

• 8× 4× 4

– S1

* (Nx, Ny, Nz) : (48, 24, 24)

* Nn : 2048 (16 polar, 16 azimuthal)

24

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (1, (64, 256, 2)); (2, (64, 256, 2)); (3, (64, 256, 2)); (6, (64, 256, 2))

– S2

* (Nx, Ny, Nz) : (96, 48, 24)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (8, 32, 16)); (2, (8, 32, 16)); (3, (8, 32, 16)); (6, (8, 32, 16))

– S3

* (Nx, Ny, Nz) : (192, 96, 24)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (1, (4, 8, 2)); (2, (4, 8, 2)); (3, (4, 8, 2)); (6, (4, 8, 2))

– S4

* (Nx, Ny, Nz) : (48, 24, 512)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (1, (4, 8, 16)); (2, (4, 8, 16)); (4, (4, 8, 16)); (8, (4, 8, 16));

(16, (4, 8, 16)); (32, (4, 8, 16)); (64, (4, 8, 16)); (128, (4, 8, 16))

– S5

* (Nx, Ny, Nz) : (192, 96, 24)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (1, (1, 2, 4)); (2, (1, 2, 4)); (3, (1, 2, 4)); (6, (1, 2, 4))

• 8× 8× 2

25

– S1

* (Nx, Ny, Nz) : (48, 48, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (6, (16, 128, 2)); (3, (16, 128, 2)); (1, (16, 128, 2))

– S2

* (Nx, Ny, Nz) : (96, 96, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (6, (2, 4, 16)); (1, (2, 4, 16)); (3, (2, 4, 16))

– S3

* (Nx, Ny, Nz) : (192, 192, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (16, 8, 2)); (1, (16, 8, 2)); (2, (16, 8, 2))

– S4

* (Nx, Ny, Nz) : (48, 48, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (2, 1, 8)); (2, (2, 1, 8)); (4, (2, 1, 8)); (8, (2, 1, 8));

(16, (2, 1, 8)); (32, (2, 1, 8)); (64, (2, 1, 8)); (128, (2, 1, 8))

– S5

* (Nx, Ny, Nz) : (192, 192, 12)

* Nn : 32 (2 polar, 2 azimuthal)

26

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1))

• 16× 4× 2

– S1

* (Nx, Ny, Nz) : (96, 24, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (6, (8, 128, 2)); (3, (8, 128, 2)); (1, (8, 128, 2))

– S2

* (Nx, Ny, Nz) : (192, 48, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (8, 2, 1)); (1, (8, 2, 1)); (2, (8, 2, 1))

– S3

* (Nx, Ny, Nz) : (384, 96, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (3, (8, 4, 2)); (1, (8, 4, 2)); (2, (8, 4, 2))

– S4

* (Nx, Ny, Nz) : (96, 24, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (1, (2, 1, 8)); (2, (2, 1, 8)); (4, (2, 1, 8)); (8, (2, 1, 8));

(16, (2, 1, 8)); (32, (2, 1, 8)); (64, (2, 1, 8)); (128, (2, 1, 8))

27

– S5

* (Nx, Ny, Nz) : (384, 96, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1))

• 16× 8× 8

– S1

* (Nx, Ny, Nz) : (96, 48, 48)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (6, (2, 256, 16)); (3, (2, 256, 16)); (1, (2, 256, 16)); (2, (2, 256, 16))

– S2

* (Nx, Ny, Nz) : (192, 96, 48)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (3, (4, 16, 2)); (1, (4, 16, 2)); (2, (4, 16, 2)); (6, (4, 16, 2))

– S3

* (Nx, Ny, Nz) : (384, 192, 48)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (3, (1, 16, 2)); (1, (1, 16, 2)); (2, (1, 16, 2)); (6, (1, 16, 2))

– S4

* (Nx, Ny, Nz) : (96, 48, 1024)

* Nn : 128 (4 polar, 4 azimuthal)

28

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (1, 4, 16)); (2, (1, 4, 16)); (4, (1, 4, 16)); (8, (1, 4, 16));

(16, (1, 4, 16)); (32, (1, 4, 16)); (64, (1, 4, 16)); (128, (1, 4, 16))

– S5

* (Nx, Ny, Nz) : (384, 192, 48)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1)); (3, (2, 4, 1))

• 16× 16× 4

– S1

* (Nx, Ny, Nz) : (96, 96, 24)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (6, (256, 4, 32)); (3, (256, 4, 32)); (1, (256, 4, 32)); (2, (256, 4, 32))

– S2

* (Nx, Ny, Nz) : (192, 192, 24)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (8, 1, 64)); (1, (8, 1, 64)); (2, (8, 1, 64)); (6, (8, 1, 64))

– S3

* (Nx, Ny, Nz) : (384, 384, 24)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (3, (16, 4, 2)); (1, (16, 4, 2)); (2, (16, 4, 2)); (6, (16, 4, 2))

29

– S4

* (Nx, Ny, Nz) : (96, 96, 512)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (2, 8, 16)); (2, (2, 8, 16)); (4, (2, 8, 16)); (8, (2, 8, 16));

(16, (2, 8, 16)); (32, (2, 8, 16)); (64, (2, 8, 16)); (128, (2, 8, 16))

– S5

* (Nx, Ny, Nz) : (384, 384, 24)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1)); (3, (2, 4, 1))

• 32× 2× 2

– S1

* (Nx, Ny, Nz) : (192, 12, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (6, (128, 64, 32)); (3, (128, 64, 32)); (2, (128, 64, 32))

– S2

* (Nx, Ny, Nz) : (384, 24, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (3, (4, 32, 1)); (1, (4, 32, 1)); (6, (4, 32, 1))

– S3

* (Nx, Ny, Nz) : (768, 48, 12)

30

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (3, (16, 4, 1)); (1, (16, 4, 1)); (6, (16, 4, 1))

– S4

* (Nx, Ny, Nz) : (192, 12, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (1, (2, 4, 16)); (2, (2, 4, 16)); (4, (2, 4, 16)); (8, (2, 4, 16));

(16, (2, 4, 16)); (32, (2, 4, 16)); (64, (2, 4, 16)); (128, (2, 4, 16))

– S5

* (Nx, Ny, Nz) : (768, 48, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (6, (2, 4, 1)); (1, (2, 4, 1)); (3, (2, 4, 1))

• 32× 16× 2

– S1

* (Nx, Ny, Nz) : (192, 96, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (1, (8, 32, 16)); (3, (8, 32, 16)); (2, (8, 32, 16))

– S2

* (Nx, Ny, Nz) : (384, 192, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

31

* Az, An : (2, (8, 16, 4)); (1, (8, 16, 4)); (6, (8, 16, 4))

– S3

* (Nx, Ny, Nz) : (768, 384, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (16, 8, 1)); (2, (16, 8, 1)); (6, (16, 8, 1))

– S4

* (Nx, Ny, Nz) : (192, 96, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (2, 1, 16)); (2, (2, 1, 16)); (4, (2, 1, 16)); (8, (2, 1, 16));

(16, (2, 1, 16)); (32, (2, 1, 16)); (64, (2, 1, 16)); (128, (2, 1, 16))

– S5

* (Nx, Ny, Nz) : (768, 384, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (3, (2, 4, 1))

• 128× 4× 2

– S1

* (Nx, Ny, Nz) : (268, 24, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (1, (8, 1, 16)); (3, (8, 1, 16)); (2, (8, 1, 16))

– S2

32

* (Nx, Ny, Nz) : (1536, 48, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (3, (8, 2, 32)); (1, (8, 2, 32)); (6, (8, 2, 32))

– S3

* (Nx, Ny, Nz) : (3072, 96, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (1, (16, 2, 4)); (2, (16, 2, 4)); (6, (16, 2, 4))

– S4

* (Nx, Ny, Nz) : (768, 24, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 5); (3, 5); (27, 5); (99, 5)

* Az, An : (1, (8, 2, 4)); (2, (8, 2, 4)); (4, (8, 2, 4)); (8, (8, 2, 4));

(16, (8, 2, 4)); (32, (8, 2, 4)); (64, (8, 2, 4)); (128, (8, 2, 4))

– S5

* (Nx, Ny, Nz) : (3072, 96, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (6, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1))

• 256× 2× 2

– S1

* (Nx, Ny, Nz) : (1536, 12, 12)

* Nn : 2048 (16 polar, 16 azimuthal)

33

* Ag, So : (1, 0); (3, 0); (27, 0); (99, 0)

* Az, An : (1, (16, 128, 256)); (3, (16, 128, 256)); (6, (16, 128, 256))

– S2

* (Nx, Ny, Nz) : (3072, 24, 12)

* Nn : 512 (8 polar, 8 azimuthal)

* Ag, So : (1, 2); (3, 2); (27, 2); (99, 2)

* Az, An : (3, (8, 2, 32)); (1, (8, 2, 32)); (2, (8, 2, 32))

– S3

* (Nx, Ny, Nz) : (6144, 48, 12)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 1); (3, 1); (27, 1); (99, 1)

* Az, An : (1, (8, 16, 1)); (2, (8, 16, 1)); (3, (8, 16, 1))

– S4

* (Nx, Ny, Nz) : (1536, 12, 256)

* Nn : 128 (4 polar, 4 azimuthal)

* Ag, So : (1, 3); (3, 3); (27, 3); (99, 3)

* Az, An : (1, (8, 2, 16)); (2, (8, 2, 16)); (4, (8, 2, 16)); (8, (8, 2, 16));

(16, (8, 2, 16)); (32, (8, 2, 16)); (64, (8, 2, 16)); (128, (8, 2, 16))

– S5

* (Nx, Ny, Nz) : (6144, 48, 12)

* Nn : 32 (2 polar, 2 azimuthal)

* Ag, So : (1, 4); (3, 4); (27, 4); (99, 4)

* Az, An : (3, (2, 4, 1)); (2, (2, 4, 1)); (1, (2, 4, 1))

Similarly, a data set is constructed to study PDTs memory usage. Training and testing problems

were serial (memory per processor is not a strong function of processor count and we wished to

34

begin exploring memory models in a relatively simple setting). Training runs varied the following

parameters:

Ag = {1, 3, 27, 99} ; Nn = {48, 168} ; (2.2)

Nm = {1, 9, 25} ; Nx = Ny = Nz = {10, 16} ; (2.3)

(Ax, Ay, Az) = prime factors of {10, 16} . (2.4)

Testing runs used Nx = Ax = Ny = Ay = Nz = 14 and varied the following:

Ag = {3, 99} ; Nn = {120, 360} ; (2.5)

Nm = {4, 16} ; Az = {1, 2, 7, 14} . (2.6)

2.3 Finding the Time Constants

The method of Least Squares is applied to Equation (2.1) to obtain the time constants that

minimizes the squared difference between what the linear combination model predicts and what the

data set reports for the sweep time. For a given set of tabulated PDT runs the problem parameters

and the sweep times are known. The proceeding characterization assumes use of the parallel sweep

time training set described in Section (2.2). For the ith PDT run, Equation. (2.1) can be written as

Tsweep,i = Nstages,i(Tcomm +Twf +Acells,i(Tcell +An,i(Tn +Ag,i(Tg +TmNm,i)))). Notice there is

no subscript i on any of the time constants. As such they can be factored out of all equations and

we have a system of linear equations:

A~t = ~Tsweep (2.7)

where A is a matrix with each row representing the problem parameters of each PDT run, ~t is the

unknown vector of time constants (Tlatency, Tdb, Twf , Tcell, Tn, Tg, Tm), and ~Tsweep is the vector of

all the tabulated sweep times. The step described above is necessary to compute the vector of time

constants such that sweep times that have not been tabulated can be computed. Some elaboration

on Tcomm is needed. Tcomm is the time for processor-to-processor communication per stage. It

35

is modeled as 3Tlatency + NoutcsTdb [6]. This is the communication time to three downstream

processors as latency time plus the time to send Noutcs values to those processors, where Noutcs is

the number of unknowns on the exiting surfaces of a cellset for one angleset and groupset. With

this definition Equation (2.1) becomes:

Tsweep = Nstages((3Tlatency +NoutcsTdb)+Twf +Acells(Tcell +An(Tn+Ag(Tg +TmNm)))) (2.8)

In [6] it is shown that Noutcs = NgAnNα(AxAy + AxAz + AyAz). Nα is the number of spatial

degrees of freedom communicated per cell face and depends on the basis functions selected during

the DFEM process described in Section (1.1). For the linear discontinuous spatial discretization,

which is used here,Nα = 4. Because our data set contains serial and parallel runs special treatment

has to be employed such that the elements of the matrix A that multiply Tlatency and Tdouble are

correct for serial and parallel runs. To accomplish this Equation (2.8) is written as:

Tsweep = Nstages(((min(1, Px − 1) +min(1, Py − 1) +min(1, Pz − 1))Tlatency+

(NgAnNα(min(Pz, Pz − 1)AxAy +min(Py, Py − 1)AxAz +min(Px, Px − 1)AyAz))Tdb)+

Twf + Acells(Tcell + An(Tn + Ag(Tg + TmNm))))

(2.9)

Equation (2.7) is built using Equation (2.9), where A has dimensions 816 × 7, ~t has dimension 7,

and ~Tsweep has dimension 816. The system of linear equations in matrix Equation (2.7) represents

an over determined system leaving A non-invertible. Thus a least squares solution is employed to

compute ~t. It is demonstrated in [12] that

~t = (AT · A)−1 · (AT · ~Tsweep) (2.10)

yields the ~t that minimizes the squared difference between ~Tsweep and A · ~t. Equation (2.10) is

known as the Method of Least Squares. To test the predictive capability of this method it is applied

36

to the serial data set described in Section (2.2). The results can be seen in Figure (2.1). Greater

than two thirds of the data points are between−50% and 50% of reality. However, these results are

not sufficiently accurate for our purposes. All of the runs with a percent error greater than 100%

come from PDT runs with one energy group. That is, they are the smallest problems relative to

the data set. Consequently, they have the smallest sweep time. The 99 energy group problems are

the largest problems in the data set. Consequently they have the largest sweep time. The largest

problems sweep times are ≈ 3000% bigger than the smallest problems. As a result they hold

more weight in the least squares process. This model fits large problems well but misses smaller

problems. To remedy this we attempt to fit against a metric that is not weighted too much to one

side. We chose grind time as opposed to sweep time. Grind time is the sweep time divided by the

total number of unknowns in the problem per processor, thus accounting for increased sweep times

in larger problems. The adjustments to our least squares procedure are simple. The ith sweep time

from Equation (2.7) is written as:

~Ai
Ncells,iNg,iNn,iNαNp,i

~t = Tgrind,i. (2.11)

Here, Equation (2.11) is simply the ith row from A in Equation (2.7) divided by the total number

of unknowns per sweep per processor for the ith PDT run, where Np,i is the number of processors

in the ith PDT run. Our least squares procedure applied to Equation (2.11) produces the results

seen in Figure (2.2). These results are significantly improved over those in Figure (2.1), with ap-

proximately 82% of the runs having less than or equal to 20% error. Equation (2.11) is minimizing

the square of the relative difference between the linear combination models prediction of the grind

time and the observed grind time. However, if we divided Equation (2.11) by Tgrind,i we will have

eliminated all possible weighting skews during the least squares process. This gives us

~Ai
Ncells,iNg,iNn,iNαTgrind,iNp,i

~t = 1. (2.12)

Figure (2.3) reports the percent difference between Equation (2.12) and tabulated grind times. We

37

Figure 2.1: Percent Error between Equation (2.7) and tabulated serial sweep times.

do see an improvement from the previous model described by Equation (2.11), with approximately

93% of the runs having less than or equal to 20% error. This model does perform well enough for

practical use but higher accuracy is desired.

38

Figure 2.2: Percent Error between Equation (2.11) and tabulated serial grind times.

39

Figure 2.3: Percent error between Equation (2.12) and tabulated serial grind times.

40

3. ARTIFICIAL NEURAL NETWORKS

3.1 Densely Connected Neurons

There is a need for an algorithm to accurately predict transport sweep times and memory usage

as a function of partitioning and aggregation parameters for a given problem on a given machine

with a given number of processors. We will investigate the ability of ANNs to make these predic-

tions.

We begin by giving a more detailed explanation of ANNs and how they learn. Much of this

explanation can be found in [8] and [9]. ANNs are composed of layers each with a specified

number of neurons, as seen in Figure (3.1). Each neuron has its own activation which is just a real

Figure 3.1: Example ANN architecture.

number. The first layer of the network is the input layer. The last layer contains the output. This

work uses a pseudo-densely connected network. In a densely connected network each neuron in a

layer is connected to all the neurons in the previous layer. Mathematically this looks like:

ail = σ(Σ
Nl−1

j (ajl−1wij) + bil), (3.1)

41

where σ is the activation function, ail is the activation for the ith neuron in layer l, wij is the weight

between the ith neuron in layer l and the jth neuron in layer l − 1, and bil is the bias for the ith

neuron in layer l. Activation functions are applied to each neuron to add nonlinearity or prevent

unwanted activations (vanishing or exploding activations).

3.2 Weight and Bias Tuning

ANNs require data sets. Let X be a matrix containing M observations for N independent

variables. Moreover, ~y is the set of M dependent variables. That is, X ∈ RM×N and ~y ∈ RM .

We call this a data set. ANNs are trained on data sets by tuning the weights and biases seen

in Equation (3.1) via optimizing an objective function. The network used for this work seeks

to minimize a loss function. To accomplish this mission we employ stochastic gradient descent

(SGD). Generally, SGD is performed by selecting the next evaluation point in the negative direction

of the gradient. That is, for some function f(x), we search for a solution iteratively of the form

xi+1 = xi − αdf(x)
dx

. This is the simple case where f only depends on one input, x.

Define L(~̂y(X, ~w,~b), ~y) to be a loss function. Qualitatively, it is a measure of how close the

ANNs predictions are to the training set. L depends on ŷi and yi, where ŷi is the ith output of the

ANN and yi is the ith element in the training set. Our goal, is to find the weights and biases that

minimize L. The weights and biases are tuned from the derivative of the loss function with respect

to the weight or bias being updated. However, those gradients depend on each data point. Common

ANN implementations use reverse mode automatic differentiation to compute the gradients of the

ANNs activations with respect to the weights and biases for each data point. These gradients are

then propagated through the network (called back propagation) to compute the gradient of the loss

function with respect to the weights and biases. Let O signify the output layer. Back propagation

begins in layer O.
∂L

∂wO−1
j

=
∑
i

∂L

∂ŷi

∂ŷi

∂wO−1
j

, (3.2)

∂L

∂bOy
=
∑
i

∂L

∂ŷi

∂ŷi
∂bOy

, (3.3)

42

∂L

∂aO−1
j

=
∑
i

∂L

∂ŷi

∂ŷi

∂aO−1
j,i

. (3.4)

Equations (3.2-3.4) are summing the contributions of all the data points, i, to the gradient of the

loss function with respect to: 1) the weight between the output neuron and the jth neuron in the

layer preceding the output layer; 2) the output neuron bias; 3) as well as the activation of the jth

neuron in the layer preceding the output layer. It’s important to note that ŷi is just the activation of

the output neuron. These derivatives are stored and the algorithm moves to the next layer (the next

closest layer to the inputs). It is common to see a ∂ŷi
∂σ

∂σ
∂x

instead of ∂ŷi
∂x

, for some general model

parameter x.
∂L

∂wjO−1kO−2

=
∂L

∂aO−1
j

∑
i

∂aO−1
j,i

∂wO−2
jO−1k

, (3.5)

∂L

∂bO−1
j

=
∂L

∂aO−1
j

∑
i

∂aO−1
j,i

∂bO−1
j

, (3.6)

∂L

∂aO−2
k

=

NO−1∑
j=1

∂L

∂aO−1
j

∑
i

∂aO−1
j,i

∂aO−2
k,i

. (3.7)

Here ∂L
∂w

jO−1kO−2
is the derivative of the loss function with respect to the weight between the jth

neuron in layer O − 1 and kth neuron in layer O − 2, ∂L

∂bO−1
j

is the derivative of the loss function

with respect to the jth neuron’s bias in layer O−1, ∂L

∂aO−2
k

is the derivative of the loss function with

respect to the kth neuron’s activation in layer O − 2, and NO−1 is the number of neurons in layer

O− 1. Equation (3.4) is used in order to compute Equations (3.5-3.7). The process continues until

all the derivatives are computed for all weights and biases in the network. This means the weight

updates are made after one pass over the entire data set (i.e. there will be 1 weight update in a

single epoch):

wj`k`−1,new = wj`k`−1,old − lr
∂L

∂wj`k`−1,old

. (3.8)

Here wj`k`−1,new is the new weight between the jth neuron in layer ` and the kth neuron in layer

` − 1, lr is the learning rate, and ∂L
∂w

j`k`−1,old
is the derivative of the loss function with respect to

wj`k`−1,old. The learning rate is a specified constant that represents how much of the derivative is

43

actually used to update the weight. In numerical analysis literature it is referred to as the step size

[9].

In SGD, the process described above is executed for b randomly sampled data points from the

set, called a batch (i.e. there is one weight update per batch and M
b

batches per epoch):

wj`k`−1,new = wj`k`−1,old − lr
∂Lb

∂wj`k`−1,old

, (3.9)

where ∂Lb

∂w
j`k`−1,old

is the derivative of the loss function computed over b randomly sampled data

points with respect to the weight between the jth neuron in layer ` and the kth neuron in layer

` − 1, wj`k`−1,old. One advantage of SGD is we do not have to compute the gradients of the

network activation for every point in the data before weight updates are made. Rather we compute

the network gradients for b data points before an update is made. Consequently, SGD converges

faster than vanilla gradient descent. Because SGD does more frequent updates, the variance is

higher. The leads to fluctuations in the loss as training proceeds and the potential to move to new

local minimums on the object surface. This also leads to convergence complications as SGD will

overshoot the minimum. However, it has been shown that when the learning rate is decayed SGD

shows the same convergence behavior as vanilla gradient descent [11].

The training process described above is executed iteratively until the loss function converges

to a minimum. During iteration it is important to check for overfitting as well as convergence.

Overfitting occurs when the optimization of the loss function converges to a point that is specific

to the data set rather than the general trend of the phenomena under consideration. One way to

monitor overfitting is to reserve a subset of the data, a validation set, that will not be used in the

optimization step of the training process. While iterating, the loss function is reported for each

point in the training data set and the validation data set. Evidence of overfitting is said to occur

when the loss reported for the validation data points is increasing while the loss reported for the

training data points is decreasing.

44

3.3 Activation Functions

The concept of activation functions was mentioned briefly in Section (3.1). Their usage is seen

in Equation (3.1). There are many possible activation functions, each with its own benefits and

drawbacks. For example the sigmoid activation function has the form:

σ =
1

1 + e−x
. (3.10)

Neurons activations that possess this activation function are bound to the interval [0, 1]. This

is widely used in the field of reinforcement learning when the network outputs probabilities or

characteristics of Gaussian distributions.

We discuss two activation functions in this thesis: the exponential and the rectified linear ac-

tivation functions. The exponential was chosen during preliminary testing for this work where it

was found to outperform other typical activation functions for this problem. The rectified linear

activation function was selected due to its ability to approximate highly nonlinear functions while

minimizing additional model complexity. More details are provided in the following section.

3.4 Rectified Linear 1D Lagrange Interpolation Polynomials

The goal of this section is to show that ANNs using rectified linear (ReLU) activation functions

can replicate continuous piecewise linear (CPWL) interpolation polynomials. This is useful for

problems of this type since often times the functional form of the phenomena being modeled is not

known and can have high degrees of nonlinearity. The ReLU activation function can be defined as:

f(x) = max(0, x). (3.11)

More details of ReLU functions and their ability to replicate interpolation polynomials are given

in [10]. Define an interpolation scheme as a set of CPWL polynomials:

f(x) =
i=N∑
i=1

Pi(x)fi, (3.12)

45

where Pi(x) is the ith first order Lagrange polynomial. If x ∈ [xi−1, xi+1] and N = 3 Equa-

tion (3.12) can be written as:

f(x) = Pi−1(x)fi−1 + Pi(x)fi + Pi+1(x)fi+1, (3.13)

where

Pi−1(x) =
xi − x
xi − xi−1

;x ∈ [xi−1, xi],

Pi−1(x) = 0; otherwise,

and

Pi(x) =
x− xi−1

xi − xi−1

;x ∈ [xi−1, xi],

Pi(x) =
xi+1 − x
xi+1 − xi

;x ∈ [xi, xi+1],

Pi(x) = 0; otherwise,

and finally,

Pi+1(x) =
x− xi
xi+1 − xi

;x ∈ [xi, xi+1],

Pi+1(x) = 0; otherwise.

Suppose

P̂i(x) =
1

hi−1

ReLU(x− xi−1)− (
1

hi−1

+
1

hi
)ReLU(x− xi) +

1

hi
ReLU(x− xxi+1

),

where

hi = xi+1 − xi;x ∈ [xi−1, xi+1].

It’s trivial to see:

P̂i(x) = 0; x ≤ xi−1.

Furthermore, P̂i(x) increases linearly for xi−1 < x < xi. Evaluating at xi takes a little algebra.

46

P̂i(xi) =
xi − xi−1

hi−1

− (
0

hi−1

+
0

hi
).

When hi−1 is inserted we get the 1 we are looking for. If xi < x < xi+1, then P̂i(x) decreases

linearly. Next, we evaluate at xi+1.

P̂i(xi+1) =
xi+1 − xi−1

hi−1

+
xi − xi+1

hi−1

+
xi − xi+1

hi
,

P̂i(xi+1) =
xi − xi−1

hi−1

− 1,

P̂i(xi+1) = 0.

Lastly, we require P̂i(x) = 0; x > xi+1.

P̂i(x) =
x− xi−1

hi−1

+
xi − x
hi−1

+
xi − x
hi

+
x− xi+1

hi
,

P̂i(x) =
xi − xi−1

hi−1

+
xi − xi+1

hi
.

If
xi+1 − xi

hi
= 1,

then

−1
xi+1 − xi

hi
= −1 ∗ 1 = −1 =

xi − xi+1

hi
.

Thus,

P̂i(x) =
xi − xi−1

hi−1

+
xi − xi+1

hi
= 1− 1 = 0.

This means that any first order interior Lagrange interpolation polynomial can be written as the

sum of three ReLU neurons. Next we consider a polynomial who’s support point lies on the left

edge of the 1D mesh:

P̂i(x) =
1

hi
ReLU(xi+1 − xi);x ∈ [xi, xi+1].

47

It is trivial to see that P̂i(x) = 1;x = xi, P̂i(x) linearly decreases for xi < x < xi+1, and

P̂i(x) = 0; x ≥ xi+1. Finally we consider a polynomial who’s support point lies on the right

boundary of the 1D mesh:

P̂i(x) =
1

hi−1

ReLU(x− xi−1);x ∈ [xi−1, xi].

Again the following evaluations are trivial; P̂i(x) = 0; x ≤ xi−1, P̂i(x) linearly increases for

xi−1 < x < xi, and P̂i(x) = 1;x = xi. As a consequence a 1D, 1st order Lagrange polynomial

interpolation scheme with M intervals can be represented as one layer in an ANN with 3M − 1

rectified linear neurons.

Another important thing to see is inside the ReLU function evaluations is an arithmetic opera-

tion. Consequently, the neural net must have the form

f(x) =
i=N∑
i=1

αiReLU(wix+ βi),

where N is the number of neurons, αi is the weight between the output and the ith neuron in the

hidden layer, βi is the bias applied to the ith neuron the hidden layer, and wi is the weight between

the input and the ith neuron in the hidden layer.

The discussion above establishes that an ANN can replicate an M interval CPWL interpolation

scheme using 3M − 1 neurons with ReLU activation functions. Furthermore during the training

process the optimization step must be allowed to tune the biases as well as the weights of the net-

work. Piecewise interpolation schemes are attractive because they are capable of approximating

highly nonlinear functions without knowledge of the functional form. Furthermore, linear combi-

nations of 1st order polynomials are readily understood, keeping the models complexity in check.

48

4. IMPLEMENTATION OF ANN PERFORMANCE MODELS

* In this section, we develop a simple, readily understood, ANN based sweep time model.

Rather than employ black box ANN methods we demonstrate that the ANN is performing the

same mathematics as the linear-combination grind time model. After this is established we add

modest complexity to the ANN model in an attempt to improve predictive performance. Lastly,

ANN based models are developed for memory usage. Several architectures are developed and

tested.

4.1 Grind time models

Artificial Neural Networks were introduced in Section (3.1). In it, the structure of the neurons

and layers and their relationship with stochastic gradient descent was discussed. Algorithms to de-

velop optimal network architectures are now a topic of intense research. Rather than using a “black

box” design we employ networks executing readily understood mathematics and modest numbers

of degrees of freedom. First we ensure that our ANN can do no worse than Equation (2.11). We

use Equation (2.11) instead of Equation (2.12) because we are training an ANN to predict the grind

time. This is different than the goal of using the method of least squares described in Section (2.3)

where the objective was to find the T terms. One can construct a simple ANN whose output has

the form

T lineargrind (~x) =
i=7∑
i=1

xiwi + b . (4.1)

where the inputs {xi} are the row vectors of the matrix form of Equation (2.11) and the con-

stants {wi} are the ANN’s estimate of the T terms themselves. Verifying that this simple ANN

reproduces the results obtained from Equation (2.11) lets us know that the ANN is performing the

mathematics we think it is. The next step is to add modest complexity to capture any non linearities

that may be present in the data. The proposed “nonlinear" ANN is a combination of two quantities:

*Reprinted with permission from “Artificial Neural Network Performance Models for Parallel Particle Transport
Calculation" by James D. Herring, 2021. M&C 2021, Copyright 2021 by M&C 2021.

49

(1) a linear combination of inputs as in Equation (2.11), and (2) a nonlinear function of a poten-

tially different linear combination of inputs with a different {wi} and b. The nonlinear function is

applied by a layer of neurons that apply rectified linear (ReLU) functions [10], which can gener-

ate piecewise linear approximations to any function, as discussed in Section (3.4). All nonlinear

ANNs in this study used M = 5 intervals. This is seen in Figure (4.1) and Equation (4.2).

Figure 4.1: ANN that adds a nonlinear correction to the original linear model. Left: simplified
view. Right: detail “inside” the red neuron for the example of 7 ReLU neurons.

Tgrind(~x) = wout1

(
i=7∑
i=1

wini xi

)
+

j=3M−1∑
j=1

woutj ReLU

(
wredj

[
k=7∑
k=1

w̃ink xk

]
+ bj

)
, (4.2)

4.2 Implementation of ANNs

To implement the ANNs Tensorflow [13] and Keras are employed. Each layer makes use of the

keras.layer.Dense() function. In the case of the nonlinear ANN described above, the linear neuron

in the hidden layer is a Dense layer connected to the inputs, while the second nonlinear neuron is

two Dense layers. A Dense layer, denoted layer α here for simplicity, is connected to the inputs,

and a Dense layer with ReLU activation functions is connected to the layer α. Then the ReLU

layer and the linear layer are concatenated using keras.layers.Concatenate(). The output layer is

then connected to the concatenated layer. Lastly the Adam optimizer is used with a learning rate of

50

1e−3, which determines how far (in the direction negative of the gradient) the network parameters

are moved from iteration to iteration.

To train the networks the batch size is set to 30% of the number of training data points. All

ANNs use either mean percentage error as the loss function or mean squared error. Training

executes for 30× 106 epochs with an early stopping criterion of 1× 106 epochs.

The model is saved via .hdf5 format using keras.callbacks.ModelCheckpoint(). Each time the

loss reaches a new minimum the weights are saved, not to be overridden until a new minimum

is observed. Validation data is assessed by loading the trained model and passing out of sample

data points into the network. Then the output is measured against the validation data sets’ known

answers.

4.3 Memory usage models

In addition to sweep time models we devise memory-usage models as well. The inputs to this

model are chosen based on our knowledge about what the code needs to store and what variables

determine the size of the largest arrays. The inputs used take the following form:

1. Nnorm
cells . This input is chosen because there are many quantities stored for every cell, includ-

ing geometric information, cross sections, and matrices.

2. DvN
norm
cells N

norm
g . Here Dv = the average number of spatial degrees of freedom per cell.

This input combination is chosen because some quantities, such as a fixed isotropic source

strength, are stored in the code by spatial degree of freedom and energy group.

3. DvN
norm
cells N

norm
g Nnorm

m . This input is chosen because some quantities, such as the scattering

source strength, are stored in the code by spatial degrees of freedom, energy group, and

scattering moment.

4. 4CplaneN
norm
n Nnorm

g . Here Cplane is the normalized number of cells in the sweep plane. This

input was chosen because information such as the number of incident fluxes being stored

depends on the number of angles, the number of energy groups, and the number of cells in

the sweep plane.

51

5. 4CplaneA
norm
n Nnorm

g . This input was chosen because boundary information requires storage

proportional to the number of cells on the boundary, the number of directions, the number of

groups, and the number of spatial degrees of freedom on the boundary face. The total number

of angles is needed here because PDT stores outgoing information as well as incoming.

6. Nnorm
n Nnorm

cells

Anorm
n Anorm

cells
. Here the first fraction is the normalized number of angle sets and the second

is the normalized number of cell sets. This input is chosen because the information com-

municated to downstream cells depends on the number of angle sets and the number of cell

sets.

7. 2Nnorm
g

√
Nnorm
m . This input is chosen because of the term Si,g′→g,nYn,m,d~φ

i,`

n,m,g′
in Equa-

tion (1.40).

The superscript norm indicates that the variables were normalized by dividing the quantity by a

‘typical’ value. We chose the following:

1. Nnorm
cells = Ncells

1000

2. Nnorm
g = Ng

10

3. Nnorm
m = Nm

15

4. Nnorm
n = Nn

200

5. Anormcells = Acells

27

6. Anormn = An

25

Additionally, the units of the memory usage data was switched from mega-bytes to giga-bytes.

Normalized inputs were used to ensure that the inputs and outputs of the data set were both

O(1) such that the weights of the network would also be ≈ O(1). If this normalization isn’t

performed the weights are orders of magnitude smaller than the loss function evaluations resulting

in massive gradients, causing oscillations in gradient descent. Figure 4.2 shows the loss function

52

evaluations as a function of epoch number for a minimization process using normalized and un-

normalized variables.

Figure 4.2: Mean squared error vs epoch number. Left: Normalized variables. Right: Unnormal-
ized variables and data

The first ANN tested has the form:

Musage(~x) = wout1

(
i=7∑
i=1

wini xi + b

)
+

j=3M−1∑
j=1

woutj ReLU

(
wredj

[
k=7∑
k=1

w̃ink xk

]
+ b̃j

)
, (4.3)

where the {xi} represent the 7 inputs defined above. Figure (4.3) provides visual clarity. This

structure was motivated by the results seen in the nonlinear grind time model, characterized by

Equation (4.2). The other ANN considered is a linear combination of the seven normalized inputs

developed above. These ANN structures are compared in Section (5).

53

Figure 4.3: ANN structure for PDT ReLU memory usage model. Left: simplified view. Right:
detail “inside" the red neuron.

54

5. RESULTS

*

5.1 Replicating PDT’s Current Sweep Time Model

To begin we used an ANN to reproduce the results of the readily understood mathematics of the

linear least squares grind time model described by Equation (2.11). This establishes that the ma-

chinery used is doing the mathematics we think it is. Furthermore, the nonlinear ANNs proposed

here contain a linear combination model within them. Consequently, the nonlinear Tensorflow

models can do no worse (on the training data) than the linear model, if the optimization process

is executed correctly. Table (5.1) reports the T coefficients from performing the Method of Least

Squares on Equation (2.11) and the {wi} coefficients from performing SGD with the linear ANN

characterized by Equation (4.1) using the L1 norm of the squared difference as the loss function,

discussed in Section (3.2). The data set used here is the 384 serial data set described at the be-

ginning of Section (2.2). The small differences between the two can be explained by the iterative

nature of SGD. The software used to minimize functions via SGD is Tensorflow. The convergence

criterion used is known as “early stopping". This routine will stop SGD if the loss function evalua-

tions do not decrease within a user specified number of epochs. Consequently, obtaining a precise

minimum becomes non trivial. Here, training consisted of 30× 106 epochs with an early stopping

criterion of 1× 106 for all ANNs. The differences observed in Table (5.1) are small enough to give

us confidence that the ANN is doing the mathematics we expect it to.

5.2 Details of Grind Time Model Testing for Parallel Runs

We observed previously that the linear least-squares performance model is reasonably accurate

for serial problems, and thus for serial problems there is little motivation to use ANNs to improve

on the linear model. However, when we consider parallel problems, which are of much greater

*Reprinted with permission from “Artificial Neural Network Performance Models for Parallel Particle Transport
Calculation" by James D. Herring, 2021. M&C 2021, Copyright 2021 by M&C 2021.

55

Table 5.1: Time constants produced from the linear ANN and the linear least squares (LS)
model.

Time ConstantLinear LS model produced constants (ns)Linear combination ANN constants (ns)
Tlatency 8320 8330
Tdb -4 -5
Twf 4604 4586
Tcell 1664 1659
Tn 138 142
Tg 155 160
Tm 6 6

practical interest, we find that the linear least-squares model performs relatively poorly, as we shall

show below. We began our study of nonlinear ANNs by developing a dataset that represented

the space of realistic parallel PDT problems (see Section (2.2)). Recall from Section (2.2) that

within each processor arrangement, there are 5 problem suites that vary the number of cells per

processor and the number of angles. Furthermore, each suite contains variants that vary the number

of scattering moments and groups. Across all processor arrangements there are 256 total variants

totaling to 3425 individual PDT runs. The dataset was split randomly 5 times into training and

testing subsets. 51 of the 256 variants (80/20 split) were selected at random to be included in the

testing set. The other 205 variants served as the training set. The model is trained and tested on

each of the 5 randomly sampled subsets.

5.3 Performance of Grind Time Models

In this section we present and discuss the performance of the linear model and the M = 5 non-

linear model on the training and testing suites described in the previous section. We will see that

the nonlinear model reduces prediction error relative to the linear model, but the nonlinear model

still produces large errors on some problems. Because both models are built, at least in part, from

our expectation about how PDT runs, the source of these large errors is identified as a discrepancy

between our expectation and reality. Despite these large errors both models show signs of fruit-

ful practical use as the behavior of problems with strong grind time dependence on aggregation

56

parameters is captured. Lastly, the nonlinear model shows signs of being more effective as the

optimization problem increases in complexity.

Table (5.2) reports the average and maximum percent errors for all 5 testing splits. The nonlin-

ear ANN achieves significantly lower training and prediction (testing) errors relative to the linear

model. Average errors are reduced by a factor of two and maximum errors by large factors. How-

ever, the nonlinear ANN still exhibits high maximum errors. The large disparity between maximum

and average errors is evidence that only a small fraction of problems are giving the models trouble.

Table 5.2: Performance of Linear and Nonlinear Grind Time Models

Split Number Model Type Eavg
training Emax

training Eavg
testing Emax

testing

1 Linear ANN 45% 641% 43% 557%
1 Nonlinear ANN 20% 113 % 18% 105%
2 Linear ANN 41% 567% 40% 283%
2 Nonlinear ANN 18% 213 % 21% 141%
3 Linear ANN 47% 725% 48% 512%
3 Nonlinear ANN 26% 276 % 25% 255%
4 Linear ANN 43% 540% 45% 475%
4 Nonlinear ANN 20% 196 % 22% 220%
5 Linear ANN 45% 672% 43% 581%
5 Nonlinear ANN 19% 100 % 19% 105%

Figure (5.1) shows the PDT reported grind times and the linear model’s predictions of the grind

times for the second testing subset. The red circles encapsulate all member problems of the same

variant. For some variants, the linear model captures PDT’s behavior, as seen in the first 8 variants

of the top right plot in Figure (5.1). However, there are other variants where the model is unable to

capture the behavior. The variance of the grind time observed, for example, in the last variant of the

middle right plot in Figure (5.1) is expected by our understanding of the code. However, in other

variants, such as the ones seen in the top left plot of Figure (5.1), there is little grind time change

inside each red circle. This behavior, observed on LLNL’s Quartz machine (which uses Intel Xeon

57

processors), was unexpected based on our understanding of PDT and on PDT’s behavior on the

IBM Blue Gene / Q machine. Consequently the linear model, which is built on our expectation

about the code, is unable to capture the behavior. An interesting step for future research would be

to investigate the origin of these PDT results on the Quartz architecture.

Figure 5.1: Zoomed views of linear model predictions vs PDT reported grind times for testing data
from second random split. Points inside red circles are members of the same variant.

Figure (5.2) shows the PDT reported grind times and the nonlinear model’s predictions of the

58

grind times for the testing subset in second random partitioning of the data. Again, the red circles

encapsulate all member problems of the same variant. As expected, the nonlinear model captures

more of PDTs behavior, but still shows errors among some variants. Again, the model misses some

of the unexpected PDT grind times like the ones observed in the latter variants of the top left plot

in Figure (5.2).

Despite the large maximum errors both models show signs of fruitful practical use. We have

mentioned that inside each circle are the member problems unique to a specific variant in the data

set. Within each variant the number of groups per group set and the scattering order is held constant

while the number of cells per cell set along the z axis and the number of angles per angle set vary.

Suppose we have an algorithm that selected An and Az based on the model’s predictions. For

variants that show significant grind time dependence on An and Az the algorithm would select a

near optimal An and Az using either model. For other variants, any choice of A parameters would

lead to about the same grind time, and thus the algorithm would provide a near optimal run time in

any problem in the dataset.

In reality problem parameter selection will be more complex than just selecting an optimal An

and Az, so a more complex ANN might be helpful. Figure (5.3) shows the predicted grind times

for a nonlinear model with 4 ‘red neurons’ from Figure (4.1) and the PDT reported grind times.

Figure (5.4) shows the predicted grind times for a nonlinear model with 1 red neuron and the PDT

reported grind time. Table (5.3) shows the performance statistics for the linear model, the 1 red

neuron nonlinear model and the 4 red neuron nonlinear model.

Table 5.3: Performance of Linear and Nonlinear Grind Time Models on the 1st Test-Train
Split

Split Number Model Type Eavg
training Emax

training Eavg
testing Emax

testing

1 Linear ANN 45% 641% 43% 557%
1 Nonlinear ANN (1 red neuron) 20% 113 % 18% 105%
1 Nonlinear ANN (4 red neurons) 12% 74 % 16% 161%

59

Figure 5.2: Zoomed views of nonlinear model predictions vs PDT reported grind times for testing
data from second random split. Points inside red circles are members of the same variant.

60

Figure 5.3: Zoomed views of nonlinear model with 4 ‘red neurons’ predictions vs PDT reported
grind times for training data from first random split.

61

Figure 5.4: Zoomed views of nonlinear model with 1 ‘red neurons’ predictions vs PDT reported
grind times for training data from first random split.

62

As expected the training maximum and average errors decrease, falling to 74% and 12% re-

spectively. Interestingly the average error on the testing set also decreases to 16%. The increased

maximum error of 161% could be evidence of overfitting. These results open the door for future

research to find the optimal number of degrees of freedom to reduce in and out of sample predic-

tion errors. We did not do this as our goal was to investigate the feasibility of simple nonlinear

ANNs for predicting grind times. With this in mind, the nonlinear model shows signs of being

more effective than the linear model as the optimization problem complexity increases.

5.4 ANN-Based Memory Models

Given the potential for the simple linear-plus-ReLU ANN of Figure (4.1) for predicting grind

times, we applied similar architecture, seen in Equation (4.3) and Figure (4.3), to predicting PDT’s

memory use.

The desired use of a model influences how it should be trained. With the grind-time model,

it is important to have low percentage error, at least in parameter ranges of interest for efficient

solutions. With the memory model, it is important that the model be most accurate for the highest-

memory problems, because these problems pose the risk of crashing due to insufficient memory.

We therefore used mean squared error (GB2)—not percent error—as the error metric, which gives

higher importance to problems with higher memory requirements in the training set.

The linear memory model’s performance is shown for the training set (left) and testing set

(right) in Figure (5.5). Results are good, with average and maximum training-set errors of 19%

and 51%, and with smaller errors for high-memory problems. Performance is also good on the test

suite, with average and maximum errors of 6% and 35%—even lower than on the training suite.

The nonlinear memory model’s performance is shown in Figure (5.6). We see what we hoped

for when we added a simple correction network to the linear-model network: the nonlinear cor-

rection has reduced training and testing errors, which were already tolerably small. Table (5.4)

summarizes the performance statistics for the memory models.

An interesting trend is observed in both of the right plots in Figures (5.6) and (5.5). There are

clearly 6 groupings in the data. Moving from left to right within each group we see 4 subgroups that

63

Figure 5.5: PDTs reported memory usage v Linear ANN predicted memory usage. Left: training
data. Right: testing data

Figure 5.6: PDTs reported memory usage v Nonlinear ANN predicted memory usage. Left: train-
ing data. Right: testing data

64

are quadratic-like in appearance. Moving from the left most subgroup to the right most subgroup

we increase Az. Moving from the left most point within a subgroup to the rightmost point we are

increasing An. This trend is also observed in the grind time model results, though it is weaker.

Table 5.4: Performance of Linear and Nonlinear ANN memory models

Model Type Eavg
training Emax

training Eavg
testing Emax

testing

Linear ANN 0.059 GB 0.13 GB 0.028 GB 0.19 GB
Nonlinear ANN 0.026 GB 0.106 GB 0.024 GB 0.16 GB

65

6. SUMMARY AND CONCLUSIONS

6.1 Conclusion

Our goal in this work was to explore the use of relatively simple ANNs in modeling the perfor-

mance of particle-transport codes. We have presented an exceedingly simple ANN that replicates

a linear analytic model characterized by Equation (2.11). Models of this form have been used to

predict sweep times for many years in the PDT code [6]. For serial problems, these simple linear

analytic models perform well. However for parallel problems, which are of much more practi-

cal interest, performance is relatively poor. Furthermore, we developed a slightly more complex

ANN that combines the linear model and a nonlinear function of a combination of inputs, seen in

Equation (4.2). Grind time models of this form do significantly reduce prediction error for parallel

problems, but still post relatively high maximum errors for a handful of cases.

Despite these high errors, both models capture PDT performance behavior when grind time is a

strong function of An and Az. A likely application for these performance models is in an algorithm

that selects the aggregation and partitioning parameters that will minimize grind time. With this

in mind, these models show signs of fruitful practical performance. Further, we show that slightly

increasing the complexity of our nonlinear ANNs decreases performance error on training data

and average performance error on out of sample problems. However, the maximum error does

seem to increase with model complexity. This could be a sign of overfitting and should be studied

further. We have not attempted to make the best possible ANN for this application; rather, we have

attempted to demonstrate that very simple networks can be designed that are easy to train, easy to

use, and are guaranteed to outperform simple analytic models of the form of Equation (2.1). The

results shown here successfully demonstrate this.

Additionally, we have explored using ANNs to predict the memory usage of particle-transport

codes. Of the ANN architectures tested, the nonlinear ReLU model of Equation (4.3) demonstrated

the best results, predicting memory usage within ≈ 0.02GB for out of sample data points.

66

Predicting the grind time and memory usage are ultimately used for two tasks:

1. To select aggregation parameters that ensure the fastest possible sweep time which will lead

to the fastest execution time, for a given problem on a given machine with a given set of

processors.

2. To ensure ahead of time that the memory usage will not exceed the memory limits of the

machine the job is being submitted too.

With these goals in mind, the ANNs presented here are reasonable candidates for integration into

an optimization tool, and our results suggest paths toward improved predictive capability.

This work has developed simple ANNs that can be readily used in transport applications. The

results shown here also point the way toward improved ANN-based models if higher accuracy is

desired. One avenue to pursue is identifying why, in some isolated cases, PDT execution time is

independent of An and Az. Such information could lead to more intuitive model input features and

thus improved predictive capability. Another avenue is exploring the optimal model complexity to

reduce training and testing errors.

67

REFERENCES

[1] Bell G.I. and Glassstone S. (1970) Nuclear Reactor Theory, Van Nostrand Reinhold, New
York.

[2] Marvin L. Adams and Edward W. Larsen, Fast iterative Methods for Discrete-Ordinates
Particle Transport Calculations, Progress in Nuclear Energy, Volume 40, Issue 1, DOI:
10.1016/S0149-1970(01)00023-3 2002

[3] Kowalok, Michael. (2004). Adjoint methods for external beam inverse treatment planning
[4] Mauricio E. Tano and Jean C. Ragusa, Sweep-Net: An Artificial Neural Net-

work for radiation transport solves, Journal of Computational Physics, DOI:
https://doi.org/10.1016/j.jcp.2020.109757, 2021

[5] Marvin L. Adams, Discontinuous Finite Element Transport Solutions in Thick Diffusive
Problems, Nuclear science and engineering: the journal of the American Nuclear Society,
DOI: 10.13182/NSE00-41, March, 2001

[6] M.P. Adams, et al., Provably optimal parallel transport sweeps on semi-structured grids,
Journal of Computational Physics, DOI: 10.1016/j.jcp.2020.109234, January 2020.

[7] Mathis, Mark Michael, A general performance model for parallel sweeps on orthogonal
grids for particle transport calculations, Master’s thesis, Texas A&M University, 2000

[8] LeCun, Y., Bengio, Y. and Hinton, G. E. Deep Learning, Nature, Vol. 521, pp 436-444,
DOI:10.1038/nature14539, 2015

[9] Y. Lei, T. Hu, G. Li and K. Tang, Stochastic Gradient Descent for Nonconvex Learn-
ing Without Bounded Gradient Assumptions, in IEEE Transactions on Neural Net-
works and Learning Systems, vol. 31, no. 10, pp. 4394-4400, Oct. 2020, DOI:
10.1109/TNNLS.2019.2952219

[10] Juncai He, et al., ReLU Deep Neural Networks and Linear Finite Elements, Journal of Com-
putational Math, DOI: 10.4208/jcm.1901-m2018-0160 July 2018.

[11] An overview of gradient descent optimization algorithms, https://arxiv.org/abs/1609.04747,
Ruder, Sebastian, 2017, June

[12] Chunyan Wang, et al., "A simple method for processing data with least squares method",
Proc. SPIE 10452, 14th Conference on Education and Training in Optics and Photonics,
ETOP 2017, 104523A (16 August 2017)

[13] Abadi, Mart, et al., Tensorflow: A system for large-scale machine learning, 12th USENIX
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pp. 265-283, 2016.

68

	ABSTRACT
	DEDICATION
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background and Motivation
	Transport Sweeps

	ANALYTIC PERFORMANCE MODELS
	PDT's Current Analytic Performance Model
	PDT Performance Suite
	Finding the Time Constants

	ARTIFICIAL NEURAL NETWORKS
	Densely Connected Neurons
	Weight and Bias Tuning
	Activation Functions
	Rectified Linear 1D Lagrange Interpolation Polynomials

	IMPLEMENTATION OF ANN PERFORMANCE MODELS
	Grind time models
	Implementation of ANNs
	Memory usage models

	RESULTS
	Replicating PDT's Current Sweep Time Model
	Details of Grind Time Model Testing for Parallel Runs
	Performance of Grind Time Models
	ANN-Based Memory Models

	SUMMARY AND CONCLUSIONS
	Conclusion

	REFERENCES

