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ABSTRACT

In the first part of the dissertation we develop nonlinear beam and plate theories based on
micropolar elasticity and formulate the corresponding finite element models. The developed non-
linear beam and plate finite element models are then used to analyze the bending of lattice core
sandwich beams and plates that are modeled as equivalent-single layer beams or plates based on
micropolar elasticity. The rapid growth of manufacturing technologies has enabled the design and
development of materials whose microstructure can be architected to achieve desired functional-
ity. Lattice core sandwich structures are among such architected materials whose microstructure
is the order of few centimeters. Modeling these structures with complete geometric details can be
computationally expensive. Hence, efforts are made to model such structures as equivalent-single
layer beams or plates with non-classical continuum theories like micropolar elasticity. One such
methodology to construct equivalent-single layer beams [1] of web-core lattice beams is described
and extended to other core structures.

The second part of this dissertation deals with formulation of a novel numerical method,
named Dual Mesh Control Domain Method (DMCDM), for functionally graded structural ele-
ments; namely beams and plates. For the past few decades finite element method has been the
dominant numerical method for analysis of solids and structures while finite volume method has
been dominant in the field of fluid dynamics. Both the methods have their strengths and weak-
nesses. For example, representing a system as a collection of connected finite elements often results
in a discontinuous representation of the gradients of the solution, unless so-called C-continuity is
used. However, finite element method retains the concept of duality between the secondary and
primary variables of the problem and thereby simplify the process of applying boundary condi-
tions. On the other hand, although finite volume method involves fictitious nodes at the boundary
control volumes and thereby complicating the application of boundary conditions, it satisfies the
integrals of governing equations (with out any weight functions) on control volumes and calcu-

lates secondary variables on the interfaces of the control volume where they are uniquely defined.
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Considering these observations, Professor J. N. Reddy has recently proposed a novel numerical
method named Dual Mesh Control Domain Method (DMCDM). It incorporates the best features
of both finite element method and finite volume method by using two different meshes. A primal
mesh for interpolating the primary variables and dual mesh for satisfy the governing equations in
integral form without weight functions. The details of this method and its application to structural

elements is discussed in detail.
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1. INTRODUCTION AND LITERATURE REVIEW *

1.1 Micropolar elasticity

The idea of a continuum whose material particles have independent rotational degrees of free-
dom along with translational degrees of freedom was first proposed by Cosserat brothers more than
one hundred years ago [11], which was later named as a Cosserat (or micropolar) continuum. The
theory was left dormant for about fifty years, until it was revived by Eringen and his coworkers
[12, 13, 14]. Since then micropolar elasticity has found applications in modeling complex mi-
crostructures like soils, polycrystalline and composite materials [15, 16, 17, 18], nano structures
[19], porous media and foams [20, 21, 22], and even animal bones [23].

With increased use of micro and nano structures, where the material length scales play an
important role, there has been an impetus in developing beam and plate theories that can bring mi-
crostructural length scales into the problem. This resulted in a plethora of beam and plate theories
based on various non-classical continuum theories. Various beam models are proposed based on
modified couple stress theories [24, 25, 26, 27, 28], strain gradient theories [29, 30, 31], Eringen
non-local elasticity [32, 33, 34]. Similarly, such beam theories are also developed using micropolar
elasticity. For example, [35] proposed a size-dependent micropolar beam which was enhanced by
von Karman nonlinearity. However, the use of micropolar beam and plate theories is not limited
to micro and nano structures. Various homogenization techniques have been proposed to model
lattice structures [36, 37, 38,9, 5, 39], metamaterials [40], and nano materials as equivalent microp-
olar material structures. Such homogenization techniques usually seek to express the constitutive
constants of the equivalent micropolar material in terms of the microstructural properties of the

considered material (or structure) [4, 9]. Thus, the need for micropolar beam and plate theories is

*Parts of this chapter are reprinted with permission from “Geometrically nonlinear Euler—-Bernoulli and Timo-
shenko micropolar beam theories” by P. Nampally and J. N. Reddy, 2020. Acta Mechanica, vol. 231, no. 10, pp.
42174242, Copyright (2020) Springer-Verlag GmbH Austria, part of Springer Nature and from ‘“Nonlinear finite el-
ement analysis of lattice core sandwich beams” by P. Nampally, A. T. Karttunen, and J. N. Reddy, 2019, European
Journal of Mechanics - A/Solids, vol. 74, pp. 431-439, Copyright (2018) Elsevier Masson SAS and from “A dual
mesh finite domain method for the analysis of functionally graded beams” by J. N. Reddy and P. Nampally, 2020.
Composite Structures, vol. 251, p. 112648, Copyright (2020) Elsevier Ltd.



warranted by the range of applications of micropolar elasticity, especially for continuum models
of microstructures.

While many micropolar beam and plate theories have been proposed (see, e.g., [41, 42]), often
they only consider linear strains (or linearized Cosserat deformation gradient) resulting in linear
micropolar beam or plate theories. However, certain applications of micropolar elasticity may
require the use of nonlinear or moderate nonlinear strains. For example, micro and nano beams
usually undergo moderately large rotations which inherently bring nonlinearity into the problem.
There have been certain attempts to bring such a nonlinearity into the micropolar beam and plate
theories. For example, in [35] the use of the von Kédrman nonlinearity to model the moderate rota-
tions of micropolar beams was proposed. In [5] a similar theory was used in modeling the behavior
of lattice core beams. A geometrically exact micropolar Timoshenko beam, where the complete
nonlinear Cosserat deformation gradient was taken into account was developed in [40]. The ap-
proximation of small microrotations to obtain a nonlinear micropolar plate theory was considered
in [43]. Considering this, one aspect of this dissertation is to explore the possible nonlinear theories
for micropolar beams and plates. These topics are covered in chapters 2 and 3 respectively.

With the revived interest in micropolar elasticity [44, 12], considerable work has been put
into developing appropriate finite element models for micropolar continua in general; see, for
example, [45, 46, 47, 48]. A few recent papers on the finite element models of micropolar plates
include [49, 50, 51]. Various finite element models have been proposed for the bending analysis of
micropolar beams as well. In [42] a 3-D non-compatible finite elements were used to analyze the
bending of beams, and three different elements for plane micropolar elasticity were proposed and
used to analyze thin in-plane beams in [52]. A 1-D micropolar beam finite element model using
Lagrange interpolation functions was developed in [53]. A finite element model for a micropolar
Timoshenko beam with the microrotation assumed to be equal to the cross-sectional rotation was
derived in [54]. More recently, a 27-node 3-D finite element for the analysis of beams was proposed
[50]. Most of the literature on the finite element analysis of micropolar beams and plates usually

consider only linear strains. Given the difficulty in finding closed-form solutions to nonlinear



equations, generally the finite element method is used in obtaining approximate solutions to the
problem. Thus, appropriate finite element models for the nonlinear theories of micropolar beams

and plates considered in chapters 2 and 3 are also developed.
1.1.1 Kinematics of micropolar continuum

Unlike the classical continuum, in micropolar continuum the material particles are assumed to
have orientation [55, 56, 44, 57]. Thus the material particles in micropolar continuum undergo
translation and rotation (called microrotation, which account for the change in the orientation of
material particle) during deformation. Therefore, the study of micropolar continuum requires a
displacement vector u and an orthogonal microrotation tensor Q. To account for these microrota-
tions in the kinematics of the continuum, two kinematic tensors are defined. These two tensors are
called Cosserat Deformation Gradient (E) and Wryness Tensor (I') [44]. The definitions of these

tensors are as follows [58, 59]:

E=Q"I1+Vu) -1 (1.1.1)

I = —%e (QTVQ) (1.1.2)

where u is the displacement vector with three independent components (u;, uz, u3) along the Carte-
sian coordinates and Q is second-order microrotation tensor, I is the second-order identity tensor,
and € is the third-order skew Ricci tensor (permutation tensor). Here V represents the gradient
operator with respect to the reference configuration.

Since the microrotation tensor Q is a proper orthogonal tensor such that Q! = Q7 and
detQ = 1, only three of the nine components of the microrotation tensor are independent. Thus,
it is helpful to parameterize the microrotation tensor such that it can be represented in terms of a

microrotation vector with three independent components [58, 59]:

1 — cosf in g

Q:cos@H%gb@wN”; W x T (1.1.3)
1 —cosf in g

QTzcosﬁH%tb@w—Slg P x1 (1.1.4)



where ¢» = 0é is the microrotation vector whose direction is along the unit vector € and has a

magnitude 0 € (—2m, 27). The rotation vector can also be written as

P = 1181 + o€y + 1383 (1.1.5)

where 1)1, 15 and 13 are the components of the microrotation vector along the Cartesian coordinate

€1, €, and €3 respectively such that

=/ ¥f + U3 + 93 (1.1.6)

Writing Eq. (1.1.1) and Eq. (1.1.2) in indicial notation we have

1 —cos@ sin 0
Eij = (cos0 — 1) 655 + cos Oy j + ——o— (Vi) + thitheun;) — 0 (€mjithm + Enkithnt, ;)
(1.1.7)
sin 0 —sind — cos 0
Ly = 1/%,] Vit rj — 02 ———— iV (1.1.8)

Since the the material particles in a solid continuum will have restricted microrotations com-
pared to a fluent continuum, it is safe to assume that the magnitude of microrotations of each
material particle of a solid continuum are very small, i.e., |#| — 0 [44, 59, 60]. Following this

approximation we have

1 —cos@ 1
limcosf =1, llm — = —
90 0—0 62 2
. sm@_1 , 6—81119_1
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Yith; = 0, Vit r; ~ 0
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which will result in

Eij ~ Cij = Ui + Eijmqujm + Eikn¢nuk,j (119)

If we further assume that the displacement gradients are small [44, 59] then we can linearize the

Cosserat deformation tensor to get

Eij = & = uij + €ijm¥Um (1.1.11)

We can break the Cosserat deformation gradient tensors in Eq. (1.1.9) and Eq. (1.1.11) into

symmetric and anti-symmetric parts, to define the following

() Cij T € Uit Uji  EpnUnUpj + €knVnU;

e... = =
" 2 2 2
1.1.12
o@ G =G Mig m Ui €iknVnUk,j — €jknVnlp,i ( )
1) 2 2 pmy¥ym 2

(s) _ Eij T & _ Uiy + Ui

K ) 25 _u QU (1.1.13)
51(?) = 5 L= 2 5 2+ €jmtm

For the linear isotropic micropolar solid we have the following constitutive relations:

0ij = Aegrlij + (0 + K)eiy + peji (1.1.14)

Tij = OMkli; + BNji + YN (1.1.15)

where \, u, k, a, [3, v are the micropolar constitutive constants [44]. Defining the symmetric and

anti-symmetric stresses as



we can write constitutive relation (1.1.14) in terms of the symmetric and anti-symmetric strains

and stresses as:

o) = Neli)oy + (2 + K)el) (1.1.16)
o\ = kel?) (1.1.17)

1.2 Lattice core sandwich structures

The rapid growth of manufacturing technologies has enabled the design and development of
materials whose microstructure can be architected to achieve desired functionalities, including
high stiffness-to-weight ratios [61]. The scale of the architected microstructure can range from a
few nanometers [62] to several meters. Lattice core sandwich structures are a class of architected
materials whose microstructure is typically in the order of centimeters [63, 64]. A variety of
manufacturing techniques are available for the production of sandwich panels [65, 66]. A typical
sandwich panel consists of a thick, low-stiffness core between two relatively thin but stiff face
sheets. The face sheets take bending and in-plane loads while the core carries transverse shear
loads [63, 67]. The face sheets and core can be made of the same or different materials and some
possible core structures include, for example, foam, solid, honeycomb, and truss cores [68] (see
Fig. 1.1). A sandwich panel generally has a high bending stiffness compared to a single solid
plate of the same dimensions made of either the face sheet or core material and the panel weighs
considerably less than the solid plate making it a weight-efficient structure [67]. Sandwich panels
are designed so that the face sheets take the bending loads while the core carries most of the shear
loading [69].

Sandwich panels have received a lot of attention because of their superior performance com-
pared to their monolithic counterparts made solely of either the face sheet material or the core
material. For example, sandwich panels have found applications in aerospace industry [70, 71]
and marine industry [72, 73]. They are also being used in air and underwater blast resistance struc-

tures [74]. Laser-welded web-core steel sandwich panels have found applications in shipbuilding



as staircase landings and non-structural walls [75, 76] and also show good potential for applications

in bridges and buildings [77, 78, 79, 80].

(a) F‘yramidal (b) Tetrahedral (c) 3D-Kagomé

.-'.r ‘|_U¢,1| If’A?? -\-\_ I'—

(d) Diamond textile

,~|_-L
1
1

Figure 1.1: Lattice core sandwich panels with with various core topologies (Reprinted with per-
mission from [2]).

The number of applications for sandwich panels is increasing rapidly. The required accuracy
in the structural analysis of the panels depends on the type of the application considered. For ex-
ample, in air-crafts a very detailed response of the sandwich structure may be required, whereas an
overall global response may suffice in residential buildings when the natural vibration frequencies
are of interest, for example. In any case, there is a need for appropriate modeling tools for different
applications. Reviews on the modeling of sandwich structures have been given by several authors
[81, 82, 83, 84, 64]. Modeling methods for sandwich panels can be broadly classified as: (a) Com-
plete 3-D analysis (computational or analytical), with complete details of the face sheets and the
core structure considered; (b) layer-wise modeling with the faces and core considered as separate
continuum layers [85]; (c) statically equivalent single layer (ESL) models. Although computa-
tional 3-D and layer-wise analyses give very detailed stress distributions for the panels, they come
with the inherent disadvantage of including a large number of variables and, thus, the computa-

tional analysis of them can be very burdensome. Therefore, equivalent single layer theories such
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as the ESL first-order shear deformation (FSDT) beam and plate models are attractive especially
when the global response of the structure is of main interest without accounting for every small
detail. Extensive literature exists on the modeling of sandwich beam, plates and shells by ESL
theories, see, for example [86, 87, 88, 82, 43].

Of the non-classical continuum mechanics theories to model lattice core sandwich panels, there
equivalent single layer models of lattice structures based on the strain gradient theory [89, 90],
couple stress theory [91], and micropolar theory [1, 92, 40], which is particularly well-suited for
predicting the structural response of bending-dominated lattice panels accurately. This may be
attributed to the additional, independent rotational degrees of freedom the micropolar theory pro-
vides. Detailed bending-dominated lattice unit cells may be constructed using beam and shell finite
elements and the micropolar theory allows us to pass information related to both the translational
and the rotational degrees of freedom of the beam and shell elements from a detailed FE model
into, for example, a 2-D ESL plate model through a homogenization process. Recently, microp-
olar theory was used to model 2-D web-core sandwich structure, which can be considered as a
beam frame, as 1-D equivalent single layer micropolar beam in [1, 4] and 3-D web-core sand-
wich panels were modeled as 2-D orthotropic equivalent-single layer first-order shear deformation
(ESL-FSDT) micropolar plates in [9]. Inspired by these works, in chapter 3 we extend these
modeling techniques to other lattice core beams (hexagonal, Y-frame, corrugate) and incorporate
geometric nonlinearity into the theory to account for moderate rotations of these beams (see chap-
ter 2). In chapter 4 we consider the nonlinear bending and free vibrations of web-core and pyramid
core lattice core sandwich plates, which are modeled as equivalent-single layer micropolar plates
following the similar techniques given in [9]. We also incorporate geometric nonlinearity into the

problem to model moderate rotations of these plates.
1.3 Dual mesh control domain method

With increase in the computational power, numerical methods have developed tremendously
during the past few decades with finite element method (FEM) dominating the structural mechan-

ics arena and finite volume method (FVM) dominating the fluid dynamics arena. Typically, all



approximate methods convert a differential equation described by the operator equation Au = f
governing a variable w to a set of algebraic equations of the matrix form Ku = F, among the nodal
values of the variable w and its dual variable F' at a selected number of points (called nodes) in the
domain and on its boundary. The actual process that results in the final matrix equation Ku = F

differs from one method to another. The FEM is based on the following three-fold idea [93]:

(1) the total domain €2 can be represented as a collection of a finite number of non-overlapping
but interconnected (at the boundaries of the) subdomains, called finite elements, )°; the
elements are of a particular geometry that allows the construction of approximation (or in-

terpolation) functions;

(2) over each element ()¢, the dependent unknown w is interpolated through a set of points
(nodes) of the element as u ~ > u;1);, u; being the value of u at the jth node and ),
are suitable approximation functions, and the governing equation is converted to a set of
algebraic equations K°u® = F° (called finite element model) using a method of approxima-
tion (e.g., weak-form Galerkin or Ritz, subdomain, least-squares, and so on); the element

equations contain nodal variables from only the element under consideration; and

(3) the element equations from all elements are put together (element assembly) using balance
and continuity conditions at element interfaces to obtain a global set of algebraic equations,

Ku = F, which are then solved after applying the boundary conditions at the nodes.

There are two drawbacks of the FEM. First, representing a system as a collection of connected finite
elements often results in a discontinuous representation of the gradients of the solution, unless so-
called C-continuity is used (which in turn dictates the element type, both in geometry and degrees
of freedom per node). Second, the satisfaction of the governing equations in the weak-form or
weighted-integral sense tends to smooth the solution and thereby predicts diffuse solutions when
applied to problems with steep gradients.

In the FVM [94] one represents a given domain, much like in FEM, as a collection of non-

overlapping domains, called control volumes. Then an integral (not a weighted-integral) statement
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of the governing equation, after invoking the Green—Gauss theorem to covert the domain integral
to the boundary integral, is used over a typical control volume to derive the algebraic equations.
In the FVM, at the centroid of each control volume lies a mesh point, and the derivatives of the
dependent variables at the control volume interfaces are calculated in terms of the values of the
dependent variables at the mesh points using Taylor’s series approximations (i.e., “finite difference-
like" approximations). Thus, there is no explicit interpolation (although there is a polynomial
approximation implied by the truncated Taylor’s series) of the dependent variables is employed in
the FVM. The algebraic equations derived using a typical control volume involve mesh point values
from the neighboring control volumes (a notable difference from FEM), naturally connecting the
control volumes. The resulting algebraic equations resemble more like finite difference stencils,
which are valid for a typical mesh point in the entire domain and include contributions from the
neighboring mesh points to obtain the required algebraic equations of the entire mesh. Thus, in
the FVM there is no formal assembly of control volumes is involved. The imposition of gradient
type boundary conditions involves, sometimes, fictitious nodes from outside the domain, and there
is no unique methodology followed for the imposition of boundary conditions or the evaluation of
integral expressions in the FVM. The major advantage of the FVM however, is the satisfaction of
the global form of the governing equations exactly and thus resulting in a better accuracy for the
secondary variables like fluxes and forces.

Recently, Reddy [95] introduced a numerical approach termed the dual mesh finite domain
method (DMFDM) for the solution of second-order differential equations in one and two dimen-
sions with a single unknown. The dual mesh finite domain was later renamed as dual mesh control
domain method (DMCDM) in [96]. In the DMCDM, the domain is discretized using two meshes; a
primal mesh which connect the nodes at which the primary variables are to be evaluated and a dual
mesh upon which the governing equations are satisfied in an integral sense. We call the elements of
the primal mesh the primal mesh elements and elements of the dual mesh the control domains. The
primary variables of the problem are approximated using Lagrange interpolation functions upon

each of the primal mesh elements similar to the finite element method. However, unlike the finite
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element method where the governing equations are satisfied on each finite element in a weighted
integral sense, the governing equations in dual mesh control domain method are satisfied on the
control domains of each node as an integral statement without any weighting function; a similar-
ity shared with the finite volume method. Further, since the control domain already connects the
primal mesh elements which share the node about which the control domain is centered, the con-
nectivity of the primary variables at the nodes is automatically satisfied. Thus, in dual mesh control
domain method we obtain the global equations directly unlike in finite element method where we
write the finite element equations first and the global equations are then obtained from element
equation assembly. Further, in dual mesh control domain method the secondary variables dual to
the primary variables are not expressed in terms of the primary variables on the boundaries of the
computational domain. This facilitates the retention of the duality concept used in finite element
method (see [95, 96]). Thus, the DMCDM can be viewed as a hybrid method that makes use of
two best features of the FEM [93], namely, (a) the interpolation of the variables and (b) imposition
of physical boundary conditions, and two salient features of the FVM [94]: (a) satisfaction of the
global balance equations over the finite domain and (b) computation of the secondary variables at

the boundaries of the control domains where they are uniquely defined.

Fo

fa

Figure 1.2: Elastic bar fixed at one end with axial distributed load f, and concentrated load Fj at
free end

To illustrate the working of dual mesh control domain method for 1-D problems, we will con-

sider a 1-D elastic bar of length L, with one end fixed and a concentrated force acting on the other

11



end. The area of cross-section of the bar is A and Young’s modulus is £. The governing equation

of the 1-D elastic bar, in the presence of a distributed axial force f,, is given by

d d
L EAY — =0, O<az<L (1.3.1)
dx dx
du
=0, EAY_F 132
U( ) ) dl‘ 0 ( )

The exact solution of the bar for the above boundary conditions and constant distributed force
fo = f is given by

=57 o (1.3.3)

Let us discretize the domain with two primal mesh elements, Qg) (z = 1,2), (each of length
h = L/2) and three dual mesh elements, Q(CII)D (I = 1,2,3) (see Fig.1.3). The primary variable
w 1s interpolated on each of the primal mesh elements using 1-D linear Lagrange interpolation

functions [93]. That is, u can be written as

UV (@) + Usps(x), ¥V e (0,L/2)
u(z) ~ (1.3.4)

Unp® (@) + UspP (), ¥V ae(L/2,L)

where

(1.3.5)
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Figure 1.3: Discretization of elastic bar with primal and dual mesh elements.

Now writing the integral statement of the governing equation within the interior control domain

we have

{_i {EA@] — fx} dr =0 (1.3.6)

Carrying out the integral in the above equations such that the resulting boundary terms are sec-

ondary variables which are dual to the primary variable u, we get

(2)
Tp

—N® _ NP _ o Jadr=0 (1.3.7)
Here NV 1(2) is the axial force at left end of the control domain and N2(2) is the axial force at the right

end of the control domain. These are given by

d
N® = _ {EA-“} , NP = [EA—} (1.3.8)
dx r=a'? z=z'?
The negative sign in the definition of N1(2) indicates that the force is compressive in nature. The
force convention is taken such that the force acting along the positive x-axis is taken as tensile.
The axial forces in Eq. (1.3.8) (i.e., secondary variables) acting on the interior control domain

are expressed in terms of the nodal values of the primary variables using the interpolation of the

primary variable on the primal mesh elements given by Eq. (1.3.4). Noting that the interior control
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domain spans two primal mesh elements we can write Eq. (1.3.7) as follows:

(2)
dy dyy)  dyy” dyy” |
EA U U - - U. — »dr =10 1.3.9
Y T dz dz > dx e Jodz ( )
Uy 1 1 Us
FA|—+Uy| —+— | ——|—fh=0 1.3.10
{ o 2(h1+h1) hz] / ( :

Let us now consider the control domain corresponding to node 1. The integral statement of the

governing equation on this control domain would be:

1
i d d
/ {__ {EA_“} —fx}da:IO (13.11)
0 dz dz
Carrying out the integration we get
a(V
—NY _ N _ / fodz =0 (13.12)
0

Since the N 1(1) represents the axial force at the left boundary of the bar, we only express Nz(l) in
terms of the nodal values of the primary variable using interpolation functions. Nl(l) is retained
as is because, on the boundary we either know the primary variable u or secondary variable Nl(l)
(reaction force in this case) because of the duality. Thus, when U; is known we can calculate NV 1(1)

and when N 1(1) is known we can calculate U;. Hence, Eq. (1.3.12) will take the following form:

o  EA[_dplY dypV zgV
M- Uy I + U, | =0 (1.3.13)
0
EA h
(U =) - f? ~NY=p (1.3.14)

Similarly, the discretized equation corresponding to third control domain can be written and the
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final discretized equations will be of the form:

EA

fh

T(U1-U2)27+N1(1)
EA
EA h
—— (U2 +Us) = % + N
B . 4 )\ 4 ) ( A
1 -1 0| |0 ik NV
EA
- |-1 2 =1 U =N fhg Ty O (1.3.16)
_O _1 1_ \U3 \%) \N2(3))

After imposing the boundary condition U; = 0 and N2(3) = [ for f = 0 in the above equation, we

get displacements of nodes 2 and 3 which are given in Table 1.1.

x | Exact | DMCDM
0 0.0 0.0
on | B | n

Table 1.1: Comparison of elastic bar deflection from DMCDM with exact solution

Following this brief general introduction to dual mesh control domain method, we will consider

its application to functionally graded beams [10]

in chapter 6. Bending analysis of functionally

graded axisymmetric circular plates [7] and functionally graded rectangular plates [8] using dual

mesh control domain method is considered in chapter 7.
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2. NONLINEAR MICROPOLAR BEAM THEORIES*

2.1 Introduction

In this chapter we utilize the generally used beam theories of classical Cauchy continuum to
construct the beam theories for micropolar continuum. Let the beam considered be such that the
x-axis of the considered coordinate system passes through the centroid of the cross-section of the
beam (called axis of the beam). The length of the beam is L, height of the beam is // and width of
the beam is B. The z-axis points downwards and the y-axis points out of the paper (see Fig. 2.2).

For such a beam we represent the displacement and microrotation vectors as follows:

u = ’LLlél + U,Qég + U3é3

(2.1.1)
P = 1€ + 1P2€; + U3e3

2.2 The Euler-Bernoulli micropolar beam theory (EMBT)

The displacement field of the Euler-Bernoulli micropolar beam theory is based on the same
assumptions of Euler-Bernoulli beam theory of classical continuum (i.e., the assumptions that the
planes perpendicular to the axis of the beam remain plane and perpendicular after deformation and

are in-extensible [97] are still valid). Thus we have the following displacement field

dwl
ul(ajay?Z) - Ug;(ﬂﬁ) - Zd_mo

us(z,y,2) =0 (2.2.1)

uz(w,y, z) = wp ()

*Reprinted with permission from “Geometrically nonlinear Euler—Bernoulli and Timoshenko micropolar beam
theories” by P. Nampally and J. N. Reddy, 2020. Acta Mechanica, vol. 231, no. 10, pp. 4217-4242, Copyright (2020)
Springer-Verlag GmbH Austria, part of Springer Nature.

"We use superscript E to denote terms corresponding to Euler-Bernoulli micropolar beam theory.
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We assume that only the y-component of the microroation is non-zero and that it only depends on

the z-coordinate.

¢1(:L‘7 Y, 2) =0
U, y, 2) = ¥y, (x) (22.2)
1/)3(1'7?/’ Z) =0

This approximation implies that the planes normal to the axis of the beam are made of particles

dw

E
which can only rotate about y-axis. Thus ——= 0 represent the rotation of these planes about y-axis,
while 1/15 represents the rotations of the particles within these planes about y-axis (see Fig. 2.1)

and clearly these two are independent degrees of freedom.
2.3 The Timoshenko micropolar beam theory (TMBT)

The displacement field of the Timoshenko micropolar beam theory' is based on the same as-
sumptions of the Timoshenko beam theory of classical continuum (i.e., the assumptions that the
planes perpendicular to the axis of the beam remain plane after deformation and are in-extensible

[93, 98] are still valid). Thus the displacement field is given by

un (2,9, 2) = g (2) + 26, (2)

ug(z,y,2) =0 (2.3.1)

ug(z,y,2) = wg(x)

We assume the microroation field similar to EMBT.

wl (xa Y, Z) =0
Ua(2,y, 2) = 1, (x) (2.3.2)
¢3(ZL‘, Y, Z) =0

Figure (2.1) shows a schematic representation of the displacement and microrotation fields of

a micropolar beam. The green circles represent the particles of the micropolar continuum within

TWe use superscript 7' to denote terms corresponding to the Timoshenko micropolar beam theory.
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the plane normal to the axis of the beam before deformation while the yellow circles represent the
particle within the plane normal to the axis of beam after deformation. The red arrows form a pair
of perpendicular axis, called directors [44], which represent the orientation of micropolar material
particle in undeformed configuration while the blue arrows, which are also a set of perpendicular
axis, represent the orientation of the micropolar material particle in deformed configuration. The
angle, 1,, between blue and red arrows represent the microrotation about the y-axis of the refer-
ence frame. Similarly, the angle between planes normal to the axis of the beam before and after

deformation is represented by ¢,.. Clearly these two angles are different.

wy Qbm
N

z

Figure 2.1: The displacements and microrotation of a micropolar beam. For Euler-Bernoulli beam

theory ¢, = —% [3].

2.4 The von Kiarman nonlinearity and corresponding governing equations

In the classical continuum mechanics, if the displacement gradients are considered to be small
then we omit the nonlinear terms of the Green strain tensor, by arguing that the potential energy
contribution due to these nonlinear terms is negligible in comparison to the linear terms, and obtain
the linearized strain tensor [99]. Further, no distinction between current and reference configura-
tions is made. In the case of a beam, such linearized strains will result in linear beam theories.
However, if the rotations of the planes normal to the axis of the beam are moderate while the dis-

placement gradients are still small, we retain the nonlinear terms of the Green strain tensor which
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correspond to the rotations of these planes. The resulting beam equations after the retention of
such nonlinear terms in the strains are called the von Kdrman nonlinear beam theories of classical

continuum [100, 101]. In classical continuum the effect of the von Karmén nonlinearity on the

dwg

2 . . .
- ) to the ¢, term of the linearized strain

beam theories is the addition of nonlinear term % (
[100]. If we extend the same argument to micropolar beams, that is, the displacement gradients
are small but the rotations of the planes normal to the axis of beam are moderate, the linearized
Cosserat deformation tensor of Egs. (1.1.11) are inadequate in predicting the correct response of
the beam.

From Egs. (1.1.13) we observe that the symmetric part of the linearized Cosserat deformation
tensor is similar to the strain measure of the linearized classical elasticity, while the anti-symmetric
part show that the effect of microrotations is to create additional rotations which append to the
components of the macrorotation tensor (or rotation tensor) of the linearized classical elasticity.
Following this observation, if we assume that the effect of moderate rotations of normal planes is

only on the symmetric part of the linearized Cosserat deformation tensor we can extend the von

Karman approximation of classical continuum beam to micropolar beam [35, 5]. That is,

ou 1 (dwy\”

() oy 220 2 (220 24.1

Ca 3x+2(dx> @41)

Since the approximation of small displacement gradients is still valid, we can use the constitu-

tive relations of Eq. (1.1.14) and (1.1.15). If ai(j ), 01(;) and r;; are the symmetric and anti-symmetric
(s) _(a)

g;; and 7;; respectively, we can write the

stresses and couple stresses conjugate to modified ;;”, €;;

principle of virtual work for a beam with transverse distributed load ¢y and axial distributed load

f. as follows [102]:

L
/ (agj)ésgj) + Ufj)dsg? + T¢j577¢j> av — / (qodwo + froup) dx =0 (2.4.2)
v 0

In the following we define the non-zero components of symmetric, anti-symmetric parts of

linearized Cosserat deformation tensor after the von Kdrman modification and Wryness tensor for
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the beam theories considered in section 2.3 and then use principle of virtual work (2.4.2) to derive

the governing equations and corresponding boundary conditions.

2.4.1 The von Karman Euler-Bernoulli micropolar beam theory (VEMBT)

2
e _ Qg 1 (dwg\T dPwy
e dz 2\ dx de

(2.4.3)
erl) = - (dwO + v )
E
nP, = awy, (2.4.4)
dx

Now defining the stress, moment and couple stress resultants acting on beam as

{fo(S)} = /A {fo(s)} dA, {Mg‘*)} = /A {gfz(s)} 2dA (2.4.5)
{Qf(a)} = /A {Umz }dA {Pyb;} = /A{ yx}dA (2.4.6)

we can express the principle of virtual work (2.4.2) in terms of the resultants (2.4.5) and (2.4.6) as

follows

L E E j..E
/ {me(s (d5“0 i déwy dwy ) ME®) d 5“’0 —2QFw@ (dilwo 1 5wE>
0

dx dr dx dx?
doyE
+ Py’i dzf/,y — qodwy — foouy }dx =0 (2.4.7)

The governing equations of VEMBT are obtained by taking the Euler-Lagrange equations of the

above variational statement (2.4.7) as

dex(s)
Sul : +fe=0 (2.4.8)
dx
AME®  q [ dwF dQE@
Y —— 0 NE@) ) _g—*F =0 249
“o dz? +dw(d gz T (24.9)
dPE
SYE . ¥ 4 9QF@ = (2.4.10)
Y dx
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with the corresponding natural boundary conditions

dM, £
Cdr

E
dwy,

Nzgc(S) =0, QQE + pr(s) = 0, M:EE:E(S) =0, PE_o (24.11)
X

yx

2.4.2 The von Karman Timoshenko micropolar beam theory (VIMBT)

T TN 2 T
8T(S) — % _‘_% (%) + zd(bx

e dx dx dzx
d
e =5 ( i ¢T> (2.4.12)
1 dwl
en = 3 (gbf — — 2y )
d@/)yT
_ Wy (2.4.13)
lya dx

Now defining the stress, moment, and couple stress resultants on the beam as

{ Ng;;s)} -/ {ggp} 04, { Mg;w} -/ {05@} WA @Al
A A
o] [om
:/ dA, {pyig} :/ {rgm}dA (2.4.15)
T(a) A O_Zz(a) A

Qz
we can express the principle of virtual work (2.4.2) in terms of the resultants (2.4.14) and (2.4.15)
as follows
L déul  dowl dwl ydopL dowl
NT 0 0270 MT 7(s) [ 547 0
/O{M<dx+dxdx+zd+Q R
dowl doyT
+ QL@ ( oL — x“ 201, ) + P, dxy — qodwy — froup pdw =0 (2.4.16)

The governing equations of VTMBT are obtained by taking the Euler-Lagrange equations of the
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above variational statement (2.4.16) as

N
Sud d +f.=0 (2.4.17)
dx
d (du] d(Q:" - Q=)
swl . 9 [ @Wo nres) i v — 2.4.18
%o dx ( de ** + dx o ( .
ML
st 4 QI - QI =g (2.4.19)
X
dPT
51/)5 : v 4 9QT@ =0 (2.4.20)
dx

with the corresponding natural boundary conditions

) dwg

NxTx(S) =0, Qf(S) _ Qg(a) + N;fs
dz

=0, MIT(S) =0, P —o (2.4.21)

T YT

2.5 Micropolar nonlinearity and corresponding governing equations

In the previous section we derived the nonlinear governing differential equations of micropolar
beams based on the assumption that the moderate rotations of the planes normal to the axis of beam
can be modeled by von Kdrmdn nonlinear strains terms borrowed from classical elasticity. In this
section we shall follow a different route to derive the nonlinear governing differential equations
accounting for the moderate rotations of the planes normal to the axis of beam. Here we make
appropriate approximations on the symmetric and anti-symmetric nonlinear Cosserat deformation
components of Egs. (1.1.12) which reflect the condition of moderate rotations of planes normal to
the axis of beam while the displacement gradients are still assumed to be small.

Since the the only assumption made in deriving Eqs. (1.1.12) is that the microrotations are
small, we need to make a distinction between current and reference configurations as the displace-
ments could be large. Thus the gradients in Eqgs. (1.1.12) are with respect to reference configu-
ration. For the case of moderate rotations of planes normal to the axis of beam approximation,
we assume the displacement gradients are also small. This eliminates the need for a distinction

between current and reference configurations. Further, since we assumed that the displacement
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gradients, except those that represent the rotations of planes normal to axis of beam, are small we

can make the following approximation on the magnitudes of various terms of Eqgs. (1.1.12)

Uq,p = 0(0), wl = 0(\/ﬁ>
U0 = 0(1/p), ¢z = 0(y/p) (2.5.1)

where p<<1, «,f=1,2 and i=1,2,3

Neglecting terms of order greater than O(p) in calculating the terms of nonlinear Cosserat de-
formation components we arrive at the nonlinear Cosserat deformation tensor which represents the
moderate rotations and small displacement gradients. Since the approximation of small displace-

ment gradients is still valid, we can use the constitutive relations of Eqgs. (1.1.14) and (1.1.15) with
(s)
ij

(s) (a)
ij » €ij

corresponding stresses and modified Cosserat deformation tensors. If X EE}I) and m;; are the

symmetric, anti-symmetric stresses and couple stresses conjugate to e and ,; after moder-
ate rotation approximation, we can write the principle of virtual work for a beam with transverse

distributed load ¢q and axial distributed load f, as follows [102]:
) 5,(s) g
/V (ES 565; + 25;?)565.;) - mijénij> dV — /o (qodwo + frdug) dr =0 (2.5.2)

In the following we shall define the non-zero components of symmetric and anti-symmetric
parts of nonlinear Cosserat deformation tensor after moderate rotations approximation and Wry-
ness tensor for the beam theories considered in section 2.2 and 2.3 and then use the principle of

virtual work (2.5.2) to derive the governing equations and corresponding boundary conditions.

2.5.1 Nonlinear Euler-Bernoulli micropolar beam theory (NEMBT)

&

B(s) _ <% Edwf) B ZdeéE

o d Yd dx?
“Z N ! (2.5.3)
E(a Wo E
e = — (%Jﬂ/}y)
dpP
B _ Wy (2.5.4)
lya dx
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Now defining the stress, moment and couple stress resultants acting on beam as

{oeo} = [{zrobaa foeod = [{smodan ess

A A

b [mdon fs)e [fap)ar oso
A yx A y:r

we can express the principle of virtual work (2.5.2) in terms of the resultants (2.5.5) and (2.5.6) as

follows
L déuf dwf déw¥ d?owl déw¥
mE(s) 0o 5 E o _ E 0 o mE(s) 0o 2 E(a) 0 (S
/0 { - ( dx Yy dx Yy dx o dx? 2 P 1
E do 5 E E

The governing equations of NEMBT are obtained by taking Euler-Lagrange equations of the vari-

ational statement (2.5.7) as

E(s)
Suf s +f.=0 (2.5.8)
dx
2omEE g X B
E . T FE E
owg : o~ o (EMED) — T =0 (2.5.9)
d d
S ‘BW + MEE) dug +20Q8@ = (2.5.10)
Y dx dx

with the corresponding natural boundary conditions

dMEL)
dx

’JIfgC(S) =0, — + ‘ﬁféS)wf + QQf(a) =0, gmfés) =0, quEz —0 (25.11)
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2.5.2 Nonlinear Timoshenko micropolar beam theory (NTMBT)

dul’ dwl de?r
T(s) _ o T 0 T
Ca (dx Yy d:z:)+z(dx>

2eT(s) = <dw° + gl > (2.5.12)
dwl
T -0 T
Ry
AT
r_ Ay (2.5.13)
Mo = 7

Now defining stress, moment and couple stress resultants acting on the beam as

) A

{m%s)} = / {Egy}cm, = / dA (2.5.14)
A SFA I P

{gm%s)} :/ {E%S)}zdfl, { T}:/{mT }dA (2.5.15)
A yx A Yy

we can express the principle of virtual work (2.5.2) in terms of the resultants (2.5.14) and (2.5.15)

as follows

L
/ {‘ﬁfés) (déuOT syl alw0 g déwo) Lot W0  dégT QT <5¢ N d(5w0)
0 dz dr dz

¢T

+ QZ(G) <5gb (1(5% — 2577/15) + ‘Bym — qoéwg - f$5ug}dx =0 (2.5.16)

The governing equations of NTMBT are obtained by taking the Euler-Lagrange equations of the
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above variational statement (2.5.16) as

AL
Sug +f.=0 (2.5.17)
dx
d S d S a
owg + = (M) = (27 = Q1) — g0 =0 (2.5.18)
1(s)
(Mg : dggm _ Q;-'U”(s) _ Qg(a) =0 (2.5.19)
X
d T T
syl . Do oqre@ g _ (2.5.20)
Y dx dx

with the corresponding natural boundary conditions
MY =0, QY -QiY -gflyr=0, o =0, P =0 (252D

2.6 Finite element models

In this section, we develop the weak-form Galerkin finite element model of the governing
equations derived in sections 2.4 and 2.5. We consider the Timoshenko micropolar beam theories

and the Euler-Bernoulli micropolar beam theories separately.
2.6.1 Timoshenko micropolar beam theories

For the Timoshenko micropolar beam theories considered in this chapter the primary variables
are (u,wg, ¢L, ) ). These variables are approximated using Lagrange interpolation functions
L;l), L§2), Lg.g), L§4) respectively. Here j = {1,2...n}. These interpolation functions are of order
n— 1, where n is the number of nodes in a typical element. Since we are using weak-form Galerkin
finite element formulation, the weight functions wy, w9, w3 and w, used in developing the weak

form equations are taken to be the same Lagrange interpolation functions used in approximating

the primary variables [93]. Thus, we have,
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ug = Z UTL @) wy(z) = Lgl)(x)

wy A Z V[/jTL§.2)(x), wy(x) = ng)(x)

- (2.6.1)
DI O] wy(x) = L;” ()

=1
Wl 2Ny L (@), wy(z) = LY (z)

where ¢ = {1,2,3...n}. Now we write the weak form equations of the Timoshenko micropolar

beam theories using the constitutive relations given in Appendix A.1.

e von Kdrmdn nonlinearity

o dw, (dul 1 [dwl\?
0 :/ {An dxl (d_:zf + 3 (d_0> ) - wlfm}dx — Qrw(z4) — Qowy(x)
o dwy dwl [ dul dwo ? Ay dwy (dwl
= A
0 /xa{ "Wy da (dx+ dx * 2 dr \ dr T

A77 dw? (¢z dwo _ 2¢ ) w2q0}dl’ - Q3w2(xa) - Q4w2(l'b>

2 dx
Tp T A T A T
0:/ py Jesdon | Aw fdwy o) A e @ o) g,
. dx 2 dx Y

dr dz 2
- Q5w3(37a) - Q6w3(~"6‘b)

Ty d T
0 :/ {Eg%i — Azwy <¢T dwo 2¢T> }diﬂ — Qrwy(r,) — Qgws(xy)
’ (2.6.2)
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e Micropolar nonlinearity

Tp T T
0 :/ {AH dwl <dﬂ _ Tdﬂ) — wlfx}dq} — Qlwl(xa) — ngl(l’b)

dr \ dz Y dx
Tb d’LU2 dug T dwOT A44 d’LU2 dwg T
= A -
! /:):a{ R w (dw ¥y dx + 2 dx \ dx T
A77 d'LUQ

o i (% dwo — 2, ) MQQO}dx — Qawa(z,) — Qawo(zp)

b dws dol Ay dwl T Az r dwj T
_ D x - - — -2 d
0 /xa { Wiy dx + 2 w3<das M g B & dx i !
- Q5w3($a) - Q6w3($b)

Ty d d T d T d T d T
- [ {EMﬂi_ o, Bt (ﬁ_ Tﬂ)

dz d dz

T
dw0

— Arrwy (¢ - - 2¢§) }dx — Qrwy(r,) — Qgwa(my)

(2.6.3)

After using the approximations given in Eq. (2.6.1) in Egs. (2.6.2) and (2.6.3) separately for

each nonlinear theory, we have the following form for the finite element equations:

KTy _ peT (2.6.4)
where,
B 7 (e ( \ (@) () (@
K11 K12 K13 K4 U(T) Fl
K21 K22 K23 K24 W(T) F2
K" — g — FeT _
K31 K32 K33 K34 <I>:1:(T) F3
K41 K42 K43 K44 \Ily(T) F4
B J \ \ /
’ (2.6.5)

The non-zero components of the above matrix are given in Appendix B.1, for both VTMBT and
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NTMBT.
2.6.2 Euler-Bernoulli micropolar beam theories

For the Euler-Bernoulli micropolar beam theory considered in this chapter the primary vari-
ables are (uf’, w(, ). The variables u{ and v are approximated using Lagrange interpolation
functions Lgl) and Lg-?’) respectively. Here 7 = {1,2...n}. These interpolation functions are of or-
der n — 1, where n is the number of nodes in a typical element. wZ is approximated using Hermite
interpolation functions H§2) of order 2n — 1. Here J = {1,2...2n}. Since we are using weak

form Galerkin finite element formulation, we have
ug = Y UFLY (@), wi(@) = L{Y (@)
j=1

2n
wl =~ Z A§H§2)(x), wy(x) = HI(Q) (x) (2.6.6)

=1

vE = wyP L (), ws(z) = L (z)
J=1

where i = {1,2...n}, I = {1,2...2n}. The A% in the approximation of wf are represented
such that the odd numbered A%, ie., {AF AF . AL .}, are the vertical deflections, w/’, at the

nodes of the element while even numbered AY, ie., {AL AE .. AL 1, are the rotations of planes

E
normal to the axis of the beam, _ddeo , at these nodes. Now we write the weak form equations
of the nonlinear micropolar Euler-Bernoulli beam theories using the constitutive relations given in

Appendix A.1.
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e von Kdrmdn nonlinearity

o dw, [ duf 1 (dwF
0 :/xa {An dxl (d—£ + 3 < o 0 > wlfx}dx — Q1w1 ;pa Q2w1($b>

oo d*wy d*wi dwy dwf [ duf 1 (dwt
= D A Z
0 /xa{11d2d2+udx i \de 2\ da

(2.6.7)
dw dwt
+ 2A77d_:: (@/)5 + d_xo) - wzQO}dl’ — Qsw2(zq) — Quwa(xs)
o dws dv) dwt
0 :/ {E44d—;d— + 2A77ws (¢ + ) }d$ — Qsws(1q) — Qews(xp)
e Micropolar nonlinearity
o dw, (du¥ dwl
0 2/ {And—; (d_a? — 5d_x0) - wlfm}d9€ — Qw1 (7o) — Qawi ()
b d*wsy d*wk de du¥ dwl
= Dyj—=— "0 _ E o , E%%
0 /ma{ndsc2 dx? ?/1< ydm)
dw dwf
+ 2A77d_x2 ( F+ d_xo> - w2¢]0}d$ — Qawa(x,) — Qawa(xs) (2.6.8)
o dws dv) dwl ([ dul g dwl
0_/% { dx dz ~Aunws de \dze 7Y dx

E
+ 2A77w3 (w + d_) }d&: - Q5w3<xa) - Q6w3(xb)

After using the approximations given in Eq. (2.6.6) in Egs. (2.6.7) and (2.6.8) separately for

each nonlinear theory, we obtain the form for the finite element equations:

= F (2.6.9)
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where,

- 7 (o) r y © Y ©)
K1 K12 K18 u® F!

K©F — K21 K22 K23 e = AE) FE7 F2 (2.6.10)
K31 K32 K33 Ty F3
L . \ 7 \ Ve

The non-zero components of the above matrix are given in Appendix B.1, for both VEMBT and

NEMBT.
2.6.3 Higher order finite elements

It is well known that lower order displacement finite elements for beams are prone to locking
[93, 100, 103] when quadrature rules that result in exact integration of element coefficient matrix
are employed. Such locking phenomena are usually eliminated using selective full and reduced
integration techniques. In place of such numerical remedies, we employ higher order polynomials
in approximating the primary variables within an element. For such higher-order polynomials of
order n — 1 on a typical element, there are n nodes. However, when these nodes are equally spaced
the polynomial interpolations exhibit oscillations near the end points of the standard interval. This
phenomenon is called Runge effect.

To overcome the Runge effect we employ an unequal spacing of the nodes within each element.
For a master element ()¢ with coordinate & = [—1, +1], the nodal coordinates are chosen to be the

roots of the following equation:

(E—1)(E+1)L (&) =0 (2.6.11)

where L, (&) is the Legendre polynomial of order p such that n = p + 1 [104]. Thus, the roots ¢;
of Eq. (75), where 7 = 1,2, ..., n, are the nodal coordinates in the master element and are called

Gauss-Lobatto-Legendre (GLL) points or spectral points. These points are unequally spaced for
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p > 2 and are effective in curtailing the Runge effect’. The Lagrange interpolation functions, Lj;,

with spectral nodal points are constructed using the formula

where &; is the j spectral point in the master element.
The Hermite interpolation functions, H;, where J = 1,2,...,2n, are obtained using the for-

mulae

Hayjoy = [L+2L5(&)(& — OIL3(E)

Hyj = (€ - &)L(6)

where ¢; is the j*" spectral point in the master element and L; is j'* Lagrange interpolation func-

tion.
2.6.4 Solution of nonlinear equations

The nonlinear finite element equations of (2.6.4) and (2.6.9) are solved using Newton’s iterative
procedure [100], by constructing the tangent stiffness matrix of a typical element at the beginning

of 7" iteration as

(e) (7‘71)
(e _ |OR®
T = { ST (2.6.12)

such that

(r-1)

T Age — _R© (2.6.13)

TGLL points are proven to be effective in eliminating the Runge effect in Lagrange interpolation functions, how-
ever that is not guaranteed for Hermite interpolation functions. In the present work we used a maximum of 8 nodes
per element, located at spectral points and no Runge effect was observed for Hermite interpolation functions used in
Euler-Bernoulli micropolar beam theories.
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where
R© = KO(U©)y© —F© and Ay© = @ _ gy

The explicit expressions of the components of the element tangent stiffness matrix for all the
nonlinear theories considered in this chapter are given in Appendix B.1.

When the normalized difference between solution vectors from two consecutive iterations
(measured with Euclidean norm) is less than a preselected tolerance, convergence is declared and

further iterations are terminated [100].
2.7 Numerical results

Consider the constitutive relations of isotropic micropolar solid written in terms of symmetric

(with superscript (s)) and anti-symmetric (with superscript (a)) stresses and strains,

o)

5 = eloy + (2 + R)el)

agf) = “51('?)

Tij = anMerdij + Bnji + YNij
Further the equations of equilibrium in the absence of body forces and body couples are given by

04 = 0
(2.7.1)
Tiji + €imnOmn = 0
From the above equations we see that when x = 0, the anti-symmetric stresses become zero and
thereby decoupling the equations (2.7.1) so that the translations can be determined independently
of microrotations. It should be noted that in this particular case, Eq. (2.7.1;) is same as the bound-
ary value problem of classical elasticity [105]. We can completely reduce Egs. (2.7.1) to those
corresponding to classical elasticity by setting # = 0. Thus, the constitutive parameter x plays an

important role in determining the degree of micropolarity exhibited by the material. To quantify

33



the effect of «, a non-dimensional number called Coupling Number (N) is defined in the literature

[23, 106]:

K

N>=_"
2(p+ K)

The level of shear stress asymmetry is quantified by the coupling number, there by reflecting the
degree of micropolarity exhibited by the material. The coupling number is bounded below by
the classical elasticity and above by the so-called constrained Cosserat elasticity (or couple stress
theory), where in the microrotation is equal to the conventional rotation (macrorotation) [106].
Another parameter that is frequently associated with micropolarity is the characteristic length
scale of the material. One such length scale, called characteristic bending length scale, l;,, [23, 106]

1s defined as:

p_ 7 _(1-2NY
P 22u4 k) 4p(l — N?)

The ratio of length scale of the structure to the characteristic length scale of the material has an
influence on the micropolarity exhibited by the structure. For the analysis of the beams in this
chapter we use the height H of beam as the structural length scale. Thus, H/l, has an effect
on the micropolarity exhibited by the beam. It should be noted that the coupling number affects
the degree of micropolarity irrespective of the structural length scale, while it is the ratio of the
structural length scale to the characteristic length scale that has influence on the micropolarity of
the structure.

With this background we first establish the relation between Euler-Bernoulli and Timoshenko
micropolar beam theories in the context of micropolar elasticity. Once this relation is established
we will use Timoshenko micropolar beam theories in all subsequent analysis. For the purpose of

numerical analysis we consider the following material properties:

A = 15513.20 MPa, = 6894.76 MPa, v = 2668.93 N (2.7.2)
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The value of « is calculated using the definition of coupling number such that

2uN?

M1 oN?

Unless stated otherwise, the width of the all beams used in the present analysis is taken to be

B =2H.
do do
HEEREERENN HEEREREEEN
______________________ ) :L’ ¢ ,._._._V_._._._._V_._., J;‘
L
H ug = Wy = 0
Uy = wo = ¢y =1y =0 i atz =0andx =1L
v atz=0andx =L v o
z fixed-fixed z pin-pm
Figure 2.2: Schematic representation of the beam used in the present analysis along with the
boundary conditions. For Euler-Bernoulli micropolar beam theory ¢, = ’j;"o [3].

2.7.1 Mesh convergence

To study the mesh convergence, we consider a beam with L/H = 100 and N = 0.01 while
H = [,. The rest of the material properties are as given in Eq. (2.7.2). The beam is subjected to
fixed-fixed boundary conditions and a uniformly distributed load of ¢y = 1.75 N/m is applied on
the top face (see Fig. 2.2). For such a beam, Fig. 2.3a shows the mesh convergence when VEMBT
is used, while Fig. 2.3b shows the mesh convergence when NTMBT is used. If p represents the
number of nodes in a typical element and 5/ represents the number of elements in the mesh then
p = 4 and h = 4 given mesh convergence in both the cases. However, we use h = 4 and p = 8 in
all the subsequent analysis. Although only VEMBT and NTMBT for coupling number N = 0.01
has been considered in illustrating the mesh convergence, h = 4 and p = 4 are observed to give

mesh convergent results for all nonlinear beam theories irrespective of the coupling number.
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Figure 2.3: Number of nodes in an element vs maximum vertical deflection for various number
of elements in the finite element mesh of a fixed-fixed beam under uniformly distributed load of
qo = 1.75 N/m. (a) VEMBT (b) NTMBT [3].

2.7.2 Euler-Bernoulli vs Timoshenko micropolar beams

It is well known that within the context of classical elasticity Euler-Bernoulli and Timoshenko
beam theories diverge as L/ H ratio decreases, with Euler-Bernoulli theory being stiffer than Timo-
shenko theory. We expect a similar behavior even for Euler-Bernoulli and Timoshenko micropolar
beam theories. To verify this conjecture, we consider a beam with material properties given in
Eq. (2.7.2) while the coupling number is taken to be N = 0.2. The height of the beam /1 is taken
tobe H = [, and width B = 2, such that the area moment of inertia of beam cross-section is given
by I = 31—1'213. The beam is subjected to fixed-fixed boundary conditions and a uniformly distributed
load of gy = 1.75 N/m is applied on the top face (see Fig. 2.2). Fig. 2.4 shows that Euler-Bernoulli
micropolar beam theories are stiffer than Timoshenko micropolar beam theories for lower values
of L/H, while both the theories give same results for higher values of L/H. With this observation,

we use Timoshenko micropolar beam theories for the rest of the analysis carried out in this chapter.
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Figure 2.4: (a) Comparison of von Karmén Euler-Bernoulli micropolar beam theory and von Kér-
mdan Timoshenko micropolar beam theory for various L/H ratios. (b) Comparison of nonlinear
Euler-Bernoulli micropolar beam theory and nonlinear Timoshenko micropolar beam theory for
various L/H ratios [3].

2.7.3 Effect of coupling number

In this section we illustrate the effect of coupling number on the beam behavior when it is
modeled using VTMBT and NTMBT. We consider two different coupling numbers, N = 0.01
and N = 0.5, for the purpose of illustration. Table 2.1 gives a comparison between VTMBT
and NTMBT for N = 0.01 and N = 0.5. The beam considered has material properties given in
Eq. (2.7.2). The height of the beam is taken to be H = 0.3099 mm and L/H = 50. The top face
of the beam 1is subjected to uniformly distributed load of ¢y = 17.5 N/m with pin-pin boundary
conditions (see Fig. 2.2).

As stated earlier, there is minimal coupling between microrotations and translations at lower
values of coupling number and as the coupling number increases this coupling grows stronger.
Thus at higher values of coupling numbers the microrotations 1), should approach the macroro-

tations, w, giving constrained Cosserat elasticity. The macrorotations for the Timoshenko beam
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theories considered in the present chapter is given by

r_ 1 dw
W= (o7 —— (2.7.3)

From Table 2.1 we see that for N = 0.01, the values of microrotations @/)yT are equal to the macroro-
tations w’ when the beam is modeled with VTMBT, while wg << w?T when the beam is modeled
with NTMBT. For N = 0.5, wyT ~ w’ for both VTMBT and NTMBT. Thus, we see that VTMBT
is not sensitive to the change in coupling number in terms of the difference between microrota-
tions and macrorotations and always predict macrorotations equal to microrotations irrespective
of coupling number, while NTMBT clearly is sensitive to the changes in coupling numbers in
terms of the difference between microrotations and macrorotations. Further, with increasing cou-
pling number VTMBT shows stiffening behavior in terms of axial and transverse deflections and
microrotations. However, with increasing coupling number NTMBT show stiffening behavior in
terms of transverse deflections, while exhibiting softening behavior in terms of axial deflections

and microrotations.
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Table 2.1: Comparison of VIMBT and NTMBT for N = 0.01 and N = 0.5. The beam is
subjected to pin-pin boundary conditions with uniformly distributed load ¢y = 17.5 N/m on top
face. H = 0.3099 mm and L/H = 50. The values of u and w( are given in millimeters (mm)

[3].

N = 0.01; I, = 0.3099 mm N = 0.5; I, = 0.2540 mm

VTMBT NTMBT VTMBT NTMBT

S

uT T o7 T T T T T T T T T T T T T
Uy Wy vy w Up Wy Yy w Uy Wy Wy w Uy Wo Py w

0.00000 [ 0.00000 | 0.00000 | -0.03355 | -0.03355 | 0.00000 | 0.00000 | -0.00380 | -0.04703 | 0.00000 | 0.00000 | -0.02984 | -0.02984 [ 0.00000 | 0.00000 | -0.02138 | -0.02139

0.01603 | -0.00007 | 0.00834 | -0.03349 | -0.03349 | -0.00002 | 0.01169 | -0.00380 | -0.04695 | -0.00006 | 0.00741 | -0.02979 | -0.02979 | -0.00006 | 0.00532 | -0.02134 | -0.02135

0.05104 | -0.00023 | 0.02640 | -0.03299 | -0.03299 [ -0.00007 | 0.03703 | -0.00375 | -0.04629 | -0.00018 | 0.02348 | -0.02935 | -0.02935 | -0.00019 | 0.01683 | -0.02100 | -0.02101

0.09884 | -0.00042 | 0.05037 | -0.03155 | -0.03155 | -0.00013 | 0.07069 | -0.00359 | -0.04437 | -0.00033 | 0.04481 | -0.02809 | -0.02809 | -0.00034 | 0.03209 | -0.02005 | -0.02006

0.15116 | -0.00058 | 0.07503 | -0.02912 | -0.02912 [ -0.00018 | 0.10543 | -0.00333 | -0.04107 | -0.00045 | 0.06678 | -0.02595 | -0.02595 | -0.00047 | 0.04775 | -0.01846 | -0.01847

0.19896 | -0.00066 | 0.09559 | -0.02625 | -0.02625 [ -0.00021 | 0.13446 | -0.00301 | -0.03714 | -0.00052 | 0.08510 | -0.02341 | -0.02341 | -0.00054 | 0.06077 | -0.01660 | -0.01661

0.23397 | -0.00069 | 0.10918 | -0.02382 | -0.02382 [ -0.00022 | 0.15372 | -0.00274 | -0.03376 | -0.00054 | 0.09723 | -0.02126 | -0.02126 | -0.00056 | 0.06936 | -0.01503 | -0.01504

0.25000 [ -0.00069 | 0.11496 | -0.02262 | -0.02262 | -0.00022 | 0.16191 | -0.00260 | -0.03210 | -0.00054 | 0.10238 | -0.02020 | -0.02020 | -0.00056 | 0.07301 | -0.01427 | -0.01428

0.26603 | -0.00068 | 0.12042 | -0.02138 | -0.02138 [ -0.00022 | 0.16967 | -0.00246 | -0.03036 | -0.00054 | 0.10727 | -0.01910 | -0.01910 | -0.00055 | 0.07646 | -0.01348 | -0.01349

0.30104 [ -0.00064 | 0.13126 | -0.01853 | -0.01853 | -0.00021 | 0.18508 | -0.00214 | -0.02636 | -0.00051 | 0.11695 | -0.01656 | -0.01656 | -0.00052 | 0.08329 | -0.01166 | -0.01167

0.34884 | -0.00055 | 0.14346 | -0.01436 | -0.01436 [ -0.00018 | 0.20246 | -0.00166 | -0.02047 | -0.00043 | 0.12785 | -0.01284 | -0.01284 | -0.00044 | 0.09097 | -0.00902 | -0.00903

0.40116 [ -0.00039 | 0.15317 | -0.00954 | -0.00954 | -0.00012 | 0.21631 | -0.00110 | -0.01361 | -0.00031 | 0.13653 | -0.00853 | -0.00853 [ -0.00031 | 0.09707 | -0.00598 | -0.00599

0.44896 | -0.00021 | 0.15855 | -0.00496 | -0.00496 | -0.00007 | 0.22399 | -0.00058 | -0.00709 | -0.00017 | 0.14135 | -0.00444 | -0.00444 | -0.00017 | 0.10044 | -0.00311 | -0.00311

0.48397 [ -0.00007 | 0.16032 | -0.00156 | -0.00156 | -0.00002 | 0.22652 | -0.00018 | -0.00223 | -0.00005 | 0.14293 | -0.00140 | -0.00140 | -0.00005 | 0.10155 | -0.00098 | -0.00098

0.50000 | 0.00000 | 0.16052 | -0.00000 | -0.00000 | 0.00000 | 0.22680 | -0.00000 | -0.00000 | -0.00000 | 0.14311 | 0.00000 | -0.00000 | -0.00000 | 0.10168 | 0.00000 | -0.00000

0.51603 [ 0.00007 | 0.16032 | 0.00156 | 0.00156 | 0.00002 | 0.22652 | 0.00018 | 0.00223 | 0.00005 | 0.14293 | 0.00140 | 0.00140 | 0.00005 | 0.10155 | 0.00098 | 0.00098

0.55104 [ 0.00021 | 0.15855 | 0.00496 | 0.00496 [ 0.00007 | 0.22399 | 0.00058 | 0.00709 | 0.00017 | 0.14135 | 0.00444 | 0.00444 | 0.00017 | 0.10044 | 0.00311 | 0.00311

0.59884 [ 0.00039 | 0.15317 | 0.00954 | 0.00954 [ 0.00012 | 0.21631 | 0.00110 | 0.01361 | 0.00031 | 0.13653 | 0.00853 | 0.00853 | 0.00031 | 0.09707 | 0.00598 | 0.00599

0.65116 [ 0.00055 | 0.14346 | 0.01436 | 0.01436 | 0.00018 | 0.20246 | 0.00166 | 0.02047 | 0.00043 | 0.12785 | 0.01284 | 0.01284 | 0.00044 | 0.09097 | 0.00902 | 0.00903

0.69896 [ 0.00064 | 0.13126 | 0.01853 | 0.01853 [ 0.00021 | 0.18508 | 0.00214 | 0.02636 | 0.00051 | 0.11695 | 0.01656 | 0.01656 | 0.00052 | 0.08329 | 0.01166 | 0.01167

0.73397 | 0.00068 | 0.12042 | 0.02138 | 0.02138 | 0.00022 | 0.16967 | 0.00246 | 0.03036 | 0.00054 | 0.10727 | 0.01910 | 0.01910 | 0.00055 | 0.07646 | 0.01348 | 0.01349

0.75000 [ 0.00069 | 0.11496 | 0.02262 | 0.02262 [ 0.00022 | 0.16191 | 0.00260 | 0.03210 | 0.00054 | 0.10238 | 0.02020 | 0.02020 | 0.00056 | 0.07301 | 0.01427 | 0.01428

0.76603 [ 0.00069 | 0.10918 | 0.02382 | 0.02382 | 0.00022 | 0.15372 | 0.00274 | 0.03376 | 0.00054 | 0.09723 | 0.02126 | 0.02126 | 0.00056 | 0.06936 | 0.01503 | 0.01504

0.80104 [ 0.00066 | 0.09559 | 0.02625 | 0.02625 | 0.00021 | 0.13446 | 0.00301 | 0.03714 | 0.00052 | 0.08510 | 0.02341 | 0.02341 | 0.00054 | 0.06077 | 0.01660 | 0.01661

0.84884 [ 0.00058 | 0.07503 | 0.02912 | 0.02912 | 0.00018 | 0.10543 | 0.00333 | 0.04107 | 0.00045 | 0.06678 | 0.02595 | 0.02595 | 0.00047 | 0.04775 | 0.01846 | 0.01847

0.90116 | 0.00042 | 0.05037 | 0.03155 | 0.03155 | 0.00013 | 0.07069 | 0.00359 | 0.04437 | 0.00033 | 0.04481 | 0.02809 | 0.02809 | 0.00034 | 0.03209 | 0.02005 | 0.02006

0.94896 [ 0.00023 | 0.02640 | 0.03299 | 0.03299 | 0.00007 | 0.03703 | 0.00375 | 0.04629 | 0.00018 | 0.02348 | 0.02935 | 0.02935 | 0.00019 | 0.01683 | 0.02100 | 0.02101

0.98397 | 0.00007 | 0.00834 | 0.03349 | 0.03349 | 0.00002 | 0.01169 | 0.00380 | 0.04695 | 0.00006 | 0.00741 | 0.02979 | 0.02979 | 0.00006 | 0.00532 | 0.02134 | 0.02135

1.00000 | 0.00000 | 0.00000 | 0.03355 | 0.03355 | 0.00000 | 0.00000 | 0.00380 | 0.04703 [ 0.00000 | 0.00000 | 0.02984 | 0.02984 | 0.00000 | 0.00000 | 0.02138 | 0.02139

Another interesting observation is that VTMBT is stiffer than NTMBT (above certain load) in
term of transverse deflections for NV = 0.01, while NTMBT is stiffer than VTMBT for N = 0.5.

This can be explained by the definitions of nonlinearity in two theories. In NTMBT the nonlinearity
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arises due to the strain definition:

dul dwl dol
T(s) — (220 _ T 0 x
Ca (dx ydx)+zdx

while in VITMBT the nonlinear strain is defined as:

3

dul 1 (dwl\>  doT
T(s):ﬂ _(w0> + ¢x

r dx 2\ dx dx

It is clear that nonlinearity in VIMBT is independent of the microrotations, while in NTMBT
it is due the combination of both microrotations and the rotations of normals to the axis of the
beam. Since for lower coupling number, N = (.01, the microrotations are small in NTMBT,
the effect of nonlinearity is not severe. However, the nonlinearity in VITMBT being independent
of the microrotations and also microrotations being equal to macrorotations, the nonlinearity is
severe compared to NTMBT and thus predict stiffer deflections. Towards the other end of coupling
number spectrum, say N = 0.5, both theories predict @/}3 ~ w!. However, NTMBT is stiffer than
VTMBT at such conditions as is evident from factor % in the nonlinear strain definitions of the two
theories. This is further illustrated in Fig. 2.5, where nonlinearity in deflections for the two theories
are compared to the deflections from linear Timoshenko micropolar beam theory (LTMBT). It also
shows that nonlinearity begins sooner in NTMBT than in VTMBT with increasing load.

Lastly, Fig. 2.6 compares the transverse deflections, microrotations and macrorotations pre-
dicted by VIMBT and NTMBT for a range of coupling numbers. It can be clearly seen that at
lower values of coupling number the bending stiffness predicted by VITMBT is higher than that
predicted by NTMBT, while it is the other way around at higher values of coupling number. Fur-
ther, Fig. 2.6b shows that the magnitude of microrotations is small compared to macrorotations
for lower coupling numbers and increases with increasing coupling number when NTMBT is used
to model the beam. However, when VTMBT is used, microrotations are equal to macrorotations
irrespective of the coupling number. The behavior predicted by NTMBT concurs with theory mi-

cropolar elasticity even at lower values of coupling number, while this is not the case with VTMBT.
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Thus, for materials with low micropolar coupling, NTMBT is more appropriate than VTMBT.

wg(z/L = 0.5) [mm]
wg(z/L = 0.5) [mm]

qo [N/m] qo [N/m]

Figure 2.5: Load vs maximum transverse deflections of a beam with pin-pin boundary conditions
subjected to uniformly distributed load on top (H = 0.3099 mm and L/H = 50). (a) N = 0.01

and (b) N = 0.5 [3].
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Figure 2.6: Comparison of VTMBT and NTMBT for a beam with pin-pin boundary conditions,
subjected to uniformly distributed load, ¢y = 17.5 N/m, on the top (H = 0.3099 mm and L/H =
50). (a) N vs w{ (x/L = 0.5) and (b) N vs |¢] (x/L = 0.25)| and N vs |w” (z/L = 0.25)] [3].
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3. NONLINEAR MICROPOLAR PLATE THEORIES

3.1 Introduction

In this section we will utilize the first order shear deformation (FSD) plate theory of classical
Cauchy continuum to construct the plate theory for micropolar continuum. Let the plate considered
be such that its mid plane coincides with the x-y plane of the coordinate system considered, while
the z-axis will be pointing in downward direction. The length of the plate is L, breadth of the plate
is B and height of the plate is /. The displacement field of FSD micropolar plate theory is based
on the same assumptions of FSD plate theory of classical continuum (i.e., the assumptions that the
planes perpendicular to the axis of the plate remain plane after deformation and are in-extensible

are still valid). Thus the displacement field is given by

ul(x7y7 Z) = UO<£IZ',y) + Z(bI('T? y)
ug(x,y, 2) = vo(x,y) + 2¢, (7, y) (3.1.1)

U3($, Y, Z) = wO(I7 y)

We assume that only the  and y components of the microrotation are non-zero and that they only
depend on x and y coordinates.
i(2,y, 2) = a(z,y)
Vo, y, 2) = Y, (x,7) (3.1.2)
Ys(z,y,2) =0
This approximation implies that the planes normal to the mid-plane of the plate are made of par-
ticles which can only rotate about z and y axes. Thus ¢, and ¢, represent the rotation of these
planes about y-axis and z-axis respectively, while ¢, and 1), represents the rotations of the particles

within this plane about x-axis and y-axis respectively.
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3.2 von Karman nonlinearity and corresponding governing equations

For a Cauchy continuum plate, to account for the moderate rotations while still considering
displacement gradients to be small, the nonlinear terms of the Green-Lagrange strain tensor that
correspond to the product of rotations of fibers perpendicular to the mid plane of the plate are
retained. The resulting plate equations after this modification to the strains are called von-Kdrméan
nonlinear plate theories of classical continuum [107]. In classical continuum the von-Karman

nonlinearity leads to the following nonlinear strains (of classical continuum):

_ Oup 1 (3w0)2+28¢x

v = e T2\ or O
o 1 owp\? 99,
6yy_8y+2<8y> Ty

264y =

6%0 61}0 (‘3w0 (‘3w0 1 (8@ 6¢y>

oy T ox T o oy oy oz

If we extend the same argument to micropolar plates, that is, the displacement gradients are
small but the rotations of the fibers perpendicular to the mid plane of plate are moderate, we can
extend the von Karmén approximation of classical continuum plate to micropolar plate (see [6]).

This will result in the following modified strains of micropolar plate:
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ov, ou Owg Ow ¢ 0o,
9e(s) — (Y, o o Jwo 9y  O¢x
“ay (8w+8y+89& dy e 8x+8y
o) _ (Ot O (00 0%y
i dy Oz y ox 3B2.1)
22 = 6.+ 52)
x
ow
2e{t) = (¢x - 8_1,’0 - 2¢y)
ow
== (0 5)
0
260 = (cby - 2%)
- Oy e — 0y
Tr — o ’ Ty — ay
3.2.2
oo, -
Mya or Ty dy

If O'i(; ) , Jg-l) and r;; are the symmetric and anti-symmetric stresses and couple stresses conjugate

to modified 51(5») , 81(?) and 7),; respectively, we definie the stress, moment and couple stress resultants

acting on the plate as

( 3\ ( A\ / )\ / )

NS ol ML) o)
Ny 4ol Mgy E K
= dz, = zdz (3.2.3)
H H
Néz) 2 UQ(CZ) MQEZ) 2 a(vz)
N;,SZ) U%) Mx(g) Ug(f;)
\ J \ J \ J \ J
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( \ r 3\ ( \ r \
QH(ES) O'ZE"SZ) Py Txx
éa) g Ua(cC,Lz) ny % Tzy
= / dz, = / dz (3.2.4)
oo [ 4w P £,
) Yyz yx yr
z(/a) ‘7?52) By, Tyy
\ J \ J \ J \ J

The principle of virtual work for the micropolar plate with a distributed transverse load ¢y can be

written in terms of the resultants (3.2.3) and (3.2.4) as follows

odu ddwy Ow 909 ddvy ~ Adwy Ow
(s) 0 0 JWo o (s) 0 0 dWo
L%;{p@m ( or | or or ) MY N < oy "oy oy )
85¢ 85U0 85?}0 (%wo 0w0 8511)0 (‘9w0
()" Yy
M +N <8y +8x+ ox 8y+ Jy 8x)

dép, 00, ddug  Odwyg 06¢p, 009
(s) Y (a) _ (a) _ 77y
+ M (8x 8y)+Nzy<8y 8x>+M <(’3y Oox

+Qg(%ﬁww%)+Q®(§$ﬁﬁ%>+@p@%—a®m—%%)

ox
86w0 001y 001, a&py aazpy
2 P P,—— + P, P,
— qgéwg}dxdy =0 (3.2.5)

where A is the area of the plate. The governing equations of von-Karman micropolar plate theory
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are obtained by taking the Euler equations of the above variational statement (3.2.5) as

Sug : agv;(? + a% (NG + NWY =0 (3.2.6)
Sy : (% (NG — N9y + ag_f =0 (3.2.7)
Swo % (8_11;0 x(i) 88w0 éz)) (% (% éz) 3811;0 Ny(;))

+ a%(@? - Q)+ %(Q§f> ~Q) + a0 =0 (3.2.8)
5y : azé\ﬁ? + a% (M) + M) — QY — QW =0 (3.2.9)
5oy : (% (M) — M) + 6’%4_;55) —Q¥ —QW =0 (3.2.10)
Sty - a(%z + 8%’ —2Q!W =0 (3.2.11)
51 % + %ﬁ/’y +2Q9 =0 (3.2.12)

with the following natural boundary conditions

Q1 =NEn, + (N + N9 )n, =0

Qy = (N;;) _ Ngg)) Ny + N;;)ny =0

Qo sy Owo

Q?) (Q;*S) - Qa(lca) + ox sz + ay Nx(z)> Ny

s a (9w0 s 8w0 s
+ (Qé) - Qé '+ a_xN:Ey) + a_yNZSy)) ny =0

(3.2.13)
Qs = MEn, + (MY + M@)n, =0

Qo = (ML)~ M) e+ M, =0

Q6 = Pyppng + Ppyny =0

Q7 = Pyng + Pyny =0

where n, and n, are the x and y components of the directions cosines of the boundary.
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3.3 Micropolar nonlinearity and corresponding governing equations

In this section, rather than borrowing the von Kadrmdan nonlinearity of classical continuum to
account for the moderate rotations of the micropolar plate we will make appropriate approxima-
tions on the symmetric and anti-symmetric Cosserat deformation components of Eq. (1.1.12) to
reflect the condition of moderate rotations of fibers normal to the mid plane of plate while still as-
suming the displacement gradients to be small. Since the displacement gradients are small, except
for those that represent the rotations of fibers perpendicular to the mid plane of plate, we can make

the following approximation on the magnitudes of various terms of Egs. (1.1.12)

Uz, = O(\/ﬁ)a Qby, Gz = 0(\/5) 3.3.1)

where p<<1, a=1,2 and 2=1,2,3

Neglecting terms of order o(p) and higher in calculating the Cosserat deformation components
of Egs. (1.1.12) we will arrive at a nonlinear Cosserat deformation tensor which will represent

the moderate rotations and small displacement gradients of the micropolar plate. The resulting
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components of the Cosserat deformation gradient and wryness tensor are

ou
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2ay ( dy  Ox @%
ow
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stress resultants acting on the plate as
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; and m;; are the symmetric anti-symmetric stresses and couple stresses conjugate

e;;” and 7;; after moderate rotation approximation, we define stress, moment and couple

4 3\ 4 3\
o %Y
2 LA DY
= / dz (3.3.4)
H
§ el Do
Q@ (@)
\ Y 7 \ Y J



¢ \ ( \ r \ ( \
me) =% Pua o
m(s) H E(S) H
vy 2 yy SBa:y 2 | May
= / zdz, = / dz (3.3.5)
(s) - (5) -
May Yay Bz Mys
mﬂ(g/) ngczl/) Byy Myy
\ y, \ y, \ y, \ y,

The principle of virtual work for the micropolar plate with transverse distributed load g, can be

written in terms of the resultants (3.3.4) and (3.3.5) as follows

/ {m“ (_8§Zo - wyaa — 1y %wo) + ) 85% + o 2%
A

oov, oow 00 85¢
(s) [ 2220 0 y
M ( dy —wa —Hpm ) + o < 0y Ox )
ddu 851} 8(5w ow Odw
(s) 0 0 0 0 0
dou 8(51} 8(5w Odw
(@) [ X200 0 0 0
vy (G - B g - 0.5 5%6’%@)
+ Mm@ 909 _ 000y + Q¥ (66, + 85w0 Schy — Qowy _ 201,
Y\ Oy ox ox ox
00 (‘36 85 00ty
ot (5 ) 5 o) 0
061, 00 00
+ Pay Gw + ‘BW % +PByy—— % qodwo}dmdy =0 (3.3.6)

where A is the area of the plate. The governing equations of nonlinear micropolar plate theory are
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obtained by taking the Euler equations of the above variational statement (3.3.6) as

(5)
sug: e | O (M) + M) =0 (3.3.7)
or oy
0 o o)
ovg s - (O m;;) + a—yyy =0 (3.3.8)
8 S a a
dwy 5 (wy — v (NG - ) - (wm — 1y () + 9))
d
_ 9 a6 _q@y _ 9 gk _ @y, —
o (Qm Qi) 9 QY —9y) —q =0 (3.3.9)
OMD D 1) L gm0 _ oy
0bs: —5 =+ o (M) +m@) — QP —alw =0 (3.3.10)
9 o)
S5h. . — (5) _ oy(a) YY) e 33.11
by gy (M —MG) + =5 = - Q) - Q7 =0 (3.3.11)
) amzx am:ry (s) awO (s) awo (a) _
Ohyt — o — (M) — i) —— Bz inyya—y—my =0 (3.3.12)
Bya | By | 5290 | g29) | o(ary IW0 )
: ; ; a 29 = 3.1
51h, o 3 + 0+ (M) +91)) — o +200 (3.3.13)

with the following natural boundary conditions

Q1 =N, + (ML) +NY)n, =0
Q= (N — N n, +NEn, =0
9= [ - al - %m;zz + o () )] m

+ [QF) — Ql® + M) — (M) + N 0y, =0

[ y (N )]y a1

Q= Mn, + (M) + 93?5;;)) n, =0
Q5 = (ML) — M) ny + Mn, =0
QG = mx;tn;t + f‘]:;myny =0

Q7 = Pyane + Pyyny =0

where n,, and n,, are the x and y components of the directions cosines of the boundary.
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3.4 Finite element models

In this section we develop the weak-form Galerkin finite element model of the governing equa-
tions derived in sections 3.2 and 3.3. For the plate theories considered in this paper the primary
variables are (ug, Vo, Wo, Pz, Py, Yu, ). These variables are approximated using 2-dimensional
Lagrange interpolation functions L§1), L§-2), L§3), L§4), LSS), L§~6) and L§.7), respectively. Here 7 =
{1,2,...,n} where n is the number of nodes on a typical element. Since we are using weak-
form Galerkin finite element formulation, the weight functions wy, ws, w3, wy, ws, wg and wy used
in the development of the weak-form equations are taken to be the same Lagrange interpolations

functions used in approximating the primary variables [93]. Thus, we have,

Ug ~ inLgl)($7y)a 1U1($,y) = L,El)(,jﬁ’y)
j=1

v A i ViL? (x,y), wy(x,y) = L (2, y)
j=1

wom S WL i), ws(e,9) = L ()
j=1
j=1

Gy = zn: ®y; LY (3,y), ws(z,y) = L (z,)
j=1

% ~ i\IILEng@(%,y), wﬁ(xay) = LEB)({L',y)
j=1

by & i Wy, L (2, y), we(z,y) = L (,y)
j=1

where i = {1,2,3...n}. U;,V;,W,, ®z;, dy;, Yz; and Vy; are the nodal values of their respec-

tive primary variables on a typical finite element.

e von Karman micropolar plate theory (VMPT)

The weak-form equations of von Karmdn micropolar plate theory on a typical finite element
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(), are

8w1 s awl s a (e)
0= /Q e {%Ngg + gy (e Néy)>} drdy — f Qs (3.4.2)
0= %(N(S) _ N(a)) + %N(S) dxdy — Q(e)d (3 4 3)
= A 5 Ve 2y oy o xdy wal)y " ds 4.
811}3 8w0 awo
0= T3 [ ZZO () . 0 Ar(s) (s) _ Ol
/Qe{ax(ﬁx M+8y o @ Qs
0w3 0w0 s 8w0 s s a
—m (%J\Q; + a—yN;; + Q) — Q) — wsqy p dudy
- 7{ ws QY ds (3.4.4)
Le
Owy y sy OWa 1y 1e) 4 3@ (5) @
0= %Mm/‘ + a_y(Mxy + Mxy ) + w4Qx + w4Qx dxdy
Q
- ]f wiQds (3.4.5)
o= [ 2% e _ pp@y 4 9% g (9 @\ g
- 0 %( Ty my)+a_y Yy +w5Qy +w5Qy ray
- 7{ ws Q¥ ds (3.4.6)
Le
aWG aU)6 (a) (e)
0= %Pxx + a—nyy + 2w @, ¢ drdy — weQg ' ds (3.4.7)
Qe Le
a'LU7 a'l,U7 (a) (e)
0= %Pyx + 8_yPyy —2w:Q," ¢ dxdy — ¢ w.Q; ds (3.4.8)
Qe e
where QP (¢ =1,2,...,7)are the secondary variables on the boundary I'. of finite element

Q2. The definitions of the secondary variables are given in Eqs. (3.2.13). The stress, moment

and couple stress resultants in the weak-form equations can be written in terms of the dis-

placements, rotations and microrotations using the constitutive relations given in Appendix

A2

e Nonlinear micropolar plate theory (NMPT)

The weak-form equations of nonlinear micropolar plate theory on a typical finite element 2,
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are

0?1)1 s awl s a ©
0= /Q {%‘ﬁi} + 8—y(*n;y) + mg;)} drdy — j'{ wi Q7 ds (3.4.9)
aUJQ (s) (a) 8U)Q (s) ©)
0= 5y ) = NG)) + =0 dedy —  wpQy7ds (3.4.10)
Qe Y .

ow
{ (4, (M) — N) — M)+ 20 — Q)

Oz
ow
+8—y3 (N — b, (ML) + M) + Q) — Qlw) — wgqo} dady
- f w3 ds (3.4.11)
e
W) , O gnie) | gp@ (s) @
0= — M)+ — (M) + M) + w0 QY + w QW b dady
o, | Oz oy
- ]{ wiQVds (3.4.12)
0= Ows oms — op(@) Ows oms) Q) Q@4 drd
_Q %( zy ry)+a_y gy T Wsy” +wsd, ray
- f{ wsQ ds (3.4.13)
e
8w6 (911)6 8w0 (9w0
0= — 2+ =, =0 () _ eppla) ZOm(s)
/Qe{ axm + aymy"“wﬁax ( Ty xy)+w6ay vy
+ 2w6Q?(f)}da:dy — y{ wGQée)ds (3.4.14)
. 3w7 8w7 4 871)0 (s) awo (s) (a)
O_/Qe{ e+ B — w0r SN — S () + )
—2w7Q§a)}dxdy —j{ w ) ds (3.4.15)
where QEE) (2 =1,2,...,7)are the secondary variables on the boundary I'. of finite element

(2.. The definitions of the secondary variables are give in Eqs. (3.3.14). The stress, moment
and couple stress resultants in the weak-form equations can be written in terms of the dis-
placements, rotations and microrotations using the constitutive relations given in Appendix

A2

After using the approximations of the primary variables given in Eqs. (3.4.1) in the weak-form

equations (3.4.2)-(3.4.8) and (3.4.9)-(3.4.15) respectively, the nonlinear finite element equations
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on a typical element for both nonlinear theories can be written in the form

K©g(© _ F© (3.4.16)

where,

Kl K12 K13 K14 KI5 K16 K17
K21 K22 K23 K24 K26 K26 K27
K31 K32 K33 K34 K35 K36 K37
KO = [ga1 ge2 K43 K44 K45 K46 K47 (3.4.17)
K51 K52 K53 K54 K55 K56 K57

K61 K62 K63 K64 K65 K66 K67

K71 K72 K73 K74 K75 K76 K77

( y (e ¢ N (e

Fl
\% F?
W F?
g(le) — P Fe© — F4 (3.4.18)
by F5
Ty F¢
Ty F7
L ) L)

The non-zero components of the coefficient matrix (3.4.16) are given in Appendix B.2, for both

VMPT and NMPT.
3.4.1 Higher order finite elements

It is well known that lower order displacement finite elements for plates are prone to locking

[100, 103, 108] when quadrature rules that result in exact integration of element coefficient matrix
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are employed. Such locking phenomena are usually eliminated using selective full and reduced
integration techniques. In place of such numerical remedies, we employ higher order polynomials
in approximating the primary variables within an element. For such higher-order polynomials of
order n — 1 on a typical element, there are n nodes. However, when these nodes are equally spaced
the polynomial interpolations exhibit oscillations near the end points of the standard interval. This
phenomenon is called Runge effect. To overcome the Runge effect the use of an unequal spacing
of the nodes within each 1-D element was discussed in chapter 2. Similarly, we can obtain the
corresponding higher order elements in 2-D using tensor product of the vectors containing 1-D

interpolation functions in x and y directions (see [93]).
3.4.2 Solutions of nonlinear equations

The nonlinear finite element equations of (3.4.16) are solved using Newton’s iterative proce-
dure [100], by constructing the tangent stiffness matrix of a typical element at the beginning of "

iteration as

e _ [2;1((:;](T_1) (3.4.19)
such that

T Age = —RE©@"Y (3.4.20)
where

(r) (r=1)

R = KE©@ehy© —FE© and AUl =g _ g

The explicit expressions of the components of the element tangent stiffness matrix for all the
nonlinear theories considered in this chapter are given in Appendix B.2.

When the normalized difference between solution vectors from two consecutive iterations
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(measured with Euclidean norm) is less than a pre-selected tolerance, convergence is declared

and further iterations are terminated [100].
3.5 Numerical results

For the purpose of numerical analysis we consider a rectangular micropolar plate with the

following material properties:

A = 2.25 x 10° psi (15513.20 MPa), = 10° psi (6894.76 MPa)
3.5.1)

a=1001b (444.82N), [ =1001b (444.82N), ~ =6001b (2668.93 N)

For a given value of u, the material constant x plays an important role in determining the degree of
micropolarity exhibited by the material [105]. A dimensionless parameter called coupling number
(N) is usually defined to quantify the level of shear stress asymmetry, there by reflecting the degree
of micropolarity exhibited by the material [23, 106]. The coupling number is bounded below by
the classical elasticity and above by the so-called constrained Cosserat elasticity (or couple stress
theory), where in the microrotation is equal to the conventional rotation (macrorotation) [106]. To
bring out the effect of coupling number on the plate theories considered in this chapter, we consider
a range of coupling numbers and the corresponding value of « is calculated using the formula:

2uN?

M1 oN?

(3.5.2)

The length (L) of the micropolar plate is taken to be twice the breadth (B). Two different
boundary conditions are considered under the action of a uniformly distributed load gy: (a) simply
supported on all sides (SSSS) (b) clamped on all sides (CCCC). Since the boundary and loading
conditions considered here result in symmetry about z- and y-axes, we consider only the quarter
plate lying in the first quadrant as the computational domain (see Fig. 3.1). For such a compu-
tational domain the considered boundary conditions after symmetry arguments are listed in Table

3.1. Unless stated otherwise all the loads listed are on full plate.
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Full Plate

X

Computational Domain

Figure 3.1: Choice of computational domain for the bending analysis under considered boundary

and loading conditions.

Table 3.1: Various boundary conditions on the computational domain for bending analysis.

SSSS cccc

y=0 0o = by =y =0 vo = ¢y = s =0
y=B/2 | uo=wo=¢s=1y= "3;31; :01/: imo:

=0 g = by = thy =0 ug = ¢z =y =0
T=L/2 | vo=wo=dy=ih= R
O e T I
(L/2,0) Vo = wo = Py = Yo = “‘;,y:io(; Zowj ixoz
(0, B/2) up = wo = ¢z =Py =0 “Zpyzﬁoqﬁj iozz izo:
(baimfp)| O Ty
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3.5.1 Effect of coupling number

Consider a rectangular micropolar plate, with material properties given in Eq. (3.5.1), of thick-
ness H = 0.01220 in (0.3099 cm), length . = 50H and breadth B = L/2 under the action of a
distributed load ¢ = 5.0 Ib/in? (34473.7 N/m?) on the top face. To analyze this plate we use 16
elements of equal size on the computational domain. 4 elements along the x-axis and 4 elements
along the y — axis are used, with each element having 81 nodes, 9 along x-axis and 9 along y-axis

of the element. Further, we shall define the following dimensionless quantities:

Be,y) = wole ) o T y) = wole, y) 2 SV

w(x,y) =wo(r,y)—, u(x,y)=u(z,y)—:, =_V_ <

Y oY) o L Y el X VT B (3.5.3)
& o o H
Ty = Oy~ Oay = Opy) ——

Yol 7T gL

Fig. 3.2a shows the dimensionless transverse deflection of a clamped micropolar plate along the
line y = 0 for various values of coupling number N. Further, a comparison between the NMPT and
VMPT is also given. Similarly, Fig. 3.2b presents the dimensionless transverse deflection simply
supported micropolar plate along the line y = 0 for various values of coupling number. A com-
parison between NMPT and VMPT for simply supported boundary conditions is also presented
in Fig. 3.2b. It can be seen that an increase in coupling number is also causing an increasing the
bending stiffness of the micropolar plate as evident by the magnitude if the transverse deflections
for both NMPT and VMPT. Fig. 3.2 also tells us that for lower values of coupling numbers VMPT
predicts stiffer results compared to NMPT, while at higher values of coupling numbers the differ-
ence between the two theories is not significant in terms of transverse deflections. It should also be
noted that the difference between NMPT and VMPT does not only depend on the coupling number
but also on the type of the boundary conditions the plate is subjected as evident from Fig. 3.2.

Next, we examine the effect of coupling number on the in-plane displacement ug(z, v). Fig. 3.3a
presents the comparison between the dimensionless in-plane displacement @ along the line y = 0,
of a simply supported micropolar plate modeled using VMPT for various values of coupling num-

ber. It can be seen that the magnitude of the in-plane displacement u, decreases with increase in N
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Figure 3.2: (a) Dimensionless transverse deflection along the line y = 0 for CCCC boundary
conditions for various values of N. (b) Dimensionless transverse deflection along the line y = 0
for SSSS boundary conditions for various values of V.

when VMPT is used to model the plate. However, when the same plate is modeled using NMPT,
the magnitude of in-plane dimensionless displacement % first increases and then again starts to
decrease as evident by Fig. 3.3b.

Finally, we consider the in-plane symmetric and anti-symmetric shear stresses on the top face
of the micropolar plate. The stresses can be post-computed once the displacement filed is ob-
tained from the finite element solutions. Fig. 3.4a presents the comparison between the values of
dimensionless in-plane symmetric shear stress ngy) as obtained from VMPT and NMPT for var-
ious values of coupling number N, while Fig. 3.4b presents the comparison between the values
of dimensionless in-plane anti-symmetric shear stress Eg‘;) as obtained from VMPT and NMPT
for various values of coupling number N. It can be seen that the magnitude of in-plane symmetric
shear stress decreases with increase in coupling number for both VMPT and NMPT (see Fig. 3.4a).
However, the magnitude of in-plane anti-symmetric shear stress increases with increase in coupling
number for both VMPT and NMPT (see Fig. 3.4b). Further, note that the magnitude of in-plane

anti-symmetric shear stress predicted by VMPT is less than the magnitude predicted by NMPT for
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Figure 3.3: (a) Dimensionless deflection © of VMPT along the line y = 0 for SSSS boundary
conditions for various values of N. (b) Dimensionless deflection w of NMPT along the line y = 0
for SSSS boundary conditions for various values of N.

higher values of coupling number, while for lower values of coupling number (N = 0.01) the mag-
nitude of in-plane anti-symmetric shear stress predicted by VMPT is greater than the magnitude

predicted by NMPT.
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Figure 3.4: (a) Dimensionless in-plane symmetric shear stress Eg’y) on the top face of micropolar
plate along the line x = y for SSSS boundary conditions. (b) Dimensionless in-plane antisymmet-
ric shear stress 6&‘;) on the top face of micropolar plate along the line x = y for SSSS boundary
conditions.
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4. NONLINEAR FINITE ELEMENT ANALYSIS OF LATTICE CORE SANDWICH
BEAMS*

4.1 Introduction

In this chapter we will consider lattice core sandwich beams and their modeling using von Kar-
man Timoshenko micropolar beam theory discussed in chapter 2. We will review the kinematics
of the micropolar beam and then discuss the constitutive modeling of lattice core sandwich beams
as micropolar beams [1, 4]. Then the corresponding governing equations and the finite element
equations are derived. Finally, numerical results are presented to illustrate the accuracy of the

constitutive model and the corresponding finite element model.
4.2 Kinematics of micropolar beam

In this section we will review the Timoshenko micropolar beam kinematics considered in chap-
ter 2. The 3-D displacements and microrotations of the a micropolar beam are given in terms of

the center line variables (ug, wo, ¢, ¢,) such that

uy(z,y, 2) = ug(x) + 2¢.(x)

u2($7y72) = O
ug(z,y, z) = wo(z)
4.2.1)
wl(%%z) =0
1?2(55;%2) = wy(l’)
vs(z,y,z) =0

Here (u, wy) represent the axial and transverse displacements of the center line of the beam, while

¢, 1s the rotations of the fibers normal to the center line and 1, is the microrotations about y-axis.

*Part of this chapter is reprinted with permission from “Nonlinear finite element analysis of lattice core sandwich
beams” by P. Nampally, A. T. Karttunen, and J. N. Reddy, 2019. European Journal of Mechanics - A/Solids, vol. 74,
pp. 431-439, Copyright (2018) Elsevier Masson SAS.
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The corresponding linear strains and wryness tensor components are given by [44]

_dug do. _dyy
Exz = dx +z dx = Eux + 2K, Xzy = dx
dwo
=gy Y o = 0 = Yy

Further we define the symmetric and anti-symmetric shear strains as follows

dw
7;:5:cz+€zx:_0+¢x
dx
a d’wo ¢ +2¢
=Exz — Ezz = - Pz
’Yz dl‘ Yy

4.2.2)

(4.2.3)

We will be using von Kdrméan nonlinearity in modeling the lattice core sandwich beams. Hence

the nonlinear strains would be given by

d 1 (dwo\> dé, .

C dx dx dx
dw()
Exz = % + wy
Erx = be - 1/@
di
Xov =gy

4.3 Two-scale constitutive modeling of lattice beams

L L |

Web-core panel : .

s | | | | |

LA A e e 2-D web-core beam frame )"—"FJ

1-D micropolar beam F
aF - L Sy £

—_— Svin ‘
3 PO p— IVINmetrie Y

Laser stake-welded joints T sheay Antisvmmetrics

symmetric shear

Figure 4.1: Web-core lattice beam (Reprinted with permission from [4]).
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In this section we shall describe the two-scale constitutive model proposed in [1, 4] for web-
core lattice beams. Let us consider a web-core beam frame as shown in Fig. 4.1. The idea is
to replace this beam with a micropolar beam which will serve as Equivalent Single Layer (ESL)
beam model of the original web-core lattice beam. To achieve this, a unit cell of the web-core
beam is isolated and this unit cell is considered energetically equivalent to continuum point of the
micropolar beam. Fig. 4.2 shows the unit cell of web-core lattice beam along with the micropolar
beam (red line) which is intended to be ESL beam. The unit cell which is of length [ and height
h represent the periodic microstructure of the macro-structural beam (web-core beam frame) of

length L (I < L).

(¢ —35.0.-3) (¢+4$,0,-5)
40 : Q 3
x [ ’ttu’t;ta-,wz
*
zi h (,0,0)
1® O 2
(¢ —35,0,5) (¢+£,0,%)

Figure 4.2: Web-core lattice beam unit cell.

The red circle at the center of Fig. 4.2 is assumed to be point within the micropolar beam whose
strain energy is assumed to be equivalent to that of the strain energy stored in the unit cell. The first
step in establishing this equivalence of energy is to write the displacements and rotations of nodes
1, 2, 3 and 4 shown in Fig. 4.2 in terms of the displacements and microrotations at point (x, 0, 0)
of the micropolar beam. To achieve this we shall use Taylor series expansion up to order one on
each of the functions w;, ug and 15 about the point (x, 0, 0). Thus, if (X, Y, Z) is considered as the

coordinates of the nodes 1, 2, 3 and 4 of the unit cell, we can write the Taylor series expansion of
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a displacement component, say w1, of the micropolar beam as

ou ou
u (X,Y, Z) = uy(x,0,0) +(X—x)a—); JF(Z—())a—Z1 (4.3.1)
(2,0,0) (2,0,0)
The coordinates (X, Y, Z) take the following values depending on the node considered.
I h I h
Node I: (X,Y,7) = 1‘—5,0,5 , Node 2: (X,Y,Z7) = 1‘+§,O,§
4.3.2)
l h l h
Node 3: (X,Y,Z) = (x + 5,0, —§> , Node4: (X,Y,Z)= (x — 5,0, —5)
Thus, for noode 1 Eq. (4.3.1) can be written as
[l (Ouy hOop, h
—1/2,0,h/2) = —=|l==+= — g 4.3.3
o =1/2,0./2) = w(e) - 5 (G + 55 Cape| e

Now we shall us the strain-displacement relations of Egs. (4.2.2)-(4.2.3) in the above equation to

obtain

[ h h {1
w1200/ = w0~ L (44 In) + 1 [oi-oman] @

In a similar fashion as explained above we can obtain the displacements and rotations of all the

four nodes of the unit cell using the Taylor series expansion. These can be compactly written as

(o 1/2,0,40/2) = unlo) £ 5 (<t s ) £ |5 020 H (el @)

2 2 212
; [ 11
) o 1/2,0,h/2) = wale) £ 5 |5 024 98) = 4 @36)
08 (e £ 1/2,0,%h/2) = 6, (2) % 5y @37)

where the superscript (i) on u;, us and 1, represent the node number of the unit cell. For example,

ugl) represents the displacement u; at node 1. The displacements of the unit cell nodes can be
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written in a vector form as follows:

T
1 1 1 2 2 2 3 3 3 4 4 4

Us 1 3 2

(4.3.8)

The vector d can be further broken into two parts, one corresponding to micropolar beam
displacements and microrotations, while the other corresponding to the strains of micropolar beam

as given in Eqgs. (4.2.2)-(4.2.3).

d=d,+d.=T,u+Te (4.3.9)
where
- 9T
-0 o {£ 00 L 00 -f 0 o
—M0 0o B o0 -Zo00 2 0 o0
e I R PR R NI I U I @310
I U I U U S
o 0o -t o ol o oift o 0o -4
1001 0 1 0 0 1 00
0100 1 0 1 0 0 10
T, = (4.3.11)
0000 O 0 0 0 0 00
holop b _L | _h _I holog
_2 2 2 2 2 2 2 2 ]
e={ele Ko N Vo Xy} (4.3.12)
u={uy wy ¢z P} (4.3.13)
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If the unit cell is considered as a beam frame made of four classical Euler-Bernoulli beam
elements, we can attribute the displacements and microrotations ugi), u$) and wg“ at the nodes of
the unit cell as the displacements and rotations of the Euler-Bernoulli beams of the beam frame at
these points (nodes). Thus, the microrotations of the ESL micropolar beam are being mapped as

rotations (slopes) of the Euler-Bernoulli beam elements which the unit cell is assumed to be made

of. The four Euler-Bernoulli beam elements are as follows:

EB-Beam 1: Node 1 to Node 2, Young’s modulus = F¢, Second area moment = [
EB-Beam 2: Node 2 to Node 3, Young’s modulus = E,,, Second area moment = [,
EB-Beam 3: Node 3 to Node 4, Young’s modulus = E;, Second area moment = [
EB-Beam 4: Node 4 to Node 1, Young’s modulus = F,,, Second area moment = [,

Here, EB-Beam 1 and EB-Beam 3 are of the same material as the face sheets of the lattice panel
while EB-Beam 2 and EB-Beam 4 are of the same material as the core of the lattice panel.

Now that we have the displacements of the unit cell nodes in terms of the strains, displacements
and microrotations of the ESL micropolar beam, we seek to write the stiffness matrix of the unit

cell so that the total strain energy stored in the unit cell can be written as
L7
W = §d Kd (4.3.14)

To achieve this we first write the displacement finite element stiffness matrix of each of the Euler-
Bernoulli beam element (see [93]) of the unit cell. For example, if we consider EB-Beam 1 and

EB-Beam 3 without any additional rotational stiffening [4, 1], we have the following stiffness
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matrix

Afl2 Afl2
21, 21,

0 6 —3l 0 —6 =3l

B 2E 1 0 -3l 2 0 3 P

Ky E (4.3.15)
Arl? Apl?
5= 0 0 F= 0 0
0 -6 3l 0 6 3l

0 -3 I 0 31 202

where Ay is the are of cross section of EB-Beam 1 and EB-Beam 3. Now the total stiffness matrix
of the unit cell can be obtained by assembly of Euler-Bernoulli beam elements of unit cell (see
[93]). Substituting the total stiffness matrix K and displacement d from Eq. (4.3.9) it can be easily

seen that

1 1 1
W= §clTKd = EdZKdE = EeTTET KT.e (4.3.16)

Let us now define the strain energy density (per length of unit cell) as

1 1
D= 1éCe  ©= TIKT, (43.17)

Since the web-core beam frame and ESL micropolar beam are assumed to be energetically
equivalent, the strain energy density of unit cell given in Eq. (4.3.17) is equal to the strain energy
density of the ESL micropolar beam. Assuming hyper elastic constitutive behavior of ESL mi-
cropolar beam we can write the constitutive relations of the micropolar beam as relations for the
micropolar beam as

_ I

s=%_10

0é ~ 20e

(e'Cé) = Ce, (4.3.18)

where S is now the stress resultant vector of the 1-D micropolar beam and for the lattice structures
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considered here (web-core, hexagonal, Y-frame, corrugated) Eq. (4.3.18) takes the following form:

( Nga \ -011 Cip O 0 015- 5235 \
M, Cia Cp 0 0 Cy Kz
Q=10 0 Cu Cu 0] ¢ (4.3.19)
Q5 0 0 Cs Cu O Vs

\ P, ) _015 Cy 0 0 055_ [ Xey |

where N, is the axial force, M, and P,, are the bending and couple-stress moments, respectively,
and ()7 and ()} are the symmetric and anti-symmetric shear forces.

If the web-core of the lattice structure are laser welded to the lattice structure faces, then the
Euler-Bernoulli beam elements of unit cell EB-Beam 2 and EB-Beam 4 may have additional rota-
tional stiffness. This can be modeled by adding rotational springs (of some known stiffness ky) to
these two beam elements, there by increasing their rotational stiffness [4, 1]. For one such web-core
lattice structure with the properties £y = 212 GPa, F,, = 200 GPa, ky = 2675 Nm and v = 0.3
for the face and web Young’s moduli, rotational joint stiffness and Poisson ratio respectively, we

can write the constitutive relation (4.3.19) as follows

( Nyo \ _2EfAf 0 0 0 0 | regm \
M, Ay e 0 0 c i
Q (= GEfl{;Jr@ 6Eflf2f*@ 0 1 s (4.3.20)
Qs SYM s 0 Ya
x P,y ) i 2E;1¢ + @_ \Xxy)
where
3B Iykol
— m (4.3.21)
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Figure 4.3: Unit cells of hexagonal, Y-frame and corrugated lattice core sandwich beams. The
latter two are modeled according to [5].

For the other cores displayed in Fig. 4.3, Young’s modulus and Poisson ratio are &/ = 210 GPa

and v = 0.3, respectively. Other relevant parameters are given in Fig. 4.3. The hexagonal core

includes two mid-nodes in addition to the four corner nodes that need to be taken into account

essentially to ensure connectivity between neighboring unit cells on the micropolar continuum

level. Static condensation is applied at the inner nodes of the unit cell. It is difficult to obtain a

meaningful symbolic form for the hexagonal constitutive matrix, in numerical form we have

4.26438 x 107

0

0

340740

0

0

27.1761

0 0

94735.4 8319.08

8319.08 3315.25

0 0

0

27.1761

0

0

44.3467

(4.3.22)

The constitutive matrix (4.3.22) is of the same form as that of the web-core with the exception that
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for the hexagonal core C'33 # Cy4. For the Y-frame and corrugated cores we obtain

and

Cy

Ccorr -

-1.26053 x 108 11696.2 0 0 5292.50-
11696.2 6.10097 x 10° 0 0 1164.35
= 0 0 42094.9 9541.42 0
0 0 9541.42 5302.30 0
5292.50 1164.35 0 0 1012.92
-1.26018 x 108 —3902.45 0 0 —3902.45
—3902.45 6.09926 x 10° 0 0 858.539
0 0 2.09792 x 107 3734.96 0
0 0 3734.96 5078.42 0
—3902.45 858.539 0 0 1334.05

(4.3.23)

. (43.24)

respectively. The axial and classical sandwich bending stiffnesses in Eqs. (4.3.22)—(4.3.24) are

practically given by C1; ~ 2EA; and Cyy & EArh?/2, respectively. We see that due to the lack

of symmetry about the x-axis, the coupling terms C'» and C'y5 appear in the constitutive matrices of

the Y-frame and corrugated cores. In addition, the symmetric shear stiffness Cs3 of the corrugated

core is very high in comparison to that of the other cores because the corrugated lattice core has

a stretch-dominated shear-carrying mechanism while the others cores are bending-dominated. In

other words, when bent, the constituents of the corrugated lattice core act as axial rods without

significant bending so that the core is very stiff. Finally, it is easy verify that all eigenvalues of

each constitutive matrix above are positive which means that the matrices are positive definite.

It follows that each lattice core material is stable in the conventional sense (i.e., strain energy is

positive for nonzero strains).
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4.4 Governing differential equations

The governing differential equations of geometrically nonlinear micropolar beams and plates

are derived using the principle of virtual work [102], which can be stated as follows:
OW =Wy —Wgr =20 (4.4.1)

where W7 is the potential energy due to internal forces (force stresses and couple stresses) and
W is the potential energy due to the externally applied forces. Writing Eq. (4.4.1) in terms of the

stress resultants and virtual strains, we get:

L L
/ [NpwOEL, + Myplkipy + Q5675 + Q107 + PrybXay|dr — / godwodr = 0 (4.4.2)
0 0

The virtual strains can be written in terms of the virtual displacement using the strain displace-
ment relations of Eq. (4.2.3) and Eq. (4.2.4). After expressing Eq.(4.4.2) in terms of the virtual
displacements and virtual microrotations, the governing differential equations of equivalent single
layer micropolar beam are obtained by taking the Euler-Lagrange equations of Eq. (4.4.2). These

are listed below.

ANza

Sug : =0 (4.4.3)
dx
d (d d(Q)? a
suwg: (Mo ) Ut (4.4.4)
dz \ dx dzx
dM,,
0y : —-Q;+ Q=0 4.4.5)
dx
dP,
9y, v _ 2Q5 =0 (4.4.6)
dx

Here ¢o(x) is the distributed load acting on the top of the beam. The governing equations (4.4.3)-
(4.4.6) can be further expressed in terms of the displacements and microrotations by using the

general constitutive relation Eq. (4.3.19).
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4.5 Finite element formulation

To develop the weak form Galerkin finite element model we construct the weak form equa-
tions of (4.4.3)-(4.4.6) on a typical element of the beam, 0, = (z,, ;). The primary variables
(uo, wo, ¢s,1,) are approximated using 1-D linear Lagrange interpolations functions LE-O‘) [93],
where (o = 1,2, 3,4). Since we are developing weak form Galerkin finite elements, the weight
functions w; (i = 1,2,3,4), used in constructing the weak form equations are taken to be 1-D
linear Lagrange interpolation functions used in approximating the primary variables [93]. Thus we

have

4
wo S UL (@), wi() = L (x)
j=1

4
wom Y WiLP(z),  wa(z) = L (v)
le 4.5.1)
b0 =3 0, LP(2),  wy(z) = LY ()
j=1

4
Gy S Uy L @),  w(e) = L)
j=1

Now we write the weak form equations of the micropolar plate governing equations (4.4.3)-(4.4.6)

on a typical element €0, = (z,,x}) as

Ty d
/ [%Nm] dr — w1 (2a)Q1 — wa(w)Qs5 = 0 (4.5.2)
o I dws dwy dwo s .
/xa {dw (Nm T ) +— (@ + Q)| do
B / Qow2dr — wy(4)Qa — wa(xs)Qs = 0 (4.5.3)
Tp d
/ {%Mm +ws(Q; — Qg)} dr — w3(24)Q3 — w3 (xp)Q7 = 0 (4.5.4)
Tp d
/ {%P =t 2“’46’9?:] d — wi(ra)Qa — wa(2p)Qs = 0 (4.5.5)

After using the general constitutive relation of Eq. (4.3.19) in the above equations to express the

stress and couple stress resultants in term of the displacements and microrotations, the finite ele-
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ment equations for typical beam element can be expressed as

where

Kll
K21
K31

K41

K12
K22
K32

K42

K13
K23
K33

K43

K14
K24
K34

K44

K©yle) — gle

(e)

75

Fl
F2

FS

F4

(4.5.6)

(4.5.7)



The stiffness coefficients Kf‘jﬁ and force coefficients I (o, 8 = 1,2,3,4 and 7,5 = 1,2) are

defined as

o ar®dLi
11 _ ;
Kij —/xa {Cn I d; dz

L[ dwy\ dLM dL?
g1 / o L’ ALy | |
%) 2 v {Cll ( dx dx dx X

- [ ot
K2 = /:” {011 <dCZ;o) dg) dfl,il) } .

kp =3 " {on (S2) SR  wre [ i acu v 2
= [ e () S0 o [ {icw e S o

K= / {015 (d;;o) dfg) dde) } dz +2 / {(034 - 044>d§—?L§4)} da

K = /:b {Cudsf) ddLil) } .

= [ o () S oo [ {0 cwnn b

dL® dr'? o
Cz2 ; — pdr+ / {(033 + 044)[/53)[/;-3)} dx

wf ar®dri 7
= [ et e [ e oo
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1o dwo\ dL{ dL'? = dL}
42 0 i (4)
K’L] — § /Za {Cls ( dx ) dx d;;- dx + 2 \/a;a (034 + 044) L’L ﬁ d!)ﬁ'
e Y A P L dr+2 [ (O CotPL® ) d
ij = . B de T+ . {( 30 — Cu) ;7 L } x

o 4 4
de + 4/ {CurL{"} de

F}l = QLM (wa) + Q5L ()

Tp
F = / go() LY d + Qo Ly () + Qe Ly (ws)
F? = Q3L (2,) + QL (1)

F' = Q4L§1)(~’Uu) + QBLEI)(%)

4.5.1 Solution of nonlinear equations

The nonlinear finite element equations (4.5.1) are solved iteratively using the Newton’s itera-
tion procedure (see [100]). The linearized element equation at the beginning of the " iteration

will take the form:

e _ BIZ_S } ey (4.5.8)
such that

T Age = RO (4.5.9)
where
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The explicit expressions of the components of the element tangent stiffness matrix are
B _ B
Ty = K
except for the following terms

1 [* d dL
7’52:[(3]2_'__/ {Cll Wo dx

2 dx

, w1 [ dwo dL?)
7 _ g b / 0., o
ij i T 9 o { 12 dz
1 [ dw dr

T2 _ e b / 0, dwo

ij ij T 2/ 15 dr

@ dug dL<2> dLy @y dwy \2dL? dL?

T22 — K22 / Cpy—2 d / C 0 i I Yy

K Zi - Wdr dx d.r v - U\ dz dr dx v

wf d,dr? dLy wf o di,dr® dL
T [ d Y ) J d
+ /xa {Om dr dx dx v /xa s dr dxr dx v

After the element equations are computed, they can be assembled according to the nodal con-

QU
5]

dx

nectivity of the mesh to obtain global equations. Boundary conditions are imposed on the global
equations and subsequent equations are solved to obtain the global incremental generalized dis-
placement vector A4l at the end of r** iteration. The normalized difference between solution
vectors from two consecutive iterations, measured with Euclidean norm, is computed at the end of
each iteration. If the value computed is less than a preselected tolerance "tol’ further iterations are
terminated and nonlinear convergence is assumed (for all the nonlinear cases considered we chose

tol = 1073)

AL AL

a0 go St

Once the nonlinear convergence is attained, the final global generalized displacement vector is

78



obtained using
U = AY 4 D (4.5.10)

4.5.2 Shear and membrane locking

In chapter 2 we considered higher order interpolation functions to eliminate shear and mem-
brane locking. In this chapter we shall use linear Lagrange interpolation functions on all the
primary variables and employ reduced integration technique to eliminate locking. In the thin beam
limit, when linear interpolation is used for wy, the cross-sectional rotation ¢, should approach
— (dwyg/dx), which is necessarily constant. But since ¢, is also interpolated as linear, it can never
be constant. This inconsistency causes what is known as shear locking (see [100]). To avoid this
inconsistency, we may use equal interpolation on both wy and ¢, but treat ¢, as constant while
evaluating the symmetric v, and anti-symmetric 75 shear strains. This amounts to using reduced
Gauss quadrature rule in evaluating the integrals containing constants C's3, C's4 and Cy4 while com-
puting the element coefficient matrices of Eq. (4.5.6) and Eq. (4.5.9).

When von Karman nonlinearity is included, there is coupling between 1 and w, which causes
the beam to undergo axial displacement even when there are no axial forces. But in the case of
hinged-hinged beam, there are no constraints on ug at the boundaries, thus causing the beam to roll

over freely without axial strain, i.e,

du. 1 [ dwy)?
0 270 2 (20
K d:c+2<dx) 0

In order to satisfy this we need
dUO dU)() 2
dx dx

In essence, we need to have the same degree of polynomial variation on both (dug/dz) and

(dwq/ dm)z. But when equal interpolation of degree greater than one is used for both uy and wy
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this criteria cannot be satisfied and leads to what is known as membrane locking (see [100]). To
overcome this we have to treat (dwo/dz)> as same order as (dug/dx). This is achieved using re-
duced integration while evaluating all the nonlinear terms of the element coefficients matrices of

Egs. (4.5.2) and (4.5.3).
4.6 Numerical bending examples
4.6.1 General Setup

The developed micropolar beam finite element model is used for bending analysis of lattice
core sandwich beams. The four structural cores considered in section 4.3 are used in the calcula-
tions. Both geometrically linear and nonlinear cases are analyzed using the 1-D beam model. 2-D
reference solutions are computed using Euler—Bernoulli FE beam frames modeled by Abaqus; the
pins in simply-supported cases are at the central axis of the 2-D frame so that the model corre-

sponds to 1-D cases.
4.6.2 Bending of a web-core beam

A beam consisting of 24 web-core unit cells is considered first. The length of each web-core
unit cell is [ = 0.12 m resulting in a total beam length of L = 2.88 m. The beam is analyzed for
two different boundary conditions, namely, a fixed-fixed case and a three-point-bending setup. For
the fixed-fixed case the boundaries are subjected to the following conditions:

r=0:uy=0,wy=0,¢0, =0,¢, =0
(4.6.1)

x=0L:uy=0,wy=0,¢0, =0,¢, =0
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Figure 4.4: (a) Maximum transverse deflection of a fixed-fixed web-core beam subjected to a
uniformly distributed load. (b) Maximum transverse deflection of a web-core beam under three-
point-bending [5].

A uniformly distributed load ¢ is exerted on the beam. The load is applied in increments of
Agop = 50 N/m until a maximum load of 1000 N/m is reached. The maximum deflection, which
occurs at the center of the beam, is recorded against the corresponding applied load. The results
for both linear and nonlinear cases are plotted in Fig. 4.4a. The nonlinear deflections are smaller
than the linear deflections at large loads because, as the load increases, the internal forces resisting
the deformation increase in a nonlinear fashion.

For the three-point-bending case the boundaries are subjected to the following conditions:

x=0:uy=0,wp=0,My =0,FP, =0
(4.6.2)

r=0L:uy=0,wy=0,M; =0,P, =0

Here, instead of a uniformly distributed load, a point load Fj is applied at the center of the beam.
The point load is applied in increments of AFy = 50 N until a maximum load of 1000 N is

reached. The maximum deflection, which occurs at the center of the beam, is recorded against
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the corresponding applied load. The results from the finite element model developed here for the
1-D equivalent single layer beam are compared with the 2-D FE results (see Fig. 4.4b). Note
that ABAQUS uses a more complete Green-Lagrange strain tensor for the geometrically nonlinear
beam element, whereas in the present finite element model developed in this study the nonlinearity

is included in the form of von Kdrman strains.
4.6.3 Fixed-fixed hexagonal and Y-frame core beams

Here we consider two beams, one made of 48 hexagonal core unit cells and the other made of
30 Y-frame unit cells (see Fig. 4.3). Thus, the total length of the hexagonal core beam is L = 7.2 m
and the length of Y-frame core beam is L = 15.9 m. Both the beams are subjected to a uniformly
distributed load ¢y. Fixed-fixed boundary conditions (4.6.1) are applied at the beam ends. For
the hexagonal core beam the load is applied in increments of Agy = 75 N/m until a maximum
load of 1500 N/m is reached, while for the Y-frame core beam the load is applied in increments of
Agqo = 5 N/m until a maximum load of 100 N/m is reached. The maximum transverse deflections,
which occur at the beam centers, are recorded and plotted against the corresponding applied load

in Figs. 4.5a and 4.5b.
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Figure 4.5: Maximum deflection of a (a) Y-frame and (b) hexagonal core sandwich beams sub-
jected to a uniformly distributed load under fixed-fixed boundary conditions [5].

4.6.4 Fixed-fixed corrugated core beam

A beam consisting of 30 corrugated core unit cells is considered. Since the length of each
corrugated unit cell is [ = 0.53 m, the total length of the beam is L = 15.9 m (see Fig. 4.3).
The beam is subjected to fixed-fixed boundary conditions (4.6.1). A uniformly distributed load ¢
is applied on the beam. The load is applied in increments of Agy = 50 N/m until a maximum
load of 1000 N/m is reached. The maximum vertical deflection of the beam is plotted against the
corresponding applied load in Fig. 4.6a. The error in the maximum vertical deflection is calculated

using,

1—D micropolar U)2_D beam frame

Awy = 100 x | 20 0 (4.6.3)

U)(Q) — D beam frame

and is plotted against the applied load for both the linear and nonlinear cases in Fig. 4.6b.
Unlike the other structural cores, we see that the nonlinear deflections of the corrugated core

beam, calculated using the finite element model developed for the 1-D equivalent single layer
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beam, are not in good agreement with the 2-D beam frame results all the way. This is due to the
local buckling of the stretch-dominated corrugated core that occurs in the 2-D model. The 1-D
equivalent single layer model cannot account for this local buckling.

We also note that even though the lengths and heights of both corrugated core and Y-frame
core beams are equal, the corrugated core beam is much stiffer than the Y-frame core beam. The
maximum nonlinear deflection for the Y-frame core beam subjected to fixed-fixed boundary condi-
tions is 88 mm at a uniformly distributed load of 100 N/m (see Fig. 4.5a), while for the corrugated
core beam the maximum deflection for a uniformly distributed load of 100 N/m is only 2.9 mm
(see Fig. 4.6a). The high stiffness of the corrugated core beam is attributed to its stretch-dominated
behavior unlike Y-frame core which is bending-dominated. The corrugated core has a very high
shear stiffness because of the fact that the elements (the Euler-Bernoulli beam elements within the
core structure) of the corrugated core act essentially like rods and do not bend much, where as
this is not the case in the Y-frame core. Although the elements of the part which resemble the
corrugated core (the upper ‘V’ part of ‘Y’) in the Y-frame core do not exhibit lot of bending, the

remaining part, consisting of lower element, undergoes significant bending.
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Figure 4.6: (a) Maximum deflection of a corrugated core sandwich beam subjected a uniformly
distributed load under fixed-fixed boundary conditions. Local buckling occurs in the 2-D reference
model near ¢ = 500 N/m which cannot be accounted for by the micropolar 1-D model. (b) Per-
centage error of 1D beam model developed, in terms of maximum vertical deflection relative to
2D-beam frame solution (face sheet deflection) calculated using ABAQUS [5].
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5. NONLINEAR FINITE ELEMENT ANALYSIS OF LATTICE CORE SANDWICH
PLATES*

5.1 Introduction

In this chapter will consider lattice core sandwich plates and their modeling using von Kar-
man micropolar plate theory discussed in chapter 3. We will first review the kinematics of the
micropolar plate and then we give the constitutive models of web core lattice plates and pyramid
core lattice plates modeled as micropolar plate [9, 6]. Then the corresponding governing equations
and finite element equations are derived. Finally numerical results are presented to illustrate the

accuracy of the constitutive modeling and the corresponding finite element formulation.
5.2 Kinematics of micropolar plate

In this section we will review the micropolar plate kinematics considered in chapter 3. The 3-D
displacements and microrotations of a micropolar plate can be approximated by 2-D midsurface

kinematic variables (ug, vo, Wo, @z, @y, ¥z, ¥y) so that

ur(z,y, 2,t) = up(x,y,t) + z2é.(x, y,t)
us(x,y, 2,t) = vo(z,y,t) + 29y (x,y,t)
ug(z,y, z,t) = wo(z,y,t)
(Y, 2,t) = (2,9,
Yo(x,y, 2,t) = Py (z,y, 1)

1/’3(%%2775) =0

(5.2.1)

where ¢ is time, (ug, Vg, wo) denote the displacements of a point on the plane z = 0, and (¢,, ¢,)

are the rotations of a transverse normal about the y- and z-axes, respectively, whereas (1, 1,) are

*Reprinted with permission from “Nonlinear finite element analysis of lattice core sandwich plates” by P. Nam-
pally, A. T. Karttunen, and J. N. Reddy, 2020. International Journal of Non-Linear Mechanics, vol. 121, p. 103423,
Copyright (2020) Elsevier Ltd.
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microrotations about the z- and y-axes, respectively. The corresponding linear strains and wryness

tensor components developed in the micropolar plate are [44]

Ekl = ULk + €lkmVm (5.2.2)

Xkl = Vi (5.2.3)

Following the displacements and microrotations given in Eq. (5.2.1), the nonzero strains in Carte-

sian coordinates are

~ Oug 09, ~ Oug do, 4
Exx = % ¥ o = & + ZKzq, Eyy = 8_y +z 8y - Eyy - “hryy
Ao O¢ Ouyg 0,
€zy:%+za—xy:€gy+2/ﬁxw ny:a_y"i‘zay :5896—’_2/%“
E)wo
S = g T v Exo = o — Py (5.2.4)
ow
Eyz:8_;_¢$7 gzy:¢y+77/}x
X _ X _ My X _ % X %
rx O’ vy oy’ ry or’ e dy

With the inclusion of von Kdarmén type geometric nonlinearities [100] into the vector €° below, we

write the strains in the form

) . ) \ ; 3\ ( 3
€2, 0+ 1 (Gm)* e o
L0 dug 1 <M)2 K £

ool Ja k=4 =0 (5.2.5)
5gy % + %%% Fay %
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Vs G2+ o Xaz B

Y- Yz _ %_@?‘i‘zwy = Xyy _ aa% (5.2.6)
Yy 88_12()+¢y Xzy %
7 | By~ by — 20a | e ) |5

where the symmetric shear strains are defined as

ow
Vizeazz_’_ezac = a_;+¢z
dw, (5.2.7)
7y25y2+6zy:8_y+¢y
and the antisymmetric shear strains are
u ow
Yo = €xz — €z = a—;—¢$+2¢y:2(¢y—w2)
(5.2.8)

811)0
’YZZGyz—ﬁzyZa——%—?%:Q(M—%)

Y
where (w;,wy) are the macrorotations. The symmetric shear strains (73,7, ) are of the same form
as the shear strains in the conventional FSDT plate theory based on classical elasticity. However,

the antisymmetric parts are defined in terms both macrorotations and microrotations.
5.3 Two-scale constitutive modeling of lattice core sandwich plates

The unit cells for the web-core and pyramid core are shown in Fig. 5.1. The unit cells represent
lattice materials of which the 2-D micropolar ESL-FSDT plate is made of. Two-scale, energy-
based constitutive modeling was carried out in detail in [9] for the web-core unit cell presented in
Fig. 5.1. This approach was also applied to the pyramid core in [6]. The procedure to arrive at the
constitutive equations of lattice core sandwich plates is similar to the one described for lattice core
sandwich beams in chapter 4.

The derivation of the constitutive equations of the lattice core sandwich plate is based on the

same concept of energy equivalence of unit cell and a continuum point of the equivalent single
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web-core unit cell pyramid core unit cell

face thickness 6 mm
E =70 GPa

v=0.33
p = 2700 kg/m®

E =206 GPa 4\ h=0.044m thickness

v=0.3 —>  {, =2mm 1 mm

p=T7850kg/m" y

I

ty =2—10mm

2y 45 deg ol

> width
[=0.12m 4 mm
50 mm 50 mm

Figure 5.1: Parameters of web-core and pyramid core unit cells made of steel and aluminium,
respectively. All face sheet edges of both cores are taken to be of equal length so that, e.g., the
web-core planform area is A = [? = 0.0144 m®. The struts (beams) in the pyramid core have
rectangular cross sections [6].

T

layer micropolar plate. The only difference being that in calculating the energy of the plate unit
cell, the numerical values of the element stiffness matrix are used instead of analytical expressions.
Further details of the constitutive models of the lattice plates with unit cell shown in Fig. 5.1 are
given in [9, 6]. As the outcome of the constitutive modeling, we have for the 2-D micropolar plate

continuum

S =Ce (5.3.1)

where S is the stress resultant vector and C is the constitutive matrix. The explicit matrix form of

Eq. (5.3.1) s

= (5.3.2)
0 0G 0]~

0 O £ 2
(e=]
)
(en]
[ew]
X

0 0 0 H| [x

\ / L . \ /

where the vectors for the membrane N, global bending and twisting M, symmetric and antisym-
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metric shear Q and local (couple-stress related) bending and twisting P resultants read

N = {Nm Nyy ny Nyw}T

M = {Mm Myy Mxy Mya:}T
S a S a T

Q={Q @ Q Q;}

P:{PM Pyy ny Pyx}T

(5.3.3)

respectively. The submatrices for the constitutive parameters of the web-core and pyramid will

take the following form.

An A 00 Dy Dy 0 0
A Ay 00 Dy Dy 0 0
A. — s D —
0 0 Agg A34 0 0 D33 D34
0 0 A Ay 0 0 D3y Dy
- — - — (5.3.4)
Gu Giz2 0 0 Hy Hyp O 0
Giz G 0 0 Hi; Hy 0 0
G‘ — H —
0 0 Gs3 Gu 0 0 Hszs Hyy
0 0 Gu Gu 0 0 Hs Hy

The matrices include 24 constitutive parameters and are symmetric for both web-core and pyramid
core. The constitutive parameters for the web-core are derived in [9] and are given in Table 5.1 and
Table 5.2, while the constitutive parameters for pyramid core are derived in [6] and are given in
Table 5.3. Similarly, the inertial coefficients, which are the components of the matrix M given in

Eq. (6.3.5), for web-core and pyramid core are given in Table 5.4 and Table 5.5 which are derived

in [9] and [6] respectively.
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-mu 0
0 moy O
0 m33
M=1 0 0
0 0
0 0
0 0

0 0
0 0
0 0
My Mys
Mys5  Miss
0 0
0 0

0 0
0 0
0 0
0 0
0 0
Mee  Me7
Mer M7

A[MN/m] | t;=2mm | 4 mm 6 mm 8 mm 10 mm
An 905.495 | 1810.99 | 2716.48 | 3621.98 | 4527.47
Axo 271.648 | 543.297 | 814.945 | 1086.59 | 1358.24
Ago 997.277 | 1907.18 | 2814.44 | 3720.98 | 4627.24
Ass 316.923 | 633.846 | 950.769 | 1267.69 | 1584.62

D[MNm] |ty =2mm | 4 mm 6 mm 8 mm 10 mm
Dy 0.43826 | 0.87652 | 1.31478 | 1.75304 | 2.19130
Dss 0.13148 | 0.26296 | 0.39443 | 0.52591 | 0.65739
Doy 0.46020 | 0.90585 | 1.35350 | 1.80011 | 2.24 4 48
D33 0.15339 | 0.30678 | 0.46017 | 0.61356 | 0.76695
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Table 5.1: Constitutive parameters A and D for the web-core shown in Fig. 5.1 (Reprinted with
permission from [9]).



Table 5.2: Constitutive parameters G and H for the web-core shown in Fig. 5.1 (Reprinted with
permission from [9]).

G[MN/m] | t; =2 mm 4 mm 6 mm 8 mm 10 mm
Gy 1.16557 | 4.26884 | 9.82709 | 18.1926 | 29.5600
G2 0.93837 | 3.92462 | 9.46343 | 17.8250 | 29.1924
Goo 0.91865 | 3.89135 | 9.42900 | 17.7917 | 29.1609
Gss 349111 | 45.7777 | 55.5037 | 66.3705 | 79.3196
Gy 1.32756 | 5.01625 | 11.1895 | 20.0058 | 31.6599
Gy 0.98325 | 4.17269 | 9.96295 | 18.5242 | 30.0194

H[Nm] ty=2mm 4 mm 6 mm 8 mm 10 mm
Hyq 190.167 1416.73 | 4647.49 | 10763.7 | 20571.6
Hyy 23.8172 | 211.894 | 712.203 | 1656.92 | 3155.87
Hyy 181.960 | 1407.22 | 4638.13 | 10754.7 | 20563.1
Hiss 301.832 | 2414.65 | 8149.45 | 19317.2 | 377289
Hsy -90.5495 | -724.396 | -2444.84 | -5795.16 | -11318.7
Hyy 1317.40 | 7712.00 | 20232.4 | 38648.9 | 63268.3
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Table 5.3: Constitutive parameters for the pyramid core shown in Fig. 5.1 [6]

A [MN/m] D [kN/m] G [MN/m] H [Nm]
An 943.83 Dy, 294.96 G11 11.907 Hy, 1603.5
Ais 312.24 D1s 97.579 G1o 9.1773 Hiy 18.615
Aso 943.83 Doy 294.96 Gao 9.1770 Hy 1603.5
Ass 317.19 D33 99.126 G33 11.907 Hjs 2829.5
Aszy 317.19 D3y 99.126 Gayq 9.1773 Hs,y -933.59
Ay 317.19 Dyy 99.126 em 9.1770 Hy, 2829.5
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Table 5.4: Inertia coefficients for the web-core shown in Fig. 5.1 (Reprinted with permission from

[9D.

M[kg/m?®] | t; =2 mm 4 mm 6 mm 8 mm 10 mm
mip 37.1567 68.5567 99.9567 131.357 | 162.757
Moo 37.1567 68.5567 99.9567 131.357 | 162.757
mss3 37.1567 68.5567 99.9567 131.357 | 162.757

Mlkg] tf=2mm 4 mm 6 mm 8 mm 10 mm
Myy 0.016476 | 0.031692 | 0.046904 | 0.062107 | 0.077307
Mys -0.000208 | -0.000071 | -0.000014 | 0.000007 | 0.000015
mss 0.000759 | 0.001776 | 0.002730 | 0.003637 | 0.004498
Mee 0.014032 | 0.028606 | 0.043443 | 0.058422 | 0.073481
mer 0.000152 | 0.000345 | 0.000489 | 0.000567 | 0.000596
mr7 0.000244 | 0.000685 | 0.001429 | 0.002399 | 0.003434
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Table 5.5: Inertia coefficients for the pyramid core shown in Fig. 5.1 [6].

M [kg/m?] M [kg]

mi 33.264 Myy 0.0102
Mo 33.264 Mays 0

m3s3 33.264 mss | 0.1715x1073
M6 0.0102
Mg7 0

me7 01715X1073

5.4 Governing differential equations

Using the constitutive relations derived for lattice core sandwich plates in the previous section,

the strain energy for the 2-D micropolar plate can be written as
1 T
U=—- [ e Cedxdy (5.4.1)
2 Ja

while the total kinetic energy of the plate is

1
Kzé/wMﬁM@ (5.4.2)
Q
where
u= {u() Vo Wo Cbx ¢y be 1/Jx}T (543)

and the over dot on u represents derivative with respect to time. Finally, the potential energy

contribution due to a distributed transverse load is given by

V=- / qug dxdy (5.4.4)
Q
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By substituting expressions (5.4.1), (5.4.2) and (5.4.4) into Hamilton’s principle [102], we have

5/T[K—(U+V)]dt:0

which we can be written as

T
/ / (51’1TM1'1 — 5e'Ce + q5wo) dxdydt =0
o Ja

(5.4.5)

(5.4.6)

where we can use Eq. (5.3.1), that is, S = Ce. The governing equations of the ESL-FSDT mi-

cropolar plate used for modeling the lattice core sandwich plates are obtained by writing the Euler-

Lagrange equations of the variational statement (5.4.6). These are listed below.

where

</V:

0

dx

Nmz

8w0

Oz

ON,. . ONyo _ mllézuO
Ox dy ot
NG ABLEA) oy, P
T R e
agixy N 324;9 — Q)+ Q5 = maﬁ% * mﬁﬁétix
85'?; N @;'Z,x +2Q0 = m??% + m67%
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(5.4.9)

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)



5.5 Finite element formulation

In this section, we develop the weak form Galerkin finite element model for the governing
equations (5.4.7)-(5.4.13) of the 2-D micropolar ESL-FSDT plate. In the finite element formulation
the mid-surface kinematic variables (ug, vo, Wo, ¢z, @y, Vs, Y, ) are taken as the primary variables.
These variables are approximated using linear Lagrange interpolation functions Lgfj) [93], where
(J =1,2,3,4,5,6,7). Since we are using weak-form Galerkin finite element formulation, the
weight functions w; (i = 1,2,3,4,5,6,7) are taken to be the same as the Lagrange interpolation

functions used in approximating the primary variables. Thus, we have,

U ~ Z Uj(t L§1 Y), wi(z,y) = Lz(l)(% y)
v A ZV LD (@y),  walw,y) = L (x,y)
wo = ZW LI (@y),  wsley) = LY (@)
Oy ~ Z CIij(t)L§4)(x,y), wa(x,y) = L£4)(x,y) (5.5.1)
=1
4
0, S Uy (0L (2,y),  wsley) = LY (2,y)
=1
4
0y~ Z oy (L (2y),  welz,y) = L (@,y)

Uz

2
<
Q&
kﬁ
3
g
1
=
£
s
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Now we write the weak form equations of the micropolar plate governing equations (5.4.7)-(5.4.13)

on a typical element (2, as

82160 8w1 8w1
0 :/{wlmnw + %me + 8—yNyx dl’dy — /leldS (552)
Qe Te
82U0 8w2 8w2
0= — + — N,y + —N,,y pdxdy — d 553
!{meZQ 8t2 + o y"_ 83] yy ray /wQQZ S ( )

2
0 :/{w3m338 . + % Q5 +Q3) + %_IZS (QZ +QZ)

ot?
Qe
8w3 8w0 1 8w0 8w3 awo 1 8w0
— [ Npo—— + = (IV, N, N, Nyz) —
8x[mﬁx+2< wu Ny ayl—i_ay{yyay ( Ny 8:(:}
— wgqo}d:cdy — /nggdS (5.5.4)
0%, %,  Ow Ow L
0= /{w4m44m + WwaMmys 8t2y + a—::Mxx + a—;MyI + w4( x x) d:cdy — /w4Q4ds
Qe Te
(5.5.5)
0%y, 26,  Ow Hw .
0= /{w5m55 12 + WsMys—5- o012 + a:: Pa:y + agf Pyy + 2’LU5Q$ dl‘dy - /U)5Q5d8
Qe Te
(5.5.6)
D*¢ O, Ow ow e
0= /{w6m668—t;/ +wemner—5- + a_;Ma:y 3y ——M,, + we(Qy, — Qy)}dxdy - /w6Q6d8
Qe Te
(5.5.7)
824, 26, Ow dw .
0= /{11)777177@ + wryMmegy at2y + a—;Pxx + a—?jpyx — 2w7Qy dl’d’y — /’LU7Q7dS
Qe Te
(5.5.8)
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After using the constitutive equations (12) and (13) along with the interpolations of the primary
variables and weight functions (5.5.1) in the above equations, we have the following finite element

formulation on a typical element:

MEi(© 1 KEg(e) — ple (5.5.9)

where,

M M2 M3 MM M5 M6 MY
M21 M22 M2 M24 M25 MZ26 M27
M31 MS32 M3 M34 M35 M6 M37
M®© = Va1 M42 M43 M4 M5 M4 MAT (5.5.10)
M5 MP2 M3 MY M5 M M7
M1 M®2 M3 M4 MS5 M6 M67

M71 M72 M73 M74 M75 M76 M77

Kl K12 K13 K14 KI5 K16 K17
K2! K22 K23 K24 K25 K26 K27
K31 K32 K33 K34 KI5 K36 K37
KO© = |41 K42 K43 K44 K45 K46 K47 (5.5.11)
K51 K52 K53 K54 K55 K56 K57
K6l 62 K63 K64 K65 K66 67

K71 K72 K73 K74 K75 K76 K77
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ﬂ@ = <I>w

\ 7

\

The non-zero components of the above matrices are

100

Fl
F2
F3
F4
F5
F6

F7

(5.5.12)



KL = / (A 1122 + Ay 1S dQ,

Qe

K}f’:/{

Qe

2 Or

K = / (Ags LSI + Ay 21527 dQ,

Qe

A
K23 — s
K / 2 Ox
Qe
K3l —
" / ox
Qe
K32
K ox
33
k- |

All

1] 2

OWo 93 cya | Azz QW o5 S

i 2

ow ow .
All 0 3lsgzjx + A12 ayo 315117{

dy

(G11 +2G12 + Ga) 335”

-/ {Am% 5250 4 A5, 200 52 g1

A

A (00 gy A
2 ox K 2

A | (Owo * yy
4 ox gl
X A33 + A34 —821)0 821)0 (
8 oxr Oy
n Asy + Ay -5200 Owy (
8 oxr Oy

K = /(Gll — Ga) #5704,

Qe

K} = / (G — Gag) 365;;%9,

Qe

K} = / (G11 — Ga2) PSP dQ

Qe

awo ? 33 Qxx

Qe

K2 = / (A2 1257 + Agy 12897 d)

Ay Owy 13 gaw A12 Owy 13 gy (A34 + A44) (8w0 Bgry | % 13 gy
ij i

ij)}dg

Oy 4

Qe

ox oy

K2 = / (Ass 2227 + Agy 2252) d)

)

Oy 4

)

(A33 + A34> (5?1)0 28Gry | Owy o3 Sacar

ox ('9y

Azg + Ay
() (

ox y

9w "5 quy
dy K

Owo Jwo

dy Oz

33 Syf ( )
33 Syr (8w0 )

33 Slﬂ;y

33 Szg;y

Ass + Ay
() (

+ (Gs3 + 2G4 + Gua) *° S}

ox dy

( 335;Ejy + 335?;)]

o 8100 2
335 < ) 335iyjy

33 Syy (8w0 > ? 33 Sff

Kg;? -9 / (G1a + Gg) 3555%9

Qe

K9 = 9 / (s + Gag) 52041
Q

e

KY = [ (Du "S5+ DS + (Gui — 261z + Gaa) S do

Qe
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Kff = 2 /(G12 - G22) 44S%QdQ, Kfjﬁ = / <D12 455;-‘11 + D34 455?;) dQ

Qe Qe
KZE;S - /(Glg + G22> 53520]de Kfﬁ - 2 /(G12 - GQQ) 54SZOJOdQ
Qe Qe
K = [ (™S5 + Ha ™Sy +4Gu ™S a0 K = [ (#7787 + 2”8 do
Qe Qe
KgS — /(G33 - G44) 635’3de, KZG]4 — / (D34 64Sij —I— D12 64Sny) dQ
e Qe
K = / (D33 SE" + Dy 0S¥ + (Gaz — 2G4 + Gaa) ©S5Y) d
Qe
KT =2 / (Gas — Ga1) SPdQ, K[P = =2 / (Gaa + Gaa) 537 dC2
Qe Qe
oL
KT = / o TS5+ Hiy = =TS ) do
Qe

KIS =2 / (Gas — Gaa) 0SYdQ, KT = / (Hi TS5 + Hyy ""SY + 4G4y 7 SY) d

Qe Qe

Similarly the non-zero components of element mass matrix (5.5.10) are given by

Qe Qe Qe

44 44 00 45 __ 45 Q00 54 __ 54 Q00
Qe Qe QE

55 __ 55 @00 66 __ 66 Q00 67 __ 67 Q00
Qe QE QG

76 __ 76 Q00 T 77 Q00

Mij_/m7 SPdQ, Mij_/m7 S940

Qe Qe
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where we have used the notation

I (J) (/) I
17 gab _ _8L§ )_aLj 1 gob _ L(f)_aLj 1J ga0 _ _8L§ )L(.J) 1igoo _ ) ()
97 9a ob 0 U T T T T e 9 T T

where I, J ={1,2,3,4,5,6,7},4,7 ={1,2,3,4} and a,b = {x, y}.
5.5.1 Solution of nonlinear equations

Although the nonlinear finite element equations (5.5.9) can be used to solve time-dependent
cases with appropriate time discretization schemes, in the present study we only consider time-
independent nonlinear cases. For the time-independent nonlinear case the finite element equations
(5.5.9) are solved using Newton’s iterative procedure [100], by constructing the tangent stiffness

of a typical element at the beginning of r** iteration as

@0 _ Bi_((j] oY (5.5.13)
such that

s NOREVNTCE (O (5.5.14)
where

R© = KO(U©)y© —F© and Ay© = @ _ gy
The explicit expressions of the components of the element tangent stiffness matrix are

IJ _ p-1J
T, = K
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except for the following terms

T} =2K, T2 =2K;’

ij

T33 K33

{ 8u0 BgEr | A 28u0 BW 4 (A34 + A44) (3U0 33 guy |
oy t

Ag

8 ox

/—/H

+ {All % 33Smm+A22 <8w0) 33Syy
Q

e

Ao+ Ay Asg + Auy Owp \ ~ 33 vy | dwo ? 33 caa
* < 4 * 8 ) ( Ox > Sij Oy 5

n <A12 1’ Asy " Ass ‘8F A44) _36100 O (33Sacy 335%1)] }dQ

Oy Ox Y

8u0 33 cy
v Q
8y SU d

8_ 3SZ$ A 8?}0 BBSyy (A33 + A34> (% 33Si33jy + % 335%1’) }dQ
X

After the element equations are computed, they can be assembled according to the nodal con-

nectivity of the mesh to obtain global equations. Boundary conditions are imposed on the global

equations and subsequent equations are solved to obtain the global incremental generalized dis-

placement vector A4l at the end of r** iteration. The normalized difference between solution

vectors from two consecutive iterations, measured with Euclidean norm, is computed at the end of

each iteration. If the value computed is less than a preselected tolerance ’tol’ further iterations are

terminated and nonlinear convergence is assumed (for all the nonlinear cases considered we chose

tol = 107%)

AL AL

TORTOD k&
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Once the nonlinear convergence is attained, the final global generalized displacement vector is

obtained using

UM = AY+ gD (5.5.15)

5.5.2 Natural vibration frequencies

In the present study we will only consider the natural frequencies of the lattice plates under-
going linear free vibrations. The natural frequencies can be calculated by solving the eigenvalue
problem obtained by substituting U(x,y,t) = U,(z,y)e* (where j = y/—1) into the assembled
linear global equations (i.e., nonlinear terms in coefficient matrices are ignored) after the imposi-
tion of boundary conditions. Here {l, is the global mode shape corresponding to the eigenvalue \%.

Once the eigenvalues are obtained the natural frequencies [Hz] are calculated using

fi= (5.5.16)

It should be noted that the number of eigenvalues obtained will be equal to the number of
degrees of freedom in the problem. Thus for the convergence of higher mode shapes a finer mesh

is required compared to the lower mode shapes.
5.5.3 Shear and membrane locking

In chapter 3 we used higher order interpolation functions on all the primary variables to elim-
inate locking in micropolar plates. In this chapter we shall use linear interpolation on all the
primary variables and employ reduced integration technique to eliminate shear and membrane
locking. Since linear Lagrange interpolation functions are used in the approximation of all the
primary variables, the elements become excessively stiff in the thin plate limit because of spuri-
ous constraints imposed on the bending energy due to this inconsistent interpolation, resulting in a
phenomenon known as shear locking [108, 100, 93]. Consider a plate of dimensions (a x b) being

modeled by a single rectangular element. Since linear interpolations are used on both wy and ¢,,,
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if (wo1, w2, Wo3, Woa) and (Gr1, Gz2, O3, G24) are the nodal values of wy and ¢, respectively, we

have

T i T
e (1=2) (=) o (=) oo (1)

Gr = Pu1 <1—§> (1_%>+¢x2§ <1_g>+¢x3__+¢x4<1_5>%

s (w02 — Wo1 + a¢11) (gbxl B ¢w2 + ¢x3 B ¢z4)
Yo = + Ty
a ab

<¢m2 %1) n <wo1 — Wo2 + Woz — Woa + APpa — agbm) y

ab
In the thin plate limit %(CS) approaches zero and this only possible when the constant terms and

coefficients of x, y and zy of ’yés) are all zero. That is,

2o T2 _ s (5.5.17)

a
205 = T04 _ 4 (5.5.18)

a
¢:E1 = ¢x27 (be - ¢x4 (5519)

However, Eq. (5.5.19) implies that ¢, is constant with respect to x and this will pose an unnecessary
restriction on bending energy which will manifest as shear locking. A similar argument can be
extended to antisymmetric shear strains as well. Various remedies have been proposed in the
literature to overcome shear locking, see, for example, [108, 109] and [103]. In the present finite
element formulation we use selective reduced integration to overcome the shear locking. That
is, we will evaluate the stiffness coefficient terms corresponding to symmetric and antisymmetric
shear strains using reduced Gauss quadrature rule [93, 100].

With the addition of von Kdrman nonlinearity, bending-stretching coupling is introduced into
the plate thereby predicting membrane strain even when only bending forces are applied. But in the

cases where the membrane (axial) strains are not physically possible in the plate (example, when
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all the edges are hinge-supported) the theory will still predict membrane strains. This phenomenon
is called membrane locking [100]. To overcome this we will use reduced integration on all the

nonlinear terms of the element coefficient matrices.
5.6 Numerical examples

3-D finite element models for web-core and pyramid core sandwich panels are discussed in
Section 4.1. These FE models are built using Abaqus 2019 to provide reference solutions to which
the 2-D results can be compared.

In section 5.6.2, we first study the convergence of the finite element calculations by considering
the linear static bending of a simply-supported web-core sandwich panel under line and uniformly
distributed loads. Second, the nonlinear bending of simply-supported web-core panels is investi-
gated for the same loads. Third, we consider the nonlinear bending of web-core panels that have
clamped and free edges as well.

The web-core lattice is bending-dominated, whereas the pyramid core is stretch-dominated,
meaning that the struts of the core do not essentially bend but carry only axial loads, that is, they
behave as axial rods. It has been shown earlier for lattice core beams that stretch-dominated cores
do not exhibit global nonlinear bending but rather go straight from linear bending to local buckling
where individual unit cells basically collapse near supports or point loads [5]. This type of local
buckling behavior is not captured by the current plate model, or by any other 2-D ESL-FSDT plate
model to the best of our knowledge. In conclusion, in the case of the pyramid core sandwich
panels, we focus only the linear natural vibration frequency calculations in this study. The natural

frequencies of both the pyramid core and web-core plate are studied in section 5.6.3.
5.6.1 Plate dimensions and 3-D FE reference models

For the web-core plate two different size plates will be considered; the plate planform area is
(a x b) m* and the studied sizes are (5.4 x 3.6) m* for bending and (1.8 x 1.2) m? for natural
frequency calculations. The other relevant dimensions are given in Fig. 5.1. The corresponding

3-D FE reference model for the larger plate consists of 453600 shell elements of type S8R5 and
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the smaller one contains 141000 shell elements of type S4R. A pyramid core plate of size (1 x 1)
m? is considered in the natural frequency calculations. The corresponding 3-D FE reference model
consists of 9600 linear beam elements of type B33, 33885 quadrilateral shell elements of type
S8R5 and 1002 triangular elements of type STRI65. All the 3-D FE models are convergent.

The 3-D boundary conditions are imposed in a similar manner as in classical simply-supported,
clamped and free edge 3-D solid plate problems. For simply-supported edges, for all nodes ¢ =
1,2,...,n of the shell elements on edges v = (—a/2,a/2) (see Fig. 2) we use U, = U, =
Rot’ = 0 with reference to the global coordinate system. Analogously, for all nodes on edges
y = (=b/2,b/2) we use U = U, = Rot;, = 0. For clamped edges we have U} = U, = U. =

Rot!, = Rot}, = Rot!, = 0. No boundary conditions are set on free edges.
5.6.2 Bending analysis

For the bending analysis of the 2-D micropolar ESL-FSDT plates the coordinate system is
chosen such that the center of the plate coincides with the origin as shown in Fig. 5.2. For the web-

core plates the webs are parallel to the y—axis. Four sets of boundary conditions are considered:
1. Simply-supported on all edges (SSSS).

2. Edges parallel to z-axis are clamped and edges parallel to y-axis are simply supported

(CSCS).
3. All edges are clamped (CCCC).
4. Edges parallel to x-axis are free and edges parallel to y-axis are clamped (CFCF).

Furthermore, for each boundary condition case the plate is subjected to two different loadings,
a uniformly distributed load and a line load along the y-axis at the center of the plate. Since
the boundary and loading conditions considered here result in symmetry about z- and y-axes, we
consider only the quarter plate lying in the first quadrant as the computational domain (see Fig. 5.2).
For such a computational domain the considered boundary conditions after symmetry arguments

are listed in Table 5.6. It should be noted that for web-core plates the center web is along y-axis
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and for the line load case only half of the total load intensity on the full plate is to be considered
on the computational domain. Unless stated otherwise all the loads listed in this study are on full

plate.

TN

X

T

Computational Domain

Full Plate

Figure 5.2: Choice of computational domain for the bending analysis under considered boundary
and loading conditions.
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Table 5.6: Various boundary conditions on the computational domain for bending analysis.

SSSS CSCS CCccC CFCF
y=0 vo =@y =%z =0 v =@y =r =0 vo =y =%z =0 vo =@y =z =0
Nyx:Nyy:
up = Vo = Wy = Pz = ug = Vo = wWo = Pz = () (@)
y:b/2 U0:w0:¢r:¢y: Qy +Qy :Myz:
Yy = ¢y =1z =0 by = ¢y =%z =0

Pyy = Myy = Pyz =0

=0 uO:¢m:¢y:O U():(f)z:"py:O u0:¢a::'¢y:0 U():¢z:"py:0

Uy = Vo = Wo = P = Ug = V0 =Wy = Pz =
z=a/2 vg =wo = ¢y =P =0 Vo =wWo = Py =Ygy =
wyzd’y:wzzo d)y:(ﬁy:d}zzo
0,0 Uy = v = ¢z = Py = Ug =V = ¢gp = Py = up =v0 = ¢z =Py = Ug = Vo = ¢z = Py =
7 ¢y:¢'w:0 ¢y:wa::0 ¢y:'¢'x: ¢y:wa::0
ug = v = wo = Pz = ug =vg = wo = Pz =
(a/2,0) Vo =wo = ¢y =z =0 Vo = wo = ¢y = Pz =0
by =y =%z =0 Yy = ¢y =z =0
Uy =vp = wo = ¢ = Uy = Vo = wo = ¢g =
(Ovb/Z) UOZU)O:d):v:wy:O UO:¢z:'¢'y:0
¢y:¢y:wz:0 wy:d’y:wmzo
ug = vp = Wo = Pz = up = Vo = wWo = Pz = U = Vo = wWo = Pz = up = Vo = wWo = Pz =
(a/2,b/2)
by =y =%z =0 Yy = ¢y =Pz =0 by = ¢y =% =0 Yy = ¢y =1z =0

A mesh of 32 x 32 equal sized rectangular elements on the computational domain was found
to give convergent results with respect to the transverse deflection. The mesh convergence results
with respect to the linear transverse deflections of web-core lattice plates of size (5.4 x 3.6) m? and
for various face thickness, ¢, subjected to SSSS boundary conditions are given in Fig. 5.3. The

error in maximum transverse deflection is calculated using

max(Nav) mazx(present FE)
A =100 x | 20 o
0 max(Nav) ’
0
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max(Nav)

where w, is the Navier solution to the 2-D micropolar ESL-FSDT plate [9].
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Figure 5.3: Mesh convergence with respect to maximum transverse deflection w{"** for linear anal-
ysis on quarter domain of (5.4 x 3.6) m? web-core plates subjected to SSSS boundary conditions.
(a) Uniformly distributed load of 10000 N/m? (b) Line load of 10000 N/m along the y—axis [6].

Fig. 5.4(a) gives a comparison between the linear transverse deflections of a (5.4 x 3.6) m?
web-core plate having face thickness t; = 6 mm, modeled as ESL-FSDT plate based on microp-
olar elasticity and ESL-FSDT plate based on classical elasticity for uniformly distributed load,
while Fig. 5.4(b) shows the comparison for a line load along y-axis. The linear transverse de-
flections are obtained using the Navier solution [9, 107]. It can be seen that for the uniformly
distributed load the two ESL theories give almost the same transverse deflections but for the line
load they deviate from each other. It was shown by [9] that the micropolar model predicts the
transverse deflections of a line-loaded web-core plate accurately, whereas the classical ESL-FSDT
plate yielded displacement errors of 34—175% for face thicknesses of 2—10 mm. Further, Fig. 5.4

also shows the comparison between the nonlinear transverse deflections of the 3-D FE web-core
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plate (Abaqus) and the corresponding 2-D micropolar plate (present finite element). It can be seen
that the present finite element model is able to accurately predict the transverse deflections in both
uniformly distributed and line load cases.

To further test the reliability of micropolar ESL-FSDT plate model and the nonlinear finite
element formulation based on it, linear and nonlinear transverse deflections of a (5.4 x 3.6) m?
web-core plate having face thickness ¢y = 4 mm subjected to CSCS boundary conditions and a
(5.4 x 3.6) m? web-core plate having face thickness ¢; = 6 mm subjected to CCCC boundary con-
ditions are presented in Fig. 5.5 for both uniformly distributed load and line load cases. Moreover,
the nonlinear results are compared with the nonlinear results obtained from the 3-D FE analysis
of these web-core plates in Abaqus. Excellent agreement between the 2-D micropolar and 3-D
reference solutions is observed.

Finally, we consider the (5.4 x 3.6) m? web-core plate with CFCF boundary conditions. In
Fig. 5.6(a), web-core plates with face thicknesses t; = 6 mm and ¢; = 10 mm subjected to a
uniformly distributed load are considered, while in Fig. 5.6(b) the same plates are under a line load
along y-axis (cf. Fig. 2). The present 2-D nonlinear finite element model slightly underpredicts
the deflections at high load intensities in this case. This maybe due to the fact that Abaqus uses
complete Green strain tensor while in the present nonlinear formulation we only considered von
Karman nonlinear terms. Thus at very high load intensities the von Karman nonlinearity may not
be an adequate choice for estimating the global deflections.

It is worth noting that only 1024 isoparametric linear rectangular elements based on Lagrange
interpolation functions are used on the computational domain in the 2-D micropolar bending anal-
ysis of the (5.4 x 3.6) m? web-core lattice plate, while the complete 3-D FE analysis uses 453600
shell elements of type S8RS as pointed out earlier. Thus, the present finite element model is com-

putationally very efficient in obtaining the global response of lattice plates.
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Figure 5.4: Load vs maximum deflection of (5.4 x 3.6) m? web-core plate (f; = 6 mm) under SSSS
boundary conditions. The linear solutions are computed using Navier solution. (a) Uniformly
distributed load (b) Line load along y-axis [6].
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Figure 5.5: Load vs maximum deflections of (5.4 x 3.6) m* web-core plates with ¢; = 4 mm
subjected to CSCS boundary conditions and ¢ = 6 mm subjected to CCCC boundary conditions.
(a) Uniformly distributed load (a) Line load along y-axis [6].
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Figure 5.6: Load vs maximum deflections of (5.4 x 3.6) m* web-core plates with ¢; = 6 mm and
t¢ = 10 mm subjected to CFCF boundary conditions. (a) Uniformly distributed load (b) Line load
along y-axis[6].

5.6.3 Natural vibration frequencies

Here we will consider the free linear vibration analysis of both web-core and pyramid core
lattice plates subjected to the same boundary conditions listed for the bending analysis. But it
should be noted that the argument of symmetry cannot be used for the frequency analysis and,
thus, the full plate has to be taken as the computational domain. For the linear free vibration
analysis using the present finite element model, we ignore the nonlinear terms and consider only
the linear terms in evaluating the element coefficient matrices.

In Figure 5.7, a comparison between the 3-D FE analysis and 2-D ESL-FSDT plates based on
both classical and micropolar elasticity for the lowest eight natural frequencies of a pyramid core
lattice plate of size (1.0 x 1.0) m? subjected to SSSS boundary conditions is given. The frequencies
from ESL-FSDT micropolar plate model are obtained from the present finite element model while

the frequencies of the 2-D classical ESL-FSDT plate are obtained using the Navier solution [9].
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Both ESL-FSDT plate models provide accurate estimates for the fundamental vibration frequency
f11. However, as the mode number increases, the ESL-FSDT plate based on classical elasticity
begins to under predict the frequencies while the ESL-FSDT plate based on micropolar elasticity

still continues to predict the natural frequencies accurately.
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Figure 5.7: Eight lowest natural vibration frequencies of pyramid core plate of size (1.0 x 1.0) m?
subjected to SSSS boundary conditions. In f,,,, m refers to the number of half waves in z-
direction and n gives the same for y-direction [6].
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Figure 5.8: Eight lowest natural vibration frequencies of pyramid core plate of size (1.0 x 1.0) m?.
(a) CSCS boundary condition (b) all edges free (FFFF) [6].
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(1.8 x 1.2) m2. (a) CSCS boundary condition (b) CCCC boundary condition [6].

A comparison between natural frequency results from 3-D FE analysis and from the present
finite element formulation of pyramid core lattice plates of size (1.0 x 1.0) m? is given in Fig. 5.8
for CSCS boundary conditions and an unconstrained plate. Fig. 5.9 shows a comparison of 3-D FE
results and results from the present finite element formulation for a web-core lattice plate of size
(1.8 x 1.2) m? having face thickness t; = 4 mm, subjected to CSCS and CCCC boundary condi-
tions. The 2-D and 3-D results are in good agreement and the 2-D plate provides computationally

efficient means for computing the global bending modes of both pyramid core and web-core sand-

wich panels.
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6. DUAL MESH CONTROL DOMAIN METHOD FOR BENDING ANALYSIS OF
FUNCTIONALLY GRADED BEAMS*

6.1 Introduction

In chapter 1 we introduced the dual mesh control domain method (DMCDM) and applied it to
study 1-D axial bar. In this chapter we will apply the DMCDM to Euler-Bernoulli and Timoshenko
beam theories. While for the bar problem each node of the mesh has only one degree of freedom,
for the beam theories we have three degrees of freedom at each node. These degrees of freedom are
axial displacement, transverse displacement and cross-sectional rotation for displacement models
while axial displacement, transverse displacement and moment are the degrees of freedom for
mixed models.

We consider through thickness functionally graded beams with constant Poisson’s ration while
the Young’s modulus is assumed to vary with the thickness coordinate z given by the following
power-law variation [85, 110, 111]:

Bl = (Bi- B+ B 1) = (3+5) 6.1.1)

Here F/ is the Young’s modulus on the top face of the beam while FEs is the Young’s modulus on
the bottom face of the beam. The thickness of the beam is /, while n denote the power-law index

which governs the material distribution through the thickness of the beam.
6.2 Governing equations of functionally graded beams

In this section we will review the governing equations Euler-Bernoulli beam theory and Timo-
shenko beam theory. Then we cast the governing equations in terms of axial displacement, trans-

verse displacement and moment to facilitate the development of mixed dual mesh control domain

*Reprinted with permission from “A dual mesh finite domain method for the analysis of functionally graded
beams” by J. N. Reddy and P. Nampally, 2020. Composite Structures, vol. 251, p. 112648, Copyright (2020) Elsevier
Ltd.
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method [10, 7]. The coordinate system used for the analysis of the beam is shown in Fig. 6.1

- L |
Er

H ] — T
l E

Figure 6.1: Functionally graded beam with the chosen coordinate system.

6.2.1 Euler-Bernoulli beam theory

The displacement filed of the Euler-Bernoulli beam theory is given by

dw
ul('xay?z) = U(IE) - Z%

us(z,y,2) =0 (6.2.1)

U3(ZE, Y, Z) = W(ZE)
The non-zero linear strains corresponding to this displacement field is given by

du d?w
Exx = 7 — R 54
dx dz?

=)+ zeL, (6.2.2)

while the constitutive relation for functionally graded beam with power-law variation of Young’s

modulus and constant Poisson’s ration is given by

Ope = F(2)€0s (6.2.3)
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We further define the stress and moment resultant acting on the beam as follows:

du d*w
N,, = dA=A,,— — B,,— 24

d d?
M, = / 0ua2dA = By — Dy (6.2.4b)
A dx dx?

Here A,., B.., and D,, are the extensional, extensional-bending, and bending stiffness coeffi-
cients

(Azz, Bizy Do) :/(1,z,z2)E(2) dA (6.2.5)
A

The governing differential equations of the beam can be obtained from the principle of virtual

work, which for the functionally graded Euler-Bernoulli beam can be expressed as:

L L
/ [Npw6e® + My, 0el Jdo — / (fou + gow)dz =0 (6.2.6)
0 0

Taking the Euler-Lagrange equations of the variational statement (6.2.6) we obtain the governing

differential equations of functionally graded Euler-Bernoulli beam as follows:

dN,,
= f=0 (6.2.7)
T
d2M,,
=0 (6.2.8)

Now using the expressions for stress and moment resultants from Egs. (6.2.4a)-(6.2.4b), we can
write the governing equations as

d du d?>w
T (Am% - B%) —f=0

d? du d?w
dx? ( dx dx2> 1

The governing equations (6.2.9) and (6.2.10) are fourth-order differential equations and are not

(6.2.9)

(6.2.10)
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suitable for the development of dual mesh control domain method. Hence we will recast these
equations in terms of the axial and transverse displacements u and w respectively and the bending

moment M. To do so, we eliminate %ﬁ from Eq. (6.2.4a) using Eq. (6.2.4b) to get

N, = AM% + By M, (6.2.11)
and express Eq. (6.2.4b) as
_Ccl;TU; — _BMZ_Z + DLMMM (6.2.12)
where
Diy = Dol = By Auw= 1%, Buu= 1 ©2.13)

Now the governing equations in terms of displacements and moment are given by Eqgs. (6.2.7),(6.2.8)

and (6.2.12) where the expression for N, is taken from Eq. (6.2.11). These equations are listed

bellow.
d (|- d _
A S 4 B My, | = f (6.2.14)
dx dx

d*M.
— = 6.2.15
= q ( )

d*w 1 _  du
W oy + B, 2 6.2.16
dz?  D,, + dx 0 ( )

6.2.2 Timoshenko beam theory

The displacement filed of the Timoshenko beam theory is given by

u(z,y, 2) = u(x) + 20, ()

ug(z,y,2) =0 (6.2.17)

ug(z,y, z) = w(zx)
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The non-zero linear strains corresponding to this displacement field is given by

d do
L T (6.2.18a)
dx dx
d
Yoz = P+ = (6.2.18b)
dz

while the constitutive relation for functionally graded beam with power-law variation of Young’s

modulus and constant Poisson’s ration is given by

E(x)
- B — 2.1
We further define the stress and moment resultant acting on the beam as follows:
d do,
Ny = / oondd = A, 4 g, B0 (6.2.20a)
A dx dx
d d
M,, = / GanzdA = By 4 D, % (6.2.20b)
A dx dx
dw K
= K o dA =8 o+ — ), Spo=—"— [ E(2)dA 6.2.20
¢ /AU <¢ + dac> 2(1—|—V)/A (2) ( 2

Here A.., B.., and D,, are the extensional, extensional-bending, and bending stiffness coeffi-
cients and are given in Eq. (6.2.5). K is the shear correction factor and is taken to be 5/6 for
beams with rectangular cross-section. The governing differential equations of the beam can be
obtained from the principle of virtual work, which for the functionally graded Timoshenko beam

can be expressed as:

L L
/ [Nméegx + Mwéz—:;m + Q07z.]dr — / (fou + qow)dr =0 (6.2.21)
0 0
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Taking the Euler-Lagrange equations of the variational statement (6.2.21) we obtain the governing

differential equations of functionally graded Timoshenko beam as follows:

dN.,
—— 2 =0 (6.2.22)
dx
dQ
- @ —qg=0 (6.2.23)
dx
dM,,
— + Q=0 (6.2.24)
dx

Now using the expressions for stress and moment resultants from Egs. (6.2.20a)-(6.2.20c), we can

write the governing equations as

d du do,
—— Ay — + By — | — = 2.2
d dw
—— S o+ — )| =qg=0 6.2.26
dx [ <¢ + dac)} 4 ( )
d du do, dwy
0 (Bm T + Dm%) + S.. (gzﬁx + E) =0 (6.2.27)

To express the governing equations in terms of displacements and moments we first write N,

in terms of v and M, using Eq. (6.2.20a) and Eq. (6.2.20b) to get

Nyw = AT 4 B, (6.2.28)
dz
and Eq. (6.2.20b) can be written as
do, ~ du 1
= —Byo— + —M,, 6.2.29
dz &z " D, (0.2:29)

and Eq. (6.2.24) can be written as

dé, w1 EM,,

dr  de? S dn?

(6.2.30)
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Now eliminating dj;”” from Eq. (6.2.29) and Eq. (6.2.30) we get

d*w 1 d*M,, - du 1
—_ = — Byp— + —M,, 6.2.31

Finally the governing equations of Timoshenko beam in terms of displacements and moment are

given by
d (- d _
AL e BM, | —f=0 (6.2.32)
dx dx
d?> M.
— 2 _qg=0 6.2.33
prmia’ ( )
d (dw 1 dM. _ du 1
el i wr— — — My, = 6.2.34
dx (dw Sy, dx ) de  D,, 0 ( )
while the effective rotation ¢, is given in terms of w and M, as
dw 1 dM,,
- 6.2.35
= TS (6:2.35)

6.3 Dual mesh control domain formulation
6.3.1 Euler-Bernoulli beam

The dual mesh control domain method is best suited for solving first or second-order differ-
ential equations. Since the governing equations of the Euler-Bernoulli beam when expressed in
term of displacements alone result in forth-order differential equations (see Egs. (6.2.9)-(6.2.10)),
we shall use the differential equations which are given in terms of displacements and moment
(see Egs. (6.2.14)-(6.2.16)) to formulate the dual mesh control domain method. The resulting
formulation is called mixed dual mesh control domain method since the primary variables of the

formulation consists of displacements and force like terms (i.e., moment).
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6.3.1.1 Mixed DMCDM

In the DMCDM, we divide the domain 2 = (0, L) into a set of N primal mesh elements
separated by nodes, as shown in Fig. 6.2, with each node having its own control domain (a dual
mesh). The nodes are numbered sequentially from the left to the right. We consider two adjacent
primal mesh elements connected at a typical interior node / and control domain associated with

that node (see Fig. 6.2).

|
|
T1-1 =YL (1) ‘ ‘
91(7] ll\ QCD | /
(:_## ): ' @: | *-:)

1 2 I—-1 1 I+1 N+1

hr—y hr

Figure 6.2: Primal and dual mesh discretization of the beam. The primal mesh elements QI(DI_I)
and Qél) and control domain Q(CIJ)D associated with and internal node [ are indicated.

Next, we derive the discretized equations associated with Egs. (6.2.32)—(6.2.34). The complete
steps of the DMCDM are presented by considering Eq. (6.2.32) and then summarize results for
the remaining equations and also for the other models described here.

The first step is to set up the integral statement of Eq. (6.2.32) over an interior control domain,

say Q(C{,)j associated with node /:

5[ g du
0= / » [—% (Am =+ BmMm> _ f] dz 6.3.1)

Unlike in a weighted-residual method (or weak form), we weaken the differentiability on u by
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carrying out the indicated integration and obtain

(1)
b d{ - du -
/mgf) [ dx( d:c+ ) e
du du 7"
dz 2D dz 2{D oD
or
(D
0=-N"D - NP - L fde (6.3.3)
where
. d _ _d _
N = A, 4 B M| N = | A T 4 Boy M, (6.3.3b)
dx 2 dz 2D

Here N 1(1) and NQ(I) denote the secondary variables (axial forces) at the left and right interfaces of
the control domain centered at node /. The minus sign in the definition of Nl(l) indicates that it a

compressive force, and both V. 1(1) and NQ(I) are axial forces in the positive = direction (see Fig. 6.3).

| hr | 2 |

o 0}
NY r (Ur, Wr, My) \ N
Q —/——1—1> O ] > O
I1—-1 \/ 1 I+1
Y

Figure 6.3: Primary and secondary variables associated with the control domain of an interior node
I.

Next, we use finite element approximations of u(x), w(x), and M,,(x) over a typical primal
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mesh element, Qg) = (x7,xr41). For example, u(x) is approximated using linear interpolation
~ — 7D UritD 6.3.4
w(z) = up(x) = Urhy *(x) + Urathy ' (2) (6.3.4)

where U is the value of u at node I (i.e., U; ~ u(xy)) and wzu) (x) (i = 1,2) are linear Lagrange

interpolation functions of element Q,(;I) for/ =1,2,..., N:
T — r—x
Y (z) = ”,11—] O (z) = " ! (6.3.5)

Hence, we can calculate parts of Nl(l) and NQ(I) in Eq. (6.3.3b) using the interpolation of the type
in Eq. (6.3.5) for each of the dependent variable of the formulation (note NI(I) is in primal mesh

element Q,(f_l) and NQ(I) is in primal mesh element QJ(DI); see Fig. 6.3 ) as follows:

(D)

- du = o /_1[_1 121[_1 /_1] /_1[
Aa::c_+Bzme;t = Ur-1 — +— U+ -—U
dx 2751” h]_l = (h[_l h[ ! h[ fr
+0.5 [-Br-1M;_1 + (Br—1 — Br) My + BrMp41] (6.3.6)

where A;_ | = flm(xg[)) at the left interface and A; = flm(x(b])) at the right interface of the

control domain centered around node /. Similar meaning applies to B;_; and B;; M; denotes the
nodal value of M, at node I.

Substituting the representations in Egs. (6.3.6) into Eq. (6.3.3a), we obtain (for [ = 2,3,..., N)

A A, A A _
U+ ( =1 —I) Ur— LU 4+ 0581 My,

~hi hisi hi hi
zD
+ 0.5 (Br_1 — Br) M; — 0.5B; M4y — o f@)de=0 (6.3.7)
where
- D - D _ B, _ B..
A= Dm , A= D—m , Broi= , Br= i) (6.3.8)
T xg;) T xl()]) T x((lI) T xéI)

The integral of a function f(z) over the control domain (.7}((1[), :U,()I)) can be evaluated using either
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exact integration or numerical integration (e.g., trapezoidal rule, Gauss quadrature rule).

Lastly, we write the discretized equations for the boundary nodes [see Fig. 6.4]:

) Al A 0.5h1
OZ—Nl +h—U1—h—U2+O5BlM1+O5Bl M2 / fdl’ (639)
1 1 0
(N+1) AN A 0.5h N
0=—-N, . UN—l—h—UN+1—|—O5BNMN+O5BNMN+1—/ f(z)dz (6.3.10)
N 0
where 7 is the local coordinate with origin at node 1 of primal mesh element and V- 1(1) and N2(N+1)

are the boundary forces (at nodes 1 and NV + 1, respectively), which are either specified or their
duality counter parts, namely, the displacements U; and Uy 1), are specified. This completes the

discretization of Eq. (6.2.14).

S N R M
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Figure 6.4: Control domains corresponding to boundary nodes.

The same procedure can be applied to Eqs. (6.2.15) and (6.2.16) to obtain the discretized
equations for the interior and boundary nodes. We have the following integral statements of Egs.

(6.2.15) and (6.2.16):

Ty

oz_vlm_v;”—/m qdx (6.3.11)
A d

_ _oh _ oM _ g U

0=-0" -6 +/x£f> ( DmMmjLBmd:C) dz (6.3.12)

where Vl(l) and VQ(I) denote the secondary variables (shear forces acting upward positive) at the
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left and right interfaces of the control domain centered at node I,

VQ(I)

M, My — M
yo = { } _ MM (6.3.13)

dex o M[+1 - MI
dx 2D B hr_y

dx 2D hr

and @5’) and @g) denote the secondary variables (rotations in counterclock direction) at the left

and right interfaces of the control domain centered at node I,

1 _ |dw Wisg=Wr 1y _ |dw Wi — Wi
=_ |= = =|— = 6.3.14
©i ldegn hi—y ©: {dx 2D hy ( )
The discretized equations associated with Eq. (6.2.15) at an interior node are:
()
M+ (D) Ly /xb d (6.3.15)
_ - R [ fry €T D
h],1 =1 h[,1 h[ ! h[ I+ 17((11) 1
For the boundary nodes 1 and NV + 1, we have
1 1 0.5h1
0=-V" 4+ =M — —M— / qdx (6.3.16)
hy ha 0
N 1 1 0.5h
0=V - = My+ —My. — / q(7) dz (6.3.17)
hn h 0
The discretized equations associated with Eq. (6.2.16) are
1 1 1 1 1 hr
— Wi_ — | Wr— —Wr1 — < M;_
i T (hf_l " m) T T RDL,
3 h]_l h[ 1 h[
- = — | M — -—M
8 (DI_1 * D,) 8D,
—0.5B;-1U;—1 + 0.5 (Bj—1 — B;) Uy + 0.5B; Upy =0 (6.3.18)

for an interior node. Here D; denotes the value of D,, in primal mesh element / and By denotes
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the value of B,,/D,, in primal mesh element /. For the boundary nodes 1 and NV + 1, we have

1 1 3h 1h _
0=—0W 4 —w, — =Wy — 22 M — 2L My + 058, (Uy — U 6.3.19
1 +h1 1 I 2 SD; 1 SD, 2+ 1 (Us 1) ( )
1 1 1h 3h
0= -0 - —Wy+ —Wyiy — =My — 2N
2 Iy N+ I N41 S Dy N S Dy N+1
+0.58y (Uns1 — Uy) (6.3.20)

This completes the development of the discretized equations based on the DMCDM for the mixed

formulation of the Euler—-Bernoulli beam theory.
6.3.2 Timoshenko beam
6.3.2.1 Displacement DMCDM

The displacement based DMCDM of Timoshenko beam is developed using Egs. (6.2.25)-
(6.2.27). In order to derive the discretized equations associated with Eqs. (6.2.25)—(6.2.27), we
follow the same procedure as described for the EBT. The integral statements over the /th control
domain centered around node I (see Fig. 6.5 for the nodal degrees of freedom) for each of these

three equations are:
(N

)
0=-ND_ NI _ L Jde (6.3.21a)
du db, ! du dop,
NY =_|4,,— + B,,—= N = | 4,,— + By,—= 321
1 |: a:xdx + Tx dx :|x((l[)7 2 T dx + Tx dx mg[) (6 3 b)
(I)
Ty
0=-—v"—yh_ / L, (6.3.22a)
d d
V=S (o + )| 0 v =8 (00 + 5 (6.3.22b)
dx ) | ,m dz 2
7" dw
0=-—Mm" - MP 4 / S (qu + —) dx (6.3.23a)
e dx
du do I du do
MDD = |B,, Dyp—2 M = |By— + Dypp—= 6.3.23b
! [ d dx Lg) ’ 2 i " dx | o ( )
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Figure 6.5: Primary and secondary variables associated with the control domain of an interior node
I of displacement DMCDM of TBT.

Here (V- (I), Vl([), Ml(l)) and (V. (I), ‘/2([), M2(I)) denote the axial forces, shear forces, and bending
moments at the left and right interfaces, respectively, of the control domain centered at node / (see
Fig. 6.5). Since the displacement model of the TBT suffers from shear locking, we evaluate the

integral appearing in Eq. (6.3.23a) (i.e., the shear force) as a constant to avoid shear locking:

€]
b

* dw By i
/xgp Sz (qu + %) dv = 3Sr1 (P11 + @p) 12 L 1S (D + Dryy) EI
W — Wi hr_ Wi —Wrh
+ Gy g i T T (6.3.24)
h]—l 2 h[ 2
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The discretized equations associated with Egs. (6.2.25)—(6.2.27) for an interior node [ are

0=

0=

0=

Ar_ A A A
! 1U1—1+( ! 1+h—1) UI__IUI—H
I

hi—1 hi—y hr
)
Bry By B By o

_ - ;4 + (h1_1 + h_I) b, — h—ICI>1+1 — o fdx (6.3.25a)
Sr_1 S-St St

Wi el _ =
Iyt -1+ (hl—l + h[) Wi I Wi

(P

+ O.5S[,1CI)[,1 + 0.5 (S[,1 — S]) (I)[ — 0.5SI(I)I+1 — /([) qu (6325b)

Ta

Br_ Br-1  B; By
_ — - — —0. Wi
o U1 + (h1—1 + h]) Ur > Urs1 — 055 Wiy

D;_ D;_ D
4 0.5(Si 1 — S) Wy + 058 Wy — 2L, | + < 1y _f) 5,
hr—y hiq hr

D
— h—lq)]+1 +0.2557_1h;—1®;_1 +0.25 (ijlhjfl -+ S[h[) d;
I

+ O.25S[h[q)[+1 (63250)

The discretized equations of the left boundary node are

A A B B 0-5h1
0=-NY 1+ 2y, -y, + Lo, — Lo, — / d 6.3.26
1+ I 1 I 2+ I 1 I 2 ; fdx ( a)
) Sl Sl 0.5h1
0= V¥4 Wy — o = 0.55,81 — 05512, - qdr (6.3.26b)
1 1 0
B D
0=-Mm"— h—ll (U — Uy) + 0.5 (Wo — W;) — h—ll (®y — @)
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For the node on the right boundary, we have

A A B B 0.5h N
0=-N"" 4 Xy — Uy + oy — Dy - / f(@)dz  (6.3.27a)
hn hy hy hn 0
N+1) SN 0-5hn
0=—1"" . (W1 — W) + 0.5y Py + Oy) — / q(z) dz (6.3.27b)
N 0

B D
0= M 4 h_j\j (Unt1 — Un) + 0.5y (Wi — Wa) + h_]]\j (Pni1 — D)

+ 02551\[]2]\[ ((I)N + ®N+1> (63270)

6.3.2.2 Mixed DMCDM

Although the displacement DMCDM of Timoshenko beam with reduced integration of shear
force (see Eq. (6.3.24)) gives locking free solutions, this is not the only way to eliminate shear
locking. It is known in finite element literature that mixed formulations (with displacements and
moments as primary variables) can also successfully eliminate locking without any resort to any
reduced integration of shear terms. Following the same idea, here we develop mixed dual mesh
control domain method for Timoshenko beam. We use the Eqs. (6.2.32)—(6.2.34) to formulate
the mixed dual mesh control domain method for Timoshenko beam. Discretization of these equa-
tions follows the same procedure described in the previous sections for mixed DMCDM of Euler-
Bernoulli beam and displacement DMCDM of Timoshenko beam. The final discretized equations

associated with Eq. (6.2.32) at the /th node, node 1, and node NV + 1 are given by

A A, A A _
LU+ ( 1y —I) Ur — LU +0.5B; My,

B h[,l h[71 h[ hI
2
+ 0.5 (Br_1 — Br) M; — 0.5B;Mry; — / o, fde=0 (6.3.28a)

) A, A, B i 0.5h1

0= Ny + U = =Us +0.58; My +0.58, M — / fdx (6.3.28b)
1 1 0

v+ An Ay = s 0.5k

0= =Ny ™7 = -=Ux + 53—=Un1 + 0.5By My +0.5By My1 — / f(z)dz (6.3.28¢)
N N 0
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The discretized equations associated with Eq. (6.2.33) are:

(1)

M —M; My — M;_ z
0= _ mhf I th 11 1_/(1> qdx (6.3.29a)

(1) 1 1 0.5h1
0=-""+ h—lM1 _ h—lM2 — qdr (6.3.29b)
0
0=y, gy LY P ) ds 2

= —Vy +E N1 My = i q(z)dz (6.3.29¢)

Finally, the discretized equations associated with Eq. (6.2.34) at the /th node, node 1, and node

N + 1 are:

0=—0.5B;_1Uj—1 + 0.5 (Bj—1 — B;) Uy + 0.5B; Upyy

1 1 1 1
— Wr_ — | W — —W
I -1+ (h1—1 + h1> I I I+1

1 1 1 1 11 11
My — S VM ——M
T S, (h1_181_1+h151> T
_ 1 fu

D14

h1_1 h[ hl
Mot =5 (D— ! E) Mi =5, M (6-3:30)

_ WQ_WI ]_MQ_Ml
0=—-0Y4+05B, (Uy—U,) — —
1 0SB = ) = e e
1 hy

— —— (3M{ + M. 6.3.30b
$D, (3M, + My) ( )

_ _ 1 1
0=—0"" 1 05ByUyss — 0.5ByUy — — Wy + —Wpiy
h h

My———M N (My + 3Mp1) (6.3.30¢)
NItN

6.4 Numerical examples

To illustrate the working of DMCDM we consider two different examples, namely, pinned-
pinned and clamped-clamped beams with uniformly distributed load (UDL) of intensity gy. Due to
symmetry about the center of the beam, only a half beam, 0 < = < L/2, is considered as the com-
putational domain. Further, the results obtained from DMCDM are compared with those obtained

from FEM. For functionally graded beams the effect of power-law index n (see Eq. (6.1.1)), which
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dictates the material distribution through the beam thickness, on the deflections is also studied.
In addition to the dual mesh control domain methods described in the previous sections, we also

consider four different finite element models. All these models are briefly summarized below:

e FE-EB(D) - Displacement finite element model of the EBT

FE-EB(M) - Mixed finite element model of the EBT

FE-TB(D) - Displacement finite element model of the TBT

FE-TB(M) - Mixed finite element model of the TBT

DM-EB(M) - Mixed dual mesh finite domain model of the EBT

DM-TB(D) - Displacement dual mesh finite domain model of the TBT

e DM-TB(M) - Mixed dual mesh finite domain model of the TBT

It should be noted that in the displacement finite element model of Euler-Bernoulli beam (FE-
EB(D)) the transverse deflections are interpolated using Hermite cubic interpolation functions [93]
while the axial deflection is interpolated using linear Lagrange interpolation functions. However,
for the rest of the finite element models and dual mesh control domain models all the primary
variables are interpolated using linear Lagrange interpolation functions.

We investigate the effect of mesh and the power-law index n on the deflections and stresses.
We consider a beam of length L = 100 in, W x H =1 x 1 in? cross-sectional dimensions,
functionally graded through the height (h) (E; = 30 x 10° psi, B, = 3 x 10° psi, and v = 0.3),
and subjected to uniformly distributed transverse load of intensity g, 1b/in. For the pinned-pinned
and clamped-clamped boundary conditions, we can exploit the symmetry about x = L /2, and use
the left half of the beam as the computational domain.

First, we consider the beam with both ends pinned. The boundary conditions on the primary
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variables in various models for this problem are as follows:

Displacement models :  u(0) = w(0) = u(£) =0, 2(L)=00r¢, (%) =0

dx
(6.4.1)
Mixed models :  u(0) = w(0) = M(0) =0, u(£)=0
The boundary conditions on the secondary variables (satisfied in an integral sense) are:
Displacement models : M (0) =0, V(%) =0
(6.4.2)

Mixed models : V(é) =0, 2—?(%) =0or %(%) =0

The exact solutions of pinned-pinned functionally graded beams, with the power-law given in

Eq. (6.1.1), are given by

_ qL?

Dayu(w) = == (26 =367+ 26%) . Dy a(w) = == (1 - 667 — 4¢%)

A qL* 5 4y, A QL 5 qoL?
wiz) = B (6~ 26 +6%) + D601 - ) - BT e(1- 0

(6.4.3)
_ N* d¢af _ QOL2 o dMa:a: o QOL
_ My(z)h  hqoL?
o(r,05h) = = ML g
where ¢ = x/L and
a D::ac 2 D;x » Bazca: 2 D;k:m

We note that for homogeneous beams u(z) = 0 everywhere. The EBT solutions are obtained from
Eq. (6.4.3) by setting D,, = 0 and replacing ¢, with —dw/dz. The bending stress, o(z, 2), is
computed at = L/2 (where the bending moment is the maximum) and z = h/2, h being the

beam height. The stress is post-computed in the displacement models at the element center using
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the relation

2
o(x,z) = —E(2) ZZTUQ) for EBT; o(z,z) = E(z) Zﬂi;;x

for TBT (6.4.5)

On the other hand, the stress in the mixed models is computed using the bending moment M, (z)

according to the formula

M,.(x) z

o(x,z) = (6.4.6)

where M, (z) is the calculated from the finite element interpolation (i.e., o (L /2, h/2) = M(L/2)h/21,
and M (L/2) is the nodal value).

Tables 6.1 and 6.2 contain the normalized center deflection and stress, respectively, for homo-
geneous (ﬁm =D,,=FIand Bm = B,; = 0) pinned-pinned (P-P) beams for different number
of elements in the half beam. The tabulated deflections and stresses are normalized as follows

(with K, = 5/6):
Dys o I
w77 7 Hel?

w=w

(6.4.7)

where [ is the moment of inertia. From the results it is clear that the mixed dual mesh control
domain models are accurate in predicting the displacements and stresses. In fact, all mixed models
and the displacement model of the DMCDM give the exact stress for any number of elements.
The shear locking is alleviated in the displacement finite element model and DMCDM of the TBT

by the use of reduced integration. No such trick is used in the mixed FEM and mixed DMCDM.
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Table 6.1: The center transverse deflection w(L/2) x 10 of homogeneous P-P beams predicted by

various models [10].

Mesh | FE-EB(D) | FE-EB(M) | FE-TB(D) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)
4 0.1302 0.1286 0.1270 0.1285 0.1294 0.1270 0.1294
8 0.1302 0.1298 0.1294 0.1298 0.1300 0.1294 0.1300
16 0.1302 0.1301 0.1300 0.1301 0.1302 0.1300 0.1302
32 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302
64 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302
Exact | 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302

The DMCDM always gives the exact value of the moment at z = L /2. We also note that for this
slender beam (L/h = 100), the effect of shear deformation is negligible and the EBT and TBT

solutions for w are the same upto the fourth decimal point.

Table 6.2: The center stress 7 (L/2) x 10 for homogeneous P-P beams predicted by various models

[10].

Mesh | FE-EB(D) | FE-EB(M) | FE-TB(D) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)
4 0.6120 0.6250 0.6055 0.6250 0.6250 0.6250 0.6250
8 0.6218 0.6250 0.6201 0.6250 0.6250 0.6250 0.6250
16 0.6242 0.6250 0.6238 0.6250 0.6250 0.6250 0.6250
32 0.6248 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250
64 0.6249 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250
Exact | 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250
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Table 6.3 contains the normalized center deflection for functionally graded pinned-pinned (P-
P) beams for different values of the power-law index n. All of the results are obtained using
16 elements in the half beam. All models predict solutions that match the exact solutions upto
the fourth decimal point. The stresses in the FGM beams are exactly the same as those in the

homogeneous beams, because the bending moment is independent of the stiffness coefficients.

Table 6.3: The center transverse deflection w(L/2) x 10 of FGM P-P beams predicted by various
models [10].

n | FE-EB(D) | FE-TB(D) | FE-EB(M) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)
0.0 0.1302 0.1302 0.1302 0.1302 0.1302 0.1300 0.1302
1.0 0.1069 0.1068 0.1067 0.1069 0.1069 0.1068 0.1069
20 0.0919 0.0918 0.0919 0.0919 0.0919 0.0918 0.0919
3.0 0.0879 0.0878 0.0879 0.0879 0.0879 0.0878 0.0879
5.0 0.0900 0.0899 0.0899 0.0900 0.0900 0.0899 0.0900
7.5 0.0959 0.0958 0.0958 0.0958 0.0958 0.0958 0.0959
10.0 0.1012 0.1011 0.1012 0.1012 0.1012 0.1011 0.1012
12.0 0.1048 0.1047 0.1047 0.1048 0.1048 0.1047 0.1048
15.0 0.1091 0.1090 0.1090 0.1090 0.1090 0.1090 0.1091

20.0 0.1142 0.1140 0.1141 0.1141 0.1141 0.1140 0.1142

It is interesting to note that the effect of the power-law index n on the deflections is not mono-
tonic. As n goes from zero to a value of about n = 2, the deflection decreases and then increases
for n > 2. This is due to the fact that 5,, is not a monotonically increasing or decreasing function
of n, as can be seen from Fig. 6.6 (see [100]). Figure 6.7 shows the variation of the normalized

center deflection w with the power-law index n.
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Figure 6.6: Variation of B,, with n for given values of F/; and F; and given cross-section of beam.
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Next, we consider a beam clamped (C-C) at both ends. The boundary conditions on the primary

variables in various models for this problem are as follows (replace dw/dx with ¢, for the TBT:

d d
Displacement models :  u(0) = w(0) = 0, d—w(O) =0, u(L/2) = d—w(%) =0
T T
(6.4.8)

Mixed models :  u(0) = w(0) =0, u(L/2)=0

The boundary conditions on the secondary variables in various models for this problem (satisfied

in an integral sense) are as follows:

Displacement models : V(%) =0

(6.4.9)
) dw dw
Mixed models : E(O) =0, %(g) =0
The exact solutions for clamped-clamped beams are given by ({ = x/L)
u(w) = 22 (e 524 2¢) wie) = PE_@ (1 gy
12D, ’ 24F1
dw qoL? ) 5 d*w  qyL? )
=—— == - 2 M(x) = —Fl— = 1-—
bulr) =~ =~z (€ =3¢ +26°) . M(a) T3 = 1y (1-66+68)
L L?
Vix) = qu (26 — 1), o(z,0.50) = q204[ (1 — 6¢ 4 662) (6.4.10)

Tables 6.4 and 6.5 contain the normalized center deflection and stress, respectively, for the
clamped-clamped (C-C) homogeneous beam. From the results it is clear that the mixed dual mesh
finite domain models and finite element results are very close, if not identical. The displacement
finite element model is the most accurate by virtue of the higher (Hermite cubic) approximation of

the deflection.
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Table 6.4: The center transverse deflection w(L/2) x 10 predicted by various models for homoge-
neous beams [10].

Mesh | FE-EB(D) | FE-EB(M) | FE-TB(D) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)
4 0.2604 0.2604 0.2445 0.2601 0.2685 0.2445 0.2688
8 0.2604 0.2604 0.2567 0.2601 0.2624 0.2567 0.2627
16 0.2604 0.2604 0.2597 0.2601 0.2609 0.2597 0.2612
32 0.2604 0.2604 0.2605 0.2601 0.2606 0.2605 0.2608
64 0.2604 0.2604 0.2607 0.2601 0.2604 0.2607 0.2608
Exact | 0.2604 0.2604 0.2607 0.2607 0.2604 0.2607 0.2607

Table 6.5: The center stress (L /2) x 10 predicted by various models for homogeneous C-C beams

[10].

Mesh | FE-EB(D) | FE-EB(M) | FE-TB(D) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)
4 0.1953 0.1953 0.1953 0.1953 0.2148 0.2148 0.2149
8 0.2051 0.2051 0.2051 0.2051 0.2100 0.2100 0.2100
16 0.2075 0.2075 0.2075 0.2075 0.2087 0.2087 0.2087
32 0.2082 0.2082 0.2082 0.2082 0.2084 0.2084 0.2084
64 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083

Exact | 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083

Table 6.6 contains the normalized center deflection for the functionally graded clamped-clamped

beam for different values of n. All of the results were obtained with 16 elements in half beam. For

the C-C beams the normalized delfections do not deviate significantly from each other (they differ

only in the fourth or fifth decimal point).
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Table 6.6: The center transverse deflection w(L/2) x 10? of FGM C-C beams predicted by various
models [10].

n | FE-EB(D) | FE-TB(D) | FE-EB(M) | FE-TB(M) | DM-EB(M) | DM-TB(D) | DM-TB(M)

0.0 0.26040 0.26070 0.26040 0.26070 0.26093 0.25972 0.26125

1.0 0.26019 0.25965 0.26019 0.26044 0.26058 0.25965 0.26084

2.0 0.26004 0.25964 0.26004 0.26028 0.26037 0.25964 0.26060

3.0 | 0.26000 0.25965 0.26000 0.26025 0.26031 0.25965 0.26055

5.0 | 0.26002 0.25968 0.26002 0.26031 0.26034 0.25968 0.26062

10.0 | 0.26013 0.25976 0.26013 0.26049 0.26050 0.25976 0.26086

15.0 | 0.26021 0.25979 0.26021 0.26060 0.26062 0.25979 0.26100

20.0 | 0.26026 0.25980 0.26026 0.26066 0.26069 0.25980 0.26109
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7. DUAL MESH CONTROL DOMAIN METHOD FOR BENDING ANALYSIS OF
FUNCTIONALLY GRADED PLATES *

7.1 Introduction

In this chapter we consider the bending analysis of functionally graded axisymmetric circular
plates and functionally graded rectangular plates. Dual mesh control domain formulations based
on both both classical plate theory and first-order shear deformation theory are considered for ax-
isymmetric circular plates while for rectangular plates only dual mesh control domain formulation
based on first-order shear deformation is considered. Two constituent through-thickness function-
ally graded plates, with power-law variation of modulus of elasticity while keeping the Poisson’s
ratio constant, are considered. If the z-coordinate is taken along the thickness of the plate then the
variation of Young’s modulus is then given by (see Reddy [85])

E(z) = (E1 — Ey) f(2) + E», f(z) = (% + %)” (7.1.1)

where £; and £ are the material properties of the top and bottom faces of the plate, respectively,
n 1s the power-law index, and H is the plate thickness. Note that when n = 0, we obtain the

single-material plate (with modulus E}).
7.2 Governing equations of functionally graded axisymmetric circular plates

Consider a through-thickness functionally graded circular plate of thickness H and radius R
subjected to axisymmetric distributed load ¢ (i.e., independent of the angular coordinate, ) on the
top face. If further, the boundary conditions are also selected to be axisymmetric, then the plate

can be considered as functionally graded axisymmetric circular plate. We select the cylindrical

*Parts of this chapter are reprinted with permission from “Bending Analysis of Functionally Graded Axisymmetric
Circular Plates using the Dual Mesh Finite Domain Method,” by P. Nampally and J. N. Reddy, 2020, Latin American
Journal of Solids and Structures, vol. 17, no. 7, €302, Copyright (2020) Praneeth Nampally and “Bending analysis of
functionally graded rectangular plates using the dual mesh control domain method,” by P. Nampally, E. Ruocco, and
J. N. Reddy, 2021. International Journal for Computational Methods in Engineering Science and Mechanics, vol. 0,
no. 0, pp. 1-14, Copyright (2021) Taylor & Francis .
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coordinate system (7, 0, z) to analyze the plate, where r is the radial coordinate outward form the
center of the plate (0 < r < R), z denotes the transverse coordinate (—H /2 < z < H/2), and 0
is the angular coordinate (0 < 6 < 27) (see figure 7.1). The displacement field of such a circular

plate based on the first-order shear deformation plate theory (FSDT) are given by

up(r,0,2) = u(r) + z¢(r) (7.2.1a)
ug(r,0,2) =0 (7.2.1b)
u,(r,0,2) = w(r) (7.2.1c)

The non-zero linear strains based on the above displacements would then be

du  do
Epr = ar + z% (7.2.2a)
con =2+ 26 (7.2.2b)
T T
1 dw

while the constitutive relations of the functionally graded axisymmetric circular plate are given by

( ) B 7 ( \
Orr 1 v 0 Eprp
E(z)
oo ( — 1 — p2 v 1 0 €00 ’ (723)
Orz 0 0 1—v| e
\ Vs L . \ /
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Figure 7.1: Schematic representation of the axisymmetric circular plate and various stress resul-
tants acting on a differential element of the axisymmetric circular plate [7].

We further define the stress and moment resultants on the circular plate (see figure 7.1) as

follows:
H/2 d d
= / oppdz = [ S 1 + B [ ¢ 4 (7.2.4a)
H/2 dr dr r
H/2
/ Oppzdz = [du ey } +D [‘M’ + ”¢] (7.2.4b)
H/2 dr d r
H/2 d dp 1
Nyo = / opedz = A {y—“ + 9] +B {u—‘b + —d)} (7.2.4¢)
/2 dr —r dr r
H/2 d dp 1
Mg,g = / U@gZdZ = B |:V—u + E:| + D |:V—¢ + —¢:| (724d)
_H/2 dr r dr r
H/2 d
—H/2 dr
where )2 /2
A :/ B b B :/ Bz,
H/21—V —upl-v 795
D = >d S = ——dz
—H/2 1—’/ _npp 2(1+v)

The explicit expressions of the above integrals for the power-law variation of E(z) (see Eq. (7.1.1))
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are given as

o (El — EQ)H EQH
S (n+ 1)1 —v?) 102

b (B E)H*[ 1 1
1—v? n+2 2n+1)
(7.2.6)
(Ey— E)H? [ 1 1 1 By H?
D= + =
1—v? n+3 4n+1) n+2 12(1 — v?)

K E,—E)H K,EH
S 2n+1)(14+v)  2(1+v)

The equations of equilibrium of the functionally graded (FG) axisymmetric circular plate can
be obtained using the principle of virtual work. The virtual work statement for FG axisymmetric

circular plate is

2r R H/2 o R
/ / / (0108 + To90cgs + 20,.0¢,,) rdzdrdf — / / gowrdrdd =0  (7.2.7)
o Jo J- o Jo

H/2

Now using the stress and moment resultant definitions of Egs. (7.2.4a)-(7.2.4e) and strain definition

of Egs. (7.2.2a)-(7.2.2c) we can rewrite the virtual work statement as

R
/ N’I‘T dd_u + MTT d5¢ + N99 (5% + M99 5¢ + Q’I‘ 5¢ + dé_w - qéw rdr = 0
0 dr dr r r dr

(7.2.8)

The governing differential equations of the FG axisymmetric circular plate are obtained by taking
the Euler-Lagrange equations of the above variational statement. The resulting governing equa-

tions read

1d N,

- (rN,,) + _:9 —0 (7.2.9)
1d

_FJ(TQT) —q¢=0 (7.2.10)
1]d

—; % (’I“Mrr) - Mgg + Qr =0 (7211)
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The governing equations derived above are based on the first-order shear deformation theory,
where the transverse shear strain is non-zero and assumes a constant value (and hence require the
shear correction factor, K in Eq. (7.2.5)). However, as the radius to thickness ratio of the circular
plate increases the shear strains are known to tend to zero. In such cases we may also use classical
plate theory (i.e., based on Kirchhoff hypothesis) to predict the plate behavior. To accommodate

dw

zero transverse shear strains the value of ¢ in FSDT is taken to be —<~ and hence the displacement

field of FG axisymmetric circular plate based on classical plate theory (CPT) would become

up(r,0,2) = u(r) — zcjl—l;) (7.2.12a)
ug(r,0,2) =0 (7.2.12b)
uy(r, 0, 2) = w(r) (7.2.12¢)

The stress and moment resultants on the FG axisymmetric circular plate based on the classical

plate theory would then be

H/2 2
Vo= [ o= a [ it -5 [T+ 2] (7.2.130)
_HY2 dr r dr r dr
H/2 2
M,, = / o2dz = B {d_u - VE:| - D {d_z; + Zd—w] (7.2.13b)
_H/2 dr r dr r dr
H/2 2 1
Nog = / ooodz = A [yd—“ - 3] - B {Vd—“f - —d—“’} (7.2.13¢)
1/ dr r dr rdr
H/2 d d? 1d
M= [ ez = 5 {y_” i 3} _p [V—f ; ——“’} (7.2.13d)
_H/2 dr r dr r dr

In this case the transverse shear strain vanishes; however, the governing equations remain the same
as those listed in Eqgs. (7.2.9)-(7.2.11) with the exception that the shear stress resultant (),. can only
be expressed in terms of the moments M,.. and My, as given by Eq. (7.2.11) rather than directly
computing in terms of shear strain (which is zero in this case).

The governing differential equations of FG axisymmetric circular plate based on the FSDT can

be expressed in terms of the generalized displacements (u, w, ¢) by substituting the expressions
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of stress and moment resultants of Egs. (7.2.4a)-(7.2.4e) into Egs. (7.2.9)-(7.2.11). The resulting

equations are listed below.

14 er (d_u + I/E> +rB 49 + z(b)]
rdr dr r roor
LA (A 3) ;B <u@ v lqb) —0 (7.2.14)
r roor r roor
1d dw
1 {7«5 <¢+% }_q:o (7.2.15)
1d du dp v
a8 (G ) o (o)
_|_§<Vd_u+g) _|_2 (V@+1¢> —|-S<¢—|—d—w> = (7.2.16)
r\_dr r r\_dr r dr

Similarly, the governing differential equations of FG axisymmetric circular plate based on CPT
can be expressed in terms of the displacements v and w by first expressing Eq. (7.2.10) in terms of
moments M,.. and My using Eq. (7.2.11) as

1 {i(er) _ M%} _4=0 (7.2.17)

r |dr

and then substituting the stress and moment resultants of Eqs. (7.2.13a)-(7.2.13d) into the above

equation and Eq. (7.2.9) to give

1d du u d? v dw
el PO e ) _ypli =207
rdr {T (dr+yr) " (dr2 rdr)}
2
r dr r r rZ2  rdr
Ld[df pde, u o (Tw, vdw
rdr |dr " dr r " r2  rdr

du u Pw  1dw

—B <1/$+;) +D (VWjL;%)] —q= (7.2.19)
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7.3 DMCDM for axisymmetric circular plates

In this section we will derive the dual mesh control domain equations of axisymmetric circular
plates based on classical plate theory and first-order shear deformation theory. Mixed dual mesh
control domain method is derived for classical plate theory and displacement dual mesh control

domain method is derived for first-order shear deformation theory.
7.3.1 Mixed DMCDM for axisymmetric circular plates based on classical plate theory

The governing equations FG axisymmetric circular plate based on the classical plate theory
when expressed in terms of the displacements, u and w, would result in fourth order differential
equations. However, since the dual mesh control domain method is applicable only for first-order
or second-order differential equations, we will recast the governing equations (7.2.9)-(7.2.11) as
second-order differential equations such that the primary variables of the resulting equations are
{u,w, M, }. First, we will consider the equations (7.2.13a) and (7.2.13b). From these two equa-
tions we can write an expression of /N, in terms of v and M,.,.. Similarly, Nyy can be expressed
in terms of w and Myy using the equations (7.2.13c) and (7.2.13d). In the following we list the

resulting equations after some algebraic manipulations.

_/d _
N, —4 <—“ 4 zﬁ) +BM,, (7.3.1)
dr r
_/d _
Ny = A (,,_“ n 3) + BMy, (1.3.2)
dr r
where
_ D AD-B> _ B
A pr— o e— B _ —
D D D

To eliminate Myy from Eq. (7.3.2) we use Eq. (7.2.13b) and Eq. (7.2.13d) to obtain

D(1 —v?) dw

Mgy = vM,, + B(1 — 1*)~ — = (7.3.3)
r r dr

151



Thus Ngg can be written as

— — B?(1 —v? B(1 —v?
Nop = A (3 %Y 4 By, ¢ B0 =v)u BU=v])dw (7.3.4)
dr —r D r r dr
Finally, Eq. (7.2.13b) can be expressed as
d*w  vdw —(du u 1
(2 ) B (L v, =0 735
(dr2+rdr>+ (dr+yr) D ( )

The governing equations of FG axisymmetric circular plate based on classical plate theory in
terms of {u, w, M,,} would then be given by Eq. (7.2.9), Eq. (7.2.17) and Eq. (7.3.5); wherein the
expressions for N,.,., Nyg and Myy are obtained from Egs. (7.3.1), (7.3.4) and (7.3.3) respectively.

The resulting final equations are as follows:

_ld% |:TZ (d— + I/—) + TEMTT:| +— (Vj—: + %)
By, B BOZA), (7.3.6)
e [rdf” + -, - 202, POV flﬂ —q=0 (3D
—%dii (ri—f) e ; V) Cfi—l: +B @—:f + u%) —~ %MM = (7.3.8)

As noted earlier, the dual mesh control domain method is only applicable to equations of sec-
ond order or less. Thus we develop dual mesh control domain formulation of the FG axisymmetric
circular plate based on classical plate theory using the governing equations (7.3.6)-(7.3.8). The
resulting formulation is called mixed dual mesh control domain method (see [10]) since the formu-
lation has both generalized displacements (u,w) and the moment (M,..) as the primary variables.

This is similar to the mixed formulations of finite element method.
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Figure 7.2: Primal mesh (primal mesh elements) and dual mesh (control domains) on the compu-
tational domain [7].

To obtain the discretized equations, we consider the computational domain = (0, R) and
divide it into N primal mesh elements (primal mesh) such that each node has its associated control
domain (dual mesh). Except for the control domains corresponding to the boundary nodes, all the
interior control domains encompass two primal mesh elements (primal mesh) such that one half of
each of these two primal mesh elements lie within the control domain (see figure 7.2). Thus, for a
uniform primal mesh the interior nodes lie at the center of their corresponding control domains.

The dependent variables are approximated on each primal mesh element using Lagrange inter-
polation functions (see figure 7.3). Al