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ABSTRACT

In the first part of the dissertation we develop nonlinear beam and plate theories based on

micropolar elasticity and formulate the corresponding finite element models. The developed non-

linear beam and plate finite element models are then used to analyze the bending of lattice core

sandwich beams and plates that are modeled as equivalent-single layer beams or plates based on

micropolar elasticity. The rapid growth of manufacturing technologies has enabled the design and

development of materials whose microstructure can be architected to achieve desired functional-

ity. Lattice core sandwich structures are among such architected materials whose microstructure

is the order of few centimeters. Modeling these structures with complete geometric details can be

computationally expensive. Hence, efforts are made to model such structures as equivalent-single

layer beams or plates with non-classical continuum theories like micropolar elasticity. One such

methodology to construct equivalent-single layer beams [1] of web-core lattice beams is described

and extended to other core structures.

The second part of this dissertation deals with formulation of a novel numerical method,

named Dual Mesh Control Domain Method (DMCDM), for functionally graded structural ele-

ments; namely beams and plates. For the past few decades finite element method has been the

dominant numerical method for analysis of solids and structures while finite volume method has

been dominant in the field of fluid dynamics. Both the methods have their strengths and weak-

nesses. For example, representing a system as a collection of connected finite elements often results

in a discontinuous representation of the gradients of the solution, unless so-called C-continuity is

used. However, finite element method retains the concept of duality between the secondary and

primary variables of the problem and thereby simplify the process of applying boundary condi-

tions. On the other hand, although finite volume method involves fictitious nodes at the boundary

control volumes and thereby complicating the application of boundary conditions, it satisfies the

integrals of governing equations (with out any weight functions) on control volumes and calcu-

lates secondary variables on the interfaces of the control volume where they are uniquely defined.
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Considering these observations, Professor J. N. Reddy has recently proposed a novel numerical

method named Dual Mesh Control Domain Method (DMCDM). It incorporates the best features

of both finite element method and finite volume method by using two different meshes. A primal

mesh for interpolating the primary variables and dual mesh for satisfy the governing equations in

integral form without weight functions. The details of this method and its application to structural

elements is discussed in detail.
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1. INTRODUCTION AND LITERATURE REVIEW ∗

1.1 Micropolar elasticity

The idea of a continuum whose material particles have independent rotational degrees of free-

dom along with translational degrees of freedom was first proposed by Cosserat brothers more than

one hundred years ago [11], which was later named as a Cosserat (or micropolar) continuum. The

theory was left dormant for about fifty years, until it was revived by Eringen and his coworkers

[12, 13, 14]. Since then micropolar elasticity has found applications in modeling complex mi-

crostructures like soils, polycrystalline and composite materials [15, 16, 17, 18], nano structures

[19], porous media and foams [20, 21, 22], and even animal bones [23].

With increased use of micro and nano structures, where the material length scales play an

important role, there has been an impetus in developing beam and plate theories that can bring mi-

crostructural length scales into the problem. This resulted in a plethora of beam and plate theories

based on various non-classical continuum theories. Various beam models are proposed based on

modified couple stress theories [24, 25, 26, 27, 28], strain gradient theories [29, 30, 31], Eringen

non-local elasticity [32, 33, 34]. Similarly, such beam theories are also developed using micropolar

elasticity. For example, [35] proposed a size-dependent micropolar beam which was enhanced by

von Kármán nonlinearity. However, the use of micropolar beam and plate theories is not limited

to micro and nano structures. Various homogenization techniques have been proposed to model

lattice structures [36, 37, 38, 9, 5, 39], metamaterials [40], and nano materials as equivalent microp-

olar material structures. Such homogenization techniques usually seek to express the constitutive

constants of the equivalent micropolar material in terms of the microstructural properties of the

considered material (or structure) [4, 9]. Thus, the need for micropolar beam and plate theories is

∗Parts of this chapter are reprinted with permission from “Geometrically nonlinear Euler–Bernoulli and Timo-
shenko micropolar beam theories” by P. Nampally and J. N. Reddy, 2020. Acta Mechanica, vol. 231, no. 10, pp.
4217–4242, Copyright (2020) Springer-Verlag GmbH Austria, part of Springer Nature and from “Nonlinear finite el-
ement analysis of lattice core sandwich beams” by P. Nampally, A. T. Karttunen, and J. N. Reddy, 2019, European
Journal of Mechanics - A/Solids, vol. 74, pp. 431–439, Copyright (2018) Elsevier Masson SAS and from “A dual
mesh finite domain method for the analysis of functionally graded beams” by J. N. Reddy and P. Nampally, 2020.
Composite Structures, vol. 251, p. 112648, Copyright (2020) Elsevier Ltd.
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warranted by the range of applications of micropolar elasticity, especially for continuum models

of microstructures.

While many micropolar beam and plate theories have been proposed (see, e.g., [41, 42]), often

they only consider linear strains (or linearized Cosserat deformation gradient) resulting in linear

micropolar beam or plate theories. However, certain applications of micropolar elasticity may

require the use of nonlinear or moderate nonlinear strains. For example, micro and nano beams

usually undergo moderately large rotations which inherently bring nonlinearity into the problem.

There have been certain attempts to bring such a nonlinearity into the micropolar beam and plate

theories. For example, in [35] the use of the von Kármán nonlinearity to model the moderate rota-

tions of micropolar beams was proposed. In [5] a similar theory was used in modeling the behavior

of lattice core beams. A geometrically exact micropolar Timoshenko beam, where the complete

nonlinear Cosserat deformation gradient was taken into account was developed in [40]. The ap-

proximation of small microrotations to obtain a nonlinear micropolar plate theory was considered

in [43]. Considering this, one aspect of this dissertation is to explore the possible nonlinear theories

for micropolar beams and plates. These topics are covered in chapters 2 and 3 respectively.

With the revived interest in micropolar elasticity [44, 12], considerable work has been put

into developing appropriate finite element models for micropolar continua in general; see, for

example, [45, 46, 47, 48]. A few recent papers on the finite element models of micropolar plates

include [49, 50, 51]. Various finite element models have been proposed for the bending analysis of

micropolar beams as well. In [42] a 3-D non-compatible finite elements were used to analyze the

bending of beams, and three different elements for plane micropolar elasticity were proposed and

used to analyze thin in-plane beams in [52]. A 1-D micropolar beam finite element model using

Lagrange interpolation functions was developed in [53]. A finite element model for a micropolar

Timoshenko beam with the microrotation assumed to be equal to the cross-sectional rotation was

derived in [54]. More recently, a 27-node 3-D finite element for the analysis of beams was proposed

[50]. Most of the literature on the finite element analysis of micropolar beams and plates usually

consider only linear strains. Given the difficulty in finding closed-form solutions to nonlinear

2



equations, generally the finite element method is used in obtaining approximate solutions to the

problem. Thus, appropriate finite element models for the nonlinear theories of micropolar beams

and plates considered in chapters 2 and 3 are also developed.

1.1.1 Kinematics of micropolar continuum

Unlike the classical continuum, in micropolar continuum the material particles are assumed to

have orientation [55, 56, 44, 57]. Thus the material particles in micropolar continuum undergo

translation and rotation (called microrotation, which account for the change in the orientation of

material particle) during deformation. Therefore, the study of micropolar continuum requires a

displacement vector u and an orthogonal microrotation tensor Q. To account for these microrota-

tions in the kinematics of the continuum, two kinematic tensors are defined. These two tensors are

called Cosserat Deformation Gradient (E) and Wryness Tensor (Γ) [44]. The definitions of these

tensors are as follows [58, 59]:

E = QT (I + ∇u)− I (1.1.1)

Γ = −1

2
ε : (QT∇Q) (1.1.2)

where u is the displacement vector with three independent components (u1, u2, u3) along the Carte-

sian coordinates and Q is second-order microrotation tensor, I is the second-order identity tensor,

and ε is the third-order skew Ricci tensor (permutation tensor). Here ∇ represents the gradient

operator with respect to the reference configuration.

Since the microrotation tensor Q is a proper orthogonal tensor such that Q−1 = QT and

detQ = 1, only three of the nine components of the microrotation tensor are independent. Thus,

it is helpful to parameterize the microrotation tensor such that it can be represented in terms of a

microrotation vector with three independent components [58, 59]:

Q = cos θI +
1− cos θ

θ2
ψ ⊗ψ +

sin θ

θ
ψ × I (1.1.3)

QT = cos θI +
1− cos θ

θ2
ψ ⊗ψ − sin θ

θ
ψ × I (1.1.4)
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where ψ = θê is the microrotation vector whose direction is along the unit vector ê and has a

magnitude θ ∈ (−2π, 2π). The rotation vector can also be written as

ψ = ψ1ê1 + ψ2ê2 + ψ3ê3 (1.1.5)

where ψ1, ψ2 and ψ3 are the components of the microrotation vector along the Cartesian coordinate

ê1, ê2 and ê3 respectively such that

θ =
√
ψ2

1 + ψ2
2 + ψ2

3 (1.1.6)

Writing Eq. (1.1.1) and Eq. (1.1.2) in indicial notation we have

Eij = (cos θ − 1) δij + cos θui,j +
1− cos θ

θ2
(ψiψj + ψiψkuk,j)−

sin θ

θ
(εmjiψm + εnkiψnuk,j)

(1.1.7)

Γij =
sin θ

θ
ψi,j +

θ − sin θ

θ3
ψiψkψk,j −

1− cos θ

θ2
εlkiψlψk,j (1.1.8)

Since the the material particles in a solid continuum will have restricted microrotations com-

pared to a fluent continuum, it is safe to assume that the magnitude of microrotations of each

material particle of a solid continuum are very small, i.e., |θ| → 0 [44, 59, 60]. Following this

approximation we have

lim
θ→0

cos θ = 1, lim
θ→0

1− cos θ

θ2
=

1

2

lim
θ→0

sin θ

θ
= 1, lim

θ→0

θ − sin θ

θ3
=

1

6

ψiψj ≈ 0, ψiψkψk,j ≈ 0

ψiψkuk,j ≈ 0, ψlψk,j ≈ 0
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which will result in

Eij ≈ eij = ui,j + εijmψm + εiknψnuk,j (1.1.9)

Γij ≈ ηij = ψi,j (1.1.10)

If we further assume that the displacement gradients are small [44, 59] then we can linearize the

Cosserat deformation tensor to get

Eij ≈ εij = ui,j + εijmψm (1.1.11)

We can break the Cosserat deformation gradient tensors in Eq. (1.1.9) and Eq. (1.1.11) into

symmetric and anti-symmetric parts, to define the following

e
(s)
ij =

eij + eji
2

=
ui,j + uj,i

2
+
εiknψnuk,j + εjknψnuk,i

2

e
(a)
ij =

eij − eji
2

=
ui,j − uj,i

2
+ εijmψm +

εiknψnuk,j − εjknψnuk,i
2

(1.1.12)

ε
(s)
ij =

εij + εji
2

=
ui,j + uj,i

2

ε
(a)
ij =

εij − εji
2

=
ui,j − uj,i

2
+ εijmψm

(1.1.13)

For the linear isotropic micropolar solid we have the following constitutive relations:

σij = λεkkδij + (µ+ κ)εij + µεji (1.1.14)

rij = αηkkδij + βηji + γηij (1.1.15)

where λ, µ, κ, α, β, γ are the micropolar constitutive constants [44]. Defining the symmetric and

anti-symmetric stresses as

σ
(s)
ij =

σij + σji
2

σ
(a)
ij =

σij − σji
2

5



we can write constitutive relation (1.1.14) in terms of the symmetric and anti-symmetric strains

and stresses as:

σ
(s)
ij = λε

(s)
kk δij + (2µ+ κ)ε

(s)
ij (1.1.16)

σ
(a)
ij = κε

(a)
ij (1.1.17)

1.2 Lattice core sandwich structures

The rapid growth of manufacturing technologies has enabled the design and development of

materials whose microstructure can be architected to achieve desired functionalities, including

high stiffness-to-weight ratios [61]. The scale of the architected microstructure can range from a

few nanometers [62] to several meters. Lattice core sandwich structures are a class of architected

materials whose microstructure is typically in the order of centimeters [63, 64]. A variety of

manufacturing techniques are available for the production of sandwich panels [65, 66]. A typical

sandwich panel consists of a thick, low-stiffness core between two relatively thin but stiff face

sheets. The face sheets take bending and in-plane loads while the core carries transverse shear

loads [63, 67]. The face sheets and core can be made of the same or different materials and some

possible core structures include, for example, foam, solid, honeycomb, and truss cores [68] (see

Fig. 1.1). A sandwich panel generally has a high bending stiffness compared to a single solid

plate of the same dimensions made of either the face sheet or core material and the panel weighs

considerably less than the solid plate making it a weight-efficient structure [67]. Sandwich panels

are designed so that the face sheets take the bending loads while the core carries most of the shear

loading [69].

Sandwich panels have received a lot of attention because of their superior performance com-

pared to their monolithic counterparts made solely of either the face sheet material or the core

material. For example, sandwich panels have found applications in aerospace industry [70, 71]

and marine industry [72, 73]. They are also being used in air and underwater blast resistance struc-

tures [74]. Laser-welded web-core steel sandwich panels have found applications in shipbuilding
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as staircase landings and non-structural walls [75, 76] and also show good potential for applications

in bridges and buildings [77, 78, 79, 80].

Figure 1.1: Lattice core sandwich panels with with various core topologies (Reprinted with per-
mission from [2]).

The number of applications for sandwich panels is increasing rapidly. The required accuracy

in the structural analysis of the panels depends on the type of the application considered. For ex-

ample, in air-crafts a very detailed response of the sandwich structure may be required, whereas an

overall global response may suffice in residential buildings when the natural vibration frequencies

are of interest, for example. In any case, there is a need for appropriate modeling tools for different

applications. Reviews on the modeling of sandwich structures have been given by several authors

[81, 82, 83, 84, 64]. Modeling methods for sandwich panels can be broadly classified as: (a) Com-

plete 3-D analysis (computational or analytical), with complete details of the face sheets and the

core structure considered; (b) layer-wise modeling with the faces and core considered as separate

continuum layers [85]; (c) statically equivalent single layer (ESL) models. Although computa-

tional 3-D and layer-wise analyses give very detailed stress distributions for the panels, they come

with the inherent disadvantage of including a large number of variables and, thus, the computa-

tional analysis of them can be very burdensome. Therefore, equivalent single layer theories such
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as the ESL first-order shear deformation (FSDT) beam and plate models are attractive especially

when the global response of the structure is of main interest without accounting for every small

detail. Extensive literature exists on the modeling of sandwich beam, plates and shells by ESL

theories, see, for example [86, 87, 88, 82, 43].

Of the non-classical continuum mechanics theories to model lattice core sandwich panels, there

equivalent single layer models of lattice structures based on the strain gradient theory [89, 90],

couple stress theory [91], and micropolar theory [1, 92, 40], which is particularly well-suited for

predicting the structural response of bending-dominated lattice panels accurately. This may be

attributed to the additional, independent rotational degrees of freedom the micropolar theory pro-

vides. Detailed bending-dominated lattice unit cells may be constructed using beam and shell finite

elements and the micropolar theory allows us to pass information related to both the translational

and the rotational degrees of freedom of the beam and shell elements from a detailed FE model

into, for example, a 2-D ESL plate model through a homogenization process. Recently, microp-

olar theory was used to model 2-D web-core sandwich structure, which can be considered as a

beam frame, as 1-D equivalent single layer micropolar beam in [1, 4] and 3-D web-core sand-

wich panels were modeled as 2-D orthotropic equivalent-single layer first-order shear deformation

(ESL-FSDT) micropolar plates in [9]. Inspired by these works, in chapter 3 we extend these

modeling techniques to other lattice core beams (hexagonal, Y-frame, corrugate) and incorporate

geometric nonlinearity into the theory to account for moderate rotations of these beams (see chap-

ter 2). In chapter 4 we consider the nonlinear bending and free vibrations of web-core and pyramid

core lattice core sandwich plates, which are modeled as equivalent-single layer micropolar plates

following the similar techniques given in [9]. We also incorporate geometric nonlinearity into the

problem to model moderate rotations of these plates.

1.3 Dual mesh control domain method

With increase in the computational power, numerical methods have developed tremendously

during the past few decades with finite element method (FEM) dominating the structural mechan-

ics arena and finite volume method (FVM) dominating the fluid dynamics arena. Typically, all
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approximate methods convert a differential equation described by the operator equation Au = f

governing a variable u to a set of algebraic equations of the matrix form Ku = F, among the nodal

values of the variable u and its dual variable F at a selected number of points (called nodes) in the

domain and on its boundary. The actual process that results in the final matrix equation Ku = F

differs from one method to another. The FEM is based on the following three-fold idea [93]:

(1) the total domain Ω can be represented as a collection of a finite number of non-overlapping

but interconnected (at the boundaries of the) subdomains, called finite elements, Ωe; the

elements are of a particular geometry that allows the construction of approximation (or in-

terpolation) functions;

(2) over each element Ωe, the dependent unknown u is interpolated through a set of points

(nodes) of the element as u ≈
∑
ujψj , uj being the value of u at the jth node and ψj

are suitable approximation functions, and the governing equation is converted to a set of

algebraic equations Keue = Fe (called finite element model) using a method of approxima-

tion (e.g., weak-form Galerkin or Ritz, subdomain, least-squares, and so on); the element

equations contain nodal variables from only the element under consideration; and

(3) the element equations from all elements are put together (element assembly) using balance

and continuity conditions at element interfaces to obtain a global set of algebraic equations,

Ku = F, which are then solved after applying the boundary conditions at the nodes.

There are two drawbacks of the FEM. First, representing a system as a collection of connected finite

elements often results in a discontinuous representation of the gradients of the solution, unless so-

called C-continuity is used (which in turn dictates the element type, both in geometry and degrees

of freedom per node). Second, the satisfaction of the governing equations in the weak-form or

weighted-integral sense tends to smooth the solution and thereby predicts diffuse solutions when

applied to problems with steep gradients.

In the FVM [94] one represents a given domain, much like in FEM, as a collection of non-

overlapping domains, called control volumes. Then an integral (not a weighted-integral) statement
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of the governing equation, after invoking the Green–Gauss theorem to covert the domain integral

to the boundary integral, is used over a typical control volume to derive the algebraic equations.

In the FVM, at the centroid of each control volume lies a mesh point, and the derivatives of the

dependent variables at the control volume interfaces are calculated in terms of the values of the

dependent variables at the mesh points using Taylor’s series approximations (i.e., “finite difference-

like" approximations). Thus, there is no explicit interpolation (although there is a polynomial

approximation implied by the truncated Taylor’s series) of the dependent variables is employed in

the FVM. The algebraic equations derived using a typical control volume involve mesh point values

from the neighboring control volumes (a notable difference from FEM), naturally connecting the

control volumes. The resulting algebraic equations resemble more like finite difference stencils,

which are valid for a typical mesh point in the entire domain and include contributions from the

neighboring mesh points to obtain the required algebraic equations of the entire mesh. Thus, in

the FVM there is no formal assembly of control volumes is involved. The imposition of gradient

type boundary conditions involves, sometimes, fictitious nodes from outside the domain, and there

is no unique methodology followed for the imposition of boundary conditions or the evaluation of

integral expressions in the FVM. The major advantage of the FVM however, is the satisfaction of

the global form of the governing equations exactly and thus resulting in a better accuracy for the

secondary variables like fluxes and forces.

Recently, Reddy [95] introduced a numerical approach termed the dual mesh finite domain

method (DMFDM) for the solution of second-order differential equations in one and two dimen-

sions with a single unknown. The dual mesh finite domain was later renamed as dual mesh control

domain method (DMCDM) in [96]. In the DMCDM, the domain is discretized using two meshes; a

primal mesh which connect the nodes at which the primary variables are to be evaluated and a dual

mesh upon which the governing equations are satisfied in an integral sense. We call the elements of

the primal mesh the primal mesh elements and elements of the dual mesh the control domains. The

primary variables of the problem are approximated using Lagrange interpolation functions upon

each of the primal mesh elements similar to the finite element method. However, unlike the finite
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element method where the governing equations are satisfied on each finite element in a weighted

integral sense, the governing equations in dual mesh control domain method are satisfied on the

control domains of each node as an integral statement without any weighting function; a similar-

ity shared with the finite volume method. Further, since the control domain already connects the

primal mesh elements which share the node about which the control domain is centered, the con-

nectivity of the primary variables at the nodes is automatically satisfied. Thus, in dual mesh control

domain method we obtain the global equations directly unlike in finite element method where we

write the finite element equations first and the global equations are then obtained from element

equation assembly. Further, in dual mesh control domain method the secondary variables dual to

the primary variables are not expressed in terms of the primary variables on the boundaries of the

computational domain. This facilitates the retention of the duality concept used in finite element

method (see [95, 96]). Thus, the DMCDM can be viewed as a hybrid method that makes use of

two best features of the FEM [93], namely, (a) the interpolation of the variables and (b) imposition

of physical boundary conditions, and two salient features of the FVM [94]: (a) satisfaction of the

global balance equations over the finite domain and (b) computation of the secondary variables at

the boundaries of the control domains where they are uniquely defined.

x

F0

fx

L

Figure 1.2: Elastic bar fixed at one end with axial distributed load fx and concentrated load F0 at
free end

To illustrate the working of dual mesh control domain method for 1-D problems, we will con-

sider a 1-D elastic bar of length L, with one end fixed and a concentrated force acting on the other
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end. The area of cross-section of the bar is A and Young’s modulus is E. The governing equation

of the 1-D elastic bar, in the presence of a distributed axial force fx, is given by

− d

dx

[
EA

du

dx

]
− fx = 0, 0 < x < L (1.3.1)

u(0) = 0, EA
du

dx
= F0 (1.3.2)

The exact solution of the bar for the above boundary conditions and constant distributed force

fx = f is given by

u(x) =
fx2

2EA
+

(F0 − fL)x

EA
(1.3.3)

Let us discretize the domain with two primal mesh elements, Ω
(i)
p (i = 1, 2), (each of length

h = L/2) and three dual mesh elements, Ω
(I)
CD (I = 1, 2, 3) (see Fig.1.3). The primary variable

u is interpolated on each of the primal mesh elements using 1-D linear Lagrange interpolation

functions [93]. That is, u can be written as

u(x) ≈


U1ψ

(1)
1 (x) + U2ψ

(1)
2 (x), ∀ x ∈ (0, L/2)

U2ψ
(2)
1 (x) + U3ψ

(2)
2 (x), ∀ x ∈ (L/2, L)

(1.3.4)

where
ψ

(1)
1 (x) =

h− x
h

, ψ
(1)
2 (x) =

x

h

ψ
(2)
1 (x) =

2h− x
h

, ψ
(2)
2 (x) =

x− h
h

(1.3.5)
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U1 U3

x1

x
(1)
b =x(2)

a x
(2)
b =x(3)

a

x3x2

U2

Ω
(1)
CD Ω

(2)
CD Ω

(3)
CDΩ

(1)
p Ω

(2)
p

Figure 1.3: Discretization of elastic bar with primal and dual mesh elements.

Now writing the integral statement of the governing equation within the interior control domain

we have

∫ x
(2)
b

x
(2)
a

{
− d

dx

[
EA

du

dx

]
− fx

}
dx = 0 (1.3.6)

Carrying out the integral in the above equations such that the resulting boundary terms are sec-

ondary variables which are dual to the primary variable u, we get

−N (2)
1 −N

(2)
2 −

∫ x
(2)
b

x
(2)
a

fxdx = 0 (1.3.7)

Here N (2)
1 is the axial force at left end of the control domain and N (2)

2 is the axial force at the right

end of the control domain. These are given by

N
(2)
1 = −

[
EA

du

dx

]
x=x

(2)
a

, N
(2)
2 =

[
EA

du

dx

]
x=x

(2)
b

(1.3.8)

The negative sign in the definition of N (2)
1 indicates that the force is compressive in nature. The

force convention is taken such that the force acting along the positive x-axis is taken as tensile.

The axial forces in Eq. (1.3.8) (i.e., secondary variables) acting on the interior control domain

are expressed in terms of the nodal values of the primary variables using the interpolation of the

primary variable on the primal mesh elements given by Eq. (1.3.4). Noting that the interior control
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domain spans two primal mesh elements we can write Eq. (1.3.7) as follows:

EA

[
U1
dψ

(1)
1

dx
+ U2

(
dψ

(1)
2

dx
− dψ

(2)
1

dx

)
− U3

dψ
(2)
2

dx

]
−
∫ x

(2)
b

x
(2)
a

fxdx = 0 (1.3.9)

EA

[
−U1

h1

+ U2

(
1

h1

+
1

hI

)
− U3

h2

]
− fh = 0 (1.3.10)

Let us now consider the control domain corresponding to node 1. The integral statement of the

governing equation on this control domain would be:

∫ x
(1)
b

0

{
− d

dx

[
EA

du

dx

]
− fx

}
dx = 0 (1.3.11)

Carrying out the integration we get

−N (1)
1 −N

(1)
2 −

∫ x
(1)
b

0

fxdx = 0 (1.3.12)

Since the N (1)
1 represents the axial force at the left boundary of the bar, we only express N (1)

2 in

terms of the nodal values of the primary variable using interpolation functions. N (1)
1 is retained

as is because, on the boundary we either know the primary variable u or secondary variable N (1)
1

(reaction force in this case) because of the duality. Thus, when U1 is known we can calculate N (1)
1

and when N (1)
1 is known we can calculate U1. Hence, Eq. (1.3.12) will take the following form:

−N (1)
1 −

EA

h

[
U1
dψ

(1)
1

dx
+ U2

dψ
(1)
2

dx

]
−
∫ x

(1)
b

0

= 0 (1.3.13)

EA

h
(U1 − U2)− fh

2
−N (1)

1 = 0 (1.3.14)

Similarly, the discretized equation corresponding to third control domain can be written and the
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final discretized equations will be of the form:

EA

h
(U1 − U2) =

fh

2
+N

(1)
1

EA

h
(−U1 + 2U2 − U3) = fh

EA

h
(−U2 + U3) =

fh

2
+N

(3)
2

(1.3.15)

EA

h


1 −1 0

−1 2 −1

0 −1 1




U1

U2

U3


=



fh
2

fh

fh
2


+


N

(1)
1

0

N
(3)
2


(1.3.16)

After imposing the boundary condition U1 = 0 and N (3)
2 = F0 for f = 0 in the above equation, we

get displacements of nodes 2 and 3 which are given in Table 1.1.

x Exact DMCDM

0 0.0 0.0

h F0h
EA

F0h
EA

2h F02h
EA

F02h
EA

Table 1.1: Comparison of elastic bar deflection from DMCDM with exact solution

Following this brief general introduction to dual mesh control domain method, we will consider

its application to functionally graded beams [10] in chapter 6. Bending analysis of functionally

graded axisymmetric circular plates [7] and functionally graded rectangular plates [8] using dual

mesh control domain method is considered in chapter 7.
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2. NONLINEAR MICROPOLAR BEAM THEORIES∗

2.1 Introduction

In this chapter we utilize the generally used beam theories of classical Cauchy continuum to

construct the beam theories for micropolar continuum. Let the beam considered be such that the

x-axis of the considered coordinate system passes through the centroid of the cross-section of the

beam (called axis of the beam). The length of the beam is L, height of the beam is H and width of

the beam is B. The z-axis points downwards and the y-axis points out of the paper (see Fig. 2.2).

For such a beam we represent the displacement and microrotation vectors as follows:

u = u1ê1 + u2ê2 + u3ê3

ψ = ψ1ê1 + ψ2ê2 + ψ3ê3

(2.1.1)

2.2 The Euler-Bernoulli micropolar beam theory (EMBT)

The displacement field of the Euler-Bernoulli micropolar beam theory† is based on the same

assumptions of Euler-Bernoulli beam theory of classical continuum (i.e., the assumptions that the

planes perpendicular to the axis of the beam remain plane and perpendicular after deformation and

are in-extensible [97] are still valid). Thus we have the following displacement field

u1(x, y, z) = uE0 (x)− zdw
E
0

dx

u2(x, y, z) = 0

u3(x, y, z) = wE0 (x)

(2.2.1)

∗Reprinted with permission from “Geometrically nonlinear Euler–Bernoulli and Timoshenko micropolar beam
theories” by P. Nampally and J. N. Reddy, 2020. Acta Mechanica, vol. 231, no. 10, pp. 4217–4242, Copyright (2020)
Springer-Verlag GmbH Austria, part of Springer Nature.

†We use superscript E to denote terms corresponding to Euler-Bernoulli micropolar beam theory.
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We assume that only the y-component of the microroation is non-zero and that it only depends on

the x-coordinate.
ψ1(x, y, z) = 0

ψ2(x, y, z) = ψEy (x)

ψ3(x, y, z) = 0

(2.2.2)

This approximation implies that the planes normal to the axis of the beam are made of particles

which can only rotate about y-axis. Thus −dwE0
dx

represent the rotation of these planes about y-axis,

while ψEy represents the rotations of the particles within these planes about y-axis (see Fig. 2.1)

and clearly these two are independent degrees of freedom.

2.3 The Timoshenko micropolar beam theory (TMBT)

The displacement field of the Timoshenko micropolar beam theory† is based on the same as-

sumptions of the Timoshenko beam theory of classical continuum (i.e., the assumptions that the

planes perpendicular to the axis of the beam remain plane after deformation and are in-extensible

[93, 98] are still valid). Thus the displacement field is given by

u1(x, y, z) = uT0 (x) + zφTx (x)

u2(x, y, z) = 0

u3(x, y, z) = wT0 (x)

(2.3.1)

We assume the microroation field similar to EMBT.

ψ1(x, y, z) = 0

ψ2(x, y, z) = ψTy (x)

ψ3(x, y, z) = 0

(2.3.2)

Figure (2.1) shows a schematic representation of the displacement and microrotation fields of

a micropolar beam. The green circles represent the particles of the micropolar continuum within

†We use superscript T to denote terms corresponding to the Timoshenko micropolar beam theory.
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the plane normal to the axis of the beam before deformation while the yellow circles represent the

particle within the plane normal to the axis of beam after deformation. The red arrows form a pair

of perpendicular axis, called directors [44], which represent the orientation of micropolar material

particle in undeformed configuration while the blue arrows, which are also a set of perpendicular

axis, represent the orientation of the micropolar material particle in deformed configuration. The

angle, ψy, between blue and red arrows represent the microrotation about the y-axis of the refer-

ence frame. Similarly, the angle between planes normal to the axis of the beam before and after

deformation is represented by φx. Clearly these two angles are different.

u0

w0

φxψy

z

x

Figure 2.1: The displacements and microrotation of a micropolar beam. For Euler-Bernoulli beam
theory φx = −dw0

dx
[3].

2.4 The von Kármán nonlinearity and corresponding governing equations

In the classical continuum mechanics, if the displacement gradients are considered to be small

then we omit the nonlinear terms of the Green strain tensor, by arguing that the potential energy

contribution due to these nonlinear terms is negligible in comparison to the linear terms, and obtain

the linearized strain tensor [99]. Further, no distinction between current and reference configura-

tions is made. In the case of a beam, such linearized strains will result in linear beam theories.

However, if the rotations of the planes normal to the axis of the beam are moderate while the dis-

placement gradients are still small, we retain the nonlinear terms of the Green strain tensor which
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correspond to the rotations of these planes. The resulting beam equations after the retention of

such nonlinear terms in the strains are called the von Kármán nonlinear beam theories of classical

continuum [100, 101]. In classical continuum the effect of the von Kármán nonlinearity on the

beam theories is the addition of nonlinear term 1
2

(
dw0

dx

)2 to the εxx term of the linearized strain

[100]. If we extend the same argument to micropolar beams, that is, the displacement gradients

are small but the rotations of the planes normal to the axis of beam are moderate, the linearized

Cosserat deformation tensor of Eqs. (1.1.11) are inadequate in predicting the correct response of

the beam.

From Eqs. (1.1.13) we observe that the symmetric part of the linearized Cosserat deformation

tensor is similar to the strain measure of the linearized classical elasticity, while the anti-symmetric

part show that the effect of microrotations is to create additional rotations which append to the

components of the macrorotation tensor (or rotation tensor) of the linearized classical elasticity.

Following this observation, if we assume that the effect of moderate rotations of normal planes is

only on the symmetric part of the linearized Cosserat deformation tensor we can extend the von

Kármán approximation of classical continuum beam to micropolar beam [35, 5]. That is,

ε(s)
xx ≈

∂u1

∂x
+

1

2

(
dw0

dx

)2

(2.4.1)

Since the approximation of small displacement gradients is still valid, we can use the constitu-

tive relations of Eq. (1.1.14) and (1.1.15). If σ(s)
ij , σ(a)

ij and rij are the symmetric and anti-symmetric

stresses and couple stresses conjugate to modified ε(s)
ij , ε(a)

ij and ηij respectively, we can write the

principle of virtual work for a beam with transverse distributed load q0 and axial distributed load

fx as follows [102]:

∫
V

(
σ

(s)
ij δε

(s)
ij + σ

(a)
ij δε

(a)
ij + rijδηij

)
dV −

∫ L

0

(q0δw0 + fxδu0) dx = 0 (2.4.2)

In the following we define the non-zero components of symmetric, anti-symmetric parts of

linearized Cosserat deformation tensor after the von Kármán modification and Wryness tensor for
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the beam theories considered in section 2.3 and then use principle of virtual work (2.4.2) to derive

the governing equations and corresponding boundary conditions.

2.4.1 The von Kármán Euler-Bernoulli micropolar beam theory (VEMBT)

εE(s)
xx =

duE0
dx

+
1

2

(
dwE0
dx

)2

− zd
2wE0
dx2

εE(a)
xz = −

(
dwE0
dx

+ ψEy

) (2.4.3)

ηEyx =
dψEy
dx

(2.4.4)

Now defining the stress, moment and couple stress resultants acting on beam as

{
N
E(s)
xx

}
=

∫
A

{
σ
E(s)
xx

}
dA,

{
M

E(s)
xx

}
=

∫
A

{
σ
E(s)
xx

}
zdA (2.4.5)

{
Q
E(a)
x

}
=

∫
A

{
σ
E(a)
xz

}
dA,

{
PE
yx

}
=

∫
A

{
rEyx

}
dA (2.4.6)

we can express the principle of virtual work (2.4.2) in terms of the resultants (2.4.5) and (2.4.6) as

follows

∫ L

0

{
NE(s)
xx

(
dδuE0
dx

+
dδwE0
dx

dwE0
dx

)
−ME(s)

xx

d2δwE0
dx2

− 2QE(a)
x

(
dδwE0
dx

+ δψEy

)

+ PE
yx

dδψEy
dx
− q0δw

E
0 − fxδuE0

}
dx = 0 (2.4.7)

The governing equations of VEMBT are obtained by taking the Euler-Lagrange equations of the

above variational statement (2.4.7) as

δuE0 :
dN

E(s)
xx

dx
+ fx = 0 (2.4.8)

δwE0 :
d2M

E(s)
xx

dx2
+

d

dx

(
dwE0
dx

NE(s)
xx

)
− 2

dQ
E(a)
x

dx
+ q0 = 0 (2.4.9)

δψEy :
dPE

yx

dx
+ 2QE(a)

x = 0 (2.4.10)
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with the corresponding natural boundary conditions

NE(s)
xx = 0,

dME
xx

dx
− 2QE(a)

x +NE(s)
xx

dwE0
dx

= 0, ME(s)
xx = 0, PE

yx = 0 (2.4.11)

2.4.2 The von Kármán Timoshenko micropolar beam theory (VTMBT)

εT (s)
xx =

duT0
dx

+
1

2

(
dwT0
dx

)2

+ z
dφTx
dx

εT (s)
xz =

1

2

(
dwT0
dx

+ φTx

)
εT (a)
xz =

1

2

(
φTx −

dwT0
dx
− 2ψTy

) (2.4.12)

ηTyx =
dψTy
dx

(2.4.13)

Now defining the stress, moment, and couple stress resultants on the beam as

{
N
T (s)
xx

}
=

∫
A

{
σ
T (s)
xx

}
dA,

{
M

T (s)
xx

}
=

∫
A

{
σ
T (s)
xx

}
zdA (2.4.14)


Q
T (s)
x

Q
T (a)
x

 =

∫
A


σ
T (s)
xz

σ
T (a)
xz

 dA,

{
P T
yx

}
=

∫
A

{
rTyx

}
dA (2.4.15)

we can express the principle of virtual work (2.4.2) in terms of the resultants (2.4.14) and (2.4.15)

as follows

∫ L

0

{
NT (s)
xx

(
dδuT0
dx

+
dδwT0
dx

dwT0
dx

)
+MT (s)

xx

dδφTx
dx

+QT (s)
x

(
δφTx +

dδwT0
dx

)

+QT (a)
x

(
δφTx −

dδwT0
dx
− 2δψTy

)
+ P T

yx

dδψTy
dx
− q0δw

T
0 − fxδuT0

}
dx = 0 (2.4.16)

The governing equations of VTMBT are obtained by taking the Euler-Lagrange equations of the

21



above variational statement (2.4.16) as

δuT0 :
dN

T (s)
xx

dx
+ fx = 0 (2.4.17)

δwT0 :
d

dx

(
dwT0
dx

NT (s)
xx

)
+
d(Q

T (s)
x −QT (a)

x )

dx
+ q0 = 0 (2.4.18)

δφTx :
dM

T (s)
xx

dx
−QT (s)

x −QT (a)
x = 0 (2.4.19)

δψTy :
dP T

yx

dx
+ 2QT (a)

x = 0 (2.4.20)

with the corresponding natural boundary conditions

NT (s)
xx = 0, QT (s)

x −QT (a)
x +NT (s)

xx

dwT0
dx

= 0, MT (s)
xx = 0, P T

yx = 0 (2.4.21)

2.5 Micropolar nonlinearity and corresponding governing equations

In the previous section we derived the nonlinear governing differential equations of micropolar

beams based on the assumption that the moderate rotations of the planes normal to the axis of beam

can be modeled by von Kármán nonlinear strains terms borrowed from classical elasticity. In this

section we shall follow a different route to derive the nonlinear governing differential equations

accounting for the moderate rotations of the planes normal to the axis of beam. Here we make

appropriate approximations on the symmetric and anti-symmetric nonlinear Cosserat deformation

components of Eqs. (1.1.12) which reflect the condition of moderate rotations of planes normal to

the axis of beam while the displacement gradients are still assumed to be small.

Since the the only assumption made in deriving Eqs. (1.1.12) is that the microrotations are

small, we need to make a distinction between current and reference configurations as the displace-

ments could be large. Thus the gradients in Eqs. (1.1.12) are with respect to reference configu-

ration. For the case of moderate rotations of planes normal to the axis of beam approximation,

we assume the displacement gradients are also small. This eliminates the need for a distinction

between current and reference configurations. Further, since we assumed that the displacement
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gradients, except those that represent the rotations of planes normal to axis of beam, are small we

can make the following approximation on the magnitudes of various terms of Eqs. (1.1.12)

uα,β = o(ρ), ψi = o(
√
ρ)

u3,α = o(
√
ρ), φx = o(

√
ρ)

where ρ << 1, α, β = 1, 2 and i = 1, 2, 3

(2.5.1)

Neglecting terms of order greater than O(ρ) in calculating the terms of nonlinear Cosserat de-

formation components we arrive at the nonlinear Cosserat deformation tensor which represents the

moderate rotations and small displacement gradients. Since the approximation of small displace-

ment gradients is still valid, we can use the constitutive relations of Eqs. (1.1.14) and (1.1.15) with

corresponding stresses and modified Cosserat deformation tensors. If Σ
(s)
ij , Σ

(a)
ij and mij are the

symmetric, anti-symmetric stresses and couple stresses conjugate to e(s)
ij , e(a)

ij and ηij after moder-

ate rotation approximation, we can write the principle of virtual work for a beam with transverse

distributed load q0 and axial distributed load fx as follows [102]:

∫
V

(
Σ

(s)
ij δe

(s)
ij + Σ

(a)
ij δe

(a)
ij +mijδηij

)
dV −

∫ L

0

(q0δw0 + fxδu0) dx = 0 (2.5.2)

In the following we shall define the non-zero components of symmetric and anti-symmetric

parts of nonlinear Cosserat deformation tensor after moderate rotations approximation and Wry-

ness tensor for the beam theories considered in section 2.2 and 2.3 and then use the principle of

virtual work (2.5.2) to derive the governing equations and corresponding boundary conditions.

2.5.1 Nonlinear Euler-Bernoulli micropolar beam theory (NEMBT)

eE(s)
xx =

(
duE0
dx
− ψEy

dwE0
dx

)
− zd

2wE0
dx2

eE(a)
xz = −

(
dwE0
dx

+ ψEy

) (2.5.3)

ηEyx =
dψEy
dx

(2.5.4)
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Now defining the stress, moment and couple stress resultants acting on beam as

{
N
E(s)
xx

}
=

∫
A

{
Σ
E(s)
xx

}
dA,

{
M

E(s)
xx

}
=

∫
A

{
Σ
E(s)
xx

}
zdA (2.5.5)

{
Q
E(a)
x

}
=

∫
A

{
Σ
E(a)
xz

}
dA,

{
PE
yx

}
=

∫
A

{
mE
yx

}
dA (2.5.6)

we can express the principle of virtual work (2.5.2) in terms of the resultants (2.5.5) and (2.5.6) as

follows

∫ L

0

{
NE(s)
xx

(
dδuE0
dx
− δψEy

dwE0
dx
− ψEy

dδwE0
dx

)
−ME(s)

xx

d2δwE0
dx2

− 2QE(a)
x

(
dδwE0
dx

+ δψEy

)

+ PE
yx

dδψEy
dx
− q0δw

E
0 − fxδuE0

}
dx = 0 (2.5.7)

The governing equations of NEMBT are obtained by taking Euler-Lagrange equations of the vari-

ational statement (2.5.7) as

δuE0 :
dN

E(s)
xx

dx
+ fx = 0 (2.5.8)

δwE0 :
d2M

E(s)
xx

dx2
− d

dx

(
ψEy N

E(s)
xx

)
− 2

dQ
E(a)
x

dx
+ q0 = 0 (2.5.9)

δψEy :
dPE

yx

dx
+ NE(s)

xx

dwE0
dx

+ 2QE(a)
x = 0 (2.5.10)

with the corresponding natural boundary conditions

NE(s)
xx = 0, −dM

E(s)
xx

dx
+ NE(s)

xx ψEy + 2QE(a)
x = 0, ME(s)

xx = 0, PE
yx = 0 (2.5.11)
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2.5.2 Nonlinear Timoshenko micropolar beam theory (NTMBT)

eT (s)
xx =

(
duT0
dx
− ψTy

dwT0
dx

)
+ z

(
dφTx
dx

)
2eT (s)

xz =

(
dwT0
dx

+ φTx

)
2eT (a)

xz =

(
φTx −

dwT0
dx
− 2ψTy

) (2.5.12)

ηTyx =
dψTy
dx

(2.5.13)

Now defining stress, moment and couple stress resultants acting on the beam as

{
N
T (s)
xx

}
=

∫
A

{
Σ
T (s)
xx

}
dA,


Q
T (s)
x

Q
T (a)
x

 =

∫
A


Σ
T (s)
xz

Σ
T (a)
xz

 dA (2.5.14)

{
M

T (s)
xx

}
=

∫
A

{
Σ
T (s)
xx

}
zdA,

{
PT
yx

}
=

∫
A

{
mT
yx

}
dA (2.5.15)

we can express the principle of virtual work (2.5.2) in terms of the resultants (2.5.14) and (2.5.15)

as follows

∫ L

0

{
NT (s)
xx

(
dδuT0
dx
− δψTy

dwT0
dx
− ψTy

dδwT0
dx

)
+ MT (s)

xx

dδφTx
dx

+ QT (s)
x

(
δφTx +

dδwT0
dx

)

+ QT (a)
x

(
δφTx −

dδwT0
dx
− 2δψTy

)
+ PT

yx

dδψTy
dx
− q0δw

T
0 − fxδuT0

}
dx = 0 (2.5.16)

The governing equations of NTMBT are obtained by taking the Euler-Lagrange equations of the
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above variational statement (2.5.16) as

δuT0 :
dN

T (s)
xx

dx
+ fx = 0 (2.5.17)

δwT0 :
d

dx

(
ψTyN

T (s)
xx

)
− d

dx

(
QT (s)
x −QT (a)

x

)
− q0 = 0 (2.5.18)

δφTx :
dM

T (s)
xx

dx
−QT (s)

x −QT (a)
x = 0 (2.5.19)

δψTy :
dPT

yx

dx
+ 2QT (a)

x + NT (s)
xx

dwT0
dx

= 0 (2.5.20)

with the corresponding natural boundary conditions

NT (s)
xx = 0, QT (s)

x −QT (s)
x −NT (s)

xx ψTy = 0, MT (s)
xx = 0, PT

yx = 0 (2.5.21)

2.6 Finite element models

In this section, we develop the weak-form Galerkin finite element model of the governing

equations derived in sections 2.4 and 2.5. We consider the Timoshenko micropolar beam theories

and the Euler-Bernoulli micropolar beam theories separately.

2.6.1 Timoshenko micropolar beam theories

For the Timoshenko micropolar beam theories considered in this chapter the primary variables

are (uT0 , w
T
0 , φ

T
x , ψ

T
y ). These variables are approximated using Lagrange interpolation functions

L
(1)
j , L

(2)
j , L

(3)
j , L

(4)
j respectively. Here j = {1, 2 . . . n}. These interpolation functions are of order

n−1, where n is the number of nodes in a typical element. Since we are using weak-form Galerkin

finite element formulation, the weight functions w1, w2, w3 and w4 used in developing the weak

form equations are taken to be the same Lagrange interpolation functions used in approximating

the primary variables [93]. Thus, we have,
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uT0 ≈
n∑
j=1

UT
j L

(1)
j (x), w1(x) = L

(1)
i (x)

wT0 ≈
n∑
j=1

W T
j L

(2)
j (x), w2(x) = L

(2)
i (x)

φTx ≈
n∑
j=1

ΦxTj L
(3)
j (x), w3(x) = L

(3)
i (x)

ψTy ≈
n∑
j=1

ΨyTj L
(4)
j (x), w4(x) = L

(4)
i (x)

(2.6.1)

where i = {1, 2, 3 . . . n}. Now we write the weak form equations of the Timoshenko micropolar

beam theories using the constitutive relations given in Appendix A.1.

• von Kármán nonlinearity

0 =

∫ xb

xa

{
A11

dw1

dx

(
duT0
dx

+
1

2

(
dwT0
dx

)2
)
− w1fx

}
dx−Q1w1(xa)−Q2w1(xb)

0 =

∫ xb

xa

{
A11

dw2

dx

dwT0
dx

(
duT0
dx

+
1

2

(
dwT0
dx

)2
)

+
A44

2

dw2

dx

(
dwT0
dx

+ φTx

)

− A77

2

dw2

dx

(
φx −

dwT0
dx
− 2ψTy

)
w2q0

}
dx−Q3w2(xa)−Q4w2(xb)

0 =

∫ xb

xa

{
D11

dw3

dx

dφTx
dx

+
A44

2
w3

(
dwT0
dx

+ φTx

)
+
A77

2
w3

(
φTx −

dwT0
dx
− 2ψTy

)}
dx

−Q5w3(xa)−Q6w3(xb)

0 =

∫ xb

xa

{
E44

dw4

dx

dψTy
dx
− A77w4

(
φTx −

dwT0
dx
− 2ψTy

)}
dx−Q7w4(xa)−Q8w4(xb)

(2.6.2)
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• Micropolar nonlinearity

0 =

∫ xb

xa

{
A11

dw1

dx

(
duT0
dx
− ψTy

dwT0
dx

)
− w1fx

}
dx−Q1w1(xa)−Q2w1(xb)

0 =

∫ xb

xa

{
−A11

dw2

dx
ψTy

(
duT0
dx
− ψTy

dwT0
dx

)
+
A44

2

dw2

dx

(
dwT0
dx

+ φTx

)

− A77

2

dw2

dx

(
φx −

dwT0
dx
− 2ψTy

)
w2q0

}
dx−Q3w2(xa)−Q4w2(xb)

0 =

∫ xb

xa

{
D11

dw3

dx

dφTx
dx

+
A44

2
w3

(
dwT0
dx

+ φTx

)
+
A77

2
w3

(
φTx −

dwT0
dx
− 2ψTy

)}
dx

−Q5w3(xa)−Q6w3(xb)

0 =

∫ xb

xa

{
E44

dw4

dx

dψTy
dx
− A11w4

dwT0
dx

(
duT0
dx
− ψTy

dwT0
dx

)

− A77w4

(
φTx −

dwT0
dx
− 2ψTy

)}
dx−Q7w4(xa)−Q8w4(xb)

(2.6.3)

After using the approximations given in Eq. (2.6.1) in Eqs. (2.6.2) and (2.6.3) separately for

each nonlinear theory, we have the following form for the finite element equations:

K(e)TU(e)T = F(e)T (2.6.4)

where,

K(e)T =



K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44



(e)

U(e)T =



U(T )

W(T )

Φx(T )

Ψy(T )



(e)

F(e)T =



F1

F2

F3

F4



(e)

(2.6.5)

The non-zero components of the above matrix are given in Appendix B.1, for both VTMBT and
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NTMBT.

2.6.2 Euler-Bernoulli micropolar beam theories

For the Euler-Bernoulli micropolar beam theory considered in this chapter the primary vari-

ables are (uE0 , w
E
0 , ψ

E
y ). The variables uE0 and ψEy are approximated using Lagrange interpolation

functions L(1)
j and L(3)

j respectively. Here j = {1, 2 . . . n}. These interpolation functions are of or-

der n− 1, where n is the number of nodes in a typical element. wE0 is approximated using Hermite

interpolation functions H(2)
J of order 2n − 1. Here J = {1, 2 . . . 2n}. Since we are using weak

form Galerkin finite element formulation, we have

uE0 ≈
n∑
j=1

UE
j L

(1)
j (x), w1(x) = L

(1)
i (x)

wE0 ≈
2n∑
j=1

∆E
JH

(2)
J (x), w2(x) = H

(2)
I (x)

ψEy ≈
n∑
J=1

ΨyEj L
(3)
j (x), w3(x) = L

(3)
i (x)

(2.6.6)

where i = {1, 2 . . . n}, I = {1, 2 . . . 2n}. The ∆E
J in the approximation of wE0 are represented

such that the odd numbered ∆E
J , i.e., {∆E

1 ,∆
E
3 , . . .∆

E
2n−1}, are the vertical deflections, wE0 , at the

nodes of the element while even numbered ∆E
J , i.e., {∆E

2 ,∆
E
4 , . . .∆

E
2n}, are the rotations of planes

normal to the axis of the beam, −dwE0
dx

, at these nodes. Now we write the weak form equations

of the nonlinear micropolar Euler-Bernoulli beam theories using the constitutive relations given in

Appendix A.1.
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• von Kármán nonlinearity

0 =

∫ xb

xa

{
A11

dw1

dx

(
duE0
dx

+
1

2

(
dwE0
dx

)2
)
− w1fx

}
dx−Q1w1(xa)−Q2w1(xb)

0 =

∫ xb

xa

{
D11

d2w2

dx2

d2wE0
dx2

+ A11
dw2

dx

dwE0
dx

(
duE0
dx

+
1

2

(
dwE0
dx

)2
)

+ 2A77
dw2

dx

(
ψEy +

dwE0
dx

)
− w2q0

}
dx−Q3w2(xa)−Q4w2(xb)

0 =

∫ xb

xa

{
E44

dw3

dx

dψEy
dx

+ 2A77w3

(
ψEy +

dwE0
dx

)}
dx−Q5w3(xa)−Q6w3(xb)

(2.6.7)

• Micropolar nonlinearity

0 =

∫ xb

xa

{
A11

dw1

dx

(
duE0
dx
− ψEy

dwE0
dx

)
− w1fx

}
dx−Q1w1(xa)−Q2w1(xb)

0 =

∫ xb

xa

{
D11

d2w2

dx2

d2wE0
dx2

− A11
dw2

dx
ψEy

(
duE0
dx
− ψEy

dwE0
dx

)

+ 2A77
dw2

dx

(
ψEy +

dwE0
dx

)
− w2q0

}
dx−Q3w2(xa)−Q4w2(xb)

0 =

∫ xb

xa

{
E44

dw3

dx

dψEy
dx
− A11w3

dwE0
dx

(
duE0
dx
− ψEy

dwE0
dx

)

+ 2A77w3

(
ψEy +

dwE0
dx

)}
dx−Q5w3(xa)−Q6w3(xb)

(2.6.8)

After using the approximations given in Eq. (2.6.6) in Eqs. (2.6.7) and (2.6.8) separately for

each nonlinear theory, we obtain the form for the finite element equations:

K(e)EU(e)E = F(e)E (2.6.9)
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where,

K(e)E =


K11 K12 K13

K21 K22 K23

K31 K32 K33



(e)

U(e)E =


U(E)

∆(E)

Ψy(E)



(e)

F(e)E =


F1

F2

F3



(e)

(2.6.10)

The non-zero components of the above matrix are given in Appendix B.1, for both VEMBT and

NEMBT.

2.6.3 Higher order finite elements

It is well known that lower order displacement finite elements for beams are prone to locking

[93, 100, 103] when quadrature rules that result in exact integration of element coefficient matrix

are employed. Such locking phenomena are usually eliminated using selective full and reduced

integration techniques. In place of such numerical remedies, we employ higher order polynomials

in approximating the primary variables within an element. For such higher-order polynomials of

order n−1 on a typical element, there are n nodes. However, when these nodes are equally spaced

the polynomial interpolations exhibit oscillations near the end points of the standard interval. This

phenomenon is called Runge effect.

To overcome the Runge effect we employ an unequal spacing of the nodes within each element.

For a master element Ω̂e with coordinate ξ = [−1,+1], the nodal coordinates are chosen to be the

roots of the following equation:

(ξ − 1)(ξ + 1)L
′

p(ξ) = 0 (2.6.11)

where Lp(ξ) is the Legendre polynomial of order p such that n = p + 1 [104]. Thus, the roots ξi

of Eq. (75), where i = 1, 2, . . . , n, are the nodal coordinates in the master element and are called

Gauss-Lobatto-Legendre (GLL) points or spectral points. These points are unequally spaced for
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p > 2 and are effective in curtailing the Runge effect†. The Lagrange interpolation functions, Lj ,

with spectral nodal points are constructed using the formula

Lj =
n∏

i=1,i 6=j

ξ − ξi
ξj − ξi

where ξj is the jth spectral point in the master element.

The Hermite interpolation functions, HJ , where J = 1, 2, . . . , 2n, are obtained using the for-

mulae

H2j−1 = [1 + 2L
′

j(ξj)(ξj − ξ)]L2
j(ξ)

H2j = (ξ − ξj)L2
j(ξ)

where ξj is the jth spectral point in the master element and Lj is jth Lagrange interpolation func-

tion.

2.6.4 Solution of nonlinear equations

The nonlinear finite element equations of (2.6.4) and (2.6.9) are solved using Newton’s iterative

procedure [100], by constructing the tangent stiffness matrix of a typical element at the beginning

of rth iteration as

T(e)(r)
=

[
∂R(e)

∂U(e)

](r−1)

(2.6.12)

such that

T(e)(r)
∆Ue = −R(e)(r−1)

(2.6.13)

†GLL points are proven to be effective in eliminating the Runge effect in Lagrange interpolation functions, how-
ever that is not guaranteed for Hermite interpolation functions. In the present work we used a maximum of 8 nodes
per element, located at spectral points and no Runge effect was observed for Hermite interpolation functions used in
Euler-Bernoulli micropolar beam theories.
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where

R(e) = K(e)(U(e))U(e) − F(e) and ∆U(e) = U(e)(r) − U(e)(r−1)

The explicit expressions of the components of the element tangent stiffness matrix for all the

nonlinear theories considered in this chapter are given in Appendix B.1.

When the normalized difference between solution vectors from two consecutive iterations

(measured with Euclidean norm) is less than a preselected tolerance, convergence is declared and

further iterations are terminated [100].

2.7 Numerical results

Consider the constitutive relations of isotropic micropolar solid written in terms of symmetric

(with superscript (s)) and anti-symmetric (with superscript (a)) stresses and strains,

σ
(s)
ij = λε

(s)
kk δij + (2µ+ κ)ε

(s)
ij

σ
(a)
ij = κε

(a)
ij

rij = αηkkδij + βηji + γηij

Further the equations of equilibrium in the absence of body forces and body couples are given by

σij,i = 0

rij,i + εjmnσmn = 0

(2.7.1)

From the above equations we see that when κ = 0, the anti-symmetric stresses become zero and

thereby decoupling the equations (2.7.1) so that the translations can be determined independently

of microrotations. It should be noted that in this particular case, Eq. (2.7.11) is same as the bound-

ary value problem of classical elasticity [105]. We can completely reduce Eqs. (2.7.1) to those

corresponding to classical elasticity by setting θ = 0. Thus, the constitutive parameter κ plays an

important role in determining the degree of micropolarity exhibited by the material. To quantify
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the effect of κ, a non-dimensional number called Coupling Number (N) is defined in the literature

[23, 106]:

N2 =
κ

2(µ+ κ)

The level of shear stress asymmetry is quantified by the coupling number, there by reflecting the

degree of micropolarity exhibited by the material. The coupling number is bounded below by

the classical elasticity and above by the so-called constrained Cosserat elasticity (or couple stress

theory), where in the microrotation is equal to the conventional rotation (macrorotation) [106].

Another parameter that is frequently associated with micropolarity is the characteristic length

scale of the material. One such length scale, called characteristic bending length scale, lb, [23, 106]

is defined as:

l2b =
γ

2(2µ+ κ)
=
γ(1− 2N2)

4µ(1−N2)

The ratio of length scale of the structure to the characteristic length scale of the material has an

influence on the micropolarity exhibited by the structure. For the analysis of the beams in this

chapter we use the height H of beam as the structural length scale. Thus, H/lb has an effect

on the micropolarity exhibited by the beam. It should be noted that the coupling number affects

the degree of micropolarity irrespective of the structural length scale, while it is the ratio of the

structural length scale to the characteristic length scale that has influence on the micropolarity of

the structure.

With this background we first establish the relation between Euler-Bernoulli and Timoshenko

micropolar beam theories in the context of micropolar elasticity. Once this relation is established

we will use Timoshenko micropolar beam theories in all subsequent analysis. For the purpose of

numerical analysis we consider the following material properties:

λ = 15513.20 MPa, µ = 6894.76 MPa, γ = 2668.93 N (2.7.2)
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The value of κ is calculated using the definition of coupling number such that

κ =
2µN2

1− 2N2

Unless stated otherwise, the width of the all beams used in the present analysis is taken to be

B = 2H .

q0

z

x

L
H x

z

q0

u0 = w0 = φx = ψy = 0

fixed-fixed pin-pin
at x = 0 and x = L

u0 = w0 = 0
at x = 0 and x = L

Figure 2.2: Schematic representation of the beam used in the present analysis along with the
boundary conditions. For Euler-Bernoulli micropolar beam theory φx = −dw0

dx
[3].

2.7.1 Mesh convergence

To study the mesh convergence, we consider a beam with L/H = 100 and N = 0.01 while

H = lb. The rest of the material properties are as given in Eq. (2.7.2). The beam is subjected to

fixed-fixed boundary conditions and a uniformly distributed load of q0 = 1.75 N/m is applied on

the top face (see Fig. 2.2). For such a beam, Fig. 2.3a shows the mesh convergence when VEMBT

is used, while Fig. 2.3b shows the mesh convergence when NTMBT is used. If p represents the

number of nodes in a typical element and h represents the number of elements in the mesh then

p = 4 and h = 4 given mesh convergence in both the cases. However, we use h = 4 and p = 8 in

all the subsequent analysis. Although only VEMBT and NTMBT for coupling number N = 0.01

has been considered in illustrating the mesh convergence, h = 4 and p = 4 are observed to give

mesh convergent results for all nonlinear beam theories irrespective of the coupling number.
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Figure 2.3: Number of nodes in an element vs maximum vertical deflection for various number
of elements in the finite element mesh of a fixed-fixed beam under uniformly distributed load of
q0 = 1.75 N/m. (a) VEMBT (b) NTMBT [3].

2.7.2 Euler-Bernoulli vs Timoshenko micropolar beams

It is well known that within the context of classical elasticity Euler-Bernoulli and Timoshenko

beam theories diverge as L/H ratio decreases, with Euler-Bernoulli theory being stiffer than Timo-

shenko theory. We expect a similar behavior even for Euler-Bernoulli and Timoshenko micropolar

beam theories. To verify this conjecture, we consider a beam with material properties given in

Eq. (2.7.2) while the coupling number is taken to be N = 0.2. The height of the beam H is taken

to beH = lb and widthB = 2lb such that the area moment of inertia of beam cross-section is given

by I = BH3

12
. The beam is subjected to fixed-fixed boundary conditions and a uniformly distributed

load of q0 = 1.75 N/m is applied on the top face (see Fig. 2.2). Fig. 2.4 shows that Euler-Bernoulli

micropolar beam theories are stiffer than Timoshenko micropolar beam theories for lower values

of L/H , while both the theories give same results for higher values of L/H . With this observation,

we use Timoshenko micropolar beam theories for the rest of the analysis carried out in this chapter.
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Figure 2.4: (a) Comparison of von Kármán Euler-Bernoulli micropolar beam theory and von Kár-
mán Timoshenko micropolar beam theory for various L/H ratios. (b) Comparison of nonlinear
Euler-Bernoulli micropolar beam theory and nonlinear Timoshenko micropolar beam theory for
various L/H ratios [3].

2.7.3 Effect of coupling number

In this section we illustrate the effect of coupling number on the beam behavior when it is

modeled using VTMBT and NTMBT. We consider two different coupling numbers, N = 0.01

and N = 0.5, for the purpose of illustration. Table 2.1 gives a comparison between VTMBT

and NTMBT for N = 0.01 and N = 0.5. The beam considered has material properties given in

Eq. (2.7.2). The height of the beam is taken to be H = 0.3099 mm and L/H = 50. The top face

of the beam is subjected to uniformly distributed load of q0 = 17.5 N/m with pin-pin boundary

conditions (see Fig. 2.2).

As stated earlier, there is minimal coupling between microrotations and translations at lower

values of coupling number and as the coupling number increases this coupling grows stronger.

Thus at higher values of coupling numbers the microrotations ψy should approach the macroro-

tations, ω, giving constrained Cosserat elasticity. The macrorotations for the Timoshenko beam
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theories considered in the present chapter is given by

ωT =
1

2

(
φTx −

dwT0
dx

)
(2.7.3)

From Table 2.1 we see that forN = 0.01, the values of microrotations ψTy are equal to the macroro-

tations ωT when the beam is modeled with VTMBT, while ψTy << ωT when the beam is modeled

with NTMBT. For N = 0.5, ψTy ≈ ωT for both VTMBT and NTMBT. Thus, we see that VTMBT

is not sensitive to the change in coupling number in terms of the difference between microrota-

tions and macrorotations and always predict macrorotations equal to microrotations irrespective

of coupling number, while NTMBT clearly is sensitive to the changes in coupling numbers in

terms of the difference between microrotations and macrorotations. Further, with increasing cou-

pling number VTMBT shows stiffening behavior in terms of axial and transverse deflections and

microrotations. However, with increasing coupling number NTMBT show stiffening behavior in

terms of transverse deflections, while exhibiting softening behavior in terms of axial deflections

and microrotations.
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Table 2.1: Comparison of VTMBT and NTMBT for N = 0.01 and N = 0.5. The beam is
subjected to pin-pin boundary conditions with uniformly distributed load q0 = 17.5 N/m on top
face. H = 0.3099 mm and L/H = 50. The values of uT0 and wT0 are given in millimeters (mm)
[3].

x
L

N = 0.01; lb = 0.3099 mm N = 0.5; lb = 0.2540 mm

VTMBT NTMBT VTMBT NTMBT

uT0 wT0 ψTy ωT uT0 wT0 ψTy ωT uT0 wT0 ψTy ωT uT0 wT0 ψTy ωT

0.00000 0.00000 0.00000 -0.03355 -0.03355 0.00000 0.00000 -0.00380 -0.04703 0.00000 0.00000 -0.02984 -0.02984 0.00000 0.00000 -0.02138 -0.02139

0.01603 -0.00007 0.00834 -0.03349 -0.03349 -0.00002 0.01169 -0.00380 -0.04695 -0.00006 0.00741 -0.02979 -0.02979 -0.00006 0.00532 -0.02134 -0.02135

0.05104 -0.00023 0.02640 -0.03299 -0.03299 -0.00007 0.03703 -0.00375 -0.04629 -0.00018 0.02348 -0.02935 -0.02935 -0.00019 0.01683 -0.02100 -0.02101

0.09884 -0.00042 0.05037 -0.03155 -0.03155 -0.00013 0.07069 -0.00359 -0.04437 -0.00033 0.04481 -0.02809 -0.02809 -0.00034 0.03209 -0.02005 -0.02006

0.15116 -0.00058 0.07503 -0.02912 -0.02912 -0.00018 0.10543 -0.00333 -0.04107 -0.00045 0.06678 -0.02595 -0.02595 -0.00047 0.04775 -0.01846 -0.01847

0.19896 -0.00066 0.09559 -0.02625 -0.02625 -0.00021 0.13446 -0.00301 -0.03714 -0.00052 0.08510 -0.02341 -0.02341 -0.00054 0.06077 -0.01660 -0.01661

0.23397 -0.00069 0.10918 -0.02382 -0.02382 -0.00022 0.15372 -0.00274 -0.03376 -0.00054 0.09723 -0.02126 -0.02126 -0.00056 0.06936 -0.01503 -0.01504

0.25000 -0.00069 0.11496 -0.02262 -0.02262 -0.00022 0.16191 -0.00260 -0.03210 -0.00054 0.10238 -0.02020 -0.02020 -0.00056 0.07301 -0.01427 -0.01428

0.26603 -0.00068 0.12042 -0.02138 -0.02138 -0.00022 0.16967 -0.00246 -0.03036 -0.00054 0.10727 -0.01910 -0.01910 -0.00055 0.07646 -0.01348 -0.01349

0.30104 -0.00064 0.13126 -0.01853 -0.01853 -0.00021 0.18508 -0.00214 -0.02636 -0.00051 0.11695 -0.01656 -0.01656 -0.00052 0.08329 -0.01166 -0.01167

0.34884 -0.00055 0.14346 -0.01436 -0.01436 -0.00018 0.20246 -0.00166 -0.02047 -0.00043 0.12785 -0.01284 -0.01284 -0.00044 0.09097 -0.00902 -0.00903

0.40116 -0.00039 0.15317 -0.00954 -0.00954 -0.00012 0.21631 -0.00110 -0.01361 -0.00031 0.13653 -0.00853 -0.00853 -0.00031 0.09707 -0.00598 -0.00599

0.44896 -0.00021 0.15855 -0.00496 -0.00496 -0.00007 0.22399 -0.00058 -0.00709 -0.00017 0.14135 -0.00444 -0.00444 -0.00017 0.10044 -0.00311 -0.00311

0.48397 -0.00007 0.16032 -0.00156 -0.00156 -0.00002 0.22652 -0.00018 -0.00223 -0.00005 0.14293 -0.00140 -0.00140 -0.00005 0.10155 -0.00098 -0.00098

0.50000 0.00000 0.16052 -0.00000 -0.00000 0.00000 0.22680 -0.00000 -0.00000 -0.00000 0.14311 0.00000 -0.00000 -0.00000 0.10168 0.00000 -0.00000

0.51603 0.00007 0.16032 0.00156 0.00156 0.00002 0.22652 0.00018 0.00223 0.00005 0.14293 0.00140 0.00140 0.00005 0.10155 0.00098 0.00098

0.55104 0.00021 0.15855 0.00496 0.00496 0.00007 0.22399 0.00058 0.00709 0.00017 0.14135 0.00444 0.00444 0.00017 0.10044 0.00311 0.00311

0.59884 0.00039 0.15317 0.00954 0.00954 0.00012 0.21631 0.00110 0.01361 0.00031 0.13653 0.00853 0.00853 0.00031 0.09707 0.00598 0.00599

0.65116 0.00055 0.14346 0.01436 0.01436 0.00018 0.20246 0.00166 0.02047 0.00043 0.12785 0.01284 0.01284 0.00044 0.09097 0.00902 0.00903

0.69896 0.00064 0.13126 0.01853 0.01853 0.00021 0.18508 0.00214 0.02636 0.00051 0.11695 0.01656 0.01656 0.00052 0.08329 0.01166 0.01167

0.73397 0.00068 0.12042 0.02138 0.02138 0.00022 0.16967 0.00246 0.03036 0.00054 0.10727 0.01910 0.01910 0.00055 0.07646 0.01348 0.01349

0.75000 0.00069 0.11496 0.02262 0.02262 0.00022 0.16191 0.00260 0.03210 0.00054 0.10238 0.02020 0.02020 0.00056 0.07301 0.01427 0.01428

0.76603 0.00069 0.10918 0.02382 0.02382 0.00022 0.15372 0.00274 0.03376 0.00054 0.09723 0.02126 0.02126 0.00056 0.06936 0.01503 0.01504

0.80104 0.00066 0.09559 0.02625 0.02625 0.00021 0.13446 0.00301 0.03714 0.00052 0.08510 0.02341 0.02341 0.00054 0.06077 0.01660 0.01661

0.84884 0.00058 0.07503 0.02912 0.02912 0.00018 0.10543 0.00333 0.04107 0.00045 0.06678 0.02595 0.02595 0.00047 0.04775 0.01846 0.01847

0.90116 0.00042 0.05037 0.03155 0.03155 0.00013 0.07069 0.00359 0.04437 0.00033 0.04481 0.02809 0.02809 0.00034 0.03209 0.02005 0.02006

0.94896 0.00023 0.02640 0.03299 0.03299 0.00007 0.03703 0.00375 0.04629 0.00018 0.02348 0.02935 0.02935 0.00019 0.01683 0.02100 0.02101

0.98397 0.00007 0.00834 0.03349 0.03349 0.00002 0.01169 0.00380 0.04695 0.00006 0.00741 0.02979 0.02979 0.00006 0.00532 0.02134 0.02135

1.00000 0.00000 0.00000 0.03355 0.03355 0.00000 0.00000 0.00380 0.04703 0.00000 0.00000 0.02984 0.02984 0.00000 0.00000 0.02138 0.02139

Another interesting observation is that VTMBT is stiffer than NTMBT (above certain load) in

term of transverse deflections for N = 0.01, while NTMBT is stiffer than VTMBT for N = 0.5.

This can be explained by the definitions of nonlinearity in two theories. In NTMBT the nonlinearity
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arises due to the strain definition:

eT (s)
xx =

(
duT0
dx
− ψTy

dwT0
dx

)
+ z

dφTx
dx

while in VTMBT the nonlinear strain is defined as:

εT (s)
xx =

duT0
dx

+
1

2

(
dwT0
dx

)2

+ z
dφTx
dx

It is clear that nonlinearity in VTMBT is independent of the microrotations, while in NTMBT

it is due the combination of both microrotations and the rotations of normals to the axis of the

beam. Since for lower coupling number, N = 0.01, the microrotations are small in NTMBT,

the effect of nonlinearity is not severe. However, the nonlinearity in VTMBT being independent

of the microrotations and also microrotations being equal to macrorotations, the nonlinearity is

severe compared to NTMBT and thus predict stiffer deflections. Towards the other end of coupling

number spectrum, say N = 0.5, both theories predict ψTy ≈ ωT . However, NTMBT is stiffer than

VTMBT at such conditions as is evident from factor 1
2

in the nonlinear strain definitions of the two

theories. This is further illustrated in Fig. 2.5, where nonlinearity in deflections for the two theories

are compared to the deflections from linear Timoshenko micropolar beam theory (LTMBT). It also

shows that nonlinearity begins sooner in NTMBT than in VTMBT with increasing load.

Lastly, Fig. 2.6 compares the transverse deflections, microrotations and macrorotations pre-

dicted by VTMBT and NTMBT for a range of coupling numbers. It can be clearly seen that at

lower values of coupling number the bending stiffness predicted by VTMBT is higher than that

predicted by NTMBT, while it is the other way around at higher values of coupling number. Fur-

ther, Fig. 2.6b shows that the magnitude of microrotations is small compared to macrorotations

for lower coupling numbers and increases with increasing coupling number when NTMBT is used

to model the beam. However, when VTMBT is used, microrotations are equal to macrorotations

irrespective of the coupling number. The behavior predicted by NTMBT concurs with theory mi-

cropolar elasticity even at lower values of coupling number, while this is not the case with VTMBT.
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Thus, for materials with low micropolar coupling, NTMBT is more appropriate than VTMBT.
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Figure 2.5: Load vs maximum transverse deflections of a beam with pin-pin boundary conditions
subjected to uniformly distributed load on top (H = 0.3099 mm and L/H = 50). (a) N = 0.01
and (b) N = 0.5 [3].
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3. NONLINEAR MICROPOLAR PLATE THEORIES

3.1 Introduction

In this section we will utilize the first order shear deformation (FSD) plate theory of classical

Cauchy continuum to construct the plate theory for micropolar continuum. Let the plate considered

be such that its mid plane coincides with the x-y plane of the coordinate system considered, while

the z-axis will be pointing in downward direction. The length of the plate is L, breadth of the plate

is B and height of the plate is H . The displacement field of FSD micropolar plate theory is based

on the same assumptions of FSD plate theory of classical continuum (i.e., the assumptions that the

planes perpendicular to the axis of the plate remain plane after deformation and are in-extensible

are still valid). Thus the displacement field is given by

u1(x, y, z) = u0(x, y) + zφx(x, y)

u2(x, y, z) = v0(x, y) + zφy(x, y)

u3(x, y, z) = w0(x, y)

(3.1.1)

We assume that only the x and y components of the microrotation are non-zero and that they only

depend on x and y coordinates.

ψ1(x, y, z) = ψx(x, y)

ψ2(x, y, z) = ψy(x, y)

ψ3(x, y, z) = 0

(3.1.2)

This approximation implies that the planes normal to the mid-plane of the plate are made of par-

ticles which can only rotate about x and y axes. Thus φx and φy represent the rotation of these

planes about y-axis and x-axis respectively, while ψx and ψy represents the rotations of the particles

within this plane about x-axis and y-axis respectively.
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3.2 von Kármán nonlinearity and corresponding governing equations

For a Cauchy continuum plate, to account for the moderate rotations while still considering

displacement gradients to be small, the nonlinear terms of the Green-Lagrange strain tensor that

correspond to the product of rotations of fibers perpendicular to the mid plane of the plate are

retained. The resulting plate equations after this modification to the strains are called von-Kármán

nonlinear plate theories of classical continuum [107]. In classical continuum the von-Kármán

nonlinearity leads to the following nonlinear strains (of classical continuum):

εxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

+ z
∂φx
∂x

εyy =
∂v0

∂y
+

1

2

(
∂w0

∂y

)2

+ z
∂φy
∂y

2εxy =
∂u0

∂y
+
∂v0

∂x
+
∂w0

∂x

∂w0

∂y
+ z

(
∂φx
∂y

+
∂φy
∂x

)

If we extend the same argument to micropolar plates, that is, the displacement gradients are

small but the rotations of the fibers perpendicular to the mid plane of plate are moderate, we can

extend the von Kármán approximation of classical continuum plate to micropolar plate (see [6]).

This will result in the following modified strains of micropolar plate:
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ε(s)
xx =

∂u0

∂x
+

1

2

(
∂w0

∂x

)2

+ z
∂φx
∂x

ε(s)
yy =

∂v0

∂y
+

1

2

(
∂w0

∂y

)2

+ z
∂φy
∂y

2ε(s)
xy =

(
∂v0

∂x
+
∂u0

∂y
+
∂w0

∂x

∂w0

∂y

)
+ z

(
∂φy
∂x

+
∂φx
∂y

)
2ε(a)

xy =

(
∂u0

∂y
− ∂v0

∂x

)
+ z

(
∂φx
∂y
− ∂φy

∂x

)
2ε(s)

xz =

(
φx +

∂w0

∂x

)
2ε(a)

xz =

(
φx −

∂w0

∂x
− 2ψy

)
2ε(s)

yz =

(
φy +

∂w0

∂y

)
2ε(a)

yz =

(
φy −

∂w0

∂y
+ 2ψx

)

(3.2.1)

ηxx =
∂ψx
∂x

, ηxy =
∂ψx
∂y

ηyx =
∂ψy
∂x

, ηyy =
∂ψy
∂y

(3.2.2)

If σ(s)
ij , σ(a)

ij and rij are the symmetric and anti-symmetric stresses and couple stresses conjugate

to modified ε(s)
ij , ε(a)

ij and ηij respectively, we definie the stress, moment and couple stress resultants

acting on the plate as



N
(s)
xx

N
(s)
yy

N
(s)
xy

N
(a)
xy


=

∫ H
2

−H
2



σ
(s)
xx

σ
(s)
yy

σ
(s)
xy

σ
(a)
xy


dz,



M
(s)
xx

M
(s)
yy

M
(s)
xy

M
(a)
xy


=

∫ H
2

−H
2



σ
(s)
xx

σ
(s)
yy

σ
(s)
xy

σ
(a)
xy


zdz (3.2.3)

45





Q
(s)
x

Q
(a)
x

Q
(s)
y

Q
(a)
y


=

∫ H
2

−H
2



σ
(s)
xz

σ
(a)
xz

σ
(s)
yz

σ
(a)
yz


dz,



Pxx

Pxy

Pyx

Pyy


=

∫ H
2

−H
2



rxx

rxy

ryx

ryy


dz (3.2.4)

The principle of virtual work for the micropolar plate with a distributed transverse load q0 can be

written in terms of the resultants (3.2.3) and (3.2.4) as follows

∫
A

{
N (s)
xx

(
∂δu0

∂x
+
∂δw0

∂x

∂w0

∂x

)
+M (s)

xx

∂δφx
∂x

+N (s)
yy

(
∂δv0

∂y
+
∂δw0

∂y

∂w0

∂y

)
+M (s)

yy

∂δφy
∂y

+N (s)
xy

(
∂δu0

∂y
+
∂δv0

∂x
+
∂δw0

∂x

∂w0

∂y
+
∂δw0

∂y

∂w0

∂x

)
+M (s)

xy

(
∂δφy
∂x

+
∂δφx
∂y

)
+N (a)

xy

(
∂δu0

∂y
− ∂δv0

∂x

)
+M (a)

xy

(
∂δφx
∂y
− ∂δφy

∂x

)
+Q(s)

x

(
∂δw0

∂x
+ δφx

)
+Q(s)

y

(
∂δw0

∂y
+ δφy

)
+Q(a)

x

(
δφx −

∂δw0

∂x
− 2δψy

)
+Q(a)

y

(
δφy −

∂δw0

∂y
+ 2δψx

)
+ Pxx

∂δψx
∂x

+ Pxy
∂δψx
∂y

+ Pyx
∂δψy
∂x

+ Pyy
∂δψy
∂y

− q0δw0

}
dxdy = 0 (3.2.5)

where A is the area of the plate. The governing equations of von-Kármán micropolar plate theory
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are obtained by taking the Euler equations of the above variational statement (3.2.5) as

δu0 :
∂N

(s)
xx

∂x
+

∂

∂y

(
N (s)
xy +N (a)

xy

)
= 0 (3.2.6)

δv0 :
∂

∂x

(
N (s)
xy −N (a)

xy

)
+
∂N

(s)
yy

∂y
= 0 (3.2.7)

δw0 :
∂

∂x

(
∂w0

∂x
N (s)
xx +

∂w0

∂y
N (s)
xy

)
+

∂

∂y

(
∂w0

∂x
N (s)
xy +

∂w0

∂y
N (s)
yy

)
+

∂

∂x
(Q(s)

x −Q(a)
x ) +

∂

∂y
(Q(s)

y −Q(a)
y ) + q0 = 0 (3.2.8)

δφx :
∂M

(s)
xx

∂x
+

∂

∂y

(
M (s)

xy +M (a)
xy

)
−Q(s)

x −Q(a)
x = 0 (3.2.9)

δφy :
∂

∂x

(
M (s)

xy −M (a)
xy

)
+
∂M

(s)
yy

∂y
−Q(s)

y −Q(a)
y = 0 (3.2.10)

δψx :
∂Pxx
∂x

+
∂Pxy
∂y
− 2Q(a)

y = 0 (3.2.11)

δψy :
∂Pyx
∂x

+
∂Pyy
∂y

+ 2Q(a)
x = 0 (3.2.12)

with the following natural boundary conditions

Q1 ≡ N (s)
xx nx +

(
N (s)
xy +N (a)

xy

)
ny = 0

Q2 ≡
(
N (s)
xy −N (a)

xy

)
nx +N (s)

yy ny = 0

Q3 ≡
(
Q(s)
x −Q(a)

x +
∂w0

∂x
N (s)
xx +

∂w0

∂y
N (s)
xy

)
nx

+

(
Q(s)
y −Q(a)

y +
∂w0

∂x
N (s)
xy +

∂w0

∂y
N (s)
yy

)
ny = 0

Q4 ≡M (s)
xx nx +

(
M (s)

xy +M (a)
xy

)
ny = 0

Q5 ≡
(
M (s)

xy −M (a)
xy

)
nx +M (s)

yy ny = 0

Q6 ≡ Pxxnx + Pxyny = 0

Q7 ≡ Pyxnx + Pyyny = 0

(3.2.13)

where nx and ny are the x and y components of the directions cosines of the boundary.
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3.3 Micropolar nonlinearity and corresponding governing equations

In this section, rather than borrowing the von Kármán nonlinearity of classical continuum to

account for the moderate rotations of the micropolar plate we will make appropriate approxima-

tions on the symmetric and anti-symmetric Cosserat deformation components of Eq. (1.1.12) to

reflect the condition of moderate rotations of fibers normal to the mid plane of plate while still as-

suming the displacement gradients to be small. Since the displacement gradients are small, except

for those that represent the rotations of fibers perpendicular to the mid plane of plate, we can make

the following approximation on the magnitudes of various terms of Eqs. (1.1.12)

uα,i = o(ρ), ψi = o(
√
ρ)

u3,α = o(
√
ρ), φy, φx = o(

√
ρ)

where ρ << 1, α = 1, 2 and i = 1, 2, 3

(3.3.1)

Neglecting terms of order o(ρ) and higher in calculating the Cosserat deformation components

of Eqs. (1.1.12) we will arrive at a nonlinear Cosserat deformation tensor which will represent

the moderate rotations and small displacement gradients of the micropolar plate. The resulting
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components of the Cosserat deformation gradient and wryness tensor are

e(s)
xx =

(
∂u0

∂x
− ψy

∂w0

∂x

)
+ z

(
∂φx
∂x

)
e(s)
yy =

(
∂v0

∂y
+ ψx

∂w0

∂y

)
+ z

(
∂φy
∂y

)
2e(s)

xy =

(
∂u0

∂y
+
∂v0

∂x
+ ψx

∂w0

∂x
− ψy

∂w0

∂y

)
+ z

(
∂φx
∂y

+
∂φy
∂x

)
2e(a)

xy =

(
∂u0

∂y
− ∂v0

∂x
− ψx

∂w0

∂x
− ψy

∂w0

∂y

)
+ z

(
∂φx
∂y
− ∂φy

∂x

)
2e(s)

xz =

(
∂w0

∂x
+ φx

)
2e(a)

xz =

(
φx −

∂w0

∂x
− 2ψy

)
2e(s)

yz =

(
∂w0

∂y
+ φy

)
2e(a)

yz =

(
φy −

∂w0

∂y
+ 2ψx

)

(3.3.2)

ηxx =
∂ψx
∂x

, ηxy =
∂ψx
∂y

ηyx =
∂ψy
∂x

, ηyy =
∂ψy
∂y

(3.3.3)

If Σ
(s)
ij , Σ

(a)
ij and mij are the symmetric anti-symmetric stresses and couple stresses conjugate

to e(s)
ij , e(a)

ij and ηij after moderate rotation approximation, we define stress, moment and couple

stress resultants acting on the plate as



N
(s)
xx

N
(s)
yy

N
(s)
xy

N
(a)
xy


=

∫ H
2

−H
2



Σ
(s)
xx

Σ
(s)
yy

Σ
(s)
xy

Σ
(a)
xy


dz,



Q
(s)
x

Q
(a)
x

Q
(s)
y

Q
(a)
y


=

∫ H
2

−H
2



Σ
(s)
xz

Σ
(a)
xz

Σ
(s)
yz

Σ
(a)
yz


dz (3.3.4)
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

M
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xx

M
(s)
yy

M
(s)
xy

M
(a)
xy


=

∫ H
2

−H
2



Σ
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xx

Σ
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yy

Σ
(s)
xy

Σ
(a)
xy


zdz,



Pxx

Pxy

Pyx

Pyy


=

∫ H
2

−H
2



mxx

mxy

myx

myy


dz (3.3.5)

The principle of virtual work for the micropolar plate with transverse distributed load q0 can be

written in terms of the resultants (3.3.4) and (3.3.5) as follows

∫
A

{
N(s)
xx

(
∂δu0

∂x
− δψy

∂w0

∂x
− ψy

∂δw0

∂x

)
+ M(s)

xx

∂δφx
∂x

+ M(s)
yy

∂δφy
∂y

+ N(s)
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(
∂δv0

∂y
+ δψx

∂w0

∂y
+ ψx

∂δw0

∂y

)
+ M(s)

xy

(
∂δφx
∂y

+
∂δφy
∂x

)
+ N(s)

xy

(
∂δu0

∂y
+
∂δv0

∂x
+ δψx

∂w0

∂x
+ ψx

∂δw0

∂x
− δψy

∂w0

∂y
− ψy

∂δw0

∂y

)
+ N(a)
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∂δu0

∂y
− ∂δv0
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− δψx
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− ψx
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− δψy
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− ψy
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∂y

)
+ M(a)

xy

(
∂δφx
∂y
− ∂δφy

∂x

)
+ Q(s)

x

(
δφx +

∂δw0

∂x

)
+ Q(a)

x

(
δφx −

∂δw0

∂x
− 2δψy

)
+ Q(s)

y

(
∂δw0

∂y
+ δφy

)
+ Q(a)

y

(
δφy −

∂δw0

∂y
+ 2δψx

)
+ Pxx

∂δψx
∂x

+ Pxy
∂δψx
∂y

+ Pyx
∂δψy
∂x

+ Pyy
∂δψy
∂y
− q0δw0

}
dxdy = 0 (3.3.6)

where A is the area of the plate. The governing equations of nonlinear micropolar plate theory are
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obtained by taking the Euler equations of the above variational statement (3.3.6) as

δu0 :
∂N

(s)
xx

∂x
+

∂

∂y

(
N(s)
xy + N(a)

xy

)
= 0 (3.3.7)

δv0 :
∂

∂x

(
N(s)
xy −N(a)

xy

)
+
∂N

(s)
yy

∂y
= 0 (3.3.8)

δw0 :
∂

∂x

(
ψyN

(s)
xx − ψx

(
N(s)
xy −N(a)

xy

))
− ∂

∂y

(
ψxN

(s)
yy − ψy

(
N(s)
xy + N(a)

xy

))
− ∂

∂x

(
Q(s)
x −Q(a)

x

)
− ∂

∂y

(
Q(s)
y −Q(a)

y

)
− q0 = 0 (3.3.9)

δφx :
∂M

(s)
xx

∂x
+

∂

∂y

(
M(s)

xy + M(a)
xy

)
−Q(s)

x −Q(a)
x = 0 (3.3.10)

δφy :
∂

∂x

(
M(s)

xy −M(a)
xy

)
+
∂M

(s)
yy

∂y
−Q(s)

y −Q(a)
y = 0 (3.3.11)

δψx :
∂Pxx

∂x
+
∂Pxy

∂y
−
(
N(s)
xy −N(a)

xy

) ∂w0

∂x
−N(s)

yy

∂w0

∂y
− 2Q(a)

y = 0 (3.3.12)

δψy :
∂Pyx

∂x
+
∂Pyy

∂y
+ N(s)

xx

∂w0

∂x
+
(
N(s)
xy + N(a)

xy

) ∂w0

∂y
+ 2Q(a)

x = 0 (3.3.13)

with the following natural boundary conditions

Q1 ≡ N(s)
xxnx +

(
N(s)
xy + N(a)

xy

)
ny = 0

Q2 ≡
(
N(s)
xy −N(a)

xy

)
nx + N(s)

yy ny = 0

Q3 ≡
[
Q(s)
x −Q(a)

x − ψyN(s)
xx + ψx

(
N(s)
xy −N(a)

xy

)]
nx

+
[
Q(s)
y −Q(a)

y + ψxN
(s)
yy − ψy

(
N(s)
xy + N(a)

xy

)]
ny = 0

Q4 ≡M(s)
xxnx +

(
M(s)

xy + M(a)
xy

)
ny = 0

Q5 ≡
(
M(s)

xy −M(a)
xy

)
nx + M(s)

yy ny = 0

Q6 ≡ Pxxnx + Pxyny = 0

Q7 ≡ Pyxnx + Pyyny = 0

(3.3.14)

where nx and ny are the x and y components of the directions cosines of the boundary.
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3.4 Finite element models

In this section we develop the weak-form Galerkin finite element model of the governing equa-

tions derived in sections 3.2 and 3.3. For the plate theories considered in this paper the primary

variables are (u0, v0, w0, φx, φy, ψx, ψy). These variables are approximated using 2-dimensional

Lagrange interpolation functions L(1)
j , L

(2)
j , L

(3)
j , L

(4)
j , L

(5)
j , L

(6)
j and L(7)

j , respectively. Here j =

{1, 2, . . . , n} where n is the number of nodes on a typical element. Since we are using weak-

form Galerkin finite element formulation, the weight functions w1, w2, w3, w4, w5, w6 and w7 used

in the development of the weak-form equations are taken to be the same Lagrange interpolations

functions used in approximating the primary variables [93]. Thus, we have,

u0 ≈
n∑
j=1

UjL
(1)
j (x, y), w1(x, y) = L

(1)
i (x, y)

v0 ≈
n∑
j=1

VjL
(2)
j (x, y), w2(x, y) = L

(2)
i (x, y)

w0 ≈
n∑
j=1

WjL
(3)
j (x, y), w3(x, y) = L

(3)
i (x, y)

φx ≈
n∑
j=1

ΦxjL
(4)
j (x, y), w4(x, y) = L

(4)
i (x, y)

φy ≈
n∑
j=1

ΦyjL
(5)
j (x, y), w5(x, y) = L

(5)
i (x, y)

ψx ≈
n∑
j=1

ΨxjL
(6)
j (x, y), w6(x, y) = L

(6)
i (x, y)

ψy ≈
n∑
j=1

ΨyjL
(7)
j (x, y), w7(x, y) = L

(7)
i (x, y)

(3.4.1)

where i = {1, 2, 3 . . . n}. Uj, Vj,Wj,Φxj,Φyj,Ψxj and Ψyj are the nodal values of their respec-

tive primary variables on a typical finite element.

• von Kármán micropolar plate theory (VMPT)

The weak-form equations of von Kármán micropolar plate theory on a typical finite element
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Ωe are

0 =

∫
Ωe

{
∂w1

∂x
N (s)
xx +

∂w1

∂y
(N (s)

xy +N (a)
xy )

}
dxdy −

∮
Γe

w1Q
(e)
1 ds (3.4.2)

0 =

∫
Ωe

{
∂w2

∂x
(N (s)

xy −N (a)
xy ) +

∂w2

∂y
N (s)
yy

}
dxdy −

∮
Γe

w2Q
(e)
2 ds (3.4.3)

0 =

∫
Ωe

{
∂w3

∂x

(
∂w0

∂x
N (s)
xx +

∂w0

∂y
N (s)
xy +Q(s)

x −Q(a)
x

)
+
∂w3

∂y

(
∂w0

∂x
N (s)
xy +

∂w0

∂y
N (s)
yy +Q(s)

y −Q(a)
y

)
− w3q0

}
dxdy

−
∮

Γe

w3Q
(e)
3 ds (3.4.4)

0 =

∫
Ωe

{
∂w4

∂x
M (s)

xx +
∂w4

∂y
(M (s)

xy +M (a)
xy ) + w4Q

(s)
x + w4Q

(a)
x

}
dxdy

−
∮

Γe

w4Q
(e)
4 ds (3.4.5)

0 =

∫
Ωe

{
∂w5

∂x
(M (s)

xy −M (a)
xy ) +

∂w5

∂y
M (s)

yy + w5Q
(s)
y + w5Q

(a)
y

}
dxdy

−
∮

Γe

w5Q
(e)
5 ds (3.4.6)

0 =

∫
Ωe

{
∂w6

∂x
Pxx +

∂w6

∂y
Pxy + 2w6Q

(a)
y

}
dxdy −

∮
Γe

w6Q
(e)
6 ds (3.4.7)

0 =

∫
Ωe

{
∂w7

∂x
Pyx +

∂w7

∂y
Pyy − 2w7Q

(a)
x

}
dxdy −

∮
Γe

w7Q
(e)
7 ds (3.4.8)

where Q(e)
i (i = 1, 2, . . . , 7) are the secondary variables on the boundary Γe of finite element

Ωe. The definitions of the secondary variables are given in Eqs. (3.2.13). The stress, moment

and couple stress resultants in the weak-form equations can be written in terms of the dis-

placements, rotations and microrotations using the constitutive relations given in Appendix

A.2.

• Nonlinear micropolar plate theory (NMPT)

The weak-form equations of nonlinear micropolar plate theory on a typical finite element Ωe
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are

0 =

∫
Ωe

{
∂w1

∂x
N(s)
xx +

∂w1

∂y
(N(s)

xy + N(a)
xy )

}
dxdy −

∮
Γe

w1Q
(e)
1 ds (3.4.9)

0 =

∫
Ωe

{
∂w2

∂x
(N(s)

xy −N(a)
xy ) +

∂w2

∂y
N(s)
yy

}
dxdy −

∮
Γe

w2Q
(e)
2 ds (3.4.10)

0 =

∫
Ωe

{
∂w3

∂x

(
ψx(N

(s)
xy −N(a)

xy )− ψyN(s)
xx + Q(s)

x −Q(a)
x

)
+
∂w3

∂y

(
ψxN

(s)
yy − ψy

(
N(s)
xy + N(a)

xy

)
+ Q(s)

y −Q(a)
y

)
− w3q0

}
dxdy

−
∮

Γe

w3Q
(e)
3 ds (3.4.11)

0 =

∫
Ωe

{
∂w4

∂x
M(s)

xx +
∂w4

∂y

(
M(s)

xy + M(a)
xy

)
+ w4Q

(s)
x + w4Q

(a)
x

}
dxdy

−
∮

Γe

w4Q
(e)
4 ds (3.4.12)

0 =

∫
Ωe

{
∂w5

∂x

(
M(s)

xy −M(a)
xy

)
+
∂w5

∂y
M(s)

yy + w5Q
(s)
y + w5Q

(a)
y

}
dxdy

−
∮

Γe

w5Q
(e)
5 ds (3.4.13)

0 =

∫
Ωe

{
∂w6

∂x
Pxx +

∂w6

∂y
Pxy + w6

∂w0

∂x

(
N(s)
xy −N(a)

xy

)
+ w6

∂w0

∂y
N(s)
yy

+ 2w6Q
(a)
y

}
dxdy −

∮
Γe

w6Q
(e)
6 ds (3.4.14)

0 =

∫
Ωe

{
∂w7

∂x
Pyx +

∂w7

∂y
Pyy − w7

∂w0

∂x
N(s)
xx − w7

∂w0

∂y

(
N(s)
xy + N(a)

xy

)
−2w7Q

(a)
x

}
dxdy −

∮
Γe

w7Q
(e)
7 ds (3.4.15)

where Q(e)
i (i = 1, 2, . . . , 7) are the secondary variables on the boundary Γe of finite element

Ωe. The definitions of the secondary variables are give in Eqs. (3.3.14). The stress, moment

and couple stress resultants in the weak-form equations can be written in terms of the dis-

placements, rotations and microrotations using the constitutive relations given in Appendix

A.2.

After using the approximations of the primary variables given in Eqs. (3.4.1) in the weak-form

equations (3.4.2)-(3.4.8) and (3.4.9)-(3.4.15) respectively, the nonlinear finite element equations
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on a typical element for both nonlinear theories can be written in the form

K(e)U(e) = F(e) (3.4.16)

where,

K(e) =



K11 K12 K13 K14 K15 K16 K17

K21 K22 K23 K24 K25 K26 K27

K31 K32 K33 K34 K35 K36 K37

K41 K42 K43 K44 K45 K46 K47

K51 K52 K53 K54 K55 K56 K57

K61 K62 K63 K64 K65 K66 K67

K71 K72 K73 K74 K75 K76 K77



(e)

(3.4.17)

U(e) =



U

V

W

Φx

Φy

Ψy

Ψy



(e)

F(e) =



F1

F2

F3

F4

F5

F6

F7



(e)

(3.4.18)

The non-zero components of the coefficient matrix (3.4.16) are given in Appendix B.2, for both

VMPT and NMPT.

3.4.1 Higher order finite elements

It is well known that lower order displacement finite elements for plates are prone to locking

[100, 103, 108] when quadrature rules that result in exact integration of element coefficient matrix
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are employed. Such locking phenomena are usually eliminated using selective full and reduced

integration techniques. In place of such numerical remedies, we employ higher order polynomials

in approximating the primary variables within an element. For such higher-order polynomials of

order n−1 on a typical element, there are n nodes. However, when these nodes are equally spaced

the polynomial interpolations exhibit oscillations near the end points of the standard interval. This

phenomenon is called Runge effect. To overcome the Runge effect the use of an unequal spacing

of the nodes within each 1-D element was discussed in chapter 2. Similarly, we can obtain the

corresponding higher order elements in 2-D using tensor product of the vectors containing 1-D

interpolation functions in x and y directions (see [93]).

3.4.2 Solutions of nonlinear equations

The nonlinear finite element equations of (3.4.16) are solved using Newton’s iterative proce-

dure [100], by constructing the tangent stiffness matrix of a typical element at the beginning of rth

iteration as

T(e)(r)
=

[
∂R(e)

∂U(e)

](r−1)

(3.4.19)

such that

T(e)(r)
∆Ue = −R(e)(r−1)

(3.4.20)

where

R(e) = K(e)(U(e))U(e) − F(e) and ∆U(e) = U(e)(r) − U(e)(r−1)

The explicit expressions of the components of the element tangent stiffness matrix for all the

nonlinear theories considered in this chapter are given in Appendix B.2.

When the normalized difference between solution vectors from two consecutive iterations
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(measured with Euclidean norm) is less than a pre-selected tolerance, convergence is declared

and further iterations are terminated [100].

3.5 Numerical results

For the purpose of numerical analysis we consider a rectangular micropolar plate with the

following material properties:

λ = 2.25× 106 psi (15513.20 MPa), µ = 106 psi (6894.76 MPa)

α = 100 lb (444.82 N), β = 100 lb (444.82 N), γ = 600 lb (2668.93 N)
(3.5.1)

For a given value of µ, the material constant κ plays an important role in determining the degree of

micropolarity exhibited by the material [105]. A dimensionless parameter called coupling number

(N) is usually defined to quantify the level of shear stress asymmetry, there by reflecting the degree

of micropolarity exhibited by the material [23, 106]. The coupling number is bounded below by

the classical elasticity and above by the so-called constrained Cosserat elasticity (or couple stress

theory), where in the microrotation is equal to the conventional rotation (macrorotation) [106]. To

bring out the effect of coupling number on the plate theories considered in this chapter, we consider

a range of coupling numbers and the corresponding value of κ is calculated using the formula:

κ =
2µN2

1− 2N2
(3.5.2)

The length (L) of the micropolar plate is taken to be twice the breadth (B). Two different

boundary conditions are considered under the action of a uniformly distributed load q0: (a) simply

supported on all sides (SSSS) (b) clamped on all sides (CCCC). Since the boundary and loading

conditions considered here result in symmetry about x- and y-axes, we consider only the quarter

plate lying in the first quadrant as the computational domain (see Fig. 3.1). For such a compu-

tational domain the considered boundary conditions after symmetry arguments are listed in Table

3.1. Unless stated otherwise all the loads listed are on full plate.
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L

B

Figure 3.1: Choice of computational domain for the bending analysis under considered boundary
and loading conditions.

Table 3.1: Various boundary conditions on the computational domain for bending analysis.

SSSS CCCC
y = 0 v0 = φy = ψx = 0 v0 = φy = ψx = 0

y = B/2 u0 = w0 = φx = ψy = 0
u0 = v0 = w0 = φx =
ψy = φy = ψx = 0

x = 0 u0 = φx = ψy = 0 u0 = φx = ψy = 0

x = L/2 v0 = w0 = φy = ψx = 0
u0 = v0 = w0 = φx =
ψy = φy = ψx = 0

(0, 0)
u0 = v0 = φx = ψy =

φy = ψx = 0
u0 = v0 = φx = ψy =

φy = ψx = 0

(L/2, 0) v0 = w0 = φy = ψx = 0
u0 = v0 = w0 = φx =
ψy = φy = ψx = 0

(0, B/2) u0 = w0 = φx = ψy = 0
u0 = v0 = w0 = φx =
ψy = φy = ψx = 0

(L/2, B/2)
u0 = v0 = w0 = φx =
ψy = φy = ψx = 0

u0 = v0 = w0 = φx =
ψy = φy = ψx = 0
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3.5.1 Effect of coupling number

Consider a rectangular micropolar plate, with material properties given in Eq. (3.5.1), of thick-

ness H = 0.01220 in (0.3099 cm), length L = 50H and breadth B = L/2 under the action of a

distributed load q0 = 5.0 lb/in2 (34473.7 N/m2) on the top face. To analyze this plate we use 16

elements of equal size on the computational domain. 4 elements along the x-axis and 4 elements

along the y− axis are used, with each element having 81 nodes, 9 along x-axis and 9 along y-axis

of the element. Further, we shall define the following dimensionless quantities:

w(x, y) = w0(x, y)
λH3

q0L4
, u(x, y) = u0(x, y)

λ

q0L
, χ =

2
√
x2 + y2

√
L2 +B2

σ(s)
xy = σ(s)

xy

H

q0L
, σ(a)

xy = σ(a)
xy

H

q0L

(3.5.3)

Fig. 3.2a shows the dimensionless transverse deflection of a clamped micropolar plate along the

line y = 0 for various values of coupling numberN . Further, a comparison between the NMPT and

VMPT is also given. Similarly, Fig. 3.2b presents the dimensionless transverse deflection simply

supported micropolar plate along the line y = 0 for various values of coupling number. A com-

parison between NMPT and VMPT for simply supported boundary conditions is also presented

in Fig. 3.2b. It can be seen that an increase in coupling number is also causing an increasing the

bending stiffness of the micropolar plate as evident by the magnitude if the transverse deflections

for both NMPT and VMPT. Fig. 3.2 also tells us that for lower values of coupling numbers VMPT

predicts stiffer results compared to NMPT, while at higher values of coupling numbers the differ-

ence between the two theories is not significant in terms of transverse deflections. It should also be

noted that the difference between NMPT and VMPT does not only depend on the coupling number

but also on the type of the boundary conditions the plate is subjected as evident from Fig. 3.2.

Next, we examine the effect of coupling number on the in-plane displacement u0(x, y). Fig. 3.3a

presents the comparison between the dimensionless in-plane displacement u along the line y = 0,

of a simply supported micropolar plate modeled using VMPT for various values of coupling num-

ber. It can be seen that the magnitude of the in-plane displacement u0 decreases with increase in N
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Figure 3.2: (a) Dimensionless transverse deflection along the line y = 0 for CCCC boundary
conditions for various values of N . (b) Dimensionless transverse deflection along the line y = 0
for SSSS boundary conditions for various values of N .

when VMPT is used to model the plate. However, when the same plate is modeled using NMPT,

the magnitude of in-plane dimensionless displacement u first increases and then again starts to

decrease as evident by Fig. 3.3b.

Finally, we consider the in-plane symmetric and anti-symmetric shear stresses on the top face

of the micropolar plate. The stresses can be post-computed once the displacement filed is ob-

tained from the finite element solutions. Fig. 3.4a presents the comparison between the values of

dimensionless in-plane symmetric shear stress σ(s)
xy as obtained from VMPT and NMPT for var-

ious values of coupling number N , while Fig. 3.4b presents the comparison between the values

of dimensionless in-plane anti-symmetric shear stress σ(a)
xy as obtained from VMPT and NMPT

for various values of coupling number N . It can be seen that the magnitude of in-plane symmetric

shear stress decreases with increase in coupling number for both VMPT and NMPT (see Fig. 3.4a).

However, the magnitude of in-plane anti-symmetric shear stress increases with increase in coupling

number for both VMPT and NMPT (see Fig. 3.4b). Further, note that the magnitude of in-plane

anti-symmetric shear stress predicted by VMPT is less than the magnitude predicted by NMPT for
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Figure 3.3: (a) Dimensionless deflection u of VMPT along the line y = 0 for SSSS boundary
conditions for various values of N . (b) Dimensionless deflection u of NMPT along the line y = 0
for SSSS boundary conditions for various values of N .

higher values of coupling number, while for lower values of coupling number (N = 0.01) the mag-

nitude of in-plane anti-symmetric shear stress predicted by VMPT is greater than the magnitude

predicted by NMPT.
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Figure 3.4: (a) Dimensionless in-plane symmetric shear stress σ(s)
xy on the top face of micropolar

plate along the line x = y for SSSS boundary conditions. (b) Dimensionless in-plane antisymmet-
ric shear stress σ(a)

xy on the top face of micropolar plate along the line x = y for SSSS boundary
conditions.
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4. NONLINEAR FINITE ELEMENT ANALYSIS OF LATTICE CORE SANDWICH

BEAMS∗

4.1 Introduction

In this chapter we will consider lattice core sandwich beams and their modeling using von Kár-

mán Timoshenko micropolar beam theory discussed in chapter 2. We will review the kinematics

of the micropolar beam and then discuss the constitutive modeling of lattice core sandwich beams

as micropolar beams [1, 4]. Then the corresponding governing equations and the finite element

equations are derived. Finally, numerical results are presented to illustrate the accuracy of the

constitutive model and the corresponding finite element model.

4.2 Kinematics of micropolar beam

In this section we will review the Timoshenko micropolar beam kinematics considered in chap-

ter 2. The 3-D displacements and microrotations of the a micropolar beam are given in terms of

the center line variables (u0, w0, φx, ψy) such that

u1(x, y, z) = u0(x) + zφx(x)

u2(x, y, z) = 0

u3(x, y, z) = w0(x)

ψ1(x, y, z) = 0

ψ2(x, y, z) = ψy(x)

ψ3(x, y, z) = 0

(4.2.1)

Here (u0, w0) represent the axial and transverse displacements of the center line of the beam, while

φx is the rotations of the fibers normal to the center line and ψy is the microrotations about y-axis.

∗Part of this chapter is reprinted with permission from “Nonlinear finite element analysis of lattice core sandwich
beams” by P. Nampally, A. T. Karttunen, and J. N. Reddy, 2019. European Journal of Mechanics - A/Solids, vol. 74,
pp. 431–439, Copyright (2018) Elsevier Masson SAS.
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The corresponding linear strains and wryness tensor components are given by [44]

εxx =
du0

dx
+ z

dφx
dx

= ε0
xx + zκxx, χxy =

dψy
dx

εxz =
dw0

dx
+ ψy, εzx = φx − ψy

(4.2.2)

Further we define the symmetric and anti-symmetric shear strains as follows

γsx = εxz + εzx =
dw0

dx
+ φx

γax = εxz − εzx =
dw0

dx
− φx + 2ψy

(4.2.3)

We will be using von Kármán nonlinearity in modeling the lattice core sandwich beams. Hence

the nonlinear strains would be given by

εxx =
du0

dx
+

1

2

(
dw0

dx

)2

+ z
dφx
dx

= ε̂0
xx + zκxx

εxz =
dw0

dx
+ ψy

εzx = φx − ψy

χxy =
dψy
dx

(4.2.4)

4.3 Two-scale constitutive modeling of lattice beams

Figure 4.1: Web-core lattice beam (Reprinted with permission from [4]).
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In this section we shall describe the two-scale constitutive model proposed in [1, 4] for web-

core lattice beams. Let us consider a web-core beam frame as shown in Fig. 4.1. The idea is

to replace this beam with a micropolar beam which will serve as Equivalent Single Layer (ESL)

beam model of the original web-core lattice beam. To achieve this, a unit cell of the web-core

beam is isolated and this unit cell is considered energetically equivalent to continuum point of the

micropolar beam. Fig. 4.2 shows the unit cell of web-core lattice beam along with the micropolar

beam (red line) which is intended to be ESL beam. The unit cell which is of length l and height

h represent the periodic microstructure of the macro-structural beam (web-core beam frame) of

length L (l ≤ L).

Figure 4.2: Web-core lattice beam unit cell.

The red circle at the center of Fig. 4.2 is assumed to be point within the micropolar beam whose

strain energy is assumed to be equivalent to that of the strain energy stored in the unit cell. The first

step in establishing this equivalence of energy is to write the displacements and rotations of nodes

1, 2, 3 and 4 shown in Fig. 4.2 in terms of the displacements and microrotations at point (x, 0, 0)

of the micropolar beam. To achieve this we shall use Taylor series expansion up to order one on

each of the functions u1, u3 and ψ2 about the point (x, 0, 0). Thus, if (X, Y, Z) is considered as the

coordinates of the nodes 1, 2, 3 and 4 of the unit cell, we can write the Taylor series expansion of
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a displacement component, say u1, of the micropolar beam as

u1(X, Y, Z) = u1(x, 0, 0) + (X − x)
∂u1

∂X

∣∣∣∣∣
(x,0,0)

+ (Z − 0)
∂u1

∂Z

∣∣∣∣∣
(x,0,0)

(4.3.1)

The coordinates (X, Y, Z) take the following values depending on the node considered.

Node 1: (X, Y, Z) =

(
x− l

2
, 0,

h

2

)
, Node 2: (X, Y, Z) =

(
x+

l

2
, 0,

h

2

)
Node 3: (X, Y, Z) =

(
x+

l

2
, 0,−h

2

)
, Node 4: (X, Y, Z) =

(
x− l

2
, 0,−h

2

) (4.3.2)

Thus, for noode 1 Eq. (4.3.1) can be written as

u1(x− l/2, 0, h/2) = u0(x)− l

2

(
∂u0

∂X
+
h

2

∂φx
∂X

)∣∣∣∣∣
(x,0,0)

+
h

2
φx

∣∣∣∣∣
(x,0,0)

(4.3.3)

Now we shall us the strain-displacement relations of Eqs. (4.2.2)-(4.2.3) in the above equation to

obtain

u1(x− l/2, 0, h/2) = u0(x)− l

2

(
ε0
xx +

h

2
κxx

)
+
h

2

[
1

2
(γsx − γax) + ψy

]
(4.3.4)

In a similar fashion as explained above we can obtain the displacements and rotations of all the

four nodes of the unit cell using the Taylor series expansion. These can be compactly written as

u
(i)
1 (x± l/2, 0,±h/2) = u0(x)± l

2

(
ε0
xx ±

h

2
κxx

)
± h

2

[
1

2
(γsx − γax) + ψy(x)

]
(4.3.5)

u
(i)
3 (x± l/2, 0,±h/2) = w0(x)± l

2

[
1

2
(γsx + γax)− ψy(x)

]
(4.3.6)

ψ
(i)
2 (x± l/2, 0,±h/2) = ψy(x)± l

2
χxy (4.3.7)

where the superscript (i) on u1, u3 and ψ2 represent the node number of the unit cell. For example,

u
(1)
1 represents the displacement u1 at node 1. The displacements of the unit cell nodes can be
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written in a vector form as follows:

d =
{
u

(1)
1 u

(1)
3 ψ

(1)
2 u

(2)
1 u

(2)
3 ψ

(2)
2 u

(3)
1 u

(3)
3 ψ

(3)
2 u

(4)
1 u

(4)
3 ψ

(4)
2

}T
(4.3.8)

The vector d can be further broken into two parts, one corresponding to micropolar beam

displacements and microrotations, while the other corresponding to the strains of micropolar beam

as given in Eqs. (4.2.2)-(4.2.3).

d = du + dε = Tuu + Tεε (4.3.9)

where

Tε =



− l
2

0 0 l
2

0 0 l
2

0 0 − l
2

0 0

−hl
4

0 0 hl
4

0 0 −hl
4

0 0 hl
4

0 0

h
4
− l

4
0 h

4
l
4

0 −h
4

l
4

0 −h
4
− l

4
0

−h
4
− l

4
0 −h

4
l
4

0 h
4

l
4

0 h
4
− l

4
0

0 0 − l
2

0 0 l
2

0 0 l
2

0 0 − l
2



T

(4.3.10)

Tu =



1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

h
2

l
2

1 h
2
− l

2
1 −h

2
− l

2
1 −h

2
l
2

1



T

(4.3.11)

ε = {ε0
xx κxx γsx γax χxy}T (4.3.12)

u = {u0 w0 φx ψy}T (4.3.13)
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If the unit cell is considered as a beam frame made of four classical Euler-Bernoulli beam

elements, we can attribute the displacements and microrotations u(i)
1 , u(i)

3 and ψ(i)
2 at the nodes of

the unit cell as the displacements and rotations of the Euler-Bernoulli beams of the beam frame at

these points (nodes). Thus, the microrotations of the ESL micropolar beam are being mapped as

rotations (slopes) of the Euler-Bernoulli beam elements which the unit cell is assumed to be made

of. The four Euler-Bernoulli beam elements are as follows:

EB-Beam 1: Node 1 to Node 2, Young’s modulus = Ef , Second area moment = If

EB-Beam 2: Node 2 to Node 3, Young’s modulus = Ew, Second area moment = Iw

EB-Beam 3: Node 3 to Node 4, Young’s modulus = Ef , Second area moment = If

EB-Beam 4: Node 4 to Node 1, Young’s modulus = Ew, Second area moment = Iw

Here, EB-Beam 1 and EB-Beam 3 are of the same material as the face sheets of the lattice panel

while EB-Beam 2 and EB-Beam 4 are of the same material as the core of the lattice panel.

Now that we have the displacements of the unit cell nodes in terms of the strains, displacements

and microrotations of the ESL micropolar beam, we seek to write the stiffness matrix of the unit

cell so that the total strain energy stored in the unit cell can be written as

W =
1

2
dTKd (4.3.14)

To achieve this we first write the displacement finite element stiffness matrix of each of the Euler-

Bernoulli beam element (see [93]) of the unit cell. For example, if we consider EB-Beam 1 and

EB-Beam 3 without any additional rotational stiffening [4, 1], we have the following stiffness
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matrix

Kf =
2EfIf
l3



Af l
2

2If
0 0 −Af l

2

2If
0 0

0 6 −3l 0 −6 −3l

0 −3l 2l2 0 3l l2

−Af l
2

2If
0 0

Af l
2

2If
0 0

0 −6 3l 0 6 3l

0 −3l l2 0 3l 2l2



(4.3.15)

where Af is the are of cross section of EB-Beam 1 and EB-Beam 3. Now the total stiffness matrix

of the unit cell can be obtained by assembly of Euler-Bernoulli beam elements of unit cell (see

[93]). Substituting the total stiffness matrix K and displacement d from Eq. (4.3.9) it can be easily

seen that

W =
1

2
dTKd =

1

2
dTε Kdε =

1

2
εTTT

ε KTεε (4.3.16)

Let us now define the strain energy density (per length of unit cell) as

W 0
l =

W

l
=

1

2
εTCε; C =

1

l
TT
ε KTε (4.3.17)

Since the web-core beam frame and ESL micropolar beam are assumed to be energetically

equivalent, the strain energy density of unit cell given in Eq. (4.3.17) is equal to the strain energy

density of the ESL micropolar beam. Assuming hyper elastic constitutive behavior of ESL mi-

cropolar beam we can write the constitutive relations of the micropolar beam as relations for the

micropolar beam as

S ≡ ∂W l
0

∂ε̂
=

1

2

∂

∂ε

(
εTCε̂

)
= Cε, (4.3.18)

where S is now the stress resultant vector of the 1-D micropolar beam and for the lattice structures
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considered here (web-core, hexagonal, Y-frame, corrugated) Eq. (4.3.18) takes the following form:



Nxx

Mxx

Qs
x

Qa
x

Pxy



=



C11 C12 0 0 C15

C12 C22 0 0 C25

0 0 C33 C34 0

0 0 C34 C44 0

C15 C25 0 0 C55





ε0
xx

κxx

γsx

γas

χxy



, (4.3.19)

whereNxx is the axial force,Mxx and Pxy are the bending and couple-stress moments, respectively,

and Qs
x and Qa

x are the symmetric and anti-symmetric shear forces.

If the web-core of the lattice structure are laser welded to the lattice structure faces, then the

Euler-Bernoulli beam elements of unit cell EB-Beam 2 and EB-Beam 4 may have additional rota-

tional stiffness. This can be modeled by adding rotational springs (of some known stiffness kθ) to

these two beam elements, there by increasing their rotational stiffness [4, 1]. For one such web-core

lattice structure with the properties Ef = 212 GPa, Ew = 200 GPa, kθ = 2675 Nm and ν = 0.3

for the face and web Young’s moduli, rotational joint stiffness and Poisson ratio respectively, we

can write the constitutive relation (4.3.19) as follows



Nxx

Mxx

Qs
x

Qa
x

Pxy



=



2EfAf 0 0 0 0

EfAfh
2

2
+ Θ 0 0 Θ

6Ef If+Θ

l2
6Ef If−Θ

l2
0

SYM 6Ef If+Θ

l2
0

2EfIf + Θ





ε0
xx

κxx

γs

γa

χxy



(4.3.20)

where

Θ =
3EwIwkθl

6EwIw + kθh
(4.3.21)
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Figure 4.3: Unit cells of hexagonal, Y-frame and corrugated lattice core sandwich beams. The
latter two are modeled according to [5].

For the other cores displayed in Fig. 4.3, Young’s modulus and Poisson ratio are E = 210 GPa

and ν = 0.3, respectively. Other relevant parameters are given in Fig. 4.3. The hexagonal core

includes two mid-nodes in addition to the four corner nodes that need to be taken into account

essentially to ensure connectivity between neighboring unit cells on the micropolar continuum

level. Static condensation is applied at the inner nodes of the unit cell. It is difficult to obtain a

meaningful symbolic form for the hexagonal constitutive matrix, in numerical form we have

Chex =



4.26438× 107 0 0 0 0

0 340740 0 0 27.1761

0 0 94735.4 8319.08 0

0 0 8319.08 3315.25 0

0 27.1761 0 0 44.3467


(4.3.22)

The constitutive matrix (4.3.22) is of the same form as that of the web-core with the exception that
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for the hexagonal core C33 6= C44. For the Y-frame and corrugated cores we obtain

CY =



1.26053× 108 11696.2 0 0 5292.50

11696.2 6.10097× 106 0 0 1164.35

0 0 42094.9 9541.42 0

0 0 9541.42 5302.30 0

5292.50 1164.35 0 0 1012.92


(4.3.23)

and

Ccorr =



1.26018× 108 −3902.45 0 0 −3902.45

−3902.45 6.09926× 106 0 0 858.539

0 0 2.09792× 107 3734.96 0

0 0 3734.96 5078.42 0

−3902.45 858.539 0 0 1334.05


, (4.3.24)

respectively. The axial and classical sandwich bending stiffnesses in Eqs. (4.3.22)–(4.3.24) are

practically given by C11 ≈ 2EAf and C22 ≈ EAfh
2/2, respectively. We see that due to the lack

of symmetry about the x-axis, the coupling termsC12 andC15 appear in the constitutive matrices of

the Y-frame and corrugated cores. In addition, the symmetric shear stiffness C33 of the corrugated

core is very high in comparison to that of the other cores because the corrugated lattice core has

a stretch-dominated shear-carrying mechanism while the others cores are bending-dominated. In

other words, when bent, the constituents of the corrugated lattice core act as axial rods without

significant bending so that the core is very stiff. Finally, it is easy verify that all eigenvalues of

each constitutive matrix above are positive which means that the matrices are positive definite.

It follows that each lattice core material is stable in the conventional sense (i.e., strain energy is

positive for nonzero strains).
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4.4 Governing differential equations

The governing differential equations of geometrically nonlinear micropolar beams and plates

are derived using the principle of virtual work [102], which can be stated as follows:

δW = δWI − δWE = 0 (4.4.1)

where WI is the potential energy due to internal forces (force stresses and couple stresses) and

WE is the potential energy due to the externally applied forces. Writing Eq. (4.4.1) in terms of the

stress resultants and virtual strains, we get:

∫ L

0

[Nxxδε̂
0
xx +Mxxδκxx +Qs

xδγ
s
x +Qa

xδγ
a
x + Pxyδχxy]dx−

∫ L

0

q0δw0dx = 0 (4.4.2)

The virtual strains can be written in terms of the virtual displacement using the strain displace-

ment relations of Eq. (4.2.3) and Eq. (4.2.4). After expressing Eq.(4.4.2) in terms of the virtual

displacements and virtual microrotations, the governing differential equations of equivalent single

layer micropolar beam are obtained by taking the Euler-Lagrange equations of Eq. (4.4.2). These

are listed below.

δu0 :
dNxx

dx
= 0 (4.4.3)

δw0 :
d

dx

(
dw0

dx
Nxx

)
+
d(Qs

x +Qa
x)

dx
+ q0 = 0 (4.4.4)

δφx :
dMxx

dx
−Qs

x +Qa
x = 0 (4.4.5)

δψy :
dPxy
dx
− 2Qa

x = 0 (4.4.6)

Here q0(x) is the distributed load acting on the top of the beam. The governing equations (4.4.3)-

(4.4.6) can be further expressed in terms of the displacements and microrotations by using the

general constitutive relation Eq. (4.3.19).
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4.5 Finite element formulation

To develop the weak form Galerkin finite element model we construct the weak form equa-

tions of (4.4.3)-(4.4.6) on a typical element of the beam, Ωe = (xa, xb). The primary variables

(u0, w0, φx, ψy) are approximated using 1-D linear Lagrange interpolations functions L(α)
j [93],

where (α = 1, 2, 3, 4). Since we are developing weak form Galerkin finite elements, the weight

functions wi (i = 1, 2, 3, 4), used in constructing the weak form equations are taken to be 1-D

linear Lagrange interpolation functions used in approximating the primary variables [93]. Thus we

have

u0 ≈
4∑
j=1

UjL
(1)
j (x), w1(x) = L

(1)
i (x)

w0 ≈
4∑
j=1

WjL
(2)
j (x), w2(x) = L

(2)
i (x)

φx =
4∑
j=1

ΦxjL
(3)
j (x), w3(x) = L

(3)
i (x)

ψy ≈
4∑
j=1

ΨyjL
(4)
j (x), w4(x) = L

(4)
i (x)

(4.5.1)

Now we write the weak form equations of the micropolar plate governing equations (4.4.3)-(4.4.6)

on a typical element Ωe = (xa, xb) as

∫ xb

xa

[
dw1

dx
Nxx

]
dx− w1(xa)Q1 − w2(xb)Q5 = 0 (4.5.2)∫ xb

xa

[
dw2

dx

(
Nxx

dw0

dx

)
+
dw2

dx
(Qs

x +Qa
x)

]
dx

−
∫ xb

xa

q0w2dx− w2(xa)Q2 − w2(xb)Q6 = 0 (4.5.3)∫ xb

xa

[
dw3

dx
Mxx + w3(Qs

x −Qa
x)

]
dx− w3(xa)Q3 − w3(xb)Q7 = 0 (4.5.4)∫ xb

xa

[
dw4

dx
Pxy + 2w4Q

a
x

]
dx− w4(xa)Q4 − w4(xb)Q8 = 0 (4.5.5)

After using the general constitutive relation of Eq. (4.3.19) in the above equations to express the

stress and couple stress resultants in term of the displacements and microrotations, the finite ele-
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ment equations for typical beam element can be expressed as

K(e)U(e) = F(e) (4.5.6)

where

K(e) =



K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44



(e)

, U(e) =



U

W

Φx

Ψy



(e)

, F(e) =



F1

F2

F3

F4



(e)

(4.5.7)
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The stiffness coefficients Kαβ
ij and force coefficients Fα

i (α, β = 1, 2, 3, 4 and i, j = 1, 2) are

defined as

K11
ij =

∫ xb

xa

{
C11

dL
(1)
i

dx

dL
(1)
j

dx

}
dx

K12
ij =

1

2

∫ xb

xa

{
C11

(
dw0

dx

)
dL

(1)
i

dx

dL
(2)
j

dx

}
dx

K13
ij =

∫ xb

xa

{
C12

dL
(1)
i

dx

dL
(3)
j

dx

}
dx

K14
ij =

∫ xb

xa

{
C15

dL
(1)
i

dx

dL
(4)
j

dx

}
dx

K21
ij =

∫ xb

xa

{
C11

(
dw0

dx

)
dL

(2)
i

dx

dL
(1)
j

dx

}
dx

K22
ij =

1

2

∫ xb

xa

{
C11

(
dw0

dx

)2
dL

(2)
i

dx

dL
(2)
j

dx

}
dx+

∫ xb

xa

{
(C33 + 2C34 + C44)

dL
(2)
i

dx

dL
(2)
j

dx

}
dx

K23
ij =

∫ xb

xa

{
C12

(
dw0

dx

)
dL

(2)
i

dx

dL
(3)
j

dx

}
dx+

∫ xb

xa

{
(C33 − C44)

dL
(2)
i

dx
L

(3)
j

}
dx

K24
ij =

∫ xb

xa

{
C15

(
dw0

dx

)
dL

(2)
i

dx

dL
(4)
j

dx

}
dx+ 2

∫ xb

xa

{
(C34 + C44)

dL
(2)
i

dx
L

(4)
j

}
dx

K31
ij =

∫ xb

xa

{
C12

dL
(3)
i

dx

dL
(1)
j

dx

}
dx

K32
ij =

1

2

∫ xb

xa

{
C12

(
dw0

dx

)
dL

(3)
i

dx

dL
(2)
j

dx

}
dx+

∫ xb

xa

{
(C33 − C44)L

(3)
i

dL
(2)
j

dx

}
dx

K33
ij =

∫ xb

xa

{
C22

dL
(3)
i

dx

dL
(3)
j

dx

}
dx+

∫ xb

xa

{
(C33 + C44)L

(3)
i L

(3)
j

}
dx

K34
ij =

∫ xb

xa

{
C25

dL
(3)
i

dx

dL
(4)
j

dx

}
dx+ 2

∫ xb

xa

{
(C34 − C44)L

(3)
i L

(4)
j

}
dx

K41
ij =

∫ xb

xa

{
C15

dL
(4)
i

dx

dL
(1)
j

dx

}
dx
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K42
ij =

1

2

∫ xb

xa

{
C15

(
dw0

dx

)
dL

(4)
i

dx

dL
(2)
j

dx

}
dx+ 2

∫ xb

xa

{
(C34 + C44)L

(4)
i

dL
(2)
j

dx

}
dx

K43
ij =

∫ xb

xa

{
C25

dL
(4)
i

dx

dL
(3)
j

dx

}
dx+ 2

∫ xb

xa

{
(C34 − C44)L

(4)
i L

(3)
j

}
dx

K44
ij =

∫ xb

xa

{
C55

dL
(4)
i

dx

dL
(4)
j

dx

}
dx+ 4

∫ xb

xa

{
C44L

(4)
i L

(4)
j

}
dx

F 1
i = Q1L

(1)
i (xa) +Q5L

(1)
i (xb)

F 2
i =

∫ xb

xa

q0(x)L
(2)
i dx+Q2L

(1)
i (xa) +Q6L

(1)
i (xb)

F 3
i = Q3L

(1)
i (xa) +Q7L

(1)
i (xb)

F 4
i = Q4L

(1)
i (xa) +Q8L

(1)
i (xb)

4.5.1 Solution of nonlinear equations

The nonlinear finite element equations (4.5.1) are solved iteratively using the Newton’s itera-

tion procedure (see [100]). The linearized element equation at the beginning of the rth iteration

will take the form:

T(e)(r)
=

[
∂R(e)

∂U(e)

](r−1)

(4.5.8)

such that

T(e)(r)
∆Ue = −R(e)(r−1)

(4.5.9)

where

R(e) = K(e)(U(e))U(e) − F(e) and ∆U(e) = U(e)(r) − U(e)(r−1)
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The explicit expressions of the components of the element tangent stiffness matrix are

Tαβij = Kαβ
ij

except for the following terms

T 12
ij = K12

ij +
1

2

∫ xb

xa

{
C11

dw0

dx

dL
(1)
i

dx

dL
(2)
j

dx

}
dx

T 32
ij = K32

ij +
1

2

∫ xb

xa

{
C12

dw0

dx

dL
(3)
i

dx

dL
(2)
j

dx

}
dx

T 42
ij = K42

ij +
1

2

∫ xb

xa

{
C15

dw0

dx

dL
(4)
i

dx

dL
(2)
j

dx

}
dx

T 22
ij = K22

ij +

∫ xb

xa

{
C11

du0

dx

dL
(2)
i

dx

dL
(2)
j

dx

}
dx+

∫ xb

xa

{
C11

(
dw0

dx

)2
dL

(2)
i

dx

dL
(2)
j

dx

}
dx

+

∫ xb

xa

{
C12

dφx
dx

dL
(2)
i

dx

dL
(2)
j

dx

}
dx+

∫ xb

xa

{
C15

dψy
dx

dL
(2)
i

dx

dL
(2)
j

dx

}
dx

After the element equations are computed, they can be assembled according to the nodal con-

nectivity of the mesh to obtain global equations. Boundary conditions are imposed on the global

equations and subsequent equations are solved to obtain the global incremental generalized dis-

placement vector ∆U at the end of rth iteration. The normalized difference between solution

vectors from two consecutive iterations, measured with Euclidean norm, is computed at the end of

each iteration. If the value computed is less than a preselected tolerance ’tol’ further iterations are

terminated and nonlinear convergence is assumed (for all the nonlinear cases considered we chose

tol = 10−3)

√
∆U ·∆U

U(r) · U(r)
6 tol

Once the nonlinear convergence is attained, the final global generalized displacement vector is
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obtained using

U(r) = ∆U + U(r−1) (4.5.10)

4.5.2 Shear and membrane locking

In chapter 2 we considered higher order interpolation functions to eliminate shear and mem-

brane locking. In this chapter we shall use linear Lagrange interpolation functions on all the

primary variables and employ reduced integration technique to eliminate locking. In the thin beam

limit, when linear interpolation is used for w0, the cross-sectional rotation φx should approach

− (dw0/dx), which is necessarily constant. But since φx is also interpolated as linear, it can never

be constant. This inconsistency causes what is known as shear locking (see [100]). To avoid this

inconsistency, we may use equal interpolation on both w0 and φx but treat φx as constant while

evaluating the symmetric γsx and anti-symmetric γax shear strains. This amounts to using reduced

Gauss quadrature rule in evaluating the integrals containing constants C33, C34 and C44 while com-

puting the element coefficient matrices of Eq. (4.5.6) and Eq. (4.5.9).

When von Kármán nonlinearity is included, there is coupling between u0 and w0 which causes

the beam to undergo axial displacement even when there are no axial forces. But in the case of

hinged-hinged beam, there are no constraints on u0 at the boundaries, thus causing the beam to roll

over freely without axial strain, i.e,

ε̂0
x =

du0

dx
+

1

2

(
dw0

dx

)2

= 0

In order to satisfy this we need

−du0

dx
∼
(
dw0

dx

)2

In essence, we need to have the same degree of polynomial variation on both (du0/dx) and

(dw0/dx)2. But when equal interpolation of degree greater than one is used for both u0 and w0
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this criteria cannot be satisfied and leads to what is known as membrane locking (see [100]). To

overcome this we have to treat (dw0/dx)2 as same order as (du0/dx). This is achieved using re-

duced integration while evaluating all the nonlinear terms of the element coefficients matrices of

Eqs. (4.5.2) and (4.5.3).

4.6 Numerical bending examples

4.6.1 General Setup

The developed micropolar beam finite element model is used for bending analysis of lattice

core sandwich beams. The four structural cores considered in section 4.3 are used in the calcula-

tions. Both geometrically linear and nonlinear cases are analyzed using the 1-D beam model. 2-D

reference solutions are computed using Euler–Bernoulli FE beam frames modeled by Abaqus; the

pins in simply-supported cases are at the central axis of the 2-D frame so that the model corre-

sponds to 1-D cases.

4.6.2 Bending of a web-core beam

A beam consisting of 24 web-core unit cells is considered first. The length of each web-core

unit cell is l = 0.12 m resulting in a total beam length of L = 2.88 m. The beam is analyzed for

two different boundary conditions, namely, a fixed-fixed case and a three-point-bending setup. For

the fixed-fixed case the boundaries are subjected to the following conditions:

x = 0 : u0 = 0, w0 = 0, φx = 0, ψy = 0

x = L : u0 = 0, w0 = 0, φx = 0, ψy = 0

(4.6.1)
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Figure 4.4: (a) Maximum transverse deflection of a fixed-fixed web-core beam subjected to a
uniformly distributed load. (b) Maximum transverse deflection of a web-core beam under three-
point-bending [5].

A uniformly distributed load q0 is exerted on the beam. The load is applied in increments of

∆q0 = 50 N/m until a maximum load of 1000 N/m is reached. The maximum deflection, which

occurs at the center of the beam, is recorded against the corresponding applied load. The results

for both linear and nonlinear cases are plotted in Fig. 4.4a. The nonlinear deflections are smaller

than the linear deflections at large loads because, as the load increases, the internal forces resisting

the deformation increase in a nonlinear fashion.

For the three-point-bending case the boundaries are subjected to the following conditions:

x = 0 : u0 = 0, w0 = 0,Mxx = 0, Pxy = 0

x = L : u0 = 0, w0 = 0,Mxx = 0, Pxy = 0

(4.6.2)

Here, instead of a uniformly distributed load, a point load F0 is applied at the center of the beam.

The point load is applied in increments of ∆F0 = 50 N until a maximum load of 1000 N is

reached. The maximum deflection, which occurs at the center of the beam, is recorded against
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the corresponding applied load. The results from the finite element model developed here for the

1-D equivalent single layer beam are compared with the 2-D FE results (see Fig. 4.4b). Note

that ABAQUS uses a more complete Green-Lagrange strain tensor for the geometrically nonlinear

beam element, whereas in the present finite element model developed in this study the nonlinearity

is included in the form of von Kármán strains.

4.6.3 Fixed-fixed hexagonal and Y-frame core beams

Here we consider two beams, one made of 48 hexagonal core unit cells and the other made of

30 Y-frame unit cells (see Fig. 4.3). Thus, the total length of the hexagonal core beam is L = 7.2 m

and the length of Y-frame core beam is L = 15.9 m. Both the beams are subjected to a uniformly

distributed load q0. Fixed-fixed boundary conditions (4.6.1) are applied at the beam ends. For

the hexagonal core beam the load is applied in increments of ∆q0 = 75 N/m until a maximum

load of 1500 N/m is reached, while for the Y-frame core beam the load is applied in increments of

∆q0 = 5 N/m until a maximum load of 100 N/m is reached. The maximum transverse deflections,

which occur at the beam centers, are recorded and plotted against the corresponding applied load

in Figs. 4.5a and 4.5b.
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Figure 4.5: Maximum deflection of a (a) Y-frame and (b) hexagonal core sandwich beams sub-
jected to a uniformly distributed load under fixed-fixed boundary conditions [5].

4.6.4 Fixed-fixed corrugated core beam

A beam consisting of 30 corrugated core unit cells is considered. Since the length of each

corrugated unit cell is l = 0.53 m, the total length of the beam is L = 15.9 m (see Fig. 4.3).

The beam is subjected to fixed-fixed boundary conditions (4.6.1). A uniformly distributed load q0

is applied on the beam. The load is applied in increments of ∆q0 = 50 N/m until a maximum

load of 1000 N/m is reached. The maximum vertical deflection of the beam is plotted against the

corresponding applied load in Fig. 4.6a. The error in the maximum vertical deflection is calculated

using,

∆w0 = 100×

(
w1−D micropolar

0 − w2−D beam frame
0

w2−D beam frame
0

)
(4.6.3)

and is plotted against the applied load for both the linear and nonlinear cases in Fig. 4.6b.

Unlike the other structural cores, we see that the nonlinear deflections of the corrugated core

beam, calculated using the finite element model developed for the 1-D equivalent single layer
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beam, are not in good agreement with the 2-D beam frame results all the way. This is due to the

local buckling of the stretch-dominated corrugated core that occurs in the 2-D model. The 1-D

equivalent single layer model cannot account for this local buckling.

We also note that even though the lengths and heights of both corrugated core and Y-frame

core beams are equal, the corrugated core beam is much stiffer than the Y-frame core beam. The

maximum nonlinear deflection for the Y-frame core beam subjected to fixed-fixed boundary condi-

tions is 88 mm at a uniformly distributed load of 100 N/m (see Fig. 4.5a), while for the corrugated

core beam the maximum deflection for a uniformly distributed load of 100 N/m is only 2.9 mm

(see Fig. 4.6a). The high stiffness of the corrugated core beam is attributed to its stretch-dominated

behavior unlike Y-frame core which is bending-dominated. The corrugated core has a very high

shear stiffness because of the fact that the elements (the Euler-Bernoulli beam elements within the

core structure) of the corrugated core act essentially like rods and do not bend much, where as

this is not the case in the Y-frame core. Although the elements of the part which resemble the

corrugated core (the upper ‘V’ part of ‘Y’) in the Y-frame core do not exhibit lot of bending, the

remaining part, consisting of lower element, undergoes significant bending.
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Figure 4.6: (a) Maximum deflection of a corrugated core sandwich beam subjected a uniformly
distributed load under fixed-fixed boundary conditions. Local buckling occurs in the 2-D reference
model near q = 500 N/m which cannot be accounted for by the micropolar 1-D model. (b) Per-
centage error of 1D beam model developed, in terms of maximum vertical deflection relative to
2D-beam frame solution (face sheet deflection) calculated using ABAQUS [5].
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5. NONLINEAR FINITE ELEMENT ANALYSIS OF LATTICE CORE SANDWICH

PLATES∗

5.1 Introduction

In this chapter will consider lattice core sandwich plates and their modeling using von Kár-

mán micropolar plate theory discussed in chapter 3. We will first review the kinematics of the

micropolar plate and then we give the constitutive models of web core lattice plates and pyramid

core lattice plates modeled as micropolar plate [9, 6]. Then the corresponding governing equations

and finite element equations are derived. Finally numerical results are presented to illustrate the

accuracy of the constitutive modeling and the corresponding finite element formulation.

5.2 Kinematics of micropolar plate

In this section we will review the micropolar plate kinematics considered in chapter 3. The 3-D

displacements and microrotations of a micropolar plate can be approximated by 2-D midsurface

kinematic variables (u0, v0, w0, φx, φy, ψx, ψy) so that

u1(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)

u2(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)

u3(x, y, z, t) = w0(x, y, t)

ψ1(x, y, z, t) = ψx(x, y, t)

ψ2(x, y, z, t) = ψy(x, y, t)

ψ3(x, y, z, t) = 0

(5.2.1)

where t is time, (u0, v0, w0) denote the displacements of a point on the plane z = 0, and (φx, φy)

are the rotations of a transverse normal about the y- and x-axes, respectively, whereas (ψx, ψy) are

∗Reprinted with permission from “Nonlinear finite element analysis of lattice core sandwich plates” by P. Nam-
pally, A. T. Karttunen, and J. N. Reddy, 2020. International Journal of Non-Linear Mechanics, vol. 121, p. 103423,
Copyright (2020) Elsevier Ltd.
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microrotations about the x- and y-axes, respectively. The corresponding linear strains and wryness

tensor components developed in the micropolar plate are [44]

εkl = ul,k + εlkmψm (5.2.2)

χkl = ψl,k (5.2.3)

Following the displacements and microrotations given in Eq. (5.2.1), the nonzero strains in Carte-

sian coordinates are

εxx =
∂u0

∂x
+ z

∂φx
∂x

= ε0
xx + zκxx, εyy =

∂v0

∂y
+ z

∂φy
∂y

= ε0
yy + zκyy

εxy =
∂v0

∂x
+ z

∂φy
∂x

= ε0
xy + zκxy, εyx =

∂u0

∂y
+ z

∂φx
∂y

= ε0
yx + zκyx

εxz =
∂w0

∂x
+ ψy, εzx = φx − ψy

εyz =
∂w0

∂y
− ψx, εzy = φy + ψx

χxx =
∂ψx
∂x

, χyy =
∂ψy
∂y

, χxy =
∂ψy
∂x

, χyx =
∂ψx
∂y

(5.2.4)

With the inclusion of von Kármán type geometric nonlinearities [100] into the vector ε0 below, we

write the strains in the form

ε0 =



ε0
xx

ε0
yy

ε0
xy

ε0
yx


=



∂u0

∂x
+ 1

2

(
∂w0

∂x

)2

∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

∂v0

∂x
+ 1

2
∂w0

∂x
∂w0

∂y

∂u0

∂y
+ 1

2
∂w0

∂x
∂w0

∂y


κ =



κxx

κyy

κxy

κyx


=



∂φx
∂x

∂φy
∂y

∂φy
∂x

∂φx
∂y


(5.2.5)
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γ =



γsx

γax

γsy

γay


=



∂w0

∂x
+ φx

∂w0

∂x
− φx + 2ψy

∂w0

∂y
+ φy

∂w0

∂y
− φy − 2ψx


χ =



χxx

χyy

χxy

χyx


=



∂ψx
∂x

∂ψy
∂y

∂ψy
∂x

∂ψx
∂y


(5.2.6)

where the symmetric shear strains are defined as

γsx = εxz + εzx =
∂w0

∂x
+ φx

γsy = εyz + εzy =
∂w0

∂y
+ φy

(5.2.7)

and the antisymmetric shear strains are

γax = εxz − εzx =
∂w0

∂x
− φx + 2ψy = 2(ψy − ω2)

γay = εyz − εzy =
∂w0

∂y
− φy − 2ψx = 2(ω1 − ψx)

(5.2.8)

where (ω1, ω2) are the macrorotations. The symmetric shear strains (γsx, γ
s
y) are of the same form

as the shear strains in the conventional FSDT plate theory based on classical elasticity. However,

the antisymmetric parts are defined in terms both macrorotations and microrotations.

5.3 Two-scale constitutive modeling of lattice core sandwich plates

The unit cells for the web-core and pyramid core are shown in Fig. 5.1. The unit cells represent

lattice materials of which the 2-D micropolar ESL-FSDT plate is made of. Two-scale, energy-

based constitutive modeling was carried out in detail in [9] for the web-core unit cell presented in

Fig. 5.1. This approach was also applied to the pyramid core in [6]. The procedure to arrive at the

constitutive equations of lattice core sandwich plates is similar to the one described for lattice core

sandwich beams in chapter 4.

The derivation of the constitutive equations of the lattice core sandwich plate is based on the

same concept of energy equivalence of unit cell and a continuum point of the equivalent single
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h = 0:044 m

l = 0:12 m

E = 206 GPa
ν = 0:3
ρ = 7850 kg/m

3

x

z

tw = 2 mm

tf = 2− 10 mm

50 mm 50 mm

45 deg

face thickness 6 mm
E = 70 GPa
ν = 0:33
ρ = 2700 kg/m

3

width

thickness

4 mm

1 mm

web-core unit cell pyramid core unit cell

Figure 5.1: Parameters of web-core and pyramid core unit cells made of steel and aluminium,
respectively. All face sheet edges of both cores are taken to be of equal length so that, e.g., the
web-core planform area is A = l2 = 0.0144 m2. The struts (beams) in the pyramid core have
rectangular cross sections [6].

layer micropolar plate. The only difference being that in calculating the energy of the plate unit

cell, the numerical values of the element stiffness matrix are used instead of analytical expressions.

Further details of the constitutive models of the lattice plates with unit cell shown in Fig. 5.1 are

given in [9, 6]. As the outcome of the constitutive modeling, we have for the 2-D micropolar plate

continuum

S = Cε (5.3.1)

where S is the stress resultant vector and C is the constitutive matrix. The explicit matrix form of

Eq. (5.3.1) is 

N

M

Q

P


=



A 0 0 0

0 D 0 0

0 0 G 0

0 0 0 H





ε0

κ

γ

χ


(5.3.2)

where the vectors for the membrane N, global bending and twisting M, symmetric and antisym-
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metric shear Q and local (couple-stress related) bending and twisting P resultants read

N = {Nxx Nyy Nxy Nyx}T

M = {Mxx Myy Mxy Myx}T

Q =
{
Qs
x Qa

x Qs
y Qa

y

}T

P = {Pxx Pyy Pxy Pyx}T

(5.3.3)

respectively. The submatrices for the constitutive parameters of the web-core and pyramid will

take the following form.

A =



A11 A12 0 0

A12 A22 0 0

0 0 A33 A34

0 0 A34 A44


, D =



D11 D12 0 0

D12 D22 0 0

0 0 D33 D34

0 0 D34 D44



G =



G11 G12 0 0

G12 G22 0 0

0 0 G33 G34

0 0 G34 G44


, H =



H11 H12 0 0

H12 H22 0 0

0 0 H33 H34

0 0 H34 H44



(5.3.4)

The matrices include 24 constitutive parameters and are symmetric for both web-core and pyramid

core. The constitutive parameters for the web-core are derived in [9] and are given in Table 5.1 and

Table 5.2, while the constitutive parameters for pyramid core are derived in [6] and are given in

Table 5.3. Similarly, the inertial coefficients, which are the components of the matrix M given in

Eq. (5.3.5), for web-core and pyramid core are given in Table 5.4 and Table 5.5 which are derived

in [9] and [6] respectively.
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M =



m11 0 0 0 0 0 0

0 m22 0 0 0 0 0

0 0 m33 0 0 0 0

0 0 0 m44 m45 0 0

0 0 0 m45 m55 0 0

0 0 0 0 0 m66 m67

0 0 0 0 0 m67 m77



(5.3.5)

Table 5.1: Constitutive parameters A and D for the web-core shown in Fig. 5.1 (Reprinted with
permission from [9]).

A[MN/m] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

A11 905.495 1810.99 2716.48 3621.98 4527.47

A12 271.648 543.297 814.945 1086.59 1358.24

A22 997.277 1907.18 2814.44 3720.98 4627.24

A33 316.923 633.846 950.769 1267.69 1584.62

D[MNm] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

D11 0.43826 0.87652 1.31478 1.75304 2.19130

D12 0.13148 0.26296 0.39443 0.52591 0.65739

D22 0.46020 0.90585 1.35350 1.80011 2.24 4 48

D33 0.15339 0.30678 0.46017 0.61356 0.76695
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Table 5.2: Constitutive parameters G and H for the web-core shown in Fig. 5.1 (Reprinted with
permission from [9]).

G[MN/m] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

G11 1.16557 4.26884 9.82709 18.1926 29.5600

G12 0.93837 3.92462 9.46343 17.8250 29.1924

G22 0.91865 3.89135 9.42900 17.7917 29.1609

G33 34.9111 45.7777 55.5037 66.3705 79.3196

G34 1.32756 5.01625 11.1895 20.0058 31.6599

G44 0.98325 4.17269 9.96295 18.5242 30.0194

H[Nm] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

H11 190.167 1416.73 4647.49 10763.7 20571.6

H12 23.8172 211.894 712.203 1656.92 3155.87

H22 181.960 1407.22 4638.13 10754.7 20563.1

H33 301.832 2414.65 8149.45 19317.2 37728.9

H34 -90.5495 -724.396 -2444.84 -5795.16 -11318.7

H44 1317.40 7712.00 20232.4 38648.9 63268.3
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Table 5.3: Constitutive parameters for the pyramid core shown in Fig. 5.1 [6]

A [MN/m] D [kN/m] G [MN/m] H [Nm]

A11 943.83 D11 294.96 G11 11.907 H11 1603.5

A12 312.24 D12 97.579 G12 9.1773 H12 18.615

A22 943.83 D22 294.96 G22 9.1770 H22 1603.5

A33 317.19 D33 99.126 G33 11.907 H33 2829.5

A34 317.19 D34 99.126 G34 9.1773 H34 -933.59

A44 317.19 D44 99.126 G44 9.1770 H44 2829.5
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Table 5.4: Inertia coefficients for the web-core shown in Fig. 5.1 (Reprinted with permission from
[9]).

M[kg/m3] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

m11 37.1567 68.5567 99.9567 131.357 162.757

m22 37.1567 68.5567 99.9567 131.357 162.757

m33 37.1567 68.5567 99.9567 131.357 162.757

M[kg] tf = 2 mm 4 mm 6 mm 8 mm 10 mm

m44 0.016476 0.031692 0.046904 0.062107 0.077307

m45 -0.000208 -0.000071 -0.000014 0.000007 0.000015

m55 0.000759 0.001776 0.002730 0.003637 0.004498

m66 0.014032 0.028606 0.043443 0.058422 0.073481

m67 0.000152 0.000345 0.000489 0.000567 0.000596

m77 0.000244 0.000685 0.001429 0.002399 0.003434

94



Table 5.5: Inertia coefficients for the pyramid core shown in Fig. 5.1 [6].

M [kg/m2] M [kg]

m11 33.264 m44 0.0102

m22 33.264 m45 0

m33 33.264 m55 0.1715×10−3

m66 0.0102

m67 0

m77 0.1715×10−3

5.4 Governing differential equations

Using the constitutive relations derived for lattice core sandwich plates in the previous section,

the strain energy for the 2-D micropolar plate can be written as

U =
1

2

∫
Ω

εTCε dxdy (5.4.1)

while the total kinetic energy of the plate is

K =
1

2

∫
Ω

u̇TMu̇ dxdy (5.4.2)

where

u = {u0 v0 w0 φx ψy φy ψx}T (5.4.3)

and the over dot on u represents derivative with respect to time. Finally, the potential energy

contribution due to a distributed transverse load is given by

V = −
∫

Ω

qw0 dxdy (5.4.4)
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By substituting expressions (5.4.1), (5.4.2) and (5.4.4) into Hamilton’s principle [102], we have

δ

∫ T

0

[K − (U + V )] dt = 0 (5.4.5)

which we can be written as

∫ T

0

∫
Ω

(
δu̇TMu̇− δεTCε+ qδw0

)
dxdydt = 0 (5.4.6)

where we can use Eq. (5.3.1), that is, S = Cε. The governing equations of the ESL-FSDT mi-

cropolar plate used for modeling the lattice core sandwich plates are obtained by writing the Euler-

Lagrange equations of the variational statement (5.4.6). These are listed below.

δu0 :
∂Nxx

∂x
+
∂Nyx

∂y
= m11

∂2u0

∂t2
(5.4.7)

δv0 :
∂Nxy

∂x
+
∂Nyy

∂y
= m22

∂2v0

∂t2
(5.4.8)

δw0 :
∂(Qs

x +Qa
x)

∂x
+
∂(Qs

y +Qa
y)

∂y
+ N + q0 = m33

∂2w0

∂t2
(5.4.9)

δφx :
∂Mxx

∂x
+
∂Myx

∂y
−Qs

x +Qa
x = m44

∂2φx
∂t2

+m45
∂2ψy
∂t2

(5.4.10)

δψy :
∂Pxy
∂x

+
∂Pyy
∂y
− 2Qa

x = m55
∂2ψy
∂t2

+m45
∂2φx
∂t2

(5.4.11)

δφy :
∂Mxy

∂x
+
∂Myy

∂y
−Qs

y +Qa
y = m66

∂2φy
∂t2

+m67
∂2ψx
∂t2

(5.4.12)

δψx :
∂Pxx
∂x

+
∂Pyx
∂y

+ 2Qa
y = m77

∂2ψx
∂t2

+m67
∂2φy
∂t2

(5.4.13)

where

N =
∂

∂x

[
Nxx

∂w0

∂x
+

1

2
(Nxy +Nyx)

∂w0

∂y

]
+

∂

∂y

[
Nyy

∂w0

∂y
+

1

2
(Nxy +Nyx)

∂w0

∂x

]
(5.4.14)
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5.5 Finite element formulation

In this section, we develop the weak form Galerkin finite element model for the governing

equations (5.4.7)-(5.4.13) of the 2-D micropolar ESL-FSDT plate. In the finite element formulation

the mid-surface kinematic variables (u0, v0, w0, φx, φy, ψx, ψy) are taken as the primary variables.

These variables are approximated using linear Lagrange interpolation functions L(J)
j [93], where

(J = 1, 2, 3, 4, 5, 6, 7). Since we are using weak-form Galerkin finite element formulation, the

weight functions wi (i = 1, 2, 3, 4, 5, 6, 7) are taken to be the same as the Lagrange interpolation

functions used in approximating the primary variables. Thus, we have,

u0 ≈
4∑
j=1

Uj(t)L
(1)
j (x, y), w1(x, y) = L

(1)
i (x, y)

v0 ≈
4∑
j=1

Vj(t)L
(2)
j (x, y), w2(x, y) = L

(2)
i (x, y)

w0 =
4∑
j=1

Wj(t)L
(3)
j (x, y), w3(x, y) = L

(3)
i (x, y)

φx ≈
4∑
j=1

Φxj(t)L
(4)
j (x, y), w4(x, y) = L

(4)
i (x, y)

ψy ≈
4∑
j=1

Ψyj(t)L
(5)
j (x, y), w5(x, y) = L

(5)
i (x, y)

φy ≈
4∑
j=1

Φyj(t)L
(6)
j (x, y), w6(x, y) = L

(6)
i (x, y)

ψx ≈
4∑
j=1

Ψxj(t)L
(7)
j (x, y), w7(x, y) = L

(7)
i (x, y)

(5.5.1)
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Now we write the weak form equations of the micropolar plate governing equations (5.4.7)-(5.4.13)

on a typical element Ωe as

0 =

∫
Ωe

{
w1m11

∂2u0

∂t2
+
∂w1

∂x
Nxx +

∂w1

∂y
Nyx

}
dxdy −

∫
τe

w1Q1ds (5.5.2)

0 =

∫
Ωe

{
w2m22

∂2v0

∂t2
+
∂w2

∂x
Nxy +

∂w2

∂y
Nyy

}
dxdy −

∫
τe

w2Q2ds (5.5.3)

0 =

∫
Ωe

{
w3m33

∂2w0

∂t2
+
∂w3

∂x
(Qs

x +Qa
x) +

∂w3

∂y

(
Qs
y +Qa

y

)
+
∂w3

∂x

[
Nxx

∂w0

∂x
+

1

2
(Nxy +Nyx)

∂w0

∂y

]
+
∂w3

∂y

[
Nyy

∂w0

∂y
+

1

2
(Nxy +Nyx)

∂w0

∂x

]
− w3q0

}
dxdy −

∫
τe

w3Q3ds (5.5.4)

0 =

∫
Ωe

{
w4m44

∂2φx
∂t2

+ w4m45
∂2ψy
∂t2

+
∂w4

∂x
Mxx +

∂w4

∂y
Myx + w4(Qs

x −Qa
x)

}
dxdy −

∫
τe

w4Q4ds

(5.5.5)

0 =

∫
Ωe

{
w5m55

∂2ψy
∂t2

+ w5m45
∂2φx
∂t2

+
∂w5

∂x
Pxy +

∂w5

∂y
Pyy + 2w5Q

a
x

}
dxdy −

∫
τe

w5Q5ds

(5.5.6)

0 =

∫
Ωe

{
w6m66

∂2φy
∂t2

+ w6m67
∂2ψx
∂t2

+
∂w6

∂x
Mxy +

∂w6

∂y
Myy + w6(Qs

y −Qa
y)

}
dxdy −

∫
τe

w6Q6ds

(5.5.7)

0 =

∫
Ωe

{
w7m77

∂2ψx
∂t2

+ w7m67
∂2φy
∂t2

+
∂w7

∂x
Pxx +

∂w7

∂y
Pyx − 2w7Q

a
y

}
dxdy −

∫
τe

w7Q7ds

(5.5.8)
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After using the constitutive equations (12) and (13) along with the interpolations of the primary

variables and weight functions (5.5.1) in the above equations, we have the following finite element

formulation on a typical element:

M(e)Ü(e) + K(e)U(e) = F(e) (5.5.9)

where,

M(e) =



M11 M12 M13 M14 M15 M16 M17

M21 M22 M23 M24 M25 M26 M27

M31 M32 M33 M34 M35 M36 M37

M41 M42 M43 M44 M45 M46 M47

M51 M52 M53 M54 M55 M56 M57

M61 M62 M63 M64 M65 M66 M67

M71 M72 M73 M74 M75 M76 M77



(e)

(5.5.10)

K(e) =



K11 K12 K13 K14 K15 K16 K17

K21 K22 K23 K24 K25 K26 K27

K31 K32 K33 K34 K35 K36 K37

K41 K42 K43 K44 K45 K46 K47

K51 K52 K53 K54 K55 K56 K57

K61 K62 K63 K64 K65 K66 K67

K71 K72 K73 K74 K75 K76 K77



(e)

(5.5.11)
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Ü(e) =



Ü

V̈

Ẅ

Φ̈x

Ψ̈y

Φ̈y

Ψ̈x



(e)

U(e) =



U

V

W

Φx

Ψy

Φy

Ψx



(e)

F(e) =



F1

F2

F3

F4

F5

F6

F7



(e)

(5.5.12)

The non-zero components of the above matrices are
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K11
ij =

∫
Ωe

(
A11

11Sxxij + A44
11Syyij

)
dΩ, K12

ij =

∫
Ωe

(
A12

12Sxyij + A34
12Syxij

)
dΩ

K13
ij =

∫
Ωe

{
A11

2

∂w0

∂x
13Sxxij +

A12

2

∂w0

∂y
13Sxyij +

(
A34 + A44

4

)(
∂w0

∂x
13Sxyij +

∂w0

∂y
13Syxij

)}
dΩ

K21
ij =

∫
Ωe

(
A34

21Sxyij + A12
21Syxij

)
dΩ, K22

ij =

∫
Ωe

(
A33

22Sxxij + A22
22Syyij

)
dΩ

K23
ij =

∫
Ωe

{
A12

2

∂w0

∂x
23Syxij +

A22

2

∂w0

∂y
23Syyij +

(
A33 + A34

4

)(
∂w0

∂x
23Sxyij +

∂w0

∂y
23Sxxij

)}
dΩ

K31
ij =

∫
Ωe

{
A11

∂w0

∂x
31Sxxij + A12

∂w0

∂y
31Syxij +

(
A34 + A44

2

)(
∂w0

∂x
31Syyij +

∂w0

∂y
31Sxyij

)}
dΩ

K32
ij =

∫
Ωe

{
A12

∂w0

∂x
32Sxyij + A22

∂w0

∂y
32Syyij +

(
A33 + A34

2

)(
∂w0

∂x
32Syxij +

∂w0

∂y
32Sxxij

)}
dΩ

K33
ij =

∫
Ωe

{
(G11 + 2G12 +G22) 33Sxxij + (G33 + 2G34 +G44) 33Syyij

+
A11

2

(
∂w0

∂x

)2
33Sxxij +

A22

2

(
∂w0

∂y

)2
33Syyij

+
A12

4

[(
∂w0

∂x

)2
33Syyij +

(
∂w0

∂y

)2
33Sxxij +

∂w0

∂y

∂w0

∂x

(
33Sxyij + 33Syxij

)]

+

(
A33 + A34

8

)[
∂w0

∂x

∂w0

∂y

(
33Sxyij + 33Syxij

)
+

(
∂w0

∂y

)2
33Sxxij +

(
∂w0

∂x

)2
33Syyij

]

+

(
A34 + A44

8

)[
∂w0

∂x

∂w0

∂y

(
33Sxyij + 33Syxij

)
+

(
∂w0

∂x

)2
33Syyij +

(
∂w0

∂y

)2
33Sxxij

]}
dΩ

K34
ij =

∫
Ωe

(G11 −G22) 34Sx0
ij dΩ, K35

ij = 2

∫
Ωe

(G12 +G22) 35Sx0
ij dΩ

K36
ij =

∫
Ωe

(G33 −G44) 36Sy0
ij dΩ, K37

ij = −2

∫
Ωe

(G34 +G44) 37Sy0
ij dΩ

K43
ij =

∫
Ωe

(G11 −G22) 43S0x
ij dΩ

K44
ij =

∫
Ωe

(
D11

44Sxxij +D44
44Syyij + (G11 − 2G12 +G22) 44S00

ij

)
dΩ
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K45
ij = 2

∫
Ωe

(G12 −G22) 44S00
ij dΩ, K46

ij =

∫
Ωe

(
D12

45Sxyij +D34
45Syxij

)
dΩ

K53
ij = 2

∫
Ωe

(G12 +G22) 53S0x
ij dΩ K54

ij = 2

∫
Ωe

(G12 −G22) 54S00
ij dΩ

K55
ij =

∫
Ωe

(
H33

55Sxxij +H22
55Syyij + 4G22

55S00
ij

)
dΩ, K57

ij =

∫
Ωe

(
H34

57Sxyij +H12
57Syxij

)
dΩ

K63
ij =

∫
Ωe

(G33 −G44) 63S0y
ij dΩ, K64

ij =

∫
Ωe

(
D34

64Sxyij +D12
64Syxij

)
dΩ

K66
ij =

∫
Ωe

(
D33

66Sxxij +D22
66Syyij + (G33 − 2G34 +G44) 66S00

ij

)
dΩ

K67
ij = 2

∫
Ωe

(G44 −G34) 67S00
ij dΩ, K73

ij = −2

∫
Ωe

(G34 +G44) 73S0y
ij dΩ

K75
ij =

∫
Ωe

(
H12

75Sxyij +H34
∂L

(7)
i

∂y
75Syxij

)
dΩ

K76
ij = 2

∫
Ωe

(G44 −G34) 76S00
ij dΩ, K77

ij =

∫
Ωe

(
H11

77Sxxij +H44
77Syyij + 4G44

77S00
ij

)
dΩ

Similarly the non-zero components of element mass matrix (5.5.10) are given by

M11
ij =

∫
Ωe

m11
11S00

ij dΩ, M22
ij =

∫
Ωe

m22
22S00

ij dΩ, M33
ij =

∫
Ωe

m33
33S00

ij dΩ

M44
ij =

∫
Ωe

m44
44S00

ij dΩ, M45
ij =

∫
Ωe

m45
45S00

ij dΩ, M54
ij =

∫
Ωe

m45
54S00

ij dΩ

M55
ij =

∫
Ωe

m55
55S00

ij dΩ, M66
ij =

∫
Ωe

m66
66S00

ij dΩ, M67
ij =

∫
Ωe

m67
67S00

ij dΩ

M76
ij =

∫
Ωe

m67
76S00

ij dΩ, M77
ij =

∫
Ωe

m77
77S00

ij dΩ
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where we have used the notation

IJSabij =
∂L

(I)
i

∂a

∂L
(J)
j

∂b
, IJS0b

ij = L
(I)
i

∂L
(J)
j

∂b
, IJSa0

ij =
∂L

(I)
i

∂a
L

(J)
j , IJS00

ij = L
(I)
i L

(J)
j

where I, J = {1, 2, 3, 4, 5, 6, 7}, i, j = {1, 2, 3, 4} and a, b = {x, y}.

5.5.1 Solution of nonlinear equations

Although the nonlinear finite element equations (5.5.9) can be used to solve time-dependent

cases with appropriate time discretization schemes, in the present study we only consider time-

independent nonlinear cases. For the time-independent nonlinear case the finite element equations

(5.5.9) are solved using Newton’s iterative procedure [100], by constructing the tangent stiffness

of a typical element at the beginning of rth iteration as

T(e)(r)
=

[
∂R(e)

∂U(e)

](r−1)

(5.5.13)

such that

T(e)(r)
∆Ue = −R(e)(r−1)

(5.5.14)

where

R(e) = K(e)(U(e))U(e) − F(e) and ∆U(e) = U(e)(r) − U(e)(r−1)

The explicit expressions of the components of the element tangent stiffness matrix are

T IJij = KIJ
ij
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except for the following terms

T 13
ij = 2K13

ij , T 23
ij = 2K23

ij

T 33
ij = K33

ij

+

∫
Ωe

{
A11

∂u0

∂x
33Sxxij + A12

∂u0

∂x
33Syyij +

(
A34 + A44

2

)(
∂u0

∂y
33Sxyij +

∂u0

∂y
33Syxij

)}
dΩ

+

∫
Ωe

{
A12

∂v0

∂y
33Sxxij + A22

∂v0

∂y
33Syyij +

(
A33 + A34

2

)(
∂v0

∂x
33Sxyij +

∂v0

∂x
33Syxij

)}
dΩ

+

∫
Ωe

{
A11

(
∂w0

∂x

)2
33Sxxij + A22

(
∂w0

∂y

)2
33Syyij

+

(
A12 + A34

4
+
A33 + A44

8

)[(
∂w0

∂x

)2
33Syyij +

(
∂w0

∂y

)2
33Sxxij

]

+

(
A12 + A34

4
+
A33 + A44

8

)[
3
∂w0

∂y

∂w0

∂x

(
33Sxyij + 33Syxij

)]}
dΩ

After the element equations are computed, they can be assembled according to the nodal con-

nectivity of the mesh to obtain global equations. Boundary conditions are imposed on the global

equations and subsequent equations are solved to obtain the global incremental generalized dis-

placement vector ∆U at the end of rth iteration. The normalized difference between solution

vectors from two consecutive iterations, measured with Euclidean norm, is computed at the end of

each iteration. If the value computed is less than a preselected tolerance ’tol’ further iterations are

terminated and nonlinear convergence is assumed (for all the nonlinear cases considered we chose

tol = 10−3)

√
∆U ·∆U

U(r) · U(r)
6 tol
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Once the nonlinear convergence is attained, the final global generalized displacement vector is

obtained using

U(r) = ∆U + U(r−1) (5.5.15)

5.5.2 Natural vibration frequencies

In the present study we will only consider the natural frequencies of the lattice plates under-

going linear free vibrations. The natural frequencies can be calculated by solving the eigenvalue

problem obtained by substituting U(x, y, t) = U0(x, y)ejλt (where j =
√
−1) into the assembled

linear global equations (i.e., nonlinear terms in coefficient matrices are ignored) after the imposi-

tion of boundary conditions. Here U0 is the global mode shape corresponding to the eigenvalue λ2.

Once the eigenvalues are obtained the natural frequencies [Hz] are calculated using

fi =
λ

2π
(5.5.16)

It should be noted that the number of eigenvalues obtained will be equal to the number of

degrees of freedom in the problem. Thus for the convergence of higher mode shapes a finer mesh

is required compared to the lower mode shapes.

5.5.3 Shear and membrane locking

In chapter 3 we used higher order interpolation functions on all the primary variables to elim-

inate locking in micropolar plates. In this chapter we shall use linear interpolation on all the

primary variables and employ reduced integration technique to eliminate shear and membrane

locking. Since linear Lagrange interpolation functions are used in the approximation of all the

primary variables, the elements become excessively stiff in the thin plate limit because of spuri-

ous constraints imposed on the bending energy due to this inconsistent interpolation, resulting in a

phenomenon known as shear locking [108, 100, 93]. Consider a plate of dimensions (a× b) being

modeled by a single rectangular element. Since linear interpolations are used on both w0 and φx,
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if (w01, w02, w03, w04) and (φx1, φx2, φx3, φx4) are the nodal values of w0 and φx respectively, we

have

w0 = w01

(
1− x

a

)(
1− y

b

)
+ w02

x

a

(
1− y

b

)
+ w03

x

a

y

b
+ w04

(
1− x

a

) y
b

φx = φx1

(
1− x

a

)(
1− y

b

)
+ φx2

x

a

(
1− y

b

)
+ φx3

x

a

y

b
+ φx4

(
1− x

a

) y
b

γsx =

(
w02 − w01 + aφx1

a

)
+

(
φx1 − φx2 + φx3 − φx4

ab

)
xy

+

(
φx2 − φx1

a

)
x+

(
w01 − w02 + w03 − w04 + aφx4 − aφx1

ab

)
y

In the thin plate limit γ(s)
x approaches zero and this only possible when the constant terms and

coefficients of x, y and xy of γ(s)
x are all zero. That is,

w01 − w02

a
= φx1 (5.5.17)

w03 − w04

a
= φx4 (5.5.18)

φx1 = φx2, φx3 = φx4 (5.5.19)

However, Eq. (5.5.19) implies that φx is constant with respect to x and this will pose an unnecessary

restriction on bending energy which will manifest as shear locking. A similar argument can be

extended to antisymmetric shear strains as well. Various remedies have been proposed in the

literature to overcome shear locking, see, for example, [108, 109] and [103]. In the present finite

element formulation we use selective reduced integration to overcome the shear locking. That

is, we will evaluate the stiffness coefficient terms corresponding to symmetric and antisymmetric

shear strains using reduced Gauss quadrature rule [93, 100].

With the addition of von Kármán nonlinearity, bending-stretching coupling is introduced into

the plate thereby predicting membrane strain even when only bending forces are applied. But in the

cases where the membrane (axial) strains are not physically possible in the plate (example, when
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all the edges are hinge-supported) the theory will still predict membrane strains. This phenomenon

is called membrane locking [100]. To overcome this we will use reduced integration on all the

nonlinear terms of the element coefficient matrices.

5.6 Numerical examples

3-D finite element models for web-core and pyramid core sandwich panels are discussed in

Section 4.1. These FE models are built using Abaqus 2019 to provide reference solutions to which

the 2-D results can be compared.

In section 5.6.2, we first study the convergence of the finite element calculations by considering

the linear static bending of a simply-supported web-core sandwich panel under line and uniformly

distributed loads. Second, the nonlinear bending of simply-supported web-core panels is investi-

gated for the same loads. Third, we consider the nonlinear bending of web-core panels that have

clamped and free edges as well.

The web-core lattice is bending-dominated, whereas the pyramid core is stretch-dominated,

meaning that the struts of the core do not essentially bend but carry only axial loads, that is, they

behave as axial rods. It has been shown earlier for lattice core beams that stretch-dominated cores

do not exhibit global nonlinear bending but rather go straight from linear bending to local buckling

where individual unit cells basically collapse near supports or point loads [5]. This type of local

buckling behavior is not captured by the current plate model, or by any other 2-D ESL-FSDT plate

model to the best of our knowledge. In conclusion, in the case of the pyramid core sandwich

panels, we focus only the linear natural vibration frequency calculations in this study. The natural

frequencies of both the pyramid core and web-core plate are studied in section 5.6.3.

5.6.1 Plate dimensions and 3-D FE reference models

For the web-core plate two different size plates will be considered; the plate planform area is

(a × b) m2 and the studied sizes are (5.4 × 3.6) m2 for bending and (1.8 × 1.2) m2 for natural

frequency calculations. The other relevant dimensions are given in Fig. 5.1. The corresponding

3-D FE reference model for the larger plate consists of 453600 shell elements of type S8R5 and
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the smaller one contains 141000 shell elements of type S4R. A pyramid core plate of size (1× 1)

m2 is considered in the natural frequency calculations. The corresponding 3-D FE reference model

consists of 9600 linear beam elements of type B33, 33885 quadrilateral shell elements of type

S8R5 and 1002 triangular elements of type STRI65. All the 3-D FE models are convergent.

The 3-D boundary conditions are imposed in a similar manner as in classical simply-supported,

clamped and free edge 3-D solid plate problems. For simply-supported edges, for all nodes i =

1, 2, . . . , n of the shell elements on edges x = (−a/2, a/2) (see Fig. 2) we use U i
z = U i

y =

Rotix = 0 with reference to the global coordinate system. Analogously, for all nodes on edges

y = (−b/2, b/2) we use U i
z = U i

x = Rotiy = 0. For clamped edges we have U i
x = U i

y = U i
z =

Rotix = Rotiy = Rotiz = 0. No boundary conditions are set on free edges.

5.6.2 Bending analysis

For the bending analysis of the 2-D micropolar ESL-FSDT plates the coordinate system is

chosen such that the center of the plate coincides with the origin as shown in Fig. 5.2. For the web-

core plates the webs are parallel to the y−axis. Four sets of boundary conditions are considered:

1. Simply-supported on all edges (SSSS).

2. Edges parallel to x-axis are clamped and edges parallel to y-axis are simply supported

(CSCS).

3. All edges are clamped (CCCC).

4. Edges parallel to x-axis are free and edges parallel to y-axis are clamped (CFCF).

Furthermore, for each boundary condition case the plate is subjected to two different loadings,

a uniformly distributed load and a line load along the y-axis at the center of the plate. Since

the boundary and loading conditions considered here result in symmetry about x- and y-axes, we

consider only the quarter plate lying in the first quadrant as the computational domain (see Fig. 5.2).

For such a computational domain the considered boundary conditions after symmetry arguments

are listed in Table 5.6. It should be noted that for web-core plates the center web is along y-axis
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and for the line load case only half of the total load intensity on the full plate is to be considered

on the computational domain. Unless stated otherwise all the loads listed in this study are on full

plate.

Figure 5.2: Choice of computational domain for the bending analysis under considered boundary
and loading conditions.
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Table 5.6: Various boundary conditions on the computational domain for bending analysis.

SSSS CSCS CCCC CFCF

y = 0 v0 = φy = ψx = 0 v0 = φy = ψx = 0 v0 = φy = ψx = 0 v0 = φy = ψx = 0

y = b/2 u0 = w0 = φx = ψy = 0
u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

Nyx = Nyy =

Q
(s)
y +Q

(a)
y = Myx =

Pyy = Myy = Pyx = 0

x = 0 u0 = φx = ψy = 0 u0 = φx = ψy = 0 u0 = φx = ψy = 0 u0 = φx = ψy = 0

x = a/2 v0 = w0 = φy = ψx = 0 v0 = w0 = φy = ψx = 0
u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

(0, 0)
u0 = v0 = φx = ψy =

φy = ψx = 0

u0 = v0 = φx = ψy =

φy = ψx = 0

u0 = v0 = φx = ψy =

φy = ψx = 0

u0 = v0 = φx = ψy =

φy = ψx = 0

(a/2, 0) v0 = w0 = φy = ψx = 0 v0 = w0 = φy = ψx = 0
u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

(0, b/2) u0 = w0 = φx = ψy = 0
u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0
u0 = φx = ψy = 0

(a/2, b/2)
u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

u0 = v0 = w0 = φx =

ψy = φy = ψx = 0

A mesh of 32 × 32 equal sized rectangular elements on the computational domain was found

to give convergent results with respect to the transverse deflection. The mesh convergence results

with respect to the linear transverse deflections of web-core lattice plates of size (5.4×3.6) m2 and

for various face thickness, tf , subjected to SSSS boundary conditions are given in Fig. 5.3. The

error in maximum transverse deflection is calculated using

∆wmax0 = 100×

(
w
max(Nav)
0 − wmax(present FE)

0

w
max(Nav)
0

)
,
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where wmax(Nav)
0 is the Navier solution to the 2-D micropolar ESL-FSDT plate [9].
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Figure 5.3: Mesh convergence with respect to maximum transverse deflectionwmax0 for linear anal-
ysis on quarter domain of (5.4× 3.6) m2 web-core plates subjected to SSSS boundary conditions.
(a) Uniformly distributed load of 10000 N/m2 (b) Line load of 10000 N/m along the y−axis [6].

Fig. 5.4(a) gives a comparison between the linear transverse deflections of a (5.4 × 3.6) m2

web-core plate having face thickness tf = 6 mm, modeled as ESL-FSDT plate based on microp-

olar elasticity and ESL-FSDT plate based on classical elasticity for uniformly distributed load,

while Fig. 5.4(b) shows the comparison for a line load along y-axis. The linear transverse de-

flections are obtained using the Navier solution [9, 107]. It can be seen that for the uniformly

distributed load the two ESL theories give almost the same transverse deflections but for the line

load they deviate from each other. It was shown by [9] that the micropolar model predicts the

transverse deflections of a line-loaded web-core plate accurately, whereas the classical ESL-FSDT

plate yielded displacement errors of 34–175% for face thicknesses of 2–10 mm. Further, Fig. 5.4

also shows the comparison between the nonlinear transverse deflections of the 3-D FE web-core
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plate (Abaqus) and the corresponding 2-D micropolar plate (present finite element). It can be seen

that the present finite element model is able to accurately predict the transverse deflections in both

uniformly distributed and line load cases.

To further test the reliability of micropolar ESL-FSDT plate model and the nonlinear finite

element formulation based on it, linear and nonlinear transverse deflections of a (5.4 × 3.6) m2

web-core plate having face thickness tf = 4 mm subjected to CSCS boundary conditions and a

(5.4×3.6) m2 web-core plate having face thickness tf = 6 mm subjected to CCCC boundary con-

ditions are presented in Fig. 5.5 for both uniformly distributed load and line load cases. Moreover,

the nonlinear results are compared with the nonlinear results obtained from the 3-D FE analysis

of these web-core plates in Abaqus. Excellent agreement between the 2-D micropolar and 3-D

reference solutions is observed.

Finally, we consider the (5.4 × 3.6) m2 web-core plate with CFCF boundary conditions. In

Fig. 5.6(a), web-core plates with face thicknesses tf = 6 mm and tf = 10 mm subjected to a

uniformly distributed load are considered, while in Fig. 5.6(b) the same plates are under a line load

along y-axis (cf. Fig. 2). The present 2-D nonlinear finite element model slightly underpredicts

the deflections at high load intensities in this case. This maybe due to the fact that Abaqus uses

complete Green strain tensor while in the present nonlinear formulation we only considered von

Kármán nonlinear terms. Thus at very high load intensities the von Kármán nonlinearity may not

be an adequate choice for estimating the global deflections.

It is worth noting that only 1024 isoparametric linear rectangular elements based on Lagrange

interpolation functions are used on the computational domain in the 2-D micropolar bending anal-

ysis of the (5.4× 3.6) m2 web-core lattice plate, while the complete 3-D FE analysis uses 453600

shell elements of type S8R5 as pointed out earlier. Thus, the present finite element model is com-

putationally very efficient in obtaining the global response of lattice plates.
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Figure 5.4: Load vs maximum deflection of (5.4×3.6) m2 web-core plate (tf = 6 mm) under SSSS
boundary conditions. The linear solutions are computed using Navier solution. (a) Uniformly
distributed load (b) Line load along y-axis [6].
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Figure 5.5: Load vs maximum deflections of (5.4 × 3.6) m2 web-core plates with tf = 4 mm
subjected to CSCS boundary conditions and tf = 6 mm subjected to CCCC boundary conditions.
(a) Uniformly distributed load (a) Line load along y-axis [6].
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5.6.3 Natural vibration frequencies

Here we will consider the free linear vibration analysis of both web-core and pyramid core

lattice plates subjected to the same boundary conditions listed for the bending analysis. But it

should be noted that the argument of symmetry cannot be used for the frequency analysis and,

thus, the full plate has to be taken as the computational domain. For the linear free vibration

analysis using the present finite element model, we ignore the nonlinear terms and consider only

the linear terms in evaluating the element coefficient matrices.

In Figure 5.7, a comparison between the 3-D FE analysis and 2-D ESL-FSDT plates based on

both classical and micropolar elasticity for the lowest eight natural frequencies of a pyramid core

lattice plate of size (1.0×1.0) m2 subjected to SSSS boundary conditions is given. The frequencies

from ESL-FSDT micropolar plate model are obtained from the present finite element model while

the frequencies of the 2-D classical ESL-FSDT plate are obtained using the Navier solution [9].
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Both ESL-FSDT plate models provide accurate estimates for the fundamental vibration frequency

f1,1. However, as the mode number increases, the ESL-FSDT plate based on classical elasticity

begins to under predict the frequencies while the ESL-FSDT plate based on micropolar elasticity

still continues to predict the natural frequencies accurately.
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Figure 5.7: Eight lowest natural vibration frequencies of pyramid core plate of size (1.0× 1.0) m2

subjected to SSSS boundary conditions. In fm,n, m refers to the number of half waves in x-
direction and n gives the same for y-direction [6].
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Figure 5.9: Eight lowest natural vibration frequencies of web-core (tf = 4 mm) plate of size
(1.8× 1.2) m2. (a) CSCS boundary condition (b) CCCC boundary condition [6].

A comparison between natural frequency results from 3-D FE analysis and from the present

finite element formulation of pyramid core lattice plates of size (1.0× 1.0) m2 is given in Fig. 5.8

for CSCS boundary conditions and an unconstrained plate. Fig. 5.9 shows a comparison of 3-D FE

results and results from the present finite element formulation for a web-core lattice plate of size

(1.8 × 1.2) m2 having face thickness tf = 4 mm, subjected to CSCS and CCCC boundary condi-

tions. The 2-D and 3-D results are in good agreement and the 2-D plate provides computationally

efficient means for computing the global bending modes of both pyramid core and web-core sand-

wich panels.
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6. DUAL MESH CONTROL DOMAIN METHOD FOR BENDING ANALYSIS OF

FUNCTIONALLY GRADED BEAMS∗

6.1 Introduction

In chapter 1 we introduced the dual mesh control domain method (DMCDM) and applied it to

study 1-D axial bar. In this chapter we will apply the DMCDM to Euler-Bernoulli and Timoshenko

beam theories. While for the bar problem each node of the mesh has only one degree of freedom,

for the beam theories we have three degrees of freedom at each node. These degrees of freedom are

axial displacement, transverse displacement and cross-sectional rotation for displacement models

while axial displacement, transverse displacement and moment are the degrees of freedom for

mixed models.

We consider through thickness functionally graded beams with constant Poisson’s ration while

the Young’s modulus is assumed to vary with the thickness coordinate z given by the following

power-law variation [85, 110, 111]:

E(z) = (E1 − E2)f(z) + E2, f(z) =

(
1

2
+

z

H

)n
(6.1.1)

Here E1 is the Young’s modulus on the top face of the beam while E2 is the Young’s modulus on

the bottom face of the beam. The thickness of the beam is H , while n denote the power-law index

which governs the material distribution through the thickness of the beam.

6.2 Governing equations of functionally graded beams

In this section we will review the governing equations Euler-Bernoulli beam theory and Timo-

shenko beam theory. Then we cast the governing equations in terms of axial displacement, trans-

verse displacement and moment to facilitate the development of mixed dual mesh control domain

∗Reprinted with permission from “A dual mesh finite domain method for the analysis of functionally graded
beams” by J. N. Reddy and P. Nampally, 2020. Composite Structures, vol. 251, p. 112648, Copyright (2020) Elsevier
Ltd.
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method [10, 7]. The coordinate system used for the analysis of the beam is shown in Fig. 6.1

L

H x

z

E1

E2

Figure 6.1: Functionally graded beam with the chosen coordinate system.

6.2.1 Euler-Bernoulli beam theory

The displacement filed of the Euler-Bernoulli beam theory is given by

u1(x, y, z) = u(x)− zdw
dx

u2(x, y, z) = 0

u3(x, y, z) = w(x)

(6.2.1)

The non-zero linear strains corresponding to this displacement field is given by

εxx =
du

dx
− zd

2w

dx2
= ε0

xx + zε1
xx (6.2.2)

while the constitutive relation for functionally graded beam with power-law variation of Young’s

modulus and constant Poisson’s ration is given by

σxx = E(z)εxx (6.2.3)
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We further define the stress and moment resultant acting on the beam as follows:

Nxx =

∫
A

σxxdA = Axx
du

dx
−Bxx

d2w

dx2
(6.2.4a)

Mxx =

∫
A

σxxzdA = Bxx
du

dx
−Dxx

d2w

dx2
(6.2.4b)

Here Axx, Bxx, and Dxx are the extensional, extensional-bending, and bending stiffness coeffi-

cients

(Axx, Bxx, Dxx) =

∫
A

(1, z, z2)E(z) dA (6.2.5)

The governing differential equations of the beam can be obtained from the principle of virtual

work, which for the functionally graded Euler-Bernoulli beam can be expressed as:

∫ L

0

[Nxxδε
0
xx +Mxxδε

1
xx]dx−

∫ L

0

(fδu+ qδw)dx = 0 (6.2.6)

Taking the Euler-Lagrange equations of the variational statement (6.2.6) we obtain the governing

differential equations of functionally graded Euler-Bernoulli beam as follows:

−dNxx

dx
− f = 0 (6.2.7)

−d
2Mxx

dx2
− q = 0 (6.2.8)

Now using the expressions for stress and moment resultants from Eqs. (6.2.4a)-(6.2.4b), we can

write the governing equations as

− d

dx

(
Axx

du

dx
−Bxx

d2w

dx2

)
− f = 0 (6.2.9)

− d2

dx2

(
Bxx

du

dx
−Dxx

d2w

dx2

)
− q = 0 (6.2.10)

The governing equations (6.2.9) and (6.2.10) are fourth-order differential equations and are not
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suitable for the development of dual mesh control domain method. Hence we will recast these

equations in terms of the axial and transverse displacements u and w respectively and the bending

moment Mxx. To do so, we eliminate d2w
dx2 from Eq. (6.2.4a) using Eq. (6.2.4b) to get

Nxx = Āxx
du

dx
+ B̄xxMxx (6.2.11)

and express Eq. (6.2.4b) as

−d
2w

dx2
= −B̄xx

du

dx
+

1

Dxx

Mxx (6.2.12)

where

D∗xx ≡ DxxAxx −B2
xx, Āxx ≡

D∗xx
Dxx

, B̄xx ≡
Bxx

Dxx

(6.2.13)

Now the governing equations in terms of displacements and moment are given by Eqs. (6.2.7),(6.2.8)

and (6.2.12) where the expression for Nxx is taken from Eq. (6.2.11). These equations are listed

bellow.

− d

dx

(
Āxx

du

dx
+ B̄xxMxx

)
= f (6.2.14)

−d
2Mxx

dx2
= q (6.2.15)

−d
2w

dx2
− 1

Dxx

Mxx + B̄xx
du

dx
= 0 (6.2.16)

6.2.2 Timoshenko beam theory

The displacement filed of the Timoshenko beam theory is given by

u1(x, y, z) = u(x) + zφx(x)

u2(x, y, z) = 0

u3(x, y, z) = w(x)

(6.2.17)
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The non-zero linear strains corresponding to this displacement field is given by

εxx =
du

dx
+ z

dφx
dx

= ε0
xx + zε1

xx (6.2.18a)

γxz = φx +
dw

dx
(6.2.18b)

while the constitutive relation for functionally graded beam with power-law variation of Young’s

modulus and constant Poisson’s ration is given by

σxx = E(z)εxx, σxz =
E(x)

2(1 + ν)
γxz (6.2.19)

We further define the stress and moment resultant acting on the beam as follows:

Nxx =

∫
A

σxxdA = Axx
du

dx
+Bxx

dφx
dx

(6.2.20a)

Mxx =

∫
A

σxxzdA = Bxx
du

dx
+Dxx

dφx
dx

(6.2.20b)

Qx = Ks

∫
A

σxz dA = Sxz

(
φx +

dw

dx

)
, Sxz =

Ks

2(1 + ν)

∫
A

E(z) dA (6.2.20c)

Here Axx, Bxx, and Dxx are the extensional, extensional-bending, and bending stiffness coeffi-

cients and are given in Eq. (6.2.5). Ks is the shear correction factor and is taken to be 5/6 for

beams with rectangular cross-section. The governing differential equations of the beam can be

obtained from the principle of virtual work, which for the functionally graded Timoshenko beam

can be expressed as:

∫ L

0

[Nxxδε
0
xx +Mxxδε

1
xx +Qxδγxz]dx−

∫ L

0

(fδu+ qδw)dx = 0 (6.2.21)
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Taking the Euler-Lagrange equations of the variational statement (6.2.21) we obtain the governing

differential equations of functionally graded Timoshenko beam as follows:

−dNxx

dx
− f = 0 (6.2.22)

−dQx

dx
− q = 0 (6.2.23)

−dMxx

dx
+Qx = 0 (6.2.24)

Now using the expressions for stress and moment resultants from Eqs. (6.2.20a)-(6.2.20c), we can

write the governing equations as

− d

dx

(
Axx

du

dx
+Bxx

dφx
dx

)
− f = 0 (6.2.25)

− d

dx

[
Sxz

(
φx +

dw

dx

)]
− q = 0 (6.2.26)

− d

dx

(
Bxx

du

dx
+Dxx

dφx
dx

)
+ Sxz

(
φx +

dw

dx

)
= 0 (6.2.27)

To express the governing equations in terms of displacements and moments we first write Nxx

in terms of u and Mxx using Eq. (6.2.20a) and Eq. (6.2.20b) to get

Nxx = Āxx
du

dx
+ B̄xxMxx (6.2.28)

and Eq. (6.2.20b) can be written as

dφx
dx

= −B̄xx
du

dx
+

1

Dxx

Mxx (6.2.29)

and Eq. (6.2.24) can be written as

dφx
dx

= −d
2w

dx2
+

1

Sxz

d2Mxx

dx2
(6.2.30)
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Now eliminating dφx
dx

from Eq. (6.2.29) and Eq. (6.2.30) we get

−d
2w

dx2
= − 1

Sxz

d2Mxx

dx2
− B̄xx

du

dx
+

1

Dxx

Mxx (6.2.31)

Finally the governing equations of Timoshenko beam in terms of displacements and moment are

given by

− d

dx

(
Āxx

du

dx
+ B̄xxMxx

)
− f = 0 (6.2.32)

−d
2Mxx

dx2
− q = 0 (6.2.33)

− d

dx

(
dw

dx
− 1

Sxz

dMxx

dx

)
+ B̄xx

du

dx
− 1

Dxx

Mxx = 0 (6.2.34)

while the effective rotation φx is given in terms of w and Mxx as

φx = −dw
dx

+
1

Sxz

dMxx

dx
(6.2.35)

6.3 Dual mesh control domain formulation

6.3.1 Euler-Bernoulli beam

The dual mesh control domain method is best suited for solving first or second-order differ-

ential equations. Since the governing equations of the Euler-Bernoulli beam when expressed in

term of displacements alone result in forth-order differential equations (see Eqs. (6.2.9)-(6.2.10)),

we shall use the differential equations which are given in terms of displacements and moment

(see Eqs. (6.2.14)-(6.2.16)) to formulate the dual mesh control domain method. The resulting

formulation is called mixed dual mesh control domain method since the primary variables of the

formulation consists of displacements and force like terms (i.e., moment).
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6.3.1.1 Mixed DMCDM

In the DMCDM, we divide the domain Ω = (0, L) into a set of N primal mesh elements

separated by nodes, as shown in Fig. 6.2, with each node having its own control domain (a dual

mesh). The nodes are numbered sequentially from the left to the right. We consider two adjacent

primal mesh elements connected at a typical interior node I and control domain associated with

that node (see Fig. 6.2).

1 2 I − 1 I I + 1 N + 1

hI−1 hI

xI+1

xI−1

x
(I)
b

x
(I)
a

Ω
(I)
CD

Ω
(I)
p

Ω
(I−1)
p

x

Figure 6.2: Primal and dual mesh discretization of the beam. The primal mesh elements Ω
(I−1)
p

and Ω
(I)
p and control domain Ω

(I)
CD associated with and internal node I are indicated.

Next, we derive the discretized equations associated with Eqs. (6.2.32)–(6.2.34). The complete

steps of the DMCDM are presented by considering Eq. (6.2.32) and then summarize results for

the remaining equations and also for the other models described here.

The first step is to set up the integral statement of Eq. (6.2.32) over an interior control domain,

say Ω
(I)
CD associated with node I:

0 =

∫ x
(I)
b

x
(I)
a

[
− d

dx

(
Āxx

du

dx
+ B̄xxMxx

)
− f

]
dx (6.3.1)

Unlike in a weighted-residual method (or weak form), we weaken the differentiability on u by
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carrying out the indicated integration and obtain

0 =

∫ x
(I)
b

x
(I)
a

[
− d

dx

(
Āxx

du

dx
+ B̄xxMxx

)
− f

]
dx

=

[
Āxx

du

dx
+ B̄xxMxx

]
x

(I)
a

−
[
Āxx

du

dx
+ B̄xxMxx

]
x

(I)
b

−
∫ x

(I)
b

x
(I)
a

f dx (6.3.2)

or

0 = −N (I)
1 −N

(I)
2 −

∫ x
(I)
b

x
(I)
a

f dx (6.3.3a)

where

N
(I)
1 ≡ −

[
Āxx

du

dx
+ B̄xxMxx

]
x

(I)
a

, N
(I)
2 ≡

[
Āxx

du

dx
+ B̄xxMxx

]
x

(I)
b

(6.3.3b)

Here N (I)
1 and N (I)

2 denote the secondary variables (axial forces) at the left and right interfaces of

the control domain centered at node I . The minus sign in the definition of N (I)
1 indicates that it a

compressive force, and bothN (I)
1 andN (I)

2 are axial forces in the positive x direction (see Fig. 6.3).

I − 1 I + 1I

V
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1

N
(I)
1

Θ
(I)
1

(UI ,WI ,MI)

hI−1 hI

N
(I)
2

V
(I)

2

Θ
(I)
2

Figure 6.3: Primary and secondary variables associated with the control domain of an interior node
I .

Next, we use finite element approximations of u(x), w(x), and Mxx(x) over a typical primal
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mesh element, Ω
(I)
p = (xI , xI+1). For example, u(x) is approximated using linear interpolation

u(x) ≈ uh(x) ≡ UIψ
(I)
1 (x) + UI+1ψ

(I)
2 (x) (6.3.4)

where UI is the value of u at node I (i.e., UI ≈ u(xI)) and ψ(I)
i (x) (i = 1, 2) are linear Lagrange

interpolation functions of element Ω
(I)
p for I = 1, 2, . . . , N :

ψ
(I)
1 (x) =

xI+1 − x
hI

, ψ
(I)
2 (x) =

x− xI
hI

(6.3.5)

Hence, we can calculate parts of N (I)
1 and N (I)

2 in Eq. (6.3.3b) using the interpolation of the type

in Eq. (6.3.5) for each of the dependent variable of the formulation (note N (I)
1 is in primal mesh

element Ω
(I−1)
p and N (I)

2 is in primal mesh element Ω
(I)
p ; see Fig. 6.3 ) as follows:

[
Āxx

du

dx
+ B̄xxMxx

]x(I)
b

x
(I)
a

=
ĀI−1

hI−1

UI−1 −
(
ĀI−1

hI−1

+
ĀI
hI

)
UI +

ĀI
hI

UI+1

+ 0.5
[
−B̄I−1MI−1 +

(
B̄I−1 − B̄I

)
MI + B̄IMI+1

]
(6.3.6)

where ĀI−1 = Āxx(x
(I)
a ) at the left interface and ĀI = Āxx(x

(I)
b ) at the right interface of the

control domain centered around node I . Similar meaning applies to B̄I−1 and B̄I ; MI denotes the

nodal value of Mxx at node I .

Substituting the representations in Eqs. (6.3.6) into Eq. (6.3.3a), we obtain (for I = 2, 3, . . . , N )

−ĀI−1

hI−1

UI−1 +

(
ĀI−1

hI−1

+
ĀI
hI

)
UI −

ĀI
hI
UI+1 + 0.5B̄I−1MI−1

+ 0.5
(
B̄I−1 − B̄I

)
MI − 0.5B̄IMI+1 −

∫ x
(I)
b

x
(I)
a

f(x) dx = 0 (6.3.7)

where

ĀI−1 =
D∗xx
Dxx

∣∣∣∣∣
x

(I)
a

, ĀI =
D∗xx
Dxx

∣∣∣∣∣
x

(I)
b

, B̄I−1 =
Bxx

Dxx

∣∣∣∣∣
x

(I)
a

, B̄I =
Bxx

Dxx

∣∣∣∣∣
x

(I)
b

(6.3.8)

The integral of a function f(x) over the control domain (x(I)
a , x

(I)
b ) can be evaluated using either
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exact integration or numerical integration (e.g., trapezoidal rule, Gauss quadrature rule).

Lastly, we write the discretized equations for the boundary nodes [see Fig. 6.4]:

0 = −N (1)
1 +

Ā1

h1

U1 −
Ā1

h1

U2 + 0.5B̄1M1 + 0.5B̄1M2 −
∫ 0.5h1

0

f dx (6.3.9)

0 = −N (N+1)
2 − ĀN

hN
UN +

ĀN
hN

UN+1 + 0.5B̄N MN + 0.5B̄N MN+1 −
∫ 0.5hN

0

f(x̄) dx̄ (6.3.10)

where x̄ is the local coordinate with origin at node 1 of primal mesh element and N (1)
1 and N (N+1)

2

are the boundary forces (at nodes 1 and N + 1, respectively), which are either specified or their

duality counter parts, namely, the displacements U1 and U(N+1), are specified. This completes the

discretization of Eq. (6.2.14).

h1 hN

1 2 N N + 1

V
(N+1)

2

Θ
(N+1)
2

N
(N+1)
2

V
(1)

1

N
(1)
1

Θ
(1)
1

Figure 6.4: Control domains corresponding to boundary nodes.

The same procedure can be applied to Eqs. (6.2.15) and (6.2.16) to obtain the discretized

equations for the interior and boundary nodes. We have the following integral statements of Eqs.

(6.2.15) and (6.2.16):

0 = −V (I)
1 − V (I)

2 −
∫ x

(I)
b

x
(I)
a

q dx (6.3.11)

0 = −Θ
(I)
1 −Θ

(I)
2 +

∫ x
(I)
b

x
(I)
a

(
− 1

Dxx

Mxx + B̄xx
du

dx

)
dx (6.3.12)

where V (I)
1 and V (I)

2 denote the secondary variables (shear forces acting upward positive) at the
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left and right interfaces of the control domain centered at node I ,

V
(I)

1 ≡ −
[
dMxx

dx

]
x

(I)
a

= −MI −MI−1

hI−1

, V
(I)

2 ≡
[
dMxx

dx

]
x

(I)
b

=
MI+1 −MI

hI
(6.3.13)

and Θ
(I)
1 and Θ

(I)
2 denote the secondary variables (rotations in counterclock direction) at the left

and right interfaces of the control domain centered at node I ,

Θ
(I)
1 ≡ −

[
dw

dx

]
x

(I)
a

=
WI−1 −WI

hI−1

, Θ
(I)
2 ≡

[
dw

dx

]
x

(I)
b

=
WI+1 −WI

hI
(6.3.14)

The discretized equations associated with Eq. (6.2.15) at an interior node are:

− 1

hI−1

MI−1 +

(
1

hI−1

+
1

hI

)
MI −

1

hI
MI+1 =

∫ x
(I)
b

x
(I)
a

q dx (6.3.15)

For the boundary nodes 1 and N + 1, we have

0 = −V (1)
1 +

1

h1

M1 −
1

h1

M2 −
∫ 0.5h1

0

q dx (6.3.16)

0 = −V (N+1)
2 − 1

hN
MN +

1

hN
MN+1 −

∫ 0.5hN

0

q(x̄) dx̄ (6.3.17)

The discretized equations associated with Eq. (6.2.16) are

− 1

hI−1

WI−1 +

(
1

hI−1

+
1

hI

)
WI −

1

hI
WI+1 −

1

8

hI−1

DI−1

MI−1

− 3

8

(
hI−1

DI−1

+
hI
DI

)
MI −

1

8

hI
DI

MI+1

− 0.5B̄I−1 UI−1 + 0.5
(
B̄I−1 − B̄I

)
UI + 0.5B̄I UI+1 = 0 (6.3.18)

for an interior node. Here DI denotes the value of Dxx in primal mesh element I and B̄I denotes
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the value of Bxx/Dxx in primal mesh element I . For the boundary nodes 1 and N + 1, we have

0 = −Θ
(1)
1 +

1

h1

W1 −
1

h1

W2 −
3

8

h1

D1

M1 −
1

8

h1

D1

M2 + 0.5B̄1 (U2 − U1) (6.3.19)

0 = −Θ
(N+1)
2 − 1

hN
WN +

1

hN
WN+1 −

1

8

hN
DN

MN −
3

8

hN
DN

MN+1

+ 0.5B̄N (UN+1 − UN) (6.3.20)

This completes the development of the discretized equations based on the DMCDM for the mixed

formulation of the Euler–Bernoulli beam theory.

6.3.2 Timoshenko beam

6.3.2.1 Displacement DMCDM

The displacement based DMCDM of Timoshenko beam is developed using Eqs. (6.2.25)–

(6.2.27). In order to derive the discretized equations associated with Eqs. (6.2.25)–(6.2.27), we

follow the same procedure as described for the EBT. The integral statements over the Ith control

domain centered around node I (see Fig. 6.5 for the nodal degrees of freedom) for each of these

three equations are:

0 = −N (I)
1 −N

(I)
2 −

∫ x
(I)
b

x
(I)
a

f dx (6.3.21a)

N
(I)
1 ≡ −

[
Axx

du

dx
+Bxx

dφx
dx

]
x

(I)
a

, N
(I)
2 ≡

[
Axx

du

dx
+Bxx

dφx
dx

]
x

(I)
b

(6.3.21b)

0 = −V (I)
1 − V (I)

2 −
∫ x

(I)
b

x
(I)
a

qdx (6.3.22a)

V
(I)

1 ≡ −
[
Sxz

(
φx +

dw

dx

)]
x

(I)
a

, V
(I)

2 ≡
[
Sxz

(
φx +

dw

dx

)]
x

(I)
b

(6.3.22b)

0 = −M (I)
1 −M

(I)
2 +

∫ x
(I)
b

x
(I)
a

Sxz

(
φx +

dw

dx

)
dx (6.3.23a)

M
(I)
1 ≡ −

[
Bxx

du

dx
+Dxx

dφx
dx

]
x

(I)
a

, M
(I)
2 ≡

[
Bxx

du

dx
+Dxx

dφx
dx

]
x

(I)
b

(6.3.23b)
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Figure 6.5: Primary and secondary variables associated with the control domain of an interior node
I of displacement DMCDM of TBT.

Here (N (I)
1 , V (I)

1 , M (I)
1 ) and (N (I)

2 , V (I)
2 , M (I)

2 ) denote the axial forces, shear forces, and bending

moments at the left and right interfaces, respectively, of the control domain centered at node I (see

Fig. 6.5). Since the displacement model of the TBT suffers from shear locking, we evaluate the

integral appearing in Eq. (6.3.23a) (i.e., the shear force) as a constant to avoid shear locking:

∫ x
(I)
b

x
(I)
a

Sxz

(
φx +

dw

dx

)
dx = 1

2
SI−1 (ΦI−1 + ΦI)

hI−1

2
+ 1

2
SI (ΦI + ΦI+1)

hI
2

+ SI−1
WI −WI−1

hI−1

hI−1

2
+ SI

WI+1 −WI

hI

hI
2

(6.3.24)
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The discretized equations associated with Eqs. (6.2.25)–(6.2.27) for an interior node I are

0 = −AI−1

hI−1

UI−1 +

(
AI−1

hI−1

+
AI
hI

)
UI −

AI
hI
UI+1

− BI−1

hI−1

ΦI−1 +

(
BI−1

hI−1

+
BI

hI

)
ΦI −

BI

hI
ΦI+1 −

∫ x
(I)
b

x
(I)
a

f dx (6.3.25a)

0 = −SI−1

hI−1

WI−1 +

(
SI−1

hI−1

+
SI
hI

)
WI −

SI
hI
WI+1

+ 0.5SI−1ΦI−1 + 0.5 (SI−1 − SI) ΦI − 0.5SIΦI+1 −
∫ x

(I)
b

x
(I)
a

q dx (6.3.25b)

0 = −BI−1

hI−1

UI−1 +

(
BI−1

hI−1

+
BI

hI

)
UI −

BI

hI
UI+1 − 0.5SI−1WI−1

+ 0.5 (SI−1 − SI)WI + 0.5SIWI+1 −
DI−1

hI−1

ΦI−1 +

(
DI−1

hI−1

+
DI

hI

)
ΦI

− DI

hI
ΦI+1 + 0.25SI−1hI−1ΦI−1 + 0.25 (SI−1hI−1 + SIhI) ΦI

+ 0.25SIhIΦI+1 (6.3.25c)

The discretized equations of the left boundary node are

0 = −N (1)
1 +

A1

h1

U1 −
A1

h1

U2 +
B1

h1

Φ1 −
B1

h1

Φ2 −
∫ 0.5h1

0

f dx (6.3.26a)

0 = −V (1)
1 +

S1

h1

W1 −
S1

h1

W2 − 0.5S1Φ1 − 0.5S1Φ2 −
∫ 0.5h1

0

q dx (6.3.26b)

0 = −M (1)
1 −

B1

h1

(U2 − U1) + 0.5S1(W2 −W1)− D1

h1

(Φ2 − Φ1)

+ 0.25S1h1 (Φ1 + Φ2) (6.3.26c)
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For the node on the right boundary, we have

0 = −N (N+1)
1 +

AN
hN

UN+1 −
AN
h1

UN +
BN

hN
ΦN+1 −

BN

hN
ΦN −

∫ 0.5hN

0

f(x̄) dx̄ (6.3.27a)

0 = −V (N+1)
2 +

SN
hN

(WN+1 −WN) + 0.5SN(ΦN+1 + ΦN)−
∫ 0.5hN

0

q(x̄) dx̄ (6.3.27b)

0 = −M (N+1)
2 +

BN

hN
(UN+1 − UN) + 0.5SN(WN+1 −WN) +

DN

hN
(ΦN+1 − ΦN)

+ 0.25SNhN (ΦN + ΦN+1) (6.3.27c)

6.3.2.2 Mixed DMCDM

Although the displacement DMCDM of Timoshenko beam with reduced integration of shear

force (see Eq. (6.3.24)) gives locking free solutions, this is not the only way to eliminate shear

locking. It is known in finite element literature that mixed formulations (with displacements and

moments as primary variables) can also successfully eliminate locking without any resort to any

reduced integration of shear terms. Following the same idea, here we develop mixed dual mesh

control domain method for Timoshenko beam. We use the Eqs. (6.2.32)–(6.2.34) to formulate

the mixed dual mesh control domain method for Timoshenko beam. Discretization of these equa-

tions follows the same procedure described in the previous sections for mixed DMCDM of Euler-

Bernoulli beam and displacement DMCDM of Timoshenko beam. The final discretized equations

associated with Eq. (6.2.32) at the Ith node, node 1, and node N + 1 are given by

− ĀI−1

hI−1

UI−1 +

(
ĀI−1

hI−1

+
ĀI
hI

)
UI −

ĀI
hI
UI+1 + 0.5B̄I−1MI−1

+ 0.5
(
B̄I−1 − B̄I

)
MI − 0.5B̄IMI+1 −

∫ x
(I)
b

x
(I)
a

f dx = 0 (6.3.28a)

0 = −N (1)
1 +

Ā1

h1

U1 −
Ā1

h1

U2 + 0.5B̄1M1 + 0.5B̄1M2 −
∫ 0.5h1

0

f dx (6.3.28b)

0 = −N (N+1)
2 − ĀN

hN
UN +

ĀN
hN

UN+1 + 0.5B̄N MN + 0.5B̄N MN+1 −
∫ 0.5hN

0

f(x̄) dx̄ (6.3.28c)
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The discretized equations associated with Eq. (6.2.33) are:

0 = −MI+1 −MI

hI
+
MI −MI−1

hI−1

−
∫ x

(I)
b

x
(I)
a

q dx (6.3.29a)

0 = −V (1)
1 +

1

h1

M1 −
1

h1

M2 −
∫ 0.5h1

0

q dx (6.3.29b)

0 = −V (N+1)
2 +

1

hN
MN+1 −

1

hN
MN −

∫ 0.5hN

0

q(x̄) dx̄ (6.3.29c)

Finally, the discretized equations associated with Eq. (6.2.34) at the Ith node, node 1, and node

N + 1 are:

0 = −0.5B̄I−1 UI−1 + 0.5
(
B̄I−1 − B̄I

)
UI + 0.5B̄I UI+1

− 1

hI−1

WI−1 +

(
1

hI−1

+
1

hI

)
WI −

1

hI
WI+1

+
1

hI−1

1

SI−1

MI−1 −
(

1

hI−1

1

SI−1

+
1

hI

1

SI

)
MI +

1

hI

1

SI
MI+1

− 1
8

hI−1

DI−1

MI−1 − 3
8

(
hI−1

DI−1

+
hI
DI

)
MI − 1

8

hI
DI

MI+1 (6.3.30a)

0 = −Θ
(1)
1 + 0.5B̄1 (U2 − U1)− W2 −W1

h1

+
1

S1

M2 −M1

h1

− 1

8

h1

D1

(3M1 +M2) (6.3.30b)

0 = −Θ
(N+1)
2 + 0.5B̄NUN+1 − 0.5B̄NUN −

1

hN
WN +

1

hN
WN+1

+
1

SNhN
MN −

1

SNhN
MN+1 −

1

8

hN
DN

(MN + 3MN+1) (6.3.30c)

6.4 Numerical examples

To illustrate the working of DMCDM we consider two different examples, namely, pinned-

pinned and clamped-clamped beams with uniformly distributed load (UDL) of intensity q0. Due to

symmetry about the center of the beam, only a half beam, 0 ≤ x ≤ L/2, is considered as the com-

putational domain. Further, the results obtained from DMCDM are compared with those obtained

from FEM. For functionally graded beams the effect of power-law index n (see Eq. (6.1.1)), which
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dictates the material distribution through the beam thickness, on the deflections is also studied.

In addition to the dual mesh control domain methods described in the previous sections, we also

consider four different finite element models. All these models are briefly summarized below:

• FE-EB(D) - Displacement finite element model of the EBT

• FE-EB(M) - Mixed finite element model of the EBT

• FE-TB(D) - Displacement finite element model of the TBT

• FE-TB(M) - Mixed finite element model of the TBT

• DM-EB(M) - Mixed dual mesh finite domain model of the EBT

• DM-TB(D) - Displacement dual mesh finite domain model of the TBT

• DM-TB(M) - Mixed dual mesh finite domain model of the TBT

It should be noted that in the displacement finite element model of Euler-Bernoulli beam (FE-

EB(D)) the transverse deflections are interpolated using Hermite cubic interpolation functions [93]

while the axial deflection is interpolated using linear Lagrange interpolation functions. However,

for the rest of the finite element models and dual mesh control domain models all the primary

variables are interpolated using linear Lagrange interpolation functions.

We investigate the effect of mesh and the power-law index n on the deflections and stresses.

We consider a beam of length L = 100 in, W × H = 1 × 1 in2 cross-sectional dimensions,

functionally graded through the height (h) (E1 = 30 × 106 psi, E2 = 3 × 106 psi, and ν = 0.3),

and subjected to uniformly distributed transverse load of intensity q0 lb/in. For the pinned-pinned

and clamped-clamped boundary conditions, we can exploit the symmetry about x = L/2, and use

the left half of the beam as the computational domain.

First, we consider the beam with both ends pinned. The boundary conditions on the primary
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variables in various models for this problem are as follows:

Displacement models : u(0) = w(0) = u(L
2
) = 0, dw

dx
(L

2
) = 0 or φx(L2 ) = 0

(6.4.1)

Mixed models : u(0) = w(0) = M(0) = 0, u(L
2
) = 0

The boundary conditions on the secondary variables (satisfied in an integral sense) are:

Displacement models : M(0) = 0, V (L
2
) = 0

(6.4.2)

Mixed models : V (L
2
) = 0, dw

dx
(L

2
) = 0 or φx(L2 ) = 0

The exact solutions of pinned-pinned functionally graded beams, with the power-law given in

Eq. (6.1.1), are given by

D̄xx u(x) =
q0L

3

12

(
2ξ − 3ξ2 + 2ξ3

)
, D̂xx φx(x) = −q0L

4

24

(
1− 6ξ2 − 4ξ3

)
D̂xxw(x) =

q0L
4

24

(
ξ − 2ξ3 + ξ4

)
+ D̃xx

q0L
2

2
ξ(1− ξ)− B̂xx

q0L
2

24
ξ(1− ξ)

(6.4.3)

Mxx(x) = D∗xx
dφx
dx

=
q0L

2

2
ξ(1− ξ), V (x) =

dMxx

dx
=
q0L

2
(1− 2ξ)

σ(x, 0.5h) =
Mxx(x)h

2I
=
hq0L

2

4I
ξ(1− ξ)

where ξ = x/L and

D̂xx =
D∗xx
Axx

, D̄xx =
D∗xx
Bxx

, B̂xx =
B2
xx

DxxAxx
, D̃xx =

D∗xx
AxxSxz

(6.4.4)

We note that for homogeneous beams u(x) = 0 everywhere. The EBT solutions are obtained from

Eq. (6.4.3) by setting D̃xx = 0 and replacing φx with −dw/dx. The bending stress, σ(x, z), is

computed at x = L/2 (where the bending moment is the maximum) and z = h/2, h being the

beam height. The stress is post-computed in the displacement models at the element center using
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the relation

σ(x, z) = −E(z) z
d2w

dx2
for EBT; σ(x, z) = E(z) z

dφx
dx

for TBT (6.4.5)

On the other hand, the stress in the mixed models is computed using the bending moment Mxx(x)

according to the formula

σ(x, z) =
Mxx(x) z

I
(6.4.6)

whereMxx(x) is the calculated from the finite element interpolation (i.e., σ(L/2, h/2) = M(L/2)h/2I ,

and M(L/2) is the nodal value).

Tables 6.1 and 6.2 contain the normalized center deflection and stress, respectively, for homo-

geneous (D̂xx = Dxx = EI and B̂xx = Bxx = 0) pinned-pinned (P-P) beams for different number

of elements in the half beam. The tabulated deflections and stresses are normalized as follows

(with Ks = 5/6):

w̄ = w
D̂xx

q0L4
, σ̄ = σ

I

H q0L2
(6.4.7)

where I is the moment of inertia. From the results it is clear that the mixed dual mesh control

domain models are accurate in predicting the displacements and stresses. In fact, all mixed models

and the displacement model of the DMCDM give the exact stress for any number of elements.

The shear locking is alleviated in the displacement finite element model and DMCDM of the TBT

by the use of reduced integration. No such trick is used in the mixed FEM and mixed DMCDM.
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Table 6.1: The center transverse deflection w̄(L/2)× 10 of homogeneous P-P beams predicted by
various models [10].

Mesh FE-EB(D) FE-EB(M) FE-TB(D) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

4 0.1302 0.1286 0.1270 0.1285 0.1294 0.1270 0.1294

8 0.1302 0.1298 0.1294 0.1298 0.1300 0.1294 0.1300

16 0.1302 0.1301 0.1300 0.1301 0.1302 0.1300 0.1302

32 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302

64 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302

Exact 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302 0.1302

The DMCDM always gives the exact value of the moment at x = L/2. We also note that for this

slender beam (L/h = 100), the effect of shear deformation is negligible and the EBT and TBT

solutions for w̄ are the same upto the fourth decimal point.

Table 6.2: The center stress σ̄(L/2)×10 for homogeneous P-P beams predicted by various models
[10].

Mesh FE-EB(D) FE-EB(M) FE-TB(D) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

4 0.6120 0.6250 0.6055 0.6250 0.6250 0.6250 0.6250

8 0.6218 0.6250 0.6201 0.6250 0.6250 0.6250 0.6250

16 0.6242 0.6250 0.6238 0.6250 0.6250 0.6250 0.6250

32 0.6248 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250

64 0.6249 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250

Exact 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250 0.6250
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Table 6.3 contains the normalized center deflection for functionally graded pinned-pinned (P-

P) beams for different values of the power-law index n. All of the results are obtained using

16 elements in the half beam. All models predict solutions that match the exact solutions upto

the fourth decimal point. The stresses in the FGM beams are exactly the same as those in the

homogeneous beams, because the bending moment is independent of the stiffness coefficients.

Table 6.3: The center transverse deflection w̄(L/2)× 10 of FGM P-P beams predicted by various
models [10].

n FE-EB(D) FE-TB(D) FE-EB(M) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

0.0 0.1302 0.1302 0.1302 0.1302 0.1302 0.1300 0.1302

1.0 0.1069 0.1068 0.1067 0.1069 0.1069 0.1068 0.1069

2.0 0.0919 0.0918 0.0919 0.0919 0.0919 0.0918 0.0919

3.0 0.0879 0.0878 0.0879 0.0879 0.0879 0.0878 0.0879

5.0 0.0900 0.0899 0.0899 0.0900 0.0900 0.0899 0.0900

7.5 0.0959 0.0958 0.0958 0.0958 0.0958 0.0958 0.0959

10.0 0.1012 0.1011 0.1012 0.1012 0.1012 0.1011 0.1012

12.0 0.1048 0.1047 0.1047 0.1048 0.1048 0.1047 0.1048

15.0 0.1091 0.1090 0.1090 0.1090 0.1090 0.1090 0.1091

20.0 0.1142 0.1140 0.1141 0.1141 0.1141 0.1140 0.1142

It is interesting to note that the effect of the power-law index n on the deflections is not mono-

tonic. As n goes from zero to a value of about n = 2, the deflection decreases and then increases

for n > 2. This is due to the fact that Bxx is not a monotonically increasing or decreasing function

of n, as can be seen from Fig. 6.6 (see [100]). Figure 6.7 shows the variation of the normalized

center deflection w̄ with the power-law index n.
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Next, we consider a beam clamped (C-C) at both ends. The boundary conditions on the primary

variables in various models for this problem are as follows (replace dw/dx with φx for the TBT:

Displacement models : u(0) = w(0) = 0,
dw

dx
(0) = 0, u(L/2) =

dw

dx
(L

2
) = 0

(6.4.8)

Mixed models : u(0) = w(0) = 0, u(L/2) = 0

The boundary conditions on the secondary variables in various models for this problem (satisfied

in an integral sense) are as follows:

Displacement models : V (L
2
) = 0

(6.4.9)

Mixed models :
dw

dx
(0) = 0,

dw

dx
(L

2
) = 0

The exact solutions for clamped-clamped beams are given by (ξ = x/L)

u(x) =
q0L

4

12D̄xx

(
ξ − 3ξ2 + 2ξ3

)
, w(x) =

q0L
4

24EI
ξ2 (1− ξ)2

φx(x) = −dw
dx

= − q0L
3

12EI

(
ξ − 3ξ2 + 2ξ3

)
, M(x) = −EI d

2w

dx2
=
q0L

2

12

(
1− 6ξ + 6ξ2

)
V (x) =

q0L

2
(2ξ − 1) , σ(x, 0.5h) =

q0L
2

24I

(
1− 6ξ + 6ξ2

)
(6.4.10)

Tables 6.4 and 6.5 contain the normalized center deflection and stress, respectively, for the

clamped-clamped (C-C) homogeneous beam. From the results it is clear that the mixed dual mesh

finite domain models and finite element results are very close, if not identical. The displacement

finite element model is the most accurate by virtue of the higher (Hermite cubic) approximation of

the deflection.
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Table 6.4: The center transverse deflection w̄(L/2)× 10 predicted by various models for homoge-
neous beams [10].

Mesh FE-EB(D) FE-EB(M) FE-TB(D) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

4 0.2604 0.2604 0.2445 0.2601 0.2685 0.2445 0.2688

8 0.2604 0.2604 0.2567 0.2601 0.2624 0.2567 0.2627

16 0.2604 0.2604 0.2597 0.2601 0.2609 0.2597 0.2612

32 0.2604 0.2604 0.2605 0.2601 0.2606 0.2605 0.2608

64 0.2604 0.2604 0.2607 0.2601 0.2604 0.2607 0.2608

Exact 0.2604 0.2604 0.2607 0.2607 0.2604 0.2607 0.2607

Table 6.5: The center stress σ̄(L/2)×10 predicted by various models for homogeneous C-C beams
[10].

Mesh FE-EB(D) FE-EB(M) FE-TB(D) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

4 0.1953 0.1953 0.1953 0.1953 0.2148 0.2148 0.2149

8 0.2051 0.2051 0.2051 0.2051 0.2100 0.2100 0.2100

16 0.2075 0.2075 0.2075 0.2075 0.2087 0.2087 0.2087

32 0.2082 0.2082 0.2082 0.2082 0.2084 0.2084 0.2084

64 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083

Exact 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083

Table 6.6 contains the normalized center deflection for the functionally graded clamped-clamped

beam for different values of n. All of the results were obtained with 16 elements in half beam. For

the C-C beams the normalized delfections do not deviate significantly from each other (they differ

only in the fourth or fifth decimal point).
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Table 6.6: The center transverse deflection w̄(L/2)×102 of FGM C-C beams predicted by various
models [10].

n FE-EB(D) FE-TB(D) FE-EB(M) FE-TB(M) DM-EB(M) DM-TB(D) DM-TB(M)

0.0 0.26040 0.26070 0.26040 0.26070 0.26093 0.25972 0.26125

1.0 0.26019 0.25965 0.26019 0.26044 0.26058 0.25965 0.26084

2.0 0.26004 0.25964 0.26004 0.26028 0.26037 0.25964 0.26060

3.0 0.26000 0.25965 0.26000 0.26025 0.26031 0.25965 0.26055

5.0 0.26002 0.25968 0.26002 0.26031 0.26034 0.25968 0.26062

10.0 0.26013 0.25976 0.26013 0.26049 0.26050 0.25976 0.26086

15.0 0.26021 0.25979 0.26021 0.26060 0.26062 0.25979 0.26100

20.0 0.26026 0.25980 0.26026 0.26066 0.26069 0.25980 0 .26109
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7. DUAL MESH CONTROL DOMAIN METHOD FOR BENDING ANALYSIS OF

FUNCTIONALLY GRADED PLATES ∗

7.1 Introduction

In this chapter we consider the bending analysis of functionally graded axisymmetric circular

plates and functionally graded rectangular plates. Dual mesh control domain formulations based

on both both classical plate theory and first-order shear deformation theory are considered for ax-

isymmetric circular plates while for rectangular plates only dual mesh control domain formulation

based on first-order shear deformation is considered. Two constituent through-thickness function-

ally graded plates, with power-law variation of modulus of elasticity while keeping the Poisson’s

ratio constant, are considered. If the z-coordinate is taken along the thickness of the plate then the

variation of Young’s modulus is then given by (see Reddy [85])

E(z) = (E1 − E2)f(z) + E2, f(z) =

(
1

2
+

z

H

)n
(7.1.1)

where E1 and E2 are the material properties of the top and bottom faces of the plate, respectively,

n is the power-law index, and H is the plate thickness. Note that when n = 0, we obtain the

single-material plate (with modulus E1).

7.2 Governing equations of functionally graded axisymmetric circular plates

Consider a through-thickness functionally graded circular plate of thickness H and radius R

subjected to axisymmetric distributed load q (i.e., independent of the angular coordinate, θ) on the

top face. If further, the boundary conditions are also selected to be axisymmetric, then the plate

can be considered as functionally graded axisymmetric circular plate. We select the cylindrical

∗Parts of this chapter are reprinted with permission from “Bending Analysis of Functionally Graded Axisymmetric
Circular Plates using the Dual Mesh Finite Domain Method,” by P. Nampally and J. N. Reddy, 2020, Latin American
Journal of Solids and Structures, vol. 17, no. 7, e302, Copyright (2020) Praneeth Nampally and “Bending analysis of
functionally graded rectangular plates using the dual mesh control domain method,” by P. Nampally, E. Ruocco, and
J. N. Reddy, 2021. International Journal for Computational Methods in Engineering Science and Mechanics, vol. 0,
no. 0, pp. 1–14, Copyright (2021) Taylor & Francis .
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coordinate system (r, θ, z) to analyze the plate, where r is the radial coordinate outward form the

center of the plate (0 ≤ r ≤ R), z denotes the transverse coordinate (−H/2 ≤ z ≤ H/2), and θ

is the angular coordinate (0 ≤ θ ≤ 2π) (see figure 7.1). The displacement field of such a circular

plate based on the first-order shear deformation plate theory (FSDT) are given by

ur(r, θ, z) = u(r) + zφ(r) (7.2.1a)

uθ(r, θ, z) = 0 (7.2.1b)

uz(r, θ, z) = w(r) (7.2.1c)

The non-zero linear strains based on the above displacements would then be

εrr =
du

dr
+ z

dφ

dr
(7.2.2a)

εθθ =
u

r
+
z

r
φ (7.2.2b)

εrz =
1

2

(
φ+

dw

dr

)
(7.2.2c)

while the constitutive relations of the functionally graded axisymmetric circular plate are given by


σrr

σθθ

σrz


=

E(z)

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




εrr

εθθ

εrz


(7.2.3)

146



z

r

dθ

θdr

q(r)

H/2

H/2

QθQr

Nrr
Mrr

Nrr + ∂Nrr
∂r

dr

Nθθ

Qθ

NθθMθθ

Mθθ

Qr + ∂Qr
∂r

dr

Mrr + ∂Mrr
∂r

dr

Figure 7.1: Schematic representation of the axisymmetric circular plate and various stress resul-
tants acting on a differential element of the axisymmetric circular plate [7].

We further define the stress and moment resultants on the circular plate (see figure 7.1) as

follows:

Nrr =

∫ H/2

−H/2
σrrdz = A

[
du

dr
+ ν

u

r

]
+B

[
dφ

dr
+
ν

r
φ

]
(7.2.4a)

Mrr =

∫ H/2

−H/2
σrrzdz = B

[
du

dr
+ ν

u

r

]
+D

[
dφ

dr
+
ν

r
φ

]
(7.2.4b)

Nθθ =

∫ H/2

−H/2
σθθdz = A

[
ν
du

dr
+
u

r

]
+B

[
ν
dφ

dr
+

1

r
φ

]
(7.2.4c)

Mθθ =

∫ H/2

−H/2
σθθzdz = B

[
ν
du

dr
+
u

r

]
+D

[
ν
dφ

dr
+

1

r
φ

]
(7.2.4d)

Qr =

∫ H/2

−H/2
σrzdz = S

(
φ+

dw

dr

)
(7.2.4e)

where

A =

∫ H/2

−H/2

E(z)

1− ν2
dz, B =

∫ H/2

−H/2

E(z)z

1− ν2
dz

D =

∫ H/2

−H/2

E(z)z2

1− ν2
dz, S =

∫ H/2

−H/2

KsE(z)

2(1 + ν)
dz

(7.2.5)

The explicit expressions of the above integrals for the power-law variation ofE(z) (see Eq. (7.1.1))
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are given as

A =
(E1 − E2)H

(n+ 1)(1− ν2)
+

E2H

1− ν2

B =
(E1 − E2)H2

1− ν2

[
1

n+ 2
− 1

2(n+ 1)

]
D =

(E1 − E2)H3

1− ν2

[
1

n+ 3
+

1

4(n+ 1)
− 1

n+ 2

]
+

E2H
3

12(1− ν2)

S =
Ks(E1 − E2)H

2(n+ 1)(1 + ν)
+
KsE2H

2(1 + ν)

(7.2.6)

The equations of equilibrium of the functionally graded (FG) axisymmetric circular plate can

be obtained using the principle of virtual work. The virtual work statement for FG axisymmetric

circular plate is

∫ 2π

0

∫ R

0

∫ H/2

−H/2
(σrrδεrr + σθθδεθθ + 2σrzδεrz) rdzdrdθ −

∫ 2π

0

∫ R

0

qδwrdrdθ = 0 (7.2.7)

Now using the stress and moment resultant definitions of Eqs. (7.2.4a)-(7.2.4e) and strain definition

of Eqs. (7.2.2a)-(7.2.2c) we can rewrite the virtual work statement as

∫ R

0

[
Nrr

(
dδu

dr

)
+Mrr

(
dδφ

dr

)
+
Nθθ

r
δu+

Mθθ

r
δφ+Qr

(
δφ+

dδw

dr

)
− qδw

]
rdr = 0

(7.2.8)

The governing differential equations of the FG axisymmetric circular plate are obtained by taking

the Euler-Lagrange equations of the above variational statement. The resulting governing equa-

tions read

−1

r

d

dr
(rNrr) +

Nθθ

r
= 0 (7.2.9)

−1

r

d

dr
(rQr)− q = 0 (7.2.10)

−1

r

[
d

dr
(rMrr)−Mθθ

]
+Qr = 0 (7.2.11)
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The governing equations derived above are based on the first-order shear deformation theory,

where the transverse shear strain is non-zero and assumes a constant value (and hence require the

shear correction factor, Ks in Eq. (7.2.5)). However, as the radius to thickness ratio of the circular

plate increases the shear strains are known to tend to zero. In such cases we may also use classical

plate theory (i.e., based on Kirchhoff hypothesis) to predict the plate behavior. To accommodate

zero transverse shear strains the value of φ in FSDT is taken to be−dw
dr

and hence the displacement

field of FG axisymmetric circular plate based on classical plate theory (CPT) would become

ur(r, θ, z) = u(r)− zdw
dr

(7.2.12a)

uθ(r, θ, z) = 0 (7.2.12b)

uz(r, θ, z) = w(r) (7.2.12c)

The stress and moment resultants on the FG axisymmetric circular plate based on the classical

plate theory would then be

Nrr =

∫ H/2

−H/2
σrrdz = A

[
du

dr
+ ν

u

r

]
−B

[
d2w

dr2
+
ν

r

dw

dr

]
(7.2.13a)

Mrr =

∫ H/2

−H/2
σrrzdz = B

[
du

dr
+ ν

u

r

]
−D

[
d2w

dr2
+
ν

r

dw

dr

]
(7.2.13b)

Nθθ =

∫ H/2

−H/2
σθθdz = A

[
ν
du

dr
+
u

r

]
−B

[
ν
d2w

dr2
+

1

r

dw

dr

]
(7.2.13c)

Mθθ =

∫ H/2

−H/2
σθθzdz = B

[
ν
du

dr
+
u

r

]
−D

[
ν
d2w

dr2
+

1

r

dw

dr

]
(7.2.13d)

In this case the transverse shear strain vanishes; however, the governing equations remain the same

as those listed in Eqs. (7.2.9)-(7.2.11) with the exception that the shear stress resultant Qr can only

be expressed in terms of the moments Mrr and Mθθ as given by Eq. (7.2.11) rather than directly

computing in terms of shear strain (which is zero in this case).

The governing differential equations of FG axisymmetric circular plate based on the FSDT can

be expressed in terms of the generalized displacements (u, w, φ) by substituting the expressions
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of stress and moment resultants of Eqs. (7.2.4a)-(7.2.4e) into Eqs. (7.2.9)-(7.2.11). The resulting

equations are listed below.

−1

r

d

dr

[
rA

(
du

dr
+ ν

u

r

)
+ rB

(
dφ

dr
+
ν

r
φ

)]
+
A

r

(
ν
du

dr
+
u

r

)
+
B

r

(
ν
dφ

dr
+

1

r
φ

)
= 0 (7.2.14)

− 1

r

d

dr

[
rS

(
φ+

dw

dr

)]
− q = 0 (7.2.15)

−1

r

d

dr

[
rB

(
du

dr
+ ν

u

r

)
+ rD

(
dφ

dr
+
ν

r
φ

)]
+
B

r

(
ν
du

dr
+
u

r

)
+
D

r

(
ν
dφ

dr
+

1

r
φ

)
+ S

(
φ+

dw

dr

)
= 0 (7.2.16)

Similarly, the governing differential equations of FG axisymmetric circular plate based on CPT

can be expressed in terms of the displacements u and w by first expressing Eq. (7.2.10) in terms of

moments Mrr and Mθθ using Eq. (7.2.11) as

−1

r

[
d

dr
(rMrr)−Mθθ

]
− q = 0 (7.2.17)

and then substituting the stress and moment resultants of Eqs. (7.2.13a)-(7.2.13d) into the above

equation and Eq. (7.2.9) to give

−1

r

d

dr

[
rA

(
du

dr
+ ν

u

r

)
− rB

(
d2w

dr2
+
ν

r

dw

dr

)]
+
A

r

(
ν
du

dr
+
u

r

)
− B

r

(
ν
d2w

dr2
+

1

r

dw

dr

)
= 0 (7.2.18)

−1

r

d

dr

[
d

dr

[
rB

(
du

dr
+ ν

u

r

)
− rD

(
d2w

dr2
+
ν

r

dw

dr

)]
−B

(
ν
du

dr
+
u

r

)
+D

(
ν
d2w

dr2
+

1

r

dw

dr

)]
− q = 0 (7.2.19)
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7.3 DMCDM for axisymmetric circular plates

In this section we will derive the dual mesh control domain equations of axisymmetric circular

plates based on classical plate theory and first-order shear deformation theory. Mixed dual mesh

control domain method is derived for classical plate theory and displacement dual mesh control

domain method is derived for first-order shear deformation theory.

7.3.1 Mixed DMCDM for axisymmetric circular plates based on classical plate theory

The governing equations FG axisymmetric circular plate based on the classical plate theory

when expressed in terms of the displacements, u and w, would result in fourth order differential

equations. However, since the dual mesh control domain method is applicable only for first-order

or second-order differential equations, we will recast the governing equations (7.2.9)-(7.2.11) as

second-order differential equations such that the primary variables of the resulting equations are

{u,w,Mrr}. First, we will consider the equations (7.2.13a) and (7.2.13b). From these two equa-

tions we can write an expression of Nrr in terms of u and Mrr. Similarly, Nθθ can be expressed

in terms of u and Mθθ using the equations (7.2.13c) and (7.2.13d). In the following we list the

resulting equations after some algebraic manipulations.

Nrr = A

(
du

dr
+ ν

u

r

)
+BMrr (7.3.1)

Nθθ = A

(
ν
du

dr
+
u

r

)
+BMθθ (7.3.2)

where

A =
D∗

D
=
AD −B2

D
, B =

B

D

To eliminate Mθθ from Eq. (7.3.2) we use Eq. (7.2.13b) and Eq. (7.2.13d) to obtain

Mθθ = νMrr +B(1− ν2)
u

r
− D(1− ν2)

r

dw

dr
(7.3.3)
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Thus Nθθ can be written as

Nθθ = A

(
ν
du

dr
+
u

r

)
+BνMrr +

B2(1− ν2)

D

u

r
− B(1− ν2)

r

dw

dr
(7.3.4)

Finally, Eq. (7.2.13b) can be expressed as

−
(
d2w

dr2
+
ν

r

dw

dr

)
+B

(
du

dr
+ ν

u

r

)
− 1

D
Mrr = 0 (7.3.5)

The governing equations of FG axisymmetric circular plate based on classical plate theory in

terms of {u,w,Mrr} would then be given by Eq. (7.2.9), Eq. (7.2.17) and Eq. (7.3.5); wherein the

expressions for Nrr, Nθθ and Mθθ are obtained from Eqs. (7.3.1), (7.3.4) and (7.3.3) respectively.

The resulting final equations are as follows:

−1

r

d

dr

[
rA

(
du

dr
+ ν

u

r

)
+ rBMrr

]
+
A

r

(
ν
du

dr
+
u

r

)
+
Bν

r
Mrr −

B(1− ν2)

r2

dw

dr
+
B2(1− ν2)

Dr2
u = 0 (7.3.6)

−1

r

d

dr

[
r
dMrr

dr
+ (1− ν)Mrr −

B(1− ν2)

r
u+

D(1− ν2)

r

dw

dr

]
− q = 0 (7.3.7)

−1

r

d

dr

(
r
dw

dr

)
+

(1− ν)

r

dw

dr
+B

(
du

dr
+ ν

u

r

)
− 1

D
Mrr = 0 (7.3.8)

As noted earlier, the dual mesh control domain method is only applicable to equations of sec-

ond order or less. Thus we develop dual mesh control domain formulation of the FG axisymmetric

circular plate based on classical plate theory using the governing equations (7.3.6)-(7.3.8). The

resulting formulation is called mixed dual mesh control domain method (see [10]) since the formu-

lation has both generalized displacements (u,w) and the moment (Mrr) as the primary variables.

This is similar to the mixed formulations of finite element method.
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Figure 7.2: Primal mesh (primal mesh elements) and dual mesh (control domains) on the compu-
tational domain [7].

To obtain the discretized equations, we consider the computational domain Ω = (0, R) and

divide it into N primal mesh elements (primal mesh) such that each node has its associated control

domain (dual mesh). Except for the control domains corresponding to the boundary nodes, all the

interior control domains encompass two primal mesh elements (primal mesh) such that one half of

each of these two primal mesh elements lie within the control domain (see figure 7.2). Thus, for a

uniform primal mesh the interior nodes lie at the center of their corresponding control domains.

The dependent variables are approximated on each primal mesh element using Lagrange inter-

polation functions (see figure 7.3). Although different sets of interpolation functions can be used

for different primary variables, in the present study we use same set of linear 1-D Lagrange interpo-

lation functions for all the primary variables. For a typical primal mesh element Ω
(I)
p = (rI , rI+1),

the primary variables can thus be approximated using the set of linear 1-D Lagrange interpolation

functions {ψ(I)
1 , ψ

(I)
2 } as

u(r) ≈ UIψ
(I)
1 (r) + UI+1ψ

(I)
2 (r),

w(r) ≈ WIψ
(I)
1 (r) +WI+1ψ

(I)
2 (r)

Mrr(r) ≈MrrIψ
(I)
1 (r) +MrrI+1

ψ
(I)
2 (r)

(7.3.9)

Here UI , WI , MrrI represent the values of u, w and Mrr respectively at node I , while UI+1, WI+1,

MrrI+1
represent the values of u, w andMrr respectively at node I+1. It should be noted that when
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Eq. (7.2.18) and Eq. (7.2.19) are used in developing finite element equations, a minimum of cubic

Hermite interpolation is needed on the transverse deflection w and linear Lagrange interpolation

is needed on u [93]. However, for the mixed formulations, akin to the one considered here, a

minimum of linear Lagrange interpolations on all the primary variables would suffice [10]. The

linear Lagrange interpolation functions ψ(I)
1 and ψ(I)

2 on a typical primal mesh element Ω
(I)
p are

given by

ψ
(I)
1 =

rI+1 − r
hI

, ψ
(I)
1 =

r − rI
hI

where hI = rI+1 − rI

I − 1 I + 1
I

ψ
(I−1)
1 ψ

(I−1)
2

ψ
(I)
1 ψ

(I)
2

UI−1

UI
UI+1

Ω
(I−1)
p Ω

(I)
p

Figure 7.3: Lagrange interpolation functions on the primal mesh elements Ω
(I−1)
p and Ω

(I)
p for

variable u [7].
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I − 1 I + 1

I

V
(I)
2

V
(I)
1

N
(I)
2N

(I)
1

Φ
(I)
2

Φ
(I)
1

Control Domain I

(UI ,WI ,MrrI )

Figure 7.4: A typical control domain for the mixed model of CPT with the secondary variables at
the faces and the primary variables at the node associated with the control domain [7].

Now we proceed to develop the discretized equations corresponding to Eqs. (7.3.6)-(7.3.8) by

writing their integral statements on a typical interior control domain (r
(I)
a , r

(I)
b ), associated with

node I (see figure 7.4).

∫ r
(I)
b

r
(I)
a

{
−1

r

d

dr

[
rA

(
du

dr
+ ν

u

r

)
+ rBMrr

]
+
A

r

(
ν
du

dr
+
u

r

)
+
Bν

r
Mrr −

B(1− ν2)

r2

dw

dr
+
B2(1− ν2)

Dr2
u

}
rdr = 0 (7.3.10)∫ r

(I)
b

r
(I)
a

{
−1

r

d

dr

[
d

dr
(rMrr)− νMrr −

B(1− ν2)

r
u+

D(1− ν2)

r

dw

dr

]
− q
}
rdr = 0 (7.3.11)∫ r

(I)
b

r
(I)
a

{
−
(
d2w

dr2
+
ν

r

dw

dr

)
+B

(
du

dr
+ ν

u

r

)
− 1

D
Mrr

}
rdr = 0 (7.3.12)

The first step in developing the discritized equations is to carry out the indicated integration

of Eqs. (7.3.10)-(7.3.12) such that the resulting boundary terms represent physically meaningful

secondary variables which are dual to the primary variables. Eqs. (7.3.10)-(7.3.12) after such
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integration are listed below.

−N (I)
1 −N

(I)
2 +

∫ r
(I)
b

r
(I)
a

{
A

r

(
ν
du

dr
+
u

r

)
+
Bν

r
Mrr

−B(1− ν2)

r2

dw

dr
+
B2(1− ν2)

Dr2
u

}
rdr = 0 (7.3.13)

−V (I)
1 − V (I)

2 −
∫ r

(I)
b

r
(I)
a

qrdr = 0 (7.3.14)

−Φ
(I)
1 − Φ

(I)
2 +

∫ r
(I)
b

r
(I)
a

{
1− ν
r

dw

dr
+B

(
du

dr
+
ν

r
u

)
− 1

D
Mrr

}
rdr = 0 (7.3.15)

In the above equations the secondary variables are defined as follows

N
(I)
1 = −

[
rA

(
du

dr
+
ν

r
u

)
+ rBMrr

]
r=r

(I)
a

(7.3.16a)

N
(I)
2 =

[
rA

(
du

dr
+
ν

r
u

)
+ rBMrr

]
r=r

(I)
b

(7.3.16b)

V
(I)

1 = −
[
d

dr
(rMrr)− νMrr −

B(1− ν2)

r
u+

D(1− ν2)

r

dw

dr

]
r=r

(I)
a

(7.3.17a)

V
(I)

2 =

[
d

dr
(rMrr)− νMrr −

B(1− ν2)

r
u+

D(1− ν2)

r

dw

dr

]
r=r

(I)
b

(7.3.17b)

Φ
(I)
1 =

[
−rdw

dr

]
r=r

(I)
a

(7.3.18a)

Φ
(I)
2 =

[
r
dw

dr

]
r=r

(I)
b

(7.3.18b)

Here (N (I)
1 , V (I)

1 , Φ
(I)
1 ) represent the axial force, shear force and rotation respectively at the

left face of the control domain numbered I (i.e., r = r
(I)
a ), while (N (I)

2 , V (I)
2 , Φ

(I)
2 ) represent axial

force, shear force and rotation respectively at right face of the control domain numbered I (i.e.,
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r = r
(I)
b ) (see figure 7.4). Since all the primary variables are approximated using linear Lagrange

interpolation functions on each finite element, the boundary terms given in Eqs. (7.3.16a)-(7.3.18b)

can be easily evaluated (see Appendix C), while the integrations of Eqs. (7.3.13)-(7.3.15) can be

either evaluated numerically (see, e.g., Gauss quadrature rule) or exactly. In the present study we

use Gauss quadrature to evaluate the integral expressions. Thus for an interior node I associated

with interior control domain numbered I the discretized equations would read

UI−1

[
−r

(I)
a AI−1

hI−1

+
AI−1νI−1

2
+

∫ rI

r
(I)
a

(
AI−1νI−1

dψ
(I−1)
1

dr
+
AI−1

r
ψ

(I−1)
1

+
B2
I−1(1− ν2

I−1)

rDI−1

ψ
(I−1)
1

)
dr

]
+WI−1

[∫ rI

r
(I)
a

(
BI−1(ν2

I−1 − 1)

r

dψ
(I−1)
1

dr

)
dr

]

+MrrI−1

[
r

(I)
a BI−1

2
+

∫ rI

r
(I)
a

(
BI−1νI−1ψ

(I−1)
1

)
dr

]
+ UI

[
r

(I)
a AI−1

hI−1

+
r

(I)
b AI
hI

−AIνI − AI−1νI−1

2
+

∫ rI

r
(I)
a

(
AI−1νI−1

dψ
(I−1)
2

dr
+
AI−1

r
ψ

(I−1)
2

)
dr

+

∫ r
(I)
b

rI

(
AIνI

dψ
(I)
1

dr
+
AI
r
ψ

(I)
1

)
dr +

∫ rI

r
(I)
a

(
B2
I−1(1− ν2

I−1)

rDI−1

ψ
(I−1)
2

)
dr

+

∫ r
(I)
b

rI

(
B2
I (1− ν2

I )

rDI

ψ
(I)
1

)
dr

]
+WI

[∫ rI

r
(I)
a

(
BI−1(ν2

I−1 − 1)

r

dψ
(I−1)
2

dr

)
dr

+

∫ r
(I)
b

rI

(
BI(ν

2
I − 1)

r

dψ
(I)
1

dr

)
dr

]
+MrrI

[∫ rI

r
(I)
a

(
BI−1νI−1ψ

(I−1)
2

)
dr

+

∫ r
(I)
b

rI

(
BIνIψ

(I)
1

)
dr − r

(I)
b BI − r(I)

a BI−1

2

]

+ UI+1

[
−r

(I)
b AI
hI

− AIνI
2

+

∫ r
(I)
b

rI

(
AIνI

dψ
(I)
2

dr
+
AI
r
ψ

(I)
2

)
dr

+

∫ r
(I)
b

rI

(
B2
I (1− ν2

I )

rDI

ψ
(I)
2

)
dr

]
+WI+1

[∫ r
(I)
b

rI

(
BI(ν

2
I − 1)

r

dψ
(I)
2

dr

)
dr

]

+MrrI+1

[∫ r
(I)
b

rI

(
BIνIψ

(I)
2

)
dr − r

(I)
b BI

2

]
= 0 (7.3.19)
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UI−1

[
−
BI−1(1− ν2

I−1)

2r
(I)
a

]
+WI−1

[
−
DI−1(1− ν2

I−1)

r
(I)
a hI−1

]
+MrrI−1

[
1

2
− r

(I)
a

hI−1

− νI−1

2

]

+ UI

[
BI(1− ν2

I )

2r
(I)
b

−
BI−1(1− ν2

I−1)

2r
(I)
a

]
+WI

[
DI−1(1− ν2

I−1)

r
(I)
a hI−1

+
DI(1− ν2

I )

r
(I)
b hI

]

+MrrI

[
r

(I)
a

hI−1

+
r

(I)
b

hI
+
νI − νI−1

2

]
+ UI+1

[
BI(1− ν2

I )

2r
(I)
b

]
+WI+1

[
−DI(1− ν2

I )

r
(I)
b hI

]

+MrrI+1

[
−1

2
− r

(I)
b

hI
+
νI
2

]
−
∫ r

(I)
b

r
(I)
a

qrdr = 0 (7.3.20)

UI−1

[∫ rI

r
(I)
a

(
BI−1r

dψ
(I−1)
1

dr
+BI−1νI−1ψ

(I−1)
1

)
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]
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(I)
a
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+
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(
(1− νI−1)
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]
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[∫ rI

r
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(
r

DI−1

ψ
(I−1)
1
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dr
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+ UI
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(
BI−1r

dψ
(I−1)
2

dr
+BI−1νI−1ψ
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2

)
dr

+

∫ r
(I)
b
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(
BIr

dψ
(I)
1

dr
+BIνIψ

(I)
1

)
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]
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[
r

(I)
a

hI−1

+
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dr

)
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+
r

(I)
b

hI
+

∫ r
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rI

(
(1− νI)

dψ
(I)
1

dr

)
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]
−MrrI

[∫ rI

r
(I)
a

(
r

DI−1

ψ
(I−1)
2

)
dr

+

∫ r
(I)
b

rI

(
r

DI

ψ
(I)
1

)
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]
+ UI+1

[∫ r
(I)
b

rI

(
BIr

dψ
(I)
2

dr
+BIνIψ

(I)
2

)
dr

]

+WI+1

[
−r

(I)
b

hI
+

∫ r
(I)
b

rI

(
(1− νI)

dψ
(I)
2
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)
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]
−MrrI+1

[∫ r
(I)
b

rI

(
r

DI

ψ
(I)
2

)
dr

]
= 0 (7.3.21)

In the above equations BI−1 represents the value of B in the primal mesh element Ω
(I−1)
p and

BI represents the value of B in the primal mesh element Ω
(I)
p . Similar meaning applies to other

coefficients A, ν, B and D.
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Figure 7.5: Secondary variables on the boundary control domains [7].

In a similar fashion, the discretized equations for the control domain 1 (see figure 7.5) would

be

−N (1)
1 + U1

[
A1(1− ν1)

2
+

∫ 0.5h1

0

(
A1ν1

dψ
(1)
1

dr
+
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dr
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dr
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]
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[∫ 0.5h1
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(
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0

B1ν1ψ
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]
= 0 (7.3.22)
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= 0 (7.3.24)
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Finally, the discretized equations on (N + 1)th control domain (see figure 7.5) would be

−N (N+1)
2 + UN

[
−(R− 0.5hN)AN
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This completes the mixed dual mesh control domain formulation of FG axisymmetric circular plate

based on CPT.

7.3.2 Displacement DMCDM for axisymmetric circular plates based FSDT

Since the governing differential equations of axisymmetric circular plate based on FSDT in

terms of generalized displacements are second-order differential equations, we can developed dual

mesh control domain method directly from the equations (7.2.14)-(7.2.16). The integral statements

of the governing equations on a typical interior control domain (r
(I)
a , r

(I)
b ), associated with node I ,

would be
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The indicated integration in the above equations is carried out such that the resulting boundary

terms constitute the secondary variable, dual to the primary variable of the equation considered.
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where

N
(I)
1 = −

[
rA

(
du

dr
+ ν

u

r

)
+ rB

(
dφ

dr
+
ν

r
φ

)]
r=r

(I)
a

(7.3.34a)

N
(I)
2 =

[
rA

(
du

dr
+ ν

u

r

)
+ rB

(
dφ

dr
+
ν

r
φ

)]
r=r

(I)
b

(7.3.34b)

V
(I)

1 =−
[
rS

(
φ+

dw

dr

)]
r=r

(I)
a

(7.3.35a)

V
(I)

2 =

[
rS

(
φ+

dw

dr

)]
r=r

(I)
b

(7.3.35b)

M
(I)
1 = −

[
rB

(
du

dr
+ ν

u

r

)
+ rD

(
dφ

dr
+
ν

r
φ

)]
r=r

(I)
a

(7.3.36a)

M
(I)
2 =

[
rB

(
du

dr
+ ν

u

r

)
+ rD

(
dφ

dr
+
ν

r
φ

)]
r=r

(I)
b

(7.3.36b)

162



Here (N (I)
1 , V (I)

1 , M (I)
1 ) represent the axial force, shear force and moment respectively at the

left face of the control domain numbered I (i.e., r = r
(I)
a ), while (N (I)

2 , V (I)
2 , M (I)

2 ) represent

axial force, shear force and moment respectively at right face of the control domain numbered I

(i.e., r = r
(I)
b ) (see figure 7.6). Assuming linear Lagrange interpolations of the primary variables

{u,w, φ} on the finite elements, Eqs. (7.3.31)-(7.3.33) on an interior control domain evaluate to

I − 1 I + 1

I

V
(I)
2

V
(I)
1

N
(I)
2N

(I)
1

M
(I)
2

M
(I)
1

Control Domain I

(UI ,WI , φI )

Figure 7.6: A typical control domain for the displacement model of FSDT with secondary variables
at the faces and the primary variables at the node associated with the control domain [7].
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UI−1

[
AI−1νI−1

2
− AI−1r

(I)
a

hI−1

+

∫ rI

r
(I)
a

AI−1

(
νI−1

dψ
(I−1)
1

dr
+
ψ

(I−1)
1

r

)
dr

]

+ φI−1

[
BI−1νI−1

2
− BI−1r

(I)
a

hI−1

+

∫ rI

r
(I)
a

BI−1

(
νI−1

dψ
(I−1)
1

dr
+
ψ

(I−1)
1

r

)
dr

]

+ UI

[
r

(I)
a AI−1

hI−1

+
r

(I)
b AI
hI

+
AI−1νI−1 − AIνI

2
+

∫ rI

r
(I)
a

AI−1

(
νI−1

dψ
(I−1)
2

dr
+
ψ

(I−1)
2

r

)
dr

+

∫ r
(I)
b

rI

AI

(
νI
dψ

(I)
1

dr
+
ψ

(I)
1

r

)
dr

]
+ φI

[
r

(I)
a BI−1

hI−1

+
r

(I)
b BI

hI
+
BI−1νI−1 −BIνI

2

+

∫ rI

r
(I)
a

BI−1

(
νI−1

dψ
(I−1)
2

dr
+
ψ

(I−1)
2

r

)
dr +

∫ r
(I)
b

rI

BI

(
νI
dψ

(I)
1

dr
+
ψ

(I)
1

r

)
dr

]

+ UI+1

[
−AIνI

2
− AIr

(I)
b

hI
+

∫ r
(I)
b

rI

AI

(
νI
dψ

(I)
2

dr
+
ψ

(I)
2

r

)
dr

]

+ φI+1

[
−BIνI

2
− BIr

(I)
b

hI
+

∫ r
(I)
b

rI

BI

(
νI
dψ

(I)
2

dr
+
ψ

(I)
2

r

)
dr

]
= 0 (7.3.37)

WI−1

[
−r

(I)
a SI−1

hI−1

]
+ φI−1

[
r

(I)
a SI−1

2

]
+WI

[
r

(I)
a SI−1

hI−1

+
r

(I)
b SI
hI

]

+ φI

[
r

(I)
a SI−1 − r(I)

b SI
2

]
+WI+1

[
−r

(I)
b SI
hI

]
+ φI+1

[
−r

(I)
b SI
2

]
−
∫ r

(I)
b

r
(I)
a

qrdr = 0 (7.3.38)
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UI−1

[
BI−1νI−1

2
− BI−1r

(I)
a

hI−1

+

∫ rI

r
(I)
a

BI−1

(
νI−1

dψ
(I−1)
1

dr
+
ψ

(I−1)
1

r

)
dr

]

+ φI−1

[
DI−1νI−1

2
− DI−1r

(I)
a

hI−1

+

∫ rI

r
(I)
a

DI−1

(
νI−1

dψ
(I−1)
1

dr
+
ψ

(I−1)
1

r

)
dr

]

+ UI

[
r

(I)
a BI−1

hI−1

+
r

(I)
b BI

hI
+
BI−1νI−1 −BIνI

2
+

∫ rI

r
(I)
a

BI−1

(
νI−1

dψ
(I−1)
2

dr
+
ψ

(I−1)
2

r

)
dr

+

∫ r
(I)
b

rI

BI

(
νI
dψ

(I)
1

dr
+
ψ

(I)
1

r

)
dr

]
+ φI

[
r

(I)
a DI−1

hI−1

+
r

(I)
b DI

hI
+
DI−1νI−1 −DIνI

2

+

∫ rI

r
(I)
a

DI−1

(
νI−1

dψ
(I−1)
2

dr
+
ψ

(I−1)
2

r

)
dr +

∫ r
(I)
b

rI

DI

(
νI
dψ

(I)
1

dr
+
ψ

(I)
1

r

)
dr

]

+ UI+1

[
−BIνI

2
− BIr

(I)
b

hI
+

∫ r
(I)
b

rI

BI

(
νI
dψ

(I)
2

dr
+
ψ

(I)
2

r

)
dr

]

+ φI+1

[
−DIνI

2
− DIr

(I)
b

hI
+

∫ r
(I)
b

rI

DI

(
νI
dψ

(I)
2

dr
+
ψ

(I)
2

r

)
dr

]

+

[∫ rI

r
(I)
a

SI−1r

2
dr

]
φI−1 +

[∫ rI

r
(I)
a

SI−1r

2
dr

]
φI +

[∫ r
(I)
b

rI

SIr

2
dr

]
φI

+

[∫ r
(I)
b

rI

SIr

2
dr

]
φI+1 +

[∫ rI

r
(I)
a

SI−1r
dψ

(I−1)
1

dr
dr

]
WI−1 +

[∫ rI

r
(I)
a

SI−1r
dψ

(I−1)
2

dr
dr

]
WI

+

[∫ r
(I)
b

rI

SIr
dψ

(I)
1

dr
dr

]
WI +

[∫ r
(I)
b

rI

SIr
dψ

(I)
2

dr
dr

]
WI+1 = 0 (7.3.39)

In evaluating Eq. (7.3.39), the coefficients of φ corresponding to the integral

∫ r
(I)
b

r
(I)
a

rS

(
φ+

dw

dr

)
dr

are evaluated by considering φ to be constant within each element. Thus in element Ω(I−1), φ =

φI+φI−1

2
while in the element Ω(I), φ = φI+1+φI

2
. This is done to remedy the shear locking (see

[93, 10]).
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Similarly, the discretized equations on 1st control domain would be

−N (1)
1 + U1

[
A1(1− ν1)

2
+

∫ 0.5h1

0

A1

(
ν1
dψ

(1)
1

dr
+
ψ

(1)
1

r

)
dr

]

+ φ1

[
B1(1− ν1)

2
+

∫ 0.5h1

0

B1

(
ν1
dψ

(1)
1

dr
+
ψ

(1)
1

r

)
dr

]

+ U2

[
−A1(1 + ν1)

2
+

∫ 0.5h1

0

A1

(
ν1
dψ

(1)
2

dr
+
ψ

(1)
2

r

)
dr

]

+ φ2

[
−B1(1 + ν1)

2
+

∫ 0.5h1

0

B1

(
ν1
dψ

(1)
2

dr
+
ψ

(1)
2

r

)
dr

]
= 0 (7.3.40)

−V (1)
1 +W1

[
S1

2

]
+ φ1

[
−h1S1

4

]
+W2

[
−S1

2

]
+ φ2

[
−h1S1

4

]
−
∫ 0.5h1

0

qrdr = 0 (7.3.41)

−M (1)
1 + U1

[
B1(1− ν1)

2
+

∫ 0.5h1

0

B1

(
ν1
dψ

(1)
1

dr
+
ψ

(1)
1

r

)
dr

]
+W1

[∫ 0.5h1

0

S1r
dψ

(1)
1

dr
dr

]

+ φ1

[
D1(1− ν1)

2
+

∫ 0.5h1

0

D1

(
ν1
dψ

(1)
1

dr
+
ψ

(1)
1

r

)
dr +

∫ 0.5h1

0

S1r

2
dr

]

+ U2

[
−B1(1 + ν1)

2
+

∫ 0.5h1

0

B1

(
ν1
dψ

(1)
2

dr
+
ψ

(1)
2

r

)
dr

]
+W2

[∫ 0.5h1

0

S1r
dψ

(1)
2

dr
dr

]

+ φ2

[
−D1(1 + ν1)

2
+

∫ 0.5h1

0

D1

(
ν1
dψ

(1)
2

dr
+
ψ

(1)
2

r

)
dr +

∫ 0.5h1

0

S1r

2
dr

]
= 0 (7.3.42)
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while the discretized equations on (N + 1)th control domain would be

−N (N+1)
2 + UN

[
ANνN

2
− AN(R− 0.5hN)

hN
+

∫ R

R−0.5hN

AN

(
νN
dψ

(N)
1

dr
+
ψ

(N)
1

r

)
dr

]

+ φN

[
BNνN

2
− BN(R− 0.5hN)

hN
+

∫ R

R−0.5hN

BN

(
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dψ

(N)
1

dr
+
ψ

(N)
1

r

)
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]
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AN(R− 0.5hN)

hN
+
ANνN

2
+

∫ R

R−0.5hN

AN

(
νN
dψ

(N)
2

dr
+
ψ

(N)
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)
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]

+ φN+1

[
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hN
+
BNνN

2
+

∫ R
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BN
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νN
dψ

(N)
2

dr
+
ψ

(N)
2

r

)
dr

]
= 0 (7.3.43)

−V (N+1)
2 +WN

[
−(R− 0.5hN)SN

hN

]
+ φN

[
(R− 0.5hN)SN

2

]
+WN+1

[
(R− 0.5hN)SN

hN

]
+ φN+1

[
(R− 0.5hN)SN

2

]
−
∫ R

R−0.5hN

q rdr = 0 (7.3.44)

−M (N+1)
2 + UN

[
BNνN

2
− BN(R− 0.5hN)

hN
+

∫ R

R−0.5hN

BN

(
νN
dψ

(N)
1

dr
+
ψ

(N)
1

r

)
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]

+ φN

[
DNνN

2
− DN(R− 0.5hN)
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+

∫ R

R−0.5hN
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νN
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1
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ψ
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]
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+
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+
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R−0.5hN
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(
νN
dψ

(N)
2

dr
+
ψ

(N)
2

r

)
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+ φN+1

[
DN(R− 0.5hN)

hN
+
DNνN

2
+

∫ R

R−0.5hN

DN

(
νN
dψ

(N)
2

dr
+
ψ

(N)
2

r

)
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]

+WN

[∫ R

R−0.5hN

SNr
dψ

(N)
1

dr
dr

]
+ φN

[∫ R

R−0.5hN

SNr

2
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]

+WN+1

[∫ R

R−0.5hN

SNr
dψ

(N)
2

dr
dr

]
+ φN+1

[∫ R

R−0.5hN

SNr

2
dr

]
= 0 (7.3.45)
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7.4 Governing equations functionally graded rectangular plates

x

z

y

Mid surface

Material gradation

L

W

H

Figure 7.7: Functionally graded rectangular plate with coordinate system [8].

Consider a through-thickness functionally graded rectangular plate of length L, width W and

height H . The coordinate system used for the analysis is shown in Fig. (7.7). The displacement

field of such a plate based on the first-order shear deformation theory (FSDT) is given by (see

[107])

u1(x, y, z) = u(x, y) + zφx(x, y) (7.4.1a)

u2(x, y, z) = v(x, y) + zφy(x, y) (7.4.1b)

u3(x, y, z) = w(x, y) (7.4.1c)
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The non-zero linear strains based on the above displacements would then be



εxx

εyy

γxz

γyz

γxy



=



ε0
xx

ε0
yy

γ0
xz

γ0
yz

γ0
xy



+ z



ε1
xx

ε1
yy

γ1
xz

γ1
yz

γ1
xy



=



∂u
∂x

∂v
∂y

φx + ∂w
∂x

φy + ∂w
∂y

∂u
∂y

+ ∂v
∂x



+ z



∂φx
∂x

∂φy
∂y

0

0

∂φx
∂y

+ ∂φy
∂x



(7.4.2)

while the constitutive relations of the functionally graded plate are given by



σxx

σyy

σxz

σyz

σxy



=
E(z)

1− ν2



1 ν 0 0 0

ν 1 0 0 0

0 0 1−ν
2

0 0

0 0 0 1−ν
2

0

0 0 0 0 1−ν
2





εxx

εyy

γxz

γyz

γxy



(7.4.3)
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Further, we define stress and moment resultants acting on the plate as follows:

Nxx =

∫ H/2

−H/2
σxxdz = A

[
∂u

∂x
+ ν

∂v

∂y

]
+B

[
∂φx
∂x

+ ν
∂φy
∂y

]
(7.4.4a)

Mxx =

∫ H/2

−H/2
σxxzdz = B

[
∂u

∂x
+ ν

∂v

∂y

]
+D

[
∂φx
∂x

+ ν
∂φy
∂y

]
(7.4.4b)

Nyy =

∫ H/2

−H/2
σyydz = A

[
ν
∂u

∂x
+
∂v

∂y

]
+B

[
ν
∂φx
∂x

+
∂φy
∂y

]
(7.4.4c)

Myy =

∫ H/2

−H/2
σyyzdz = B

[
ν
∂u

∂x
+
∂v

∂y

]
+D

[
ν
∂φx
∂x

+
∂φy
∂y

]
(7.4.4d)

Nxy =

∫ H/2

−H/2
σxydz =

A(1− ν)

2

[
∂u

∂y
+
∂v

∂x

]
+
B(1− ν)

2

[
∂φx
∂y

+
∂φy
∂x

]
(7.4.4e)

Mxy =

∫ H/2

−H/2
σxyzdz =

B(1− ν)

2

[
∂u

∂y
+
∂v

∂x

]
+
D(1− ν)

2

[
∂φx
∂y

+
∂φy
∂x

]
(7.4.4f)

Qx =

∫ H/2

−H/2
σxzdz = S

(
φx +

∂w

∂x

)
(7.4.4g)

Qy =

∫ H/2

−H/2
σyzdz = S

(
φy +

∂w

∂y

)
(7.4.4h)

where

A =

∫ H/2

−H/2

E(z)

1− ν2
dz, B =

∫ H/2

−H/2

E(z)z

1− ν2
dz

D =

∫ H/2

−H/2

E(z)z2

1− ν2
dz, S =

∫ H/2

−H/2

KsE(z)

2(1 + ν)
dz

(7.4.5)

The explicit expressions of the above integrals for the power-law variation ofE(z) (see Eq. (7.1.1))

are given in Eq. (7.2.6)

The equations of equilibrium of the functionally graded (FG) rectangular plate can be obtained

170



using the principle of virtual work [102]. The resulting governing equations are listed below.

∂Nxx

∂x
+
∂Nxy

∂y
+ fx = 0 (7.4.6)

∂Nxy

∂x
+
∂Nyy

∂y
+ fy = 0 (7.4.7)

∂Qx

∂x
+
∂Qy

∂y
+ q = 0 (7.4.8)

∂Mxx

∂x
+
∂Mxy

∂y
−Qx = 0 (7.4.9)

∂Mxy

∂x
+
∂Myy

∂y
−Qy = 0 (7.4.10)

The governing equations can be written in terms of displacements u, v, w and rotations φx, φy by

substituting the stress and moment resultants of Eqs. (7.4.4a)-(7.4.4h) into the Eqs. (7.4.6)-(7.4.10).

These are listed below.

∂

∂x

[
A

(
∂u

∂x
+ ν

∂v

∂y

)
+B

(
∂φx
∂x

+ ν
∂φy
∂y

)]
+
∂

∂y

[
A(1− ν)

2

(
∂u

∂y
+
∂v

∂x

)
+
B(1− ν)

2

(
∂φx
∂y

+
∂φy
∂x

)]
= 0 (7.4.11)

∂

∂x

[
A(1− ν)

2

(
∂u

∂y
+
∂v

∂x

)
+
B(1− ν)

2

(
∂φx
∂y

+
∂φy
∂x

)]
+
∂

∂y

[
A

(
ν
∂u

∂x
+
∂v

∂y

)
+B

(
ν
∂φx
∂x

+
∂φy
∂y

)]
= 0 (7.4.12)

∂

∂x

[
S

(
φx +

∂w

∂x

)]
+

∂

∂y

[
S

(
φy +

∂w

∂y

)]
+ q = 0 (7.4.13)

∂

∂y

[
B(1− ν)

2

(
∂u

∂y
+
∂v

∂x

)
+
D(1− ν)

2

(
∂φx
∂y

+
∂φy
∂x

)]
+
∂

∂x

[
B

(
∂u

∂x
+ ν

∂v

∂y

)
+D

(
∂φx
∂x

+ ν
∂φy
∂y

)]
− S

(
φx +

∂w

∂x

)
= 0 (7.4.14)

∂

∂x

[
B(1− ν)

2

(
∂u

∂y
+
∂v

∂x

)
+
D(1− ν)

2

(
∂φx
∂y

+
∂φy
∂x

)]
+
∂

∂y

[
B

(
ν
∂u

∂x
+
∂v

∂y

)
+D

(
ν
∂φx
∂x

+
∂φy
∂y

)]
− S

(
φy +

∂w

∂y

)
= 0 (7.4.15)
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The governing equations (7.4.6)-(7.2.10) are derived based on the first-order shear deformation

theory, where the transverse shear strain is non-zero and assumes a constant value throughout the

plate thickness (rather than as a parabolic function) and hence require the shear correction factor,

Ks in Eq. (7.2.6). For rectangular plates Ks = 5/6.

7.5 Displacement DMCDM for rectangular plates based on FSDT

1 2 3 N + 1N

N + 2

M(N + 1) + 1
(M + 1)(N + 1)

x
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P = (M − 1)N + 1
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Typical interior
control domain

Typical boundary
control domains

Typical boundary
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Typical boundary
control domains

. . . . . .

..
.

. .
.

Primal mesh
element N

Figure 7.8: Dark lines represent primal mesh while dotted line represents dual mesh. Dark cir-
cles are the nodes of the mesh. Typical control domains are represented by shaded regions. The
boundaries of control domains which coincide with the boundary of the computational domain are
highlighted in red [8].

Fig. 7.8 shows a rectangular domain discretized by N × M primal mesh elements (i.e., N

elements along x-axis and M elements along y-axis). On a typical primal mesh element Ω
(e)
p (here

superscript e represents the number assigned to a particular primal mesh element) of the primal

mesh, the dependent variables are approximated using bilinear Lagrange interpolation functions.

For a local coordinate system of (x, y) within each primal mesh element Ω
(e)
p (see Fig. 7.9b), a
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dependent variable, say u, can be approximated as follows:

u(x, y) ≈
4∑
j=1

u
(e)
j ψ

(e)
j (x, y), x = x− x(e)

1 , y = y − y(e)
1 (7.5.1)

where u(e)
j denote the unknown values of the variable u at the element nodes and (x

(e)
1 , y

(e)
1 ) are

the global coordinates of local node number 1 of element Ω
(e)
p . ψ

(e)
j are the bilinear Lagrange

interpolation functions [93] associated with the element and are given by

ψ
(e)
1 =

(
1− x

ae

)(
1− y

be

)
ψ

(e)
2 =

x

ae

(
1− y

be

)
ψ

(e)
3 =

x

ae

y

be
, ψ

(e)
4 =

(
1− x

ae

)
y

be

(7.5.2)

Here ae and be represent the horizontal and vertical dimensions of a typical rectangular primal mesh

element Ω
(e)
p respectively. If additional dependent variables are present, they can be approximated

in a similar manner on each primal mesh element. In the present work we use same set of bilinear

Lagrange interpolation functions in approximating all the dependent variables on a given element.

The displacement dual mesh control domain method of first order shear deformation plate

theory is developed using Eqs. (7.4.6)-(7.4.10). The primary variables of such formulation are the

displacements (u, v, w) and rotations (φx, φy), together called generalized displacements. The first

step in developing the dual mesh control domain formulation is to write the integral statements

of the governing equations (7.4.6)-(7.4.10) on a typical interior control domain, Ω
(I)
CD, centered

around node I .
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Figure 7.9: (a) Control domain of typical interior node I along with the contributing primal mesh
elements. (b) Local coordinate system for a typical primal mesh element Ω

(e)
p . The node numbers

in circles are global while node numbers outside circles are local to the element [8].

−
∫

Ω
(I)
CD

{
∂Nxx

∂x
+
∂Nxy

∂y
+ fx

}
dxdy = 0

−
∫

Ω
(I)
CD

{
∂Nxy

∂x
+
∂Nyy

∂y
+ fy

}
dxdy = 0

−
∫

Ω
(I)
CD

{
∂Qx

∂x
+
∂Qy

∂y
+ q

}
dxdy = 0

−
∫

Ω
(I)
CD

{
∂Mxx

∂x
+
∂Mxy

∂y
−Qx

}
dxdy = 0

−
∫

Ω
(I)
CD

{
∂Mxy

∂x
+
∂Myy

∂y
−Qy

}
dxdy = 0

(7.5.3)

The next step is to evaluate the integrals in the above equations such that the resulting boundary

terms on the boundary of the control domain Γ
(I)
CD (see Fig. 7.9a), represent physically meaningful

secondary variables which are dual to the primary variables. Thus we arrive at the following
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equations:

−
∮

Γ
(I)
CD

[Nxxnx +Nxyny] ds−
∫

Ω
(I)
CD

fxdxdy = 0 (7.5.4)

−
∮

Γ
(I)
CD

[Nxynx +Nyyny] ds−
∫

Ω
(I)
CD

fydxdy = 0 (7.5.5)

−
∮

Γ
(I)
CD

[Qxnx +Qyny] ds−
∫

Ω
(I)
CD

qdxdy = 0 (7.5.6)

−
∮

Γ
(I)
CD

[Mxxnx +Mxyny] ds+

∫
Ω

(I)
CD

Qxdxdy = 0 (7.5.7)

−
∮

Γ
(I)
CD

[Mxynx +Myyny] ds+

∫
Ω

(I)
CD

Qydxdy = 0 (7.5.8)

Further, the stress and moment resultants can be expressed in terms of the displacements and

rotations using Eqs. (7.4.4a)-(7.4.4h). Since the control domain spans four different primal mesh

elements and since the interpolation functions change from one primal mesh element to the other,

each of the above integrals should be broken into four parts with each part corresponding to differ-

ent primal mesh element that contributes to the control domain. For example, consider Eq. (7.5.4)

for a uniform primal mesh (i.e., all primal mesh elements are of same size a× b). Eq. (7.5.4) when

evaluated on the part of the control domain Ω
(I)
CD which lies inside the primal mesh element Ω

(e)
p

(see Fig. (7.9a)) can be written as follows:


∫ a

0.5a

[
A(1− ν)

2

∂ψ
(e)
i

∂y

]
y=0.5b

dx+

∫ b

0.5b

[
A
∂ψ

(e)
i

∂x

]
x=0.5a

dy

u
(e)
i

+


∫ a

0.5a

[
A(1− ν)

2

∂ψ
(e)
i

∂x

]
y=0.5b

dx+

∫ b

0.5b

[
Aν

∂ψ
(e)
i

∂y

]
x=0.5a

dy

 v
(e)
i

+


∫ a

0.5a

[
B(1− ν)

2

∂ψ
(e)
i

∂y

]
y=0.5b

dx+

∫ b

0.5b

[
B
∂ψ

(e)
i

∂x

]
x=0.5a

dy

φ(e)
xi

+


∫ a

0.5a

[
B(1− ν)

2

∂ψ
(e)
i

∂x

]
y=0.5b

dx+

∫ b

0.5b

[
Bν

∂ψ
(e)
i

∂y

]
x=0.5a

dy

φ(e)
yi

=

∫ a

0.5a

∫ b

0.5b

fx(x, y)dxdy

(7.5.9)
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where u(e)
i , v

(e)
i , φ

(e)
xi , φ

(e)
yi represent the nodal values of u, v, φx and φy respectively of primal mesh

element Ω
(e)
p and i = {1, 2, 3, 4} with summation on repeated index implied.

Similarly, Eq. (7.5.4) when evaluated on the part of the control domain which lies inside the

primal mesh element Ω
(f)
p can be written as


∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(f)
i

∂y

]
y=0.5b

dx−
∫ b

0.5b

[
A
∂ψ

(f)
i

∂x

]
x=0.5a

dy

u
(f)
i

+


∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(f)
i

∂x

]
y=0.5b

dx−
∫ b

0.5b

[
Aν

∂ψ
(f)
i

∂y

]
x=0.5a

dy

 v
(f)
i

+


∫ 0.5a

0

[
B(1− ν)

2

∂ψ
(f)
i

∂y

]
y=0.5b

dx−
∫ b

0.5b

[
B
∂ψ

(f)
i

∂x

]
x=0.5a

dy

φ(f)
xi

+


∫ 0.5a

0

[
B(1− ν)

2

∂ψ
(f)
i

∂x

]
y=0.5b

dx−
∫ b

0.5b

[
Bν

∂ψ
(f)
i

∂y

]
x=0.5a

dy

φ(f)
yi

=

∫ 0.5a

0

∫ b

0.5b

fx(x, y)dxdy

(7.5.10)

For the part of the control domain which lies inside primal mesh element Ω
(g)
p we have

−
∫ a

0.5a

[
A(1− ν)

2

∂ψ
(g)
i

∂y

]
y=0.5b

dx+

∫ 0.5b

0

[
A
∂ψ

(g)
i

∂x

]
x=0.5a

dy

u
(g)
i

+

−
∫ a

0.5a

[
A(1− ν)

2

∂ψ
(g)
i

∂x

]
y=0.5b

dx+

∫ 0.5b

0

[
Aν

∂ψ
(g)
i

∂y

]
x=0.5a

dy

 v
(g)
i

+

−
∫ a

0.5a

[
B(1− ν)

2

∂ψ
(g)
i

∂y

]
y=0.5b

dx+

∫ 0.5b

0

[
B
∂ψ

(g)
i

∂x

]
x=0.5a

dy

φ(g)
xi

+

−
∫ a

0.5a

[
B(1− ν)

2

∂ψ
(g)
i

∂x

]
y=0.5b

dx+

∫ 0.5b

0

[
Bν

∂ψ
(g)
i

∂y

]
x=0.5a

dy

φ(g)
yi

=

∫ a

0.5a

∫ 0.5b

0

fx(x, y)dxdy

(7.5.11)

Finally, Eq. (7.5.4) when evaluated on the part of the control domain Ω
(I)
CD which lies inside the
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primal mesh element Ω
(h)
p will be

−
∫ 0.5b

0

[
A
∂ψ

(h)
i

∂x

]
x=0.5a

dy −
∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(h)
i

∂y

]
y=0.5b

dx

u
(h)
i

+

−
∫ 0.5b

0

[
Aν

∂ψ
(h)
i

∂y

]
x=0.5a

dy −
∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(h)
i

∂x

]
y=0.5b

dx

 v
(h)
i

+

−
∫ 0.5b

0

[
B
∂ψ

(h)
i

∂x

]
x=0.5a

dy −
∫ 0.5a

0

[
B(1− ν)

2

∂ψ
(h)
i

∂y

]
y=0.5b

dx

φ(h)
xi

+

−
∫ 0.5b

0

[
Aν

∂ψ
(h)
i

∂y

]
x=0.5a

dy −
∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(h)
i

∂x

]
y=0.5b

dx

φ(h)
yi

=

∫ 0.5a

0

∫ 0.5b

0

fx(x, y)dxdy

(7.5.12)

Note that

u
(e)
1 = UE, u

(e)
2 = u

(f)
1 = UF , u

(f)
2 = UG, u

(e)
4 = u

((g))
1 = UH

u
(e)
3 = u

(f)
4 = u

(g)
2 = u

(h)
1 = UI , u

(f)
3 = u

(h)
2 = UJ , u

(g)
4 = UK

u
(g)
3 = u

(h)
4 = UL, u

(h)
3 = UM

where UE , UF , . . . are the nodal values of displacement u, numbered with global node numbers.

Similar relations hold for other primary variables as well. Using these continuity relations we

can obtain the final discretized equation corresponding to Eq. (7.5.4) by adding the Eq. (7.5.9)–

Eq. (7.5.12) which can be written in following form
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K11UE +K12VE +K14ΦxE +K15ΦyE +K16UF +K17VF +K19ΦxF +K1(10)ΦyF

+K1(11)UG +K1(12)VG +K1(14)ΦxG +K1(15)ΦyG +K1(16)UH +K1(17)VH +K1(19)ΦxH +K1(20)ΦyH

+K1(21)UI +K1(22)VI +K1(24)ΦxI +K1(25)ΦyI +K1(26)UJ +K1(27)VJ +K1(29)ΦxJ +K1(30)ΦyJ

+K1(31)UK +K1(32)VK +K1(34)ΦxK +K1(35)ΦyK +K1(36)UL +K1(37)VL +K1(39)ΦxL +K1(40)ΦyL

+K1(41)UM +K1(42)VM +K1(44)ΦxM +K1(45)ΦyM = F (e)
xI

+ F (f)
xI

+ F (g)
xI

+ F (h)
xI

(7.5.13)

The coefficients of Kij are obtained after adding the equations (7.5.9)-(7.5.12) and factoring out

the nodal values. Similar discretized equations can be written for Eqs. (7.5.5)-(7.5.8).

x

y

1 2

34

Ω
(1)
CD

Ω
(1)
p

1 2

N + 3N + 2

Γ
(1)
CD

Figure 7.10: Control volume corresponding to global node 1. The numbers in the circle are local
node numbers of primal mesh element Ω

(1)
p while the numbers outside are global node numbers

[8].

Eq. (7.5.13) was derived for a control domain corresponding to an interior node. Now we will
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consider the discretization of Eq. (7.5.4) on a control domain corresponding to a boundary node.

Consider the control domain corresponding to node 1 as shown in Fig. 7.10. Eq. (7.5.4) on this

control domain can be written as

∫ 0.5a

0

[Nxy]y=0 dx−
∫ 0.5b

0

[Nxx]x=0.5a dy −
∫ 0.5a

0

[Nxy]y=0.5b dx

+

∫ 0.5b

0

[Nxx]x=0 dy =

∫ 0.5a

0

∫ 0.5b

0

fxdxdy (7.5.14)

However, we note that the boundary of the control domain represented in red in Fig. 7.10 coin-

cides with the boundary of the computational domain. Since on the boundary of the computational

domain we either know the primary variable or the corresponding dual variable because of their

duality, we shall not write the integrals on those boundaries of the control domain which coin-

cide with the boundary of the computational domain in terms of the primary variables. Hence,

Eq. (7.5.4) will take the form

−
∫ 0.5b

0

[
A
∂ψ

(1)
i

∂x

]
x=0.5a

dy −
∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(1)
i

∂y

]
y=0.5b

dx

u
(1)
i

+

−
∫ 0.5b

0

[
Aν

∂ψ
(1)
i

∂y

]
x=0.5a

dy −
∫ 0.5a

0

[
A(1− ν)

2

∂ψ
(1)
i

∂x

]
y=0.5b

dx

 v
(1)
i

+

−
∫ 0.5b

0

[
B
∂ψ

(1)
i

∂x

]
x=0.5a

dy −
∫ 0.5a

0

[
B(1− ν)

2

∂ψ
(1)
i

∂y

]
y=0.5b

dx

φ(1)
xi

+

−
∫ 0.5b

0

[
Bν

∂ψ
(1)
i

∂y

]
x=0.5a

dy −
∫ 0.5a

0

[
B(1− ν)

2

∂ψ
(1)
i

∂x

]
y=0.5b

dx

φ(1)
yi

=

∫ 0.5a

0

∫ 0.5b

0

fx(x, y)dxdy −
∫ 0.5a

0

[Nxy]y=0 dx−
∫ 0.5b

0

[Nxx]x=0 dy (7.5.15)

Here u(1)
i , v

(1)
i , φ

(1)
xi , φ

(1)
yi represent the nodal values of u, v, φx and φy respectively of primal mesh

element Ω
(1)
p and i = {1, 2, 3, 4} with summation on repeated index implied.

The line integrals on the right hand side of Eq. (7.3.13) represent the secondary variables dual

to the primary variable u on the boundary. For a given boundary value problem, we either know
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the value of u on the boundary or its dual. Hence, when u is known on the boundary the stress

resultants on the boundary can be computed using Eq. (7.3.13). Conversely, when the stress resul-

tants (secondary variable) is specified on the boundary, Eq. (7.3.13) is used to calculate u on the

boundary. Similar procedure holds for the all the control domains which share boundary with the

boundary of the computational domain. Fig. 7.8 shows such possible boundary control domains

for a rectangular computational domain discretized with rectangular primal mesh elements.

7.5.1 Shear locking

It is well known that in the thin plate limit the displacement based finite element models of first

order shear deformation theory tend to under predict the deflection when linear interpolations on

the all the primary variables is used. Such a phenomenon is called shear locking in finite element

literature (see [108, 109]). Since we are using bilinear Lagrange interpolation functions for all the

primary variables in developing dual mesh control domain formulations of plate, such a locking

phenomenon occurs even in displacement dual mesh control domain method. In finite element

methods, shear locking is eliminated using reduced integration technique in evaluating the integrals

which correspond to the shear stress terms (called selective reduced integration). This is equivalent

to considering the shear terms
(
φx + ∂w

∂x

)
and

(
φy + ∂w

∂y

)
to be constant when calculating the finite

element equations. We shall use the same technique to overcome shear locking in dual mesh control

domain method as well (see [7, 10, 112, 113]). Thus in evaluating the following integrals, the shear

terms
(
φx + ∂w

∂x

)
and

(
φy + ∂w

∂y

)
are considered to be constant within each primal mesh element

−
∮

Γ
(I)
CD

[Qxnx +Qyny] ds,

∫
Ω

(I)
CD

Qxdxdy,

∫
Ω

(I)
CD

Qydxdy (7.5.16)

The value of the constant is taken to be the value of the shear term a the center of the primal
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mesh element. For example, consider the integral

∫
Ω

(I)
CD

Qxdxdy =

∫ xI

xI−0.5a

∫ yI

yI−0.5b

S

(
φx +

∂w

∂x

)
dxdy +

∫ xI+0.5a

xI

∫ yI

yI−0.5b

S

(
φx +

∂w

∂x

)
dxdy

+

∫ xI

xI−0.5a

∫ yI+0.5b

yI

S

(
φx +

∂w

∂x

)
dxdy +

∫ xI+0.5a

xI

∫ yI+0.5b

yI

S

(
φx +

∂w

∂x

)
dxdy

=

[∫ a

0.5a

∫ b

0.5b

S

4
dxdy

] 4∑
j=1

φ(e)
xj

+

∫ a

0.5a

∫ b

0.5b

[
S
∂ψ

(e)
i

∂x

]
(0.5a,0.5b)

dxdy

w(e)
i

+

[∫ 0.5a

0

∫ b

0.5b

S

4
dxdy

] 4∑
j=1

φ(f)
xj

+

∫ 0.5a

0

∫ b

0.5b

[
S
∂ψ

(f)
i

∂x

]
(0.5a,0.5b)

dxdy

w(f)
i

+

[∫ a

0.5a

∫ 0.5b

0

S

4
dxdy
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i
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dxdy
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i

+
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0
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0

S

4
dxdy
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j=1

φ(h)
xj

+
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0
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0

[
S
∂ψ

(h)
i

∂x

]
(0.5a,0.5b)

dxdy

w(h)
i

(7.5.17)

where i = {1, 2, 3, 4} and summation on repeated index is implied. Similarly, we have

−
∮

Γ
(I)
CD

Qxnxds =
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S

4

]
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i
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]
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4
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]
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i

∂x

]
(0.5a,0.5b)

dy

w(g)
i

−
[∫ 0.5b

0

[
S

4

]
dy

] 4∑
j=1

φ(h)
xj
−

∫ 0.5b

0

[
S
∂ψ

(h)
i

∂x

]
(0.5a,0.5b)

dy

w(h)
i

(7.5.18)

This completes the displacement dual mesh control domain formulation for first order shear defor-

mation theory of rectangular plates.
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7.6 Numerical examples

7.6.1 Axisymmetric circular plates

To illustrate the workings of the dual mesh finite domain models presented in the previous sec-

tions, we consider two cases: (a) hinged (or simply supported) and (b) clamped functionally graded

circular plates, subjected to uniformly distributed load of intensity q. A comparison between the

numerical results obtained with FEM and DMFDM models for each case considered is presented.

There are three models of FE and two models of DMFD, as summarized below:

• FE-CP(D) - Displacement finite element model for CPT

• FE-CP(M) - Mixed finite element model for CPT

• FE-FP(D) - Displacement finite element model for FST

• DM-CP(M) - Mixed dual mesh finite domain model for CPT

• DM-FP(D) - Displacement dual mesh finite domain model for FST

We investigate the effect of mesh and power-law index n on the deflections and stresses. We

consider a functionally graded circular plate of radius R = 10 in, thickness H = 0.1 in and

subjected to axisymmetric uniformly distributed load intensity q = 0.5 lb/in2. The functionally

graded material properties are taken to be E1 = 3× 107 psi, E2 = 3× 106 psi, and ν = 0.3.

The stresses and stress resultants can be post-computed in the numerical models described. For

the displacement models, once the generalized displacements are obtained, their derivatives can be

easily determined. Then the stresses can be directly computed from the constitutive relations of

Eq. (7.2.3), while the stress resultants and moments can be computed using Eqs. (7.2.4a)-(7.2.4e)

or Eqs. (7.2.13a)-(7.2.13d) depending on whether FST is used or CPT is used. For the mixed

models, the second derivative of the transverse deflection needs to be calculated from the moment

Mrr, which is determined as a nodal variable in mixed models. The second derivative of transverse
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deflection w can be obtained from the following equation:

d2w

dr2
= −ν

r

dw

dr
+B

(
du

dr
+ ν

u

r

)
− 1

D
Mrr (7.6.1)

The stress resultants can be computed using Eqs. (7.3.1) and (7.3.4) and the stresses can be com-

puted using Eq. (7.2.3).

7.6.1.1 Hinged plates

The boundary conditions for the primary variables of hinged axisymmetric circular plate in

various models are as follows:

Displacement models: u(0) = 0,
dw

dr
(0) or φ(0) = 0, u(R) = w(R) = 0 (7.6.2)

Mixed models: u(0) = 0, u(R) = w(R) = M(R) = 0 (7.6.3)

A comparison between the transverse deflections at the center of a hinged homogeneous cir-

cular plate obtained from various models is presented in Table 7.1. When 32 elements are used,

all models give the same results as the exact solution (see [107, 114]) up to the fourth decimal

point. The mixed finite element model has a slow mesh convergence rate at the origin for trans-

verse deflection, w, and hence a non-uniform finite element mesh with a finer mesh at the origin is

used in reporting the values of w(0). The non-uniform mesh is chosen such that for two element

mesh, the lengths of the elements are in ratio 1:9, with the shortest element being at origin. All the

subsequent refinements are made by breaking the finite elements into half. Thus for four element

mesh the element lengths would be {0.5R, 0.5R, 4.5R, 4.5R} and further refinement is made by

breaking these elements into their halves and so on. Since the radius to thickness ratioR/H = 100,

both classical plate theory and first order shear deformation theory predict the same results.

Figure 7.11(a) contains a comparison of the moment, Mrr, obtained from displacement and

mixed finite element models and mixed dual mesh finite domain model of the CPT when a uni-

form mesh of 32 elements is used, while Fig. 7.11(b) includes a comparison of the moment, Mrr,
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obtained from displacement finite element model and displacement dual mesh finite domain model

of the FST when a uniform mesh of 32 elements is used. While the moments obtained from all the

models are very close, the mixed finite element model and mixed dual mesh finite domain model

deviate from the displacement finite element model at the origin (r = 0). Both mixed models (i.e.,

mixed FEM and mixed DMFDM models) are prone to give erroneous moments at the origin. It

should be noted that this anomalous behavior at the origin is not a characteristic of the dual mesh

finite domain method; both the mixed finite element model and mixed dual mesh finite domain

model exhibit such behavior. However, the displacements models do not exhibit such a behavior.

Table 7.1: Center transverse deflection, w(0), of hinged homogeneous axisymmetric circular plate
as predicted by various models. The results are given in inches [7].

Mesh FE-CP(D) FE-CP(M) FE-FP(D) DM-CP(M) DM-FP(D)

2 0.1159 0.1120 0.1076 0.1149 0.1052

4 0.1159 0.1136 0.1143 0.1156 0.1134

8 0.1159 0.1155 0.1156 0.1158 0.1153

16 0.1159 0.1159 0.1159 0.1159 0.1158

32 0.1159 0.1159 0.1159 0.1159 0.1159

64 0.1159 0.1159 0.1159 0.1159 0.1159

Exact 0.1159 0.1159 0.1159 0.1159 0.1159

184



0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
r
r

[lb
]

r
R

a

FE-CP(D)

FE-CP(M)

DM-CP(M)

M
r
r

[lb
]

r
R

b

FE-FP(D)

DM-FP(D)

Figure 7.11: Moment of hinged homogeneous circular plate as predicted by various models. (a)
Numerical models based on the CPT. (b) Numerical models based on the FST [7].

7.6.1.2 Clamped plates

The boundary conditions on the primary variables of clamped axisymmetric circular plate in

various models are as follows:

Displacement models: u(0) = 0,
dw

dr
(0) or φ(0) = 0,

u(R) = w(R) = 0,
dw

dr
(R) or φ(R) = 0 (7.6.4)

Mixed models: u(0) = 0, u(R) = w(R) = 0 (7.6.5)

A comparison of the stress values, σrr, on the top face of the clamped homogeneous circular

plate as predicted by various numerical models based on CPT with the analytical solution [107]

are presented in Fig. 7.12. Although all the models are in good agreement with the analytical

solution for most part of the computational domain, the mixed models (i.e., mixed FEM model and

mixed DMCDM model) deviate from the analytical solution at and very close to the origin. This

is due to the erroneous prediction of moment Mrr near the origin by the mixed models. Further,
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Fig. 7.13 contains a comparison of stress σrr on the top face of clamped homogeneous circular

plate as predicted by various numerical models based on the FST with that of the analytical solution

[107, 114]. Since both the finite element model and dual mesh finite domain model of the FST are

displacement based, the stress values are in good agreement with the analytical solution through

out the computational domain.

Finally, to illustrate the working of the dual mesh finite domain method in analyzing the func-

tionally graded axisymmetric circular plates, we compare the transverse deflection at the center,

w(0), from the analytical solution of the CPT [115] with the transverse deflections obtained from

various models described earlier. Various values of the power law index, n, are considered to

bring out the effect of n on the bending deflections of the plate. Table 7.2 contains a comparison

between the various models with that of the analytical solution (of the FST). For this thin plate

(R/H = 100), both the CPT and the FST predict solutions close to each other [107]; 32 elements

are used for the results reported in Table 7.2. Uniform mesh is used in all models except for the

mixed FEM model of the CPT. A non-uniform mesh described earlier is used for FE-CP(M) to

achieve faster mesh convergence. It can be seen that as the power-law index, n, increases the plate

stiffness decreases (since plate material tends toward E2 < E1).
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Figure 7.12: Values of σrr(r,H/2) as predicted by various models based on the CPT; comparison
with the exact solution [7].
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Figure 7.13: Values of σrr(r,H/2) as predicted by various models based on the FSDT; comparison
with the exact solution [7].
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Table 7.2: Center transverse deflection, w(0), of a clamped FGM axisymmetric circular plate for
various values of n, as predicted by various models; 32 elements are used in all the models. The
results are given in inches [7].

n FE-CP(D) FE-CP(M) DM-CP(M) FE-FP(D) DM-FP(D) FST Exact

0.0 0.0284 0.0285 0.0284 0.0285 0.0284 0.0284

1.0 0.0665 0.0666 0.0665 0.0666 0.0665 0.0666

2.0 0.0976 0.0976 0.0975 0.0977 0.0976 0.0976

3.0 0.1152 0.1152 0.1151 0.1153 0.1152 0.1152

4.0 0.1244 0.1244 0.1242 0.1245 0.1244 0.1244

5.0 0.1296 0.1296 0.1294 0.1297 0.1296 0.1296

7.5 0.1370 0.1370 0.1369 0.1371 0.1370 0.1370

10.0 0.1425 0.1425 0.1424 0.1426 0.1425 0.1425

12.0 0.1467 0.1467 0.1466 0.1468 0.1469 0.1467

15.0 0.1527 0.1528 0.1527 0.1529 0.1527 0.1523

20.0 0.1622 0.1622 0.1621 0.1623 0.1622 0.1622
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Figure 7.14: Center deflections w(0) of clamped functionally graded circular plates [7].

7.6.2 Rectangular plates

Consider a functionally graded plate of length L = 1 in (25.4 mm), width W = 1 in (25.4

mm) and thickness H = 0.01 in (0.254 mm). The material properties of the functionally graded

material are taken as

E1 = 3× 107 psi (206.84 GPa), E2 = 3× 106 psi (20.68 GPa), ν = 0.3 (7.6.6)

The plate is subjected to a uniformly distributed load of q = 1 lb/in2 (0.00689 N/mm2) on the top

surface. We consider two different boundary conditions: (a) clamped and (b) simply-supported.

Since the loading and boundary conditions result in symmetry about x and y axes, we shall con-

sider only the quarter plate in the first quadrant as the computational domain (see Fig. 7.15). The

boundary conditions on the computational domain are then given by
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• Clamped

u = φx = 0 at x = 0; v = φy = 0 at at y = 0

u = v = w = φx = φy = 0 at x = L/2 and y = W/2

• Simply-supported

u = φx = 0 at x = 0; v = φy = 0 at at y = 0

v = w = φy = 0 at x = L/2; u = w = φx = 0 at y = W/2

x

Computational

Domain

y

L

W

Figure 7.15: Functionally graded square plate along with the chosen coordinate system for numer-
ical analysis. The domain in the first quadrant is taken as computational domain [8].
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Further, we define the following dimensionless parameters:

w(x, y) = w(x, y)
E1H

3

qL4
, u(x, y) = u(x, y)

E1H
2

qL3

B =
B(1− ν2)

E1H2
, D =

D(1− ν2)

E1H3

ξ =
2x

L
, η =

z

H
, χ =

2
√
x2 + y2

√
L2 +W 2

σxx = σxx
H2

qL2
, σxy = σxy

H2

qL2
, σxz = σxz

H

qL

Table 7.3 presents the comparison between the dimensionless transverse center deflections of

the functionally graded plate for various values of n, subjected to clamped boundary conditions

under the action of a uniformly distributed transverse load q = 1 lb/in2 as obtained from FEM

and DMCDM for various mesh sizes. It can be seen that the for 32 × 32 uniform mesh there is

no difference between the results from FEM and DMCDM up to 5th decimal. For all the further

analysis we use a 32 × 32 uniform primal mesh for DMCDM and finite element mesh for FEM.

Once the displacement field is obtained from the dual mesh control domain method, the strains

and stresses can be computed using Eqs.(7.4.2) and (7.4.3), respectively. In the present study, the

strains and stresses are evaluated at the center of each element of the primal mesh. This is similar

to the evaluation of stresses at single Gauss quadrature point of each finite element of the finite

element mesh.

Table 7.3: Dimensionless center deflection, w(0, 0) of a clamped square plate under uniformly
distributed load of q = 1 lb/in2 for various values of n [8].

Mesh

n=0 n=1 n=2 n=3 n=4 n=5

FEM DMCDM FEM DMCDM FEM DMCDM FEM DMCDM FEM DMCDM FEM DMCDM

2× 2 0.01326 0.01281 0.03102 0.02997 0.04548 0.04395 0.05370 0.05187 0.05796 0.05601 0.06039 0.05838

4× 4 0.01368 0.01359 0.03201 0.03174 0.04692 0.04659 0.05544 0.05499 0.05985 0.05937 0.06237 0.06186

8× 8 0.0138 0.01377 0.03231 0.03222 0.04737 0.04728 0.05592 0.05580 0.06036 0.06024 0.06291 0.06279

16× 16 0.01383 0.01383 0.03237 0.03234 0.04749 0.04746 0.05604 0.05601 0.06051 0.06048 0.06306 0.06300

32× 32 0.01384 0.01384 0.03237 0.03237 0.04749 0.04749 0.05607 0.05607 0.06054 0.06054 0.06309 0.06306
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Note that the bending stiffness of the plate decreases with increase in n. This can be seen from

the plot of dimensionless bending stiffness D as a function of n in Fig. 7.16a. Thus we expect that

the transverse deflection of the plate increases with increase in the value of n. Fig. 7.16b presents

the dimensionless transverse deflection, w along the line y = 0 for various values of n of a simply-

supported functionally graded plate under the action of uniformly distributed load of q = 1 lb/in2.

As expected the magnitude of the dimensionless transverse deflection increases with increase in

n. However, the bending-extension coupling stiffness B first increases and then decreases with

increasing n. This is shown in Fig. 7.17a, where the dimensionless extensional-bending coupling

stiffness is plotted as function of n. Thus we expect that the magnitude of the axial deflections

of the plate to first increases with increase in n and then decrease. This conjecture is verified in

Fig. 7.17b, where the dimensionless axial deflection, u of a simply supported functionally graded

plate along the line y = 0 is plotted for various values of n. Further, the results from DMCDM are

coincident with the results from FEM in both Fig. 7.16b and Fig. 7.17b.

The dimensionless Young’s modulus E of the functionally graded plate as a function of di-

mensionless thickness coordinate η for various values of n is presented in Fig. 7.18(a). It can be

seen that as n increases the portion of the plate thickness on which the Young’s modulus changes

decreases. The first order shear deformation theory predicts constant transverse shear strains along

the thickness and hence for a homogeneous plate the transverse shear stresses will not be func-

tion of the thickness coordinate z. However, for a functionally graded plate the Young’s modulus

changes with the thickness coordinate and hence the shear modulus also changes in a similar fash-

ion (since ν is assumed to be constant). Thus for a functionally graded plate although the first-order

shear deformation theory predicts constant transverse shear strains along the thickness, the trans-

verse shear stresses vary with the thickness coordinate in a similar fashion as Young’s modulus

as a function of the thickness coordinate. This is shown in Fig. 7.18(b) where the dimension-

less transverse shear stress σxz is plotted as function of dimensionless thickness coordinate η at

(x, y) = (L/128,W/128) for clamped boundary conditions. For higher values of n, σxz is almost

constant for the most part of the plate thickness and only changes towards the top surface in a
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similar fashion as Young’s modulus, as expected. Also the results form DMCDM are compared

with the results from FEM in Fig. 7.18(b).
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Figure 7.16: (a) Dimensionless bending stiffness as function of n. (b) Dimensionless transverse
deflection, w along y = 0 of a simply-supported functionally graded plate under the action of
uniformly distributed load q = 1 lb/in2 [8].
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Figure 7.17: (a) Dimensionless extensional-bending coupling stiffness as function of n. (b) Di-
mensionless axial deflection, u along y = 0 of a simply-supported functionally graded plate under
the action of uniformly distributed load q = 1 lb/in2 [8].

Finally, Fig. 7.19a and Fig. 7.19b present the dimensionless stresses σxx and σxy respectively,

obtained from DMCDM, on the top surface of the clamped functionally graded plate along the

line x = y for various values of n. It can be seen that the magnitude of both these dimensionless

stresses increases with increasing n.
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Figure 7.18: (a) Dimensionless Young’s modulus E as a function of dimensionless thickness co-
ordinate η for various values of n. (b) Dimensionless stress σxz along the thickness of clamped
functionally graded plate at (x, y) = (L/128,W/128) [8].
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8. CONCLUSIONS AND FUTURE WORK

Nonlinear micropolar beam and plate theories and their corresponding finite element models

are developed in this dissertation. The developed nonlinear theories are then used in modeling

lattice core sandwich beams and plates using a homogenization technique [1, 4, 9]. The method-

ology considered in this dissertation for modeling lattice core sandwich structures as micropolar

beams or plates works well in predicting the global displacement of the lattice structure. However,

calculating local deformations and local stress fields within the lattice structure is not a straight

forward procedure. Further investigation is needed to develop appropriate methods for recovering

local stresses in the lattice structures.

The dual mesh control domain method has a lot of potential applications. The application of

dual mesh control domain method to structural elements with linear constitutive relations (linear

elastic material) and linear strain-displacement relations (no geometric nonlinearity) was consid-

ered in this dissertation [10, 7, 8]. The next natural step is the development of the dual mesh

control domain method for beams and plates which include geometric nonlinearity. The simplest

case of geometric nonlinearity in beams and plates is due to moderate rotations (see [107]) and

can be easily incorporated into the beam and plate theories by including von Kármán nonlinear

strains. Further, dual mesh control domain method can also be extended to study 2-D (plane stress

and plane strain) and 3-D linear elasticity problems. The problems of large deformation in solid

continua, which are described by complete Green-Lagrange strain tensor, require the distinction

between current and reference configurations of the body. Thus, the dual mesh control domain

method for such problems require updating of the geometry of the computational domain and

needs to be explored. Finally, problems involving material nonlinearity (eg. nonlinear hyperelastic

material or plasticity) can also be studied using dual mesh control domain method.
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APPENDIX A

MICROPOLAR BEAM AND PLATE CONSTITUTIVE RELATIONS

A.1 Micropolar beams

von Kármán Nonlinearity

VEMBT VTMBT

N
∗(s)
xx A11

(
duE0
dx + 1

2

(
dwE0
dx

)2)
A11

(
duT0
dx + 1

2

(
dwT0
dx

)2)

M
∗(s)
xx −D11

d2wE0
dx2 D11

dφTx
dx

Q
∗(s)
x 0 A44

2

(
dwT0
dx + φTx

)

Q
∗(a)
x −A77

(
dwE0
dx + ψEy

)
A77

2

(
φTx −

dwT0
dx − 2ψTy

)

P ∗yx E44
dψEy
dx E44

dψTy
dx

Table A.1: Constitutive relations for the von Kármán micropolar beam theories. Superscript * on
the resultant terms is used to representE (for EMBT) or T (for TMBT), depending on beam theory
used.
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Micropolar Nonlinearity

NEMBT NTMBT

N
∗(s)
xx A11

(
duE0
dx − ψ

E
y
dwE0
dx

)
A11

(
duT0
dx − ψ

T
y
dwT0
dx
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M
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xx −D11
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dx

Q
∗(s)
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2

(
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)

Q
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dx + ψEy

)
A77

2

(
φTx −

dwT0
dx − 2ψTy

)

P∗yx E44
dψEy
dx E44

dψTy
dx

Table A.2: Constitutive relations for nonlinear micropolar beam theories. Superscript * on the
resultant terms is used to represent E or T , depending on beam theory used.

The constants in the constitutive relations of table A.1 and table A.2 are defined as

A11 =

∫
A

(λ+ 2µ+ κ)dA D11 =

∫
A

(λ+ 2µ+ κ)z2dA

A44 =

∫
A

(2µ+ κ)dA A77 =

∫
A

κdA E44 =

∫
A

γdA

where A is the area of cross-section of the beam.

A.2 Micropolar plates

The constitutive relations for von Kármán micropolar plate theory are:
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2

(
∂w0

∂x

)2

∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

1
2

(
∂v0

∂x
+ ∂u0

∂y
+ ∂w0

∂x
∂w0

∂y

)
1
2

(
∂u0

∂y
− ∂v0

∂x

)


(A.2.1)



M
(s)
xx

M
(s)
yy

M
(s)
xy

M
(a)
xy


=



D11 D12 0 0

D12 D11 0 0

0 0 D44 0

0 0 0 D77





∂φx
∂x

∂φy
∂y

1
2

(
∂φy
∂x

+ ∂φx
∂y

)
1
2

(
∂φx
∂y
− ∂φy

∂x

)


(A.2.2)



Q
(s)
x

Q
(a)
x

Q
(s)
y

Q
(a)
y


=



A44 0 0 0

0 A77 0 0

0 0 A44 0

0 0 0 A77





1
2

(
φx + ∂w0

∂x

)
1
2

(
φx − ∂w0

∂x
− 2ψy

)
1
2

(
φy + ∂w0

∂y

)
1
2

(
φy − ∂w0

∂y
+ 2ψx

)


(A.2.3)



Pxx

Pyy

Pxy

Pyx


=



E11 E12 0 0

E12 E11 0 0

0 0 E33 E34

0 0 E34 E33





∂ψx
∂x

∂ψy
∂y

∂ψx
∂y

∂ψy
∂x


(A.2.4)

The constitutive relations for nonlinear micropolar plate theory are:
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

N
(s)
xx

N
(s)
yy

N
(s)
xy

N
(a)
xy


=



A11 A12 0 0

A12 A11 0 0

0 0 A44 0

0 0 0 A77





∂u0

∂x
− ψy ∂w0

∂x

∂v0

∂y
+ ψx

∂w0

∂y

1
2

(
∂u0

∂y
+ ∂v0

∂x
+ ψx

∂w0

∂x
− ψy ∂w0

∂y

)
1
2

(
∂u0

∂y
− ∂v0

∂x
− ψx ∂w0

∂x
− ψy ∂w0

∂y

)


(A.2.5)



M
(s)
xx

M
(s)
yy

M
(s)
xy

M
(a)
xy


=



D11 D12 0 0

D12 D11 0 0

0 0 D44 0

0 0 0 D77





∂φx
∂x

∂φy
∂y

1
2

(
∂φx
∂y

+ ∂φy
∂x

)
1
2

(
∂φx
∂y
− ∂φy

∂x

)


(A.2.6)



Q
(s)
x

Q
(a)
x

Q
(s)
y

Q
(a)
y


=



A44 0 0 0

0 A77 0 0

0 0 A44 0

0 0 0 A77





1
2

(
φx + ∂w0

∂x

)
1
2

(
φx − ∂w0

∂x
− 2ψy

)
1
2

(
φy + ∂w0

∂y

)
1
2

(
φy − ∂w0

∂y
+ 2ψx

)


(A.2.7)



Pxx

Pyy

Pxy

Pyx


=



E11 E12 0 0

E12 E11 0 0

0 0 E33 E34

0 0 E34 E33





∂ψx
∂x

∂ψy
∂y

∂ψx
∂y

∂ψy
∂x


(A.2.8)
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The constants in above constitutive relations are defined as

A11 =

∫ H/2

−H/2
(λ+ 2µ+ κ)dz A12 =

∫ H/2

−H/2
λdz

A44 =

∫ H/2

−H/2
(2µ+ κ)dz A77 =

∫ H/2

−H/2
κdz

D11 =

∫ H/2

−H/2
(λ+ 2µ+ κ)z2dz D12 =

∫ H/2

−H/2
λz2dz

D44 =

∫ H/2

−H/2
(2µ+ κ)z2dz D77 =

∫ H/2

−H/2
κz2dz

E11 =

∫ H/2

−H/2
(α + β + γ)dz E12 =

∫ H/2

−H/2
αdz

E33 =

∫ H/2

−H/2
βdz E34 =

∫ H/2

−H/2
γdz
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APPENDIX B

FINITE ELEMENT MATRICES OF MICROPOLAR BEAMS AND PLATES

B.1 Micropolar beams

B.1.1 Euler-Bernoulli beam theory

We use the following notation in representing the element stiffness and tangent stiffness matri-

ces of Euler-Bernoulli beam theories.

MNSxxij =
dL

(M)
i

dx

dL
(N)
j

dx
, MNS0x

ij = L
(M)
i

dL
(N)
j

dx
, MNSx0

ij =
dL

(M)
i

dx
L

(N)
j , MNS00

ij = L
(M)
i L

(N)
j

MNSx
2x2

IJ =
d2H

(M)
I

dx2

d2H
(N)
J

dx2
, MNSxxIJ =

dH
(M)
I

dx

dH
(N)
J

dx
, MNSxxIj =

dH
(M)
I

dx

dL
(N)
j

dx

MNSxxiJ =
dL

(M)
i

dx

dH
(N)
J

dx
, MNSx0

Ij =
dH

(M)
I

dx
L

(N)
j , MNS0x

iJ = L
(M)
i

dH
(N)
J

dx

where M,N = {1, 2, 3}, i, j = {1, 2, . . . n} and I, J = {1, 2, . . . 2n}. Where n is the number

of nodes in a typical finite element.

B.1.1.1 von Kaŕmán micropolar Euler-Bernoulli beam

K11
ij =

∫ xb

xa

A11
11Sxxij dx, K12

iJ =

∫ xb

xa

A11

2

(
dwE0
dx

)
12SxxiJ dx

K21
Ij =

∫ xb

xa

A11

(
dwE0
dx

)
21SxxIj dx,

K22
IJ =

∫ xb

xa

{
D11

22Sx
2x2

IJ +
A11

2

(
dwE0
dx

)2
22SxxIJ + 2A77

22SxxIJ

}
dx

K23
Ij =

∫ xb

xa

2A77
23Sx0

Ij dx, K32
iJ =

∫ xb

xa

2A77
32S0x

iJ dx

K33
ij =

∫ xb

xa

{
E44

33Sxxij + 2A77
33S00

ij

}
dx
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The components of the element tangent stiffness matrix are the same as the components of the

element stiffness matrix, except for the following terms:

T 12
iJ = K12

iJ +

∫ xb

xa

A11

2

(
dwE0
dx

)
12SxxiJ dx, T 22

IJ = K22
IJ +

∫ xb

xa

A11

(
duE0
dx

+

(
dwE0
dx

)2
)

22SxxIJdx

B.1.1.2 Micropolar nonlinear Euler-Bernoulli beam

K11
ij =

∫ xb

xa

A11
11Sxxij dx, K12

iJ = −
∫ xb

xa

A11

2
ψEy

12SxxiJ dx, K13
ij = −

∫ xb

xa

A11

2

dwE0
dx

13Sx0
ij dx

K21
Ij = −

∫ xb

xa

A11

2
ψEy

21SxxIj dx, K22
IJ =

∫ xb

xa

{
D11

22Sx
2x2

IJ +
A11

2
(ψEy )2 22SxxIJ + 2A77

22SxxIJ

}
dx

K23
Ij =

∫ xb

xa

{
A11

2

(
dwE0
dx

ψEy −
duE0
dx

)
+ 2A77

}
23Sx0

Ij dx, K31
ij = −

∫ xb

xa

A11

2

dwE0
dx

31S0x
ij dx

K32
iJ =

∫ xb

xa

{
A11

2

(
dwE0
dx

ψEy −
duE0
dx

)
+ 2A77

}
32S0x

iJ dx

K33
ij =

∫ xb

xa

{
E44

33Sxxij +
A11

2

(
dwE0
dx

)2
33S00

ij + 2A77
33S00

ij

}
dx

T 12
iJ = K12

iJ −
∫ xb

xa

A11

2
ψEy

12SxxiJ dx, T 13
ij = K13

ij −
∫ xb

xa

A11

2

dwE0
dx

13Sx0
ij dx

T 21
Ij = K21

Ij −
∫ xb

xa

A11

2
ψEy

21SxxIj dx, T 22
IJ = K22

IJ +

∫ xb

xa

A11

2
(ψEy )2 22SxxIJdx

T 23
Ij = K23

Ij +

∫ xb

xa

A11

2

(
dwE0
dx

ψEy −
duE0
dx

)
23Sx0

Ij dx+

∫ xb

xa

A11
dwE0
dx

ψEy
23Sx0

Ij dx

T 31
ij = K31

ij −
∫ xb

xa

A11

2

dwE0
dx

31S0x
ij dx

T 32
iJ = K32

iJ +

∫ xb

xa

A11

2

(
dwE0
dx

ψEy −
duE0
dx

)
32S0x

iJ dx+

∫ xb

xa

A11
dwE0
dx

ψEy
32S0x

iJ dx

T 33
ij = K33

ij +

∫ xb

xa

A11

2

(
dwE0
dx

)2
33S00

ij dx
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B.1.2 The Timoshenko beam theory

We shall use the following notation in representing the element stiffness and tangent stiffness

matrices of Timoshenko beam theory.

MNSxxij =
dL

(M)
i

dx

dL
(N)
j

dx
, MNS0x

ij = L
(M)
i

dL
(N)
j

dx
, MNSx0

ij =
dL

(M)
i

dx
L

(N)
j , MNS00

ij = L
(M)
i L

(N)
j

where M,N = {1, 2, 3, 4}, i, j = {1, 2, . . . n}. Where n is the number of nodes in a typical finite

element.

B.1.2.1 The von Kaŕmán nonlinear Timoshenko beam

K11
ij =

∫ xb

xa

A11
11Sxxij dx, K12

ij =

∫ xb

xa

A11

2

(
dwT0
dx

)
12Sxxij dx

K21
ij =

∫ xb

xa

A11

(
dwT0
dx

)
21Sxxij dx, K22

ij =

∫ xb

xa

{
A11

2

(
dwT0
dx

)2

+
(A44 + A77)

2

}
22Sxxij dx

K23
ij =

∫ xb

xa

(
A44 − A77

2

)
23Sx0

ij dx, K24
ij =

∫ xb

xa

A77
24Sx0

ij dx

K32
ij =

∫ xb

xa

(
A44 − A77

2

)
32S0x

ij dx, K33
ij =

∫ xb

xa

{
D11

33Sxxij +

(
A44 + A77

2

)
33S00

ij

}
dx

K34
ij = −

∫ xb

xa

A77
34S00

ij dx, K42
ij =

∫ xb

xa

A77
42S0x

ij dx, K43
ij = −

∫ xb

xa

A77
43S00

ij dx

K44
ij =

∫ xb

xa

{
E44

44Sxxij + 2A77
44S00

ij

}
dx

Similarly, the components of the element tangent stiffness matrix are given by

TMN
ij = KMN

ij
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except for the following terms

T 12
ij =2K12

ij , T 22
ij = K22

ij +

∫ xb

xa

(
A11

2

(
duT0
dx

)
+ A11

(
dwT0
dx

)2
)

22Sxxij dx

B.1.2.2 The Micropolar nonlinear Timoshenko beam

K11
ij =

∫ xb

xa

A11
11Sxxij dx, K12

ij = −
∫ xb

xa

A11

2
ψTy

12Sxxij dx, K14
ij = −

∫ xb

xa

A11

2

dwT0
dx

14Sx0
ij dx

K21
ij = −

∫ xb

xa

A11

2
ψTy

21Sxxij dx, K22
ij =

∫ xb

xa

{
A11

2
(ψTy )2 +

(A44 + A77)

2

}
22Sxxij dx

K23
ij =

∫ xb

xa

(
A44 − A77

2

)
23Sx0

ij dx, K24
ij =

∫ xb

xa

{
A11

2

(
dwT0
dx

ψTy −
duT0
dx

)
+ A77

}
24Sx0

ij dx

K32
ij =

∫ xb

xa

(
A44 − A77

2

)
32S0x

ij dx, K33
ij =

∫ xb

xa

{
D11

33Sxxij +

(
A44 + A77

2

)
33S00

ij

}
dx

K34
ij = −

∫ xb

xa

A77
34S00

ij dx, K41
ij = −

∫ xb

xa

A11

2

dwT0
dx

41S0x
ij dx

K42
ij =

∫ xb

xa

{
A77 +

A11

2

(
dwT0
dx

ψTy −
duT0
dx

)}
42S0x

ij dx, K43
ij = −

∫ xb

xa

A77
44S00

ij dx

K44
ij =

∫ xb

xa

{
E44

44Sxxij + 2A77
44S00

ij +
A11

2

(
dwT0
dx

)2
44S00

ij

}
dx

Similarly, the components of the element tangent stiffness matrix are given by

TMN
ij = KMN

ij

except for the following terms
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T 12
ij =K12

ij −
∫ xb

xa

A11

2
ψTy

12Sxxij dx, T 14
ij = K14

ij −
∫ xb

xa

A11

2

dwT0
dx

14Sx0
ij dx

T 21
ij =K21

ij −
∫ xb

xa

A11

2
ψTy

21Sxxij dx, T 22
ij = K22

ij +

∫ xb

xa

A11

2
(ψTy )2 22Sxxij dx

T 24
ij =K24

ij −
∫ xb

xa

A11

2

duT0
dx

24Sx0
ij dx+

∫ xb

xa

3A11

2

dwT0
dx

ψTy
24Sx0

ij dx

T 41
ij =K41

ij −
∫ xb

xa

A11

2

dwT0
dx

41S0x
ij dx

T 42
ij =K42

ij −
∫ xb

xa

A11

2

duT0
dx

42S0x
ij dx+

∫ xb

xa

3A11

2

dwT0
dx

ψTy
42S0x

ij dx

T 44
ij =K44

ij +

∫ xb

xa

A11

2

(
dwT0
dx

)2
44S00

ij dx

B.2 Micropolar plates

We will use the following notation in the defining the coefficients of the element stiffness

matrices.

IJSabij =
∂L

(I)
i

∂a

∂L
(J)
j

∂b
, IJS0b

ij = L
(I)
i

∂L
(J)
j

∂b
, IJSa0

ij =
∂L

(I)
i

∂a
L

(J)
j , IJS00

ij = L
(I)
i L

(J)
j

where I, J = {1, 2, 3, 4, 5, 6, 7}, i, j = {1, 2, . . . , n} and a, b = {x, y}.

B.2.1 von Kaŕmán micropolar plate theory

The non-zero components of the element stiffness matrix of von Kaŕmán micropolar plate

theory are:

K11
ij =

∫
Ωe

{
A11

11Sxxij +

(
A44 + A77

2

)
11Syyij

}
dΩe

K12
ij =

∫
Ωe

{
A12

12Sxyij +

(
A44 − A77

2

)
11Syxij

}
dΩe
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K13
ij =

∫
Ωe

{
A11

2

(
∂w0

∂x

)
13Sxxij +

A44

4

(
∂w0

∂x

)
13Syyij

+
A12

2

(
∂w0

∂y

)
13Sxyij +

A44

4

(
∂w0

∂y

)
13Syxij

}
dΩe

K21
ij =

∫
Ωe

{(
A44 − A77

2

)
21Sxyij + A12

21Syxij

}
dΩe

K22
ij =

∫
Ωe

{(
A44 + A77

2

)
22Sxxij + A11

22Syyij

}
dΩe

K23
ij =

∫
Ωe

{
A44

4

(
∂w0

∂y

)
23Sxxij +

A11

2

(
∂w0

∂y

)
23Syyij

+
A44

4

(
∂w0

∂x

)
23Sxyij +

A12

2

(
∂w0

∂x

)
23Syxij

}
dΩe

K31
ij =

∫
Ωe

{
A11

2

(
∂w0

∂x

)
31Sxxij +

A44

4

(
∂w0

∂x

)
31Syyij

+
A44

4

(
∂w0

∂y

)
31Sxyij +

A12

2

(
∂w0

∂y

)
31Syxij

}
dΩe

K32
ij =

∫
Ωe

{
A44

4

(
∂w0

∂y

)
32Sxxij +

A11

2

(
∂w0

∂y

)
32Syyij

+
A12

2

(
∂w0

∂x

)
32Sxyij +

A44

4

(
∂w0

∂x

)
32Syxij

}
dΩe

K33
ij =

∫
Ωe

{
A11

2

(
∂u0

∂x
+

(
∂w0

∂x

)2
)

33Sxxij +
A12

2

(
∂v0

∂y
+

1

2

(
∂w0

∂y

)2
)

33Sxxij

+
A44 + A77

2

(
33Sxxij + 33Syyij

)
+
A44

4

(
∂u0

∂y
+
∂v0

∂x

)(
33Sxyij + 33Syxij

)
+
A44

4

(
∂w0

∂y

)2
33Sxxij

+
A44

4

(
∂w0

∂x

)2
33Syyij +

A44

4

(
∂w0

∂y

∂w0

∂x

)(
33Sxyij + 33Syxij

)
+
A12

2

(
∂u0

∂x
+

1

2

(
∂w0

∂x

)2
)

33Syyij +
A11

2

(
∂v0

∂y
+

(
∂w0

∂y

)2
)

33Syyij

+
A12

4

(
∂w0

∂y

∂w0

∂x

)(
33Syxij + 33Sxyij

)}
dΩe
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K34
ij =

∫
Ωe

(
A44 − A77

2

)
34Sx0

ij dΩe, K35
ij =

∫
Ωe

(
A44 − A77

2

)
35Sy0

ij dΩe

K36
ij =−

∫
Ωe

A77
36Sy0

ij dΩe, K37
ij =

∫
Ωe

A77
37Sx0

ij dΩe

K43
ij =

∫
Ωe

(
A44 − A77

2

)
43S0x

ij dΩe

K44
ij =

∫
Ωe

{
D11

44Sxxij +

(
D44 +D77

2

)
44Syyij +

(
A44 + A77

2

)
44S00

ij

}
dΩe

K45
ij =

∫
Ωe

{
D12

45Sxyij +

(
D44 −D77

2

)
45Syxij

}
dΩe, K47

ij = −
∫

Ωe

A77
47S00

ij dΩe

K53
j =

∫
Ωe

(
A44 − A77

2

)
53S0y

ij dΩe, K54
ij =

∫
Ωe

{(
D44 −D77

2

)
54Sxyij +D12

54Syxij

}
dΩe

K55
ij =

∫
Ωe

{(
D44 +D77

2

)
55Sxxij +D11

55Syyij +

(
A44 + A77

2

)
55S00

ij

}
dΩe

K56
ij =

∫
Ωe

A77
56S00

ij dΩe, K63
ij = −

∫
Ωe

A77
63S0y

ij dΩe, K65
ij =

∫
Ωe

A77
65S00

ij dΩe

K66
ij =

∫
Ωe

{
E11

66Sxxij + E33
66Syyij + 2A77

66S00
ij

}
dΩe

K67
ij =

∫
Ωe

{
E12

67Sxyij + E34
67Syxij

}
dΩe

K73
ij =

∫
Ωe

A77
73S0x

ij dΩe, K74
ij = −

∫
Ωe

A77
74S00

ij dΩe

K76
ij =

∫
Ωe

{
E34

76Sxyij + E12
76Syxij

}
dΩe

K77
ij =

∫
Ωe

{
E33

77Sxxij + E11
77Syyij + 2A77

77S00
ij

}
dΩe

Similarly, the components of the element tangent stiffness matrix are given by

T IJij = KIJ
ij
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except for the following terms

T 13
ij = 2K13

ij , T 23
ij = 2K23

ij , T 31
ij = 2K31

ij , T 32
ij = 2K32

ij

T 33
ij = K33

ij +

∫
Ωe

{
A11

2

(
∂u0

∂x

)
33Sxxij +

A44

4

(
∂u0

∂y

)(
33Sxyij + 33Syxij

)
+
A12

2

(
∂u0

∂x

)
33Syyij

+
A44

4

(
∂v0

∂x

)(
33Sxyij + 33Syxij

)
+
A11

2

(
∂v0

∂y

)
33Syyij +

A12

2

(
∂v0

∂y

)
33Sxxij

+ A11

(
∂w0

∂x

)2
33Sxxij +

A12

2

(
∂w0

∂x

∂w0

∂y

)
33Sxyij +

A44

2

(
∂w0

∂x

∂w0

∂y

)(
33Sxyij + 33Syxij

)
+
A44

4

(
∂w0

∂x

∂w0

∂y

)(
33Sxyij + 33Syxij

)
+
A44

4

(
∂w0

∂x

)2
33Syyij +

A44

4

(
∂w0

∂y

)2
33Sxxij

+
A12

2

(
∂w0

∂x

∂w0

∂y

)
33Syxij + A11

(
∂w0

∂y

)2
33Syyij +

A12

4

(
∂w0

∂x

)2
33Syyij

+
A12

4

(
∂w0

∂y

)2
33Sxxij +

A12

4

(
∂w0

∂x

∂w0

∂y

)(
33Sxyij + 33Syxij

)}
dΩe

B.2.2 Nonlinear micropolar plate theory

The non-zero components of the element stiffness matrix of nonlinear micropolar plate theory

are:

K11
ij =

∫
Ωe

{
A11

11Sxxij +

(
A44 + A77

2

)
11Syyij

}
dΩe

K12
ij =

∫
Ωe

{
A12

12Sxyij +

(
A44 − A77

2

)
12Syxij

}
dΩe

K13
ij =

∫
Ωe

{
−A11

2
ψy

13Sxxij −
(
A44 + A77

4

)
ψy

13Syyij

+
A12

2
ψx

13Sxyij +

(
A44 − A77

4

)
ψx

13Syxij

}
dΩe

K16
ij =

∫
Ωe

{
A12

2

(
∂w0

∂y

)
16Sx0

ij +

(
A44 − A77

4

)(
∂w0

∂x

)
16Sy0

ij

}
dΩe
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K17
ij =

∫
Ωe

{
−A11

2

(
∂w0

∂x

)
17Sx0

ij −
(
A44 + A77

4

)(
∂w0

∂y

)
17Sy0

ij

}
dΩe

K21
ij =

∫
Ωe

{(
A44 − A77

2

)
21Sxyij + A12

21Syxij

}
dΩe

K22
ij =

∫
Ωe

{(
A44 + A77

2

)
22Sxxij + A11

22Syyij

}
dΩe

K23
ij =

∫
Ωe

{(
A44 + A77

4

)
ψx

23Sxxij +
A11

2
ψx

23Syyij

−
(
A44 − A77

4

)
ψy

23Sxyij −
A12

2
ψy

23Syxij

}
dΩe

K26
ij =

∫
Ωe

{(
A44 + A77

4

)(
∂w0

∂x

)
26Sx0

ij +
A11

2

(
∂w0

∂y

)
26Sy0

ij

}
dΩe

K27
ij =

∫
Ωe

{
−
(
A44 − A77

4

)(
∂w0

∂y

)
27Sx0

ij −
A12

2

(
∂w0

∂x

)
27Sy0

ij

}
dΩe

K31
ij =

∫
Ωe

{
−A11

2
ψy

31Sxxij −
(
A44 + A77

4

)
ψy

31Syyij

+

(
A44 − A77

4

)
ψx

31Sxyij +
A12

2
ψx

31Syxij

}
dΩe

K32
ij =

∫
Ωe

{(
A44 + A77

4

)
ψx

32Sxxij +
A11

2
ψx

32Syyij

− A12

2
ψy

32Sxyij −
(
A44 − A77

4

)
ψy

32Syxij

}
dΩe

K33
ij =

∫
Ωe

{
A11

2
(ψy)

2 33Sxxij +
A11

2
(ψx)

2 33Syyij −
A12

3
(ψxψy)

33Sxyij −
A12

3
(ψxψy)

33Syxij

+
A44 + A77

2

(
33Sxxij + 33Syyij

)
+

(
A44 + A77

4

)
(ψx)

2 33Sxxij

+

(
A44 + A77

4

)
(ψy)

2 33Syyij −
(
A44 − A77

6

)
(ψxψy)

(
33Sxyij + 33Syxij

)}
dΩe

K34
ij =

∫
Ωe

(
A44 − A77

2

)
34Sx0

ij dΩe, K35
ij =

∫
Ωe

(
A44 − A77

2

)
35Sy0

ij dΩe
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K36
ij =

∫
Ωe

{
−A12

3

(
ψy
∂w0

∂y

)
36Sx0

ij −
A12

3

(
ψy
∂w0

∂x

)
36Sy0

ij +
A12

2

(
∂u0

∂x

)
36Sy0

ij

− A77
36Sy0

ij +
A11

2

(
∂v0

∂y
+ ψx

∂w0

∂y

)
36Sy0

ij +
A44

4

(
∂u0

∂y
+
∂v0

∂x

)
36Sx0

ij

− A77

4

(
∂u0

∂y
− ∂v0

∂x

)
36Sx0

ij +

(
A44 + A77

4

)(
ψx
∂w0

∂x

)
36Sx0

ij

−
(
A44 − A77

6

)(
ψy
∂w0

∂y

)
36Sx0

ij −
(
A44 − A77

6

)(
ψy
∂w0

∂x

)
36Sy0

ij

}
dΩe

K37
ij =

∫
Ωe

{
−A12

3

(
ψx
∂w0

∂y

)
37Sx0

ij −
A12

3

(
ψx
∂w0

∂x

)
37Sy0

ij −
A12

2

(
∂v0

∂y

)
37Sx0

ij

+ A77
37Sx0

ij −
A11

2

(
∂u0

∂x
− ψy

∂w0

∂x

)
37Sx0

ij −
A44

4

(
∂u0

∂y
+
∂v0

∂x

)
37Sy0

ij

− A77

4

(
∂u0

∂y
− ∂v0

∂x

)
37Sy0

ij −
(
A44 − A77

6

)(
ψx
∂w0

∂x

)
37Sy0

ij

+

(
A44 + A77

4

)(
ψy
∂w0

∂y

)
37Sy0

ij −
(
A44 − A77

6

)(
ψx
∂w0

∂y

)
37Sx0

ij

}
dΩe

K43
ij =

∫
Ωe

(
A44 − A77

2

)
43S0x

ij dΩe, K45
ij =

∫
Ωe

{
D12

45Sxyij +

(
D44 −D77

2

)
45Syxij

}
dΩe

K44
ij =

∫
Ωe

{
D11

44Sxxij +

(
D44 +D77

2

)
44Syyij +

(
A44 + A77

2

)
44S00

ij

}
dΩe

K47
ij =−

∫
Ωe

A77
47S00

ij dΩe, K53
j =

∫
Ωe

(
A44 − A77

2

)
53S0y

ij dΩe

K54
ij =

∫
Ωe

{(
D44 −D77

2

)
54Sxyij +D12

54Syxij

}
dΩe, K56

ij =

∫
Ωe

A77
56S00

ij dΩe

K55
ij =

∫
Ωe

{(
D44 +D77

2

)
55Sxxij +D11

55Syyij +

(
A44 + A77

2

)
55S00

ij

}
dΩe

K61
ij =

∫
Ωe

{
A12

2

(
∂w0

∂y

)
61S0x

ij +

(
A44 − A77

4

)(
∂w0

∂x

)
61S0y

ij

}
dΩe

K62
ij =

∫
Ωe

{
A11

2

(
∂w0

∂y

)
63S0y

ij +

(
A44 + A77

4

)(
∂w0

∂x

)
62S0x

ij

}
dΩe
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K63
ij =

∫
Ωe

{
−A12

3

(
ψy
∂w0

∂y

)
L

(6)
i

63S0x
ij −

A12

3

(
ψy
∂w0

∂x

)
63S0y

ij +
A12

2

(
∂u0

∂x

)
63S0y

ij

− A77L
(6)
i

63S0y
ij +

A11

2

(
∂v0

∂y
+ ψx

∂w0

∂y

)
63S0y

ij +
A44

4

(
∂u0

∂y
+
∂v0

∂x

)
63S0x

ij

− A77

4

(
∂u0

∂y
− ∂v0

∂x

)
63S0x

ij +

(
A44 + A77

4

)(
ψx
∂w0

∂x

)
63S0x

ij

−
(
A44 − A77

6

)(
ψy
∂w0

∂y

)
63S0x

ij −
(
A44 − A77

6

)(
ψy
∂w0

∂x

)
63S0y

ij

}
dΩe

K65
ij =

∫
Ωe

A77
65S00

ij dΩe

K66
ij =

∫
Ωe

{
E11

66Sxxij + E44
66Syyij + 2A77

66S00
ij

+
A11

2

(
∂w0

∂y

)2
66S00

ij +
A44 + A77

4

(
∂w0

∂x

)2
66S00

ij

}
dΩe

K67
ij =

∫
Ωe

{
E12

67Sxyij + E45
67Syxij −

A12

3

(
∂w0

∂x

∂w0

∂y

)
67S00

ij

−
(
A44 − A77

6

)(
∂w0

∂x

∂w0

∂y

)
67S00

ij

}
dΩe

K71
ij =

∫
Ωe

{
−A11

2

(
∂w0

∂x

)
71S0x

ij −
(
A44 + A77

4

)(
∂w0

∂y

)
71S0y

ij

}
dΩe

K72
ij =

∫
Ωe

{
−A12

2

(
∂w0

∂x

)
72S0y

ij −
(
A44 − A77

4

)(
∂w0

∂y

)
72S0x

ij

}
dΩe

K73
ij =

∫
Ωe

{
−A12

3

(
ψx
∂w0

∂y

)
73S0x

ij −
A12

3

(
ψx
∂w0

∂x

)
73S0y

ij −
A12

2

(
∂v0

∂y

)
73S0x

ij

+ A77
73S0x

ij −
A11

2

(
∂u0

∂x
− ψy

∂w0

∂x

)
73S0x

ij −
A44

4

(
∂u0

∂y
+
∂v0

∂x

)
73S0y

ij

− A77

4

(
∂u0

∂y
− ∂v0

∂x

)
73S0y

ij −
(
A44 − A77

6

)(
ψx
∂w0

∂x

)
73S0y

ij

+

(
A44 + A77

4

)(
ψy
∂w0

∂y

)
73S0y

ij −
(
A44 − A77

6

)(
ψx
∂w0

∂y

)
73S0x

ij

}
dΩe

K74
ij =−

∫
Ωe

A77
74S00

ij dΩe
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K76
ij =

∫
Ωe

{
E45

76Sxyij + E12
76Syxij −

A12

3

(
∂w0

∂x

∂w0

∂y

)
76S00

ij

−
(
A44 − A77

6

)(
∂w0

∂x

∂w0

∂y

)
76S00

ij

}
dΩe

K77
ij =

∫
Ωe

{
E44

77Sxxij + E11
77Syyij + 2A77

77S00
ij

+
A11

2

(
∂w0

∂x

)2
77S00

ij +
A44 + A77

4

(
∂w0

∂y

)2
77S00

ij

}
dΩe

Similarly, the components of the element tangent stiffness matrix are given by

T IJij = KIJ
ij

except for the following terms

T 13
ij =2K13

ij , T 16
ij = 2K16

ij , T 17
ij = 2K17

ij , T 23
ij = 2K23

ij

T 26
ij =2K26

ij , T 27
ij = 2K27

ij , T 31
ij = 2K31

ij , T 32
ij = 2K32

ij

T 61
ij =2K61

ij , T 62
ij = 2K62

ij , T 71
ij = 2K71

ij , T 72
ij = 2K72

ij

T 33
ij =K33

ij +

∫
Ωe

{
−2A12

3
(ψxψy)

(
33Sxyij + 33Syxij

)
+
A11

2
(ψx)

2 33Syyij

+

(
A44 + A77

4

)
(ψx)

2 33Sxxij −
(
A44 − A77

3

)
(ψxψy)

(
33Sxyij + 33Syxij

)
+
A11

2
(ψy)

2 33Sxxij +

(
A44 + A77

4

)
(ψy)

2 33Syyij

}
dΩe
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T 36
ij =K36

ij +

∫
Ωe

{(
A44 − A77

4

)(
∂u0

∂y

)
36Sx0

ij +
A12

2

(
∂u0

∂x

)
36Sy0

ij

+

(
A44 + A77

4

)(
∂v0

∂x

)
36Sx0

ij +
A11

2

(
∂v0

∂y

)
36Sy0

ij +
3A11

2

(
ψx
∂w0

∂y

)
36Sy0

ij

− 2A12

3

(
ψy
∂w0

∂y

)
36Sx0

ij −
2A12

3

(
ψy
∂w0

∂x

)
36Sy0

ij

+ 3

(
A44 + A77

4

)(
ψx
∂w0

∂x

)
36Sx0

ij −
(
A44 − A77

3

)(
ψy
∂w0

∂x

)
36Sy0

ij

−
(
A44 − A77

3

)(
ψy
∂w0

∂y

)
36Sx0

ij

}
dΩe

T 37
ij =K37

ij +

∫
Ωe

{
−A11

2

(
∂u0

∂x

)
37Sx0

ij −
(
A44 + A77

4

)(
∂u0

∂y

)
37Sy0

ij

− A12

2

(
∂v0

∂y

)
37Sx0

ij −
(
A44 − A77

4

)(
∂v0

∂x

)
37Sy0

ij +
3A11

2

(
ψy
∂w0

∂x

)
37Sx0

ij

− 2A12

3

(
ψx
∂w0

∂y

)
37Sx0

ij −
2A12

3

(
ψx
∂w0

∂x

)
37Sy0

ij

+ 3

(
A44 + A77

4

)(
ψy
∂w0

∂y

)
37Sy0

ij −
(
A44 − A77

3

)(
ψx
∂w0

∂x

)
37Sy0

ij

−
(
A44 − A77

3

)(
ψx
∂w0

∂y

)
37Sx0

ij

}
dΩe

T 63
ij =K63

ij +

∫
Ωe

{(
A44 − A77

4

)(
∂u0

∂y

)
63S0x

ij +
A12

2

(
∂u0

∂x

)
63S0y

ij

+

(
A44 + A77

4

)(
∂v0

∂x

)
63S0x

ij +
A11

2

(
∂v0

∂y

)
63S0y

ij +
3A11

2

(
ψx
∂w0

∂y

)
63S0y

ij

− 2A12

3

(
ψy
∂w0

∂y

)
63S0x

ij −
2A12

3

(
ψy
∂w0

∂x

)
63S0y

ij

+ 3

(
A44 + A77

4

)(
ψx
∂w0

∂x

)
63S0x

ij −
(
A44 − A77

3

)(
ψy
∂w0

∂x

)
63S0y

ij

−
(
A44 − A77

3

)(
ψy
∂w0

∂y

)
63S0x

ij

}
dΩe

T 66
ij =K66

ij +

∫
Ωe

{
A11

2

(
∂w0

∂y

)2
66S00

ij +
A44 + A77

4

(
∂w0

∂x

)2
66S00

ij

}
dΩe

T 67
ij =K67

ij +

∫
Ωe

{
−2A12

3

(
∂w0

∂x

∂w0

∂y

)
67S00

ij −
(
A44 − A77

3

)(
∂w0

∂x

∂w0

∂y

)
67S00

ij

}
dΩe

227



T 73
ij =K73

ij +

∫
Ωe

{
−A11

2

(
∂u0

∂x

)
73S0x

ij −
(
A44 + A77

4

)(
∂u0

∂y

)
73S0y

ij

− A12

2

(
∂v0

∂y

)
73S0x

ij −
(
A44 − A77

4

)(
∂v0

∂x

)
73S0y

ij +
3A11

2

(
ψy
∂w0

∂x

)
73S0x

ij

− 2A12

3

(
ψx
∂w0

∂y

)
73S0x

ij −
2A12

3

(
ψx
∂w0

∂x

)
73S0y

ij

+ 3

(
A44 + A77

4

)(
ψy
∂w0

∂y

)
73S0y

ij −
(
A44 − A77

3

)(
ψx
∂w0

∂x

)
73S0y

ij

−
(
A44 − A77

3

)(
ψx
∂w0

∂y

)
73S0x

ij

}
dΩe

T 76
ij =K76

ij +

∫
Ωe

{
−2A12

3

(
∂w0

∂x

∂w0

∂y

)
76S00

ij −
(
A44 − A77

3

)(
∂w0

∂x

∂w0

∂y

)
76S00

ij

}
dΩe

T 77
ij =K77

ij +

∫
Ωe

{
A11

2

(
∂w0

∂x

)2
77S00

ij +
A44 + A77

4

(
∂w0

∂y

)2
77S00

ij

}
dΩe

228



APPENDIX C

DMCDM-DISCRETE FORMS OF VARIOUS FUNCTIONS

C.1 Straight beams

For a function a(x) and c(x), which are assumed to be primal mesh element wise constant,

and an independent variable u(x), the following relations are useful in deriving the discretized

equations straight beams using DMCDM [10]:

∫ x
(I)
b

x
(I)
a

c u dx = 1
8

[CI−1hI−1UI−1 + 3 (CI−1hI−1 + CIhI)UI + CIhIUI+1] (C.1.1)∫ 0.5h1

0

a u(x) dx = 1
8
A1h1 (U2 + 3U1)∫ x

(N)
b

x
(N)
b −0.5hN

a u(x) dx = 1
8
ANhN (3UN+1 + UN) (C.1.2)

∫ x
(I)
b

x
(I)
a

a
du

dx
dx = 0.5 [−AI−1UI−1 + (AI−1 − AI)UI + AIUI+1] (C.1.3)∫ 0.5h1

0

a
du

dx
dx = 0.5A1 (U2 − U1) (C.1.4)∫ x

(N)
b

x
(N)
b −0.5hN

a
du

dx
dx = 0.5AN (UN+1 − UN) (C.1.5)
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hI

)
UI +

AI
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a
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a
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]
x

(I)
b +0.5hN

=
AN
hN

UN+1 −
AN
hN

UN (C.1.7)

[a u(x)]
x

(I)
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x
(I)
a

= 0.5 [−AI−1UI−1 + (AI−1 − AI)UI + AIUI+1] (C.1.8)

[a u(x)]0.5h1

0 = 0.5A1 (U2 − U1) , [a u(x)]0.5h1
= 0.5A1 (U1 + U2) (C.1.9)
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(N)
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x
(I)
b −0.5hN

= 0.5AN (UN+1 − UN) , [a u(x)]0.5hN = 0.5AN (UN + UN+1) (C.1.10)
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C.2 Circular plate

For a functions a(r), which is assumed to be primal mesh element wise constant, and an in-

dependent variable u(r), the following relations are useful in deriving the discretized equations of

axisymmetric circular plate using DMCDM [7]:

[
ar
du
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]r(I)
b

r
(I)
a

=
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(I)
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