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Abstract 
 

Optimal design of a gas detection systems is challenging because of the numerous 

sources of uncertainty, including weather and environmental conditions, leak location 

and characteristics, and process conditions. Rigorous CFD simulations of dispersion 

scenarios combined with stochastic programming techniques have been successfully 

applied to the problem of optimal gas detector placement; however, rigorous treatment 

of sensor failure and nonuniform unavailability has received less attention. To improve 

reliability of the design, this paper proposes a problem formulation that explicitly 

considers nonuniform unavailabilities and all backup detection levels. The resulting 

sensor placement problem is a large-scale mixed-integer nonlinear programming 

(MINLP) problem that requires a tailored solution approach for efficient solution. We 

have developed a multitree method which depends on iteratively solving a sequence of 

upper-bounding master problems and lower-bounding subproblems. The tailored global 

solution strategy is tested on a real data problem and the encouraging numerical results 

indicate that our solution framework is promising in solving sensor placement problems. 

1 Introduction 
 

To rapidly detect release events and minimize the corresponding damages, efficient detection and 

mitigation depends on appropriate design of the gas detector system, including type, number, and 

placement of sensors. However, the optimal design of these systems is very challenging because 

significant uncertainty must be taken into account, including weather and environmental 

conditions, leak location and characteristics, and process conditions. Prescriptive or semi-

quantitative approaches have been widely used in detector system design [15,17,22]; however, 

these heuristic techniques do not make full use of the information from dispersion simulations and 

fail to provide a rigorous proof of the solution quality.  
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A number of stochastic programming (SP) approaches have been proposed and implemented to 

solve various real-world sensor placement problems [1,5,6,19,20]. Most of these previously 

proposed SP formulations have assumed perfect sensors. In reality, however, detectors are 

imperfect and subject to unpredictable failures caused by, for example, poor maintenance, 

erroneous calibration, or power outage. In many practical cases, these imperfections can 

significantly impact the performance of the entire detector system. To improve the reliability of 

the optimal design, therefore, it is important and necessary to explicitly consider sensor 

imperfection, which is measured in terms of unavailability, i.e., the probability of a false-negative 

detection. Berry et al. [5] first proposed an SP-based imperfect-sensor model for the contamination 

warning system design in water networks. Inspired by this research, Benavides-Serrano et al. [1,3] 

presented SP formulations for flammable gas detection and mitigation systems considering sensor 

unavailabilities. However, the resulting sensor placement problems, formulated as large-scale 

mixed-integer nonlinear programming (MINLP) problems, are very challenging to solve due to 

the presence of nonlinearities and discrete variables. To solve these problems efficiently, 

Benavides-Serrano et al. [3] approximated the MINLP as a mixed-integer quadratic programming 

problem (MIQP) by considering only one or two levels of redundancy. In this paper, we provide a 

rigorous problem formulation and solution approach for optimal sensor placement that does not 

require this approximation. 

 

Sensor placement problems considering nonuniform unavailabilities are formulated as MINLP 

problems. Two major categories of solution techniques have been used to solve MINLP problems. 

Stochastic approaches, such as random search, simulated annealing, and genetic algorithms, can 

be easily implemented, however, none of these algorithms can provide a guarantee of the solution 

optimality. Deterministic methods, in contrast, are able to provide a rigorous mathematical 

guarantee of global optimality. The single-tree deterministic algorithms, such as the well-known 

branch-and-bound (BB) methods [7,18], have been well-studied and intensively extended to a 

variety of global optimization algorithms, such as Branch-and-Reduce [25], Reduced Space 

Branch-and-Bound [9], Branch-and-Contract [30], Branch-and-Cut [14] and Branch-and-

Sandwich [16]. In general, these techniques are suitable for non-convex MINLP problems of small 

or medium size. Alternatively, multitree methods are based on iteratively solving a sequence of 

master problems and slave problems (or subproblems) [8,29]. To handle `non-convex' MINLP 

problems with certain special features, e.g., bilinear, posynomial, linear fractional, and concave 

separable, extensions of these well-studied multitree methods can be found in literature [23,24].  

 

The proposed global optimization algorithm is regarded as a multitree method, since it is an 

iterative algorithm relying on solutions of a sequence of mixed-integer master problems and 

nonlinear subproblems. The master problem, which formulated as a mixed-integer linear 

programming (MILP) problem, is a strict convex relaxation of the MINLP problem formulation. 

To obtain a relatively tight and computationally efficient master problem, we introduce linear outer 

approximations and tight, problem specific, upper bounding constraints. The upper bounding 

subproblem is obtained by fixing all binary variables, which, in this case, results in a subproblem 

that can be directly computed with a single forward simulation. In this way, iterations cycle 

between the solution of the master problem and the subproblem, generating a sequence of lower 

and upper bounds. The global algorithm terminates when the relative optimality gap is below a 

given tolerance. 



 

The rest of this paper is organized as follows. In Section 2, we briefly review mathematical models 

for sensor placement problems. Section 3 presents our new problem formulation based on the log-

transformation of the original problem formulation from [5]. Section 4 outlines our tailored global 

solution framework and master problems formulated as mixed-integer linear programming 

problems. Sections 5 shows numerical results on a real data test problem and Section 6 provides 

summary and conclusions.  

 

2 Background 
 

In this section, we provide a brief review of the literature on optimal sensor placement. The sensor 

placement problem can be regarded as a special case of the p-median problem (PMP). In a PMP, 

we want to locate 𝑝 facilities to minimize the weighted average distance between the demand 

nodes and the nearest of the selected facilities [12]. The optimal sensor placement problem 

assuming perfect sensors is equivalent to a classic PMP, and well-known solution strategies 

designed for PMPs can be directly implemented, including heuristic and greedy algorithms. 

However, most of these strategies may fail to guarantee high solution quality. The stochastic 

programming (SP) approach, on the other hand, provides an alternative way to solve for a PMP. 

Particularly, the first SP formulation for sensor placement problem in water network systems was 

proposed by Berry et al. [6]. With the assumption of perfect sensors, the resulting optimization 

problem is formulated as an MILP problem, which can be solved by general mixed-integer solvers. 

 

Detectors are, however, imperfect and subject to unpredictable failures. In many cases, these 

imperfections can significantly impact the performance of the entire detector system. To improve 

the reliability of the entire detection system, therefore, it is necessary to explicitly consider sensor 

unavailability, i.e., the probability of a false-negative detection. A number of extensions to the 

original PMPs have been proposed to handle facility unavailabilities. For instance, Snyder and 

Daskin [26] presented the reliability PMP (RPMP) based on the assumption of uniform 

unavailabilites. In this approach, the probability products are modeled via the binomial 

distribution, which leads to an MILP problem. The median problem with unreliable facilities 

(MPUF) is proposed by Berman et al. [4], where the unvailabilities are assumed to be uniform and 

the detection levels are limited to a given number. For a comprehensive review of the unavailability 

considerations into the PMPs please refer to Benavides-Serrano et al [1] and Snyder et al. [27]. 

 

In the context of stochastic programming approaches, the first imperfect-sensor model is presented 

by Berry et al. [5]. This model, though originally proposed to design the contaminant warning 

systems in water networks, is general and well-suited for any sensor placement problem 

considering unavailabilities. However, the resulting MINLP problem is very difficult to solve due 

to strong nonlinearities. To partially address this challenge, previous work has assumed uniform 

unavailability across all sensors in the network [1]. However, this assumption is not always 

reasonable since the probability of sensor failure usually depends on the detector type, 

maintenance condition, and environment. An alternative approach was recently proposed by 

Benavides-Serrano et al. [3] based on reducing the number of detection levels while maintaining 

nonuniform unavailabilities. Sensitivity analysis has shown that for small-to-moderate 

unavailabilities we only need to consider a small number of detection levels. While effective under 



these assumptions, it is worthwhile to point out that these SP formulations are approximations of 

the original sensor placement problem. As a result, none of these approaches can provide a rigorous 

guarantee of solution quality to the original MINLP problem. Moreover, to the best of our 

knowledge, there exists no solution framework that is designed to solve a general sensor placement 

problem with nonuniform unavailabilites to global optimality. In this paper, we extend previous 

problem formulations and present a multitree solution strategy based on tailored relaxations of the 

MINLP problem. 

 

3 Stochastic Programming Formulations and Solution Approach 

 
The imperfect-sensor SP model, labeled impSP, was originally proposed by Berry et al. [5] to 

design contaminate warning systems for water networks. 

  

min    ∑ 𝛼𝑎

𝑎∈𝐴

∑ 𝑑𝑎,𝑖𝑥𝑎,𝑖

𝑖∈𝐿𝑎

 

𝑠. 𝑡.     ∑ 𝑥𝑎,𝑖 = 1

𝑖∈𝐿𝑎

                                                        ∀𝑎 ∈ 𝐴 

             𝑥𝑎,𝑖 = (1 − �̅�𝑖)𝑠𝑖 ∏ (1 − (1 − �̅�𝑗)𝑠𝑗)

𝑗∈𝐿𝑎,𝑖

      ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎\{𝐷} 

            ∑ 𝑠𝑖 ≤ 𝑝

𝑖∈𝐿\{𝐷}

 

            0 ≤ 𝑥𝑎,𝑖 ≤ 1                                                        ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎  

            𝑠𝑖 ∈ {0,1}                                                             ∀𝑖 ∈ 𝐿 
 

(impSP) 

The complete list of symbols for this problem formulation are described in Table 1. Here, 𝐴 

presents the set of hazardous scenarios, and 𝐿 presents the set of all candidate detector locations. 

The goal is to select a sensor placement that minimizes the expected value of the damage across 

all the scenarios. The parameter 𝛼𝑎 is the probability (or weight) of scenario 𝑎, which is obtained 

from the scenario distribution based on the historical data or computer-aided simulations. 

Parameter 𝑑𝑎,𝑖 is the damage coefficient, which, for these studies, is the detection time of scenario 

𝑎 at location 𝑖. Typically, and in this study, these damage coefficients are estimated from 

computational fluid dynamics (CFD) simulations. Further description of this problem formulation 

can be found in Benavides-Serrano et al [3] and Berry et al. [5]. 

 

Table 1: Notation 

Sets  

𝑨 Set of hazardous scenarios 

𝑳 Set of candidate detector locations 

𝑳𝒂 Set of locations that can detect scenario 𝑎 

𝑳𝒂,𝒊 Set of locations that witness scenario 𝑎 better (in terms of damage) than 𝑖 

Parameters  

𝜶𝒂 Probability of scenario 𝑎 



𝒅𝒂,𝒊 Damage coefficient for scenario 𝑎 if detected by location 𝑖 

�̅�𝒊 Time-averaged unavailability for detector placed at location 𝑖 
𝒑 Maximum number of detectors allowed 

Variables  

𝒙𝒂,𝒊 Probability that a detector at location 𝑖 is the first to detect scenario 𝑎 

�̃�𝒂,𝒊,  �̅�𝒂,𝒊 Intermediate variables in our alternate formulation 

𝒔𝒊 Binary variable equal to 1 if a detector is placed at location 𝑖, and zero otherwise 

𝒛𝒊,𝒋 Aggregated variable equal to 𝑠𝑖𝑠𝑗 for 𝑖 ≠ 𝑗 

  

The continuous variable 𝑥𝑎,𝑖 is the probability that the detector placed at location 𝑖 will be the first 

to detect hazardous scenario 𝑎. The binary variable 𝑠𝑖 is an indicator for a detector placed at 

location 𝑖. If a detector is installed at location 𝑖 then 𝑠𝑖 = 1, and otherwise 𝑠𝑖 = 0. Subset 𝐿𝑎 ⊆ 𝐿 

is the set of candidate locations that can provide detection of hazardous scenario 𝑎. For a particular 

scenario, however, it is possible that no candidate location can provide detection, therefore, a 

dummy location 𝐷 is also included with a sufficiently large damage coefficient, to account for the 

impact of an undetected scenario. Subset 𝐿𝑎,𝑖 is the set of candidate locations that can witness 

scenario 𝑎 better (in terms of detection time or another damage metric) than location 𝑖.  
 

The first constraint in (impSP) guarantees that the summation of the probabilities equals 1 for each 

scenario (recall that a dummy detector is included). For each non-dummy location, the second 

constraint provides the expression for the probability 𝑥𝑎,𝑖, where �̅�𝑖 is the given time-averaged 

unavailability of a detector placed at location 𝑖. This probability constraint is strongly nonlinear 

due to the product of the binary variables. Note that, due to the first constraint, the probability of 

detection by the dummy location, 𝑥𝑎,𝐷, also provides the probability that all detectors fail to report 

a hazardous scenario. The third constraint provides an upper bound of the total number of detectors 

that can be allocated in the system (not including the dummy detector).  

 

3.1 Alternative MINLP Formulation 
The original formulation (impSP) is strongly nonlinear due to the multiplication of binary variables 

in the relationship for probability 𝑥𝑎,𝑖. We propose an alternative formulation, which is 

mathematically equivalent to the original formulation, based on the log-transformation of the 

probability equation.  

 

First, we define a new binary variable 𝑧𝑖,𝑗 as, 

 

            𝑧𝑖,𝑗 ≡ 𝑠𝑖𝑠𝑗                                                               ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

 

Note that 𝑧𝑖,𝑗 indicates if gas detectors are placed at both location i and location 𝑗. That is 𝑧𝑖,𝑗 = 1 

if and only if both 𝑠𝑖 = 1 and 𝑠𝑗 = 1. This logic relationship can be expressed in terms of a set of 

linear inequalities 

 

            𝑠𝑖 + 𝑠𝑗 − 1 ≤ 𝑧𝑖,𝑗                                                ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑖                                                                 ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑗                                                                  ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗  

(1) 



 

Fortunately, given the fact that 𝑠𝑖 is a binary variable, imposing these constraints guarantees that 

𝑧𝑖,𝑗 solves to a binary value, and it can be relaxed as a continuous variable within the range of 0 to 

1. 

 

The log-transformation of the nonlinear probability constraint can be rewritten as a linear equality 

constraint 

          �̃�𝑎,𝑖 = 𝑠𝑖 ln(1 − �̅�𝑖) + ∑ 𝑧𝑖,𝑗ln(�̅�𝑗)𝑗∈𝐿𝑎,𝑖
          ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎\{𝐷} (2) 

 

However, the new variable �̃�𝑎,𝑖 is not an exact log-transformation of the probability 𝑥𝑎,𝑖. For 

instance, if 𝑠𝑖 = 0, meaning that no detector is installed at location 𝑖, we have both 𝑥𝑎,𝑖 = 0 from 

formulation (impSP) and �̃�𝑎,𝑖 = 0 from equations (1) and (2), while the exact log-transformation 

of 𝑥𝑎,𝑖 gives -. To recover 𝑥𝑎,𝑖 from �̃�𝑎,𝑖, we need to introduce a new variable  �̅�𝑎,𝑖 and two 

additional constraints 

 

           �̅�𝑎,𝑖 = exp (�̃�𝑎,𝑖)                                                 ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 

           𝑥𝑎,𝑖 = �̅�𝑎,𝑖 + 𝑠𝑖 − 1                                            ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎  
(3) 

 

A mathematically equivalent formulation of the original formulation (impSP) is then given as 

 

min    ∑ 𝛼𝑎

𝑎∈𝐴

∑ 𝑑𝑎,𝑖𝑥𝑎,𝑖

𝑖∈𝐿𝑎

 

𝑠. 𝑡.     ∑ 𝑥𝑎,𝑖 = 1

𝑖∈𝐿𝑎

                                                        ∀𝑎 ∈ 𝐴 

             �̃�𝑎,𝑖 = 𝑠𝑖 ln(1 − �̅�𝑖) + ∑ 𝑧𝑖,𝑗ln(�̅�𝑗)

𝑗∈𝐿𝑎,𝑖

         ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎\{𝐷} 

            �̅�𝑎,𝑖 = exp (�̃�𝑎,𝑖)                                                 ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 

            𝑥𝑎,𝑖 = �̅�𝑎,𝑖 + 𝑠𝑖 − 1                                            ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 

            𝑠𝑖 + 𝑠𝑗 − 1 ≤ 𝑧𝑖,𝑗                                                ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑖                                                                 ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑗                                                                  ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            ∑ 𝑠𝑖 ≤ 𝑝

𝑖∈𝐿\{𝐷}

 

            0 ≤ 𝑥𝑎,𝑖 ≤ 1                                                        ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎  

            𝑠𝑖 ∈ {0,1}                                                             ∀𝑖 ∈ 𝐿 
            0 ≤ 𝑧𝑖,𝑗 ≤ 1                                                         ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

(impSP-LT) 

 

We label this (impSP-LT) to indicate that it is an exact log-transformation of the original 

formulation (impSP). This alternative formulation, nevertheless, is still an MINLP problem due to 

binary variables and exponential terms. Compared with the original formulation, however, the 

reformulation is mathematically preferable since its nonlinearity only arises from convex 



univariate functions. This property facilitates straightforward development of our global solution 

strategy.  

 

3.2 MINLP Solution Algorithm 
 

Regarded as a multitree method, our global solution framework is an iterative algorithm relying 

on solving a sequence of lower bounding master problems and upper bounding subproblems. The 

master problem, formulated as an MILP problem, is a relaxation of the sensor placement problem 

formulated in (impSP-LT). If the master problem is infeasible, the corresponding sensor placement 

problem is also infeasible and the algorithm terminates. Otherwise, the master problem provides a 

valid lower bound and a candidate set of values for the discrete decisions (the sensor placement, 

𝑠𝑖). The mixed-integer master problem can be refined by several techniques discussed later. A 

corresponding upper-bounding subproblem is obtained by fixing all binary variables present in the 

formulation to the values from the solution of the master problem. In this particular formulation, 

when all binary variables are specified, the resulting upper-bounding subproblem is square and 

can be computed directly. This subproblem provides a valid upper bound of the sensor placement 

problem. The algorithm proceeds through a series of major iterations, cycling between the solution 

of a mixed-integer master problem (for the lower bound) and a forward simulation of the upper-

bounding subproblem, yielding a sequence of lower and upper bounds. Finally, the algorithm 

terminates when the relative optimality gap is below a given tolerance. 

 

This solution approach requires an effective relaxation of (impSP-LT) that can be refined to 

produce tighter and tigher lower bounds. We present a strict convex relaxation of the formulation 

by introducing linear outer approximations. This relaxation, formulated as an MILP problem, is 

used as the lower bounding master problem in our global optimization algorithm. Notice in the 

alternative formulation (impSP-LT), the nonlinearity only arises from the univariate convex 

function exp (�̃�𝑎,𝑖). While these exponential terms can be relaxed using linear under- and piecewise 

linear over-estimators, this approach would introduce additional binary variables (or SOS2 

constraints) for the piecewise linear over-estimators. Furthermore, the number of binary variables 

increases as we increase the number of segments during refinement.  

 

3.2.1 MILP Relaxation with Tight Upper Bounding Constraints 

To avoid using the piecewise linear over-estimators, we propose instead a tailored approach and 

introduce a different convex relaxation without these piecewise linear functions. Given the 

objective function and positive damage coefficients 𝑑𝑎,𝑖 the optimization problem tends to push 

all 𝑥𝑎,𝑖 to the lowest possible value so that the object function value is minimized. However, the 

first constraint in formulation (impSP-LT) requires that the probabilities for each scenario sum to 

1, therefore locations with larger damage coefficients will still be pushed down to their lower 

bounds, while the locations with small damage coefficients will be pushed to their upper bound. 

Therefore, the upper bounds of 𝑥𝑎,𝑖, especially those of the locations with relatively low damage 

coefficients can have a strong impact on the tightness of the convex relaxation.   

 

Here, we use the concept of detection levels proposed by Benavides-Serrano et al [3]. In particular, 

if a sensor is at detection level 𝑁 for a scenario, then for this detector to be the first to detect the 

scenario, all 𝑁 − 1 detectors at better locations (with smaller damage coefficients) must of failed 

to operate correctly. For instance, if a detector is placed at a location with the smallest damage 



coefficients compared with the others, then it is at the first detection level, and the value of 𝑥𝑎,𝑖 =
1 − �̅�𝑖. For the second detection level, the probability is given by 𝑥𝑎,𝑖 = �̅�𝑗(1 − �̅�𝑖), where 𝑗 and 

𝑖 are the locations with the smallest and the second smallest damage coefficients for scenario 𝑎, 

respectively. With this knowledge, we can write the upper bound of 𝑥𝑎,𝑖 up to two detection levels 

as, 

            �̅�𝑎,𝑖 ≤ (1 − �̅�𝑖)(𝑠𝑖 + (�̅�𝑗 − 1)𝑧𝑖,𝑗)                 ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎, 𝑗 ∈ 𝐿𝑎,𝑖  (4) 

 

Note if there is no detector installed at location 𝑖, i.e.,𝑠𝑖 = 0, then 𝑥𝑎,𝑖 is forced to be 0. If 𝑠𝑖 = 1  

and location 𝑖 happens to be at the first detection level for scenario 𝑎 then we have 𝑥𝑎,𝑖 ≤ 1 − �̅�𝑖. 

Recall the fact that at the optimal solution for 𝑥𝑎,𝑖 corresponding to the smallest damage coefficient 

will be lifted up to its upper bound and we have that 𝑥𝑎,𝑖 = 1 − �̅�𝑖. In other words, this upper 

bound is active and thus the tightest. Similar arguments hold true for higher detection levels, and 

the upper bounding constraints shown above are the tightest for the first two detection levels and 

provide valid upper bounds at higher detection levels.  

 

We impose the upper bounding constraints leading to the relaxation, 

 

min    ∑ 𝛼𝑎

𝑎∈𝐴

∑ 𝑑𝑎,𝑖𝑥𝑎,𝑖

𝑖∈𝐿𝑎

 

𝑠. 𝑡.     ∑ 𝑥𝑎,𝑖 = 1

𝑖∈𝐿𝑎

                                                         ∀𝑎 ∈ 𝐴 

             �̃�𝑎,𝑖 = 𝑠𝑖 ln(1 − �̅�𝑖) + ∑ 𝑧𝑖,𝑗ln(�̅�𝑗)

𝑗∈𝐿𝑎,𝑖

          ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎\{𝐷} 

            𝑥𝑎,𝑖 ≤ (1 − �̅�𝑖)(𝑠𝑖 + (�̅�𝑗 − 1)𝑧𝑖,𝑗)                 ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎, 𝑗 ∈ 𝐿𝑎,𝑖 

            �̅�𝑎,𝑖 ≥ exp̅̅ ̅̅ ̅(�̃�𝑎,𝑖,𝑚
∗ ) (�̃�𝑎,𝑖 − �̃�𝑎,𝑖,𝑚

∗ + 1)           ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 , 𝑚 ∈ 𝑀𝑎,𝑖 

            𝑥𝑎,𝑖 = �̅�𝑎,𝑖 + 𝑠𝑖 − 1                                            ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 

            𝑠𝑖 + 𝑠𝑗 − 1 ≤ 𝑧𝑖,𝑗                                                ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑖                                                                 ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            𝑧𝑖,𝑗 ≤ 𝑠𝑗                                                                  ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

            ∑ 𝑠𝑖 ≤ 𝑝

𝑖∈𝐿\{𝐷}

 

            0 ≤ 𝑥𝑎,𝑖 ≤ 1                                                        ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎  

            𝑠𝑖 ∈ {0,1}                                                             ∀𝑖 ∈ 𝐿 
            0 ≤ 𝑧𝑖,𝑗 ≤ 1                                                         ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

 

 

 (impSP-R) 

 

Here 𝑒𝑥𝑝̅̅ ̅̅ ̅ refers to linearizations of the function, forming valid under-estimators. There are two 

ways to further improve the tightness of the relaxation (impSP-R). First, we can increase the 

number of segment points to refine the linear under-estimators. Second, we can impose similar 



upper bounding constraints for higher detection levels. For instance, tight upper bounding 

constraints up to three detection levels can be written as, 

 

𝑥𝑎,𝑖 ≤ (1 − �̅�𝑖) (𝑠𝑖 + (�̅�𝑗 − 1)𝑧𝑖,𝑗 + �̅�𝑗(�̅�𝑘 − 1)(𝑧𝑖,𝑗 + 𝑧𝑗,𝑘 − 1))   ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝑎 , 𝑗 ∈ 𝐿𝑎,𝑖, 𝑘 ∈ 𝐿𝑎,𝑗. 

 

  

Note that no additional binary variables are required in generating tighter upper bounding 

constraints. Theoretically, we can impose these upper bounding constraints to arbitrary detection 

levels. However, the number of these constraints may increase dramatically and the resulting 

relaxation problem can soon become prohibitively large. Moreover, the tightness may not be 

significantly improved since the probability at higher detection level may be negligible. 

4 Numerical Results 
In this section, we test our MINLP formulation and global solution approach on a gas detector 

placement problem with nonuniform unavailabilities. First, we provide a brief introduction on the 

simulation data used in this paper. Then we present the computational performance of our tailored 

algorithm in solving the gas detector placement problem.  

 

4.1 Data Set 
The data set used here is previously employed by Benavides-Serrano et al. [1,3] and Legg et al. 

[19,20]. It is based on a real, medium-scale, proprietary offshore facility geometry capturing the 

full process features, such as equipment, piping, and support structures. Gas dispersion scenario 

simulations were provided by GexCon, computed with FLACS, a validated tool for gas dispersion 

and explosion modeling in the technical safety context. Particularly, this data set consists of 270 

hazard scenarios and 994 potential gas detector locations. The damage coefficient is the time 

between the initiation of a hazardous scenario 𝑎 and its detection by a gas sensor placed at location 

𝑖. To capture undetected scenarios, the damage coefficient of the dummy location is set to a value 

larger than the other damage coefficients. For a complete discussion regarding the data set, the 

data generation, and the data collection procedure please refer to previous work [2]. 

 

4.2 Sensor Placement Results 
The convex relaxation (impSP-R2) is used as the master problem in our global solution framework. 

The resulting lower bounding master problem is formulated as a mixed-integer linear 

programming (MILP) problem. Our tailor global solution framework is implemented in Pyomo, a 

Python-based optimization modeling language [13]. The MILP master problem is solved to an 

optimality gap below 0.001%. The relative optimality gap of the global algorithm is set to be 

0.01%. The total computational time limit is 36,000 seconds and the outer iteration number limit 

is 30.  The mixed-integer master problems are solved with Gurobi [21] and the forward simulations 

are directly computed. The computational performance of the optimization approach is shown in 

Table 2 for different values of the maximum number of sensors 𝑝. 
 

 



Table 2: Computational Performance Results 

𝒑 Best Solution Lower 

Bound 

Gap (%) CPU Time Iteration 

1 8622.88 8622.88 0 69 1 

5 5954.81 5981.49 0 1003 2 

10 4354.6 4357.52 0 2306 2 

15 3302.06 3303.6 0 2484 2 

20 2553.53 2554.22 0 1911 2 

25 1894.25 1894.76 0 4128 3 

30 1426.55 1426.57 0 4213 3 

35 1068.67 1068.12 0.0005 9032 7 

40 779.09 778.43 0.0008 7929 4 

45 581.14 579.87 0.0022  46636*  2 

 

As the number of detector increases (from 1 to 45), the object function value improves (from 8623 

to 581) since more scenarios can be detected faster. As observed in other work, increasing the 

number of gas detectors has more impact when the number of sensors are relatively small, since 

more of the scenarios are detected, and the algorithm is focusing on achieving maximum coverage 

(to avoid the penalty of the dummy location). However, as the number of sensors increases, full 

coverage is achieved, and the focus is shifted to reducing the expected time to detection alone with 

additional detectors. Therefore, trade-offs must be made between the number of detectors and the 

expected detection time across all scenarios.  

 

From a mathematical point of view, our proposed global solution framework is able to solve this 

sensor placement problem to global optimality. Particularly, when the number of detectors is 

relatively small (1 to 30), the resulting sensor placement problems are globally solved in under 2 

hours. Even for larger problems, however, the solutions times are still many orders of magnitude 

less than the time required to compute the dispersion scenarios.  

 

5 Summary and Conclusions 
Gas detection and mitigation systems play very important roles in modern process safety since 

they can protect lives and reduce the potential damage caused by combustible and toxic gas leaks. 

However, the optimal design of a gas detection system is very challenging because of the inherent 

uncertainty such as gas compositions, leak locations, process conditions, and weather. To address 

this uncertainty, prescriptive or semi-quantitative approaches have been widely used for decades, 

however, none of these techniques can provide rigorous proof of the solution quality. To deal with 

this issue, there is a need to develop rigorous quantitative strategies for gas detector system design. 

Stochastic programming (SP) provides an appropriate mechanism for solution of these sensor 

placement problems.  

 

The SP formulations proposed in this paper consider nonuniform failure probabilities. Whereas 

previous work considered only two backup levels (valid when unavailability values are low), 

arriving at a mixed-integer quadratic programming (MIQP) problem, in our formulation, all 

backup detection levels are explicitly taken into account. The resulting sensor placement problem 



is formulated as a large-scale mixed-integer nonlinear programming (MINLP) problem. To solve 

this challenging MINLP problem to global optimality, we propose a multitree method which 

depends on iteratively solving a sequence of lower-bounding master problems and upper-bounding 

subproblems. The upper-bounding subproblems can be directly computed (they become square 

once the binaries are fixed). The master problem, however, is a mixed-integer problem that must 

be formulated as a convex relaxation of the original MINLP problem. To obtain a relatively tight 

and computationally efficient master problem, we first propose an equivalent log-transformation 

of the original MINLP formulation. Though new variables and constraints are introduced, this 

alternative formulation is mathematically preferable since all its nonlinearity comes from convex 

univariate terms. Based on this reformulation, we present a strictly convex relaxation by 

introducing linear outer approximations and tight upper bounding constraints. The resulting 

relaxation formulated as a mixed-integer linear programming (MILP) problem is used as the lower-

bounding master problem. The proposed global solution strategy is tested on a number of real data 

problems and the encouraging numerical results indicate that this solution framework is 

computationally feasible for large datasets. 
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