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Abstract 
 

The offshore LNG terminal, referred to as LNG floating storage unit or floating storage and re-

gasification unit (FSRU), performs well on both building process and operation process. The LNG 

FSRU is a cost-effective and time efficient solution for LNG transferring in the offshore area, and 

it brings minimal impacts to the surrounding environment as well. This paper proposed a 

systematic method to integrate chemical process safety with maritime safety analysis. The 

evaluation network was adopted to process a comparison study between two possible locations for 

LNG offshore FSRU. This research divided the whole process into three parts, beginning with the 

LNG Carrier navigating in the inbound channel, the berthing operation and ending with the 

completion of LNG transferring operation. The preferred location is determined by simultaneously 

evaluating navigation safety, berthing safety and LNG transferring safety objectives based on the 

quantitative multi-cluster network multi-attribute decision analysis (QMNMDA) method. The 

maritime safety analysis, including navigational process and berthing process, was simulated by 

LNG ship simulator and analyzed by statistical tools; evaluation scale for maritime safety analysis 

were determined by analyzing data from ninety experts.  The chemical process safety simulation 

was employed to LNG transferring events such as connection hose rupture, flange failure by the 

consequence simulation tool. Two scenarios, i.e., worst case scenario and maximum credible 

scenario, were taken into consideration by inputting different data of evaluating parameters. The 

QMNMDA method transformed the evaluation criteria to one comparable unit, safety utility value, 

to evaluate the different alternatives. Based on the final value of the simulation, the preferred 

location can be determined, and the mitigation measures were presented accordingly.  

 

Keywords: LNG floating storage and regasification unit; Quantitative multi-cluster network 

multi-attribute decision analysis; Maritime safety; Chemical process safety 
 



Nomenclature 

 

AHP Analytic Hierarchy Process 

APF Average Possibility of Fatality 

BLEVE Boiling Liquid Expanding Vapor Explosion 

FSRU Floating Storage and Re-gasification Unit 

LNGC Liquefied Natural Gas Carrier 

MADA Multi-Attribute Decision Analysis 

MCS Maximum Credible Scenario 

PLL Potential Loss of Life 

QMFMDA Quantitative Multi-hierarchy Framework Multi-attribute 

Decision Analysis 

RPT Rapid Phase Transition 

SUV Safety Utility Value 

UKC Under Keel Clearance 

VCE Vapor Cloud Explosion 

WCS Worst Case Scenario 



Symbol 

 

a: The average time interval of position checks by deck officers 

b: A coefficient that represents the extent of damage to a ship’s hull 

B1, B2: Breadth of Ship 1 and Ship 2  

C: The width of the channel 

D: Average distance between ships 

De: Diameter of collision avoidance  

Di: Collision diameter 

d: The width of channel 

F: Threatened Level 

f: Lateral distribution of the ship routes, often normal distribution 

f(): The actual traffic distribution of ships  

H: Depth of the channel 

𝑘𝑅𝑅: Risk reduction factor, usually taken 0.5  

L: Average vessel length 

N1, N2: Number of ship 1, 2 passing per year 

P: The probability that a vessel is involved in a collision accident during its voyage passing 

one assigned water area 

Pc: Causation probability  

Pg: Geometrical probability, collision probability without aversive measures are made.  

            Px: Ship collision probability 

Qj: Number of movements of ship class j per unit time, named as traffic volume 

R: Radius of Turning Circle  

T: Ship’s stopping distance 

V: Speed of passing vessel  

Vij: Relative velocity 

Vrel: Relative speed 

V1, V2: Speed of Ship 1 and Ship 2 

X, Actual length of path for one ship 

Z: Distance from the centerline of the fairway 

1/r: Distance decay curve  

𝜌: Traffic density, number of ships per unit area 

𝜃: The angle that one single ship approaching the channel with  
  



1. Introduction 

 

Natural gas, a green fossil fuel, is liquefied via dehydration, de-heavy hydrocarbons, and 

deacidified. Meanwhile, the volume of liquefied Natural Gas (LNG) is approximately equal to 

1/600 of that of natural gas (GIIGNL Annual Report, 2019). The high storage efficiency, low cost, 

and economical long-distance transportation are the main advantages of LNG. In addition, LNG 

serves as a civil fuel because of its eco-friendliness (high hydrogen-carbon ratio) and high calorific 

value.  

 

Currently, LNG Carrier (LNGC) is the most common tool for long-distance transportation between 

natural gas plants and traditional LNG terminals. Since the technique of floating production, 

storage, and offloading keeps developing these years, many loading and discharging modes are 

put into use in the offshore area. The typical LNG supply chain starts at the gas exploration plants. 

LNG is liquefied and stored in the export terminal; through the LNGC, LNG can be transferred to 

import terminal to store and to carry out re-gasification process before it is sent to downstream 

customers for civil or industrial utilizations (Andersson et al., 2010). A floating LNG unit can 

substitute the traditional export terminal, acting as a liquefaction plant and LNG storage offshore, 

this is called floating liquefied natural gas (FLNG). On the other side, to take the place of a 

traditional import LNG terminal, a technology called LNG floating storage and re-gasification unit 

(FSRU) was adopted to store the transferred LNG and to convert the LNG to gaseous state to meet 

the requirements of civil and industry utilization (Aronsson, 2012).   

 

As shown in Figure 1, the typical LNG supply chain includes gas exploration, export terminal, 

LNG carrier, import terminal and pipelines. LNG FSRU, which is employed to improve working 

efficiency of LNG import terminal, integrates the storage function with re-gasification plant, 

locating in the offshore or near shore areas.  

 
 

Figure 1. LNG Supply Chain  

 

Compared with traditional LNG receiving terminals, LNG-FSRU performs better on many aspects. 

Building time saving: an LNG-FSRU  is typically commissioned in 2 years, while an onshore LNG 

terminal usually takes 4-5 years; Flexible to re-location: typical LNG-FSRU systems are 

reconfigured by LNGCs after permission procedures, and since they still can serve as 

transportation tools, when the natural gas market grows, they can be relocated in another area to 

solve emergent supply and demand problems; Cost-effective, the investment of LNG-FSRU is 

usually 4 to 5 times less than that of land LNG receiving terminal (Finn, 2002). 

 

As a new concept of LNG value chain, the research of LNG FSRU has been active in the process 

safety community only for several years. Schleder et al. (2011) employed fault tree analysis to 

carry out risk analysis of FSRU. (Martins et al., 2016) completed a detailed quantitative risk 

analysis study of undesired events of LNG FSRU by the consequence tool and presented the 

safeguard actions accordingly. Most literatures of LNG FSRU risk analysis focused on the fuzzy 

evaluation of the sole regasification unit from the perspective of chemical safety. However, few 



works have been done to consider a dynamic system for both FSRU and LNGC from a systematic 

point of view. Therefore, the objective of this research is to propose a safety-based model for a 

system of FSRU and LNGC by integrating both maritime safety and chemical process safety 

knowledge, and we call the defined system as FSRU-LNGC integrated system. The FSRU-LNGC 

system includes LNGC which is to be berthed alongside the FSRU, the FSRU itself, and the 

operation interaction of LNGC and FSRU. Its evaluation process starts from the LNGC entering 

into the inner harbor area via inbound channel and ends with the completion of LNG transferring. 

Three consecutive processes are involved in the research, LNGC navigation, LNGC berthing 

alongside the LNG FSRU and cargo transferring operation between LNGC and LNG FSRU, see 

Figure 2.   

 
Figure 2. Defined Evaluation Processes 

 

As shown above, the evaluation process starts with the LNGC entering the FSRU channel 

(navigational process), then the LNGC berthing alongside FSRU (berthing Process) and ends with 

the completion of LNG cargo transferring (transferring process).  

A preliminary safety performance evaluation framework of the FSRU-LNGC system should be 

established by risk evaluation methods to build the risk model. Inspired by (Shapira and 

Goldenberg, 2005) and (Saaty, 1990), this study presented a quantitative multi-cluster network 

multi-attribute decision analysis (QMNMDA) to build a risk informed model for the defined 

processes of  the FSRU-LNGC system. Figure 3 shows the preliminary evaluation process of the 

QMNMDA by incorporating the process analysis, risk assessment and attribute determination.  

 

 



           
Figure 3. Proposed Evaluation Framework of QMNMDA 

From the above figure, the FSRU-LNGC system will be analyzed by three processes: 

navigational process, berthing process and LNG cargo transferring process. Moreover, many 

techniques such as event tree analysis and bow-tie analysis, were adopted to identify hazards in 

these three processes. And the leading factors, we call attributes in the paper, of the identified 

hazards were categorized as maritime safety and chemical safety respectively and the 

corresponding attribute pools were established by detailed ship simulator study and chemical 

consequence analysis. The scope of this paper is restricted to operation safety of between FSRU 

and LNGC from a systematic safety view. Following the preliminary evaluation framework, this 

FSRU-LNGC study firstly analyzes the merits and demerits of relevant hazardous models for 

maritime safety and employs bow-tie and event-tree analysis for defined scenarios of FSRU 

LNGC interface. Then the ship simulator study, statistical analysis and chemical consequence 

analysis are carried out to build the quantitative multi-cluster model. At last, a case study of two 

proposed locations was adopted to investigate the safety level of FSRU LNGC systems using the 

model.  

 

 

 



2. Relevant works  

 

To establish the LNG-FSRU evaluation criteria, several factors, such as hydrographic 

information, navigation safety, fire and explosive risks, exclusion areas, and environment 

sensitivity, should be taken into consideration individually. Combined with previously recorded 

incidents, the most threatening hazards, collision, grounding, fire/explosion, and spillage during 

cargo handling, were identified by (Woodward and Pitblado, 2010)(Ji et al., 2017).   

 

As for collision model, specifically, Fujii et al. (1974)  and his group firstly proposed a model to 

calculate the average number of evasive actions by one ship navigating in one area. The 

prediction variables of his model were traffic density, diameter of collision avoidance, speed of 

passing vessel and relative speed. Moreover, the range of diameter of collision avoidance made 

the prediction values quite conservative. Macduff’s model (Macduff, 1974) focused on the 

probable collision model, which was predicted by the geometrical probability and the causation 

probability. But the value of the geometrical probability will be overestimated when the angle 

between ship and channel is small. To determine the geometrical probability Pg, Pedersen (1995) 

presented a model under a two-channel situation. Channel 1 and channel 2 are assumed as two 

crossing channels. This model is reasonable for crossing scenario to estimate the geometrical 

probability due to a more practical assumption. However, the lack of ship movement data made 

it difficult to determine the probability distribution of ship motion. The summary of above 

mentioned three collision models was listed in the Table 1. 

.  

Table 1. Summary of Ship Collision Model 

Model  Expression Drawbacks  

Fujii’s 

Model N = ∫ (ρDeVrel/V)

exit

entrance

dx 

 

De is conservative (9.5 to 16.3 times ship length), so Pg 

is overestimated. 

Macduff’s 

Model  Pg =  
X ∙ L̅

D2
∙
Sin(θ 2⁄ )

925
 

 

Pg is overestimated when ɵ is small and 

underestimated because of the assumption of two ships 

are equal speed.  

Pedersen’s 

Model P∆t =
Qj
(2)

Vj
(2)
fj
2(zj)DijVijdzj∆t 

 

Applicable for crossing channel situation, assume ship 

lateral motion as normal distribution, not very accurate 

for head on situation 

 

In order to precisely simulate the head on situation in the real world, the COWI model (COWI, 

2008) is applied to calculate ship collision probability. 

Px = Pt × Pg × Pc × kRR = LN1N2 |
V1−V2

V1V2
| × (

B1+B2

c
) × (3 × 10−4) × kRR         (1)  

Compared to other models, the COWI model considered the risk mitigation measure and reduced 

the uncertainty in some extent by assuming ship motion as normal distribution. Moreover, the most 

likelihood situation for LNGC navigation in inbound channel is head-on situation, so the COWI 

model was adopted to carry out simulation for LNGC navigation safety phase. It is widely accepted 

that visibility is a key factor to influence coastal navigation and the leeway and drift angle, which 



was deemed as a significant parameter to show the vessel’s maneuverability, was largely 

dependent on the magnitude of wind and current. Therefore, the main parameters to evaluate the 

collision hazard are determined as wind, visibility and the probability of following current.  

 

On the other hand, Fujii et al. (1998) proposed his grounding model by establishing the relationship 

between the expected number of groundings and the predictors (causation probability, ship’s speed, 

traffic density and shoal width). Meanwhile, Macduff (1974) adopted Buffon’s needle problem to 

estimate Pg, the geometrical probability, and the major predictors are channel width and stopping 

distance of ships. These two above-mentioned models are only affected by the ship particulars 

while other elements related to location are set to be constant. The uncertainties of the real 

navigation situation are ignored in most cases, and this model merely considered historical 

accident data. Simonsen (1997) developed their model to estimate the expected annual number of 

groundings with the number of transshipments per year, the average time interval of position 

checks by deck officers and the transverse coordinates of shoals.   

 

Table 2 serves as a review of above-mentioned grounding models, illustrating their expressions 

and drawbacks. 

Table 2. Summary of Ship Grounding Model 

Model  Expression Drawbacks  

Fujii’s 

Model 

NG = PCDρV 

 

Human factors, ship’s maneuverability and 

environmental aspects were all neglected.  

 

Macduff’s 

Model  
P𝑔 =

4T

πC
 

 

Causation probabilities are unknown; this model 

cannot recommend any risk control option. 

Traffic density is assumed uniformly.  

 

Simonsen’s 

model 

 

∑ PC,iQie
−C/ai

n class

Ship class i

∫ fi(z)dz
Zmax

Zmin

 

 

Human factors and ship maneuverability are still 

neglected and effect of traffic (Q) and ship class 

(i) are not evidence based.  

 

 

To overcome those above-mentioned drawbacks, Montewka et al. (2011) have proposed a more 

accurate grounding model with the consideration of the maneuverability of an individual ship and 

the properties of the traffic. In addition, Automatic Information System was employed to determine 

the distribution of the ship’s motion. 

 

F = M ×
UKC

H×r
=

R×b

d×s×c
×
UKC

H×r
                                           (2) 

For the LNGC navigation process, the Montewka’s Model was selected as the one to simulate 

stranding situations since it has a better interpretation and has considered ship maneuverability. 

Based on the above equation, the main parameters selected for grounding hazard of navigational 

process are channel width, channel curvature and under keel clearance. 

 



When berthing or unberthing operation is taking place, the LNGC shows a characteristic of low 

speed and large drift angle (Yang, 1996). Typically, berthing operation for large ships should 

consider factors such as temperature, berthing ability, wind force, visibility and thunderstorm, and 

Bai (2010) presented the berthing influence factors as tug assistance, wind, current, longitudinal 

speed control, transverse speed control and angular velocity control . What is more, poor 

communication between crew and marine pilots during berthing operation will probably lead to 

marine disasters near ports, and the language and cultural diversity of seafarers needs to be 

considered as well (Winbow, 2002). To evaluate this complicated operation process in a 

quantitative way, Yang (Yang, 1996) proposed a berthing model by presenting models of ship, 

propeller and rudder individually and he took full considerations of interactions between each part. 

Yang set up a two-coordinate system, one is fixed coordinate, and the other is ship moving 

coordinate system. Based on Yang’s theory, the LNG ship simulator was employed to perform a 

high-precision simulation for LNGC berthing. This simulator adopted a six-freedom motion 

mathematical model proposed by Zhang’s research group (Zhang et al., 2007) and integrated wind 

disturbing force models and wave force models as the keys for external force. To evaluate the 

LNGC berthing operation, six main parameters were determined as, water depth of turning basin, 

following current speed, berth length, radius of turning area, transverse wave height and the 

probability of crossing wind (beam wind). 

 

After the berthing process is completed, the LNG should be transferred from LNGC to LNG FSRU, 

which is a typical Ship-to-Ship LNG transferring process. Two common solutions for Ship to Ship 

transferring process exist, one is called side-by-side transferring pattern, and the other is called 

tandem transferring pattern (Liu et al., 2001). There are three liquid transferring connection hoses 

and one vapor counter flow connection hose. For the LNG FSRU system, many causes would 

result in LNG accidental release such as FSRU or LNGC tank breach, connection pipe rupture and 

LNG vaporizer failure. These may be the result of collision, faulty operation, bad maintenance, or 

be caused by a whole variety of primary low severity events, such as small igniting leaks, due to 

maintenance or other operations, e.g., at the regasification unit in which LNG is heated. Hence, in 

such cases secondary devastating major events are domino effects of the much less severe primary 

ones. Furthermore, possible associated consequence phenomena of LNGC release on water have 

been identified (Abbasi et al., 2010; Li et al., 2012) as Boiling Liquid Expanding Vapor Explosion 

(BLEVE), vapor cloud explosion (VCE), jet fire, cloud flash fire, pool fire, rapid phase 

transformation, cryogenic burns, etc. Figure 4 shows a simplified bow-tie diagram for LNG 

accidental release to consider both the causes and the outputs of the top event. The sequence in 

which these phenomena are mentioned is quite opposite to the likelihood in which they can occur. 

For example, in principle a BLEVE or a VCE cannot be excluded although these phenomena never 

have been directly observed. However, the nature of the hydrocarbon makes it possible just as if it 

is LPG, although less likely than LPG. BLEVE could occur if a sustained fire heats one of the 

tanks and the pressure relief valve would not be able to cope with the evaporation rate as happened 

once with an LNG loaded tank truck in Spain (Planas et al., 2015). VCE of a natural gas cloud 

cannot be excluded as well; in a massive cloud once ignited and meeting obstacles fast flame 

generated blast is possible, while even transition of the deflagration into detonation (DDT) with 

much stronger blast cannot be excluded. For ethane and other fuels these phenomena of DDT are 

observed on so-called large-scale in experiments (e.g., Pekalski et al., 2014), which compared to 

most accidental releases in size should be considered small-scale, while the propensity to DDT of 

various hydrocarbons, including methane, the main component of natural gas, can be predicted 



(Saif et al., 2017). However, the likelihood of the other above mentioned phenomena given a 

release is much higher. Rapid phase transition explosions occur when methane under certain 

conditions is spilled on water; but their blast is weak. 

 

 
Figure 4. Simplified Bow-tie Diagram for LNG Accidental Release 

As shown in above simplified bow-tie diagram, five primary causes may result in LNG accidental 

release for the FSRU-LNGC system: FSRU storage tank breach, connection hose rupture, 

connection flange failure, LNGC Tank breach and LNG vaporizer failure. Frequency of domino 

effects may be much greater. When LNG is released under the waterline, it will boil vehemently 

and convert to vapor bubble, then the LNG bubble may escape above the waterline to produce 

LNG vapor. For above-waterline release, jet fire, cloud flash fire and pool fire may form under 

different scenarios. Since a vapor cloud explosion is not likely to occur over the open water area 

(Hightower et al., 2004), the possible fatality related consequences taken into account here are 

flash fire, pool fire and jet fire, while the BLEVE, and vapor cloud are deemed as less likely 

consequences. Then, the flammable calculations including fireballs (instantaneous releases), jet 

fires (pressurized releases), pool fires (after liquid spills evaporation), and vapor cloud fires or 

explosion are processed based on the unified dispersion model (UDM), which is part of the DNV-

GL PHAST software package. 

 

3. Model development 

 

Based on values and criteria there are quite a few techniques to assist a decision maker. Utility 

theory is a quantitative approach for decision makers to value a wide range of feasible alternatives, 

and it is good at finding a better solution by calculating the final utility value. Multi-attribute 

decision analysis (MADA) is an optimizing decision-making method to get the output of overall 

utility function, which is constituted by weight vectors multiplied by utility values. Based on the 

calculated overall utility value of each alternative, the preferred decision can be made with the 

maximum expected utility value (Keeney and Raiffa, 1993). In addition, opposite to AHP 

(Analytic Hierarchy Process), the Analytic Network Process (ANP) has a nonlinear structure and 

does not require independence among elements in different hierarchies. Saaty (1990) pointed out 

that the network of ANP is built by clusters which incorporate decision parameters. The network 

structure in ANP is represented in two forms, one is a graphical form and the other is a matrix 

form. The graphical form qualitatively represents the interaction relationship and feedback 



relationship between the various components that make up the network, while the matrix form 

quantitatively represents the degree or magnitude of interaction or feedback. 

 

Since MADA is good at dealing with the decision-making problems among several attributes in 

one layer, and ANP outperforms for a case with the overall determination of different layers as 

here is required for the maritime and the spill risk determination. By combining these two 

approaches, this research developed MADA and ANP into a quantitative multi-cluster network 

multi-attribute decision analysis (QMNMDA). The core idea of this method is to divide the top 

problem into several processes first, then different processes are evaluated individually by various 

quantitative tools, such as risk simulation software, ship simulator and data analysis software. Next, 

the major hazards are identified under corresponding processes. To quantitatively evaluate 

different hazards, previous theories and equations may be referred to determine the major attributes 

which are under the hazard cluster. By considering the data availability, the risk attribute clusters 

can still go down to sub factor clusters to quantitatively evaluate the top object directly. Generally, 

QMNMDA has two aspects, one is the construction of the network, and the other is the calculation 

of the weight values of the ANP elements. In order to construct the structure of the problem, all 

the interrelationships between the elements should be well considered. When an element in one 

cluster depends on another, the relationship is represented by an arrow within a cluster. All of these 

relationships are calculated using pairwise comparisons and a supermatrix, containing the 

influences between elements. The ultimate power of the supermatrix is to calculate the overall 

weight, which is determined by a fuzzy analytic network process (F-ANP) approach. Then the risk 

evaluation utility value is to be determined by the Delphi method and statistical analysis. At last, 

the risk category is obtained based on the principle of maximum membership. Put simply, the 

framework determination of QMNMDA is a top-to-bottom work, and then the final evaluation is 

progressing bottom-to-top.  

 

(1) Preliminary network of QMNMDA 

Following the working flow as shown in Figure 3, the graphical form ANP based cluster model 

was established to determine the safety level for LNG FSRU locations. By evaluating operation 

process, hazard identification and characteristics of locations, the preferred location can be 

determined through the outputs of the clusters and elements, see Figure 5. 

 

 



Figure 5. Preliminary network for QMNMDA model 

 

As Figure 5 shows, the set of alternatives and evaluation factors for the evaluation objective are 

determined and the relationships of different elements have been established. Three operation 

processes have dependent relations while the relationships between any two elements in C2 and 

C3 are deemed as independent.  

 

As shown in Figure 5 in the operational process there are three sub-processes. For the navigation 

process, the hazards are identified as collision, grounding, equipment failure, capsizing and cargo 

containment failure. For the berthing process, the hazards are identified as the LNGC contacting 

with jetty and obstructions, collision with tugs and LNG grounding due to insufficient UKC. In 

addition, the bow-tie diagram Figure 4 tells the possible hazards for the transferring process and 

that of the LNG vaporizer failure (re-gasification), being FSRU storage tanks breach, connection 

hose rupture, LNG tanks breach and connection flange failure. 

 

(2) Weight calculation 

Next, the F-ANP approach is employed to calculate the weight values of the three processes. 

This is because no historical data exist and no overall simulation is possible, hence experts have 

to be interviewed about the weight of the various contributing hazards. Replies of different 

experts will vary and will be merged into fuzzy triangle numbers. The definition of fuzzy triangle 

number proposed by (Chang, 1996) was presented to deal with the calculation process of overall 

weight values [0, 1]. The fuzzy triangle number p of evaluation set U, 𝑈 = (𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛 ), is 

defined as p = (l,m, s), and 0 ≤ l ≤ m ≤ s ≤ 1, its membership function is μ(x). 

μ(x) = {

𝑥−𝑙

𝑚−𝑙
, 𝑥𝜖(𝑙, 𝑚]

𝑠−𝑥

𝑠−𝑚
, 𝑥𝜖(𝑚, 𝑠] 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                                     (3) 

where l and s stand for the lower and upper value, respectively, and m stands for the most 

probable value of 𝑝 𝜖 [0,1]. While l = m = s, p is deemed as a nonfuzzy number. Then the fuzzy 

triangle number based fuzzy judgement matrix can be constructed by pairwise comparisons, 

shown in Equation 4. 

p = (

𝑝11 𝑝12 ⋯ 𝑝1𝑛1
𝑝21 𝑝22 ⋯ 𝑝2𝑛1
⋮

𝑝𝑛11

⋮
𝑝𝑛12

⋱
⋯

⋮
𝑝𝑛1𝑛1

)                                          (4) 

Where 𝑝11 = 𝑝22 = ⋯ = 𝑝𝑛1𝑛1 = (0.5, 0.5, 0.5).  𝑝𝑖𝑗 is defined as the complementary judgment 

matrix for the fuzzy triangle number p, and 𝑝𝑖𝑗 is effective only when it satisfies the consistency 

test. In the work presented by Saaty (1990),  the eigenvalue approach was proposed. 

 

Next, the partial weight value matrix of the general supermatrix can be determined by the 

equation.   

𝑊11
(1𝑖)′

= (𝑑′(𝑢11), 𝑑
′(𝑢12), … , 𝑑

′(𝑢1𝑖), … , 𝑑
′(𝑢𝑛𝑖))

𝑇                               (5) 

𝑑′(𝑢1𝑖) =  min V(𝐶1𝑖 ≥ 𝐶1𝑘, 𝐶1ℎ)                                         (6) 

After normalization, equation 5 is converted to  



 𝑊11
(1𝑖)

= (𝑑 (𝑢11), 𝑑 (𝑢12),… , 𝑑 (𝑢1𝑖),… , 𝑑 (𝑢𝑛𝑖))
𝑇              (7) 

The comprehensive importance of component 𝑢1𝑖(𝑖 = 1,2, … , 𝑛1) is defined as 𝐶1𝑖. 

𝐶1𝑖 = ∑ 𝑝𝑖𝑗⊗ (∑ ∑ 𝑝𝑖𝑗
𝑛1
𝑗=1

𝑛1
𝑖=1 )

−1𝑛1
𝑗=1                                    (8) 

V(𝐶1𝑖 ≥ 𝐶1𝑘) is applied to calculate the probable weight when 𝐶1𝑖 ≥ 𝐶1𝑘 is true.  

V(𝐶1𝑖 ≥ 𝐶1𝑘) =

{
 
 

 
 1,                         𝑚𝑖𝑗

1𝑖 ≥ 𝑚𝑖𝑗
1𝑘

𝑠𝑖𝑗
1𝑖−𝑙𝑖𝑗

1𝑘

𝑠𝑖𝑗
1𝑖−𝑙𝑖𝑗

1𝑘+𝑚𝑖𝑗
1𝑘−𝑚𝑖𝑗

1𝑖 , 𝑚𝑖𝑗
1𝑖 < 𝑚𝑖𝑗

1𝑘 𝑎𝑛𝑑 𝑙𝑖𝑗
1𝑘 ≤ 𝑠𝑖𝑗

1𝑖

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

             (9) 

where i = 1,2, … , 𝑛𝑖;  𝑘 = 1,2, … , 𝑛1 & 𝑘 ≠ 𝑖; 𝑗 = 1,2, … , 𝑛1  
Then 𝑊11 can be obtained by repeating these procedures 𝑛1 times. 

 𝑊11 = (𝑊11
(11),𝑊11

(12), … ,𝑊11
(1𝑖), … ,𝑊11

(1𝑛𝑖))𝑇                     (10) 

 

At last, the matrix form of ANP, supermatrix 𝑊𝑖𝑗(𝑖, 𝑗 = 1,2, … ,𝑁) is determined after similar 

processes to get 𝑊22,𝑊33, … ,𝑊𝑛1𝑛1. 

 

W =

𝐶1 𝐶2 ⋯ 𝐶𝑁
𝑑(𝑢11) 𝑑(𝑢12) ⋯ 𝑑(𝑢1𝑛1) 𝑑(𝑢21) 𝑑(𝑢22) ⋯ 𝑑(𝑢2𝑛2) 𝑑(𝑢𝑁1) 𝑑(𝑢𝑁2) ⋯ 𝑑(𝑢𝑁𝑛𝑁)

𝐶1

𝑑(𝑢11)

𝑑(𝑢12)
⋮

𝑑(𝑢1𝑛1)

𝐶2

𝑑(𝑢21)
𝑑(𝑢22)
⋮

𝑑(𝑢2𝑛2)

⋮

𝐶𝑁

⋮

𝑑(𝑢𝑁1)
𝑑(𝑢𝑁2)
⋮

𝑑(𝑢𝑁𝑛𝑁) [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑊11 𝑊12 ⋯ 𝑊1𝑛1

𝑊21

⋮

𝑊𝑁1

𝑊22 ⋯ 𝑊1𝑛2

⋮ ⋯ ⋮

𝑊𝑁2 ⋯ 𝑊𝑁𝑛𝑁

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(11) 

Following the weight value determination procedures, the weight values of process layer are 

calculated as below.  

p =

𝑘𝑁𝑃 𝑘𝐵𝑃 𝑘𝑇𝑃
𝑘𝑁𝑃
𝑘𝐵𝑃
𝑘𝑇𝑃

(

(0.5, 0.5, 0.5) (0.4, 0.4, 0.5) (0.2,0.3,0.4)
(0.5, 0.6, 0.6) (0.5, 0.5, 0.5) (0.2, 0.4, 0.5)
(0.6, 0.7, 0.8) (0.5, 0.6, 0.8) (0.5, 0.5, 0.5)

)
            (12) 

By calculating the comprehensive importance of component and probability when 𝐶1𝑖 ≥ 𝐶1𝑘 is 

true, the normalized weight value matrix of the process layer is: 

𝑘𝑝 = (0.137,0.321, 0.542)
𝑇                                                   (13) 

  

(3) Final network of FSRU-LNGC system. 



By repeating the weight value determination process for the hazard layer, the following Table 3 

is made up from the collected data of our FSRU risk analysis group, illustrating the overall 

weight value of the identified hazards for the three processes.  

 

Table 3. Overall Weight Values of the Identified Hazards for the Three Processes 

Operation 

Process 

Weight Value 

with 

Dependencies 

Identified 

Hazards 

Priority 

within the 

Process 

via ANP 

Overall 

Priority  

Navigation 

Process 

0.137 Collision 0.581 0.0796 

Grounding 0.356 0.0488 

Equipment 

Failure 

0.032 4.4*10-3 

Capsizing 0.002 2.74*10-4 

Cargo 

Containment 

Failure 

0.029 3.97*10-3 

Berthing 

Process 

0.321 Contacting 

with Jetty 

0.621 0.201 

Collision 

with Tugs 

0.064 0.0205 

Contacting 

with 

Obstructions 

0.223 0.0716 

Grounding 0.092 0.0499 

Transferring 

Process 

0.542 Flash Fire 0.503 0.2726 

Pool Fire 0.212 0.1149 

RPT 0.096 0.05203 

BLEVE 0.001 5.42*10-4 

Jet Fire 0.122 0.06612 

VCE 0.066 0.03577 

 

As shown above, the priority scores within each process served as indicators to determine the 

major hazards of the three processes. This paper neglected the hazards with a priority value of 

priority score under 0.1. Therefore, collision and grounding were determined as the major hazards 

for the navigation process, while contacting with jetty and contacting with other obstructions were 

those for the berthing process, and flash fire, pool fire and jet fire were identified for the LNG 

transferring process.  

 

Then the ship simulator DMU V-dragon 3000A was adopted to find the attributes for the maritime 

processes, i.e., navigation process and berthing process. Extreme conditions were selected as the 

input parameters: the wind direction was blowing to the shore; the radius of turning area was set 

as 500 meter and 1000 meter, respectively; the berthing length was set as 1.2 times and 2 times 

ship’s length overall. Two scenarios were designed to determine the most influential factors:  

1. Full loaded, port side berthing with spring tidal current; 

2. Full loaded, starboard side berthing with ebbing tidal current. 



The failure simulation runs were shown in Table 4.  

 

Table 4. Simulation Results of Ship Simulator for Berthing Process 

 

Based on the simulation results by the ship simulator, the most significant parameters leading to 

collision of LNGC are poor visibility, beam wind frequency and large current; leading factors for 

grounding are insufficient UKC, inadequate channel width and sharp channel curvature. The 

magnitude of following current, transverse wave height and water depth of berthing area are the 

major attributes for contacting with the nearest obstruction; while the attributes for contacting 

between LNGC and LNG FSRU are berth length, radius of turning basin area and the probability 

of crossing wind.  

 

Number 

of runs 

Wind Current 

 

Radius 

of 

Turning 

Area 

Water 

Depth 

Transverse 

Wave 

Height 

Berth 

Length 

Consequence 

1 N-6 Spring,  

0.6m/s 

500m 20m 0.7m 2L Contacting 

the FSRU 

2 N-6 Spring, 

1.5m/s 

1000m 21m 0.8m 2L Contacting 

the jetty 

nearby 

3 N-8 Spring, 

0.8m/s 

1000m 21m 1.0m 2L Contacting 

the FSRU, 

tugs 

malfunction 

4 N-6 Spring, 

0.6m/s 

1000m 19m 1.5m 2L Contacting 

the berthing 

ship nearby 

5 N-8 Ebb, 

0.9m/s 

1000m 20m 0.8m 2L Contacting 

the FSRU, 

tugs 

malfunction 

6 N-7 Ebb, 

0.7m/s 

1000m 15m 0.8m 2L Contacting 

with the 

berth nearby 

7 N-6 Ebb, 

0.6m/s 

1000m 20m 0.7m 1.2L Contacting 

with FSRU, 

failed to get 

alongside the 

berth 

8 N-6 Spring, 

0.6m/s 

1000m 20m 0.8m 1.2L Contacting 

with FSRU, 

failed to get 

alongside the 

berth 



For LNG transferring process, the connection flange failure and connection hose failure were 

identified as major attributes for the identified fires based on the collected data. By considering 

the correlations and mutual dependency, the final evaluation network is determined, shown as 

Figure 6. 

 

 
 

 

Figure 6. FSRU-LNGC System Evaluation Network of QMNMDA 

From Figure 6, we can see that the three processes are set as independent but each of them has 

dependent elements, and the E level lists the leading factors to the identified events of the D 

level.  

 

(4) Attribute utility value determination 

To analyze the safety performance of proposed FSRU LNGC system, the five scale set is 

predetermined as V, 𝑉 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) = (favorable, acceptable, moderate, limited 

acceptable, unacceptable). In order to determine the utility value of each attribute, the FSRU-

LNGC risk analysis group must establish an evaluation scale. The group was made up with 30 

senior officers of deck department aboard ships, 30 professional pilots and 30 professors from 

maritime colleges. Based on the opinions of the expert judgment team and previous studies on 

the marine maneuvering, every individual attribute was evaluated quantitatively based on the 

safety utility value (SUV) or risk tolerance index, which was distributed evenly from 0 to 1 with 

the interval of 0.2. Furthermore, safety utility value range from 0.8 to 1.0 means the environment 

of this location is favorable to locate LNG FSRU, while the value locating between 0.6 and 0.8 

means it is acceptable for LNG FSRU; the range 0.4 to 0.6 means moderate environmental 

conditions for the system; limited acceptable when the SUV is in the range of 0.2 to 0.4; it is 

unacceptable when the utility value goes below 0.2. The evaluation standards for adopted 

attributes of navigational and berthing process were established based on the collected 

questionnaires (see Appendix 1). The total evaluation standards were displayed in the Table 5 by 

analyzing the collected data for all the attributes of navigational process and berthing process.  

 



Table 5. Evaluation Standard for Each Attribute of Maritime Safety Study 

       Utility       

Range 

Factors 

Favorable

, (0.8,1] 

Acceptable, 

(0.6,0.8) 

Moderate, 

(0.4,0.6] 

Limited 

Acceptable, 

(0.2,0.4] 

Unacceptable, 

[0,0.2] 

Visibility (d/y) ＜15 15～20 20～30 30～40 ＞40 

Windy Days 

(d/y) 

＜30 30～60 60～100 100～150 ＞150 

Following 

Current Prob.  

< 3% 3~6% 6~10% 10~15% >15% 

Channel Width >900 650~900 450~650 300~450 < 300 

Channel 

Curvature 

<15° 15°~25° 25°~35° 35°~45° >45° 

UKC >15m 10~15m 5~10m 2~5m <2m 

Water Depth >25m 22~25m 18~22m 15~18m <15m 

Following 

Current 

<0.3m/s 0.3~0.6 0.6~0.8 0.8~1 >1m/s 

Wave Height ＜0.3m 0.3～0.6 0.6～1.0 1.0～1.2 ＞1.2m 

Berth Length >2.5L 2~2.5L 1.5~2L 1.2~1.5L <1.2L 

Turning Basin 

Area 

>1200m 1000~1200 

m 

800~1000 m 600~800 m <600m 

Cross Wind 

Prob. 

< 1.5% 1.5~3% 3~4.5% 4.5~6.5% >6.5% 

 

The data collected by the Delphi approach are utilized to establish the evaluation standard, and 

then the utility value function of E-level elements in Figure 6 are able to be established by 

statistical tools, see Appendix 2; next, the real observation data and the boundary value of 

evaluation scale may be used to determine the utility value for the attribute layer. Multiplying the 

utility values by the corresponding weight factors, the overall utility value for FSRU LNGC 

system is obtained by the following function. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 =  𝑘𝑁𝑃∑𝑤𝑖𝐴𝑁𝑃 + 𝑘𝐵𝑃∑𝑤𝑗𝐴𝐵𝑃 + 𝑘𝑇𝑃∑𝑤𝑘𝐴𝑇𝑃
𝑘𝑗𝑖

 

Where 𝑘𝑁𝑃, 𝑘𝐵𝑃, 𝑘𝑇𝑃 stand for the weight values of each process, 𝑤𝑖, 𝑤𝑗, 𝑤𝑘 are defined as sub-

weight factors of each attribute, and 𝐴𝑁𝑃, 𝐴𝐵𝑃, 𝐴𝑇𝑃 are described as the utility value of each 

attribute of navigation process, berthing process and transferring process. 

 

 

 



4. Case Study 

 

To assess the safety extent of FSRU-LNGC systems, two locations were applied to carry out case 

study based on the proposed model. The proposed LNG FSRU for Location A is at the south edge 

of the coast line and at a near shore area; while the proposed Location B is at the northeast side of 

the coast line, and at an offshore area, 2300 meters extended from the shoreline. The proposed 

direction of Location A is 053°～233°, berth length is 446 meters (m); the design direction of 

Location B is 099°～279° and berth length is 430 m. After the dimension of two proposed locations 

were determined, the evaluation steps can be processed from LNGC navigating in the inbound 

channel to the LNG successfully transferring from LNGC to FSRU. 

 

4.1 Maritime Processes  

Besides the proposed locations of FSRU-LNGC systems, a common LNGC type, Q-Flex, is 

applied in this study as the input ship type of the ship simulator by considering the current trend 

for LNG offshore application, and the dimension of its receiving unit FSRU is predetermined 

accordingly (Bowen et al., 2008), see Table 6. 

 

Table 6. Parameters of LNGC and FSRU 

Parameters  LNGC(Q-Flex)  FSRU  

LOA  303  315  

Loading Capacity  142933.7 m3  217000 m3  

Breadth  50  50  

Draft  12  12.5  

 

At the left side of the bowtie shown in Figure 4 five scenarios are presented. From those we shall 

consider here only the flange and hose ruptures. The LNGC or FSRU LNG tank rupture will occur 

only after a collision incident, where the probability will be a fraction of the collision probability 

depending on collision speed and location of collision. It will be difficult to estimate the probability 

with any accuracy, but the frequency may be lower than 10-6/yr, hence rather unlikely. On the other 

hand, very large LNG clouds resulting from a gaping hole in a tank may travel as a heavy gas over 

a distance of say 2 kms. In case of delayed ignition, it is not sure what will happen, flash fire or 

VCE. There remains the re-gasification unit. There is at least one typical accident known on a peak 

shaving plant that occurred in 2014, at which maintenance work at the unit resulted in an explosion 

propelling a fragment toward a tank and perforating the wall (Rukke, 2016). Also, here it will be 

difficult to estimate a failure frequency rate.  

 

Generally, the loading / unloading equipment of FSRU have four liquid loading hoses and two 

vapor return hoses, each of them has one spare part. Referred from 20, the maximum loading 

capacity, length of LNG loading hoses and other parameters are listed in Table 7 (Nafta, 2015). 

  



Table 7. Parameters of FSRU’s Loading Equipment  

Parameter  Value  

Maximum Loading Capacity  8000 m3/h for all loading hoses  

Maximum Unloading Capacity  5000 m3/h for all loading hoses  

Number of LNG Loading Hoses  4 (1 spare)  

Number of Vapor Return Hoses  2 (1 spare)  

Inner Diameter of LNG Loading Hoses  0.254 m  

Length for LNG Loading Hoses  18.5 m  

Inner Diameter of LNG Loading Hose Flange  0.41 m  

Inner Diameter of Vapor Return Hose Flange  0.41 m  

 

Considering the data availability for attributes of collision hazard, the visibility parameter is 

determined by number of days under poor visibility (visible distance < 4000 m) per year; the wind 

parameter is determined by number of days under standard wind scale, which is equal to number 

of days under Beaufort scale 6 and 7 plus 1.5 times number of days under Beaufort scale 8 or more 

(Ji et al., 2014); and the parameter current is determined by the probability of following current, 

which is the most difficult situation for ship maneuvering. For grounding hazard, the attribute 

channel width and channel curvature can be determined directly by the actual channel data, and 

the minimum under keel clearance (UKC) is equal to the minimum chart water depth minus actual 

draft of LNGC. For the second process, berthing process simulation, the water depth for the 

contacting possibility for LNGC and other navigation obstruction is the minimum water depth in 

berthing area; “Following Current” is the magnitude of following current during berthing operation; 

while the transverse wave height can be directly obtained from the hydrographic data of two harbor 

authorities. For the hazard of possible collision with FSRU, the berth length and turning basin area 

is the values of designed berth length and radius of turning water, and the crossing wind, which is 

defined as the wind blowing the LNGC toward FSRU side, was evaluated by the wind rose maps 

of two locations. Therefore, the actual values of navigation process and berthing process related 

attributes for two alternatives are shown in Table 8. Then the utility values of navigation process 

and berthing process are calculated by maximum membership functions integrating evaluation 

scale in Table 6. 

 

Table 8. Values of Maritime Processes Related Attributes for Two Locations 

 
Chann

el 

Width  

Chann

el 

Curvat

ure  

UKC  Windy 

Days  

Followi

ng 

Curren

t Prob.  

Visibili

ty  

Water 

Depth  

Following 

Current  

Wave 

Height  

Berth 

Length  

Turning 

Area 

Radius 

Crossing 

Wind 

Prob.  

Location 

A  

1050m 31°  12m  140  7.6%  22  20 m  0.8m/s  1.08 m 1.5L  1020m  4.6%  

Location 

B  

690 m 27°  5m  151  9.3%  30  17m  0.85m/s  0.81 m 1.25L  1260m 3.8%  



4.2 LNG Transferring Process 

Based on the previous research (D’alessandro et al., 2016; Pitblado et al., 2006), it is a 

reasonable to simulate this event “LNG releasing on the water” by two scenarios: one is called 

maximum credible scenario (MCS), which is defined as: an accident that is within the realm of 

possibility (i.e., probability higher than 1 × 10–6/yr) and has a propensity to cause significant 

damage (at least one fatality) (Khan, 2001).; another one is called worst case scenario (WCS), 

which means the extremely dangerous situation for FSRU LNGC system. 

 

For the two scenarios, the external environment factors for weather data input, wind, air 

temperature and relative humidity, can be obtained from the meteorological and hydrographic 

records of two locations, and the input data for MCS and WCS are listed in Table 9. 

 

Table 9. Input Data for Simulation Plans 

 
Wind  Air 

Temperature  

Humidity  Pasquill 

Stability  

Estimated 

Release 

Volume 

Hole Size 

Diameter 

Maximum 

Credible 

Scenario 

(MCS)  

Prevailing 

Wind (A; 

8 m/s, N; 

B:6.7m/s, 

NE)  

Yearly 

Average 

(A: 10.5℃; 

B:15.1℃)  

Yearly 

Average 

Humidity 

(A: 69%; 

B: 75%) 

E 1167 m3  0.2m (Flange 

Failure)/0.12m 

(Hose 

Rupture)  

Worst 

Case 

Scenario 

(WCS)  

15m/s 

(A: SE; 

B: NE)  

Highest 

Monthly 

Average 

Temperature 

(A: 15.1℃; 

B: 20.6℃)  

Highest 

Monthly 

Average 

Humidity 

(A: 83%; 

B: 88%)  

Loc. A: 

C; 

Loc. B: 

D  

2667m3  0.41 m 

(Flange 

Failure)/0.254 

m (Hose 

Rupture)  

 

For maximum credible scenario, the input parameter “wind” was the prevailing wind for two 

locations. As shown in Figure 9, the wind rose map of location A shows the prevailing wind 

direction was north wind with the speed of 8 m/s; while the prevailing wind direction of location 

B is northeast wind with the speed of 6.7 m/s; the air temperature for MCS was the average 

temperature of one whole year, where 10.5 degree centigrade for location A and 15.1℃ for 

location B; similarly, the humidity parameter was selected as the average humidity for a whole 

year, 69% for location A and 75% for Location B.  

 

For worst case scenario, the “wind” parameter was the most hazardous when the wind is blowing 

toward the pier since the fire may get more assets and people involved. By considering the wind 

rose map of each location, the most hazardous wind directions were southeast and northeast for 

location A and location B, respectively and the worst wind speed is 15m/s because it is the 

maximum speed to allow LNG transferring operation under Chinese regulations (JTS 165-5-2016). 

Since the air temperature may fluctuate day to day, the WCS air temperature was chosen as the 

highest monthly average one for a whole year, 15.1℃ for location A and 20.6℃ for location B. 



Similarly, the humidity parameter was determined as the highest monthly average humidity for a 

whole year, 83% for location A and 88% for location B.  

The release preconditions, hose loading capacity, leakage time and hole size, were determined as 

the main parameters to define the exact releasing volume of MCS and WCS. For WCS, the hose 

loading capacity was referred as the LNG FSRU’s maximum loading capacity and the accidental 

release time was determined as 20 minutes to calculate the simulated release volume for the events 

as connection hose rupture and flange failure. As shown in Table 5, the inner diameter of LNG 

loading hose and loading hose flange were 0.254 m and 0.41 m, respectively, so the hole size was 

determined as the total-damage scenario. For MCS, the hose capacity was determined as the 87% 

of the maximum loading capacity and the release time was 10 minutes; the holes were determined 

as 0.2 m for connection flange failure and 0.12 m for connection hose rupture scenario.  

 

The runs were designed in 4 group comparisons with 8 simulations by DNV-GL PHAST software, 

shown in Table 10. Simulation plan 1, 2, 3 and 4 were taken for connection flange failure. Among 

these four simulation plans, simulation plan 1 and 2 took place in location A under scenario MCS 

and WCS, respectively; Simulation plan 3 and 4 took place in location B under scenario MCS and 

WCS. Meanwhile, simulation runs 5 to 8 were for connection hose rupture, and simulation plan 5 

and 6 took place in location A under scenario MCS and WCS; Simulation plan 7 and 8 took place 

in location B under scenario MCS and WCS, respectively.  

 

Table 10. Outcomes of Designed Simulation Plans 
Plan Location Scenario Dia. 

of 

Hole 

Size 

(mm) 

Est. 

Leakage 

Volume 

Fire 

Type 

Thermal Radiation Distance (m) Flammability Limits 

Distance (m) 

4kW/m2  12.5kW/m2  37.5kW/m2  UFL  LFL  0.5LFL  

1  A  MCS  200  1167  Flash  
   

220  794  1590  

2  A  WCS  410  2667  Jet  1141  1022  976        

3  B  MCS  200  1167  Flash  
   

194  771  1546  

4  B  WCS  410  2667  Jet  1128  1016  976  
 

    

5  A  MCS  120  1167  Flash  
   

11  77  277  

6  A  WCS  254  2667  Pool  501  302  192  
 

  
 

7  B  MCS  120  1167  Flash  
   

9  70  202  

8  B  WCS  254  2667  Pool  722  525  222  
   

 



Figure 7 shows the preliminary simulation outputs for two alternatives under the condition of 

“flange failure with worst case scenario” (simulation plan 2 and 4).  

 

 
Figure 7. Simulation Outputs for Two Alternatives under WCS for Event A 

From Figure 7, on the left is the simulated thermal radiation influence areas of location A and on 

the right that of location B. The red circle is the high thermal radiation area with heat flux 37.5 

kW/ m2, the green one is the thermal radiation intensity of 12.5 kW/c and the blue circle is the 

range of thermal radiation intensity of 5kW/m2. Meanwhile, other simulation plans were taken 

under different input data, and Table 11 shows all simulated outcomes of eight simulation plans. 

The potential fatalities would be calculated based on the values of thermal radiation distance and 

flammability limits distance. 

 

4.3 Results and discussions 

After the completion of simulation runs for three processes, the utility value should be determined 

from bottom hierarchy to the top. Navigational process and berthing process, which were called 

maritime safety study in this research, adopted risk evaluation matrix to determine each utility 

value; while for chemical process safety part, LNG transferring process was determined by the 

potential loss of life (PLL), which given the population density is in principle the integral of the 

societal risk incidents presented as components of the so-called F–N -curve (𝑃𝐿𝐿 = ∑ 𝑓𝑖𝑁𝑖)
𝑛
𝑖=1 . 

PLL is expressed in fatalities/year; the metric is also called Expected Value (EV) (Hirst and Carter, 

2002) and Average Rate of Death (RoD) (CCPS, 2000).  

 

The vulnerable building for two alternatives should be determined to calculate PPL value. Three 

ranges (500-meter circle, 1000-meter circle and 1500-meter circle) were drawn to show potential 

damaged buildings for location A and B. On the other hand, the PLL of flash fire was calculated 

by the distances of LFL and 0.5 LFL. The possibility of fatality was assumed 100% in Zone 1, a 

defined zone between UFL contour and LFL contour; and 50% for Zone 2, defined between LFL 

contour and 0.5 LFL contour. Referred by DNVGL MPACT Model (DNVGL, 2016), the heat 

flux value “4 kW/m2” could lead to 1% possible fatality, while the value of “12.5 kW/m2” was 

50% and the value of “37.5 kW/m2” was 100%. As for the range between these three-point 

values, the lethality ellipse, was employed to calculate the PLL in this study. According to the 

Table 10, the PLLs of location A and location B under MCS and WCS were calculated shown in 

below table. 

 



 

Table 11. Summary of PLL for Simulation Runs 

Plan Loc. Scenario Fire 

Type 

Involved Vulnerable Buildings Potential Involved 

Personnel 

PLL Thermal Radiation Distance Flammability Limits 

Distance 

 4kW/m2  12.5kW/m2  37.5kW/m2  UFL  LFL  0.5LFL  

1  A  MCS  Flash  Working stations (7), LNG tanks (3), 

residential area (1), LNG FSRU system (1), 

berth (2), office building (1), warehouses (3), 

storage tanks (15), grocery shop (1), police 

station (1) 

Zone 1:301; 

Zone 2: 76 

339 
   

220  794  1590  

2  A  WCS  Jet  Working stations (3), LNG tanks (3), 

residential area (1), berth (1), LNG FSRU 

system (1), office building (1) 

Red Zone: 694; 

Blue Zone: 10; 

Green Zone: 15 

706 1141  1022  976        

3  B  MCS  Flash  LNG FSRU system (1), berth (2), pipeline 

bridge (2), turning basin (1) 

Zone 1:78; 

Zone 2: 38 

97 
   

194  771  1546  

4  B  WCS  Jet  LNG FSRU system (1), berth (1), pipeline 

bridge (2), turning basin (1) 

Red Zone: 124; 

Blue Zone: 15; 

Green Zone: 25 

142  1128  1016  976  
 

    

5  A  MCS  Flash  Working stations (1), LNG tanks (1), LNG 

FSRU system (1) 

Zone 1:14; 

Zone 2: 28 

28 
   

11  77  277  

6  A  WCS  Pool  Working stations (1), LNG tanks (3), LNG 

FSRU system (1) 

Red Zone: 40; 

Blue Zone: 20; 

Green Zone: 9 

58  501  302  192  
 

  
 

7  B  MCS  Flash  LNG FSRU system (1), pipeline bridge (1) Zone 1:14; 

Zone 2: 10 

19 
   

9  70  202  

8  B  WCS  Pool  LNG FSRU system (1), berth (1), pipeline 

bridge (2), turning basin (1) 

Red Zone: 32; 

Blue Zone: 17; 

Green Zone: 35  

54  722  525  222  
   

 



 

The probability 10-5 per year was usually defined as the boundary of the individual risk of 

fatality for marine transfer operation (MARIN, 2016). The frequency of each scenario 

can be obtained from the event tree analysis, so the value of risk can be calculated by 

PLL timing frequency. Based on the ALARP boundary values (Sames and Hamann, 

2009), the safety utility scale was built accordingly. By the calculated weight value of 

three processes, the total utility value for Location A and Location B under maximum 

credible scenario can be determined.  

 

The total safety utility value for location A under MCS is:  

              𝑆𝑈𝑉𝐴 = 𝑘𝑁𝑃 ∑ 𝑤𝑖𝐴𝑁𝑃 + 𝑘𝐵𝑃 ∑ 𝑤𝑗𝐴𝐵𝑃 + 𝑘𝑇𝑃 ∑ 𝑤𝑘𝐴𝑇𝑃𝑘𝑗𝑖 = 0.4225           (14)                             

            The total utility value for location B under MCS is:  

𝑆𝑈𝑉𝐵 = 𝑘𝑁𝑃 ∑ 𝑤𝑖𝐴𝑁𝑃 + 𝑘𝐵𝑃 ∑ 𝑤𝑗𝐴𝐵𝑃 + 𝑘𝑇𝑃 ∑ 𝑤𝑘𝐴𝑇𝑃𝑘𝑗𝑖 = 0.5931           (15)                               

  

            Under WCS, SUV𝐴 
′ = 0.1212; SUV𝐴 

′ = 0.2036.  

 

Therefore, location B performs better than location A either under MCS or WCS. Under 

MCS, they both located in the moderate level, but under WCS, the safety utility value of 

location A and B were in the limited acceptable range. The calculated results told us the 

extreme external conditions should be avoided in advance to ensure the safety of the 

FSRU-LNGC system. 

 

For the navigational process, location A outperformed location B on both “collision” and 

“grounding”, proving the navigation environment of location A was more reliable for 

LNG carriers than that of location B; for berthing process, location B had a higher overall 

score, showing it was less risky for identified contacting with berthing obstructions and 

LNG FSRU. For LNG transferring process, two events and two scenarios were identified 

for LNG accidental release, location B performed better than location A on both of the 

two events as it separated the populated areas with two pipeline bridges so that less 

vulnerable buildings were involved in the vicinity of location B. Location B 

outperformed location A in two of three processes, and had a higher score in the total 

utility value since offshore FSRU is a safer solution, although offshore area usually has a 

less favorable navigation environmental factors. 

 

5. Conclusion  

 

This research serves as a quantitative way to evaluate the three consecutive processes for 

an integrated engineering system, FSRU-LNGC system. A QMNMDA model was 

presented to evaluate the process safety level of the defined system and both ship 

simulator and consequence analysis were employed to fulfill the research objective. In 

addition, a real case with two FSRU areas was taken to show the procedures of this safety 

analysis. During the evaluation process, some may be taken into account to mitigate the 

systematic risk into an acceptable level. For navigational process, the security zones, both 

static and dynamic zones, should be set up for large scale LNG carriers, such as Q-Flex 

and Q-Max, to avoid other traffic interfering LNGC, and this measure has been proved to 

reduce the occurrence of collision in inbound channels significantly by Ma and Wu (Ma 

and Wu, 1998); the recommended routes should be always top priority to navigate since 



 

the UKC can meet the requirement of safe sailing or large draft vessels may ride on the 

tide to pass the shallow areas. For berthing process, enough turning basin, especially 

enough berthing width should be ensured to lower the risk of contact with FSRU or other 

navigational hazards, and the transverse speed of the LNGC should be observed 

frequently when it is approaching the LNG FSRU. For LNG transferring process, the 

emergency plan and procedures should be implemented before the operation begins; the 

responsible officers should be assigned to ensure every possible contingency could 

follow an organized procedure; evacuation plans and extreme situation trainings were the 

key factors to succeed in potential disasters.  

 

This study serves a trial to apply both nautical simulation and chemical process 

simulation on offshore industry. In the evaluation process, the objective environmental 

factors were evaluated via simulation and statistical software. However, human factors 

and other uncertainties are necessary to consider under different hydrographic and 

meteorological conditions for the FSRU-LNGC system. From the perspective of offshore 

safety, this data-driven direction would be a right way to establish evaluation scale in a 

more close-to-reality way. To accomplish this goal step by step, more data sources should 

be added to monitor LNG operations in different dimensions and more non-linear 

mathematical models should be applied to build a clearer relationship between raw data 

and safety performances for both LNGC and FSRU.  
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APPENDIX 1: Sample Questionnaire for Safety Utility Value of LNG FSRU 

Evaluation Attributes 

Which department are you in? 

1. Maritime Institute 

2. Pilot Station 

3. Shipping Company 

How many years have you worked/researched for LNG carriers? 

1. Less than 5years 

2. 5 to 8 years 

3. More than 8 years 

 

The evaluation scale was set between 0 and 1, and five evaluation ranges were determined 

with the even interval of 0.2 based on the safety level for LNG FSRU system, see table 

below.  

Table. 1-1 Quantitative Value for Safety Qualitative Evaluation 

Favorable Acceptable Moderate Limited 

Acceptable 

Unacceptable 

[0.8,1] [0.6,0.8) [0.4,0.6) [0.2,0.4) [0,0.2) 

 

Safety utility value range from 0.8 to 1.0 means the environment of this location is 

favorable to build LNG FSRU, while the value locating between 0.6 and 0.8 means it is 

acceptable for LNG FSRU; the range 0.4 to 0.6 means moderate environmental conditions 

for the system; limited acceptable when the safety utility value is in the range of 0.2 to 0.4. 

 

Safety Evaluation for “Visibility”  

Visibility value for LNG carrier is defined as the number of days under poor visibility 

(visible distance < 4000m) per year. Now please fill the blanks about the relevant values. 

 

Which value do you think is the most appropriate one when safety utility value of 

“Visibility” is set as 0.2, 0.4, 0.6 and 0.8, respectively? Please fill the blanks. 

 

Table. 1-2 “Visibility” Evaluation Table 

 Safety Utility 

Value= 0.2 

Safety Utility 

Value= 0.4 

Safety Utility 

Value= 0.6 

Safety Utility 

Value= 0.8 

Restricted 

Visibility 

Days/Yr 

    

 

 

 



 

APPENDIX 2: Utility Function Determination for “Visibility” by R 

 
 
               Figure 2-1. For “Risk= β0+β1Vis”                              Figure 2-2. For “Risk= β0+β1In(Vis)” 
 

 
 

    Figure 2-3. For “Risk= β0+β1Vis+ β2Vis2”                         Figure 2-4. For “Risk= β0+β1Vis+ β2Vis2 +β3Vis3” 

 

 
   

  Figure 2-5. Risk= β0+β1Vis+ β2Vis2+β3Vis3 +β4Vis4              Figure 2-6. K-fold Cross Validation  

 


