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ABSTRACT

Emergence in the high-resolution sensing and imaging technologies have allowed us to

track the variability in manufacturing processes occurring at every conceivable resolution of

interest. However, representation of the underlying manufacturing processes using streaming

sensor data remains a challenge. Efficient representations are critical for enabling real-time

monitoring and quality assurance in smart manufacturing. Towards this, we present graph-

based methods for efficient representation and quantification of the image data gathered

from advanced manufacturing processes.

In this dissertation, we first focus on experimental studies involving the finishing of

complex additively manufactured components and discuss the important phenomenological

details of the polishing process. Our experimental studies point to a material redistribution

theory of polishing where material flows in the form of thin fluid like layers, eventually bridg-

ing up the neighboring asperities. Subsequently, we use the physics of the process gathered

from this study to develop a random planar graph approach to represent the evolution of

the surface morphology as gathered from electron microscopic images during mechanical

polishing. In the sequel, we focus on unsupervised image segmentation using graph cuts by

iteratively estimating the image labels by solving the max-flow problem while optimally es-

timating the tuning parameters using maximum a posteriori estimation. We also establish

the consistency of the posterior estimates. Applications of the method in benchmark and

manufacturing case studies show more than 90% improvement in the segmentation perfor-

mance as compared to state-of-the-art unsupervised methods. While the characterization of

the advanced manufacturing processes using image and sensor data is increasingly sought

after, it is equally important to perform characterization rapidly. Towards this, we employ

machine learning methods for the rapid characterization of the salient microstructural phases

present on a metallic workpiece surface via a nanoindentation-based lithography process. In

closing, a summary of the contributions and directions of future work are also presented.
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1. INTRODUCTION

1.1 Analytics for smart manufacturing

The advent of the Internet of Things (IoT) is propelling the generation of a deluge of

data (more than 1.8 petabytes per year) across and about various aspects of manufacturing

processes. These advances have opened an unprecedented opportunity to harness information

from these vast data streams to characterize as-you-make synergistically. It holds a huge po-

tential for the emerging paradigm of materials-on-demand manufacturing, where “intelligent

machines” operate autonomously to discover the optimal process conditions and characterize

the morphology and microstructures [75]. At the systems level, the data streams also allow

enhanced connectivity and coordination among all components across the value chain—right

from the material, machines, and shop floor to the supply chain and the enterprise—and thus

bring substantial improvements in the productivity of the whole system.

Smart manufacturing aims at harnessing the streaming data generated from advanced

manufacturing processes to enable efficient decision making under uncertain environments,

autonomous experimentation for materials-on-demand manufacturing, and closed-loop mon-

itoring and control of complex manufacturing processes such as additive and hybrid manufac-

turing (AM/HM) technologies. In this work, we primarily focus on additive manufacturing

owing to its potential to fabricate complex, free-form geometries with a near-net shape, and

radically new and innovative part designs while minimizing the production time and costs.

More pertinently, the AM market has grown five folds during 2014-2018 and is expected

to become a $25 billion industry by 2025 with expanding industrial applications. However,

despite strong growth projections, AM technologies only represent 0.04% of the total global

manufacturing market, with prototyping occupying the majority share. This is primarily

due to the poor surface finish and frequent occurrence of defects particularly pores emerg-

ing from various sources that significantly deteriorate the mechanical performance and the
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overall functional integrity of AM components.

Along the similar lines, significant research has been carried out towards optimizing the

process parameters to improve the surface morphology and reduce the defect concentra-

tion while maintaining the desired level of mechanical performance as well as geometric

dimensionality and tolerances. However, optimization of process parameters turns out to be

an extremely challenging problem especially due to the combinatorial nature of the search

space, variations, and confounding effects among the process state variables. As an offshoot

of global thrusts in material genomics, new alloy systems are increasingly being considered

for industrial practice, especially to fabricate structural components of critical importance

via AM technologies [84]. Due to the fast-paced introduction of material systems for AM

as well as the inherent process complexities, any effort to optimize the process to mitigate

defects for a particular scenario would likely be ineffective for subsequent AM operations.

Towards this, advancements in in situ imaging and sensing technologies have enabled

monitoring of manufacturing processes over sub-micrometer resolutions at high speeds, fi-

delity, and field-of-view [56]. These open exciting opportunities for real-time tracking of spa-

tiotemporal evolutions, especially of surface morphologies that take place over nano- through

micro- and mesoscale, that are critical for quality assurance as well as physical character-

ization of manufacturing processes. In this context, representation approaches, which are

essential in harnessing information from these emerging imaging and multi-modal sensing

technologies for quality assurance, and process characterization remain at a nascent stage.

The need for such representation schemes is becoming essential in AM and other advanced

manufacturing technologies.

While advances have been made towards identification and tracking of image-based mor-

phological features, quantification of their spatiotemporal evolution, and connecting these

with the underlying process physics remain open issues. Quantification of spatiotemporal

variation from in situ images poses significant challenges mainly, because (a) images capture

only small snapshots in time and space, (b) significant uncertainties exist in the trajecto-
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ries of the location and shape of morphological features (in addition to their compositions

and structures) as captured from the images, and (c) complex, seemingly irregular, evolu-

tion patterns do not lend themselves to conventional statistical descriptions. These evolution

patterns are also influenced by the phase and chemical transformation phenomena during

finishing, which are inherently stochastic.

1.2 Organization and contributions of this dissertation

This dissertation aims at innovations in advanced manufacturing processes as well as

methodological foundations in data analytics to enable rapid, in situ characterization of

smart manufacturing processes. More specifically, the dissertation focuses on developing ad-

vanced manufacturing processes for finishing of additively manufactured components and

experimental strategies to study the phenomenologies underlying surface modification dur-

ing these finishing processes. These key phenomenological observations not only provide the

exact physics of the surface smoothening process but also forms the basis for developing

physics-based models for the representation and quantification of the surface morphology,

necessary for autonomous detection of polishing endpoints, i.e., deciding when to stop polish-

ing. Along the direction of representing surface morphology, we are also concerned with the

unsupervised learning methods when labeled data is costly to obtain, e.g., high-resolution

microscopic images of the surface morphology during additive manufacturing. Towards this,

we delve into developing statistical models for unsupervised learning methods.

In the following, we outline the key contributions that emerged from this dissertation

towards addressing the challenges pertaining to the representation of the streaming sensor

and image data gathered from advanced manufacturing processes.

The second chapter of this dissertation is devoted to studying the challenges pertaining

to poor surface morphology and integrity of additively manufactured components [140, 74,

59, 77]. A detailed description of the sample preparation and review of the existing post-

processing methods are presented. We then present a multi-stage surface finishing process

and compare the surface morphology characteristics such as average surface roughness (Sa),
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surface peak to valley (Spv), hardness, and the resulting microstructures as obtained from

that of multi-stage surface finishing process and traditional milling process. The underlying

research hypothesis in this study is to test if a multi-stage finishing process results in superior

surface integrity as compared to traditional subtractive methods.

Following up on the second chapter, we note that surface finish requirements vary de-

pending upon the applications, from biomedical implants that call for differential surface

roughness (sub-micron finish at bearing locations while rough and textured surface at the

bone-implant interaction site [140]) to mechanical applications that require a uniform specu-

lar finish (average surface roughness, Sa < 25 nm). Therefore, it is important to understand

the exact phenomenology governing surface modification during the post-processing stages

and develop accurate modeling approaches to achieve the desired specifications.

The surface morphologies obtained during various stages of the polishing process are ob-

served under a scanning electron microscope to understand the exact phenomenology of the

finishing process. The hypothesis in this research (Chapter 3) is to test if surface smoothening

occurs due to material removal, which is the traditional theory. To further validate the hy-

pothesis, we use analytical models to determine the asperity-abrasive contact temperatures,

microstructural evolution at the surface, as well as potential microscopic mechanisms during

asperity-abrasive contacts in polishing [78].

The next chapter (Chapter 4) is based on harnessing the physics of the polishing process

to develop a robust approach for representation and quantification of the surface morphol-

ogy evolution during finishing. We first review the existing methods towards modeling the

surface morphology using image data. From the previous study (Chapter 3), we note that

the evolution in the surface morphology during the polishing process is reminiscent of an

evolving planar graph where the undulations on the surface, also known as asperities (or

nodes in the graph) bridge with neighboring nodes to form a flat, smooth surface. In light

of this, we develop a random planar graph representation of the surface morphology during

the finishing process and quantify the resulting graphs using the second smallest eigenvalue
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(λ2) of the graph Laplacian [39, 3].

We subsequently use these quantifiers for endpoint detection, i.e., determining when to

stop the polishing process. Finally, we establish the sensitivity of the Fiedler value to capture

the evolution in the surface morphology as well as the effect of node density lying near the

boundary of the image.

Along the similar lines of representation of the surface morphology, as described in Chap-

ter 4, characterization of surface porosity and defects is critical to facilitate wider adoption

of additive manufacturing. The problem of identifying the defects using in situ images is par-

ticularly challenging because labeled data is difficult to obtain. This excludes the possibility

of employing supervised segmentation methods. Therefore, the fourth objective (Chapter 5)

in this dissertation focuses on developing an unsupervised algorithm based on a max-flow

formulation for the segmentation of defects [76, 2]. Towards accomplishing this objective,

we present an approach to consistently estimating the flow capacities of a continuous max-

flow/min-cut problem leading to fully unsupervised, fast image segmentation. We also present

the performance of the proposed approach in benchmark datasets.

While the previous chapters focused on harnessing image data for characterization of

manufacturing processes, Chapter 6 of this dissertation will focus on developing strategies

for the rapid characterization of manufacturing processes using streaming time series data

[75, 4]. More specifically, we develop a sensor-based platform for rapid characterization of

materials microstructure in a hybrid manufacturing platform. We employ a machine learning

approach to connect the time-frequency patterns of the corresponding acoustic emission

(AE) signals with the underlying microstructural phases and demonstrate the efficacy of

underlying AE signals to identify novel patterns and possible microstructural anomalies. The

final chapter of this dissertation will summarize the research undertaken in this dissertation,

the contributions, and the impact on advanced manufacturing. A brief discussion on future

research directions is also presented.
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2. FINISHING SURFACE MORPHOLOGY OF ADDITIVE MANUFACTURED

COMPONENTS ∗

Post-processing strategies are becoming imperative for a range of additively manufac-

tured alloys, especially those with applications in aerospace and biomedical industry, to

achieve the desired surface quality and integrity. This chapter focuses on the impact of

post-processing recipes on the surface morphology and mechanical properties of AM com-

ponents. More specifically, we compare the effect of traditional machining and a multi-step

fine-abrasive finishing process on the surface morphology and integrity of Ti-6Al-4V work-

pieces manufactured via an Electron Beam Melting (EBM) process. Extensive experimental

investigations demonstrate that the multi-step finishing process results in an ultra-smooth

surface finish of Sa < 50 nm, increases the surface density (and hence the bearing char-

acteristics) by minimizing the surface void volumes to less than 0.2% and achieves a 20%

improvement in surface hardness.

2.1 Introduction

Additive Manufacturing is defined as “the process of joining materials to make objects

from 3D model data, layer upon layer, as opposed to selectively removing materials in sub-

tractive manufacturing methodologies” [1]. AM is increasingly becoming attractive to the

industry as well as the research community for its ability to manufacture complex compo-

nents, achieve the near-net shape, and customize geometric designs without the need for

custom fixtures and jigs [115]. In 2018, the AM industry experienced a 41.9% growth rate,

consistent with the growth over the past five years, with expected net revenue of $15.8 billion

in 2020. However, among several disadvantages of AM (specifically metal AM), poor surface

finish and porosity significantly hinder its broader adoption. For example, load-bearing ap-

∗Reprinted with permission form A. S. Iquebal, S. El Amri, S. Shrestha, Z. Wang, G. P. Manogharan, and
S. Bukkapatnam, “Longitudinal milling and fine abrasive finishing operations to improve surface integrity of
metal AM components,” Procedia Manufacturing, vol. 10, pp. 990–996, Copyright 2017 Elsevier
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Figure 2.1: Overview of the key challenges pertaining to the surface morphology and in-
tegrity of AM components that need to be addressed before the application phase. Challenges
highlighted in bold are the focus of the current study and are analyzed via a longitudinal
post-processing strategy.

plications in the mechanical and aerospace industry require a specular surface finish with

tighter part feature tolerances [36]. Successful adoption of metal AM components in such

applications need appropriate post-processing treatments. Traditional subtractive methods

such as machining offer advantages that would mitigate these challenges. However, they

suffer from poor material utilization, machinability issues, limited part complexity, and cus-

tom tooling requirements. Therefore, integrating subtractive methods such as machining

and grinding with rather advanced polishing processes through a hybrid approach is desir-

able. Figure 2.1 summarizes some of the key challenges that may be addressed by adopting

appropriate post-processing technologies.

This chapter summarizes the influence of post-processing methods on the resulting surface

morphology, microhardness, and mechanical load-bearing characteristics. Specifically, Ti-
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6Al-4V components fabricated through EBM are subjected to two post-processing methods:

(1) traditional dry milling and (2) multi-stage fine-abrasive finishing. Section 2.2 presents

a brief background and literature review on the post-processing of EBM fabricated parts,

followed by experimental studies in Section 2.3. Section 2.4 summarizes the finding from the

experiments.

2.2 Background

Much of the work in hybrid processes with AM has focused on directed energy metal

deposition processes such as wire welding using a metal inert gas, metal active gas [9], and

laser melting due to the relative ease of integration [11]. These hybrid systems are formulated

by retrofitting 3-axis platforms (e.g., ball screw/ lead screw, etc.) in a CNC machining cen-

tered by adding the deposition head within the machining volume. Another study presented

a powder plasma-based system that utilizes 3-axis contour milling to finish machined near-

net shape parts [156]. In such processes, hybrid manufacturing is achieved by alternating

between additive and subtractive methods after every few layers. Machining is performed

after deposition or formation of relatively thick layers followed by sequential addition and

subtraction until the final part is created. Other hybrid processes employ additional rotary

axes based laser-aided deposition process in which the deposition table is rotated to accom-

modate overhanging surfaces by depositing material from multiple directions followed by

machining [95].

Post-processing is considered as a crucial and challenging step for AM practice, and it is

emerging as one of the critical elements of hybrid manufacturing systems [98]. While metal

AM (e.g. EBM) is a desirable option for fabricating custom components in the biomedical

and aerospace industry, tighter tolerance and performance specifications of these components

necessitate finishing as an essential post-processing step. For example, in the context of

biomedical implants, authors in [130] suggest that a roughness Ra of 0.5− 8.5 µm was most

conducive for osseointegration. However, ultra-smooth finish Ra < 0.1 µm is necessary on

the bearing surfaces (e.g. at hip and knee joints) to ensure performance as well as durability
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under dynamic loading [80]. In this context, it is important that post-processing technologies

are economical to realize the desired surface characteristics, so that the overall production

cost can be minimized while meeting the part requirements. Currently, only a handful of

efforts have been reported in the literature on the finishing of EBM printed components and

a brief summary of some of these methods is presented in Table 2.2. Note that some of the

methods mentioned here have only been applied to AM processes other than EBM (marked

asterisk).

2.3 Materials and methods

2.3.1 Surface preparation

Ti-6Al-4V samples of �50 mm and 7 mm thickness with controlled surface morphology

consisting of spherical asperity structure were prepared using an Arcam EBM machine oper-

ating at a vacuum of 2 Pa and accelerating voltage of 60 kV. The process involved raking a

50 µm layer of Ti-6Al-4V powder of average �72 µm (see Figure 2.2(c) for the distribution

of diameter of Ti-6Al-4V particles) using a focused electron beam of 3 mA, scanning at a

speed of 10 m/s. The resulting surface consists of granular Ti-6Al-4V particles with a unique

spherical asperity structure. SEM image of the representative surface morphology is shown in

Figure 2.2(a). The distributions of asperity height and diameter are shown in Figures 2.2(b)

and (c), respectively. The asperity height as well as the diameter exhibit a Weibull distribu-

tion with an average value of 72 µm and 64.5 µm, respectively, and a standard deviation of

∼ 15 µm. Incidentally, the idealization of surfaces as a collection of spherical asperities (with

Gaussian and Weibull distribution of heights) has been the basis for many prior theoretical

analyses of elastic-plastic contacts between rough surfaces [73].

2.3.2 Experimental approach

The Ti-6Al-4V samples were polished on a Buehler Metaserv Grinder-Polisher (model

95-C2348-160) using silicon carbide (SiC) polishing pads (�203 mm), in stages, with progres-

sively smaller abrasives ranging from 30 µm to 5 µm under dry conditions. A steady nominal
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down pressure of 0.5 kPa was maintained and the polisher speed was fixed at 500 rpm. The

surface was manually subjected to a quasi-random orbital motion. The final polishing step

involved the use of alumina abrasives (< 1 µm), suspended in an aqueous solution (20% by

wt., pH ≈ 7.5) for 20 minutes to impart a specular finish to the surface. The slurry was

routinely flushed to avoid possible agglomeration of finer abrasives into large clusters that

may result in scratching.

2.3.3 Surface and microstructure characterization

The polishing was interrupted at every 90 s intervals to observe the surface morphology

changes and the evolution of asperity structure using a Zeiss EVO scanning electron micro-

scope. Quantitative details pertaining to the surface finish including surface roughness (Sa)

and volume of inter-asperity “valleys” (Sv) were measured using a white light interferometer

from Zegage. Inter-asperity valleys were characterized by the surface heights lying below the

10th percentile on the bearing area curve (i.e., the cumulative distribution of surface profile)

[73]. To ensure that observations and measurements were made at the same surface location

during different polishing steps, the sample surface was initially indented with a 2 × 2 mm

square grid. The vertices of this grid enabled us to image the same surface location after

each interrupted test. To facilitate better observations of the plastic flow patterns at asperity

surfaces, the sample was tilted by 70◦ in the scanning electron microscope.

The outcome of machining and fine abrasive finishing of as-fabricated EBM sample prior

to surface characterization and microhardness testing is presented in Figure 2.3. Evidently,

the fine abrasive finishing process has resulted in a significant improvement in the surface

morphology. The average roughness of the workpiece improved from Sa ≈ 25 µm before

finishing to Sa ≈ 0.045 µm after finishing. Simultaneously, the peak-to-valley height reduced

from Spv ≈ 250 µm before finishing to Spv ≈ 5 µm after finishing.

Representative surface profiles are shown in Figures 2.3(a), (b), and (c). Note that the

granular structure on as-fabricated sample shown in Figure 2.3(a) exhibit voids in the work

piece resulting in a much lower surface density. On the other hand, polished work piece is
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mostly free from any granular structure and the inter-granular voids although it shows signs

of scratch marks and pits on the surface as shown in Figure 2.3(c). The scratch marks may

be attributed to the limitations of hand-held mechanical polishing as well as agglomeration

of abrasives forming larger abrasive particles when an aqueous solution is employed.

The hardness of the polished sample was measured on a Leco LM300 AT microhardness

machine with a load and dwell time of 500 g and 5 s, respectively. To observe the microstruc-

tures, the mechanically polished samples were first treated with Kroll’s reagent (5−7% nitric

acid (HNO3) and 2− 4% hydrofluoric acid (HF) and rest distilled water) for 10 s and then

rinsed with distilled water. The microstructures were observed using SEM under high vac-

uum (≤ 1 × 10−4 mbar) with accelerating voltage of 15 kV and a working distance of 15

mm. Figure 2.2(d) shows the representative microstructure observed in an as-EBM fabri-

cated Ti-6Al-4V, comprising of lamellar α and β phases with both colony and basket-weave

(also called Widmanstätten pattern) morphology. The α lamellar phase is etched out by

Kroll’s reagent and therefore, exhibits a darker contrast as compared to the β phase under

SEM. Here, the β phase resembles rod-like morphology with an average thickness of 200 nm.

Details of the effect of polishing on the hardness and surface microstructure is presented in

Chapter 3 in detail.

2.4 Summary and conclusions

This chapter presented the effects of post-processing of metal AM parts (Ti-6Al-4V)

through machining and fine-abrasive finishing. Results suggest that machining improved the

average surface roughness 98.1% and increased surface hardness by 37%. In contrast, the av-

erage surface roughness improved by 99.82% and the microhardness increased by 11% when

the workpiece was subjected to fine-abrasive finishing (with significantly more efficacy on

z-build-direction surfaces). We also noted that fine-abrasive finishing reduced the fraction of

voids by almost 99.81%, thus providing an effective means to enhance the bearing capacity

of AM components. The study showed the importance of post-processing, specifically the

first reported study on the influence of multi-step fine abrasive finishing on additively man-
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ufactured surfaces. Implications of the findings include applications in efficiently combining

traditional post-processing, machining, and non-traditional approaches such as fine abrasive

finishing, electrochemical polishing, and magnetic polishing of AM parts.
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Figure 2.2: (a) SEM image showing the spherical asperity structure of the sample surface;
(b) and (c) are respectively the distribution plots for the asperity height and diameter as
measured using white light interferometry. Empirical estimate suggests a Weibull distribution
with an average value of 72 µm and 64.5 µm, respectively and a standard deviation of ∼ 15
µm. (d) SEM image showing the representative α + β colony with α lamellae (in dark)
interspersed with β phase (rod-shaped, in white) of average thickness 200 nm.

Figure 2.3: Summary of the as fabricated EBM, machining & abrasive finishing results com-
paring surface morphology. (a) as fabricated EBM, (b) machining & (c) abrasive finishing
results comparing surface morphology.
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3. SURFACE PLASTIC FLOW IN POLISHING OF ROUGH SURFACES∗

In this chapter, we are concerned with understanding the exact phenomenology of sur-

face smoothening during mechanical polishing. Experimental studies presented in this chap-

ter point to material redistribution as the dominant mechanism of polishing, as opposed

to material removal. Electron microscopy observations of Ti-6Al-4V surface with a spher-

ical asperity structure—realized via AM—during successive polishing stages suggest that

asperity-abrasive contacts exhibit viscous behavior, where the asperity material flows in the

form of thin (1−10 µm) fluid-like layers. Subsequent bridging of these layers among neighbor-

ing asperities results in progressive surface smoothening. Using analytical asperity-abrasive

contact temperature modeling and microstructural characterization, we show that the sliding

contacts encounter flash temperatures of the order of 700-900 K which is in the range of the

dynamic recrystallization temperature of the material considered, thus supporting the exper-

imental observations. The research findings and observations are of broad relevance to the

understanding of plastic flow behavior of sliding contacts ubiquitous in materials processing,

tribology, and natural geological processes as well as present unique opportunities to tailor

the microstructures by controlling the thermomechanics of the asperity-abrasive contacts.

3.1 Introduction

The practice of polishing to impart solid surfaces with smooth, lustrous finish has been

known for centuries. The use of hard abrasives such as corundum and diamond for polishing

in fact dates back to the Neolithic period [96] and Leonardo da Vinci is credited with the

earliest systematic design of a polishing machine [114]. It might be surprising then to know

that the mechanism of polishing—how surface irregularities are smoothened out by abrasive

particles—is still unsettled. Excellent account of the history and theories of polishing can be

∗Reprinted with permission from A. S. Iquebal, D. Sagapuram, and S. T. S. Bukkapatnam, “Surface
plastic flow in polishing of rough surfaces,” Scientific reports, vol. 9, no. 1, p. 10617, Copyright 2019 Springer
Nature
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found in [15]. However, it may suffice to note that mainly two lines of thought for the polishing

mechanism have prevailed: that of abrasion and surface flow. Early theories by Hooke and

Newton [108], followed by those of Herschel [15] and Rayleigh [40] viewed polishing essentially

as an abrasion or a grinding process at a very fine scale where surface irregularities are

removed by cutting action of the abrasives. The work by Samuels [127] presented irrefutable

evidence for this mechanism and showed how abrasives act as planing tools and result in the

generation of well-defined chips as they slide past a surface. However, the fine scale abrasion

theory falls short in explaining the high (almost an order of magnitude) compressive residual

stresses obtained after polishing as compared to milling and finish machining operations

[151].

The alternative theory emerges from the work by Beilby [24] who proposed surface

smoothening occurring via surface flow and material redistribution. Here, it is believed that

the material from surface peaks ‘flows’ to fill up the valleys and forms a thin vitreous surface

layer, generally referred to as the “Beilby layer”. Bowden and Hughes [30] further devel-

oped this theory and proposed that surface flow is in fact mediated by local melting at the

surface–abrasive contacts. Electron diffraction measurements of polished surfaces have been

presented as indirect evidence for the Beilby layer formation, but these observations were

later proved to be inconclusive. To our knowledge, no conclusive evidence for the surface flow

or melting has been provided to date. Other theories of polishing also exist, among which

noteworthy is the molecular level material removal mechanism put forward by Rabinowicz

[119] based on energy considerations.

More recently, the emergence of AM technology has renewed the interest in polishing pro-

cesses [39, 77]. AM technologies are severely limited in terms of creating controlled surface

morphology [62] and suffers from poor surface quality and porosity issues [139]. Consequently,

the existing AM technologies are typically coupled with some form of post-processing mech-

anism to improve the surface finish and reduce surface porosity. Mechanical polishing is

one of the most commonly employed post-processing approaches in this context. Surface
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finish requirements vary depending upon the applications, from biomedical implants that

call for differential surface roughness (sub-micron finish at bearing locations while rough,

textured surface at the bone-implant interaction site [140]) to mechanical applications that

require a uniform specular finish (average surface roughness, Sa < 25 nm). Therefore, it is

important to understand the exact phenomenology governing surface modification during

the post-processing stages and develop accurate modeling approaches to achieve the desired

specifications.

However, unlike machining processes such as milling and turning, modeling and simula-

tion of the polishing process is extremely challenging due to the complexities arising from

the stochastic nature of the asperity-abrasive interaction (such as depth of cut and rake

angle) as well as the deformation mode at asperities (abrasion versus surface material flow).

Additionally, in the context of AM surfaces, where surface roughness is almost two orders of

magnitude higher, little to no studies exist on the mechanism of surface modification during

polishing. Lack of a unified theory hinders accurate modeling of the surface modification

during polishing. For example, if polishing is driven purely via abrasion, it is highly unlikely

to get rid of surface pores as the subsurface pores (created during the metal powder sintering

process) would get exposed on continued material removal. On the contrary, if surface ma-

terial redistribution is considered as the driving mechanism for surface smoothening, then

opportunities may exist to exploit surface plastic flow in polishing processes to minimize

residual surface porosity in AM components.

In this chapter, we present direct experimental evidence that support the surface plastic

flow as the dominant mechanism in the polishing of rough metal surfaces, fabricated via

the EBM process. We present scanning electron microscopy (SEM) observations of polished

surfaces that reveal viscous flow at the asperity-abrasive sliding contacts, involving material

flow towards the asperity sides in the form of thin fluid-like layers. The subsequent stages

of polishing involve bridging of these layers among different asperities to result in a smooth

finish. The observations suggest that as polishing ensues, surface smoothening is mediated
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mostly via material redistribution as opposed to material removal. We establish that the

viscous flow at the asperity-abrasive contact is mediated by the high flash temperatures

of the order of 700-900 K which is in the range of dynamic recrystallization temperature

of the material considered, thus supporting the experimental observations. To determine

the flash temperatures generated from frictional heating during the sliding of carefully tuned

(spherical) asperity surface against the abrasives we use a circular moving heat source model.

By taking into account the distribution of abrasive and asperity profiles, we show that such

high flash temperatures are highly likely (>33%) to occur during the repetitive interactions.

We also conduct ex post facto microstructural analysis to further support the occurrence of

viscous flow at the asperity-abrasive interface and present possible microscopic mechanisms

underlying the plastic flow during the polishing process.

3.2 Results

3.2.1 Surface plastic flow

Electron microscopy of the surface asperities enabled us to capture key phenomenological

details of the polishing process. Based on these observations, we subdivide the polishing

process into four different stages as discussed in the following. These stages may exist at the

same time depending upon the characteristics of asperity-abrasive interaction, e.g., contact

area, asperity height, etc. Polishing begins with the interaction between the abrasive particles

and the asperities, initially spherical as shown in Figure 3.1(a). At this stage, material

removal could be observed macroscopically, however, the electron microscopic investigation

shows that in addition to the material removal, thin layers of material begin to stack on the

asperity sides. Figures 3.1(b) and (c) show typical asperity structures after 90 s of polishing.

Severe shear of the asperity surface and accumulation of the material towards asperity edges

(see at arrow) is evident from Figure 3.1(c). This flow pattern is reminiscent of plastic sliding

between surfaces oriented at shallow angles, such as in tribological contacts or ‘machining’

under highly negative rake angles [44, 89]. The sheared surface material then flows to the
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Figure 3.1: SEM images showing (a) the spherical asperity structure at t = 0 s, (b-c) surface
asperities after 90 s of polishing showing the evidence of complex material flow patterns. (b)
lateral plastic flow and deposition of material on the asperity sides, (c) shear deformation
of the asperity surface and material flow towards the edge of the asperity in the form of
thin, fluid-like layers of the order of 1− 10 µm and (d-e) surface asperities showing repeated
formation and deposition of thin material layers as the asperity progressively flattens out on
continued polishing.

lateral sides of the asperity as thin layers, usually in the range of 1 − 10 µm. Interestingly,

the flow is seen to be quite symmetric around the periphery of the sheared surface, with

deposited material layer showing a molten-like appearance. The sliding direction between

the asperity and abrasive particle can be inferred from the sliding marks in Figure 3.1(c).

This omnidirectional flow at the surface, coupled with the observation of rheological flow

features at the asperity edges (Figure 3.1(c)), suggests viscous behavior of the surface plastic

flow in polishing.

The electron microscopic investigation of the subsequent polishing stages provides further

evidence of the surface flow theory in that the surface smoothening is mediated by material

redistribution more so than material removal. Figures 3.1(d-e) show the progression of the

plastic flow at the asperity surface on continued polishing (beyond 90 s). This forms the

second stage of the polishing process. The repeated shearing at the asperity surface upon
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Figure 3.2: Surface smoothening during later stages of polishing by bridging between neigh-
boring asperities. (a) SEM image showing the interconnection of flat (“smooth”) regions
surrounded by unfilled depressions; (b) a high-magnification image of the bridge (see at
arrow) that has formed between neighboring asperities.

encountering a sliding abrasive result in the stacking of multiple thin layers on the lateral

sides of the asperity (see at arrow). In effect, this lateral flow of material results in a radial

increase in the flattened area of the asperity.

Figure 3.2 illustrates the surface morphology characteristics on continued polishing, at

180 s. In this third stage of polishing, individual asperity surfaces are unresolvable, and the

surface can be described as an interconnected network of flat islands as seen in Figure 3.2(a).

Interspersed among these regions are the unfilled depressions. A closer inspection of the

flattened regions (Figure 3.2(b)) reveals that their formation is mediated by bridging of the

smeared surface material between the neighboring asperities. Therefore, the third stage of

the polishing process is characterized by the bridging of neighboring asperities. Indeed, this

“welding” between the asperities may be expected given the occurrence of severe plastic

flow and temperatures (see Section 3.2.2) at the asperity surfaces. In our experiments, this

bridging phenomenon was noted only when the distance between the edges of two neighboring

asperities approached 30 µm. For asperities separated by larger distances, lateral flow of the

material was seen to continue until the effective distance between the asperities approached

the critical value. Continued polishing causes complete bridging of individual asperities,

resulting in a nominally smooth surface. This final stage (fourth stage) in the polishing

20



Figure 3.3: SEM observations of the temporal evolution of a representative surface depression
∼ 10 µm in size (indicated by arrow). Images in (a)-(d) are taken repeatedly at the same
location at 90 s time interval beginning with t = 180 s). The depression is progressively filled
up as a result of material flow from the neighboring surface.

involves elimination of microscale depressions. Flattening of these microscopic depressions

during the final stage of polishing again seems to occur as a result of material flow from

neighboring flat regions. A series of SEM images showing the progression of a representative

surface depression is presented in Figure 3.3. The images were taken at the same location

repeatedly at 90 s time interval beginning with t = 180 s. We note that the effective diameter

of the depression gradually decreases as a result of the material flow from the neighboring flat

surface, that is, surface depressions are smoothened out via plastic flow of the neighboring

surface and not by abrasion. This is also in agreement with the observations presented in

[8] where the authors showed, in a similar fashion, closing of a microindentation mark after

repeated sliding contacts.

The observations presented in the foregoing suggest that polishing primarily involves

material redistribution in the form of thin fluid-like layers towards the asperity sides as well

as during the bridging process. In contrast, material removal (or abrasion) is mostly limited

to the initial stages of polishing.

3.2.2 Asperity-abrasive contact temperature

To explore the possible origin for this flow behavior, we estimated the “flash” temperature

at the asperity-abrasive sliding contacts using the circular moving heat source model [42],

where the abrasive particle was treated as a semi-infinite moving body over which a stationary

heat source acts. The heat source intensity was taken as the heat dissipation due to plastic
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Figure 3.4: Schematic showing contact (solid line) between the workpiece surface consisting
of spherical asperities and the polishing pad at a distance Sz (average asperity heights) from
the workpiece reference plane (dotted line). Here, the asperity height, z, is measured with
respect to the workpiece reference plane.

shearing of the asperity at the sliding asperity-abrasive contact.

For a given asperity height (z) distribution, only the asperities for which z > Sz and

z ≤ Sz + 2R are involved in the polishing process, as schematically shown in Figure 3.4.

Here, the asperity height, z, is measured with respect to the workpiece reference plane

(dotted line in the schematic in Figure 3.4). We assume that the clearance between the

workpiece reference plane and the polishing pad (solid line) is equal to the average sur-

face asperity heights, Sz, of the workpiece. The diameter of asperity–abrasive contact (2a)

can then be calculated for a given value of Sz, asperity radius (R) and height (z) distribution.

Given the radius of contact, we calculate flash temperature by treating the contact as

a moving circular heat source (Figure 3.5). The heat source intensity is taken as the heat

dissipation due to plastic shearing of the metal asperity at the sliding interface. The heat

partition between the asperity and the abrasive particle is determined by setting equal the

maximum (quasi-steady state) temperatures of the asperity and abrasive particle within the

contact, according to Blok’s postulate [28]. Here, we treat the abrasive as a semi-infinite

moving body (with velocity V ) over which a stationary heat source (with uniform heat flux)

acts. The steady state flash temperature occurring at the contact center can accordingly

be given by the first order approximation to Jaegar’s circular moving heat source model
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Figure 3.5: Moving circular heat source model for the contact between asperity and abrasive
to calculate the temperature rise during polishing. Here, the abrasive is considered as the
semi-infinite moving heat source and the asperity acts as a stationary heat source.

[42, 142] as:

∆Tmax
∣∣
abrasive

=
2q2a

k2

√
(π(Pe2 + 1.273))

(3.1)

where, Peclet number, Pe2 = V a/2K2 and K2 = k2/ρ2C2 ≈ 4 × 10−5 m2/s. For V = 5 m/s

and contact radius a, we have Pe2 = 6.25 × 105a. For the asperity (which is treated as a

stationary source), we have:

∆Tmax
∣∣
asperity

=
q1a

k1

(3.2)

Assuming adiabatic conditions, where plastic dissipation at the interface is completely con-

verted into heat, the total heat flux, q, at the circular contact is given by:

q = q1 + q2 = µHV (3.3)
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Figure 3.6: Flash temperature map for Ti-6Al-4V as a function of asperity-abrasive contact
radius (a) and height (z), both of which follow a truncated Weibull distribution with average
at 36 µm and 64.5 µm, respectively, and a standard deviation ∼ 15 µm. Sz corresponds to
the average asperity height. The dynamic recrystallization zone (≥ 0.4Tm) is also indicated
on the temperature map.

By equating the maximum temperatures at the asperity and abrasive surface, we have:

∆Tmax =
µHV a

k1

(
1 +

k2

2k1

√
π(Pe2 + 1.273)

)−1

(3.4)

We solve for ∆Tmax for Ti-6Al-4V using the values in Table 1, and the corresponding flash

temperature map as a function of asperity height and abrasive-asperity contact radius is

shown in Figure 3.6 Any asperity for which z < Sz or z ≥ Sz + 2R would not be involved

in the polishing process as it would either make no contact with the abrasive or lie outside

the asperity–abrasive contact region (solid line in Figure 3.4). These two cases are marked

as “p” and “q” in Figure 3.6. Elsewhere, we notice that larger values of a and z result in

higher flash temperatures.

While the assumption of abrasive as a semi-infinite plane maybe reasonable during the

initial stages of polishing, the configuration is reversed as polishing process progresses. During
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the intermediate and final stages, polishing maybe represented as individual abrasive particles

sliding across a semi-infinite workpiece surface. For this latter configuration, we assume

abrasive particles as sliding conical indenters plastically deforming the workpiece surface.

Again for this case, the problem is that of a moving semi-infinite body (workpiece surface)

over which stationary heat source (abrasive-workpiece surface contact) acts. The maximum

flash temperature rise at the contact in this case is given as:

∆Tmax =
µHV a

k2

(
1 +

k1

2k2

√
π(Pe1 + 1.273)

)−1

(3.5)

The calculated sliding temperatures for this configuration are slightly larger than those in

the earlier configuration where abrasive was taken as a semi-infinite plane (Figure 3.5). The

difference between temperature estimates for these two configurations is within 20% (at a

contact radius of ∼40 µm) for the contact areas considered here. In both the configurations,

for ∼ 30% of the sliding contacts, maximum flash temperatures are above the dynamic re-

crystallization temperature of the alloy (∼ 700 K). Similar calculations for Ta2O5 showed

the flash temperature to be in the range of 750 K. In this case, the average radius of the

asperity–abrasive contact area was inferred from Figure 3.7 as ∼ 15 µm. V was taken as 5

m/s, as for Ti-6Al-4V polishing. Again the calculated flash temperatures at the asperity–

abrasive contacts are high enough, ∼ 0.4Tm, where viscous-like flow may be expected.

Figure 3.7: Scanning electron micrographs showing surface morphological changes in Ta2O5:
(a) before and (b) after polishing.
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From Figure 3.6, we note that the calculated flash temperatures for ∼ 30% of the sliding

contacts were above 700 K. While these temperatures are well below the melting temperature

(Tm = 1925 K) of Ti-6Al-4V, they are in the typical dynamic recrystallization temperature

range (700−900 K) for this alloy where significant flow softening occurs [94]. At such temper-

atures, rate-dependent viscous plastic flow is not uncommon in metals [16]. Recent studies

[122] show that the flow softening is primarily caused due to the formation of dynamically

recrystallized nanograins with very low dislocation density within the shear bands. Simi-

lar fluid-like flow phenomenon in metals have been also noted previously in other sliding

configurations [138] and shear bands [123].

3.2.3 Microstructural analysis

SEM analysis of the microstructure further supports the predictions that flash temper-

atures above 700 K are possible. In comparison to the as-fabricated microstructure (see

Figure 2.2(d)), we observe regions with significant coarsening of the β phase on the polished

surface (Figure 3.8(a)). β phase with an average width of 0.7 µm was observed along with a

significant decrease in the volume fraction of α phase from ∼ 90% before polishing to ∼ 60%

after polishing. This is also evident from the distribution of the widths of β phase before and

after polishing as shown in Figures 3.8(c&d). This transformation is likely due to the high

flash temperatures in the range of 700−900 K during polishing, coupled with extremely high

cooling rates (∼ 106 K/s) as estimated from the moving heat source model. Additionally,

such high flash temperatures can cause migration of β colony boundaries resulting in coars-

ening of the β phase as noted in Figure 3.8(a). Furthermore, polished surfaces are also often

characterized by regions of very coarse β phase, a fact that is consistent with the stochastic

nature of asperity-abrasive interactions where flash temperatures may last from less than 10

µs to several seconds (due to repeated rubbing) [86].

Widening of the β phase is further confirmed by the X-ray diffraction of the polished

surface as shown in Figure 3.8(e). Higher concentration of β phase is evident in the XRD
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Figure 3.8: Microstructural characterization of the polished surface. (a-b) SEM images show-
ing extreme coarsening at scattered locations (see arrow in (a)) and overall widening of the
β phase (≥ 3 µm average width). (c) and (d) show the width distribution of the β phase
before and after polishing, respectively. (e) XRD profile of the surface in as-fabricated (top,
green) and polished (bottom, red) condition.

profile of the polished surface as compared to the as-built sample. It has also been shown in

[69] that the emergence of β phase in XRD profile was observed when the sample was heated

in the range of ∼ 1200 K. The microstructure evolution observed in the polished samples sug-

gests that the work hardening (as a consequence of dislocation generation) during polishing

is likely to be accompanied by some dislocation annihilation mechanism, akin to annealing

at high temperatures. Given the flash temperatures at the asperity-abrasive contacts are in

the range of ∼ 0.4Tm, dynamic recrystallization/recovery may be the dominant mechanism

in this regard. An important consequence of repeated surface plastic flow is the refinement
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of α lamellae at the surface and the associated increase in the strength. Indeed, hardness

measurements (Vickers indentation, load 500 g) showed the surface to be characterized by a

higher hardness (375 kg/mm2) compared to the base material (350 kg/mm2).

3.2.4 Microscopic view of the plastic flow

Plastic deformation in metals and alloys generally takes place via an interplay between

generation, motion, and annihilation of dislocations [143]. Given the stochastic nature of the

polishing process, many of these deformation mechanisms may co-exist. In this section, we

utilize our estimates of temperature coupled with the order-of-magnitude analysis of typical

strain rates and stresses to identify the dominant mechanisms underlying the plastic flow

during the polishing process.

Given the surface plastic strains [127] in polishing are well above 1, at a polishing speed

of 5 m/s, the strain rate (γ̇) should be of the order of 103 − 105 s−1. At such high strain

rates and typical flash temperatures of about 900 K, the dislocations motion should be drag

controlled, with the drag on the mobile dislocations primarily arising from phonon interac-

tions [124]. For example, in phonon-limited dislocation glide the strain rate is proportional

to ρmσs/B where σs is the applied stress, ρm is the mobile dislocation density (≈ 1015− 1017

m−2 for heavily deformed metals) and B is the phonon viscosity drag coefficient (≈ 10−5

Pa·s) [100]. Considering an average applied stress of 100 MPa, the estimated strain rate under

the phonon limited glide is about 104 s−1, which is within the expected range of strain rate.

A similar analysis for diffusion-based mechanisms (e.g., lattice or grain boundary diffusion)

reveals that these mechanisms are likely to be minor contributors to the flow at strain rates

and temperatures relevant to polishing. However, at flash temperatures exceeding 1200 K,

dislocation motion via climb as well as grain boundary sliding (GBS) are the plausible sec-

ondary mechanisms that could contribute to the plastic flow. Recent studies have shown that

GBS can also accommodate some other deformation modes, including grain rotation [147]

and twinning [146]. Delineation of the individual contributions of these various mechanisms

to to the overall plastic flow in polishing is a challenging task that remains to be tested.
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3.3 Discussion

The foregoing observations of surface morphology suggest that material redistribution is

the dominant mechanism of polishing as opposed to material removal, especially for extremely

rough surfaces that are peculiar to conventionally adopted additive manufacturing processes

(layer by layer deposition of metal powder). Analytical investigations of asperity-abrasive

flash temperatures as well as the microstructural evolution (widening of the β phase) suggest

that the formation of thin fluid-like viscous layers is driven by the occurrence of high flash

temperatures in the range of 700− 900 K.

3.3.1 Mechanism of polishing and generality of the observations

It may be noted that our observations of surface plastic flow and material redistribution

presented in this work are somewhat contrary to the conventional theories of polishing, orig-

inally advocated by Hooke, Newton [108], Herschel [15] and Rayleigh [40], viewing polishing

essentially as an abrasion or a grinding process at a very fine scale. Here, surface irregular-

ities were believed to be removed by cutting action of the abrasives. Studies presented by

Samuels and Aghan [5, 127] showed that polishing and abrasion are phenomenologically the

same process and differed only in the degree of material removal. Direct observations of the

polished copper surfaces under SEM demonstrated the formation of micro-chips that estab-

lished cutting and ploughing as the dominant mechanisms of surface smoothening [155]. The

study also established that the molecular material removal theory proposed by Rabinowicz

[119] is highly unlikely to occur.

Interestingly, however, our observations point to an alternate surface flow and material

redistribution theory of polishing proposed by Beilby and Bowden [24]. However, several

important distinctions are noted with respect to this theory. First, no evidence for surface

melting or amorphization was noted in contrast to the original hypotheses [24, 30], although

the microscopy observations of the surface flow profiles, together with the temperature cal-

culations of the asperity-abrasive sliding contacts, strongly suggest the occurrence of viscous
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flow. Second, as demonstrated in Figure 3.1, the material redistribution is facilitated by the

material flow as thin layers (1− 10 µm) that make self-contact with the asperity sides. This

is again at variance with the original ideas where the surface valleys are believed to be filled

purely via compression (and lateral flow) of the asperities. Lastly, bridging among asperi-

ties is seen to be an important mechanism by which neighboring asperities merge to form a

smooth surface network.

We note that the material properties, as well as the starting asperity structure obtained

via AM (that was not feasible in the previous studies), may play a key role in determining

the dominant mechanism in polishing. For example, the low thermal diffusivity of Ti-6Al-4V

(≈ 3.6 × 10−6 m2/s) undoubtedly contributes to the high temperatures localized near the

asperity-abrasive interface, causing sufficient softening and material flow. We believe that

it is the lack of controlled starting asperity structure (to track unit plastic flow events)

and the limitations on the microscopic power that contributed to the dismissal of Beilby’s

surface flow theory [127]. While other factors such as down force and the polishing speed

could also influence the findings presented in the chapter, e.g., flash temperature rise and

the subsequent viscous flow, the values chosen for polishing load and speed in our study

are representative of most metallographic polishing processes [127]. Among others, such as

lubricants only control the nominal surface temperature rise and has been shown to have

negligible effect on the local flash temperatures [141].

Nonetheless, we believe that the current findings are likely to be more generic to the

polishing of a range of other material systems. Similar observations in oxide materials have

been noted [78]. While these observations are at first surprising given their inherent brittle

behavior, can be explained by the high asperity-abrasive contact pressures that typically

exceed the work piece material’s hardness. It is well known that such high pressures can, in

turn, promote plastic flow even in highly brittle materials [35]. Additionally, the asperity-

abrasive contact temperature calculations for polishing of Ta2O5 (see Figure 3.7)showed that

the flash temperatures can be a significant fraction (∼ 0.4Tm) of its melting temperature,
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which could potentially enhance the propensity for viscous-type flow at asperity surfaces.

Nonetheless, understanding the mechanism behind such flows require further studies and still

remains an open problem. Besides polishing, our observations are also of relevance to a range

of other engineering and physical systems where micro-scale asperity contacts, characterized

by high pressures, are of intrinsic interest, e.g., tribological systems, erosion, and earthquakes.

3.4 Summary and conclusions

The physics by which rough surfaces are smoothened during polishing has remained

a controversial topic because of the inherent complexity and the stochastic nature of the

process. The speculations on the exact phenomenology of the polishing process, therefore,

have largely been based on the postmortem analysis of the polished surfaces. However, no

conclusive evidence exists till now to support either the surface flow or the fine scale abrasion

(material removal) theory.

In this chapter, we have presented experimental characterization, thermal and microstruc-

tural studies to settle this paradox by gathering direct evidence of basic flow events through

which surface morphological changes occur in polishing. Using a carefully designed (spheri-

cal) asperity structure, we analyze the deformation state of the asperities after every 90 s of

the polishing process using scanning electron microscopy. Towards this end, we present ob-

servations that not only provide conclusive evidence for the general Beilby–Bowden’s surface

flow picture, but also bring out new phenomenology of polishing pertaining to viscous flow

at asperity-abrasive contacts, self-contact of flown layers with the asperity sides, and sub-

sequent bridging among these layers that closely resembles evolution of a complex network.

Subsequently, the stochastic circular moving heat source model as well as the microstruc-

tural observations suggest that the formation of viscous thin-fluid like layers is driven by

the occurrence of high flash temperatures of the order of 700-900 K that are in the range of

dynamic recrystallization temperature of the material system (Ti-6Al-4V) considered in this

study. These results altogether establish an alternative mechanism of surface smoothening

that is mediated by viscous flow and redistribution of surface asperities and contradicts the
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widely adapted fine scale abrasion and chip formation theory.

The experimental observations have also allowed us to quantitatively capture the evo-

lution of surface morphology during the polishing process using a random planar graph

theoretic approach. Results suggest that the spectral characteristic (λ2) of the planar graph

is a better quantifier of the surface morphology and an efficient estimator of the process

endpoint as compared to the average surface roughness, particularly in the case of rough

metal surfaces. These results are significant as accurate predictions of process endpoints and

surface morphological modeling are becoming crucial in the additive manufacturing indus-

try where post-processing efforts account for over 25% increase in the production costs and

17-100% increase in the cycle times [39].

The new perspective on surface plastic flow and bridging phenomena presented in this

work creates opportunities to exploit the viscous flow behavior of polishing to tailor the

mechanical properties along with controlling the surface roughness and porosity. From an

analytical perspective, these observations can also help in developing models that can ac-

curately predict the surface morphologies at different polishing stages by accounting for

material redistribution rate along with the material removal.
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4. PHYSICS-BASED RANDOM PLANAR GRAPH REPRESENTATION OF

SURFACE MORPHOLOGY ∗

Robust and accurate representations of surface morphological evolution during the post-

processing, especially surface finishing of additively manufactured components are imperative

to ensure effective monitoring and control strategies. Due to the lack of robust surface rep-

resentations, current methods of surface quality inspection tend to be mostly manual and

account for 20-70% of the cycle time in part production. In light of this, this chapter presents

a physics-based random planar graph approach that is based on tracking the surface mor-

phology at different finishing stages via in situ images. To ensure a statistically consistent

representation, we consider the surface morphology—consisting of undulations or asperities

to be a random field that evolves during the surface finishing process. As the finishing pro-

gresses, the asperities, considered as nodes deform and merge with the neighboring asperities

resulting in a smooth surface. To complete the network formulation, we estimate the edge

weights as the probability of neighboring asperities to merge. At every stage of the finishing

process, we employ a Bayesian transformed Gaussian model to predict the increase in the

radius of the asperities followed by a copula model to estimate the probability that a pair of

neighboring asperities would merge. We show that tracking the second smallest eigenvalue

of the resulting network (also known as Fiedler value) offers a robust approach to monitor

the surface morphology. We also discuss the relevance of the Fiedler value to the physics of

the polishing process and associate these results with the endpoint in polishing.

4.1 Introduction

Advances in image-based monitoring offer an interesting opportunity to track the physical

as well as chemical transformations taking place at every conceivable resolution-of-interest

∗Reprinted with permission from S. T. S. Bukkapatnam, A. S. Iquebal, and S. R. T. Kumara, “Planar
random graph representations of spatiotemporal surface morphology: Application to finishing of 3D printed
components,” CIRP Annals, vol. 67, no. 1, pp. 495–498, Copyright 2018 Elsevier
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([56]). While image data have been used for process characterization such as defect iden-

tification ([76, 37]) and process control ([101, 72]), quantification and subsequent endpoint

detection, i.e., deciding when a product/process has reached its specified quality levels re-

main limited ([120]). Effective quantification of the process evolution is the sine qua non to

enabling automated decision making in advanced manufacturing processes. Examples include

quantification of the surface morphology as surface irregularities are smoothed out during

a mechanical polishing process ([120, 39]), growth/agglomeration of nanoparticles to reach

certain size distribution ([118]), deterioration of the machine tool during machining, etc.

Image-based monitoring and quantification of process evolution are hampered due to

the lack of a consistent and robust representation scheme to capture the morphological

changes from the images. A majority of the existing works have focused on tracking the image

features by using profile monitoring techniques. For instance, images may be transformed into

linear profiles using Q-Q plots that can be subsequently monitored using profile monitoring

approaches ([145, 101]). Other commonly employed methods include Fourier and wavelet

transforms that utilize the frequency characteristics ([136, 81, 82]), fractal dimensions ([38]),

functional representations ([164]), etc.

Since these methods are based on tracking the salient descriptors (e.g., size and shape

of pores ([101])), they require an “in-control” distribution of the descriptors. Consequently,

these approaches have focused largely on monitoring defects or anomalies from image data

streams ([37, 72]), and not necessarily on quantifying the process evolution where the de-

scriptors may evolve over time. Only a handful of methods have been developed in the past

to deal with the issue of efficient representation schemes to capture the process evolution.

For example, [120] developed a graph-theoretic approach to represent the surface morphol-

ogy variations by using pixel intensities, [133] proposed a point set representation to capture

the geometric features of various objects (such as nanoparticles) identified in the microscopic

images, [113, 112] used a time-varying radius function to track the growth of nanoparticles.

Although these approaches present interesting insights into the process evolution, they only
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exploit the image characteristics without considering the physics of the process. As a result,

these approaches merely provide an empirical snapshot of the underlying process and may

not offer an efficient representation scheme to capture the process evolution.

Moreover, representations that are derived empirically from images may be extremely

limited because (a) images capture only small snapshots in time and space and (b) complex,

seemingly irregular, evolution patterns do not lend themselves to conventional statistical

descriptions. These evolution patterns are also influenced by the phase and chemical trans-

formation phenomena, which are inherently stochastic. Consequently, robust representation

and quantification of the spatiotemporal evolution in the surface morphologies and connect-

ing these with the underlying process physics and the endpoint detection remain open issues.

From a statistical standpoint, these images may be viewed as realizations from a random field

evolving over time. Since the images capture the snapshots into the physics of the underlying

real-world processes, the corresponding random fields are noticeably non-Gaussian (e.g., see

[70]). Gaussian or Gaussian-like random field assumptions may therefore not capture the

dynamics of the underlying physics of the process. Moreover, ad-hoc transformations of the

random field (e.g., log-transform) have been shown to induce bias and underestimate the

prediction uncertainty ([53]). Another important challenge that arises when working with a

non-Gaussian random field is specifying the joint behavior of the random variables ([37]).

Without assuming any specific covariance structure, directly estimating the joint distribu-

tion remains a non-trivial problem. More recently, [39] presented a random planar graph

representation to capture the evolution in surface morphology during a mechanical polishing

process. However, the representation was empirically derived without considering the under-

lying correlation structure and the joint distribution of the surface morphological features.

In this work, we are concerned with utilizing the physics of the process to develop a robust

and accurate representation of the process evolution, thereby enabling quantification and

endpoint detection. We consider the case of surface morphology evolution during mechanical

polishing processes and the underlying physics ([78]) to develop a random planar graph
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representation of the spatiotemporal evolution in the surface morphology. The evolution in

the surface morphology during the polishing process is reminiscent of an evolving planar

graph where the undulations in the surface, also known as particles (or nodes in the graph)

bridge with neighboring undulations to form a flat, smooth surface (see [78] for details). In

light of this, we show that the surface morphology at any time t is essentially a realization of

a (non-Gaussian) random field over the particles. However, owing to the stochastic nature of

the polishing process ([159]), only limited information about the state of this random field is

available through in situ images. We first employ a Bayesian transformed Gaussian (BTG)

model to predict the missing information in the random field. Subsequently, we develop

a copula-based model to construct a planar graph representation over the random field

representing the surface morphology. In the sequel, we show that the spectral characteristics

of the resulting graphs, specifically the second smallest eigenvalue (λ2) serve as improved

quantifiers to capture the progression of the polishing process. We also discuss the relevance

of the λ2 value to the physics of the polishing process and associate these results with the

endpoint in polishing. Finally, we establish the sensitivity of λ2 in capturing the evolution

in the surface morphology as well as the effect of node density lying near the boundary of

the image.

The remainder of this chapter is organized as follows: Section 4.2 presents the random

planar graph representation and shows how this representation captures the evolution of

manufacturing processes as gathered by images. Subsequently, in Sections 4.2.1-4.2.3, we

elaborate on the random field view of the morphological variations followed by the Bayesian

transformed Gaussian model and a physics-based copula approach for random planar graph

representation. In Section 4.3, we discuss the spectral characterization of resulting graphs.

Section 4.4 presents the application of the proposed methodology on the sequence of images

obtained during polishing along with sensitivity analysis. Concluding remarks are presented

in Section 4.5.
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4.2 Planar graph representation

In this study, a sequence of mechanical polishing and imaging steps were executed to

record the surface morphological evolution of an additively manufactured (AM) Ti-6Al-4V

workpiece (see [78] for details on the polishing process). Figure 4.1(a) shows a representative

progression of the surface morphology as recorded by a scanning electron microscope (SEM)

during multiple polishing stages. Note that the successive images presented in Figure 4.1(a)

are longitudinal, i.e., repeated measurements at the same location at different points in time.

From a process standpoint, surface smoothening during polishing occurs as a result of

redistribution of material from the particle tops to the neighboring depressions (see Fig-

ures. 4.1(b)&(c)). This redistribution of the material results in an effective increase in the

diameter of the particles, gradually filling the depressions on the surface as depicted in Fig-

ure 4.1(c). The particle diameter continues to increase until the neighboring particles bridge

(or merge), resulting in the formation of a smooth interconnected flat surface ([78]). This pro-

gressive bridging of the neighboring particles motivates a graph-based representation of the

surface morphology where the particles represent the nodes and the edges connecting these

nodes capture the probability that a pair of neighboring particles would be bridged after a

particular polishing stage. Such a merger or clustering of elementary particles is quite com-

mon and has been an active area of research, e.g., diffusion and self-assembly of nanoparticles

([118]), microstructure and defect evolution( [68]). In the following, we present an approach

for a random planar graph representation of the SEM images gathered during the polishing

process. But first, we begin with a statistical description of the surface morphology.

4.2.1 Surface morphology as random fields

Statistically speaking, it is convenient to represent the surface morphology as a random

field {r(t, x), t ∈ R+, x ∼ P(µ)} over the particles where P(µ) denotes a Poisson process

in R2 such that r(t) = (r(t, x1), r(t, x2), . . . , r(t, xn)) is a single realization of this random

field denoting the particle radii observed at time t and locations x1, x2, . . . , xn. Since the
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Figure 4.1: (a) Representative progression of surface morphology during polishing with t = 0 s
showing the initial surface morphology and t = 450 s as the final surface morphology. (b)
Isometric view of the particle morphology at t = 0 s and t = 90 s (c) schematic showing the
increase in the diameter of the particles from time t1 to t2.

particles are randomly dispersed on a two-dimensional surface during the fabrication process

(i.e., while powder deposition in AM), it is reasonable to consider that xi’s are drawn from

a Poisson process P(µ) with some parameter µ ([54]).

During the polishing process, the surface morphology evolves via an increase in the

particle radius, and the evolution in the neighboring particles show similar, often cor-

related behavior. Let us denote the increase in the particle radius by δr(t, x) such that

δr(t) = (δr(t, x1), δr(t, x2), . . . , δr(t, xn)) is the increase in particle radius observed at time

t. Since the exact specification of the joint distribution of δr(t, xi)’s is not feasible, we con-

sider that the values of δr(t, xi) are drawn from some unknown marginal distribution Fi(.),

generally non-Gaussian. A highly right-skewed distribution for δr(t, xi) is more appropriate

because at any given time instant, only a limited number of particles are engaged with the

abrasives and undergo material redistribution. These are the particles that lie near the tail

of the particle height distribution (see [70] for example).
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Figure 4.2: (a) Embedding a planar graph using disks (b) Attempt at embedding non-planar
graph using disks.

4.2.2 From images to graph representation

The polishing process can be thought of as a transfer function that modifies the random

field r(t, x) over time via material redistribution and bridging. In essence, the phenomena

of bridging of the neighboring particles represent an evolving random planar graph G(t) =

(V,E(t)) where the nodes V represent the particles and the edge weights E(t) denote the

propensity of a pair of neighboring particles (nodes) to bridge over time. As observed from

the in situ electron micrographs (see Figure 4.1(a), the evolving morphological features (here,

the particle morphology) are embedded in a two-dimensional plane. To ensure that the graph

representation is consistent with the planar disposition of the surface features, we subscribe

to the following planar graph representation in this study.

Definition 1. A graph G = (V,E) with nodes V and edge weights connecting any pair of

nodes denoted by E is planar if it can be drawn in a plane without edges intersecting.

This formal representation allows for the description of morphological features, including

particles as circles in a plane and the edge weights E(t) capture the probability of a pair of

neighboring particles to bridge. An example of the planar graph is presented in Figure 4.2(a).

Note that the planar disposition of the graph contains circles that only intersect at the

boundary. In contrast, the graph in Figure 4.2(b) is non-planar as the planar embedding is

infeasible without circles v2 and v4 intersecting through circles v1 and v3.

Let Ni(t) denote some neighborhood of a node i, e.g., the set of its immediate neighbors.
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Then the probability eij(t) ∈ E(t) of node i to bridge with its neighboring node j ∈ Ni(t)

can be expressed as:

eij(t) = P (δr(t, xi) + δr(t, xj) > ∆rij(t− 1)|∆r(t−1)
ij , ω1(t− 1), . . . , ωm(t− 1)) (4.1)

where ∆rij(t − 1) is the inter-particle distance recorded instantly before time t − 1 and

ω1(t− 1), ω2(t− 1), . . . , ωm(t− 1) represent the parameters concerning the thermomechanics

of the polishing process for instance friction, temperature [71]. In other words, two neigh-

boring particles i and j will be considered bridged at time t, if the increase in the radius of

the particles i and j when polished from time t − 1 to t is greater than the inter-particle

distance at time t−1 given the thermomechanical properties recorded at time t−1. However,

given the length scales at which polishing happens, it is difficult to measure such properties

experimentally. In the absence of these measurements, we directly estimate the probabilities

by using a data driven approach. To estimate the probability eij(t), we need to estimate the

joint distribution function of δr(t, xi) and δr(t, xj). However, the δr(t, xi) values are known

only at limited locations and it is non-trivial to estimate δr(t, xi),∀i = 1, 2, . . . , n directly

from the images. This is a common problem in several physical processes where estimating

the state change (δr(t, xi)) requires performing costly experimentation. In the following, we

first refer to a Bayesian transformed Gaussian (BTG) model to predict the state change, i.e.,

δr(t, xi) and then present a copula model to estimate the joint distribution of δr(t, xj)’s.

Recall that δr(t, xi) is the increase in the particle radius value at time t. If the increase

in the particle radius i and j is larger than the inter-particle distance (∆rij(t− 1)), the two

particles are merged and form a flat surface locally. This is reflected in the SEM images in

the form of “almost constant” pixel intensity as we traverse from the center of one particle

to the other. We estimate the increase in the radius of these bridged particles, say i and

j, as one-half of the total inter-particle distance ∆r
(t−1)
ij as measured in the previous stage.

The assumption is reasonable as the polishing process is omni-directional ([78]). We refer to

40



these locations as the “known” locations.

A natural approach to predict the increase in the particle radius at the remaining “miss-

ing” locations in the random field is to employ kriging. However, as mentioned in the forego-

ing, the random field in most physical processes are non-Gaussian. Although several nonlin-

ear transformations exist in the literature, any particular transformation function may not

always hold, especially during various stages of the polishing process. Under such circum-

stances, kriging would significantly underestimate the prediction uncertainty. To avoid such

issues, we employ a Bayesian transformed Gaussian model as proposed by [53]. Under the

BTG model, we assume that there exists some transformation G = {gκ(.) : κ ∈ κ} that be-

longs to a parametric family such that the transformed field {ρ(t, x) = gκ(r(t, x)), x ∼ P(µ)}

is approximately Gaussian. Here, gκ(.) ∈ G is a nonlinear monotone transformation that is

first order differentiable and continuous in κ × R. The assumption is quite reasonable for

unimodal skew distributions as noted in [125]. In the following, we refer to this transformed

random field as gκ-Gaussian random field.

The problem of predicting unknown the δr(t, xi) in R2 is essentially a spatial predic-

tion problem. Referring to our previous notation, δr(t) = (δr(t, x1), δr(t, x2), . . . , δr(t, xn))

denotes a single realization of the random field representing the increase in the particle

radius at known locations x1, x2, . . . , xn ∼ P(µ) at time t. Our objective is to employ

δr(t) and predict the increase in the radius values at unobserved locations. Let δr0(t) =

(δr(t, x01), δr(t, x02), . . . , δr(t, x0k)) denote a random vector where x01, x02, . . . , x0k ∼ P(µ)

are the unobserved locations in the random field. Given the transformation G, we have

(gκ(δr0(t)), gκ(δr(t))) ∼ Nk+n


X0(t)β

X(t)β

 ,
1

τ

Eϑ(t) Bϑ(t)

B′ϑ(t) Σϑ(t)


 (4.2)

for some parameter κ ∈ κ, covariance parameters ϑ and precision of the gκ-Gaussian random

field τ−1 = Var(ρ(t, x)). X(t) and X0(t) are the design matrices comprising of particle loca-

tions, x ∈ R2 and radii r(t, x), β = (β1, β2, . . . , βp) are the unknown regression parameters
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and Eϑ(t),Bϑ(t) and Σϑ(t) are the k × k, k × n and n × n correlation matrices given as:

Eϑ,ij(t) = Kϑ(||x0i − x0j||),Bϑ,ij(t) = Kϑ(||x0i − xj||), and Σϑ,ij(t) = Kϑ(||xi − xj||). Here,

Kϑ(·) is the covariance function.

Note that the transformation parameter κ directly affects the inference of the model

parameters (β, τ,ϑ). To capture the dependence between κ and the model parameters, [53]

proposed the following prior for the unknown parameters,

p(β, τ,ϑ, κ) ∝ p(ϑ)p(κ)

τJ
p/n
κ

(4.3)

where p(ϑ) and p(κ) are the prior marginals of ϑ and κ, and Jκ is the Jacobian of the

transformation. The use of Jacobian in the denominator is argued by [31] as follows: since

gκ belongs to a family of smooth functions any transformation gκ(.) may be represented as

a linear function of a reference transformation gκ1(.), i.e.,

gκ(r(t, x)) ' aκ + lκgκ1(r(t, x)) (4.4)

where κ1 is some reference value of κ. Therefore, the choice of the prior for which κ and κ1

are consistent with Equation (5.3) is v(κ) = l−pκ . A pragmatic choice of lκ was suggested by

[31] as lκ = J
p/n
κ .

Finally, to make conditional inference about δr0(t), we refer to the posterior predictive

density using a fully Bayesian approach as:

p(δr0(t)|δr(t)) =

∫
p(δr0(t)|δr(t),β, τ,ϑ, κ)p(β, τ,ϑ, κ|δr(t))dϑdκ (4.5)

where p(δr0(t)|δr(t),β, τ,ϑ, κ) is the likelihood of the unobserved data r0(t) given the pa-

rameters and the observed data. The likelihood may be obtained analytically since from

Equation (5.2), we know that gκ(r0(t)) ∼ Nk(Mϑ,κ, τ
−1Dϑ) where Mϑ,κ = BϑΣ−1gκ(δr(t))+

Hϑβ, Dϑ = Eϑ−BϑΣ−1
ϑ B′ϑ, and Hϑ = X0−BϑΣ−1

ϑ X. Marginalizing over β and τ , we note
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that (gκ(δr0(t))|δr(t),ϑ, κ) ∼ T (n− p,mϑ,κ, qϑ,κCϑ), a t-distribution with n− p degrees of

freedom, location parameter vector mϑ,κ given as

mϑ,κ = BϑΣ−1gκ(δr(t)) + Hϑβ̂ϑ,κ

and the scale matrix qϑCϑ is given as,

Cϑ = Dϑ + Hϑ(X′Σ−1
ϑ X)−1H′ϑ

To determine the estimates of δr0(t), we decide to work with Mateŕn covariance function,

especially because it offers more flexibility in terms of modeling the covariance matrix. The

Monte Carlo algorithm to sample from the posterior predictive distribution is as follows:

1. Define and discretize an interval over which the predictive density of δr0(t) is to be

defined.

2. Generate ϑ1,ϑ2, . . . ,ϑm and κ1, κ2, . . . , κm independently and identically from p(ϑ) and

p(κ), respectively

3. Approximate the posterior predictive density of δr0(t, x) as:

p̂(δr0(t, x)|δr(t, x)) =
m∑
i=1

p(δr0(t, x)|δr(t, x),ϑi, κi)w(ϑi, κi) (4.6)

where

w(ϑi, κi) =
p(δr(t)|ϑi, κi)∑m
j=1 δr(t)|ϑj , κj)

Please refer to [66] for results on the consistency of the posterior predictive density estimator

in Equation (4.6). As suggested in [53], we use the median of the predictive density function

as the predictor of δr(t, x) and not the mean. This is because the mean may not be defined

for all transformations, e.g., the posterior density p(δr0(t, x)|δr(t, x),ϑi, κi) of a class of

Box-Cox family of transformation is log t for which mean does not exist.
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4.2.3 Copula for joint probability estimation

As noted in the foregoing, r(t, x) is a gκ−Gaussian random field, i.e.,

gκ(δr(t, x)) = m(x)β + e(x), e(x) ∼ N (0,Σ)

Here, the marginal distribution of the random field is characterized by the gκ−Gaussian ran-

dom field. Although the joint distribution of the random variables in the Gaussian random

field is jointly Gaussian, the gκ(.)−transformation could significantly change the covariance

structure and likely to induce asymmetry ([22, 53]). In such situations, copula-based ap-

proaches allow us to model the joint distribution of random variables δr(t, xi), i = 1, 2, . . . , n

by separately modeling the dependence structure and the marginals.

Copulas arise in a variety of scenarios when modeling the joint distribution of ran-

dom variables ([107]) and offer a simple, yet powerful approach to sample from the joint

distribution of random variables with known marginals. Specifically, a copula function

C = C(u1, u2, . . . , un) is a multivariate distribution defined on a unit hypercube with uniform

marginals, i.e.,

C(u1, u2, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un) (4.7)

where Ui ∼ uniform(0, 1), i = 1, 2, . . . , n. Given a vector of random variables denoted by

Z = {Z1, Z2, . . . , Zn} with joint distribution function F (z1, z2, . . . , zn) = P (Z1 ≤ z1, Z2 ≤

z2, . . . , Zn ≤ zn), then from the Sklar’s theorem [134], the copula associated with F is unique

and satisfies

F (z1, z2, . . . , zn) = C(F1(z1), . . . , Fn(zn)) (4.8)

where Fi, i = 1, 2, . . . , n are continuous marginal distributions. What we have realized here

is an n-dimensional copula that expresses the joint distribution of a multivariate distribution

in terms of its marginals only.

Over the years, several copula functions have been proposed depending on the dependence
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structure and the methods of constructing copulas, e.g., Archimedean copula for modeling

dependence in arbitrarily high dimensions ([83]). Generally, the copula function is modeled

parametrically with some recent works focusing on nonparametric modeling. In this work,

we restrict to bivariate parametric copulas and use an exact maximum likelihood (EML)

estimation approach to estimate the parameters of the copula model. Let X and Y denote

two continuous random variables with marginal density f(x) and g(y), respectively and

θ = [ψ, γ, η] denote the unknown parameter vector where ψ ∈ Ψ denotes the parameter(s)

of f(x), γ ∈ Γ denotes the parameter(s) of g(x), and η ∈ H denotes the parameter(s) of the

copula C(F (x), G(x)). Using copula decomposition of a joint distribution function, i.e.,

h(x, y|θ) = f(x|ψ) · g(y|γ) · c(F (x|ψ), G(y|γ)|η) (4.9)

the corresponding log-likelihood function is given as,

LXY =
N∑
i=1

log f(xi|ψ) +
N∑
i=1

log g(yi|γ) +
N∑
i=1

log c(F (xi|ψ), G(yi|γ)|δ) (4.10)

such that θ̂ is obtained by maximizing the log-likelihood function LXY . Subsequently, we

employ the Akaike Information Criterion (AIC) to select the best copula model. With the

best copula model at hand, we can draw samples from the joint distribution function and

estimate the probability of bridging as shown in Equation (5.2).

4.3 Quantification of surface morphology

In the foregoing sections, we looked at an approach for constructing planar graphs from

images. We now discuss an approach for quantifying the graph configuration and therefore

make inference on endpoint detection.

Spectra of planar graphs defined based on the eigenvalues and eigenvectors of E(t) and

functions thereof, exhibit interesting properties that reveal certain important graph charac-

teristics ([105]). Among these, the second smallest eigenvalue (λ2) of the normalized Lapla-
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cian L also known as Fiedler value has been extensively studied in the context of graph-based

image segmentation and partitioning problems ([132]) where the eigenvector associated with

λ2 allows for efficient graph partitioning. Formally, the normalized Laplacian L of the graph

G is given as, L = D−1/2 × L × D1/2 where L is the combinatorial Laplacian defined as

L = D−E where D is the diagonal matrix representing the degree of each node and is given

as,

D =

[∑n
j=1 e1j

∑n
j=1 e2j . . .

∑n
j=1 enj

]
(4.11)

Returning to the polishing process, we note that every particle j could only bridge with

only a limited number of particles that lie in its immediate neighborhood (Nj(t)). At any

polishing stage, λ2 quantifies how easily the graph could be partitioned into two disjoint

sets. As polishing progresses, more and more particles bridge, making it difficult to find

such a partition, and therefore, λ2 increases. The values of λ2, therefore, serve as a natural

quantifier to capture the evolution in the neighborhood structure and consequently the effects

of polishing on the surface morphology. For example, λ2 = 0 indicates the complete absence

of bridge formation; in contrast, larger values suggests a higher degree of bridging where

every node is connected to a certain number of other neighboring nodes. However, there is

a finite upper bound on the value of λ2 and is achieved when no more bridging between the

particles can occur. This is when the endpoint of the polishing process is achieved. What

remains now to establish is how much can the λ2 value increase during the polishing process.

As noted in the foregoing, each of the particles during the polishing process can bridge

only with a limited number of particles depending upon the packing density. For a surface

morphology as shown in Figure 4.5(a), it is pragmatic to assume a random loose packing

structure with packing density φrlp. Using φrlp, we study the relationship of the Fiedler value

with the corresponding connectivity structure as described in the foregoing. We first present

the following important result on the embedding of a planar graph in a Euclidean space and

its relation with the Fiedler value ([135]).
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Lemma 1. Let G = (V,E) be a planar graph. Then λ2 of the Laplacian is given by

λ2 = min
vi∈RN

∑
i,j∈E ||~vi − ~vj||2∑N

k=1 ||~vk||2
(4.12)

where {~v1, ~v2, . . . , ~vn} are the eigenvectors of the Laplacian such that
∑N

i=1 ~vi = ~0

Proof of the result can be found in [135]. The lemma relates the embedding of a graph in

the Euclidean plane with its Fiedler value. The next lemma discusses an approach to embed

the graph on a plane by using kissing disks–disks that intersects only at the boundary.

Lemma 2. Let G = (V,E) be a planar graph with N nodes. Then, there exists a set of disks,

say {D1, D2, . . . , DN}, in the plane with disjoint interiors such that Di and Dj touch if and

only if (i, j) ∈ E.

Such an embedding is also known as kissing disk embedding and was proposed by Koebe,

Andreev, and Thurston individually [12]. With this geometric embedding and with an ap-

propriate stereographic projection of disks on a unit sphere (see [135]), we first present an

existing result on the upper bound on λ2.

Theorem 1. Let G = (V,E) be a planar graph with N nodes of degree at most ∆. The

Fiedler value of G is at most 8∆/N .

The theorem provides an upper bound on the connectivity of individual nodes, i.e, ∆ for

a given value of λ2. The result uses the geometric embedding proposed by Koebe, Andreev,

and Thurston ([12]) followed by a stereographic projection of disks on a sphere. The embed-

ding, however, emphasizes only on maintaining tangency and not the packing density ([50]).

This suggests that as the packing density of disks (in the present case, metallic spheres)

decreases, the bound becomes loose. In fact, packing with low density is often encountered

when spherical particles are dispersed loosely as in during the sintering process in AM. This

motivates the need for a lower bound to accurately quantify the process of bridging during

polishing. Using the random loose packing density φrlp, we obtain the following result.
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Theorem 2. Let G = (V,E) be a planar graph with N nodes of degree at least δ. The Fiedler

value of G is at least 8φrlpδ/N .

Proof. From Theorem 4 and Lemma 3, there exists a stereographic projection of G on a unit

sphere using kissing caps–analogous to kissing disks–each with radii ri. Note that a cap is

essentially the intersection of the half space with the sphere. If cap i and cap j belong to the

kissing set, then ||~vi − ~vj||2 ≤ (ri + rj)
2 ≤ 2(ri + rj)

2 and therefore,

∑
i,j∈E

||~vi − ~vj||2 ≤ 2∆
N∑
i=1

r2
i (4.13)

Assuming that the caps do not intersect due to planarity of G and sphere preserving stere-

ographic projection,
N∑
i=1

r2
i ≤

1

π
[4π(1)2] (4.14)

Using Lemma 2, Equations (4.13), and (4.14), we have

∑
i,j∈E

||~vi − ~vj||2 ≤ 2∆
N∑
i=1

r2
i ≤

2∆

π
[4π(1)2]

=⇒ λ2 ≤
8∆

N

Assuming that the particle distribution follows a random loose packing structure with pack-

ing density φrlp, we have,

N∑
i=1

r2
i ≥ φrlp

1

π
[4π(1)2] =⇒ 2δ

N∑
i=1

r2
i = φrlp

2δ

π
[4π(1)2]

=⇒
∑

i,j∈E ||~vi − ~vj||2∑N
k=1 ||~vk||2

≥ φrlp
8δ

N
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Figure 4.3: (a) Particle locations for which the increase in radius is known (b) unknown
locations for prediction (c) prediction of the increase in particle radius as obtained using
BTG.

Combining the above two results, we have,

φrlp
8δ

N
< λ2 ≤

8∆

N
(4.15)

As bridging between the neighboring particles increases during polishing, the value of λ2

increases and is expected to stay within the bound specified in Equation (4.15). In addition

to this, we note from Theorem 4 that ∆ ≥ Nλ2/8. Given λ2, this inequality allows us to

lower bound the value of ∆, i.e., the maximum node density and will be employed in the

next section for endpoint detection.

4.4 Results

A representative sequence of images collected during various stages of the polishing pro-

cess is shown in the top row of Figure 4.5. The surface was imaged at five different times-

tamps, 0, 180, 270, 360, and 450 seconds during the polishing process. As time progresses,

bridging between particles results in local smoothening of the surface. These locations have

a darker gray pixel value. In contrast, light regions indicate unpolished areas or depressions.

To obtain the graph representation of these images, we first employ the BTG model to

estimate the increase in particle radius followed by the probability of bridging (i.e., eij(t))
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using the copula model. Figure 4.3(a) shows a representative example indicating the locations

where δr(t, x) is known. Unknown locations are marked in Figure 4.3(b). Prediction results

obtained from the BTG model at the unknown locations are shown in Figure 4.3(c). With

the estimates of δr(t, xi) available, we now invoke our copula model to determine the joint

distribution function of the δr(t, xi) and δr(t, xj) for some xi, xj ∈ P(µ) over the random

field δr(t, x).

In this regard, we determine the best fitting copula. We investigated 40 different families

of copula as provided by the VineCopula package in R ([129]) and employ the EML approach

to estimate the parameters of the copula model. Among different copulas, we note that

three different copulas were selected across all the polishing stages using AIC, namely Frank

copula, student t-copula, and BB8 copula. Except for the Frank copula which is a bivariate

single parameter copula, both student t-copula and BB8 copula are bivariate two-parameter

copulas. However, BB8 copula remains consistently either the best choice or has only slightly

higher AIC value as compared to the AIC values of Frank or student t-copula. To avoid

working with three different copulas, we only consider the BB8 copula. The functional form

of the BB8 copula is given as,

C(u, v|θ, η) =
1

η

(
1−

(
1− h(ηu)h(ηv)

h(η)

)1/θ
)

(4.16)

where h(t) = 1− (1− t)θ and θ ≥ 1, 0 ≤ η ≤ 1.

The simulated BB8 copula for a representative stage is shown in Figure 4.4 with param-

eter values θ = 5.06 and η = 0.48. We use a conditional distribution method to sample from

the copula described as follows. Let Cu(v) be the conditional distribution function of V given

U = u as,

Cu(v) = P (V ≤ v|U = u) = lim
∆u→0

C(u+ ∆u, v)− C(u, v)

∆u
=
∂C(u, v)

∂u
(4.17)

We now use the following steps to sample from the copula C(u, v),
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Figure 4.4: (a) Density function of the copula (b) observed and simulated data.

1. Generate two independently distributed uniform (0, 1) random numbers u and ζ.

2. Set v = C←u (ζ), where C←u (ζ) is the quasi-inverse of Cu(v)

3. The pair (u, v) is now a sample from the copula C(u, v)

From the density plot of the BB8 copula, we note that there is some degree of tail depen-

dence. This might emerge from the dynamics of the polishing process itself. During polishing,

if a particle is undergoing very little material redistribution (i.e., δrj is small), then it is highly

likely that particles in its neighborhood would also have very little material redistribution.

Similarly, if a particle is undergoing high material redistribution, its neighboring particles

would also exhibit high material redistribution.

We now return to our planar graph construction using Equation (5.1). Given the esti-

mates of the increase in the inter-particle radius as well as the joint distribution functions

of δr(t, xi), δr(t, xj), we estimate the probability eij(t) as stated in Equation (5.1). A rep-

resentative network configuration obtained using the eij(t) is shown in the bottom row of

Figure 4.5. As polishing ensues, the neighboring particles progressively bridge, resulting in

the formation of a smooth interconnected land of flat particles. This implies that the values

of the network edges eij(t) gradually increase, thereby increasing the connectivity among the

nodes of the network. We now utilize the graph characteristics to quantify the evolution in
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Figure 4.5: SEM images (top) and corresponding network representation (bottom) showing
the surface morphology during polishing.

surface morphology and develop strategies for endpoint detection.

The surface morphology pattern as well as the corresponding λ2 values presented in

Figure 4.5 suggest that as finishing ensues and the particle diameters grow, the propensity of

neighboring particles to bridge (i.e., eij(t)) progressively increases. Quantitatively speaking,

the initial value of λ2 ≈ 0.02 indicates little bridging (average number of bridges connecting a

node is < 1) as reflected in eij(t) being close to zero between almost all particles. Specifically,

the edges connecting the neighboring nodes are almost absent initially, and low probability

edges (red) connect only a sparse set of neighboring nodes. After 450 s of finishing, λ2

increases to approximately 0.15, suggesting a higher degree of bridging among all neighboring

particles, and high eij(t) values. Figure 4.6 shows the value of λ2 along with its theoretical

upper and lower bounds at different stages of the polishing process. The packing density φrlp

for estimating the bounds in this case study is estimated from the undeformed configuration

of particles as shown in Figure 4.5 (t = 0 s) for which is φrlp ≈ 0.40. Note that in the final

stages of polishing, the value of λ2 stabilizes. More specifically, λ450 s
2 ≈ 0.15 suggest that

the maximum node degree in the final stage of polishing is at least five (using the inequality

∆ ≥ Nλ2/8). This suggests that when polishing is done, each of the particles is expected to

be bridged by five or more particles. This is in accordance with the general understanding

52



Figure 4.6: Variation of λ2 values estimated from the micrographs and its comparison to the
theoretical upper and lower bounds.

of connectivity structure of metal spheres within a random loose packing structure.

4.4.1 Effect of graph size on the inferred node degree

When dealing with graphs and especially the connectivity structure of the nodes, it is

important to consider the impact of boundary nodes. Because of the planarity constraint, the

connectivity of boundary nodes may be significantly different from the rest of the nodes. To

address this, we take a look at the variation in the Fiedler value for different number of nodes.

Since the particles have minimum overlap, increasing the number of nodes means increasing

the area of scan. We consider four different cases with 32, 166, 255, and 327 (randomly

generated) nodes. For each of the cases, we use Equation (4.15) to estimate the value of ∆

Table 4.1: Effect of the number of nodes on ∆

# of nodes Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

32 0.015 0.177 0.8028 2.130 5.776
166 0.047 0.229 0.9341 2.719 7.148
255 0.096 0.128 0.1548 2.069 5.231
327 0.390 0.297 0.804 2.157 5.763

53



and is summarized in Table 5.1. We note that the value of ∆ is greater than 5 in all the

cases considered. This suggests that the inference presented in the previous subsection, i.e.,

each of the particle is connected to at least five other particles in its neighborhood, holds

irrespective of the size of the graph or the number of nodes considered.

4.4.2 Comparison with traditional surface quantifiers

Conventional quantifiers, such as average surface roughness (Sa) do not capture the evo-

lution of micropores and voids, especially towards the end stages of polishing. Here the Sa

values showed an almost negligible change of 0.37%, versus 63.8% change in λ2 value in the

last 90 seconds of the polishing process. From an endpoint detection standpoint, this means

that Sa values would not be representative of the polishing process, i.e., it might not capture

the surface quality improvements. In contrast, the λ2 value is sensitive to the neighborhood

structure i.e., the distance of neighboring particles (presence of porosity would result in

a non-zero distance) and consequently, the λ2 value would increase as long as the surface

roughness and porosity reduce.

4.4.3 Sensitivity analysis

As seen in the foregoing our approach is based on tracking the physical transformations in

particles. For a nanoparticle clustering problem, this may be individual nanoparticles. In such

a scenario, the inferences gathered from the graph construction may depend on the number

of particles identified in any image. Therefore, we test the sensitivity of the Fiedler value

when only a subset of the particles could be recorded by the image processing algorithm,

and therefore, comment on the robustness of our representation.

The nodes in the planar graph represent particles and removing a set of nodes would

create a physical depression on the surface, thereby leaving the surface only partially polished.

As a result, we only focus on removing a very limited number of particles that may be

missed by the image processing algorithm. We consider 5 different cases with less than 10%

nodes. For each case, we randomly remove x%, x ≤ 10 nodes and calculate the Fiedler
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Figure 4.7: Box-plot of the Fiedler value estimated at 20 different locations across all the
five polishing stages.

value for all the subsequent stages. For every case, we performed 30 replications to ensure

a stable estimate of the Fiedler value. The results are summarized in Figure 4.7. At each

of the five stages, we consider different cases of the percent of nodes removed in the order

of 1.8%, 3.4%, 5%, 6.8%, and 8.5%. In initial stages, the surface is mostly rough and still

consists of physically visible particles. From a graph standpoint, this means that there several

disconnected nodes. Removing a few nodes, therefore, has very little impact on the Fiedler

value. To check if all the five cases have equal means, we test the following hypothesis:

H0 : λ2(1) = λ2(2) = . . . = λ2(5)

H1 : λ2(i) 6= λ2(j) for at least one i and j
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where λ2(i) denotes the Fiedler value in case i. Using ANOVA, we note that for stages 1,

2, and 3, the p-value is equal to 0.177, 0.146, and 0.691 suggesting strong evidence in the

favor of the null hypothesis. However, as the surface gets into the final stages, i.e., 4 and 5,

we note the p-value is significantly smaller than 0.0001, indicating that the group means are

not the same. Since removing nodes essentially means removing particles from the surface,

this leaves physical depressions (or voids) on the surface rendering the surface unpolished.

Moreover, we note that the group mean decreases as more nodes are removed, indicating the

removing nodes render the graph “weakly” connected, i.e., unpolished.

Two important inferences can be drawn from the sensitivity analysis:

1. The representation is robust as long as the error in detecting the particles is within 5%.

Since the degree of overlap between the particles is minimal, any reasonably efficient

algorithm would detect the particles with less than 5% error ([113]).

2. The sensitivity of the representation increases after more than 5% of the particles are

removed, i.e., we note a significant drop in the Fiedler value. In comparison, methods

based on average estimates such as average surface roughness tend to be insensitive to

voids and depressions. This was also reported in some of the earlier studies e.g., [120].

This sensitivity of the Fiedler value demonstrates that it is able to capture the presence

of voids or depressions on the surface, indicating the need for further polishing.

4.5 Summary and conclusions

We present a physics-based random planar graph representation of the surface morpho-

logical evolution during the polishing process. Phenomenologically, surface morphologies are

realizations from a random field defined over the particles that gradually expand (in diam-

eter) until they make physical connections (i.e., bridge) with the neighboring particles. We

capture this process in the form of an evolving planar graph where particles represent the

nodes, and the probability of particles to bridge serves as the edge weight. To specify the

graph configuration, we employ a BTG model to predict the increase in the radius of the

particles followed by a copula model to estimate the probability of particles to bridge. Via
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theoretical bounds on λ2, we infer that during endpoint stages, each of the particle bridges

with at least five neighboring particles. We also present the sensitivity analysis of the Fiedler

value. Results show that Fiedler value is not sensitive if the number of missing particles is

less than 5% of the total number of particles present.
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5. CONSISTENT ESTIMATION OF THE MAX-FLOW PROBLEM: TOWARDS

UNSUPERVISED IMAGE SEGMENTATION

Advances in the image-based diagnostics of complex biological and manufacturing pro-

cesses have brought unsupervised image segmentation to the forefront of enabling automated,

on the fly decision making. However, most existing unsupervised segmentation approaches are

either computationally complex or require manual parameter selection (e.g., flow capacities in

max-flow/min-cut segmentation). In this work, we present a fully unsupervised segmentation

approach using a continuous max-flow formulation over the image domain while optimally

estimating the flow parameters from the image characteristics. More specifically, we show

that the maximum a posteriori estimate of the image labels can be formulated as a contin-

uous max-flow problem given the flow capacities are known. The flow capacities are then

iteratively obtained by employing a novel Markov random field prior over the image domain.

We present theoretical results to establish the posterior consistency of the flow capacities.

We compare the performance of our approach on two real-world case studies including brain

tumor image segmentation and defect identification in additively manufactured components

using electron microscopic images. Comparative results with several state-of-the-art super-

vised as well as unsupervised methods suggest that the present method performs statistically

similar to the supervised methods, but results in more than 90% improvement in the Dice

score when compared to the state-of-the-art unsupervised methods.

5.1 Introduction

The objective of image segmentation is to partition an image into semantically inter-

pretable and spatially coherent entities featuring similar characteristics, e.g., pixel intensities

and texture. Although, the history of image segmentation can be dated back to almost half

a century ago, recent advances in the image-based diagnostics of complex biological pro-

cesse, materials characterization, object tracking, etc. have brought image segmentation to
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the forefront of enabling automated, on the fly decision making.

A vast majority of the current image segmentation approaches are supervised, i.e., they

employ models that learn from previously labeled images to determine the partitions and/or

the ROIs in a given image. Their performance relies on the availability of a large collection

of labeled images, and at times, the expert knowledge [87]. With the growing database of

images from newer imaging technologies coupled with the increasing emphasis on on the

fly detection of novel (i.e., previously unseen) ROIs, and the sheer enormity of the efforts

needed to create a large pool of labels and atlases underscore the need for unsupervised

segmentation methods. To illustrate this need, let us consider the problem of tumor detec-

tion from magnetic resonance (MR) images. On average each event detection involves the

investigation of hundreds of slices that may vary significantly from patient to patient as

well as over time. In such cases, retraining becomes inevitable, especially when novelty cases

are encountered [99]. The spatial and temporal uncertainty in the morphology and location

of ROIs further complicate these challenges. In addition, many a time data collection it-

self is extremely costly, e.g., imaging microscopic defects and microstructure anomalies in

additively manufactured (AM) industrial components tend to be time intensive. Together

with cost and resource constraints, it becomes infeasible to gather big datasets for any given

material system and processing recipe [112].

Surprisingly, the literature on unsupervised segmentation is somewhat limited. The most

notable methods include normalized cuts that is based on spectral graph partitioning [132]

and its subsequent derivatives such as watershed-based normalized cut [158] and multi-

scale normalized cut [51], mean shift clustering using the neighborhood pixel information

[49], k-means clustering, expectation maximization and Markov random field-based methods

[165]. However, significant limitations exist, especially for the case of purely unsupervised

approaches in terms of computational complexity, e.g., exact minimization of normalized

cut is NP-complete [132], mean shift clustering requires manual specification of the kernel

function and bandwidth [106].
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Image segmentation approaches based on the energy minimization framework, partic-

ularly graph-based methods offer an elegant means to segment images without exten-

sive training. Essentially, they involve minimizing an energy functional of the form [65]

E = Edata + Esmooth where Edata accounts for the disagreement between the data samples,

i.e., observed pixels and the estimated labels, and Esmooth controls the smoothness of the

labeling function. Continuous max-flow/min-cut algorithm is an efficient optimization ap-

proach to minimize the energy functions in polynomial time [88]. However, the problem of

selecting the flow capacities prevents a fully unsupervised implementation. Most of the ex-

isting implementations of the continuous max-flow are either based on a priori selection of

the flow capacities [13] or require manual interventions [162].

In this work, we present an approach to consistently estimating the flow capacities of

a continuous max-flow/min-cut problem leading to fully unsupervised, fast image segmen-

tation. Our framework is based on iteratively estimating the image labels by solving the

max-flow problem while optimally estimating the flow capacities from the image character-

istics. More specifically, we first setup the segmentation problem as a maximum a posteriori

estimation (MAP) of the image labels and show that it is equivalent to solving the max-flow

problem given the flow capacities are known. By using the current optimum of the max-flow

problem, we subsequently estimate the flow capacities by employing a novel Markov random

field (MRF) prior over the flow capacities. In the sequel, we present theoretical results to

establish the posterior consistency of the flow capacities based on the MRF prior proposed in

this work. We implement our methodology on benchmark tumor datasets and a case study

on the segmentation of defects in AM components that are fabricated using different process-

ing recipes. An extensive comparison with state-of-the-art unsupervised algorithms suggests

more than 90% improvement in the average Dice score—a measure of the degree of overlap

between the estimated labels and the ground truth (see Equation (5.16)).
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Figure 5.1: (a) Graph representation of an image ω in a continuous domain. (b) A rep-
resentative example of segmentation of the image ω into subdomains ω1, . . . , ωk via graph
cut.

5.2 Image segmentation via graph cuts

In this section, we begin with the basic notion of graph cuts. Let ω be a continuous image

domain (e.g., see Figure 5.1(a)) and x be the sites (or pixels) in ω. The problem of image

segmentation can be formulated as partitioning ω into n disjoint subdomains ω1, ω2, . . . , ωn,

with corresponding labeling function given as,

λi(x) =


1 x ∈ ωi

0 x 6∈ ωi
(5.1)

The partitioning is performed such that the resulting subdomains minimize the following

energy functional [45],

min
λi(x)∈{0,1}

n∑
i=1

∫
ω

{λi(x)ρ(x, λi(x)) + C(x)|∇λi(x)|}dx (5.2)

where the first term ρ(x, λi(x)) is the cost of assigning the site x to the subdomain ωi

and is equivalent to the Edata term when summed over the domain ω. The second term is

the total variation (TV) regularization of λi(x),∀i ∈ {1, 2, . . . , n} where C(x) > 0 controls

the trade-off between the data term and the extent of regularization. TV regularization is

particularly useful because of its property to selectively penalize the oscillations due to noise
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while preserving the discontinuities at the edges (see [137] for a mathematical justification).

Note that the minimization function in Equation (5.2) is non-convex due to the binary

configuration of λi(x). To ensure tractability of the energy minimization function in Equa-

tion (5.2), we consider the convex relaxation of λi(x) = {0, 1} to the unit interval [0, 1] as

proposed by Chan et al. [45]. For simplification, we only consider the case of binary segmen-

tation such that n = 2, λ(x) = 1−λ1(x) = λ2(x) (since
∑n

i=1 λi(x) = 1), Cs(x) = ρ(x, λ1(x))

and Ct(x) = ρ(x, λ2(x)). Consequently, the energy minimization function for the case of

binary label configuration can be written as,

min
λ(x)∈[0,1]

∫
ω

(1− λ(x))Cs(x) + λ(x)Ct(x) + C(x)|∇λ(x)|dx (5.3)

Authors in [45] deduced that the optimal solution to Equation (5.2) can be obtained by

thresholding the solution of the resulting convex problem in Equation (5.3). However, the

numerical algorithms for this minimization problem still suffer from the non-differentiability

of the TV term (
∫
ω
|∇λ(x)|dx) [149]. To overcome this, we investigate the dual of the energy

function in Equation (5.3) and show that it is analogous to the continuous max-flow problem

studied in [161, 20].

5.3 Continuous max-flow formulation

In this section, we derive the dual of the energy function reported in Equation (5.3) and

subsequently show that the dual is a max-flow problem in a continuous domain. We first

consider the following results.

Lemma 3. Given λ(x) is an indicator function as given in Equation (5.1), it has bounded

variation in ω, i.e., there exists a function p(x) ∈ C1(ω) with compact support and |p(x)| ≤ 1

satisfying sup{
∫
ω
λ(x)divp(x)dx} <∞ such that,

∫
ω

λ(x)divp(x)dx = −
∫
ω

p(x) · ∇λ(x)dx
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Lemma 4. With p(x) defined as in Lemma 1, we have,

∫
ω

C(x)|∇λ(x)|dx = max
|p(x)|≤C(x)

∫
ω

λ(x)divp(x)dx

Next, we consider functions ps(x) ≤ Cs(x), pt(x) ≤ Ct(x) ∈ R such that we get the

following min-max equivalent of Equation (5.3),

min
λ(x)∈[0,1]

max
ps(x)≤Cs(x)
pt(x)≤Ct(x)
|p(x)|≤C(x)

∫
ω

(1− λ(x))ps(x) + λ(x)pt(x) + λ(x)div(p(x))dx

Note that the above min-max function is convex for fixed λ(x) and concave for fixed

ps(x), pt(x), and p(x) [163]. Via minimax theorem [32], we obtain the dual of Equation (5.3)

as,

max

∫
ω

ps(x)dx (5.4)

subject to ps(x) ≤ Cs(x), pt(x) ≤ Ct(x), |p(x)| ≤ C(x)

divp(x)− ps(x) + pt(x) = 0 ∀x ∈ ω

The resulting formulation is the continuous analog of the discrete max-flow problem, i.e.,

maximizing the total source flow ps(x) subject to the source, sink and spatial flow capacities

while satisfying the flow conservation principle.

To elaborate on the continuous max-flow problem, we begin by connecting each site x

to a source s and a sink t of infinite capacities. Each site in ω is then associated with three

different flow fields: the source flow ps(x) ∈ R, the sink flow pt(x) ∈ R, and the spatial flows

p(x) ∈ R2. Here, the source and the sink flow fields are directed from the source s to the site

x ∈ ω and from the site x to the sink t, respectively. This is shown schematically in Figure 5.2.

The spatial flow field is characterized by the undirected flow through x, thereby capturing

the strength of interaction with the neighborhood locations. Each of the source, sink and

63



spatial flows are constrained by their respective capacities represented as Cs(x), Ct(x) and

C(x).

Returning to Equation (5.4), we determine the maximum flow by writing the correspond-

ing augmented Lagrangian as,

L(ps, pt, p, λ(x)) =

∫
ω

ps(x) + λ(x)(div(p(x))−ps(x) + pt(x))dx−

c

2
||div(p(x))− ps(x) + pt(x)||2 (5.5)

where c > 0. See [161] for solving the augmented Lagrangian L(ps, pt, p, λ(x)) using the

projection gradient descent approach.

The intuition behind the max-flow segmentation can be drawn from the idea of finding

a cut with minimum capacity that will result in two disjoint partitions, one associated with

the source and other with the sink. Let us consider a source flow ps(x) that is optimal but

unsaturated, i.e., ps(x) ≤ Cs(x) (see Figure 5.3(a) for reference). Since the optimal source

flow is unsaturated, it has no contribution to the total energy. As a result, any variation in the

source flow should not change the total energy and therefore, 1−λ(x) must be equal to zero,

Figure 5.2: Representation of the continuous image domain where each of the sites are asso-
ciated with source, sink and spatial flows represented by ps(x), pt(x), p(x), respectively.
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Figure 5.3: Visualization of the flow fields. (a) When the flow through x is limited by the
sink flow capacity such that the sink flow contributes to the total energy (b) when the flow
through x is limited by the source flow capacity such that the source flow contributes to the
total energy and (c) shows two cases of divergence of the spatial flow. The spatial flow where
divp(x) 6= 0 contributes to the total energy. We omit the edges connecting non-adjacent sites
for the sake of clarity.

or λ(x) = 1. This implies that pt(x) = Ct(x), i.e., the flow from site x to sink t is saturated

and the minimum cut passes through this edge. Similarly, the unsaturated sink flows, i.e.,

pt(x) ≤ Ct(x) lead to saturated flows from source s to the site x as shown in Figure 5.3(b).

For this case, the minimum cut severs the source flow and assigns the site x to the sink

(i.e, λ(x) = 0). Finally, for the case of spatial flows, the sites for which divp(x) 6= 0 are the

candidates for minimum cut. In other words, the maximum flow occurs through the sites

that are saturated, and therefore, are the candidates for minimum cut (see Figure 5.3(c)).

However, difficulties arise when estimating the flow capacities. Generally the flow ca-

pacities are defined as Cs(x) = D(I(x) − s(x)), Ct(x) = D(I(x) − t(x)) where I(x) is the

image matrix containing pixel intensities, D(.) is some user defined function and s(x) and

t(x) are selected a priori [161] or defined heuristically [13]. Nonetheless, the flow capacities

are generally unknown and require trial and error or user inputs in the form of bounding

boxes or scribbles for estimation. To argue the importance of flow capacities in optimally

solving the max-flow problem, we begin with a trivial case of uniformly constant source

and sink flow capacities. In such a scenario, sites have no preference to be assigned to the

source or the sink and consequently, all the sites are either assigned to the source or the
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Figure 5.4: Representative example to illustrate the effect of variations in the source flow
capacity on the segmentation result. (a) Input image showing the defects. Segmentation
using the continuous max-flow approach with t(x) and spatial flow capacities fixed to 0.3
and 0.1 respectively, but with varying values of s(x). (b) s(x) = 0.2, (c) s(x) = 0.28 and (d)
s(x) = 0.35.

sink depending on which flow field is saturated first. Appleton and Talbot [13] addressed

this problem by defining a weighting function that decays as per the power-law in the neigh-

borhood of user defined initialization or seed points. Alternatively, Boykov and Kolmogorov

[33] used the Cauchy-Crofton formula to arrive at the (edge) capacities. However, both of

these approaches required manual intervention to define the seed points.

For cases where flow capacities are spatially varying, the segmentation result may still

vary significantly if the values are not optimally chosen. To demonstrate this, we consider

the problem of identifying defects (marked with yellow boxes in Figure 5.4(a)) on an addi-

tively manufactured component (see Section 6.3 for additional details). To define the flow

capacities, we use D(.) ≡ |.| and t(x) = 0.3. Figures 5.4(b-d) show the segmentation results

for three different values of s(x). We note that even small perturbations in the value of

s(x) result in vastly different segmentation; demonstrating the need for estimating the flow

capacities to optimally solve the max-flow problem.

5.4 Estimation of flow field capacities

In this section, we develop an approach to estimate the image labels λ(x) by solving the

continuous max-flow problem while optimally estimating the flow capacities from the image

66



characteristics. Towards this, we first formulate the problem of estimating λ(x) as a MAP es-

timation problem. Given the image I(x) and the flow capacities C(x) = {Cs(x), Ct(x), C(x)},

the objective of the MAP estimation is to find the image labels λ(x) that maximizes the

posterior probability given as,

λ(x) = arg max
λ(x)

P (λ(x)|C(x), I(x)) (5.6)

Since the flow capacities are unknown, we estimate the image labels λ(x) in Equation (5.6)

by iteratively solving the following two subproblems,

λτ+1(x) = arg max
λ(x)

P (λ(x)|Cτ (x), I(x)) (5.7a)

Cτ+1(x) = arg max
C(x)

P (λτ+1(x)|C(x), I(x)) (5.7b)

where λτ+1(x) and Cτ+1(x) are respectively the image labels and the flow capacities at

iteration τ+1. The first subproblem (Equation (5.7a)) is essentially maximizing the posterior

distribution of the image labels given the image I(x) and the most recent estimate of flow

capacities, i.e., Cτ (x). In the second subproblem (Equation (5.7b)), we employ the updated

estimate of λτ+1(x) to subsequently update the flow capacities. The process is repeated until

a stopping criterion (or convergence) is reached.

5.4.1 Maximum a posteriori estimation of λ(x)

We now employ a MAP estimation approach to determine the optimal image labels λ(x)

by solving the first subproblem as given in Equation (5.7a). Using Bayes theorem we have,

λτ+1(x) = arg max
λ(x)

log(P (I(x)|λ(x), Cτ (x))) + log(P (λ(x)) (5.8)

Here, the first term is the log-likelihood of the image labels λ(x) given the flow capacities and

the image I(x). In other words, it imposes a penalty for every incorrect assignment of the
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labels. Assuming the observations (i.e., pixel intensities contained in I(x)) are independently

and identically distributed we can write,

P (I(x)|λ(x), Cτ ) ∝ exp(−D(Cτ , λ(x), I(x))) (5.9)

where D(Cτ , λ(x), I(x)) is the data penalty function defined as,

D(Cτ , λ(x), I(x)) =

∫
ω

(1− λ(x))Cτ
s (x) + λ(x)Cτ

t (x)dx

The second term in Equation (5.8) is the logarithm of the prior over flow capacities. To

enforce spatial smoothness, we define P (λ(x)) as,

P (λ(x)) ∝ exp (−V (Cτ (x), λ(x))) (5.10)

where Cτ (x) is the estimate of spatial flow capacity at iteration τ and V (Cτ (x), λ(x)) is the

smoothness penalty given as,

V (Cτ (x), λ(x)) = Cτ (x)

∫
ω

|∇λ(x)|dx

Substituting the values of P (I(x)|λ(x), Cτ ) and P (λ(x)) in Equation (5.8), we have,

λτ+1(x) = arg min
λ(x)

∫
ω

(1− λ(x))Cτ
s (x) + λ(x)Cτ

t (x) + Cτ (x)|∇λ(x)|dx

We note that the maximization of the posterior probability in Equation (5.7a) is equiv-

alent to solving the max-flow problem given the flow capacities are known. We, therefore,

simply use Algorithm 1 to find the optimal values of λτ+1(x), pτ+1
s (x), pτ+1

t (x) and pτ+1(x)

at iteration τ + 1.
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5.4.2 Maximum a posteriori estimation of C

We now look at the second subproblem, i.e.,

Cτ+1(x) = arg max
C(x)

logP (λτ+1(x)|C(x), I(x)) + logP (C(x)) (5.11)

Here, the first term is the log-likelihood of the flow capacities C(x) given the image I(x) and

the most recent estimate of the image labels λτ+1(x) and P (C(x)) is the prior distribution over

the flow capacities. Note that the prior over the flow capacities is critical to enforce spatial

smoothness and optimally solving the max-flow problem as discussed in Section 3. Several

approaches have been proposed in the literature to capture the spatial smoothness, most

commonly using MRF priors [34, 65, 55]. Using the prior presented in [109], we propose

a new MRF prior that is computationally fast and enforces spatial smoothness. For the

simplicity of notations, we only focus on the estimation of the source flow capacity given as

Cs(x) = |I(x) − s(x)|. Results may be generalized for estimating the sink and spatial flow

capacities similarly.

5.4.2.1 Prior over the flow fields

MRF priors have been widely used to capture the spatial smoothness in segmentation

problems. One of the most commonly used families of MRF priors is given as,

p(s(x)) =
1

Z
exp

(
− 1

T
U(s(x))

)
(5.12)

where Z is a normalizing constant, T is a scale factor and U(s(x)) is a smoothing function

that controls the spatial correlation between the sites x ∈ ω in a given neighborhood [93]. The

prior follows from the Hammersley-Clifford Theorem [67] when assuming the local Markovian

property over the flow field, that is, p(s(x)|ω\x)) = p(s(x)|x ∈ N (x)) where N (x) is the . It

may be noted that the local Markovian property is quite natural for random fields defined

over an image domain [34].
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Several choices of the smoothing function have been proposed in the literature, e.g., see

[93, 25]. However, the complexity of the posterior computation remains one of the critical

challenges under MRF priors. To minimize the computational complexity, we present the

following smoothing function based on [109],

U(sτ+1(x)) = −
∑
x∈ω

(Gτ
s(x) + β(1− pτs(x))) log

(
sτ+1(x)

)
(5.13)

where the multiplier Gτ
s(x) is defined as,

Gτ
s(x) = exp

 β

2|N (x)|
∑

y∈N (x)

(pτs(y) + sτ (y))

 (5.14)

Here, |N (x)| is the cardinality of the neighborhood of x, pτs(x) and sτ (x) are the current

estimates of the source flow ps(x) and s(x), respectively, and β is a smoothing constant.

The term Gτ
s(x) in Equation (5.13) enforces spatial smoothness by mean filtering over the

neighborhood N (x). This minimizes the slack between the flow field and flow capacity.

Although the smoothing function is heuristically designed, an inherent advantage is that

when maximizing the log-likelihood function the derivative is dependent only on the term

sτ+1(x) at the step τ+1, thereby contributing to the computational efficiency. In the present

implementations, we set the value of β = 5 and the neighborhood size as 5× 5 over ω such

that |N (x)| = 25. See [109] for details on the parameter selection.

5.4.2.2 Updating the flow capacities

We now determine the value of the source flow capacities Cτ+1
s (x) by maximizing the

posterior probability in Equation (5.11). With respect to sτ+1(x), we have,

d

dsτ+1(x)

(
logP (I(x)|C(x), λτ+1(x)) + logP (C(x))

)
= 0
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Algorithm 1: Iterative MAP estimate of source, sink and spatial capacities

Initialize: Initialize the parameters λ(0), p
(0)
s (x), p

(0)
t (x), p(0)(x) and C(0)(x)

1 repeat
2 Solve the continuous max-flow problem in Equation (5.5) to estimate

λτ (x), pτs(x), pτt (x) and pτ (x);
3 Evaluate the current estimate of Gτ+1

s (x) in Equation (5.14) and Gτ+1
t (x);

4 Update the flow capacities as:

5 C
(τ+1)
s (x) = |I(x)− (Gτ

s(x) + β(1− pτs(x))) |
6 C

(τ+1)
t (x) = |I(x)− (Gτ

t (x) + βpτt (x)) |
7 Cτ+1(x) = |

∫
ω
Cτ+1
s (x)dx−

∫
ω
Cτ+1
t (x)dx|

8 until convergence;

For the first term, we refer to Equation (5.9) and consider the dual of the corresponding

minimization problem stated in Equation (5.4). Using Lagrange multipliers η(x) for the

source constraints, we have,

sτ+1(x) =
1

T

Gτ
s(x) + β(1− pτs(x))

η(x)

For simplicity, we use T = η(x)−1 such that the source flow capacity in iteration τ + 1 is

given as,

C(τ+1)
s (x) = |I(x)− (Gτ

s(x) + β(1− pτs(x))) | (5.15)

Similarly, we update the sink and spatial flow capacities. The algorithm for simultaneous

update of all the flow capacities is given in Algorithm 2.

5.5 Convergence and consistency

Inconsistency of the posterior is one of the biggest challenges while working with heuristic

or otherwise non-standard priors as noted by Freedman [63]: the set of all parameter-prior

pairs (θ, p) ∈ Θ×P for which the posterior is consistent at θ is a meager set. Inconsistency

is more common than expected and may lead to incorrect inferences. To avoid situations

like this and others as indicated in [23], we show that the posterior probability of the flow
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capacities based on the MRF prior with smoothing function given in Equation (5.13) is

consistent.

Let us consider the set of independently and identically distributed image observations

I(x) taking values in the measurable space (Ω,B) and are sampled from some unknown

“true” distribution function F0 with density function f0. Given the observations I(x), let

p(s(x)|I(x)) denote the posterior distribution of s(x). Let µ be a probability measure on the

measurable space (Ω,B). We define a ε-Hellinger neighborhood of the true distribution F0

as sε(x) = {F ∈ P : H(F0, F ) ≤ ε} where H(F0, F ) denotes the Hellinger distance and is

given as,

H(F0, F ) =

{(∫ √
f0 −

√
f

)2

µ(dω)

}1/2

and P is the subset of all finite probability measures that are absolutely continuous with

respect to µ. Then the consistency of the posterior distribution relies on the following two

assumptions [23],

Assumption 1. For every ε > 0, p(Nε) > 0 where Nε is the ε-Kullback-Leibler neighborhood

[23] of F0.

Assumption 2. For every ε > 0, there exists a sequence {F∞n=1} of subsets of P, and positive

real numbers c, c1, c2, δ with c < ([ε−
√
δ]2 − δ)/2, δ < ε2/4, such that:

1. p(F cn) ≤ c1 exp(−nc2) for all but finitely many n, and

2. H(Fn, δ) ≤ nc for all but finitely many n where H is the δ-metric entropy of Fn (see

Definition 1 in [23]).

Intuitively, Assumption 1 is needed to ensure positive prior probability in the neigh-

borhood of F0. The second assumption prevents the prior from giving substantial mass to

distributions with “wiggly” densities (condition (i)). This is realized by imposing exponen-

tially small probability to the complement of the sequence Fn of well behaved densities,

i.e., not wiggly. Condition (ii) ensures that the sequence Fn of densities are well-behaved.

Under these assumptions, [23] showed that the posterior distribution is consistent at F0, i.e.,
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the posterior concentrates all the mass in the ε-Hellinger neighborhood almost surely with

probability 1. More formally, we have,

Theorem 3. The posterior concentrates all the mass in the ε-neighborhood of F0 almost

surely, i.e., p(sε(x)|I(x))→ 1 almost surely as n→∞.

To show that the result holds, we first present the following lemma.

Lemma 5. The MRF prior p(s(x)) in Equation (5.12) belongs to an exponential family.

Proof. Plugging the values of U(s(x)) and G(x) from Equations (5.13) and (5.14), respec-

tively in Equation (5.12), we have:

p(s(x)) =
1

Z
exp

(
1

T

∑
ω

[ec3(p̃s+s̃) + β(1− ps(x))] log(s(x))

)

where c3 = β/2N (x), p̃s =
∑

y∈N (x)

ps(y), and s̃ =
∑

y∈N (x)

s(y). Factorizing the parameter and

variable terms, we rewrite p(s(x)) as,

p(s(x)) = exp

(∑
ω

[ec3p̃s log(s(x)) + β log(s(x))]−
∑
ω

[βps(x) log(s(x))− ec3s̃ log(s(x))]

)

Since the product of exponential families belongs to the exponential family, p(s(x)) belongs

to the exponential family.

Given the Assumptions 1 and 2 and the prior p(s(x)) belonging to the exponential family,

the posterior consistency and therefore, the proof of Theorem 1 follows from [23]. In the

next section, we present the implementation results and comparison with state-of-the-art

segmentation methods.

5.6 Experimental results

5.6.1 Case studies and evaluation metrics

To test the efficacy of the proposed methodology, we investigate two real-world case

studies: Brain Tumor Segmentation (BraTS) using MR images. Both supervised as well as
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Figure 5.5: Segmentation results of different unsupervised approaches for the segmentation
of brain tumor on HG (top row) and LG (bottom row) glioma. (a) The proposed method (b)
mean shift (c) normalized cuts (d) blobworld (e) hierarchical image segmentation (f) GMM
and (g) spatially constrained GMM.

unsupervised segmentation approaches have been reported in the literature with the major-

ity being supervised. Therefore, we compare our segmentation results with both supervised

as well as unsupervised algorithms. For the first case study, we refer to the supervised al-

gorithms reported in the Medical Image Computing and Computer Assisted Intervention

Society (MICCAI) proceedings 2013 and 2015 [103]. In the 2013 MICCAI proceedings, 20

algorithms were reported that include five generative, 13 discriminative and two generative-

discriminative algorithms. In the 2015 BRATS dataset, three generative, two discriminative

and seven neural network/deep learning approaches were reported. For unsupervised seg-

mentation, we refer to k-means, expectation maximization (also referred to as blobworld)

[43], Gaussian mixture model (GMM), GMM with spatial regularization (SC-GMM) [109],

mean shift [49], normalized cuts [132], and hierarchical image segmentation [14]. Due to the

limited dataset in the second case study, we compare the performance with only unsupervised

algorithms.

To quantitatively compare the performance of the segmentation results, we refer to the
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Figure 5.6: Comparison of the computational cost among the unsupervised algorithms that
converged.

standard Dice score and the Hausdorff distance. The Dice score is given as,

Dice(R̂,R) = 2
|R̂ ∩ R|
|R̂+R|

(5.16)

where R̂ and R represent the segmented lesion/defects and the expert segmentation, respec-

tively, and |.| represents the size of the domain. Dice score measures the areal overlap or

the agreement between the segmented area and the ground truth. The Hausdorff distance

instead measures the surface distance between the segmented area and the ground truth and

is given as,

Haus(R̂,R) = max{sup
i∈R̂

d(i,R), sup
j∈R

d(j, R̂)} (5.17)

where d(j, R̂) is the shortest Euclidean distance between the sites in R and R̂. Taking

maximum over the supremum of these Euclidean distances make Hausdorff distance highly

sensitive to the outliers present in R̂. To control this, we use the 95th percentile of the

Hausdorff distance as suggested in [103].

5.6.2 Brain Tumor Segmentation

Despite significant advances over the past few years, the diagnosis of glioma—the most

common type of brain tumor—remains limited. Neuroimaging offers a noninvasive approach
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Figure 5.7: Comparative results of different algorithms tested for the segmentation of brain
tumor on the BRATS 2013 dataset. Box plot adopted from [103]

to evaluate the progression of the lesions, thus allowing timely intervention and controlled

treatment. In this study, we use the publicly available FLAIR-MR scans from BraTS 2013

and 2015 challenge. There are a total of 20 high grade (HG) and ten low grade (LG) glioma

cases in the BraTS 2013 dataset and 274 HG and 54 LG glioma in the BraTS 2015 dataset.

Each of these datasets contains annotated ground truth, already delineated by the clinical

experts. All the images were resampled to the size of 240× 240.

Segmentation results of a representative HG and LG glioma are presented in the top and

bottom rows of Figure 5.5, respectively. The segmentation results for the present approach

is shown in Figure 5.5(a) followed by rest of the unsupervised segmentation methods in Fig-

ures 5.5(b)-(g). Note that some of the methods such as mean shift (Figures 5.5(b)) required

setting the bandwidth and kernel function whereas completely unsupervised methods such

as normalized cuts (Figures 5.5(c)) failed to converge. Clearly, the present method performs

better as compared to the unsupervised methods tested. The overall performance of the

present algorithm is 78% and 75.6% on the Dice score for the BraTS 2013 and BraTS 2015

dataset, respectively. The 95% Hausdorff distance for the two datasets are 13.61 and 14.05,

respectively. Based on the segmentation results, we also note that the present approach sig-
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nificantly minimizes oversegmentation as compared to most of the segmentation approaches

reported in Figure 5.5. This is due to the TV regularization in the max-flow formulation that

penalizes the oscillations in the pixel intensity due to random noise. We also compare the

computational cost of the unsupervised algorithms that converged within a reasonable time

and is summarized in Figure (5.6). Although our method is slower than k-means and GMM,

it performs reasonably fast as compared to mean-shift and spatially constrained GMM.

The Dice score and the Hausdorff distance of all the methods including the supervised

as well as unsupervised methods tested on the BraTS 2013 dataset are summarized in Fig-

ures 5.7(a) & 5.7(b). Interestingly, the present approach outperforms most of the supervised

algorithms, both in terms of the average values of the Dice score and the Hausdorff distance

(black squares inside the box plot indicate the average). The results suggest more than 90%

improvement in the Dice score and more than 56% reduction in the Hausdorff distance when

compared to the unsupervised methods. In terms of the supervised approaches, the present

method performs statistically similar to the best performing method (Zhao(I) in [102]). For

the BraTS 2015 dataset, no test results were available at the time of writing this chapter,

so we only compare with the training results of the algorithms as reported in the MICCAI

2015 proceedings [103]. These results are summarized in Table 5.1. Indeed, most of the deep

learning based method outperform the results of the present algorithm. Nonetheless, the Dice

scores for all the supervised methods reported in Table 1 were calculated on the training

dataset where the training sizes were more than 85% of the whole dataset [144].

5.6.3 Defect concentration in additively manufactured components

Recent advances in the manufacturing technologies, especially metal additive manufactur-

ing (i.e., layer-by-layer deposition of metal powder to fabricate complex free-form surfaces)

have revolutionized the landscape of fabricating industrial components and parts. Despite

the capability of AM to fabricate components with minimum time and material waste, the

overall functional integrity of AM components is considered much inferior to those realized

with conventional manufacturing process chains, especially under real-world dynamic load-
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Table 5.1: Dice score comparison for the BRATS 2015 dataset

Approach Summary Dice score Author
Unsupervised max-flow 75.6±10.5 Iquebal
Generative with shape prior 77±19 Agn [102]
Generative-Discriminative 83±7.5 Bakas [102]
Expectation Maximization 68 Haeck [102]
Random Forests 84 Maier [102]
Random Forests 80.7 Malmi [102]
Conditional Random Fields 82 Meier [102]
Conv. Neural Networks 88 Havaei[102]
Conv. Neural Networks 81±15 Dvorak [102]
Conv. Neural Networks 86 Pereira [102]
Conv. Neural Networks 67 Rao [102]
Conv. Neural Networks 81.41±9.6 Vaidhya [102]
Conv. Neural Networks 87.55±6.72 Wang [144]

ing conditions [18]. Defects, such as pores, undiffused metal powder, geometric distortions,

surface cracks, and non-equilibrium microstructures significantly deteriorates the mechanical

performance and overall functional integrity of the components.

Concentration of defects in AM components is largely affected by the parameters of the

AM process, e.g., laser power, laser scanning speed [18]. Controlling the process parameters

can help manufacturers realize components with minimum defects and superior functional

integrity [139]. In situ imaging technologies allow monitoring and detection of the defects

induced in AM components. However, detection of defects using in situ imaging technologies

has its own limitations: (a) recording high-resolution images are costly, and therefore, only

limited data is available, (b) uncertainties in the shape and morphology of defects, (c) low

signal to noise ratio, etc.

In this case study, we employ the present approach to determine the concentration of de-

fects on two different AM components that were fabricated with different process parameters

using a laser-based AM process called selective laser melting (SLM). The process parameters

investigated in this case study are laser power, laser scanning speed, and relative density of

the AM components. For the first component (sample A, Figure 5.8(a)) the process parame-

78



Figure 5.8: Comparative results of different algorithms tested for the segmentation of defects
on sample A. (a) Original image for sample A (b) k-means with 2 clusters (c) Gaussian
mixture model with expectation maximization (d) spatially constrained Gaussian mixture
model with k-means initialization and (e) mean shift (f) the proposed method.

ters were set to: laser power = 165 W, laser scanning speed = 138 mm/s, and relative density

= 99.5%. For the second component (sample B, Figure 5.9(a)) these parameters were set

to: laser power = 85 W, laser scanning speed = 71 mm/s, and relative density = 96.4%.

The images of the AM components were recored using an SEM (see [18] for details) and the

defects were manually annotated to get the ground truth.

We mainly focus on the concentration of two different types of defects namely, pores and

balling effect. Pores are essentially voids on the surface that are formed when gas particles

trapped in the melt-pool (liquefied metal during deposition) escape. These are generally

tracked by observing the dark spherical/oval shaped features on the surface. In contrast,

balling effect is a complex metallurgical process that originates due to sub-optimal process

parameters during the SLM process as well as the properties of the material powder such

as the relative density of AM components. It causes the liquid scan track during SLM to

break and result in the formation of spherical particles that eventually get trapped, causing
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inhomogeneous deposition of the powder in the next build layer. Authors in [18] showed that

by increasing the laser power, the concentration of defects due to the balling effect decreases.

Controlling pores as well as the balling effect is critical to avoid significant costs, as these

defects may reduce the fatigue strength of material by more than 4 times, resulting in early,

unexpected failure [77].

Figure 5.8(a) and 5.9(a) shows the representative surface from sample A and sample B,

respectively. We note that sample A with high laser power (165 W) has relatively lower

defect concentration as compared to sample B with low laser power (85 W). As the data

size is limited, we compare our segmentation results only with that of the unsupervised

segmentation methods. To keep the comparison fair, we ignore the methods that either

required user inputs to define the foreground and background or did not converge in a

reasonable time. The segmentation results for the first sample are presented in Figures 5.8(b-

f). The effect of the noise (resulting from the shadow and underexposure) is clearly reflected in

the results obtained from k-means clustering approach as shown in Figure 5.8(b). Although,

there is some improvement in the segmentation obtained from GMM and SC-GMM as shown

in Figure 5.8(c-d), yet the effect of noise is evident from the resulting oversegmentation. The

segmentation from the mean shift algorithm (Figure 5.8(e)) is able to detect most of the

pores (with 58.6% Dice score) but fails to detect the balling effect. Finally, the segmentation

obtained with the proposed method is able to identify all the regions containing pores as well

as the balling effect with a Dice score of 70.56% and Hausdorff distance of 32—approximately

86% smaller than the rest of the unsupervised segmentation methods (Figure 5.8(f)).

In the second sample, noise is significantly higher as compared to sample A, mainly

due to the rougher surface morphology. Three instances of balling effect were identified

manually as shown by the arrows in Figure 5.9(a), alongside multiple pores. Clearly, the

segmentation results obtained from k-means (Figure 5.9(b)), GMM (Figure 5.9(c)), SC-

GMM (Figure 5.9(d)) and mean shift (Figure 5.9(e)) mostly capture the noise present in the

original image. In contrast, the proposed method is able to selectively segment the defects
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Table 5.2: Average Dice score and Hausdorff measure of various unsupervised approaches
implemented for defect segmentation.

Approach Dice score Hausdorff measure
Unsupervised max-flow 70.56 32

Mean shift 58.6 245
GMM 22.16 287

SC-GMM 2.6 219
k-means 1.4 321

Figure 5.9: Comparative results of different algorithms tested for the segmentation of defects
on Sample B. (a) Original image for sample B (b) k-means with 2 clusters (c) Gaussian
mixture model with expectation maximization (d) spatially constrained Gaussian mixture
model with k-means initialization and (e) mean shift (f) the proposed method.

while significantly reducing the oversegmentation (Figure 5.9(f)). However, the algorithm

is able to identify only two out of the three areas showing balling effect. Nonetheless, the

segmentation is a significant improvement over the standard state-of-the-art unsupervised

segmentation methods. A summary of the Dice score and the Hausdorff measure of all the

unsupervised approaches is presented in Table 5.2.

As mentioned earlier, estimating defect concentration in AM can help understand the ef-
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fect of various process parameters on the build quality, and therefore determine the optimal

parameter settings [77, 18]. Via visual inspection, we were able to verify the experimental

observations [18] that the increase in the laser power results in the decrease in defect concen-

tration. By estimating the area fraction of defects from segmented images, we note that the

defect concentration on sample A is ∼1% and sample B is ∼ 4.39%. This is in accordance

with the experimental observations. From a process standpoint, the present approach may be

integrated with an experimental design strategy to determine the optimal process parameter

settings that would minimize the defect concentration.

5.7 Summary and conclusions

Advances in microscopy and functional imaging technologies open exciting opportunities

for fast and on the fly detection/segmentation of ROIs using image snapshots and streams.

However, the uncertainty associated with the shape and location of ROIs renders the task of

generating annotations and atlases extremely costly and time-consuming. Although consid-

erable research exists in the image segmentation literature, a majority of the methods rely on

huge training datasets or require manual intervention to set the parameters apriori. In con-

trast, only a handful of unsupervised approaches have been reported in the literature, many

of which are computationally complex (e.g., normalized cuts) or require partial supervision

(e.g., continuous max-flow).

In the chapter, we developed an approach to consistently estimate the flow capacity

parameters leading to a fully unsupervised image segmentation approach. Our framework

is based on iteratively estimating the image labels using a continuous max-flow approach

followed by the MAP estimation of the flow capacities by considering an MRF prior over

the flow field. In the sequel, we presented results to validate the consistency of the posterior

distribution of the flow capacities to ensure that the estimated flow capacities are consistent

under the MRF prior proposed in this work. Segmentation results on two distinct real-world

case studies, including brain tumor segmentation (BraTS) using FLAIR-MR scans and defect

segmentation in additively manufactured components using SEM images are presented. An
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extensive comparison with the state-of-the-art unsupervised as well as supervised algorithms

suggests that the present method outperforms all the unsupervised as well as most of the

supervised algorithms tested. More specifically, we note that the present approach results in

more than 90% improvement in the Dice score and more than 56% reduction in the Hausdorff

distance when compared to the unsupervised methods. Future works are focused on the

segmentation of 3D images as well as a more comprehensive Bayesian model to estimate the

parameters used in the MRF prior.
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6. LEARNING ACOUSTIC EMISSION SIGNATURES FROM A

NANOINDENTATION-BASED LITHOGRAPHY PROCESS: TOWARDS RAPID

MICROSTRUCTURE CHARACTERIZATION ∗

We present an approach for rapid identification of the salient microstructural phases

present on a metallic workpiece surface via nanoindentation-based lithography process. We

employ a machine learning approach to connect the time-frequency patterns of the corre-

sponding acoustic emission (AE) signals with the underlying microstructural phases. Results

show that the AE frequencies in the range of 0.3-1 kHz and 30-50 kHz can discriminate be-

tween the microdynamics of the lithography process arising from different microstructural

compositions and thereby predict these microstructural phases with accuracies exceeding

95%. We also draw physical interpretations of our “black-box” machine learning model and

demonstrate that the physical insights into the underlying AE signals allow us to identify

novel patterns and possible microstructural anomalies.

6.1 Introduction

Discovery of advanced, functional materials is the key to several technological advance-

ments in aerospace, medical, electronics, and other related sectors. Conventionally, materi-

als discovery involves an iterative sequence of design, synthesis, and characterization steps.

While recent advances in high-performance computing and automation have accelerated the

design and synthesis of novel materials, characterization still remains an extremely slow

process [17, 10]. With recent advancements in machine learning and sensor technologies,

nanoindentation instruments can be instrumented to server as platforms to enable rapid

characterization.

Characterization of the materials structure, specifically the microstructures is important

∗Reprinted with permission form A. S. Iquebal, S. Pandagare, and S. T. S. Bukkapatnam, “Learning
acoustic emission signatures from a nanoindentation-based lithography process: Towards rapid microstructure
characterization,” Tribology International, vol. 143, p. 106074, Copyright 2019 Elsevier
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as they directly influence the resulting materials property and performance [6]. Developments

in additive and other manufacturing technologies have led to the realization of materials with

radically different types of microstructures—at unprecedented speeds—some of which were

not known to exist heretofore [48, 126]. These novel microstructures may hold unprecedented

properties that can dramatically enhance the materials performance envelope for industrial

applications. Once the microstructures with the desired (or unexpected) properties are iden-

tified, one can investigate the thermodynamic pathways [167], and subsequently determine

the processing routes conducive for their realization in bulk (i.e., solve the inverse problem

[6]).

In order to systematically investigate these microstructures and hence the local mechan-

ical properties, one needs to comprehensively map out the “spectrum” of different phases,

including their shape, size, orientation, and spatial distribution realized from a process. The

conventional approach for characterizing the microstructures involves a battery of cumber-

some and time-consuming characterization tests, e.g., scanning electron microscopy (SEM),

X-ray diffraction, mechanical testing [92]. Such an approach is untenable for estimating the

properties of potentially hundreds and more of the material microstructures realized through

a process within a reasonable time [111].

Recent advances in machine learning, together with those in MEMS (microelec-

tromechanical systems) sensors and characterization techniques, most pertinently in mi-

cro/nanoindentation [79] and lithography instrumentation [166] provide a radically new way

to rapidly map out the microstructures and estimate the associated properties [47, 58, 117].

In this work, we investigate a nanoindentation-based lithography process coupled with in

situ acoustic emission (AE) sensing to enable rapid identification of microstructures.

A nanoindentation-based scanning probe lithography process (referred to as lithography

in the remainder of the chapter) consists of creating specific contours on the surface of a given

material through the controlled motion of a diamond indenter, typically within a nanoin-

dentation platform [29]. Such lithography processes are particularly interesting as they offer
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Figure 6.1: The Hysitron TI 950 nanoindentation setup employed in the current study show-
ing the Ti-6Al-4V workpiece sample integrated with the AE sensor.

an approach to rapidly track the microstructural fingerprint by recording the corresponding

microdynamics using high-resolution AE sensors [46]. Here, the microdynamics of the lithog-

raphy process consists of various physical transformations at the indenter-material interface

including plastic deformation, shear localization, microcrack propagation, as well as other

contact mechanisms [27, 131]. AE sensors capture the microdynamics of the lithography pro-

cess by tracking the high-frequency micro-elastic pulses produced as the indenter traverses

across multiple material phases [91]. In fact, such micro-elastic pulses are generated whenever

a material is subjected to plastic deformation. Hence, AE sensing has long been employed

in the literature to characterize various material properties such as the creep behavior [160]

and strength characteristics [52, 110, 85], or major anomalies, such as wear [19] and crack

propagation [152, 128]. AE sensing has also been widely employed to characterize various

machining processes at micro- as well as nano-scales [57, 7].

The precision of the lithography process to probing different material phases, coupled with
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the high-resolution (∼ 106 Hz sampling rates) sensing capability of AE allows us to track

the microstructural variations occurring at micrometer scales, as opposed to tracking the

bulk properties and major anomalies. When analyzed through machine learning approaches,

the transient patterns of the AE signals can reveal significant information related to the

underlying microstructure [150]. In this work, we employ machine learning of the resulting

acoustic emission signatures to discern between different microstructures of Ti-6Al-4V as

the indenter scans the surface during a lithography process. This necessitates harnessing

the high-frequency information from the measured AE so that short time-scale variations

resulting from grain-boundary crossing and/or microstructural changes can be detected. We

employ random forest [64], a nonparametric machine learning model to distinguish between

different microstructural compositions of Ti-6Al-4V using high-frequency signatures from

the measured AE signals. Results show that the present approach can identify different

microstructure types with accuracies exceeding 95%.

In the sequel, we present a model interpretation approach called LIME (local interpretable

model-agnostic explanations) [121] to generate physical insights into the AE features that can

be used to identify novel structures (i.e., previously unseen cases) that typically go unnoticed

when working with black-box machine learning approaches. We show such an instance where

the explanations generated from LIME allowed us to identify a microstructural anomaly (a

deep preexisting scratch mark) on the surface. The remainder of the chapter is organized

as follows: Section 6.2 delineates the experimental procedure and data collection from the

nanoindentation-based lithography process. Details on the implementation of the machine

learning algorithm for microstructure identification are presented in Section 6.3 followed by

physical insights into the machine learning algorithm using LIME analysis in Section 6.4.

Concluding remarks and future works are presented in Section 6.5.

6.2 Experimental approach

The current lithography study focuses on discerning the microstructure of an additively

manufactured (via EBM) Ti-6Al-4V sample surface [77] through the analysis of the AE
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Figure 6.2: SEM images showing the representative microstructure of a Ti-6Al-4V workpiece.
(a) The as-fabricated state consisting of the representative α+ β colony with α lamellae (in
dark) interspersed with β phase (rod-shaped, in white) of average thickness 200 nm and
(b) the microstructure obtained after polishing shows extreme coarsening of the β phase at
scattered locations (βW see at arrow) and overall widening (≥ 3 µm average width).

signals generated during the lithography process. Details on the process parameters of the

EBM can be found in [78]. The workpiece was polished on a Buehler Metaserv Grinder-

Polisher (model 95-C2348-160) using silicon carbide (SiC) polishing pads (�203 mm), in

stages, with progressively smaller abrasives ranging from 30 µm to 5 µm under dry conditions.

A steady nominal down pressure of 0.5 kPa was maintained and the polisher speed was fixed

at 500 rpm. The surface was manually subjected to a quasi-random orbital motion. The final

polishing step involved the use of alumina abrasives (< 1 µm), suspended in an aqueous

solution (20% by wt., pH ≈ 7.5) for 20 minutes to impart a specular finish (average surface

roughness Sa ≤ 25 nm) to the surface. The slurry was routinely flushed to avoid possible

agglomeration of finer abrasives into large clusters that may result in scratching. To observe

the microstructures, the mechanically polished samples were first treated with Kroll’s reagent

(5− 7% nitric acid (HNO3) and 2− 4% hydrofluoric acid (HF) and rest distilled water) for

10 s and then rinsed with distilled water.

A nanoindentation setup, Hysitron TI 950 carrying a Berkovich indenter with a diamond
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tip (included angle – 142.3◦ and tool tip radius – 100 nm) with a maximum downforce of

10,000 µN was employed for this experimental study. The testbed is mounted on a vibration

isolating platform to neutralize the effect of external disturbances. The Ti-6Al-4V work piece

was clamped on the Hysitron nanoindenter testbed and the AE sensor (S9225 from Physical

Acoustic Corp) with an operating frequency range of 300-1800 kHz was placed on the top

of the workpiece, affixed with a dental cement as shown in Figure 6.1. See [29] for further

details on the experimental setup.

Figure 6.2(a) shows the microstructure of as-fabricated Ti-6Al-4V samples comprising of

lamellar α (gray) phase interspersed with rod shaped β (white) phase with both colony and

basket-weave morphology. We refer to this typical α + β phase as the standard microstruc-

ture in the rest of the chapter. While α phase (with hexagonal close packing structure) is

more ductile and chemically inert, β phase (with body centered cubic packing) increases

the strength and toughness of the material [90]. Subsequent mechanical polishing of these

as-fabricated Ti-6Al-4V samples was found [78] to cause dilation of the β phase at scattered

locations. This is primarily due to the high flash temperatures (in the range of 700-1000 K)

coupled with extremely high cooling rates (∼ 106 K/s) at the asperity-abrasive interface.

Such high flash temperatures cause migration of the β colony boundaries resulting in the

apparent dilation as shown in Figure 6.2(b). We refer to this microstructure with widened β

phase (βW in Figure 6.2(b)) as the diffused microstructure and is composed of roughly 60%

α and 40% β. In comparison, the as-fabricated microstructure primarily consists of ∼90% α

phase with ∼10% β (see Figure 6.2(a)). We also note that in the diffused regions, α and βW

phases exist in both colony and basket-weave morphology with spearhead-like structures at

the boundary (see the dotted box in Figure 6.2(b)) before merging into the standard needle-

shaped β phase. These spearhead-like βW phases represent an “intermediate” microstructure

at the boundary separating the diffused and standard microstructures. Since the coarsening

of the β phase occurs only at scattered locations, both standard and diffused microstructure

types co-exist in the polished surface with former being the predominant one. Existence
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of such non-equilibrium microstructures, each influencing the mechanical behavior of the

workpiece, creates a possibility to tune the hardness, fatigue strength, and other mechani-

cal properties of additively manufactured components for specific applications [148]. For a

detailed analysis of the microstructural study, please refer to [78].

Prior to performing the lithography of the polished samples, three representative loca-

tions, each (marked in Figure 6.3(a)) consisting of standard and diffused microstructures

were identified (using an optical camera installed inside the Hysitron nanoindentation ma-

chine). At each location, lithography process was performed to generate five parallel scratches

(marked as (i), (ii), (iii), (iv) and (v) in Figures 6.3(c& d)) each of length 15 µm. We ensured

that the scratch marks are longer than the size of most of the key microstructural features,

including the widths of the rod-shaped β and the diffused βW phases. The maximum down-

force of the indenter was set to 10,000 µN and the indenter speed to 0.5 µm/sec, such

that each scratch lasted for 30 sec. The AE released during the process was collected using

S9225 AE sensor from Physical Acoustic Corp with a sampling frequency of 500 kHz. The

aforementioned lithography process was repeated at three random locations, each containing

predetermined diffused and standard microstructures as depicted in Figure 6.3(a).

6.3 Results and discussions

6.3.1 AE time-frequency patterns

The AE signals acquired from the process (five parallel scratches made at three different

locations) were divided into uniform 0.25 sec long segments (with each segment having 0.25

sec time segment × 500,000 samples/sec sampling rate = 125,000 data points). The 0.25 sec

segment length was chosen to allow gathering the signatures of AE released from lithography

over specific elementary microstructural features. Altogether, we have 600 such signal seg-

ments (30 sec × (1/0.25 sec) × 5) from each class of microstructure from each of the three

locations. Representative time portraits of AE gathered during lithography of the surface

with standard and diffused microstructures are shown in Figures 6.4(a) and 6.4(d) respec-
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Figure 6.3: (a) Micrograph showing the standard and diffused microstructures as the scratch
test was performed. Insets show the scanning electron micrographs of the standard and the
diffused microstructure. (b) The scratch generated during the lithography procedure, (c)
and (d) respectively are the SEM images of the diffused and standard microstructure regions
indicating the 5 scratch marks generated during the lithography process.

tively. Little meaningful changes in the AE patterns are evident from visual examination of

the time portraits. This is because the elastic energy released during the lithography process

is transmitted in the form of nonstationary AE signals, similar to plucking the strings of a

guitar. The signals are aperiodic and are randomly interspersed with multiple bursts and

quiet zones that are hard to quantify using conventional statistical descriptors.

It may be noted that the frequency spectrum of the measured AE signals captures the

effect of the microstructure on the microdynamics, comprising the various deformation mech-

anisms, of a lithography process [116]. We, therefore, employed the AE spectral content (sig-
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nal energy) over various frequency bands as the features to discern between the two classes

of the microstructure. Representative spectrum of the acoustic emission signal (Figure 6.4(b)

and 6.4(e)) as well as the corresponding envelope spectrum (Figure 6.4(c) and 6.4(f)) show

continuous frequency spectrum with a few dominant frequency bands, distinct harmonic dis-

tortions in the form of shifts in the dominant frequency modes as well as the emergence of

some new modes in the frequency spectrum between standard and the diffused microstruc-

tures. However, no systematic changes in the pattern were evident. We, therefore, employed

a machine learning algorithm known as random forest [64] to perform the classification task

by learning from the frequency spectrum.

6.3.2 Learning AE features for microstructural identification

Random forest is a class of ensemble learning methods based on combining multiple deci-

sion trees using bootstrapped (sampling with replacement) training samples. Bootstrapping

Figure 6.4: Top ((a), (b), (c)) and bottom ((d), (e), (f)) rows show the Time-domain of the
AE signal, frequency spectrum, and the envelope spectrum corresponding to the standard
and diffused microstructures.
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Figure 6.5: (a-c) Confusion matrix for the prediction results from the random forest model
and (d-f) shows the most dominant features in each of the cases shown in figures (a-c).

reduces the overall variance, avoids overfitting and improves the prediction accuracy. Al-

though various ensemble strategies exist, random forest models are particularly attractive

because it randomizes the feature set at every stage of the binary decision making. This is

beneficial as it decorrelates the trees and therefore their respective decisions unlike other

ensemble methods such as bagging where most of the bagged trees look very similar to each

other. Finally, the decision is made on the majority voting. Bootstrapping also enables out

of bag error estimation in random forest, therefore, eliminating the need for any external

cross-validation. However, random forest behaves more like a black-box due to its ensemble

nature. Nonetheless, by employing the node impurity (also known as Gini index) defined as

p̂mk(1 − p̂mk), where p̂mk is the proportion of observations in node m that belong to class

k, random forest allows us to determine the importance measure for each of the features

considered.
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Being nonparametric, random forest does not make any distributional assumptions about

the data and offers a powerful approach to perform classification and prediction tasks. To

perform the classification, we first partitioned the frequency spectrum extracted from each

of the 1200 segments (600 each from diffused and standard microstructure type) into 50

uniform bands of 5 kHz width (over the Nyquist range of 0-250 kHz). The signal energies

from each of these bands were used as the features representing the AE signature from each

signal segment. We trained the random forest model on the AE features extracted from two

out of the three locations where lithography was performed and tested on the remaining

one. Figures 6.5(a-c) summarize the results from the random forest models in the form of a

confusion matrix. A confusion matrix specifies the performance of the classification method

in terms of the number of instances in the predicted class versus the instances in the true

class. In all the three cases, the model is able to predict the true microstructure type with an

average accuracy of 96.33% with almost perfect sensitivity (or false negative rate of 0.003)

and specificity (or false positive rate of 0.066) for detecting the diffused microstructures.

This suggests that the AE response bears information to discern the differences in the work

hardening and plastic deformation characteristics between different microstructural features

(e.g., standard and diffused) as the indenter traverses the surface. We also compare the

performance of the random forest with other standard classifiers such as linear discriminant

analysis, support vector machine, and logistic regression. The corresponding classification

accuracies were 87.50%, 91.75%, and 90.83%. We note that the performance of random

forests is still better as compared to the aforementioned algorithms, particularly because of

the ensemble nature of random forests, i.e., it leverages multiple decision trees, that may

not have high accuracies themselves, but together as an ensemble offers a very accurate and

consistent model.

Figures 6.5(d-f) delineate the 10 most important variables (ranked in terms of the Gini

index) identified by the random forest model. We note that feature F1, capturing the signal

content over the 0-5 kHz band is consistently ranked as the most important feature. We
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further refined the 0-5 kHz band of F1 into 250 frequency bands, each 20 Hz-wide, and

included the signal energies over these frequency bands as additional features (labeled F1:1,

F1:2, . . . , F1:250) to predict the microstructure. It was determined from this study that

the DC component (zero frequency component) of the signal is the primary determinant

of the classification accuracy of the model. From the lithography process standpoint, the

DC component of the AE signal is related to the mechanical properties engendered by the

microstructure, such as the strength and hardness.

Apart from the DC component, several low and high-frequency components were ranked

among the top ten important features. These frequencies resonate with the microdynamics

of the lithography process [97]. To explore these frequency features, we re-trained our model,

however, this time excluding the DC component. The average prediction accuracy for this

model is 65.83%. Although the new model has relatively lower accuracy, it suggests that

the information related to the dynamics of the lithography process is mostly concentrated

in the 30-50 kHz and 0.3-1 kHz frequency bands. Although the random forest model was

able to identify these frequency bands as important features, it does not provide insights

into how the feature characteristics vary between the two classes of microstructures. This

information is useful for deriving physical relationships connecting the AE features with the

microstructure.

6.4 Physical insights into AE features

As machine learning models get more and more predictive e.g., random forest, neural

networks, they become more sophisticated to a point where they serve as mere black-boxes,

thereby, significantly reducing their interpretability, i.e., why certain decisions/predictions

are made. In this work, we utilize LIME model to interpret the influence of the important

AE features on the prediction results. The approach is based on tracking the black-box (in

this case, random forest) model’s predictions on slightly perturbed datasets [121]. Once the

model predictions on perturbed datasets are obtained, LIME trains an interpretable model

that offers a good approximation to the black-box model’s prediction locally. In this fashion,
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Figure 6.6: Analysis from LIME. The top two rows of the heat map representing the true class
(true class) and the predicted class (pred class) of the microstructures of each of the 1200
samples or columns shown across the x -axis. The samples are laid out as scratches (i)-(v) of
diffused followed by scratches (i)-(v) of the standard microstructure. Here we refer to diffused
as “0” (in black) and standard microstructure as “1” (in white). Rows 3-12 are the values
of most important features as inferred by the LIME algorithm. The values indicated by the
colormap are the contributions from each of the features towards classifying the samples as
diffused or standard (see Appendix for more details).

LIME generates low fidelity but interpretable, local surrogate models, g(x, y) ∈ G where G is

the space of all possible explanatory models such that it minimizes the penalized likelihood

function given as:

ε(x) = arg min
g∈G

L(f(x), g(x), x) + ω(g(x))
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where f(.) is the random forest model, and ω(g(.)) is the penalty on the complexity of the

low fidelity model g(x) defined a priori. Although, the low fidelity models are generally linear

and only locally optimal, the explanations generated by the model allow us to understand

the behavior of the most important features. The result of the LIME analysis on the random

forest model built with the extended AE features (i.e., F1:1 through F1:250, and F2 through

F50) is summarized in Figure 6.6. It captures the contribution (roughly, the weight) of each of

the top ten most important features towards predicting the microstructure class of every one

of the 1200 data samples. The first 600 data samples (AE segments and the resulting features)

were extracted during the lithography, i.e., five 15 µm long scratches made over the diffused

microstructures (shown in dark/purple in the top row of the figure), and the remaining 600

data samples were extracted during the lithography over standard microstructures (shown

in white in the top row of the figure). The random forest model predictions for each of these

1200 samples are provided in the second row. Evidently, 592 out of 600 AE data samples

from the lithography over diffused microstructure, and 589 out of 600 AE samples from the

lithography over standard microstructure were correctly identified, indicating the predictive

power of the AE features. For each subsequent row, the color and the intensity capture

the contribution (positive vs. negative, and the extent, respectively) of each of the top ten

features towards predicting the microstructure for the specific data sample. Clearly, we note

a strong contrast in the feature contribution values between the left and the right half of the

samples, and that the feature F1:1 stands out as the most discriminating feature which is

consistent with the random forest result.

More importantly, Figure 6.6 points to an intriguing observation. Within the diffused mi-

crostructure region, we note that the contribution values of feature F1:1 corresponding to the

samples in scratch (v) is significantly different from the feature contribution values of rest of

the samples. This can be visualized from Figure 6.7 that shows the feature contribution values

of F1:1 segregated into scratches (i)-(iv) and scratch (v) within the diffused microstructure

region and scratches (i)-(v) within the standard microstructure region. Clearly, the samples
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Figure 6.7: Feature contribution of F1:1 categorized into scratches (i)-(iv) (in purple) and
scratch (v) (in light green) within the diffused microstructure region followed by scratches
(i)-(v) (in dark green) within the standard microstructure region.

in scratch (v) within the diffused microstructure (denoted by light green) are distinctly dif-

ferent from the rest of the samples within the diffused microstructure region (denoted by

purple color). Surprisingly, the feature contribution values of these samples are apparently

closer to that of the standard microstructures. To explore the root cause of this peculiar

pattern, we refer to the SEM images of the scratches generated during the lithography pro-

cess. On the SEM image of the scratches in Figures 6.3(c), we note that scratch (v) within

the diffused microstructure region traverses through a deep, preexisting scratch mark on the

surface. As feature F1:1 corresponds to the DC component of the AE signals, it represents

the underlying forces experienced by the moving indenter. From the packing structure of

α and β phases, we know that the diffused β phase is harder than the standard α + β

phase. Therefore, the indenter experiences relatively less force when traversing through the

standard microstructure. Since the feature contribution values of F1:1 for scratch (v) within

the diffused microstructure region are similar to that of the standard microstructures sug-

gest that the indenter experiences less force while traversing through this scratch. This can

potentially be justified if we consider the effect of the preexisting scratch. As the indenter
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operates under fixed downforce, presence of the preexisting scratch (or other similar mi-

crostructural defects) is likely to decrease the drag force on the indenter and therefore result

in the observed anomaly.

Such novel patterns and anomalies typically go unnoticed when working with black-box

machine learning models. By investigating the feature explanations generated from the LIME

approach, we identified a microstructural anomaly in the form of a deep, preexisting scratch

mark. This is interesting as it opens an exciting opportunity to not only rapidly characterize

the known microstructure types, but also identify novel phases and microstructures, espe-

cially when studying the effects of different processing pathways and process parameters on

the resulting structure [117].

6.5 Summary and conclusions

In closing, this chapter presents a machine learning approach to enable rapid characteri-

zation of microstructures by tracking the AE signatures from a scanning probe lithography

process. Current approaches for characterizing microstructures involve a battery of manual

experimentation and remains a critical bottleneck in the process of autonomous materials

discovery. In this direction, we conducted lithography experiments on the surface of a Ti-

6Al-4V workpiece fabricated via EBM process and subsequently subjected to mechanical

polishing such that the microstructure composition was locally altered. We analyzed the

AE signals gathered from the lithography experiments to distinguish between the locally

diffused and the standard microstructure types. The results from random forest modeling

suggest that the AE signatures can capture the changes in the microstructure with over 95%

accuracy, therefore, offering a novel route to rapidly characterize the microstructure. More

interestingly, our analysis also showed that there are two prominent frequency ranges, 0.3-1

kHz and 30-50 kHz that capture most of the dynamics of the lithography process. Existing

research [26, 97] on the AE signatures of the machining processes reveals that these high

frequencies are closely related to the elastic and plastic deformations, movement of disloca-

tions as well as mild adhesive wear. In contrast, no conclusive evidence for the sources of low
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frequencies exists in the literature and remains an open area of research.

The results presented in this work are significant as the changes (scratches) occurring

in such processes operate under microscopic forces (< 10, 000 µN) and are difficult to

track/capture by many conventional and state-of-the-art instrumentation and monitoring

methods. Beyond establishing that AE can be used to rapidly track the changes in the mi-

crostructures, we showed that the AE signatures contain potentially useful information that

can aid in the exploration of novel structures, defects, and anomalies.

Although the current study is based on the microstructure classification of a given ma-

terial system, the method is material agnostic and can be potentially useful for on the fly

detection of different microstructure types, especially when developing new materials and

identifying the presence of microscopic defects on the surface. Our current and future ef-

forts are focused on developing an efficient mapping of AE signals with the microstructural

composition (e.g., as obtained from SEM images) and employ these as part of the smart hy-

brid manufacturing platform for identifying microstructures of the various materials systems

created during the process. We will also explore features based on envelope spectrum and

cepstrum analysis to enrich our feature set for identifying novel microstructure phases, that

are typically difficult to identify using standard spectrum-based features.
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7. SUMMARY AND FUTURE WORKS

7.1 Summary

While there is a deluge of data, current smart manufacturing practices harness less than

25% of the data generated during advanced manufacturing processes. Lack of robust data

representation and quantification methods impede the efficient utilization of data in ad-

vanced manufacturing processes. In this direction, this dissertation focused on developing

statistical and data-driven models for representation and quantification of advanced manu-

facturing processes to realize rapid characterization. Most pertinently, we focus on additive

manufacturing processes and the challenges therein, such as poor surface morphology and

porosity.

Towards this, chapter 2 presented the challenges pertaining to surface quality and poros-

ity issues in additive manufacturing and motivated the need to develop efficient techniques

to finish the surface morphology of additively manufactured components via post-processing

methods. We compared the two most commonly employed post-processing methods: ma-

chining and fine-abrasive finishing. Results showed that machining improved the average

surface roughness 98.1% and increased surface hardness by 37%. In the case of fine-abrasive

finishing, the average surface roughness improved by 99.82%, and microhardness increased

by 11% (with significantly more efficacy on z-build-direction surfaces). We found that abra-

sive finishing reduced the fraction of voids by almost 99.81%, thus providing an effective

means to enhance the bearing capacity of AM components. While this study demonstrated a

multi-step finishing process to improve the surface morphology of AM components, different

applications call for different surface finish requirements. Therefore, controlling the surface

quality creates a need to investigate the phenomenology of surface modification during the

post-processing stages and develop accurate modeling approaches to achieve the desired

specifications. Chapter 3 of this dissertation showed that the exact phenomenology of sur-
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face smoothening involves asperity-abrasive contacts that exhibit viscous behavior. Here, the

asperity material flows in the form of thin (1 - 10 µm) fluid-like layers. Subsequent bridging

of these layers among neighboring asperities results in surface smoothening.

With the physical understanding of the surface smoothening process, we now return to

the original question of rapid characterization. In Chapter 4, we leverage the physics of the

finishing process to develop a copula-based random planar graph representation of the surface

morphology evolution gathered from in situ images. Via theoretical and experimental studies,

we showed that the graph spectrum served as efficient identifiers for endpoints, i.e., deciding

when to stop the polishing, almost an order of magnitude faster as compared to traditional

methods. We also showed that these representations are robust and efficient in capturing the

surface morphological changes as compared to standard surface roughness measures. Along

similar lines, another issue that we investigated was that of defect characterization. Chapter

5 presented an unsupervised image segmentation approach, with statistical consistency, by

iteratively identifying the optimal graph cut and learning the parameters of the graph cut

via maximum a posteriori estimation. Investigations into defect segmentation in noisy AM

images and brain MR scans demonstrated more than 90% improvement in the segmentation

performance as compared to state-of-the-art unsupervised methods.

Chapters 4 and 5 presented two different instances where analytical methods, particularly

graph-based methods, emerged as promising tools for characterizing advanced manufacturing

processes. We further extend this idea for the rapid characterization of the microstructures

of additive manufactured components. Chapter 6 presents a machine learning approach to

enable the rapid characterization of microstructures by tracking the acoustic emission signa-

tures from a scanning probe lithography process. The results from machine learning modeling

suggest that the AE signatures can capture microstructural change with over 95% accuracy,

therefore offering a novel route to characterize the microstructure rapidly. More interestingly,

our analysis also sheds light on the physical interpretation of the machine learning models.

In particular, our study showed that there are two prominent frequency ranges, 0.3-1 kHz
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and 30-50 kHz, that capture most of the dynamics of the lithography process.

7.2 Future works

Rapid characterization is emerging as one of the critical areas of research in smart manu-

facturing and is becoming crucial for accelerating materials discovery. Current characteriza-

tion techniques are so slow and cumbersome that they create a bottleneck in the process of

autonomous materials discovery, qualification, and inspection. The potential to synergisti-

cally characterize as-you-make could benefit the emerging paradigm of materials-on-demand

manufacturing–where the material properties, processing parameters, and geometric and

structural characteristics can be optimally generated to meet the desired functionality.

Efforts are underway to implement materials-on-demand manufacturing as a part of our

existing HM platform and demonstrate its potential in discovering materials with novel and

superior characteristics. Chapter 6 of this dissertation laid the foundation for in situ charac-

terization of bulk phase fractions of microstructures in titanium alloys. The authors would

like to extend this work from identifying bulk phase fraction analysis on the material surface

to detect change points or phase boundaries in microstructures with signals obtained during

micro-milling experiments. Micro-mill cutting has the ability to traverse across different mi-

crostructure as the tip of the tool is at the same length scale of the microstructures found

in stainless steel, providing a means for rapid characterization of materials using a hybrid

machine.

From modeling and theoretical standpoint, significant opportunities exist. For instance,

the methodology for consistent estimation of the max-flow may be extended for colored

images and three-dimensional objects. These are particularly attractive for applications in

medical imaging, e.g., CT scans. In addition to this, a more comprehensive Bayesian model

to simultaneously estimate the parameters used in the MRF prior can be investigated.

A critical question that arises from this research is the need to reduce experimental efforts

during the upstream advanced manufacturing processes. It holds the potential to accelerate

the experimentation process and enable rapid characterization. Towards this, future research
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directions will explore active learning approaches to search for optimal process conditions

while minimizing experimental costs. Venues for theoretical studies also exist in the active

learning literature as theoretical guarantees remain limited, for example, in the presence

of uncertainty (i.e., agnostic active learning) when strict improvements are not guaranteed.

Under such circumstances, we may seek Probably Approximately Correct (PAC) learning

models that offer theoretical guarantees on the generalization error with a very high proba-

bility.
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