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ABSTRACT

A linear sensor system is a system in which the sensor measurements have a linear relationship

to the source variables that cannot be measured directly. Linear sensor systems are widely deployed

in advanced manufacturing processes, wireless transportation systems, electrical grid systems, and

oil and gas pipeline systems to monitor and control various physical phenomena critical to the

smooth function of such systems. The source variables capture these complex physical phenomena

which are then estimated based on the sensor measurements. Two of the critical parameters to be

considered while modeling any linear sensor system are the degree of redundancy and reliability.

The degree of redundancy is the minimum number of sensor failures that a system can withstand

without compromising the identifiability of any source variables. The reliability of a sensor system

is a probabilistic evaluation of the ability of a system to tolerate sensor failures. Unfortunately, the

existing approaches to compute the degree of redundancy and estimate the reliability are limited in

scope due to their inability to solve problems in large-scale.

In this research, we establish a new knowledge base for computing the degree of redundancy

and estimating the reliability of large-scale linear sensor systems. We first introduce a heuristic

convex optimization algorithm that uses techniques from compressed sensing to find highly reliable

approximate values for the degree of redundancy.

Due to the distributed nature of linear sensor systems often deployed in practical applications,

many of these systems embed certain structures. In our second approach, we study these struc-

tural properties in detail utilizing matroid theory concepts of connectivity and duality and propose

decomposition theorems to disintegrate the redundancy degree problem into subproblems over

smaller subsystems. We solve these subproblems using mixed integer programming to obtain the

degree of redundancy of the overall system. We further extend these decomposition theorems to

help with dividing the reliability evaluation problem into smaller subproblems. Finally, we estimate

the reliability of the linear sensor system by solving these subproblems employing mixed integer

programming embedded within a recursive variance reduction framework, a technique commonly
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used in network reliability literature.

We implement and test developed algorithms using a wide range of standard test instances that

simulate real-life applications of linear sensor systems. Our computational studies prove that the

proposed algorithms are significantly faster than the existing ones. Moreover, the variance of our

reliability estimate is significantly lower than the previous estimates.
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1. INTRODUCTION

1.1 Linear Sensor Systems and Applications

Nowadays, inexpensive smart devices with multiple heterogeneous on-board sensors, networked

through wired or wireless links, are distributed in large numbers throughout a physical process or a

physical environment, providing real-time measurements, thereby enabling surveillance, monitor-

ing, and fault detection capabilities that could not be imagined a decade ago. Such a system-wide

deployment of sensing devices is known as distributed sensing and is considered one of the top

emerging technologies today. These high-resolution systems, if properly constructed, can play a

crucial role in managing and executing many critical industry-driven activities. In any of these

systems, the source variables, whose values trigger various actions, are estimated based on the

measurements gathered by the multitude of sensor nodes that monitor and control them. Malfunc-

tion of these systems typically result in enormous economic losses and sometimes even endanger

critical infrastructure and human lives.

In a linear sensor system, a linear model of the form

u = Ax+ e (1.1)

establishes the connection between the sensor measurements u ∈ Rn and the unknown source

variables x ∈ Rm that cannot be measured directly. The n × m matrix A called the design

matrix captures this linear relationship. We assumed A to be of full column rank, i.e., r(A) = m,

where r(.) denotes the rank function. The error term e ∈ Rn accounts for the sensor noise and is

considered to be normally distributed with mean 0 and covariance matrix σ2I .

Applications of linear sensor systems include diagnosing the process faults in panel assembly

processes [4] and multi-stage manufacturing processes [5, 6], estimating the location of source

variables in array signal processing [7], improving the stability of electrical power systems, and

calibration of wireless sensor systems [8] among others.
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(a) Fixture setup for a 2-D workpiece
(b) Optical coordinate measuring machine
for automotive body assembly

Figure 1.1: An Application of Linear Sensor System (Reprinted from [1])

In a multi-stage manufacturing process, linear sensor systems are used to identify the process

faults via source variables that capture deviations of locating pins during an assembly process. In

any such assembly process, the dimensional quality of the finished product is highly dependent on

the level of accuracy with which the parts are fixtured during the assembly. No matter how good

the fixture design is and how well laid out the locating pins and blocks are, over time the locating

elements may be worn, loose, or bent impacting the ability of fixture locators to position the parts

accurately during assembly. The impact of this could be a severe deterioration in the capability of

the fixture to accurately locate the panel (fixture faults) compromising the dimensional integrity

of the finished product [9]. Directly measuring the locating position of the locators during the

production process is costly, if not impossible [10]. With the increasing data collection capability

of coordinate sensor systems, recent researches have been focusing on utilizing the coordinate

sensing data to quickly identify root causes of product or process variations [1].

We can systematically and quickly identify fixture faults by developing a mathematical model

off-line from the geometric information about the product and fixtures so that manufacturing down-

time is reduced and product quality is improved. To illustrate the model conception, let us consider

a simplified panel assembly process as an example. Figure 1.1 (a), presented in [1], shows a 2-D

workpiece (a panel) held by a fixture consisting of a four-way locating pin (P1) and a two-way lo-

cating pin (P2). While P1 constrains the part motion in both the x- and z- directions, P2 constrains

the part motion in the z- direction. A deviation δP2(z) of locating pin P2 causes deviation of the

coordinate measurement data at points M1, M2, and M3. Although the exact relationship between
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the deviations of the locating pins and the coordinate measurements is nonlinear, the higher-order

terms can be neglected considering the pin displacements are small relative to the overall dimension

of the panel. Hence, based on the product and fixture geometry, a linear model can be constructed

to capture this relationship, and a diagnostic algorithm based on the least squares estimation theory

can then be used to automatically detect fixture faults.

Figure 1.2: A Three Station Assembly Process (Modified from [2])

The automotive body assembly process is an example of a panel assembly process. An in-line

Optical Coordinate Measuring Machine (OCMM) used in the quality inspection of automotive

body parts is illustrated in Figure 1.1 (b). Quality inspections are commonplace in most assem-

bly processes. To reach high product quality each finished product or sub-assembly is subject

to quality inspection, wherein the deviations of product dimensions from the nominal values are

measured using coordinate sensors. These coordinate measurement data can be used to identify

fixture faults by developing a linear model (1.1) that captures the linear relationship between these

measurements x and the deviations due to locating pin errors u (fixture faults). To implement this

model the design matrixA needs to be constructed off-line as discussed above.

Most large-scale manufacturing assembly processes happen in various stages. Figure 1.2,
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from [2], shows such a typical multi-station assembly process consisting of three stages. At Stage

1 two parts are assembled, and the resulting sub-assembly is transferred to Stage 2, where it is

further assembled with two more parts. The final assembly is inspected for quality at Stage 3.

Coordinate sensors are placed at all the stages to measure the dimensional deviation of parts. With

the assembly process happening in multiple states, the design matrix that captures the linear re-

lationship between the coordinate measurements and the fixture faults usually exhibit a bordered

block diagonal structure (Explained in detail in Section 2.1). We call such linear sensor systems

structured.

1.2 The Degree of Redundancy

Various statistical fixture fault diagnosis algorithms using coordinate sensor systems have been

developed in the literature for multi-stage manufacturing processes [11, 12, 13]. In most of these

algorithms, the source variables representing the fixture faults are commonly estimated using some

linear regression estimators like the Least Squares (LS) estimator. The LS estimate, denoted by

x̂LS , is given by

x̂LS = (ATA)−1ATu.

Sensor failures are a cause of major concern during any statistical estimation process. Take, for ex-

ample, the fault diagnosis system in a multi-stage assembly process. If a sensor cannot work prop-

erly, the estimated fixture faults based on the linear model can have an uncertainty much larger than

the design specification causing false alarms and misdetection of faults eventually compromising

the user’s confidence in the sensor system.

To obtain statistically accurate estimates for the source variables after accounting for sensor

failures, modeling errors in the design matrix A and errors due to sensor measurement noises,

linear sensor systems are often designed to have more number of sensor measurements than the

number of source variables to be estimated. With more measurements than the source variables,

one can always obtain a lower bound on the number of measurements necessary for uniquely

estimating x. Loosely speaking, the number of measurements beyond this lower bound is termed

4



the degree of redundancy of the linear sensor system.

Definition 1 (Degree or Redundancy [2, 14]). The degree of redundancy ofA, denoted by d(A) is

given by

d(A) = min{d− 1 : ∃A(−d) s.t. r(A(−d)) < r(A)}, (1.2)

whereA(−d) is the matrix obtained after deleting some d rows fromA.

When sensors corresponding to the rows indexed by d for which r(A(−d)) < r(A) fail catas-

trophically, i.e., when no useful information is obtained from these sensors, we run into an ill-posed

system with no unique estimation for source variables. The degree of redundancy is thus a mea-

sure of the sensitivity of a linear system towards sensor failures. Therefore, it is critical to estimate

the degree of redundancy of a linear sensor system during its design phase. The value of degree or

redundancy is also essential in developing robust linear estimators. Researchers have been inspired

to develop robust regression estimators due to the high sensitivity of traditional LS estimators to

sensor failures and measurement anomalies [15]. The study of robust statistical estimation remains

a hotbed of research in computational geometry.

We now briefly explain the basics of robust estimation. In robust statistics, the term finite-

sample breakdown point quantifies the robustness of a regression method. Let

Z = {(a1, u1), ..., (an, un)}

denote the collection of known information contained in A and u. Note that, ai defines the ith

row of A. Let T (Z) be a regression estimator over the data set Z . Suppose some k data points

of Z are contaminated such that no useful information can be obtained from these points. Let us

denote this contaminated data set by Z ′k. Then, T (Z ′k) denotes the regression estimator over Z ′k.

The maximum difference between T (Z) and T (Z ′k) is denoted by bias(k;T ), defined as

bias(k;T ) = sup
Z′k
‖T (Z)− T (Z ′k)‖,
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where the supremum is over all possible Z ′k for a given k and ‖.‖ represents the l2 norm [16, 17, 2].

The breakdown point of the estimator T , denoted by ε∗n(T,Z), is defined as

ε∗n(T,Z) = min

{
k

n
: bias(k;T ) is infinite

}
.

Informally, the breakdown point defines the minimal fraction of gross outliers or missing sensor

measurements that could cause an estimator to give completely wrong results [18, 16]. The higher

the breakdown point, the more sensor failures an estimator can tolerate, and hence the more robust

it is. So, designing estimators with a large breakdown point is fundamental to any robust estimation

process. For a linear sensor system, the breakdown point not only depends on the estimator but also

on the linear dependence relationship among the rows of the design matrix A. Mili and Coakley,

in [17], provided an upper bound for the breakdown point of such a system. They proved that the

maximum breakdown point that can be attained by any linear regression estimator, represented as

ε∗max,n, is

ε∗max,n =
bd(A)/2c+ 1

n
,

where bac denotes the largest integer ≤ a.

A well-studied robust linear regression estimator is the Least Trimmed Squares (LTS) estimator

developed by Rousseeuw in 1984 [19]. This estimator is much less sensitive to sensor failures and

measurement errors compared to the classic LS estimator [20]. An LTS estimator is determined

through

min
h∑
i=1

w2
(i),

where h is an integer trimming parameter, and w2
(i) = (ui − aix̂)2, i = 1, ..., n, are the squared

residuals such that w2
(1) ≤ w2

(2) ≤ ... ≤ w2
(n). This estimator can attain the maximum breakdown

point, ε∗max,n, if we choose the trimming parameter h ideally. More specifically, the maximum

breakdown point can be achieved by determining the parameter h such that

hL ≤ h ≤ hU ,
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where hL = bn−d(A)/2c and hU = bn−(d(A)−1)/2c [17]. The knowledge of d(A) is essential

in tuning this design parameter. Thus, finding the degree of redundancy is extremely important in

designing robust linear sensor systems.

If any m row vectors of A are linearly independent, we can directly find the degree of redun-

dancy as n −m. However, when there exists some intrinsic structure in the system, this value is

much smaller than n − m. Unfortunately, most linear sensor systems in practice inherit specific

structure and are often modeled by large design matrices. For general linear sensor systems, find-

ing the degree of redundancy is proven to be NP-hard [21, 22]. This is because the minimum

distance problem in binary coding, which was proved to be NP-hard by Vardy [21], can be re-

duced to a special case of finding the redundancy degree in a linear model [22]. This implies that

the existence of a polynomial-time solution method to find the redundancy degree in a general

sensor system is highly unlikely.

The complexity of the problem implies that the existence of a polynomial-time solution method

to find the redundancy degree in a general sensor system is highly unlikely. However, perhaps

because of the difficulty of the problem, previous work reporting computable algorithms to find

the redundancy degree is scarce, with a few exceptions. The only known algorithms to solve this

problem are a bound and decompose technique [22], a mixed integer programming (MIP) formula-

tion [14], and a hybrid algorithm that integrates the MIP scheme within the bound and decompose

framework [30]. However, none of these algorithms are applicable in large-scale problems due to

the general intractability of MIPs and the inefficiency of the bound and decompose approach.

In our research, we developed algorithms to find the degree of redundancy of large-scale linear

sensor systems, with an emphasis on solving for systems that exhibit a bordered block diagonal

structure (detailed in 2.1). We implemented and tested all the proposed algorithm over a wide range

of test instances inspired by real-life applications of linear sensor systems. Our main contributions

on the degree of redundancy problem can be summarized as follows:

• First, we propose a heuristic convex optimization algorithm to compute approximate val-

ues of the degree of redundancy. Our heuristic algorithm, denoted as 2-STAGEL1, utilizes
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compressed sensing fundamentals of sparse representation of signals to formulate a series of

l1-norm minimization problems in a specific framework reformulated as linear programs to

find extremely good solutions to the degree of redundancy problem (Section 3.1).

• Our computational experiments show that the average running time of 2-STAGEL1 was∼0.2

times that of the fastest existing algorithm in the literature. Moreover, for over 95% of the

tested instances, the degree of redundancy value from 2-STAGEL1 was also the optimal

solution (Section 7.1).

• We get the solution from 2-STAGEL1 to establish a starting solution (warm start solution) to

the existing MIP formulation [14] (denoted as MIPCO) and use warm start options in CPLEX

12.9 solver to boost the running time of MIPCO. The overall running time of the resultant

algorithm was ∼10% less than that of MIPCO (Section 3.2).

• To find the optimal solution to the degree of redundancy problem for large-scale structured

linear sensor systems, we utilize the equivalence of the degree of redundancy of the design

matrix A and the cogirth (explained in Section 2.2) of the vector matroid M [AT ] defined

over the columns of AT . We exploit the structural properties of linear sensor systems to de-

rive a decomposition theorem for the cogirth problem based on the properties of connectivity

of matroids (Section 4.1).

• We introduce a decomposition algorithm, referred to as DMIPCO, that uses the decomposi-

tion theorem to break the cogirth problem into subproblems and then solve these subprob-

lems using MIPCO (The algorithm MIPCO finds the cogirth of a given vector matroid) to

obtain optimal solution to the degree of redundancy problem (Section 4.2).

• We establish the equivalence of the cogirth problem over M [AT ] to the girth problem over

its dual matroid, and then develop a dual decomposition theorem for the girth problem utiliz-

ing the properties of connectivity and duality of matroids (Section 5.1). We then formulate

an MIP, denoted as MIPCIR, to solve the girth problem. With the help of the dual decompo-
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sition theorem, we disintegrate the girth problem into smaller subproblems and solve these

subproblems with MIPCIR to compute the degree of redundancy. We refer to this dual de-

composition algorithm as DMIPCIR (Section 5.2).

• We present a detailed computational analysis of our decomposition algorithms by comparing

their performance against the existing algorithms. Our algorithms report a running time

reduction of more than 50% for ∼75% of the tested instances with an average decrease of

more than 80% for some of the large instances (matrices with > 500 rows) compared to the

best running times reported by the other algorithms (Section 7.1).

1.3 The Reliability

The reliability is another important parameter that needs to be considered while designing a

linear sensor system. The reliability of a linear sensor system is the probabilistic evaluation of

the ability of the system to estimate source variables with a desired level of statistical efficiency

sustaining sensor failures. In this dissertation, we study the reliability of a linear sensor system

under catastrophic sensor failure. Under this assumption, each sensor is assumed to take only two

states, functional or failed. To define the reliability, we consider a (k out of n)−system, a well-

studied system in the literature, which comprises an n component system that works only if at least

k of the n components work [23].

Definition 2 (Reliability [10]). Consider a (k out of n)−linear sensor system with a design matrix

A and having n sensors. Assume the sensors fail (work) independently of each other with known

probabilities. Then, the reliability of the system is the probability that:

(a) r(A(−d)) = m where d denotes the row indices of failed sensors, and

(b) the number of rows inA(−d) is greater than or equal to k, where k ≥ m.

The system is said to work, if conditions (a) and (b) in Definition 2 are met. While condition (a)

guarantees a unique state estimation under catastrophic sensor failure, (b) ensures that a desired

level of statistical efficiency is achieved during the estimation process. Unfortunately, computing
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the reliability of a general linear sensor system belongs to a class of #P-complete problems, a

family of NP-hard problems not known to be in NP [10]. Estimation approaches has been used

in the literature to solve this problem.

A naive approach to estimate the reliability is to use the crude Monte Carlo method. This

approach is highly impractical and inefficient. In the network reliability literature, improved Monte

Carlo methods have been developed to increase the efficiency of system reliability evaluation,

among which the Recursive Variance Reduction (RVR) method offers the best performance [24,

25]. In its essence, the RVR method iteratively reduces the sample space of all possible sensor

states by obtaining combinations of states that guarantee either a system failure or a success and

then apply the crude Monte Carlo method over these reduced spaces. Yang and Chen [3] applied

the RVR technique to estimate the reliability of linear sensor systems. In their algorithm, which

we denote by RVRRREF, the reduction in the sample space is achieved by finding the minimal cut

sets (defined in Section 2.4) of the linear sensor system [10, 3]. However, the approach used in

RVRRREF to find the minimal cut sets is a row reduction method which is unsuitable for systems

with large design matrices. The inefficiency of this rank reduction method limits the scope of

reliability estimation problems that can be solved using RVRRREF.

Estimating the reliability of a linear sensor system is a crucial problem in data analytics with

a direct impact on the design and operation of such systems. As with the degree of redundancy

problem, our algorithms to estimate the reliability focuses on solving for linear sensor systems

that exhibit bordered block diagonal structure. To study the performance our algorithms, we im-

plemented and tested them over numerous linear sensor systems with structured design matrices

developed based on practical applications of such systems and compared then against the existing

RVRRREF algorithm proposed in [10]. The contributions on the reliability estimation problem of

this dissertation can be summarized as follows:

• We extend our decomposition theorem for cogirth to derive another decomposition theorem

that proposes a strategy to disintegrate the problem of finding all cocircuits (detailed in Sec-

tion 2.2) over the matroid M [AT ]. We call this theorem, the decomposition theorem for
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cocircuits (Section 6.1).

• We re-formulate the existing MIPCO algorithm for cogirth to find the minimal cut set of a

linear sensor system for which cetain sensor states are fixed as working or failed. We then

follow the RVR framework developed in [25, 3], and develop an algorithm, referred to as

RVRCO, that decomposes the re-formulated MIPCO algorithm into smaller subproblems uti-

lizing our decomposition theorem for cocircuits. RVRCO iteratively reduces the sensor state

space by obtaining minimal cut sets by solving these decomposed MIPs and then generates

samples over these reduced spaces to estimate the reliability.

• We propose a decomposition theorem to find all circuits over the dual matroid of M [AT ] by

extending the decomposition theorem for girth. We call this dual theorem, the decomposition

theorem for circuits (Section 6.2).

• We present a dual decomposition algorithm, denoted by RVRCIR, that embeds a re-formulated

MIPCIR algorithm within a decomposition framework based on the decomposition theorem

for circuits and then integrates this within the RVR framework to find minimal cut sets and

iteratively reduce the sensor state space thereby estimating the reliability of the given system.

• We show that, with a sample size of 1,000,000, our reliability evaluation algorithms improve

over the RVRRREF algorithm with a reduction in the variance of the estimated system relia-

bility by an average of ∼120 and an average decrease in the running time of ∼35% for the

tested instances (Section 7.2).

1.4 Dissertation Structure

The dissertation is organized as follows: In Chapter 2, we present a brief review of structured

linear sensor systems, matroid theory, and the existing algorithms for the degree of redundancy

and the reliability evaluation problems to the extent required for the results in this dissertation. We

introduce our heuristic convex optimization algorithm to to solve the degree of redundancy problem

in Chapter 3. In Chapters 4 and 5, we present our cocircuit and circuit based decomposition
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algorithms, respectively, to find the degree of redundancy utilizing the structural properties of

linear sensor systems. We present our algorithms to estimate the reliability of linear sensor systems

in Chapter 6. The focus of Chapter 7 is on the detailed results of our computational experiments

studying the performance of all the proposed algorithms. We conclude the dissertation in Chapter 8

along with some future research plans.
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2. NECESSARY BACKGROUND

2.1 Structured Linear Sensor Systems

Structured linear systems are pervasive in engineering applications. In many of these applica-

tions, the design matrix is not only structured but also relatively sparse (meaning that it has many

zero entries) [2] making its rows highly dependent. For a structured linear system, the design

matrixA commonly manifests a bordered block diagonal (BBD) structure given by

A =



A1

A2

.

.

.

Ar

S1 S2 . . . Sr



,

where the nonzero submatrices Ai, i = 1, ..., r form the blocks, and the submatrices Si, i =

1, ..., r represent the border rows. Each block submatrixAi is of size ni×mi, and border submatrix

Si is of size ns ×mi, where ns is the number of border rows.

Many structured linear systems, especially those comprising of subsystems or clusters linked

through an interconnecting element are likely to have a BBD design matrix. The design matrices

used in fault diagnosis of multi-stage assembly processes and robust calibration for localization in

clustered wireless sensor systems are all examples of systems with BBD structures. The physical

interpretation is that the blocks represent the subsystems (or clusters) and the border rows represent

the interconnecting elements (or between-cluster links); see Figure 2.1 for illustrations.

In many linear sensor systems, the BBD form of the design matrix may not be readily apparent

even if it is inherently a BBD matrix. In [2], a graph theory based procedure is presented to

transform such design matrices into a BBD form, given the matrix is sufficiently sparse. For the
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Figure 2.1: Relationship Between a Structured System and the BBD Form Matrix

scope of this dissertation, we assume that the design matrices are already expressed in the BBD

form.

Before moving ahead, let us introduce some of the notations that we use throughout this dis-

sertation. We denote by A[U ], the reduced matrix obtained by removing from A those rows and

columns containingAt, for t ∈ {1, 2, ..., r} \U . If |U | = t, then we callA[U ] a t-block submatrix

ofA. We also assume thatA[U ] is of size nu ×mu. Also, byA(D), we denote the reduced matrix

from A after removing rows which are not indexed by D, and by A(−D), the reduced matrix after

removing rows indexed by D.

2.2 Matroids: A Brief Review

In this section, we present a brief review of matroids. For more detailed understanding of

matroids, please refer [26]. Matroids are combinatorial structures that generalizes the notion of

linear dependence in a vector space.

Definition 3 (Matroid). A matroid M is an ordered pair (E, I) consisting of a ground set E(M)

and a collection I(M) of subsets of E(M) such that
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(i1) ∅ ∈ I,

(i2) if I1 ⊂ I2 and I2 ∈ I, then I1 ∈ I, and

(i3) if I1, I2 ∈ I and |I1| < |I2|, then there exists an element e of I2 − I1 such that I1 ∪ e ∈ I.

The members of I are defined as the independents (independent sets) of M . Two specific

examples of matroids are the vector matroid and the graphic matroid. A vector matroid M [B]

is defined over the matrix B, with E being the set of column labels of B and I being the set

of subsets of E that are are linearly independent. A graphic matroid M(G) is defined over an

undirected graph G = (V,E), not necessarily simple, having a non-empty set V (G) of vertices

and a multiset E(G) of edges. The set E(G) forms the ground set of M(G), with I consisting of

the subsets of E(G) that does not form a cycle.

Any maximal independent set of a matroid forms its base. We denote, by B(M), the collection

of all bases of M(E, I). For every matroid there is an associated dual matroid M∗ defined over

the same ground set E with bases

B(M∗) = {E −B : B ∈ B(M)}

The independents I∗ of M∗ is given by

I∗ = {X | X ⊂ E such that ∃ B ∈ B(M) with X ∩B = ∅}.

The independents and bases of M∗ are called the coindependents and cobases of M , respectively.

X is a spanning set in M if there exists a B ∈ B(M) such that B ⊆ X .

The rank of a matroid M is the cardinality of its bases. Let X ⊆ E, then the rank of X is given

by

r(X) = max {|Y | : Y ⊆ X, Y ∈ I}.

Thus, every base of M has a cardinality equal to its rank. The rank of M∗, denoted by r(M∗), is
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given by

r(M∗) = |E| − r(M).

The two most important operations over matroids that we use in this dissertation are the restric-

tion and contraction of matroids.

Definition 4 (Restriction (Deletion)). Given an X ⊆ E(M) such that I|X = {I ⊆ X : I ∈ I},

the pair (X, I|X) forms a matroid (denoted by M |X or M \E −X), defined as the restriction of

M to X or the deletion of E −X from M .

Definition 5 (Contraction). Given a matroid M and an X ⊆ E(M), the contraction of X from M

(the contraction of M to E −X), denoted as M/X , is defined as (M∗ \X)∗.

In summary, the contraction is the dual of deletion.

Now, let us present two fundamental lemmas which are direct results of the independent aug-

mentation axiom and form the basis of all our decomposition theorems. The proofs are presented

in [26, 22].

Lemma 1. Let I be an independent set in M . Then there exists a base B containing I in M .

Lemma 2. An X ⊂ E is an independent set in M if and only if E −X is a spanning set in M∗.

Lemma 2 links the independent sets of a matroid to the spanning sets of its dual.

Definition 6 (Circuit). A circuit is a minimal dependent set in M .

We represent the collection of circuits in M by C(M).

Definition 7 (Cocircuit). A cocircuit is a minimal codependent set in M (a minimal dependent set

in M∗).

By C∗(M) (or C(M∗)) we denote the collection of cocircuits in M .

Definition 8 (Girth). The cardinality of the smallest circuit in M is termed as the girth, denoted as

g(M).
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Definition 9 (Cogirth). The cogirth, deonted as g∗(M), is the cardinality of the smallest cocircuit

in M .

The following lemma, derived from Lemma 2, helps to establish the equivalence between the

degree of redundancy and cogirth.

Lemma 3. If C∗ is a cocircuit in M , then

i. r(M \ C∗) < r(M), and

ii. for any X ⊂ C∗, r(M \X) = r(M).

Proof. C∗, being a cocircuit, is a minimal codependent set inM . Hence, by Lemma 2, E(M)−C∗

is not a spanning set in M . Any X ⊂ C∗ is a coindependent set in M . Therefore, E(M)−X is a

spanning set in M .

Based on Lemma 3, the degree of redundancy, d(A), can now be defined as

d(A) = g∗(M [AT ])− 1

= min
D∈C∗(M [AT ])

|D| − 1. (2.1)

In (2.1), the matroid is defined over AT instead of A. This is because we are interested in the

linear dependence relationship among the rows of the design matrix A. g∗(M [AT ]) denotes the

cogirth of M [AT ], and C∗(M [AT ]) denote the collection of cocircuits in M . Hence, the degree of

redundancy ofA is equal to the cogirth over M [AT ] minus one.

Two other operations that we need to discuss are the truncation and elongation of matroids.

Definition 10 (Truncation). The k-truncation of a matroidM = (E, I) is a matroidM k̄ = (E, I k̄)

such that for any V ⊆ E, V ∈ I k̄ if and only if |V | ≤ k and V ∈ I.

If M is an m× n vector matroid, then M k̄ is a k × n matroid such that for every I ⊆ {1, 2, ..., n}

of size at most k, the set of columns corresponding to I in M has rank |I| if and only if the

corresponding columns in M k̄ has rank |I|.
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Definition 11 (Elongation). The l-elongation of M = (E, I), where l > r(M), is the matroid

M l = (E, I l) such that V ⊆ E is a base of M l if and only if it contains a base of M and |V | = l.

We can easily see that the rank of the matroid M l is l. Note that, the ground sets of M k̄ and M l

are the same as that of M . The following remark connects these two notions of a matroid.

Remark 1. The l-elongation of M is the dual of the (n− l)-truncation of M∗, where n is the size

of the ground set of M .

The proof of Remark 1 directly follows from the definitions of truncation and elongation. For

details, please see [27]

Let us detail some of the properties of structured matroids, which are extensively used in this

dissertation. A matroid M is disconnected if and only if, for some proper non-empty subset T of

E(M),

I(M) = {I1 ∪ I2 : I1 ∈ I(M |T ), I2 ∈ I(M |(E − T ))}.

This property implies that

r(M) = r(M |T ) + r(M |E − T ), and (2.2)

r∗(M |T ) = r((M |T )∗) = |T | − r(M) + r(M |E − T ). (2.3)

Naturally, (2.2) and (2.3) imply

r(M |T ) + r∗(M |T ) = |T |. (2.4)

Hence, connectivity is self-dual. We can thus conclude that M is connected if and only if M∗ is

connected [22].

LetM1,M2, ...,Mr be matroids on disjoint ground setsE1, E2, ..., Er, respectively. Let I1, I2, ..., Ir

be the collection of independents inM1,M2, ...,Mr, respectively. SupposeM(E, I) is the matroid
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with the ground set

E = E1 ∪ E2 ∪ ... ∪ Er,

and independents

I = {I1 ∪ I2 ∪ ... ∪ Ir : Ij ∈ Ij for all j ∈ {1, 2, ..., r}}.

Then, we call M1,M2, ...,Mr as the direct sum components of M and represent M by

M = M1 ⊕M2 ⊕ ...⊕Mr.

The direct sum has the following properties:

C(M1 ⊕M2 ⊕ ...⊕Mr) = C(M1) ∪ C(M2) ∪ ... ∪ C(Mr), (2.5)

(M1 ⊕M2 ⊕ ...⊕Mr)
∗ = M∗

1 ⊕M∗
2 ⊕ ...⊕M∗

r , (2.6)

C∗(M1 ⊕M2 ⊕ ...⊕Mr) = C∗(M1) ∪ C∗(M2) ∪ ... ∪ C∗(Mr). (2.7)

It is a straightforward task to prove (2.5) and (2.6). Then, (2.7) directly follows from (2.5) and

(2.6). These equations show that the girth and cogirth of a disconnected matroid is the minimum

of the girths and cogirths over its direct sum components, respectively.

Now consider a BBD structured design matrix A, with S being the row indices of the border

submatrix [S1 S1 ... Sr]. By notation AT \ S, let us denote the rest of the matrix AT after the

removal of columns indexed by S. Then the deletion of S from M [AT ],

M [AT ] \ S = M [AT \ S] = M [AT
1 ]⊕M [AT

2 ]⊕ ...⊕M [AT
r ]. (2.8)

The first inequality in (2.8) can be found in [26], and the second inequality follows directly from

the direct sum property of a connected matroid. We call S a separating set because the removal of

indices S from M [AT ] makes the resultant matroid disconnected. For a BBD structured matrixA
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with no border rows, the cogirth, g∗(M [AT ]), is merely the smallest value of the cogirth among the

direct sum components of M [AT ]. However, most BBD structured design matrices have border

rows, the presence of which makes the computation of g∗(M [AT ]) complicated.

The matroid representation of a matrix is not unique. The RREF of AT , denoted as AT
s =

[Im|D], where Im is the m×m identity matrix andD is some m× (n−m) matrix, provides the

standard representative matrix for M [AT ]. In theory, M [AT ] = M [AT
s ]. AT

s can be obtained by

following a Gaussian elimination approach with a partial pivoting which runs inO(m2n) time [28].

Partial pivoting, in general, generate standard representative matrices free of significant round-off

errors so that M [AT ] = M [AT
s ] still holds in a practical setting [29].

For a vector matroid, we can construct an explicit representation for its dual using the standard

representative matrix as follows:

Given the standard representative matrix AT
s of M [AT ], the standard representative matrix of

M∗[AT ] is given by the (n−m)× n matrixH = [−DT |In−m].

Note that, the dual matroidH is defined over the same We can now associate the degree or redun-

dancy ofA to the girth of the dual matroid M∗[AT ] as:

d(A) = g∗(M [AT ])− 1 = g(M [H ])− 1. (2.9)

The second equality in 2.9 is based on the fact that the cogirth of a matroid is also the girth over its

dual.

Let us assume that the separating set S of the BBD matrixAT (sinceA is BBD structured,AT

will also be BBD structured) is coindependent, i.e., r(M [AT \ S]) = r(M [AT ]). Then, the dual

H = [−DT |In−m] manifests a BBD structure like
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H =



H1

H2

.

.

.

Hr

R1 R2 . . . Rr Ins



,

with nonzero 1-block submatrices Hi, i = 1, ..., r and a border submatrix [R1 ... Rr Is], where

Ins is the ns × ns identity matrix. Each Hi is of size (ni − mi) × ni and Ri is of size ns × ni.

Assuming that the column indices of AT and H are labeled in the same order, the separating set

S ofAT also gives the column indices of Ins inH .

We can easily dualize (2.8) using duality of matroids to decomposeH into its connected com-

ponents as

M [H ]/S = M [H/S] = M [H1]⊕M [H2]⊕ ...⊕M [Hr], (2.10)

whereH/S represents the matrix obtained by contracting columns indexed by S fromH . Hence,

the contraction of S from M [H ] makes it disconnected. However, unlike deletion, finding the

contraction of a vector matroid is more involved.

Let e be the label of a non-zero column of M [H ]. Then M [H ]/e is obtained as follows:

(i) transformH by pivoting the column indexed by e to a unit vector.

(ii) delete the row and column containing the unique non-zero entry in e fromH .

It is easy to see that applying the above approach to contract S from the BBD structured matrix

H makes it disconnected.
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2.3 Existing Approaches to Find the Degree of Redundancy

Let us briefly review the existing algorithms to find the degree of redundancy, d(A), of a linear

sensor system. A naive approach for finding the degree of redundancy is to exhaustively test the

rank of all matrices obtained by deleting some d number of rows from A, starting with a value of

1 until a rank reduction is obtained. Then, the value d− 1 obtained upon termination gives d(A).

This “brute force” procedure is undoubtedly impractical.

Cho et al. [2] took advantage of the BBD structure ofA to decompose it into disjoint submatri-

ces and performed rank-testing on these smaller matrices to find d(A). They proved the following

decomposition theorem using properties of the matroids to achieve this decomposition. We call

this theorem, the bound and decompose theorem.

Theorem 1 (Bound and Decompose Theorem [2]). For any t ∈ {1, ..., r},

if g∗(M [AT ]) ≥ t+ 1

t
ns − 1, then

g∗(M [AT ]) = min{g∗(M [A[U ]T ]) : U ⊆ {1, 2, ..., r} and |U | = t}.

According to this theorem, if the cogirth, g∗(M [AT ]), is known to be greater than or equal to the

so-called “decomposition bound” given by t+1
t
ns − 1, its value can be obtained by finding the

minimum of the cogirths over all the t-block submatroids of M [AT ]. The bound and decompose

algorithm, presented in [2], takes advantage of Theorem 1 to decompose the design matrix into the

smallest possible submatrices allowable based on the decomposition bound. Then, the degree of

redundancy of A can be computed by rank testing these submatrices. The algorithm (denoted by

BDNEW) is presented below.

BDNEW: Compute the degree of redundancy ofA

Input: MatrixA ∈ Rn×m with blocksA1, ...,Ar, and a separating set S.

Step 0. d← 1
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Step 1. if d < d r
r−1

ns − 1e,

t← r

else t← d ns

d−ns+1
e

Step 2. for all U ⊆ {1, 2, ..., r}, |U | = t:

if ∃ an index D ⊆ {1, 2, ..., n}, |D| = d such that r(A[U ](−D)) < r(A[U ])

stop, and return d− 1

Step 3. d← d+ 1 and go to Step 1

The bound and decompose algorithm tests the ranks of matricesA(−D)’s until d reaches d r
r−1

ns −

1e, the bound that permits rank testing over (r−1)-block submatrices. As the value of d increases,

the bound allows for rank testing smaller and smaller submatrices. At each iteration, we increment

d by 1 and continue rank testing the smallest possible submatrices based on the decomposition

bound until a rank reduction is observed. The value returned by the BDNEW algorithm is the

degree of redundancy d(A). In the original version of this algorithm (presented in [2]), the value

of t computed in Step 1 gives the minimum number of matrices to be rank-tested based on the

decomposition property. In [30], Bansal et al. modified this algorithm to find a t that minimizes

the size of submatrices,A[U ]s’, to be rank-tested. We presented this modified version of the bound

and decompose algorithm as it is computationally efficient compared to the previous one presented

in [2]. Hence, we denote this algorithm by BDNEW. Note that, the condition in Step 1 of

BDNEW finds a t that minimizes the submatrix size.

Despite its clear advantage over the exhaustive testing approach, the BDNEW algorithm has

many limitations. For one, the number of submatrices that need to be rank tested can get expo-

nentially large for matrices with large cogirths. For another, if the number of border rows (ns) is

large, the size of the submatrices to be rank tested becomes considerably large. As an example,

consider a design matrix with just three border rows and six blocks. Until d ≥ 3, no decomposition

is possible. Therefore, a total of n +
(
n
2

)
rank testings need to be performed over the matrix A
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until d reaches 3, provided no rank reduction is observed. When d reaches 3, 3-block submatrices

can be tested based on the decomposition bound. But, there are 20 such 3-block submatrices. And

for each of them
(
nu

3

)
rank testings need to be done in the worst case, where nu is the number of

rows in a chosenA[U ]. 1-block matrices can be rank tested only when d reaches 5. Evidently, this

decomposition approach is not effective when dealing with large scale problems.

Later, Kianfar et al. [14] formulated the redundancy degree problem as a 0-1 MIP. Their for-

mulation, denoted as MIPCO where ‘co’ stands for the cocircuit, finds the smallest cocircuit of an

input matrix A. The MIPCO algorithm is based on the fact that any rank deficient matrix has a

nonzero null space. Their formulation is presented below.

MIPCO: Smallest Cocircuit Problem ([14])

Given a linear sensor system defined by the design matrixA

g∗(M [AT ]) = min 1α (2.11)

subject to −α ≤ Ax ≤ α (2.12)

−1 + 2z ≤ x ≤ 1, 1z = 1 (2.13)

x ∈ Rm, α ∈ {0, 1}n, z ∈ {0, 1}m (2.14)

In the MIPCO formulation, 1 stands for a vector of all ones. The algorithm finds the cogirth

g∗(M [AT ]) as follows. The constraint set (2.12) searches for a nonzero x ∈ Rm such that the

number of rows, ai’s, for which aix 6= 0 is minimized. The constraints (2.13) guarantee a nonzero

solution x. The objective function (2.11) minimizes the number of αi’s set to 1. Any αi corre-

sponding to the constraint aix 6= 0 needs to be set to 1. The set of indices i for which αi = 1

gives the smallest cocircit of M [AT ], and hence d(A) = 1α − 1. The row vectors (ai’s) are

scaled such that ‖ai‖1 =
∑m

j=1 |aij| = 1, to ensure the feasibility of constraints (2.12). Although

MIPCO ignores any structure inherent in A, it is shown in [14] that for moderate instances with
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large decomposition bounds MIPCO outperforms BDNEW considerably. However, MIPs can be

computationally expensive, particularly for large-scale problems. (For more on mixed integer pro-

gramming, please refer [31].)

In [30], Bansal et al. proposed a hybrid algorithm, represented as BDMIF, by integrat-

ing a mixed integer feasibility (MIF) checking algorithm based on MIPCO with the bound-and-

decompose framework presented in [2]. BDMIF capitalizes on the benefits of both bound-and-

decompose approach and MIP. In essence, BDMIF uses Theorem 1 to break the problem into

subproblems and replaces the rank testing of submatrices, A[U ]s’, with an MIF component that

executes MIPCO over these submatrices. The formulation for MIF differs from MIPCO in that the

objective function value (2.11) is fixed to a constant integer value d. This algorithm is presented

below.

BDMIF: Compute the degree of redundancy ofA

Input: MatrixA ∈ Rn×m with blocksA1, ...,Ar, and a separating set S.

Step 0. d← 1

Step 1. if d < d r
r−1

ns − 1e,

t← r

else t← d ns

d−ns+1
e

Step 2. for all U ⊆ {1, 2, ..., r}, |U | = t:

Step 2.1 Solve the MIF problem defined as follows:

min 1α = d (2.15)

subject to −α ≤ A[U ]x ≤ α

−1 + 2z ≤ x ≤ 1, 1z = 1

x ∈ Rmu , α ∈ {0, 1}nu , z ∈ {0, 1}mu
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Step 2.2 if ∃ someA[U ] for which MIF has a feasible solution

stop; return d− 1

Step 3. d← d+ 1 and go to Step 1

As with the BDNEW algorithm d is initially chosen as 1 and is incremented until a submatrixA[U ]

is found for which MIF has a feasible solution. The feasibility is checked by forcing the objective

function (2.15) to take a value equal to d. Until the first decomposition bound d r
r−1

ns − 1e is

reached, the MIF component is solved for the entire design matrix A. As d increases, we solve

MIF over the smallest permissible submatrices based on Theorem 1. For any d, if MIF finds

a feasible solution, we terminate with d(A) = d − 1. The row vectors (a[U ]i’s of A[U ]) are

normalized so that ‖a[U ]i‖1 =
∑mu

j=1 |a[U ]ij| = 1. Clearly, BDMIF provides some computational

advantage by capitalizing on the benefits of both BDNEW and MIPCO. However, the size and the

number of subproblems to be solved still dependents on Theorem 1. This dependence, coupled

with the inefficiency of MIPs when executed over large inputs, makes this algorithm less effective

for design matrices with thick borders, or large blocks, or even matrices with a large number of

blocks.

The inefficiency of the existing algorithms in solving many large-scale problems of practical

significance has inspired us to design new and improved algorithms to solve this problem.

2.4 Existing Approaches for Reliability Evaluation

The reliability of a linear sensor system is a probabilistic evaluation of the ability of the system

to withstand sensor failures. We study the reliability of the well-known (k out of n)-linear sensor

system S consisting of a set of sensors, s1, s2, ..., sn, designed over the matrixA. We assume each

sensor si to function (or fail) independently of each other. We also assume that the sensor failures

are catastrophic, meaning no useful information can be derived from the failed sensors.

Each sensor si has only two states: 0 if the sensor works, and 1 if the sensor fails. Let pi

denote the working probability of sensor si. Define I(.) to be the indicator function: I(True) = 1
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and I(False) = 0. If the r.v. vi denotes the state of the sensor si, then

vi = I(si works).

Now, the component (node) state vector v = (v1, v2, ..., vn) determines the state of the system S.

Define the r.v. φS as

φS = I(S works).

φS can be determined based on the reliability definition in Section 2.4. If we define D as

D = {i : vi = 0, i = 1, ..., n},

then, by the reliability definition, φS = 1 if and only if r(A(−D)) = m and n − |D| ≥ k. The

reliability r of the system S can be computed as

r = Pr{φS = 1} = E(φS), (2.16)

where Pr(.) denotes the probability and E(.) denotes the expectation of a r.v.

Figure 2.2: (a) Sample Space for Crude Monte Carlo Method; (b) Reduced Sample Space
(Reprinted from [10])
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Let Ω be the set of all possible component state vectors v. To find the exact value of the

reliability, one needs to find all the component state vectors that result in the system failure (or

success). For a large-scale system, the sample space Ω of all component state vectors is very

large because it consists of 2n elements. The only practical option is to estimate the reliability.

A simple approach for estimating the reliability r of system S is to use the Crude Monte Carlo

(CMC) method. The unbiased CMC estimate r̂c of r can be obtained by generating N independent

samples v(j), j = 1, ..., N , of v, and then calculating the sample mean r̂c as

r̂c =

∑N
j=1 φ

(j)
S

N
,

where φ(j)
S is the system state for sample j. The variance of the estimator r̂c is given by

Vc =
V ar(φS)

N
=
r(1− r)
N

.

The unbiased estimator of this variance is

V̂c =
1

N(N − 1)

N∑
j=1

(φ
(j)
S − r̂c)

2.

A well known drawback of CMC is the large number of samples required to have an accurate

estimate of r when the sensor system is highly reliable due to the extremely small percentage of

samples that contribute to system failure. This is clearly depicted in Figure 2.2 (a). In the figure,

Ω0 represents the set of all component state vectors that correspond to sensor failure. Ω0 is only a

small portion of Ω if the system is highly reliable. As a result, one will have to take a very large

number of random samples from Ω to get sufficient number of samples in Ω0.

In the network reliability literature, an improved Monte Carlo method called the Recursive

Variance Reduction (RVR) technique is developed to estimate the reliability. This RVR method

has been shown to outperform many other enhanced Monte Carlo methods for network reliabil-

ity [25]. The main idea of the RVR method is to obtain sets of component state vectors that
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guarantee a system failure or success before Monte Carlo sampling. This is illustrated in Fig-

ure 2.2 (b). The set ΩA in Figure 2.2 (b) contains known component state vectors that ensure the

system is working. Another set ΩB contains component state vectors that result in system failure.

If we can predetermine ΩA and ΩB , then the effective sample space for Monte Carlo sampling

is reduced to ΩC = Ω − (ΩA + ΩB). As we will see later, the larger the probability of such

predetermined component state vectors, the lesser the variance of the reliability estimate. In the

RVR approach, we recursively reduce the sample space and then perform Monte Carlo sampling

over these smaller sample spaces to estimate the reliability until a desired level of accuracy is

achieved. Yang and Chen ([3]) extended the RVR approach to the linear sensor system reliability

estimation problem. We now discuss the basics of the RVR method, however, with a more rigorous

mathematical approach than in [3].

When applying the RVR framework to a linear sensor system, predetermined component state

vectors that ensure a system failure are obtained by finding the minimal cut sets of the system.

Definition 12 (Minimal Cut Set [10, 3]). Given a linear sensor system with some sensor states

fixed (either working or failed), a minimal cut set is defined as the minimal set of sensors among

the remaining ones whose simultaneous failure results in the system failure.

A minimal cut set of a system S with no fixed sensor states can be obtained by finding a cocircuit

over the design matrixAT , as detailed in the following remark. This remark follows directly from

the reliability definition in Section 2.3.

Remark 2. Let C∗ be a cocircuit over M [AT ]. If |C∗| ≤ n− k + 1, then C∗ is a minimal cut set

of S. Otherwise, each subset of C∗ with a cardinality of n− k + 1 is a minimal cut set.

Proof. Assume that |C∗| ≤ n − k + 1 and let D ⊂ C∗. Then, r(A(−D)) = r(A) and the number

of rows in A(−D) ≥ k. Consequently, the simultaneous failure of sensors corresponding to any

proper subset of C∗ cannot result in the system failure and hence C∗ is a minimal cut set of S.

Now consider the case when |C∗| > n − k + 1. Then, any D′ ⊂ C∗ with cardinality equal to

n − k + 1 is such that the number of rows in A(−D′) < k, causing system failure. Also, any each
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proper subset of D′ will not result in a system failure. This makes D′ a minimal cut set.

Then, Remark 3 follows directly from the property of elongation of matroids.

Remark 3 ([10]). For a linear sensor system S over A, each of its minimal cut sets corresponds

to a cocircuit of Mk[AT ], the k-elongation of matroid M [AT ].

From Section 2.2, we know that the rank of a k-elongated matroid Mk[AT ] is k. Then, one can

easily interpret why any D′ with |D′| = n− k+ 1 as defined above will be a cocircuit in Mk[AT ].

For a detailed proof, please refer to [10]. Now, consider a system S in which some sensors are

fixed as working or failed. For such a system, the remark below helps to find its minimal cut sets.

Remark 4 ([10]). For a linear sensor system S over A, with W indicating the sensors fixed as

working and F indicating those fixed as failed, each of its minimal cut sets corresponds to a

cocircuit of the updated system defined over Mk−|W |[(AT/W ) \ F ].

M [(AT/W ) \ F ] is the vector matroid obtained by contracting and deleting columns indexed by

W and F , respectively, from M [AT ]. Also, Mk−|W |[(AT/W ) \ F ] is the (k − |W |)-elongation

of M [(AT/W ) \ F ]. Remark 4 says that the minimal cut sets of a (k out of n)-system S over

M [AT ] with certain fixed sensors is also the minimal cut sets of a (k− |W | out of n)- system over

M [(AT/W ) \ F ]. Therefore, to account for failed sensors, one needs to delete the corresponding

columns fromAT , and to account for working sensors, those columns needs to be contracted from

AT . For a more detailed understanding of Remark 4, please refer [10].

Now, let us understand the mechanics behind the RVR approach. Consider a minimal cut set

in S given by G = {s<1>, s<2>, ..., s<h>}, with {v<1>, v<2>, ..., v<h>} being the corresponding

component state vector. Define

Ω0 = {v : v<t> = 0, t = 1, ..., h}, and (2.17)

Ωt = {v : v<l> = 0, l = 1, ..., t− 1, v<t> = 1} for t = 1, ..., h. (2.18)
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Then Ω =
⋃h

t=0
Ωt. Let

Q0 = Pr{Ω0} =
h∏
t=1

(1− p<t>). (2.19)

Define fG as the discrete r.v. with pmf

fG(t) =
Pr{s<1>, ..., s<t−1> is failed, and s<t> is working}

1−Q0

, t = 1, ..., h

= Pr{Ωt|Ω0c} =
p<t>

∏t−1
l=1(1− p<t>)

1−Q0

Let SGt , t = 1, ..., h, be the system derived from S in which the columns corresponding to sensors

s<1>, ..., s<t−1> inAT are deleted, and the column corresponding to s<t> is contracted. Hence, the

system SGt is defined over the matroid M [(AT/W ) \ F ], where W denotes the indices of deleted

sensors and F that of the contracted sensors. ByAT
(−F )/W , let us denote the reduced matrix that is

represented by the matroid M [(AT/W ) \ F ]. We define p(SGt) = Pr{Ωt|Ω0c}.

For a system S, let the r.v. Ξ(S) be defined as:

Ξ(S) =


1 if S works

0 if S fails

Qc
0.
∑h

t=1 I(fG=t).Ξ(SGt) otherwise

(2.20)

Then,

E(Ξ(S)) = r, and

V ar(Ξ(S)) = r(1− r −Q0) ≤ r(1− r) = V ar(φS). (2.21)

Hence, E(Ξ(S)) is also an unbiased estimator of r, however, with a smaller variance. From (2.21),

we can easily realize that a large value of Q0, i.e., a minimal cut set with large failure probability,
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results in a more accurate estimate of reliability.

Now, let us consider generating a sample v(j) from the reduced space (Ω−Ω0). Note that, v(j)

belongs to some Ωt, t = 1, ..., h, defined in (2.18). Generate the trial Ξ(S)(j) based on (2.20) as:

Ξ(S)(j) = Qc
0.Ξ(SGt)

(j), (2.22)

where Ξ(SGt)
(j) is a trial of Ξ(SGt). Let

φSGt
= I{SGt works}.

If the system SGt is deterministic, i.e., if φSGt
= 1 or 0, then (2.22) returns with Ξ(S)(j) = Qc

0.φSGt
.

Now consider generating N independent trials Ξ(S)(1), ...,Ξ(S)(N) of Ξ(S). Then,

Ξ̂(S) =

∑N
j=1 Ξ(S)(j)

N

is an unbiased estimator of r. We can represent this recursive structure by a tree where the root

corresponds to the system S under study, each internal node corresponds to a recursive call, and

the leaf nodes correspond to a deterministic system. Since the number of sensors in the system

gets reduced by at least one at each recursive call, the height of the tree is O(n) [25]. However,

this recursive approach to estimate relaibility is not workable for large systems.

A better implementation of the RVR approach is presented in [25] and is used by Yang and

Chen in [3]. LetN(SGt) be the binomial r.v. with parametersN and p(SGt). Since
∑h

t=1 N(SGt) =

N and
∑h

t=1 p(SGt) = 1, the random vector
(
N(SG1), ..., N(SGh

)
)

has a multinomial distribution

given by

M
(
N, p(SG1), ..., p(SGh

)
)
.
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Then, the recursive r.v.

ψ1(S,N) =



0 if N = 0

N if S works

0 if S fails

Qc
0.
∑h

t=1 ψ(SGj
, NSGj

) otherwise

has the same distribution as
∑N

j=1 Ξ(S)(j). Now we can use the unbiased estimator (ψ1(S,N))/N

instead of Ξ̂(S) to estimate r.

The unbiased estimator of V ar
(
Ξ̂(S)

)
:

V̂Ξ(S) =
1

N.(N − 1)

N∑
j=1

(
Ξ̂(S)− Ξ(S)(j)

)2

=
1

(N − 1)

(
1

N

N∑
j=1

(
Ξ(S)(j)

)2 −
(
Ξ̂(S)

)2
)
.

It can be shown that the recursive r.v.

ψ2(S,N) =



0 if N = 0

N if S works

0 if S fails

(Qc
0)2.

∑h
t=1 ψ2(SGt , NSGt

) otherwise

has the same distribution as
∑N

j=1

(
Ξ(S)(j)

)2. Then an unbiased estimator of V ar
(
Ξ̂(S)

)
is given

by:

V̂ψ,Ξ(S) =
1

N − 1

[
ψ2(S,N)

N
−
(
ψ1(S,N)

N

)2
]
.

This modified RRV approach provides a more viable alternative to estimate the reliability and the

associated variability. In practice, V ar
(
Ξ̂(S)

)
is commonly estimated using the sample variance
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given by
1

N − 1

[
ψ2(S,N)− ψ1(S,N)2

N

]
.

We now present the RVR approach in [3] that applies the above RVR framework to the linear

sensor system reliability evaluation problem. At first, let us detail the approach by which mini-

mal cut sets are obtained in [3]. Given the indices W and F of the working and failed sensors,

respectively, the minimal cut sets of S are computed in [3] as follows. We denote this approach by

RREFCO.

RREFCO: Find the minimal cut set of a linear sensor system

Step 1. getAT
(−F )/W with n̄ = n− |W | − |F | and k̄ = k − |W |

Step 2. find the RREF ofAT
(−F )/W

Step 3. find a set of sensors G that correspond to the nonzero elements in a nonzero row of

AT
(−F )/W

Step 4. if |G| ≤ n̄− k̄ + 1, then G is a minimal cut set of S

Step 5. else each subset of G with a cardinality of n̄− k̄ + 1 is a minimal cut set

The critical step in RREFCO is the Step 3 that finds a cocircuit of M [(AT/W ) \ F ]. This Step

applies the following observation to find a cocircuit.

Observation 1. The set of sensors that correspond to the nonzero elements in any nonzero column

of a standard representation (RREF) of a vector matroid gives a cocircuit of the matroid.

Please refer [3] for the proof. Specifically, Step 3 of RREFCO finds a cocircuit over AT
(−F )/W .

Steps 4 and 5 finds a minimal cut set based on the cocircuit from Step 3. Let us now present the

RVR algorithm algorithm, which we denote as RVRRREF, proposed in [3].

RVRRREF: Estimate the System Reliability [3]

Given a sensor system defined by the matrix A having n sensors S = (s1, s2, ..., sn) with working

probabilities pi, i = 1, ..., n. A sample size of N is chosen. Set W = F = ∅.
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Step 1. Execute the following procedure to calculate α and β

Procedure P (W,F,N):

1. if N = 0

α = β = 0; return

2. else if r(A(W )) = m and |W | ≥ k

α = β = N ; return

3. else if r(A(−F )) < m or n− |F | < k

α = β = 0; return

4. find a minimal cut set G = {s<1>, s<2>, ..., s<h>} of S using RREFCO

5. divide Ω into Ω0,Ω1, ...,Ωh based on (2.17) and (2.18). Define Q0 = Pr{Ω0}

6. generate a trial
(
N(SGt), ..., N(SGh

)
)

of the r.v. with multinomial distribution

M
(
N, p(SG1), ..., p(SGh

)
)

, where p(SGt) = Pr{Ωt|Ωc
0}

7. for each t ∈ {1, 2, ..., h}:

7.1 set Wt = W ∪ s<t> and Ft = F
⋃t−1
l=1 s<l>

7.2 call procedure
(
P (Wt, Ft, N(SGt)

)
to calculate αt and βt

Step 2. get α = (1−Q0)
∑h

t=1 αt and β = (1−Q0)2
∑h

t=1 βt

Step 3. calculate r̂rvr = α
N

and V̂rvr = 1
N−1

[
β − α2

N

]

The RVR algorithm works as follows: At first, we call the procedure P (W,F,N) to obtain

a minimal cut set of the system S having no fixed sensors. We divide the sample space Ω into

disjoint sets Ω0,Ω1, ...,Ωh and then generate a trial (N(SGt), ..., N(SGh
)) based on a multinomial

distribution that captures the conditional probabilities of each of the Ωi’s, i = 1, 2, ..., h, given

Ωc
0. Note that, we are sampling from a reduced space Ω − Ω0, where Ω0 represents one set of

35



component state vectors that result in sensor failure. We proceed by iteratively calling the pro-

cedure (P (Wt, Ft, N(SGt)) with the updated set Wt and Ft of fixed sensors. Wt captures those

sensors that are fixed as working and Ft takes those that are fixed as failed. The values of α and

β are calculated from the values of αt and βt obtained from the recursive calls of the procedure

(P (Wt, Ft, N(SGt)). Finally, Step 3 finds the estimate r̂rvr of reliability with a variance estimate

V̂rvr.

The crucial step in the RVRRREF algorithm is the RREFCO procedure employed in finding the

minimal cut sets. One way to improve the accuracy of RVRRREF algorithm is by finding minimal

cut sets with the maximum failure probability at each iteration of Step 4. However, a quick analysis

of the RVRRREF algorithm shows that the RREFCO method is not an ideal approach for finding such

minimal cut sets. For example, when all the sensors have the same working probability, we prefer

a minimal cut set (also a cocircuit over M [(AT/W ) \ F ]) with the smallest cardinality. RREFCO

often fails to obtain a minimal cut set with the smallest cardinality.

Theoretically, an ideal alternative is to use MIPCO over AT
(−F )/W at each iteration to find its

smallest cocircuit (or equivalently MIPCIR over its dual to find its smallest circuits) and then in-

tegrate this within the RVR framework. These circuits and cocircuits provide minimal cut sets

with large failure probabilities compared to the RREFCO approach even when applied to systems

having sensors with different working probabilities. This approach is however not recommended

for systems with large design matrices because of the difficulties associated with solving MIPs.

Hence, we need more sophisticated decomposition approaches to obtain a more accurate estimate

of reliability without compromising on the running time of the overall algorithm.
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3. A HEURISTIC APPROACH TO FIND THE DEGREE OF REDUNDANCY

3.1 An l1 Minimization Approach

In this Section, we present the heuristic approach that we proposed to find the degree or redun-

dancy. In Section 2.2, we re-formulated the degree of redundancy problem as a girth problem over

the dual matroidM [H ], the dual matroid ofM [AT ]. Our heuristic approach utilizes the techniques

from compressed sensing to reformulate this dual girth problem into an l0 minimization problem.

Compressed sensing is a field that studies signal reconstruction building on the fact that we can

represent many signals using only a few nonzero coefficients in certain basis or dictionaries [32].

It means that we can design sensing technologies that acquire some types of data using far fewer

measurements than classical systems allow. Rather than first sampling in high rate and then com-

pressing the sampled data, compressed sensing aims for directly sampling data in a compressed

form thereby reducing the complexity and the computational cost of the data acquisition stage. In

recent years, compressed sensing has attracted substantial attention in areas of applied mathemat-

ics, signal processing, statistics, and computer science. [32] gives a thorough introduction to the

mathematics behind compressed sensing.

A large part of the theory of compressed sensing studies finding the sparsest representation of

random signals in a given dictionary. This requires solving an l0-minimization problem as with

finding the girth of a matroid. This problem is highly non-linear and non-convex. Let us first

formulate the girth problem as an l0-minimization problem as given below.

g(M [H ]) = min ‖y‖0

subject to Hy = 0

y 6= 0

The l0-norm ‖y‖0 = |supp(y)|, where supp(y) = {i : yi 6= 0} (supp stands for support). This

optimization problem finds the sparsest nonzero vector y in the null space of H , which is nothing
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but the smallest circuit over M [H ]. Solving l0-minimization problems is NP-hard in general. An

alternate approach proposed in compressed sensing is to replace the l0-norm with the l0-norm. The

l1-minimization problem is as follows.

min ‖y‖1

subject to Hy = 0

y 6= 0

Note that, ‖y‖1 =
∑n

i=1 |yi|. This l1-minimization problem can be easily reformulated as a linear

programming problem. The l1-norm can be considered as a convex approximation of the l0-norm.

However, the solutions to both these optimization algorithms may nit be the same. The conditions

under which the solution to l1-minimization problem is also the solution to the l0-minimization

problem is extensively studied in [33, 34]. These conditions require the columns of the matrix

H to follow some normal distribution with a uniform measure. However, the design matrix that

models a linear sensor system generally does not satisfy these conditions.

In [33], Donoho et al. proposed solving a series of l1-minimization problems to obtain good

estimates for the l0-minimization problem. They proposed solving the optimization problem

di = min ‖y‖1

subject to Hy = 0

yi = 1

n times, each with the constraint yi = 1, i = 1, 2, ..., n. Then,

g(M [H ]) ≤ min
1≤i≤n

di. (3.1)

(3.1) gives an upper bound to the value of ‖y‖0 and hence the girth g(M [H ]). In our computational

experience, we have noticed although this approach leads to relatively good approximate solutions,

38



in most cases, the optimal l0-norm solution is not obtained.

We extended the approach introduced in [33] solving additional l1-minimization problems to

strengthen the upper bound obtained by (3.1). We call this algorithm 2-STAGEL1, because we

solve a series of l1-minimization problems in two stages. Motivation for this technique was first ob-

tained empirically when the solutions to this problem were also the solutions to the l0-minimization

problem. We present the algorithm below.

2-STAGEL1: Estimate the degree of redundancy ofA

Input: MatrixA ∈ Rn×m

Use RREF to transformAT to [Im|D] and get the dualH = [−DT |In−m]. Set hi = hi/‖hi‖2,

where hi is the ith column ofH .

Let LP (i) define the optimization problem below:

min ‖y‖1 (3.2)

subject to Hy = 0 (3.3)

yi = 1 (3.4)

−1 ≤ y ≤ 1 (3.5)

Let LP (i, j), i 6= j define the optimization problem below:

min ‖y‖1 (3.6)

subject to Hy = 0 (3.7)

yi = 1, yj = 0 (3.8)

−1 ≤ y ≤ 1 (3.9)

Step 0. d1 ← n, d2 ← n, d∗ ← n

Step 1. for i ≤ i ≤ n
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solve LP (i) to get the optimal solution x∗

d∗ ← ‖x∗‖0 and D∗ ← supp(x∗) \ i

if d∗ < d1

d1 ← d∗ and C1 ← supp(x∗)

if d1 < d2

d2 ← d1 and C2 ← C1

Step 2. for each j ∈ D∗

solve LP (i, j) to get the optimal solution x∗

d∗ ← ‖x∗‖0

if d∗ < d2

d2 ← d∗ and C2 ← supp(x∗)

Step 3. get d(Â) = d2 − 1

The algorithm 2-STAGEL1 obtains the dual matroid H and solves two sets of optimization

problems. The first one, LP (i), is defined in (3.2) - (3.5), and the other, LP (i, j) is defined in

(3.6) - (3.9). LP (i) solved for all i ∈ {1, 2, ..., n} is the same as the one solved in [33] with (3.5)

added as an additional constraint. We call this as Stage 1 (given in Step 1). For each optimization

problem LP (i), we solve another set of optimization problems LP (i, j) which we call as Stage 2

(given in Step 2). LP (i, j) is a modified version of LP (i), with an additional constraint yj = 0 as

given in (3.8). The values that j is set to are the indices of the nonzero components of the optimal

solution to the LP (i) problem. The set D∗ is set to these indices. Note that, i is not included in

D∗.

C1 tracks the support of the smallest l0-norm solution among all the Stage 1 optimization

problems. C1 obtains the smallest l0-norm (sparsest) solution among all the Stage 1 and Stage 2

optimization problems. Then, d1 gives the l0-norm of the sparsest solution after Stage 1 and d2 the

one after Stage 1 and Stage 2. Hence, d(Â) = d2− 1 is an estimate of the degree of redundancy of
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A. Also, d1 − 1 gives the redundancy estimate from the Stage 1. Note that, C1 and C2 contains at

least one circuit overM [H ], and hence a cocircuit overM [AT ]. The optimization problems LP (i)

and LP (i, j) can easily be re-written as LPs and hence computationally very efficient. From the

way we defined C1 and C2, |C2| ≤ |C2|.

The idea for 2-STAGEL1, conceived based on empirical results, relies on the highly non-linear

structure of the set of all k-sparse vectors in a given Euclidian space. Since no theoretical guaran-

tees of optimality of d(A) can be provided for the algorithm, we briefly explain our intuition behind

this approach. Consider the n-dimensional Euclidian space Rn with unit vectors e1, e2, ..., en as

basis. The set of all k-sparse vectors in Rn is given by U = {y ∈ Rn : ‖y‖0 ≤ k}. This set con-

sists of a union of a union of
(
n
k

)
subspaces, where each subspace is spanned by a unique choice

of k out of these n unit vectors. This union operation makes the set U highly non-linear. Stage 1

finds a vector in the null space of H with the smallest l1-norm. This vector gives an upper bound

solution to the l0-norm optimization problem. By forcing nonzero components of a solution vector

from Stage 1 to zero, we are searching for solutions with perhaps a larger l1-norm, but hopefully a

smaller l0-norm, either within the same subspace or other subspaces within the union.

Our computational experiments shows that by introducing this second stage, we are able to find

exact optimal solutions to many instances of the girth problem (degree of redundancy problem)

with known solutions which were otherwise not solved optimally by Stage 1.

3.2 From Hueristic to Optimal Solution

The heuristic solution to d(A) does not guarantee an optimal solution. Empirical evidence

based on our experiments suggest that the solution is extremely close to the optimal solution. Ad-

vanced optimization solvers allows for providing starting solutions to warm-start an MIP problem.

Warm-starting, i.e., providing a good initial solution to an MIP solver, can have significant im-

pact on the solution time of MIP as it can potentially provide much stronger upper bounds for the

minimization problem from the beginning. We can easily provide a starting solution to MIPCO

based on the set C2 that contains a cocircuit over M [AT ]. However, an initial solution to MIPCO

requires variables (x,α, z). We can provide an initial solution to α = (α1, α2, ..., αn) as αj = 1
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if j ∈ C2, otherwise αj = 0. So, 2-STAGEL1 gives a partial starting solution to MIPCO. To obtain

a complete solution, we need to find an x ∈ Rm and a z ∈ {0, 1}m corresponding to this partial

solution that has only values for α. For this, we use the capabilities of our MIP solver, CPLEX.

When warm-starting an MIP using CPLEX, one can identify the values for part of the variables

and ask CPLEX to form a complete feasible solution by finding the proper values for the other

variables. In our computations, we used this capability by providing an α as calculated above and

letting CPLEX to find the proper x and z to form a warm-start solution.

The algorithm MIPCO-W (where ‘w’ stands for warm-starting) presented below warm-starts

MIPCO with the solution α obtained from 2-STAGEL1.

MIPCO-W: Compute the degree of redundancy ofA

Input: MatrixA ∈ Rn×m with blocksA1, ...,Ar, and separating set S.

Step 1. Solve 2-STAGEL1 to find an upper bound solution C2 to the cocircuit over M [AT ].

Step 2. Get an initial solutionα0 to MIPCO asα = (α0
1, α

0
2, ..., α

0
n) as α0

j = 1 if j ∈ C2, otherwise

α0
j = 0.

Step 3. Solve MIPCO using CPLEX with α0 as a partial warm-start solution to find d(A).

Note that, providing a partial solution is not as efficient as providing a complete solution. Al-

though we observed computational gains of the order of 10% when tested over some instances,

this approach is still inefficient to solving large-scale problems.
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4. COMPUTING THE DEGREE OF REDUNDANCY: A COGIRTH BASED

DECOMPOSITION APPROACH

4.1 A Decomposition Theorem for Smallest Cocircuit

We start by considering a matroid M(E, I), with a separating set S ⊂ E(M). We assume

M \ S to be disconnected with direct sum components M1,M2, ...,Mr such that M \ S = M1 ⊕

M2 ⊕ ...⊕Mr.

For i = 1, ..., r, let

g∗(M) = min {|D| : D ∈ C∗(M)}, and (4.1)

g∗(Mj) = min {|Dj| : Dj ∈ C∗(Mj)}. (4.2)

g∗(M) and g∗(Mj) gives the values of the cardinality of the smallest cocircuits in M and Mj

respectively. Hence, by definition of cogirth, g∗(M) and g∗(Mj) are the cogirths of M and Mj ,

respectively.

We now present the Lemma 4 that gives an upper bound on the cogirth of a connected matroid

based on the cogiths of its direct sum components.

Lemma 4. Suppose M(E, I) be such that M \ S = M1 ⊕M2 ⊕ ...⊕Mr. Define

g∗(M(1)) = min
j∈{1,2,...,r}

g∗(Mj).

Then, g∗(M) ≤ g∗(M(1)) + |S|.

Proof. Let Dj ∈ C∗(Mj). We first show that Dj ∪ S is a codependent set in M .

Assume Dj ∪ S to be a coindependent set in M . Then, E(M) − (Dj ∪ S) will be a spanning

set in M . Hence, there exists a base B in M such that

B ⊆ E(M)− (Dj ∪ S).
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Also, since B ⊆ E(M \ S), B is a base in M \ S. Then, by the properties of direct sum, there

exists respective bases B1, B2, ..., Br in M1,M2, ...,Mr, such that B = B1 ∪B2 ∪ ... ∪Br.

Now consider the base Bj in Mj . Indeed Bj ⊆ E(Mj)−Dj since B ⊆ E(M \ S)−Dj .

But this contradicts our assumption that Dj is a cocircuit in Mj , since that makes E(Mj) − Dj

a non spanning set in Mj . Therefore, Dj ∪ S is a codependent set in M . Then, by definition of

cogirth,

g∗(M) ≤ |Dj ∪ S| = |Dj|+ |S|

Since this is true for any Dj ∈ C∗(Mj),

g∗(M) ≤ g∗(Mj) + |S|, j = 1, 2, ..., r and hence

g∗(M) ≤ g∗(M(1)) + |S|.

Before we prove the next lemma, let us define some of the notations that we use throughout

this report.

For J ⊆ {1, ..., r}, let

C∗J(M) = {D ∈ C∗(M) : D ⊆
⋃
j∈J

E(Mj) ∪ S},

c̃∗J(M) = min {|D| : D ∈ C∗J(M)}, and

c∗J(M) = min {|D| : D ∈ C∗J(M) and D ∩ E(Mj) 6= ∅, for all j ∈ J}.

For simplicity, we sometimes refer to c̃∗J(M) and c∗J(M) as c̃∗J and c∗J , respectively.

Let Jt be the collection of all subsets of {1, 2, ..., r} containing exactly t elements. Also, let

J≤t and J≥t be the collection of subsets of {1, 2, ..., r} containing at most and at least t elements,

respectively.

We now present another lemma that connects the cociruits over a vector matroid to the cocir-
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cuits over its direct sum components.

Lemma 5. Suppose M \ S = M1 ⊕M2 ⊕ ...⊕Mr and D be a cocircuit in M where D ∈ C∗J(M)

for some J ⊆ {1, ..., r}. Then, for any j ∈ J with D ∩ E(Mj) 6= ∅,

|D ∩ E(Mj)| ≥ g∗(Mj).

Proof. Let Q ∈ D be chosen at random such that Q ∩ E(Mj) 6= ∅, for all j ∈ J . Get Qj =

Q ∩ E(Mj) and Qs = Q ∩ S. Then, it is trivial that

∣∣∣∣∣⋃
j∈J

Qj ∪Qs

∣∣∣∣∣ =
∑
j∈J

|Qj|+ |QS|.

We now show that ∑
j∈J

|Qj|+ |Qs| ≥
∑
j∈J

g∗(Mj). (4.3)

Assume that the above inequality does not hold. Then, there should be atleast one l ∈ J such

that |Ql| < g∗(Ml). Hence, Ql has to be a coindependent set in Ml, and thus E(Ml) − Ql is a

spanning set in Ml. We can now find a base

Bl ⊆ E(Ml)−Ql in Ml.

Let P =
⋃

j∈J\{l}

Qj∪Qs. We know,Bl is an independent set inMl. Therefore, Bl is an independent

set in M \ P . Now, by Lemma 2 we can find a base B̃ in M \ P , such that Bl ⊆ B̃.

Ql is a non-empty set, and for this reason P is a coindependent set in M . Therefore, E(M)−P is

a spanning set in M . Clearly, this makes B̃ a base in M .

Then, the condition Ql ∩ B̃ 6= ∅ should be satisfies, as otherwise

B̃ ⊆ E(M)− (P ∪Ql) = E(M)−Q,
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which is not a spanning set in M .

It follows that there exists an e ∈ Ql ∩ B̃ such that e /∈ Bl. We now have a contradiction. This

is becauseBl∪{e} is indeed a dependent set, which disputes our claim that B̃ is a base. Therefore,

Ql is a codependent set in Ml and evidently, |Ql| ≥ g∗(Ml).

Consequently, |Qj| ≥ g∗(Mj) for all j and (4.3) holds. Since (4.3) is true for any Q, by definition

of c∗J we can conclude that

c∗J ≥
∑
j∈J

g∗(Mj).

It is obvious that we can extend (4.3) to any D ∈ C∗J(M), by excluding all Dj = D ∩ E(Mj) for

which Dj = ∅ from either sides of the summation and hence proves the lemma.

Using Lemma 4 and Lemma 5, we now prove Theorem 2, the decomposition theorem that forms

the basis of our cocircuit based decomposition algorithm to find the degree of redundancy.

Theorem 2 (Decomposition Theorem for Cogirth). Given a matroidM \S = M1⊕M2⊕ ...⊕Mr.

Let the cogirths g∗(Mj), j = 1, ..., r, be ordered such that

g∗(M(1)) ≤ g∗(M(2)) ≤ ... ≤ g∗(M(r)).

Get t = min
l

{
l − 1 :

l∑
j=1

g∗(M(j)) ≥ g∗(M(1)) + |S|

}
. Then:

(a) g∗(M) = min
J∈Jt

c̃∗J , and

(b) for any J ∈ Jt, if
∑
j∈J

g∗(Mj) > g∗(M(1)) + |S|, then g∗(M) < c∗J .

Proof. By the definition of cogirth,

g∗(M) = c̃∗{1,2,...,r}.
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The value of t is chosen such that for any J ∈ Jt+1,

∑
j∈J

g∗(M(j)) ≥ g∗(M(1)) + |S|.

Then, for any Y ∈ J≥t+1,

c∗Y ≥
∑
j∈Y

g∗(Mj) ≥
t+1∑
j=1

g∗(M(j)) ≥ g∗(M(1)) + |S|,

where the first inequality follows from Lemma 5.

From Lemma 4,

min
i∈{1,2,...,r}

c∗i ≤ g∗(M(1)) + |S|.

Hence, there exists some X ∈ J≤t such that

c∗X ≤ g∗(M(1)) + |S|.

Therefore,

g∗(M) = min
J∈J≤t

c∗J = min
J∈Jt

c̃∗J .

Part (b) follows directly from Lemma 5.

4.2 The Decomposition Algorithm: DMIPCO

Consider the BBD structured design matrix A with a separating set S and direct sum compo-

nents A1, ...,Ar. As discussed in Section 2.2, the degree of redundancy d(A) = g∗(M [AT ])− 1.

Lemma 6, presented in [22], connects c̃∗J(M [AT ]) with the cogirth of the matriod over the |J |-

block submatrixA[J ]T , i.e., the submatrix consisting of all the blocksAT
j ’s, j ∈ J , along with the

respective border blocks STj ’s.

Lemma 6. If r(M [AT \ S]) = r(M [AT ]), then c̃∗J(M [AT ]) = g∗(M [A[J ]T ]).
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The above lemma can be easily proved from the fact that any cocircuit in M [A[J ]T ] is a codepen-

dent set in M [AT ]. Corollary 1 applies Theorem 2 to M [AT ] and uses Lemma 6.

Corollary 1. Given a matroid M [AT ] with M [AT \ S] = M [AT
1 ]⊕M [AT

2 ]⊕ ...⊕M [AT
r ]. Let

the cogirths g∗(M [AT
i ]), i ∈ {1, ..., r} be ordered such that

g∗(M [AT
(1)]) ≤ g∗(M [AT

(2)]) ≤ ... ≤ g∗(M [AT
(r)]).

Get t = min

{
l − 1 :

l∑
i=1

g∗(M [AT
(i)]) ≥ g∗(M [AT

(1)]) + |S|

}
. Then:

(a) g∗(M [AT ]) = min
J∈Jt

g∗(M [A[J ]T ]), and

(b) for any J ∈ Jt, if
∑
j∈J

g∗(M [AT
j ]) > g∗(M [AT

(1)]) + |S|, then g∗(M [AT ]) < c∗J(M [AT ]).

The proof is omitted as it is straightforward from Theorem 2 and Lemma 6.

In our first decomposition algorithm, denoted by DMIPCO, we decompose the problem of find-

ing the cogirth over M [AT ] into subproblems over t-block submatrices of AT with the value of

t obtained from Corollary 1. The subproblems are then solved using MIPCO ([14]), thereby ob-

taining the cogirth over M [AT ], and hence, the degree of redundancy of A. We now present this

algorithm.

DMIPCO: Compute the degree of redundancy ofA

Input: MatrixA ∈ Rn×m with blocksA1, ...,Ar, and separating set S.

1. find g∗(M [AT
i ]) for all i ∈ {1, 2, ..., r}

2. sort the cogirths such that g∗(M [AT
(1)]) ≤ g∗(M [AT

(2)]) ≤ ... ≤ g∗(M [AT
(k)])
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3. get t = min

{
l − 1 :

l∑
i=1

g∗(M [AT
(i)] ≥ g∗(M [AT

(1)]) + |S|

}

4. set F = {J : J ∈ Jt}, d = g∗(M [AT
(1)]) + |S|, L = ∅

5. if F = ∅, stop; return d− 1

6. for each J ∈ F ,

if J ∈ L, F = F \ {J}

else if
∑
j∈J

g∗(M [AT
j ]) > d,

update F = F
⋃
j∈J
{J − {j}} \ {J}

else solve MIPCO overA[J ]T , get dJ = g∗(M [A[J ]T ]);

update L = {J : J ∈ J≤|J |}, if dJ < d, set d = dJ

7. go back to step 5

In algorithm DMIPCO, we first obtain the cogirths of M [AT
1 ], ...,M [AT

r ], then find the value

of t using Theorem 2. Now, as Corrollary 1 presents, we can find the cogirth of M [AT ] by find-

ing the minimum of the cogirths over all vector matroids defined over the t-block submatrices of

AT . In DMIPCO, we solve MIPCO over these submatrices to find their cogirths, and then contin-

uously update d with the smallest cogirth obtained so far. The set J , initialized with all subsets

of {1, 2, ..., r} of cardinality t, includes all the submatrices that need to be solved for. However,

instead of finding the cogirths over all t-block submatrices, we use proposition (b) in Corrollary 1

to avoid solving for any submatrix J for which

∑
j∈J

g∗(M [AT
j ]) > d.

We remove any such J from F , and then update it with all subsets of J with |J |−1 elements. This
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allows us to further decompose the subproblems into even smaller ones.

The following remark helps to further reduce the number of instances of MIPCO that we need

to solve.

Remark 5. For two submatrices A[X]T and A[Y ]T of AT , where X, Y ⊆ {1, 2, .., r}, and X ⊂

Y , then g∗(M [A[Y ]T ]) ≤ g∗(M [A[X]T ]).

As Remark 5 indicates, we can avoid solving for any submatrix A[J ] for which another MIPCO

instance over a matrix havingA[J ] as a sub-block has already been solved for. We use the set L to

include the submatrices that has already been solved for directly, or indirectly based on Remark 5,

which are then excluded from F in Step 6.

(a) Number of subproblems of each block-size solved
when g∗(M [AT ]) = 15

(b) A sample analysis of DMIPCO against BDMIF

Figure 4.1: A Comparison of Decomposition Theorems

The number of subproblems and the size of the subproblems that needs to be solved for any

algorithm based on our decomposition theorem, Theorem 1, is far less than those that are based on

the bound and decompose theorem ([2]). A simple analysis of DMIPCO against BDMIF demon-

strates this advantage. Figure 4.1(a) shows the number of subproblems of each size that needs to

be solved for each of the algorithms when a design matrix A with 10 blocks and border rows is

considered with g∗(M [AT ]) = 15. For any design matrix with these parameters, the number of
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subproblems that need to be solved for BDMIF is the same except for 2-block submatrices which

can be anywhere between 46 to 90. The reason is as follows: When MIF checking procedure is

executed with d = 14, all 45 2-block submatrices (the smallest possible based on the decomposi-

tion bound) are tested without finding a feasible solution. When d = 15 is tested, we still need to

solve for the 2-block submatrices, and atleast one of these 45 submatrices give a feasible solution

for MIF.

The number of subproblems to be solved and their block-sizes for MIPCO depends on the

cogirths of each of the M [AT
i ]’s. For example, if g∗(M [AT

(1)]) = 5 and g∗(M [AT
(2)]) = 10,

then we need to solve only 1-block submatrices, a total of 10, to find the degree of redundancy

using MIPCO. Based on (b) in Corollary 1 we might even be able to further reduce the number of

subproblems solved. One of the worst cases occur when g∗(M [AT
(i)]) = 5 for all i’s. In such a case,

we need to solve a maximum of 45 2-block subproblems, which is much less that the total number

of subproblems that needs to be solved for BDMIF. Notice that, the larger the value of M [AT
(i)]’s,

the smaller the value of t obtained from Corrollary 1, and smaller the size of the subproblems that

we need to solve. This result is extremely significant, because design matrices with larger denser

blocks tend to have larger values of g∗(M [AT
(i)])’s thereby reducing the block-sizes of subproblems

that need to be solved.

Another important parameter that needs to be considered is the dependence of the block-size of

the subproblems to that of the number of border rows ns. Figure 4.1(b) shows the maximum block-

size of the subproblem that needs to be solved for a BBD matrix A with 20 blocks and assuming

g∗(M [AT ]) ≥ 5. As before, the values for MIPCO changes based on the cogirths of g∗(M [AT
(i)])’s

and the worst case values are included in Figure 4.1(b). As the number of border rows increases,

the maximum size subproblems that needs to be solved for both the algorithms increases. However,

the values for MIPCO are much smaller than those for BDMIF even in the worst case. Also, as the

value of ns increases, the maximum subproblem size to be solved for MIPCO increase much slowly

as compared to BDMIF. These analysis shows why our algorithm is well-suited for problems in

large scale.
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5. COMPUTING THE DEGREE OF REDUNDANCY: A GIRTH BASED DECOMPOSITION

APPROACH

5.1 A Decomposition Theorem for Smallest Circuit

Finding the girth of the dual matroid M∗[AT ], defined as M [H ], as we discussed in Section

2.2, solves for the redundancy degree problem over A. The girth problem can be formulated as

an MIP problem. We call this MIP formulation MIPCIR, where ‘cir’ stands for circuit. A dual

approach to compute the degree of redundancy is to solve for the girth over M [H ], the dual of

M [AT ], as given by (2.9).

MIPCIR: Smallest Circuit Problem

g(M [H ]) = min 1β (5.1)

subject to Hy = 0 (5.2)

−β + 2z ≤ y ≤ β (5.3)

1z = 1 (5.4)

y ∈ Rn, β ∈ {0, 1}n, z ∈ {0, 1}n (5.5)

The formulation MIPCIR looks for a nonzero y with the smallest l0 norm in the null space of H .

The constraints (5.3) and (5.4) make sure that y is nonzero. The objective function (5.1) minimizes

the number of yi’s for which yi 6= 0 thereby finding a y with the smallest l0 norm. The set of

indices i for which βi = 1 gives the smallest circit of M [H ], and hence d(A) = 1β − 1. Solving

MIPCIR for large-scale problems is challenging. However, we can employ the dual version of the

decomposition theorem, Theorem 1, to develop a decomposition approach for this dual problem.

This dual theorem is presented over the dual matroid M∗.
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For J ⊆ {1, ..., r}, let

CJ(M∗) = {D ∈ C(M )) : D ⊆
⋃
j∈J

E(M∗
j ) ∪ S},

c̃J(M∗) = min {|D| : D ∈ CJ(M∗)}, and

cJ(M∗) = min {|D| : D ∈ CJ(M∗) and D ∩ E(M∗
j ) 6= ∅, for all j ∈ J}.

For simplicity, we sometimes refer to c̃J(M∗) and cJ(M∗) as c̃J and cJ , respectively. These defi-

nitions are same as the ones that we defined for cocircuits over M .

Given the matroid M with a separating set S, M∗/S = M∗
1 ⊕M∗

2 ⊕ ...⊕M∗
r . Now, we present

the decomposition theorem for girth over the dual matroidM∗. This theorem directly follows from

Theorem 1 based on the duality properties of a matroid. Hence, the proof is omitted.

Theorem 3 (Decomposition Theorem for Girth). Given a matroid M \ S = M1 ⊕M2 ⊕ ...⊕Mr.

Let the girths g(M∗
j ), j = 1, ..., r, be ordered such that

g(M∗
(1)) ≤ g(M∗

(2)) ≤ ... ≤ g(M∗
(r)).

Get t = min
l

{
l − 1 :

l∑
j=1

g(M∗
(j)) ≥ g(M∗

(1)) + |S|

}
. Then:

(a) g(M∗) = min
J∈Jt

c̃J , and

(b) for any J ∈ Jt, if
∑
j∈J

g(M∗
j ) > g(M∗

(1)) + |S|, then g(M∗) < cJ .

Now, we present a lemma that hepls to re-write Theorem 3 with respect to the vector matroid

M [HT ].

Lemma 7. If r(M [HT/S]) = r(M [HT ]), then c̃J(M [HT ]) = g(M [H [J ]T ]).

The above lemma can be easily proved from the fact that any circuit in M [H [J ]T ] is a dependent

set in M [HT ]. The condition r(M [HT/S]) = r(M [HT ]) directly follows from our assumption

53



that S is a coindependent set in M [AT ]. Now, we present a corollary to Theorem 7

Corollary 2. Given a matroidM [AT ] with a coindependent separating set S and the dualM [HT ]

such that M [H/S] = M [H1]⊕M [H2]⊕ ...⊕M [Hr]. Let the girths g(M [Hi]), i ∈ {1, ..., r} be

ordered such that

g(M [H(1)]) ≤ g(M [H(2)]) ≤ ... ≤ g(M [H(r)]).

Get t = min

{
l − 1 :

l∑
i=1

g(M [H(i)]) ≥ g(M [H(1)]) + |S|

}
. Then:

(a) g(M [H ]) = min
J∈Jt

g(M [H [J ]]), and

(b) for any J ∈ Jt, if
∑
j∈J

g(M [H [J ]]) > g(M [H(1)]) + |S|, then g(M [H ]) < cJ(M [H ]).

The proof of Corollary 2 is omitted as it directly results from applying Lemma 7 Theorem 3.

5.2 The Decomposition Algorithm: DMIPCIR

The algorithm DMIPCIR applies Theorem 3 over the dual matrixH and solves the decomposed

subproblems using MIPCIR to find the girth ofH , and then gets the degree of redundancy d(A) =

g(M [H ])− 1. The algorithm is presented below.

DMIPCIR: Computing the degree of redundancy forA using the dualH

Input: MatrixA ∈ Rn×m with blocksA1, ...,Ar, and separating set S.

1. get the dualH = [−DT |In−m] from RREF (AT ) given by [D|Im]

2. find g(M [Hi]) for all i ∈ {1, 2, ..., r}

3. sort the girths such g(M [H(1)]) ≤ g(M [H(2)]) ≤ ... ≤ g(M [H(k)])

4. get t = min

{
l − 1 :

l∑
i=1

g(M [H(i)] ≥ g(M [H(1)]) + |S|

}
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5. set F = {J : J ∈ Jt}, d = g(M [H(1)]) + |S|, L = ∅

6. if F = ∅, stop; return d− 1

7. for each J ∈ F ,

if J ∈ L, then F = F \ {J}

else if
∑
j∈J

g(M [H [J ]]) > d,

update F = F
⋃
j∈J
{J − {j}} \ {J}

else solve MIPCIR overH [J ], get dJ = g(M [H [J ]]);

update L = {J : J ∈ J≤|J |}, if dJ < d, then set d = dJ

7. go back to step 5

DMIPCIR follows the same steps as that of DMIPCO, except that it solves MIPCIR over the sub-

matrices ofH to find d(A). Since Theorem 3 is the dual of Theorem 2, the number of subproblems

solved in DMIPCIR and their blocks-sizes are exactly same as that of DMIPCO. The use of matrix

H which is of different dimension than that of AT along with the use of DMIPCIR instead of

DMIPCO will impact the running time of DMIPCIR.
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6. RELIABILITY EVALUATION: AN ENHANCED RECURSIVE VARIANCE

REDUCTION APPROACH

6.1 A Cocircuit Based Approach

We discussed in Section 2.4 that the minimal cut sets obtained by RVRRREF are often inferior

which severely affects the accuracy of the reliability estimate. However, we can gain a signif-

icant improvement in the quality of the reliability estimate by replacing RREFCO with the MIP

algorithms. Let us consider a hypothetical RVR framework that finds minimal cut sets using the

smallest cocircuits over M [(AT/W ) \ F ] obtained by solving MIPCO. Since we need to execute

MIPCO at every iteration, this approach will undoubtedly increase the running time of RVRRREF

algorithm. So, the improvement in the accuracy of the reliability estimate will be at the heavy cost

of computational time. We also need to account for the additional computational time required to

obtain AT
(−F )/W at each iteration. Let us look into the deletion operation for sensors in F and the

contraction operation for sensors in W , required to get (AT/W )\F fromAT . Deletion operation,

which can be performed in O(1) time, has the added advantage of reducing the overall size of the

problem. However, the pivot operation in contraction is more involved.

A better approach to account for fixed sensors is to include additional constraints in the formu-

lation for MIPCO as given below:

i. for each sensor si ∈ F , set αi = 1,

ii. for each sensor si ∈ W , set αi = 0.

To understand this approach, consider (x∗,α∗, z) the solution to MIPCO obtained after solving this

algorithm with αi’s fixed as above. Let D be such that

D = {si : α∗i = 1, si /∈ W}.

We can now find the minimal cut sets over M [(AT/W ) \ F ] as below:
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i. if |D| ≤ n− |F | − k + 1, then D is a minimal cut set,

ii. else each subset of D with a cardinality of n− |F | − k + 1 is a minimal cut set.

As we discussed in Section 2.3, fixing the values of an αi to 1 has the equivalent effect of deleting

the corresponding column fromAT . Similarly, fixing an αi to 0 forces MIPCO to find aD that does

not involve sensor si. Hence, the minimal cut set obtained from D will also be the minimal cut

set over M [(AT/W ) \ F ]. However, our experimental results indicate that it is better to delete the

rows representing sensors in F while solving MIPCO since the deletion operation takes very small

computational time, and the resulting matrix will have a smaller size. Still, these modifications can

only result in a minor reduction in the running time of MIPCO.

In Section 4.2, we utilized Theorem 2 to decompose MIPCO into smaller subproblems while

finding the smallest cocircuit and solved these subproblems providing a significant reduction in the

running time. But Theorem 2 decomposes the cogirth (minimal cocircuit) problem. By integrating

Theorem 2 within the RVR framework, we can get the smallest cocircuit over (AT/W ) \ F at

each iteration. To achieve this we needs to solve DMIPCO over (AT/W ) \ F . Even though this

approach reduces the size of the MIPs solved, at each iteration we need to solve a large number of

them. Interestingly, we might not even need to find the smallest minimal cut set at each iteration

to achieve a highly superior reliability estimate.

We propose an alternative approach in which a single MIPCO instance over a submatrix of AT

is solved at each iteration to find a minimal cut set. However, to facilitate such a decomposition,

we need to establish theorems that allow for disintegrating the problem of finding the cocircuits

over a structured matroid, not just its smallest cocircuit. The minimal cut sets obtained by this

approach might not be the smallest. However, since we find a minimal cut set at each iteration of

RVR, the quality of the entire set of these minimal cut sets will more or less match the quality of

the ones obtained from solving DMIPCO over (AT/W ) \ F . Hence the accuracy of the reliability

estimate can be maintained, but the running time can be greatly reduced.

We now study the properties of cocircuits of a BBD structured matroid M [AT ]. The following

lemma is a direct results of the independent augmentation axiom.
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Lemma 8. If B1 and B2 are two distinct bases of a matroid M , then for every e1 ∈ B1 \ B2 there

exist some e2 ∈ B2 \B1 such that B1 \ {e1} ∪ {e2} is a base of M .

Now we present another lemma with will help to prove our decomposition theorem to disintegrate

the reliability analysis problem.

Lemma 9. Let M \S = M1⊕M2⊕ ...⊕Mr, and let D be a cocircuit. Suppose Dj = D∩E(Mj),

for j = 1, 2, ..., r and Ds = D ∩ S. Then Dj is a codependent set in Mj .

Proof. We prove this by contradiction. Assume some Dl 6= ∅ is such that it is a coindependent set

in Ml. Hence, E(Ml)−Dl is a spanning set in Ml and there exists a base Bl ⊆ E(Ml)−Dl in Ml.

Let P =
∑

j∈J−{l}Dj ∪ Ds. Bl, being a base, is an independent set in Ml. Then Bl is also an

independent set in M \ P . So, by Lemma 4 there is a base B′ ∈M \ P , such that Bl ⊆ B′.

AsD is a cocircuit andDl is a non-empty set, P is a coindependent set inM . Therefore,E(M)−P

is a spanning set in M and r(E(M)− P ) = r(M). Thus, B′ is also a base in M .

Let us assume Dl ∩ B′ 6= ∅. Then, there exists an e ∈ Dl ∩ B′ such that e /∈ Bl. But, since

e ∈ E(Ml) and Bl being a base in Ml, {e} ∪ Bl is a dependent set in Ml. This contradicts our

assumption that B′ is a base in M .

Hence Dl ∩B′ = ∅ and we get

B′ ⊆ E(M)− (Dl ∪ P ) = E(M)−D.

But, this contradicts our assumption that D is a cocircuit. This proves that Dj is a codependent set

in Mj .

For j = 1, ..., r, let

C∗j,Ds
(M) =

{
D : D ∈ C∗j (M) and D ∩ S = Ds

}
, and

C̃∗j,Ds
(M) =

{
D : D ∈ C∗j (M) and D ∩ S ⊆ Ds

}
58



Using lemmas 8 and 9, we can now prove the following decomposition theorem that serves as

the basis for our first algorithm to estimate the reliability.

Theorem 4. Let M be a matroid such that M \ S = M1 ⊕M2 ⊕ ...⊕Mr and |S| = ns. Also, for

any D̃j ∈ C̃∗j,Ds
(M), let P̃j = D̃j \Ds. Then:

(a) For any J ⊆ {1, 2, ..., r} and J ∈ J|Ds|+1, (
⋃
j∈J
P̃j) is a codependent set in M .

(b) C∗(M) =
⋃

J∈Jns+1

C∗J(M).

Proof. First, let us consider a matroid with a separating set S consisting of a single element indexed

by e. Consider two cocircuits Di ∈ C∗j,{e}(M) and Dj ∈ C∗j,{e}(M) such that i 6= j. Let Di =

Pi ∪ {e} such that Di ∩ E(Mi) = Pi. Similarly, let Dj = Pj ∪ {e} such that Dj ∩ E(Mi) = Pj .

We now prove that Pi ∪ Pj is a codependent set in M .

From Lemma 9, Pi is a codependent set in Mi. But Pi is also a cocircuit in Mi. If not, then there

exist some P ∈ Pi such that Pi \P is a cocircuit and hence Pi \P ∪{e} is a cocircuit of M , which

is a contradiction. Similarly, Pi is a codependent set in Mi.

Now assume Pi ∪ Pj, i 6= j is a coindependent set in M . Then there is a basis B in M such that

B ⊆ E(M)− (Pi ∪ Pj).

Also there exist bases Bi and Bj such that

Bi ⊆ E(M)− (Pi \ {xi} ∪ e)

and

Bj ⊆ E(M)− (Pj \ {xj} ∪ e)

This is because Pi \ {xi} ∪ e and Pj \ {xj} ∪ e are coindependent sets in M .
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Since Bi ⊂ E(M)− {e} and Bj ⊂ E(M)− {e}, there exist bases

Bi
i ⊆ E(Mi)− Pi \ {xi}

and

Bj
j ⊆ E(Mj)− Pj \ {xj}

in Mi and Mj respectively.

Now consider the bases B and Bi. Since Pi ∪ Pj ∪ e is a codependent set, e ∈ B. Otherwise

B ⊆ E(M)− (Pi ∪ Pj ∪ e) which is a contradiction. Also, e /∈ Bi.

Then by Lemma 4, for any e ∈ B \Bi, there is some y ∈ Bi \B such that B′ = B \ {e} ∪ {y} is

a base in M . However,

B′ ⊆ E(M)− (Pi ∪ Pj ∪ e) \ {y}

cannot be a subset for the following reason. If y ∈ E(M)− (E(Mi) ∪ E(Mj)), then

B′ ⊆ E(M)− (Pi ∪ Pj ∪ e)

which is not a dependent set.

Even if y ∈ E(Mi) or y ∈ E(Mj), either

B′ ⊆ E(M) \ (Pi ∪ e)

or

B′ ⊆ E(M) \ (Pj ∪ e).

Hence, B′ cannot be a base and Pi ∪ Pj is a codependent set in M .

Now, let us extend this approach to the matroid M with the separating set S consisting of ns

elements. Consider two cocircuits Di and Dj such that Di ∈ C∗i,Ds
(M) and Dj ∈ C∗j,Ds

(M) and
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i 6= j.

Given any element e ∈ Ds, let Pi = Di \ {e} and Pj = Dj \ {e}. Then, Pi ∪ Pj is a codependent

set in M . Now, consider another cocircuit Dk ∈ C∗i,Ds
(M) such that k 6= i 6= j.

For two separate indices e1 and e2 of Ds, let

P ′i = Di \ {e1, e2}, P ′j = Dj \ {e1, e2}, and P ′k = Dk \ {e1, e2}.

Then, it can easily be proved that P ′i ∪ P ′j ∪ P ′k is a codependent set in M .

Continuing this approach of deleting each element in Ds, we can prove that,

for any J ⊆ {1, 2, ..., r}, and J ∈ J|Ds|+1,
⋃
j∈J

Pj is a codependent set in M,

where Pj = Dj \Ds for all j ∈ J .

Any D̃j ∈ C̃∗j,Ds
(M), with P̃j = D̃j \Ds, is such that P̃j∪Ds is a codependent set inM . Therefore,

(
⋃
j∈J
P̃j) is a codependent set in M . Part (b) directly follows from Part(a).

Theorem 4 provides a framework for finding all the cocircuits of a matroid. Since our design

matrixA has a separating set S whereM [AT \S] = M [AT
1 ]⊕M [AT

2 ]⊕...⊕M [AT
r ], we can easily

apply Theorem 4 to M [AT ]. Part (a) of the theorem gives a procedure to find codependent sets

and thereby cocircuits involving multiple blocks from cocircuits over single blocks. Part (b) says

that any cocircuit of a matroid M with a separating set S cannot involve more that |S| + 1 single

block matroids. The RVR framework iteratively finds cocircuits over M [AT ] which are then used

to obtain the minimal cut sets. If we use MIP overA to solve for the minimal cut sets, the running

time of the algorithm is going to be extremely large. However, Theorem 4 can be employed to

disintegrate this problem so that the cocircuits over M [AT ] can be obtained by solving MIP over

submatrices ofA.

We integrate MIPCO within the RVR framework and then utilize the concepts from Theorem 4

to present the RVRCO algorithm.
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RVRCO: Estimate the System Reliability

Given a sensor system defined by the matrix A having n sensors S = (s1, s2, ..., sn) with working

probabilities pi, i = 1, ..., n. A sample size of N is chosen. Set W = F = ∅. Initialize t = 1

I. Execute the following procedure to calculate α and β

Procedure P (W,F,N, t):

1. if N = 0

α = β = 0; return

2. else if r(A(W )) = m and |W | ≥ k

α = β = N ; return

3. else if r(A(−F )) < m or n− |F | < k

α = β = 0; return

4. get Fs as the set of failed sensors that belong to the border S

5. if t > ns − |Fs|+ 1, set t = ns − |Fs|+ 1

6. find a minimal cut set of S as follows:

6.a remove all the rows inA corresponding to sensors in F

6.b set αi’s representing those sensors inW to 0

6.c select a random a J ∈ Jt

6.d find a minimal rank reduction set by executing MIPCO overA[J ]

if MIPCO is infeasible, update t = t+ 1 and go to Step 7

else get the minimal cut set G = {s<1>, s<2>, ..., s<h>} and go to Step 7

7. divide Ω into Ω0,Ω1, ...,Ωh based on (2.17) and (2.18). Define Q0 = Pr{Ω0}
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8. generate a trial
(
N(SGt), ..., N(SGh

)
)

of the r.v. with multinomial distribution

M
(
N, p(SG1), ..., p(SGh

)
)

, where p(SGt) = Pr{Ωt|Ω0}

9. for each t ∈ {1, 2, ..., h}:

9.1 set Wt = W ∪ s<t> and Ft = F
⋃t−1
l=1 s<l>

9.2 call procedure
(
P (Wt, Ft, N(SGt , t)

)
to calculate αt and βt

II. get α = (1−Q0)
∑h

t=1 αt and β = (1−Q0)2
∑h

t=1 βt

III. calculate r̂rvr = α
N

and V̂rvr = 1
N−1

[
β − α2

N

]

The RVRCO algorithm replaces the inefficient RCEFCO method with MIPCO to find the minimal cut

sets. However, instead of applying MIPCO directly over the design matrixA, we start by selecting

a random block of size 1. We consider matrices involving more blocks only if we fail to obtain a

cocircuit using the current set of blocks. Now we utilize the property (a) in Theorem 4 to limit the

size of the input matrix to MIPCO at each iteration. Notice that, we find a cocircuit of the reduced

matrix ofA, i.e., the matrix obtained by removing rows corresponding to failed sensors. However,

the cocircuit cannot contain any columns that represent a functional sensor. Hence, we can say

that any cocircuit will contain a maximum of ns − |Fs|+ 1 blocks. So the upper bound on t is set

to this limit thereby capping the size of the input matrix to co. The significance of starting with a

single block is evident from the fact that the value ns−|Fs|+ 1 at the later iterations is more likely

to reduce as more and more border rows will get fixed as failed or working.

6.2 A Circuit Based Approach

Our second algorithm to enhance the RVR procedure is to find the minimal cut sets over

(AT/W ) \ F by solving a dual problem over H after accounting for fixed sensors. The basic

idea of this approach stems from the duality of matroids. In MIPCIR, as discussed in Section 5.1,
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we find a nonzero y in the null space ofH that has the smallest l0-norm. Then, the smallest circuit

C overH is also the smallest cocircuit overA. Hence, we can find the minimal cut sets overA by

following a dual approach that mirrors RVRCO.

To introduce this dual RVR method, we need to first deal with the fixed sensors, i.e., sensors

in W and F . However, from the duality of matroids, we can easily see that to account for fixed

sensors in H , we need to apply the dual of the operations performed over A. Specifically, for

sensors set as failed, the corresponding columns in H needs to be contracted, and for sensors set

as working, the corresponding columns inH needs to be deleted. As with MIPCO, the contraction

can be replaced by setting the respective βi’s to 1. Then, we can easily dualize the approach in

RVRCO. This dual algorithm, denoted as RVRCIR, is similar to RVRCO except for the fact that we

solve MIPCIR over submatrices ofH to obtain the minimal cut sets.

The decomposition of H is facilitated by a dual decomposition theorem that can be derived

from Theorem 4. The following notations are used in presenting the theorem.

For j = 1, ..., r, let

Cj,Ds(M
∗) = {D : D ∈ Cj(M∗) and D ∩ S = Ds} , and

C̃j,Ds(M
∗) = {D : D ∈ Cj(M∗) and D ∩ S ⊆ Ds}

Theorem 5. Let M be a matroid such that M \ S = M1 ⊕M2 ⊕ ...⊕Mr and |S| = ns. Also, for

any D̃j ∈ C̃j,Ds(M
∗), let P̃j = D̃j/Ds. Then:

(a) For any J ⊆ {1, 2, ..., r} and J ∈ J|Ds|+1, (
⋃
j∈J
P̃j) is a codependent set in M .

(b) C(M∗) =
⋃

J∈Jns+1

CJ(M∗).

The proof of this theorem is omitted, as it is straightforward from Theorem 4. Theorem 5 can be

employed to disintegrate the problem of finding the circuits over the dual matroid M [H ]. Hence,

the reliability evaluation problem can be solved using this dual decomposition approach, wherein

the circuits over submatrices ofM [H ] are computed to find the reliability estimate of design matrix
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A.

The algorithm RVRCIR is presented below.

RVRCO: Estimate the System Reliability

Given a sensor system defined by the matrix A having n sensors S = (s1, s2, ..., sn) with working

probabilities pi, i = 1, ..., n. A sample size of N is chosen. Set W = F = ∅. Initialize t = 1

I. Execute the following procedure to calculate α and β

Procedure P (W,F,N, t):

1. if N = 0

α = β = 0; return

2. else if r(H(W )) = m and |W | ≥ k

α = β = N ; return

3. else if r(H(−F )) < m or n− |F | < k

α = β = 0; return

4. get Fs as the set of failed sensors that belong to the border S

5. if t > ns − |Fs|+ 1, set t = ns − |Fs|+ 1

6. find a minimal cut set of S as follows:

6.a remove all the columns inH corresponding to sensors inW

6.b set βi’s representing those sensors inW to 0

6.c select a random a J ∈ Jt

6.d find a minimal rank reduction set by executing MIPCIR overH [J ]

if MIPCIR is infeasible, update t = t+ 1 and go to Step 7

else get the minimal cut set G = {s<1>, s<2>, ..., s<h>} and go to Step 7
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7. divide Ω into Ω0,Ω1, ...,Ωh based on (2.17) and (2.18). Define Q0 = Pr{Ω0}

6. generate a trial
(
N(SGt), ..., N(SGh

)
)

of the r.v. with multinomial distribution

M
(
N, p(SG1), ..., p(SGh

)
)

, where p(SGt) = Pr{Ωt|Ω0}

7. for each t ∈ {1, 2, ..., h}:

7.1 set Wt = W ∪ s<t> and Ft = F
⋃t−1
l=1 s<l>

7.2 call procedure
(
P (Wt, Ft, N(SGt , t)

)
to calculate αt and βt

II. get α = (1−Q0)
∑h

t=1 αt and β = (1−Q0)2
∑h

t=1 βt

III. calculate r̂rvr = α
N

and V̂rvr = 1
N−1

[
β − α2

N

]
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7. COMPUTATIONAL RESULTS

We present a detailed analysis of our computational experiments in this chapter. For the degree

of redundancy problem, we compare the performance of our algorithms DMIPCO and DMIPCIR

against MIPCO [14] and BDMIF [30]. We also report the running time and the degree of redun-

dancy estimates obtained by 2-STAGEL1. All the algorithms are executed for 11 different test

categories, each category consisting of five BBD design matrices of the same dimensions. The

instances within a category also have the same structure, i.e., the dimensions of the blocks and the

borders are the same for each of the instances within a category.

Our algorithms for reliability evaluation, RVRCO and RVRCIR, are compared against the RVRRREF

algorithm [3] by implementing and executing these algorithms over 8 of the 11 instances used in

the redundancy degree analysis. The rank calculations in the reliability evaluation algorithms are

performed using QR factorization, a substantially more efficient method to the alternatives like the

SVD decomposition [28].

We implemented all the algorithms in C++ and used ILOG CPLEX 12.9 callable library [35]

to solve all the optimization problems. The algorithms were executed on a PC which has an Intel

CoreTM i7-4910MQ 2.90GHz processor and 32 GB of RAM. We set a limit of 10 hours on the

running time of each instance. The instances in categories 1 and 2 are based on the multi-stage

assembly examples reported in [22], and the characteristics of the remaining ones are inspired by

the instances in [14]. All the instances used in this paper are available at http://ise.tamu.

edu/people/faculty/kianfar/modal/index_files/VKDPinstances.zip.

7.1 Computational Results for the Degree of Redundancy Problem

In Table 7.1, we present our computational experiments for the heuristic algorithm 2-STAGEL1.

Each row of Table 7.1 represents an instance category. The table shows the average running time

of 2-STAGEL1 over all the instance categories along with the Stage 1 and Stage 2 estimates for the

degree of redundancy. The table also reports the running time of MIPCO-W, the warm start version
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of MIPCO. The value of d(Â) from Stage 1 of 2-STAGEL1 is not optimal for most of the test

instances. However, the Stage 2 improves upon this estimate, and provides the optimal solution for

all the instance categories except for those in 650 × 340. The algorithm MIPCO-W improves upon

MIPCO by about 10% on average.

In Table 7.2, we summarize the results for the redundancy degree problem. As before, each

row of this table represents an instance category. For each test category, the table reports the

dimension (n×m), the number of border rows (ns), and the number of blocks (r) for the matrices

in that category along with the average running times (average over all the five instances in each

category) for MIPCO, BDMIF, DMIPCO, and DMIPCIR. The instances with the best run times are

reported in bold. Table 1 also shows the average value of the degree of redundancy, d(A), for each

of the instance categories.

To examine the effectiveness of our decomposition theorems with that of the bound and de-

compose theorem, we include the maximum number of blocks, t, in the decomposed submatrices

using our theorems along with the decomposition bound bt that will allow computations over t-

block submatrices using the bound and decompose Theorem. The minimum decomposition bound

allowable for this theorem, bmin = ns r/(r − 1)− 1, is also listed in this table.

Except for instance categories 1 and 3, which are anyway much smaller, the best running

times are reported for either DMIPCIR or DMIPCO. Fully about 60% of the tested instances saw

a reduction in running time of more than 75% with both DMIPCIR or DMIPCO compared to the

best performing algorithm among MIPCO and BDMIF. For the two largest instance categories,

1009× 252 and 2018× 504, the average reduction in the running time was more than 80%.

Matrices in categories 450×250 , 650×340, and 501×384 have large 1-blocks with significant

borders. These instances are also on average 10% denser than the remaining ones. While the

501 × 384 instances are not solved by any of the algorithms, the other two category instances are

only solved by DMIPCIR and DMIPCO, that too with an average running time of around 2 minutes.

The running times reported for DMIPCIR are comparable to that for DMIPCO. However, the slight

variances are largely due to the differences in the size of inputs and the MIP formulations for the
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Table 7.1: Running Times and Estimates from 2-STAGEL1

No n×m
Avg. d(Â)

2-STAGEL1 MIPCO-W

Stage 1 Stage 2

1 26× 12 4.8 4 1.85 sec. 1.89 sec.

2 66× 27 7.4 7 5.6 sec. 15.6 sec.

3 154× 72 6 5 7.42 sec. 9.12 sec.

4 316× 144 3.8 3.8 13.91 sec. 23.8 sec.

5 485× 360 1.6 1.6 15.29 sec. 22.63 sec.

6 222× 55 14 14 12.38 sec. 31.21 sec.

7 1009× 252 17 17 1.99 min. 20.46 min.

8 2018× 504 18 18 6.32 min. > 10 hrs.

9 450× 250 20.2 19 2.28 min. > 10 hrs.

10 650× 340 36 35 3.7 min. > 10 hrs.

11 501× 384 35 34 2.89 min. > 10 hrs.

two.

The categories 450 × 250 and 650 × 340, in particular, highlight the effectiveness of our de-

composition theorems. For example, for all the instances in these categories, we can decompose

the problems into 1 blocks (t = 1) using our theorems, while the bound and decompose theorem

allows such a decomposition only when the value of the d is more than 7 for 450× 250 instances,

and 19 for 650× 340 instances.

The minimum decomposition bounds, bmin, are also too large for these instances for BDMIF

to execute MIF over submatrices of reasonable size. In fact, except for instances in 316× 144 and

485× 360, all the others are reduced to 1 block subproblems when employing our decomposition

theorems.

Not only was our algorithms successful in reducing the size of the subproblems, but the total

number of subproblems to be solved are also considerably smaller than BDMIF. For example, for

instances in 2018 × 504, DMIPCO solved 84 subproblems of size 24 × 6, executing MIPCO over

these subproblems, to get the value of t, and then solved around 45 subproblems (average over all
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Table 7.2: A Performance Comparison of Redundancy Degree Algorithms

No. n× p ns r bmin t bt MIPCO BDMIF DMIPCO DMIPCIR Avg. d(A)

1 26× 12 2 4 1.67 1 3 0.13 sec. 3.81 sec. 0.26 sec. 0.34 sec. 4

2 66× 27 3 9 2.37 1 5 17.18 sec. 43.07 sec. 2.01 sec. 2.2 sec. 7

3 154× 72 2 2 3 1 3 2.34 sec. 20.33 sec. 3.41 sec. 3.18 sec. 5

4 316× 144 8 4 9.67 2 11 32.35 sec. 3.13 min. 13.51 sec. 13.28 sec. 3.8

5 485× 360 5 8 4.71 3 6.5 38.09 sec. 5.78 min. 20.13 sec. 17.46 sec. 1.6

6 222× 55 2 11 1.2 1 3 43.15 sec. 1.64 min. 9.12 sec. 9.83 sec. 14

7 1009× 252 1 42 0.024 1 1 > 10 hrs. 19.9 min. 3.12 min. 3.23 min. 17

8 2018× 504 2 84 1.024 1 3 > 10 hrs. 1.47 hrs. 11.25 min. 11.04 min. 18

9 450× 250 4 2 7 1 7 > 10 hrs. > 10 hrs. 1.36 min. 1.26 min. 19

10 650× 340 10 4 12.33 1 19 > 10 hrs. > 10 hrs. 2.32 min. 1.89 min. 34

11 501× 384 9 4 11 1 17 > 10 hrs. > 10 hrs. > 10 hrs. > 10 hrs. ≥ 1, ≤ 34

five instances) of size 26× 6 to find d(A). However, BDMIF solved an MIF with d = 1 over the

entire matrix, then solved
(

84
2

)
subproblems each of size 50 × 12, and another 1348 subproblems

of size 26× 6 until a reduction in rank was observed at d = 19.

7.2 Computational Results for the Reliability Evaluation Problem

In Table 7.3 and Table 7.4, we present the computational analysis for the reliability evaluation

algorithms RVRRREF, RVRCO and RVRCIR. As with Table 7.2, each row in these tables corresponds

to an instance category. For each algorithm and each category, we list the average running time (t)

and the average variance of estimated system reliability (V̂ ) over all the instances in that category.

While Table 7.3 reports the values based on a sample size N1 = 100, 000, Table 7.4 reports for

N2 = 1, 000, 000. The parameter Γ for RVRCO and RVRCIR calculated as

ΓRVRCO(RVRCIR) =
tRVRCO(RVRCIR) × V̂RVRCO(RVRCIR)

tRVRRREF × V̂RVRRREF

is used as a criterion to compare the performance of our algorithms against RVRRREF.

Another performance indicator listed in Table 7.3 and Table 7.4 is the value Nreq, the approx-
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Table 7.3: A Performance Comparison of Reliability Analysis Algorithms for N = 100,000

No n×m
RVRRREF RVRCO RVRCIR

t V̂ Nreq t V̂ Γ t V̂ Γ

1 26× 12 43.15 sec. 3.51E-03 133000 39.71 sec. 6.74E-05 1.77E-02 40.17 sec. 6.65E-05 1.76E-02

2 66× 27 2.15 min. 2.42E-03 139000 1.42 min. 4.39E-05 1.20E-02 1.45 min. 4.37E-05 1.22E-02

3 154× 72 2.31 min. 1.13E-03 163000 1.94 min. 1.89E-05 1.41E-02 1.91 min. 1.87E-05 1.37E-02

4 316× 144 5.32 min. 3.02E-02 124000 3.77 min. 7.38E-04 1.73E-02 3.81 min. 7.40E-04 1.75E-02

5 485× 360 6.25 min. 2.94E-02 127000 3.92 min. 8.25E-04 1.76E-02 3.98 min. 8.29E-04 1.80E-02

6 222× 55 5.13 min. 2.01E-03 182000 3.4 min. 2.55E-05 8.41E-03 3.62 min. 2.58E-05 9.06E-03

7 1009× 252 28.37 min. 6.34E-03 218000 17.22 min. 7.06E-05 6.76E-03 17.15 min. 7.04E-05 6.71E-03

8 2018× 504 56.22 min. 5.29E-03 223000 33.87 min. 6.23E-05 7.10E-03 32.54 min. 6.31E-05 6.90E-03

imate number of samples required by RVRRREF to obtain a reliability estimate with a variance

comparable to the average of the variances reported for RVRCO and RVRCIR.

Fully, on average, both RVRCO and RVRCIR report a decrease in the running time (compared

to RVRRREF) of about 30% for a sample size of N1 and more than 36% for a sample size of

N2. The running time reduction is more than 36% with 100,000 samples and more than 46% with

1,0000,000 samples for all the instances in 1009×252 and 2018×504 for both RVRCO and RVRCIR.

The sample variance of the reliability estimate also presents a significant reduction, with an

average reduction of more than 60 times for N1 and more than 120 times for N2. For instances

in 1009 × 252 and 2018 × 504, the variance reduction is over 200 times for both RVRCO and

RVRCIR when N2 samples are used. The variance estimates and the running times for RVRCO

are comparable to that of RVRCIR, although RVRCIR executes slightly faster than RVRCO for large

instances.

A value of Γ < 1 signifies a superior performance of RVRCO or RVRCIR against RVRRREF; the

smaller the value, the better the performance. We observe that the Γ values across all the instances

are significantly smaller (of the order of 10−2 or 10−3) for both sample sizes and both algorithms.

Even for the instances in 316 × 144 and 485 × 360, which report the highest values of Γ, these

values are smaller than 0.001 for a sample size of 1,000,000. These are also the least reliable of all

the tested instances.
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Table 7.4: A Performance Comparison of Reliability Analysis Algorithms for N = 1,000,000

No n×m
RVRRREF RVRCO RVRCIR

t V̂ Nreq t V̂ Γ t V̂ Γ

1 26× 12 1.31 min. 1.62E-05 1210000 1.14 min. 1.94E-07 1.04E-02 1.15 min. 1.95E-07 1.06E-02

2 66× 27 4.76 min. 8.54E-06 1313000 3.23 min. 9.68E-08 7.69E-03 3.35 min. 9.91E-08 8.17E-03

3 154× 72 6.27 min. 3.41E-05 1383000 4.07 min. 3.51E-07 6.68E-03 4.01 min. 3.45E-07 6.47E-03

4 316× 144 10.48 min. 2.98E-04 1108000 6.55 min. 4.34E-06 9.10E-03 6.31 min. 4.28E-06 8.65E-03

5 485× 360 11.97 min. 3.11E-04 1104000 7.52 min. 4.69E-06 9.47E-03 7.45 min. 4.72E-06 9.45E-03

6 222× 55 10.16 min. 5.49E-05 1431000 5.33 min. 4.23E-07 4.04E-03 5.36 min. 4.20E-07 4.03E-03

7 1009× 252 56.92 min. 2.18E-05 1464000 28.05 min. 1.02E-07 2.31E-03 27.13 min. 1.03E-07 2.25E-03

8 2018× 504 2.06 hrs. 2.53E-05 1488000 1.05 hrs. 1.14E-07 2.30E-03 1.02 hrs. 1.09E-07 2.13E-03

As expected, the reduction in the variance is more pronounced for instances which are highly

reliable, namely 154× 72, 222× 55, 1009× 252, and 2018× 504. On average, RVRRREF required

more than 160,000 samples and 1,300,000 samples to get a comparable reliability estimate as that

of RVRCO and RVRCIR with 100,000 samples and 1,000,000 samples respectively as indicated by

the values of Nreq.
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8. CONCLUSION AND FUTURE RESEARCH

8.1 Conclusion

In this dissertation, we developed algorithms to compute the degree of redundancy and re-

liability of large-scale linear sensor systems. A polynomial-time algorithm to find the degree of

redundancy and reliability is highly unlikely due to the complexity of these problems. The sensitive

task of design, analysis, and operation of linear sensor systems calls for algorithms that can deter-

mine the redundancy degree and reliability of very large linear models. However, such algorithms

are virtually nonexistent in the current literature. Our research efforts into finding the degree of re-

dundancy and estimating the reliability resulted in two main approaches: One a heuristic method,

and the second a matroid decomposition procedure.

In our heuristic approach, we developed an algorithm, 2-STAGEL1, that solves a series of

linear programs to find good solutions to the degree of redundancy problem. We then used the

solution from 2-STAGEL1 to find a good starting solution for the existing MIP formulation [14]

for the degree of redundancy problem. Finally, we solved this MIP using CPLEX 12.9 solver after

adding these starting solutions to warm start the MIP. We also establish the connection between the

redundancy degree problem and the well-defined circuit and cocircuit problems in matroid theory.

Most linear sensor systems in practice exhibit structural properties. We took leverage of the

structure of the linear system’s design matrix and introduced decomposition theorems character-

izing the properties of the cocircuits and circuits of structured matroids. We then developed algo-

rithms based on these decomposition theorems to compute the degree of redundancy and estimate

the reliability of large-scale structured linear sensor systems commonly found in practice. Specif-

ically, we proposed two cocircuit based matroid decomposition algorithms: DMIPCIR which finds

the degree of redundancy and RVRCIR which evaluates the reliability. Similarly, we proposed two

circuit based matroid decomposition algorithms: DMIPCO for the redundancy degree problem and

RVRCO for the reliability evaluation problem. Our decomposition theorems are based on the ma-
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troid theory properties of connectivity and duality.

Following a divide-and-conquer approach, we decomposed the given problem into smaller

subproblems and then solved the resulting subproblems using MIP formulations. By performing

computations over these subproblems, our algorithms were able to get the solutions much faster

than the previously existing algorithms in the literature. The variance of the reliability estimates

from RVRCO and RVRCIR was much smaller than the ones obtained from the existing RVRRREF

algorithm [3].

8.2 Future Research

Several new research topics arise from the methodological developments in this dissertation.

Some of the directions from the results in this dissertation are as follows:

1. All the theorems in this dissertation are proved for general matroids, thereby making the pre-

sented algorithmic frameworks suitable for any general matroids. Hence, these approaches

can be extended to graphic matroids to solve for the circuits and cocircuits over graphs. This

adaptability of our decomposition algorithms can provide significant computational gains

when applied to network reliability problems.

2. With the degree of redundancy and reliability as modeling parameters, we can develop a

full-fledged robust regression model to analyze fixture faults in multi-stage manufacturing

processes. We plan to use the values of degree of redundancy and reliability from our algo-

rithms to improve the efficiency of statistical regression estimator models [2, 22] for fault

diagnosis and other applications of linear sensor systems.

3. Our algorithms solve MIPs to find the circuits and cocircuits over the design matrix that

defines the linear sensor system to solve for degree of redundancy and reliability. It is in-

teresting to investigate the possibility of strengthening the MIP formulations via polyhedral

study and generation of new strong valid inequalities. If successful, we can integrate our de-

composition techniques with these stronger MIP formulations thereby enhancing the existing

approaches in solving these problems.
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