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ABSTRACT

Estimating density maps and counting the number of objects of interest from images has a wide

range of applications, such as crowd counting, traffic monitoring, cell microscopy in biomedical

imaging, plant counting in agronomy, as well as environmental survey. Manual counting is a labor-

intensive and time-consuming process. Over the past few years, the topic of automatic object

counting by computers has been actively evolving from the classic machine learning methods

based on handcrafted image features to end-to-end deep learning methods using data-driven feature

engineering, for example by Convolutional Neural Networks (CNNs).

In our research, we focus on the task of counting plants for large-scale nursery farms to build an

AI-horticulture monitoring and prediction system using unmanned aerial vehicle (UAV) images.

The common challenges of automatic object counting as other computer vision tasks are scenario

difference, object occlusion, scale variation of views, non-uniform distribution, and perspective

difference. For an AI-horticulture monitoring and prediction system for large-scale analysis, the

plant species various a lot, so that the image features are different based on different appearance of

species.

In order to solve these complex problems, the deep convolutional neural network-based ap-

proaches are proposed. Our method uses the density map as the ground truth to train the modified

classic deep neural networks for object counting regression. Experiments are conducted comparing

our proposed models with the state-of-the-art object counting and density estimation approaches.

The results demonstrate that our proposed counting model outperforms state-of-the-art approaches

by achieving the best counting performance with a mean absolute error of 1.93 and a mean square

error of 2.68 on our horticulture nursery plant dataset.
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NOMENCLATURE

CNN Convolutional Neural Network

MAE Mean Absolute Error

MSE Mean Square Error

GLCM Gray Level Co-occurrence matrices

HOG Histogram Orient Gradient

UAV Unmanned Aerial Vehicle

SKU Stock Keeping Unit

AIHM AI-Horticulture Monitoring system

ReLU Rectified Linear Unit

GAN Generative Adversarial Network
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1. INTRODUCTION

Machine learning technology has benefited modern human society with the exponential growth

of various applications in computer vision, natural language processing, Web search engines, spam

detection, and many others [3]. Nowadays, people are using Machine Learning to increase industry

productivity, improve business decisions, forecast weather, diagnose diseases, and create many

other possibilities.

Among those application topics, estimating the density maps and counting the number of in-

teresting objects from images [4] has gained significant attention in recent years since this topic

has a wide range of applications such as crowd counting [5, 6, 2], traffic monitoring [7, 8], cell

microscopy in biomedical imaging [9, 10], plant counting in agronomy [11, 12, 13], and environ-

mental surveying [14, 15].

In this project, we focus on the task of counting plants for large-scale breeding nursery farm to

build an AI-horticulture monitoring and prediction system using unmanned aerial vehicle (UAV)

images. Plant density plays significant roles in decision making influencing crop productivity

and sustainability related to many aspects of farming such as watering, fertilizer requirements,

and yielding. The traditional manual surveying and decision making process is tedious, time-

consuming and prone to human errors especially for large farms. Thus, it is necessary and mean-

ingful to develop alternative (semi-)automatic methods with high-efficiency and accuracy for esti-

mating plant densities.

With the recent development of machine learning methods in computer vision and image anal-

ysis, including the traditional ones [16, 17] based on handcrafted image features and more recent

deep feature representations derived from training end-to-end deep network architectures [5, 18,

19], we focus on automatic plant counting for this AI-enabled monitoring system in this thesis.

Specifically, the common object counting image analysis challenges are scenario difference,

object occlusion, scale variation of views, non-uniform distribution, object appearance difference

and perspective difference. In the horticulture plant counting case, another challenge is large vari-
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ance of plant species which makes the object features various.

To overcome these challenges, we propose deep neural network models by modifying recent

Convolutional Neural Network (CNN) architectures that combine the recent advances in deep

learning with classic machine learning methods to automatically count plants.

Extensive experiments are conducted to evaluate our models’ effectiveness comparing to recent

state-of-the-art object counting density estimation approaches.

In Chapter 2, we will provide a detailed literature review of the previous research on how

to count objects in images using Computer Vision and Machine Learning techniques. Chapter 3

provides the UAV-based horticulture monitoring and prediction system setup, experiment design,

data collection and preparation. Chapter 4 presents the mathematical model of object counting in

images with regression to density maps, and the implementation to address the problem of plant

counting in agronomy, including the model analysis and experiment design to evaluate the model

effectiveness and accuracy. Potential future research directions are discussed in Chapter 5.
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2. LITERATURE REVIEW

One of major components in our proposed AI-Horticulture monitoring system is reliable in-

ventory management. With improved convenience of image collection using UAVs, it is critical to

develop customized computer vision and machine learning methods to reliably count the number

of plants in specific farm locations. We first review the recent advances in object counting and

density estimation in this chapter.

Counting objects and density estimation of objects in images using machine learning tech-

niques have a wide range of applications such as crowd counting [5, 6, 2], traffic monitoring [7, 8],

cell microscopy in biomedical imaging [9, 10], plant counting in agronomy [11, 12, 13], and en-

vironmental survey [14, 15], which led to an increasing focus by researchers across various fields

especially in recent years. This computer vision domain topic comes with many challenges such as

object occlusions, distortion of image view, scale differences, non-uniform of illumination and dis-

tribution in the image, changing scenarios differences, perspective differences, making the problem

difficult to solve. Over the past few years, we have witnessed the considerable development of this

topic from earlier approaches of hand-crafted machine learning methods, which are limited with

variations of image scale or scene and occlusions of objects, to current state-of-the-art approaches

that are more robust and accurate with respect to scale and scene differences.

The researchers have attempted to tackle object counting and density estimation using different

methods such as counting by detection, counting by segmentation, counting by regression, and

counting by clustering [20]. For regression, the earlier work is using hand-crafted features and the

state-of-the-art methods is using Convolutional Neural Networks (CNNs), which have achieved

superior performance than the former methods.

In this chapter, we are going to discuss the development of object counting and density estima-

tion from traditional counting approaches to CNN-based approaches. We will also discuss about

the methods dealing with the lack of labelled data. Last but not least, the applications on counting

plants in agronomy are being discussed.
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2.1 Traditional Counting Approaches

Traditional counting approaches often use low-level hand-crafted image features as the input

predictor vectors, which are being mapped to object density or count number via different regres-

sion techniques. In many surveys of this topic, researchers have categorized the existing methods

into detection-based, regression-based, and density estimation-based approaches [21, 20], as de-

tailed below.

2.1.1 Detection-based Approaches

For the detection-based counting approaches, the main idea is using a sliding window going

through the whole image to detect objects and count the number of them in an image [22, 23],

after hand-crafted feature extraction using Haar wavelets [24], edgelet [25], histogram of oriented

gradients [26], or other shape features [27], a classifier is trained via different methods, such as

random forests [28], to detect and count objects in images successfully.

However, these detection-based approaches only perform well in images with low object den-

sity and clear background. When the objects are crowded together with occlusion, the objects are

too small to be detected, or background is cluttered, these approaches have shown limited perfor-

mance.

2.1.2 Regression-based Approaches

To overcome these issues of detection-based approaches, some researchers have explored the

way to do object counting by regression, where a mapping can be learned directly from extracted

features to the count number of objects under study [16, 17, 29]. In Idrees [30], the authors have

shown that the regression-based approach is more effective than detection-based approaches espe-

cially when the image has extremely crowded objects. Generally, counting by regression avoids

time-consuming processes related to sliding window detectors. It typically takes two steps: low-

level feature extraction and regression modeling. For feature extraction, researchers explored dif-

ferent ways to extract key features [17] such as edge, color, texture (Gray Level co-occurrence

matrices-GLCM), gradient (histogram orient gradients-HOG), and so on. For regression model-
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ing, multiple regression techniques have been applied and explored, such as linear regression, ridge

regression [16], piecewise linear regression [31], to learn the mapping from low-level features to

the object counting number in an image. It has been noticed that the traditional regression-based

approaches are missing one key feature – the location information of each object we need to count

in the image. The traditional regression process is doing a global mapping which ignores the local

spatial information.

2.1.3 Density Estimation-based Approaches

In 2010, Lempitsky and Zisserman [4] introduced a new approach to count objects in images

by learning a linear mapping from local features to the corresponding density maps indicating both

the number of objects in images and the location of each object. By using density maps, it can

have both global information about the object counts and local information about object locations

without tedious processes needed in detection-based approaches. The integral over the area in the

density map gives the object counting results over this area. The learning process is formulated

as a convex optimization problem by minimizing a regularized risk quadratic function. This is a

milestone as the following research on counting are mostly based on this density map idea.

Knowing that not all the mapping relationships between features to the density map are linear,

Pham et al. [7] introduced a non-linear mapping learning method via random forest regression to

vote for densities of objects. Similarly, Wang and Zou [32] proposed a faster approach based on

subspace learning to solve the computational complexity problem in previous methods. However,

sometimes the limited feature representations in the existing work may prevent these models from

the better counting performance. On the other hand, if adding too many features, the computational

complexity makes models not that efficient. In order to solve this trade-off, Xu and Qiu [33]

proposed to take richer feature representations into consideration using the random forest as the

regression model with the modified tree structures, so that the performance can be boosted with

reasonable complexity.
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2.2 CNN-based Supervised Learning Approaches

Unfortunately, most of these traditional counting approaches that we have discussed above rely

on the expression ability of the hand-crafted extraction features. Recent considerable progress in

deep learning and successes of CNNs in computer vision realm have inspired researchers to exploit

CNN-based methods to learn the non-liner mapping between image features and the corresponding

density map or object counts [5, 34, 7, 2, 18]. Searmanet et al. [35] indicated that the features

extracted via deep learning models are more effective than the hand-crafted features. The authors

in [36] and [5] were among the first ones to apply CNN-base deep learning models to object

counting. Wang et al. [36] used a modified AlexNet [37] architecture, where the last layer was

replaced by a single neuron to predict the object counting number. Zhang et al. [5] proposed

a cross-scene counting framework to solve the scenario difference problem by training based on

two objectives: crowd density and crowd count. Besides from patch-based training, Shang et al.

[19] proposed an end-to-end training by taking whole images as input and directly outputting the

counting results without patch cropping and overlapping.

In order to solve the scale variation problem, there are many scale-aware models such as CCNN

and HydraCNN [18] using a pyramid structure, MCNN [2] using a multi-column CNN network.

These scale-aware methods can address issues caused by scale differences to some extent, but

they are still relying on the models to select scale scopes. More flexible models are needed to

tackle these nuisance variation challenges including object appearance and scale variation as well

as scenario difference.

2.3 Methods Dealing with the Lack of Labelled Data

The approaches we discussed above mostly are supervised learning with fully annotated ground

truth data. In practice, however, labeling the ground truth key points in each image is always labor

intensive and expensive. Researchers have made efforts to tackle this issue in counting methods.

In 2013, Chen et al. [38] proposed a semi-supervised regression framework with ability to perform

transfer learning on partially labeled datasets.
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Over the past two years, this problem has attracted more attention by researchers. In 2018, Liu

et al. [39] proposed a novel crowd counting method that leverages abundantly available unlabeled

crowd imagery in a learning-to-rank framework. In 2019, Lu et al. [40] created a counting model

able to count any class of objects by formulating the counting process as a matching problem based

on a Generic Matching Network (GMN) architecture to count any objects in any class using the

image self-similarity property. Sam et al. [41] presented a weakly supervised learning framework

by developing Grid Winner-Take-All (GWTA) autoencoder to learn several layers of useful filters

from unlabeled crowd images. Wang et al. [42] developed a data collector and labeler to automat-

ically generate images and annotate them without any manpower. Olmschenk et al. [43] explored

generalizing a semi-supervised Generative Adversarial Network (GAN) for object counting.

2.4 Object Counting in Agronomy

Plant counting is a challenging task for today’s agronomy. With the increasing demand of

plant and crop supplies, it is necessary to perform nursery activities more efficiently and precisely.

Usage of remote sensing images can help us to conduct automatic, high-throughput phenotyping

and monitoring, for example, to track and manage plant numbers and nursery stages efficiently.

Counting plants from unmanned aerial vehicle (UAV) images using machine learning and

computer vision techniques is a new cross-disciplinary application which attracts attention of re-

searchers recently [44, 12, 45]. Machine learning algorithms for detecting and counting an agri-

culture product with harvesting robots have been applied to grapes, apple, mango, tomato, etc.

However, these existing algorithms are designed for high resolution images with either specific

species or small plant appearance variations.

The first article related to using UAV image to count plant and crop within individual plots (known

as Stock Keeping Units—SKUs) with machine learning techniques [46] was presented in 2018.

They have adopted a classic two-step machine learning method to first extract color features in im-

ages and then applied machine learning to train a pixel-based segmentation method with two public

datasets. This method is a supervised machine learning approach based on the decision tree. Nev-

ertheless, they only used the color features; so this method is limited if the color of plants is similar

7



with the background or the plants are overlapping. Later on, Oh et al. [13] explored approaches

using CNN-based deep learning to counting by segmenting sorghum heads with a modified Count-

ing CNN model. This method is also supervised learning and requires significant annotation work.

In real-world practice, obtaining the unlabeled data is easy by taking new pictures, but the labeled

data are always costly to produce.
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3. AI-HORTICULTURE MONITORING SYSTEM IN PRACTICE

In this chapter we briefly introduce our proposed AI-Horticulture Monitoring (AIHM) system

and its potential application in horticulture nursery farms. We introduce the real-world setup of

such a system in a large horticulture nursery farm in agronomy and discuss the required data

preparation for this practical application of counting plants using unmanned aerial vehicle (UAV)

images with machine learning and computer vision techniques.

3.1 Background

The thesis research is motivated by the real-world inventory management demand of a lo-

cal horticulture nursery farm – TreeTownUSA – in Houston, Texas (latitude: 29.33◦, longitude:

−96.20◦). Phenotyping and monitoring plants in the nursery farm such as counting and recognizing

plant species can be time-consuming and error-prone, especially for such a large scale nursery farm

with multiple plant species. The alternative approach using the low altitude unmanned aerial vehi-

cle (UAV) with high resolution camera to take pictures of the plants and applying machine learning

technologies to do counting automatically is more efficient. In our proposed AI-Horticulture Mon-

itoring (AIHM) system, we pay attention to each individual plot (known as Stock Keeping Unit,

SKU, in nursary inventory management) by automatic counting the plant number and recognize

the plant species in each SKU. We monitor the changes in each specific SKU for inventory man-

agement, so that people can make appropriate decisions based on these changes on plant species

and number by routine drone flight data collection. In order to build the AIHM system, the work

flow is first to have the UAV flight under a set plan with reasonable overlapping, then stitching the

images into the panorama whole-view image, and segment individual SKUs, and finally apply the

trained machine learning models for counting/species classification of each SKU.

3.2 Field Experiments and Image Acquisition

The drone (UAV) images have been taken at TreeTownUSA during the time of the growing

seasons from 2017 to 2019. More than a hundred varieties of plant species are growing in the
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nursery farm. Here in our project, we mainly focus on three fields inside the nursery farm: the

“West field” with the plant species of mainly oaks with the size around 95 acres; the “Area1”

with multiple plant species and the size of round 200 acres, and “Area2” with around 12 acres of

multiple plant species.

We can see the figures below that for the plant in West field, it is much easier to count than

for the plants in Area1 and Area2. Since the main species is oaks, the appearance between each

objects in images does not vary much so that they may have similar feature patterns. However,

there are still challenges such as the occlusion of objects, shadows, and view distortion from the

UAV images, and when the growing season is different, the species might vary a lot. The main

challenges include: (a) huge appearance differences between plant species. The appearance varies

in size, color, texture, shape, pose, etc.; (b) self-occlusion of plant objects, especially for some

herbaceous plants; (c) super dense distribution for some plant species, which make the manual

annotation process difficult. These challenges and problems are what we are going to address in

our proposed models.

Figure 3.1: Image taken by UAV on the West field of oak trees.
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Figure 3.2: Image taken by UAV on the Area2 with multiple plant species.

Figure 3.3: Image taken by UAV on the West field with multiple plant species in growing season.
(rotated and cropped)
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In this thesis, images were captured by high resolution cameras using a low-altitude unmanned

aerial vehicle (UAV) at difference heights (60feet, 150feet, 300feet, 400feet) and under different

light conditions (cloudy, sunny), with a reasonable overlapping on the flight map to make sure that

we could stitch the whole-view map of the fields.

Figure 3.4 shows the various plant species growing in SKUs/plots, our goal is to count the num-

ber of plants and at the same time distinguish different plant species in each SKU with accurate,

automatic and robust approaches.

3.3 Data Prepossessing of UAV images

3.3.1 Image Stitching

The figures below are the outcomes of whole-view image stitching using a commercial software

pix4D. The ortho-mosaic and point clouds were reconstructed for the whole field,
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Figure 3.4: The stitched panorama view of the West field. (Area size: 95acres, inside the horticul-
ture nursery farm).
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Figure 3.5: The stitched panorama view of the Area1. (Area size: 200acres, inside the horticulture
nursery farm).

Figure 3.6: The stitched panorama view of the Area2. (Area size: 12acres, inside the horticulture
nursery farm).
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3.3.2 SKU/Plot Segmentation

We use the traditional digital image processing approaches to generate the SKU/plots in our

target stitched images of horticulture nursery fields. Template matching, image rotation and scaling

are applied to find the unique contour of the field. Then the SKU masks are used to extract and

segment each SKU area in a fixed order. This can make sure that we generate and number/register

each SKU area with the number and order as the same as the previous analysis time, so that by

detecting the number of plants and species in each SKU, we could achieve our goal to monitor the

difference of each SKU at different growing time of the plant nursery stages.

Figure 3.7: Masked panorama view of the West field.
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Figure 3.8: Examples of Segmented SKUs/plots.

3.4 Annotations and Density Map Generation

In our thesis, we obtain training labels and evaluation benchmarks by annotating the key points

on the objects in images by the Matlab annotation tools, where one object has one corresponding

key point, and then the ground truth density maps are generated by applying the Gaussian kernel

smoothing on the key points. There are some sophisticated methods about how to generate the

ground truth density map [5, 2]. In this study, we use the approach summing a 2D Gaussian kernel

centered at each ground truth key point xgt as below:

Di(x) =
∑
xgt∈S

N (x− xgt, σ) , (3.1)

where σ is the scale parameter of the 2D Gaussian kernel and S is the set of all the ground truth

key point locations, in our experiments, we choose σ = 15 as the average size of the plants.
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Figure 3.9: The segmented individual SKU with its density map.
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4. CNN-BASED OBJECT COUNTING REGRESSION MODELS

In this chapter, several deep neural network models will be implemented to address the problem

of plant counting in agronomy. Corresponding experiment design, model prediction results and

discussion will be presented to identify the best performing backbone deep network architecture

for plant counting.

4.1 Problem Formulation

4.1.1 Learning to Count in Images with Density Maps

The counting objects in image problem can be formulated as a density map estimation problem.

We assume that a set of N images I1, I2, ..., IN for training is given, and for each image Ii, each

pixel p on it is associated with a feature vector xip ∈ RK . For each training image Ii, the objects

in it are annotated by a set of 2D key points Pi =
{
P1, . . . , PC(i)

}
, indicating the location of the

objects, where C(i) is the total number of objects in the image. The ground truth density function

is defined as a kernel density estimate based on the provided key points[4]:

∀p ∈ Ii, F 0
i (p) =

∑
P∈Pi

N
(
p;P, σ212×2

)
, (4.1)

where p denotes any image pixel, N (p;P, σ212×2) represents the normalized 2D Gaussian kernel

evaluated at image pixel position defined by p. With the density map F 0
i (p), the total object count

of number Ni can be obtained by the sum of the ground truth density over the whole image, as

follows:

Ni =
∑
p∈Ii

F 0
i (p) (4.2)

Note that all the Gaussian are summed, thus the total number of object count is preserved even

when there is overlapping between objects in the image, and Ni is close to C(i) since considering

the case that some of the points might locate near the boundary.
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4.1.2 Basic Mathematical Model for Counting

The first counting model using density maps as the ground truth was illustrated in [4]. Given

the set of training images and their corresponding labeled ground truth density maps, the goal is to

learn the linear mapping between the feature representation and the density function at each pixel

in the image:

∀p ∈ Ii, Fi(p|w) = wTxip, (4.3)

where xip is the image feature at pixel p and a linear model is assumed with w being the parameter

vector to learn from the training data. Fi(·|w) is the estimate of the density function characterized

by w. The regularized risk framework is often adopted to find an appropriate w that minimizes

the sum of the mismatches between the ground truth and the estimated density functions under

regularization:

w = argmin
w

(
wTw + λ

N∑
i=1

L
(
F 0
i (·), Fi(·|w)

))
, (4.4)

where λ is the standard scalar hyperparameter. Once the optimal weight vector has been learned

from the training data, the model can predict an estimated density map for an unseen image by

a simple linear weighting of the feature vector computed in each pixel in image as in (4.2). So

the goal is to solve the above optimization problem by choosing a good loss function L with the

appropriate regularization coefficient λ and computing the optimal w under that loss.

4.1.3 Optimization

The learning model introduced in the last section can be solved by the following convex

quadratic program:

min
w,ξ1,...ξN

wTw + λ

N∑
i=1

ξi, subject to (4.5)

∀i,∀B ∈ Bi : ξi ≥
∑
p∈B

(
F 0
i (p)− wTxip

)
, ξi ≥

∑
p∈B

(
wTxip − F 0

i (p)
)
, (4.6)

where ξi is the auxiliary slack variable and one slack variable ξi is for each training image Ii; Bi

denotes the set of subarrays in image Ii. Solving the above quadratic program, the optimal vector

19



ŵ is the solution to (4.3) and the resulting slack variables give the loss
∑

i ξ̂i = L (F 0
i (·), Fi(·|ŵ)).

Counting objects in images by density maps can be solved with given image features. The

remaining challenge is to derive most informative and relevant image features for counting. Fur-

thermore, mappings from the image features to density maps are often not linear. The main ob-

jective of our work is to design a more general model that is able to learn not only the linear but

also non-linear image features as well as the regression mapping with strong data-driven feature

extraction ability from recent deep networks. Motivated by recent successes of data-driven feature

engineering by Convolutional neural networks in computer vision, which can extract both linear

and non-linear features, in the following sections, we focus on CNN-based regression counting

models.

4.2 Basic Model of CNN-based Regression with Density Maps

Given the object counting model with density maps in Section 4.1, the goal of CNN-based

model is to learn the non-linear regression functionR that takes an image I as an input, returns the

corresponding density map prediction D(I)
pred,

D
(I)
pred = R(I|Ω), (4.7)

where Ω is the set of parameters of the convolutional neural network model, for the image I ∈

Rh×w×c, h, w and c represent the height, width and channels of a given input image.

The typical Convolutional Neural Network (CNN)-based model [18] is shown in the figure

below. The training dataset contains the segmented SKUs/plots of plants. For supervised learning,

the manual annotation is needed for labeling a key point on each object in the image, then we

generate the corresponding density map [2] as discussed previously. The prepared training dataset

then is fed into the deep networks to learn a non-linear mapping from the image to an object density

map. The last convolutional layer is connected to the following regression loss:

l(Ω) =
1

2N

N∑
n=1

∥∥∥R (In|Ω)−D(In)
gt

∥∥∥2
2
, (4.8)
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where Ω represents the neural network parameters,R (In|Ω) represents the density map prediction,

N is the number of training images, D(In)
gt denotes the ground truth density for the associated

training image In.

This is an end-to-end model to directly predict the density map indicating the total number of

objects in the image.

Figure 4.1: Overview of the basic CNN-based regression model with density maps.

4.3 Customized Deep Network Models for Nursery Plant Counting

We now implement, modify, and compare different deep network architectures for plant count-

ing. To estimate the total object number in an image using CNN-based regression model, there

are two intuitive ideas: one is a network whose input is the image and the output is the estimated

object count number; the other way is to output the density map of the objects, and then obtain the

count number by integral of estimated density maps as in (4.2).
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In this thesis, we focus on the second choice for the following reasons: 1, The density map

preserves more information such as the location of each object, which shows the distribution in-

formation; 2, to learn the density map with the CNN models, the learning filters are more adaptive

to objects with different size or with different appearance, such as in our horticulture plant count-

ing task with multiple species and different sizes. The second solution strategy is more semantic

meaningful and improves the object counting accuracy, as we will see in our experimental results.

Our CNN-based regression models will be trained to estimate the density map from an input im-

age. The last layer in the model is compared with the ground truth density map for pixel-to-pixel

mapping with the regression loss function (4.8).

For implementing and modifying the CNN-based regression model for counting with density

maps, we mainly focus on two things: 1, how to choose the model with strong feature extraction

ability; 2, how to improve the accuracy with pixel-to-pixel density map regression. In this sec-

tion, we discuss about the three classic models: VGG, AlexNet, ResNet can be modified for our

horticulture plant counting task.

4.3.1 Modified VGG Plant Counting Model

The overview of the original VGG-16 deep neural network [47] for image classification is

illustrated in Figure 4.2, in which there are five sets of convolutional layers with corresponding

Rectified Linear Unit (ReLU) and max pooling layers. Two fully connected layers, each with 4096

nodes are then followed by a softmax classifier.
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Figure 4.2: Overview of the VGG network architecture.

Based on this VGG-16 deep convolutional neural network model, we have modified it for our

nursery plant counting task by taking the first 4 sets of convolutional layers with ReLU and max-

pooling layers (10 convolutional layers in total) as the encoder to extract the image features from

our horticulture nursery plant images. To enable pixel-to-pixel density map regression, instead of

using the remaining layers in VGG-16 including fully convolutional layers, we add three deconvo-

lutional layers and up-sampled by factor of 8 as the decoder. Max pooling is applied for each 2×2

region, and ReLU is adopted as the activation function. This provides the flexible pixel-to-pixel

density map regression from extracted image features using the original convolutional layers in

VGG-16. The modified VGG-16 model is illustrated in Figure 4.3.
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Figure 4.3: The modified VGG model architecture for plant counting.

For the encoder part, after each set of convolutional layers, the image size is scaled to 1/2 of

the previous layer. Therefore, after the whole encoder module, the image size is 1/8 of the original

input size. In the decoder part, we use three deconvolutional layer with the stride of two pixels, so

that the output image size will up-sampled to the original size of the input image, which is also the

same size as the ground truth density map. This is indeed critical when we have densely distributed

plants in our images. The mean square error (MSE) to measure the difference between the output

estimated density map and the ground truth density map is adopted as the loss function as in (4.8)

to train this modified density map regression deep network. The optimization for training can be

performed by batch-based stochastic gradient descent and backpropagation, as typically done in

CNNs.

In recent research of object counting models such as MCNN [2], CSRNet [1], and CCNN

[18], as the output image size are down-sampled to 1/4 or 1/8 of the original input image size for

the computation consideration, they construct their models to have downsampled density maps to

1/4 or 1/8 of the original image size and compare the downsampled density map with the output

predicted density map. However, in this way some of the information in the density map might be
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lost. It may affect the accuracy for pixel-to-pixel regression. This issue has inspired us to design

the decoder part in the modified VGG model architecture. In our experiments, we have observed

that the predicted density map is indeed more accurate for density map regression at the pixel level.

4.3.2 Modified AlexNet Plant Counting Model

Figure 4.4: Overview of the AlexNet model architecture.

Based on the AlexNet [37] deep convolutional neural network model, we have modified it for

our nursery plant counting task by taking off its last three fully connected layers, leaving the first

five convolutional layers with pooling as the encoder of our counting model. For the decoder, we

use the simple two layers of convolution and up-sampling and returns the one-channel density map.

In order to make sure that the feature map size can be divisible, we adjusted the padding size of 4

and 3 on the first two convolutional layers. For the last layer, we use an up-sampling layer with the

scale factor of 16 to resize the output of the predicted density map to the original input image size,

as discussed in the previous section. The modified AlexNet is presented in Figure 4.5.
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Figure 4.5: The modified AlexNet model architecture.

4.3.3 Modified ResNet Plant Counting Model

Based on the ResNet50 [48] deep convolutional neural network model, we have modified it

for our nursery plant counting task by adjusting the stride from 2 to 1 at the layer three to make

sure that the output density map is no smaller than the 1/8 of the original image size. We use two

convolutional layers as the decoder. In the last layer, we put an upsampling layer of scale factor of

8 to again make sure that output density map is rescaled to the original input image size.

4.4 Evaluation Metrics

The evaluation metrics used to measure the counting performance are (1) mean absolute error

(MAE) and (2) mean square error (MSE) based on estimated counts from density maps predicted

by different deep models, which are given by:

MAE =
1

N

N∑
i=1

|yi − y′i| ; (4.9)
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MSE =

√√√√ 1

N

N∑
i=1

|yi − y′i|
2, (4.10)

where N is the number of test samples; yi is the ground truth count and y′
i is the estimated count

corresponding to the ith sample.

4.5 Implementation Details

All the models are implemented and trained on Texas A&M HPRC (High Performance Re-

search Computing) platform using PyTorch with NVIDIA K80 dual-GPU accelerators. Augmen-

tation techniques are applied such as horizontal flipping, cropping, etc., as typically done in image

analysis tasks with deep networks. The modified classic pre-trained models based on ImageNet for

VGG, AlexNet, and ResNet are implemented and the parameters in the first convolutional layers in

the modified plant counting models are based on these pre-trained models. Our modified models

are also compared with several State-of-the-Art CNN-based counting models that are implemented

with the default setups as reported in the corresponding papers.

4.5.1 Image Pre-processing

We collect the plant SKU image data via the methods introduced in Chapter 3, mainly from

the West field. We manually label them with one dot on each center of the corresponding plant

in each SKU image. For object counting, we have generated 670 original SKU images in total.

These images are randomly selected and divided into a training set of 400 images and a test set of

270 images. In order to have fair comparison with other CNN-based counting deep networks and

make sure that down-sampling layers can have the appropriate output (for example: max-pooling

or convolutional layers with stride of 2), we resize our image data size to make it divisible by 16.

We resize the SKU image into size 320 x 1024, so that we can do the batch training and save the

required memory for training. The ground-truth density maps are scaled at the same rate as the

images. Then the density maps are generated based on the average size of nursery plants of σ = 15

in our UAV images.
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4.5.2 Label Normalization

The original generated density maps are generated using the Gaussian kernels with their output

values from 0 to 1. The corresponding background pixel value is set to 0. However, we found that

the training based on such setup was hard to converge with these networks stuck at local minima.

In our reported experimental results, we multiply a factor of 1000 to the original density maps,

which helps achieve faster convergence of network training.

4.6 Experimental Results and Discussion

4.6.1 Results and Training Process

Figure 4.6 shows the testing results by one of our modified plant counting models, which

is based on ResNet50. We can see that even when the plants are connected to each other with

occlusion and shadow in our images, the model can still get a reasonable and accurate counting

results.
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Figure 4.6: Visualization of counting results. Columns: (a) image, (b) ground truth, (c) predicted
density map.
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Figure 4.7: The predicted ground truth for one example, of the corresponding training batches
during the training process with increasing epochs from the 1st epoch to 70th epoch. Columns: (a)
image, (b) ground truth, (c) predicted density map.

Figure 4.8: The trends of different indices during training for the modified AlexNet model.
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Figure 4.9: The trends of different indices during training for the modified VGG model.

Figure 4.10: The trends of different indices during training for the modified ResNet model.
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Figure 4.11: The trends of different indices during training for CSRNet [1].

Figure 4.12: The trends of different indices during training for MCNN [2].
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4.6.2 Comparing with State-of-the-Arts

Table 4.1 shows the MAE and MSE results of our counting models and the state-of-the-art

CNN-based object counting models, including MCNN [2], CSRNet [1], and SANet [49]. Over-

all, our three modified models with ImageNet pretrained parameters can achieve the state-of-the-

art object counting results. The modified AlexNet attains the best results of MAE=1.927 and

MSE=2.684, the modified VGG16 model attains the result of MAE = 2.821, MSE = 3.950, the

modified ResNet model attains the result of MAE = 2.013, MSE = 2.895.

Table 4.1: Comparison of CNN-based counting models, for plant counting experiments on our
UAV images.

Method MAE MSE
MCNN 3.470 4.122
CSRNet 2.899 3.941
SANet 3.382 4.540

modified-AlexNet 1.927 2.684
modified-VGG 2.821 3.950

modified-ResNet 2.013 2.895

From the results, we can see that for our dataset, the multi-column design in MCNN, dilated

Convolutional Neural Network in CSRNet, and the more complicated multitask SANet are not the

most suitable approach for our plant counting dataset. SANet gets over-fitting while training due

to the increased model complexity. CSRNet uses VGG16 as the front-end, we can see from Table

4.1 that their results are indeed close to what our modified models achieve. The results demon-

strated that the first several convolutional layers of AlexNet, VGG16 and ResNet indeed can extract

important image features for our UAV plant images, even they are pre-trained using ImageNet im-

ages. They have flexible architectures for modifying and concatenating with customized layers to

achieve accurate regression with the ground truth density maps, leading to reliable plant counting

results.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we have reviewed object counting approaches and implemented CNN-based den-

sity estimation for the complex object counting task on images taken by unmanned aerial vehicles

(UAVs) in large-scale horticulture nursery farm. The modified models AlexNet, VGG, ResNet can

achieve the state-of-the-art accuracy of object counting on horticulture nursery plants.

Applying those models to the real-world applications of plant counting in UAV images and

experiments comparing with the state-of-the-art CNN-based counting models MCNN, CSRNet,

SANet give us more insight on the effectiveness and limitations of the proposed models.

Modern deep learning models require a large volume of labeled data to be able to generalize

well, and applying the model to newly unseen data is dependent on similar training and testing

data. When the scenario or object appearance have changed a lot from one dataset to another,

new ground truth annotation is always needed to maintain the effective performance of the model.

However, because manual annotation is always labor intensive and expensive, we are looking for

an alternative method to tackle this issue. Generative adversarial networks (GANs) have shown

great potential in semi-supervised learning where the classifier can obtain good performance with

very few labeled data [50]. Inspired by this, in the future work, we will explore a semi-supervised

method with limited labeled data using the architecture of GAN to explore the possibility in solving

this issue.
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