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ABSTRACT 

A phase field model was developed to simulate the grain refinement in solids. The 

model considers the interfacial energies of grain boundaries and bubble surfaces, strain 

energy associated with dislocations, and the chemical energy of gas atoms. This enables 

the model to simulate the formation and growth of sub-grains and bubbles in a self-

consistent manner. The model results demonstrate strong effects of dislocation density 

(the magnitude and distribution), grain boundary energy, and bubble radius and number 

density on the formation of the sub-grains. For polycrystalline ceramic fuel UO2 and the 

metallic fuel U-Mo, the model simulated the high burn-up structure (HBS) formation and 

evolution. In the case of UO2, the model predicts the average size of the recrystallized 

grains within the range of 0.3 to 0.5 microns corresponding to a dislocation density range 

of ! = (2.5'10*+ − 2.65'10*+)	012 or equivalently to 70 - 75 GWd/tHM burn-up. For 

the metallic fuel U-Mo, the HBS was determined to extend within a fission density range 

of 5.5'102*	3455467/90: or equivalent to approximately 120 GWd/tHM. The 

corresponding U-Mo newly recrystallized average sub-grain size was concluded to be 

similar to the UO2 case. These predictions agree with the reported data in the literature.  
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NOMENCLATURE 

HBS High Burn-up Structure 

MOX Mixed Oxide Fuel 

UO2 Uranium dioxide 

Al Aluminum   

U-Mo Uranium Molybdenum  

JMAK Avrami Johnson Mahal Kinetics Model 

SRX Static Recrystallization 

DRX Dynamic Recrystallization 

PSN Particle Stimulate Nucleation 

LWRs Light Water Reactors 

LEU Low Enriched Uranium 
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MTR Materials Test Reactors  
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CHAPTER I 

INTRODUCTION 

1.1 Motivation and Objectives 

All physical (e.g. thermal and mechanical) properties of polycrystalline solids such 

as yield stress, fracture strength, ductility, electrical breakdown strength, dielectric 

constant, etc. are strongly/highly influenced/affected by the underlying microstructure 

(grains size, morphology, and distribution) [1-4]. The grain boundaries have an important 

role in determining material properties [2, 5]. The finer grain sizes in the polycrystalline 

solids lead to a larger grain boundary area per unit volume, which alters the material 

microstructure and all the related physical properties. Furthermore, a larger grain size 

indicates a longer diffusion path for atoms and/or point defects before reaching the second-

phase/grain boundaries and consequently leads to an impact on the material characteristics 

[1-2, 5-6]. 

The material behavior under extreme conditions, such as irradiation, high 

temperature, high stresses, etc., is strongly/highly dependent on the grain size [1-3, 5-7]. 

The grain boundaries serve as sinks for point defects and reduce the formation of 

undesirable microstructures such as voids and dislocation loops, which inversely 

influences the thermal and mechanical properties of the material [5-7]. Additionally, the 

fission gas swelling and release in irradiated uranium dioxide, UO2 (the main ceramic 

nuclear fuel), and Uranium-Molybdenum, U-Mo (the metallic nuclear fuel), decreases 

with increasing grain size [8-13]. Therefore, examining the process of grain 
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refinement/recrystallization is important for all the industrial, academic, and technological 

applications.  

At high burn-up values, the so-called high burn-up structure (HBS) develops in 

most of nuclear fuels [14]. The HBS displays a porous, fine-grained microstructure 

different than the as-fabricated large-grained microstructure. Originally, the HBS was 

described as the rim structure because of its confinement to the periphery (outer region) 

of the fuel pellet where there is higher burn-up and lower temperature conditions. 

However, in complex fuels such as Mixed Oxide (MOX), the HBS is not only restricted 

to the rim region, but it is allocated among high local burn-up locations (where Plutonium 

disposition causes more fission and more deformation) [14]. 

The driving force for HBS formation is the reduction of the strain energy by 

introducing defect-free new sub-grains at the expense of damaged/deformed grains [12-

15].The reduction balances the increase of interfacial energy due to the production of new 

boundaries. The HBS formation is well known to highly influence the thermal and 

mechanical properties of nuclear fuels [12, 14-17]. Furthermore, HBS also determines the 

swelling and gas release rates, and therefore the overall fuel integrity and performance. 

The main proposed mechanisms of HBS are recrystallization and grain subdivision [10, 

12, 14-16]. During the recrystallization process, new sub-grains nucleate and then grow 

until completely consuming the damaged grains. However, in the case of grain 

subdivision, the original large grains will divide into smaller sub-grains. Therefore, 

quantitative modeling of irradiation-induced recrystallization is a crucial need to enhance 

our understanding of the grain-refinement process in polycrystalline solids. By performing 
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such investigations, our insight will be improved, particularly regarding the HBS manner 

in nuclear fuel. 

The main purpose of the current study is to model and simulate the process of the 

grain-refinement/recrystallization process and to utilize the model to investigate the HBS 

formation and evolution in UO2 and U-Mo. We have utilized the phase-field (diffuse-

interface) method, which is a robust modeling approach developed to study various phase 

transformations and microstructure evolution processes in heterogeneous materials [18]. 

The phase-field method has also been adopted to investigate irradiation consequences in 

nuclear materials [19-23] and to examine the irradiation-induced recrystallization [24-25]. 

In these models, the influences of fission rate and grain size on recrystallization kinetics 

were thoroughly investigated. However, the nucleation rate, newly sub-grains, and 

recrystallized grain morphology are assumed a priori based on classical nucleation theory. 

These assumptions restrict those models to predict only the kinetics of recrystallization. 

Furthermore, these hypotheses directly control the microstructure and overall kinetics. In 

order to alleviate the shortcomings of the above models, it is desirable to develop a general 

model which can relax those assumptions. Other modeling techniques, such as rate theory 

[26-27] and cluster dynamics [28-29], were utilized to study irradiation-induced 

recrystallization. While these techniques can predict the average recrystallization kinetics, 

they also manipulate the classical nucleation theory and neglect the heterogeneity of the 

underlying microstructure. 
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1.2 Contribution to Research 

We present here a novel phase-field model for HBS formation and evolution. For 

simplicity, our model utilizes a continuum dislocation density field rather than resolving 

individual dislocations. Further, HBS formation is modeled as a phase transition. The self-

arrangement of the dislocations into sub-grains could be employed in a process similar to 

the classical disorder-order transitions in alloys, with the characteristic that the 

dislocations, not the individual atoms, are undergoing self-organization. This model could 

simulate the grain growth process [30-31] by combining the stored strain energy 

contribution correlated to the formed dislocations under irradiation. Therefore, our 

model’s main focus is where the nucleation of recrystallization is modeled explicitly 

without a priori assumptions on the nucleation rate and sites, or the size and morphology 

of the recrystallized grains. 

The model generalization performs the capability to simulate the formation and the 

following growth of recrystallized grains. The consequences of the density and 

distribution/concentration of dislocations on the recrystallization kinetics were 

investigated in depth. The importance of gas bubbles (radius and number density) on the 

overall kinetics of HBS formation was also examined. Moreover, the model was evaluated 

by investigating simple test cases and various simulations were used to study the 

irradiation-induced recrystallization. We started by performing the growth rate modeling 

of a recrystallized grain and compared it with theoretical predictions, which was followed 

by an investigation of the particle-grain boundary interaction. Lastly, we presented a 
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quantitative analysis regarding the effect of various interface types (bubbles-matrix 

interfaces) on the recrystallization kinetics. 

In conclusion, we produced a phase-field model to study and simulate the grain-

refinement/recrystallization process in single/second-phase polycrystalline solids. The 

phase-field model relaxes nearly all the limiting assumptions manipulated in the classical 

and sharp-interface approaches. It could present an insight into the dynamics of the grain-

refinement process, which influences the overall microstructure morphology and 

evolution and the thermal and mechanical properties of the material. By executing our 

model, we successfully captured the formation and evolution of HBS phenomena in 

nuclear fuel. The model results agreed well with published experimental investigations of 

HBS in UO2 and U-Mo [8, 11, 13-14, 24-25, 32-34]. 

1.3 Thesis Layout 

First, the technical background associated with the grain-refinement and 

recrystallization process is reviewed in Chapter II. In the first part of this chapter, the 

process of grain-refinement in solids (single and second-phases alloys) was discussed in 

detail. Additionally, a brief discussion related to solid-solid interfaces classification of 

crystalline systems according to the structure of the interfaces was conducted. The various 

models which were developed to study the irradiation-induced recrystallization, HBS 

formation and evolution processes, were summarized in several parts of this work. In the 

second part of Chapter II, the general concepts of the HBS formation and evolution in 

nuclear fuel are presented and discussed. 
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Chapter III introduces the development of the phase-field model to simulate 

irradiation-induced recrystallization and the HBS formation and evolution in 

polycrystalline nuclear fuel. First, the thermodynamic and kinetic formulations were 

introduced and the procedure to determine the model parameters was discussed. Lastly, 

we highlighted the numerical implementation details. 

In Chapter IV, the results obtained by solving the phase-field model are presented 

and discussed. Test cases for benchmarking the model were conducted first. Then, 

quantitative investigations of the effects of dislocation/fission densities (magnitude and 

distribution), initial grain sizes, and the existence of second-phase particles (numbers and 

sizes) on the recrystallization kinetics in nuclear fuel (UO2 and U-Mo) were executed. All 

the simulations performed in this study were conducted in 2D space due to computational 

cost limitations. 

Finally, Chapter V summarizes the research conducted in this study and 

highlights the possible directions for future research. Parts of this thesis have been 

published in the Journal of The Minerals, Metals & Materials Society (JOM), DOI: 

10.1007/s11837-019-03830-z. 
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CHAPTER II  

TECHNICAL BACKGROUND 

The main goal of this study is to investigate the process of grain refinement in 

porous solids using the phase-field approach. In the first section, the fundamentals of the 

refinement/recrystallization process are discussed. The formation and evolution of the so-

called high burn-up structure (HBS) in nuclear fuels (UO2 and U-Mo) are described and 

presented in the second section.  

2.1 Grain refinement in solids 

Grain refinement is considered as one of the most important phenomenas to material 

research approaches in the last few decades. Grain refinement enhances the formation of 

a fine equiaxed microstructure. Where the amount of new recrystallized grains increased, 

and might inhibit the growth of new grains especially under high deformation status (e.g. 

high dislocation density due to high irradiation effect). Generally, a finer grain size and 

second-phase particles (bubbles, pores, precipitates, etc.) limit the amount of dislocations 

and size of the grains, and provides a large influence on mechanical and thermal properties 

[1]. Though the grain refinement process was intensively studied for different alloys, there 

are more complications when studying the irradiation effects on nuclear materials. To have 

a better understanding of grain refinement, it is helpful to briefly describe the general 

annealing processes. Figure 1 illustrates the annealing process, which includes recovery, 

recrystallization, and grain growth [3, 35]. Generally, the dislocations initiated after 

cold-working or irradiating the material have a regular pattern due to the added energy 
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(e.g., heating). The new rearrangement leads to residual stresses initiation followed by an 

alleviated or relieved process of these stresses. The dislocation accumulation is the 

precursor of a new microstructure texture and results in a change of the thermal and 

mechanical properties [36]. In the recovery process, the releasing of point defects, 

vacancies, and their clusters starts to take place. Moreover, the process of dislocation 

annihilation or reorganization will be noticed in this process, inducing a significant change 

in the material structure and its mechanical properties [35]. 

After the recovery process, the Recrystallization process begins. Recrystallization is 

defined as ‘‘the formation of a new grain structure in a deformed material by the formation 

and migration of high angle grain boundaries driven by the stored energy of deformation” 

[4]. The main feature of the recrystallization phenomenon is the initiation of new non-

deformed grains at the expense of the initially deformed grains. These new recrystallized 

grains were found to be unique in shape, size, and orientation. Moreover, it releases or 

eliminates the excess energy (due to deformation) from the materials [35].  Note that the 

Grain-refinement is a more general term than recrystallization and does not consider the 

driving force. 

The recrystallization is more pronounced (generated faster) in the case of initially finer 

grains since, for a given deformation, the finer grains contribute more preferred nucleation 

sites. Concurrently, the recovery and sub-grain growth processes occur which leads to a 

reduction of the recrystallization driving force and a decrease in the recrystallization rate 

[3, 35]. 
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The Grain Growth process can be described as the decrease in grain numbers and 

increase in the average grain size in a polycrystalline solid. Grain growth only occurs at 

sufficiently high temperatures. Due to the reduction in the total grain boundary area, the 

interfacial free energy decreases, which is the main driving force in the grain growth 

process. An alternative description of this process can be understood by considering the 

grain boundary movement. The atoms in this hypothesis are considered to diffuse less than 

the interatomic distance from both sides of the grain boundary, and therefore, the grain 

boundary will move in the opposite direction. Furthermore, the high-angle boundaries 

cause a replacement of deformed grains by newly formed deformation-free grains [35, 

37].  
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Figure 1 Schematic diagram for the main annealing processes: (a) deformed 
state, (b) Recovered (c) Partially recrystallized, (d) Fully recrystallized, (e) 
and (f) are the grain growth, reprinted from [3, 35]. 



 11 

2.1.1 Recrystallization of single-phase alloys 

Recrystallization/grain refinement were investigated to understand the 

microstructure of the materials and treat the associated mechanical and thermal properties. 

This treatment mainly occurs through the release of deformation stresses. Early attempts 

of the recrystallization phenomenon performed analytical and empirical models to predict 

the recrystallization kinetics and microstructure [38]. In our investigation, a novel phase 

field model was constructed to describe the recrystallization evolution by predicting the 

recrystallization rate, critical temperature, critical deformation, and the final new sub-

grain (deformation-free grains) size. 

The recrystallization process can simply be considered as a thermally activated 

process consisting of two main sub-processes, nucleation and growth. The stored energy 

caused by the deformation (or dislocations density) is considered to be the main driving 

force for the recrystallization phenomenon [39-40]. Based on this description, the 

recrystallization initiation and evolution as well as a set of factors (not limited to this) 

affecting recrystallization will be presented in the following subsections.  

2.1.1.1 Factors affecting the rate of recrystallization 

While recent studies demonstrate recrystallization as a more complicated process, 

historically the factors affecting recrystallization kinetics were qualitatively established 

and presented as the laws of recrystallization [40]. The deformation (dislocation density) 

alters the stored energy and the number of preferred sites for the new sub-grains to be 

nucleated. A deformation threshold, or a minimum dislocation density, is essential to 
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provide the recrystallization driving force. The deformation density is also one of the main 

factors affecting the average size of the recrystallized grains, and the final grain texture. 

By increasing the dislocation density, the sub-grains per unit volume/area will increase, 

as well as finer grain sizes. The amount of dislocations/deformation is not the main cause 

of recrystallization, but the deformation orientation/distribution also has a large influence 

on the recrystallization rate. Additionally, the continuous heating after the recrystallization 

process leads to the grain growth, and therefore an increase in the final average grain size 

[39-40]. Figure 2 shows the effect of tensile strain on the aluminum recrystallization 

kinetics as an example of the recrystallization kinetics evolution. Finally, for better 

understanding of the recrystallization phenomena, a quantitative experimental and 

modeling analysis are required.  

Figure 2 The effect of tensile strain on the recrystallization 
kinetics of aluminum annealed at 350 C, reprinted from [40]. 
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2.1.1.2 The Recrystallization, nucleation and evolution 

Recrystallization/phase transformations are usually characterized by developing 

the S-shaped or sigmoidal profile (see Figure 2). This unique shape can indicate 

recrystallization occurs at a slower rate at the beginning and end of the process, but faster 

in between. The initial slow rate is caused by the amount of time needed to create a 

significant number of new sub-grains (non-deformed grains). However, during the 

transitional period, the recrystallization kinetics are accelerated as the newly recrystallized 

grains grow and consume the old deformed grains. During this time, the new grains 

continue to form in the residual matrix (deformed grains). Once the recrystallization 

reaches completion, a few deformed grains remain and there are no significant sites for 

the new non-deformed grains to nucleate, leading to a slower rate of new grain production. 

The existing newly formed grains will start to touch one another, creating a larger number 

of boundaries, which hinders the growth rate. 

Generally, the recrystallization process is a heterogeneous process, where the new 

deformation-free grains are nucleated and grow by the migration of high-angle grain 

boundaries at the expense of deformed grains. The recrystallization driving force is the 

release of the strain energy induced by the preceding process (e.g. Cold work or 

irradiation). The driving force, −Δ<=>?=@AB	, is given by [3]: 

−Δ<=>?=@AB 	= 	C>DEABF? 	= 	CρI	<	J
2   (Eq. 2.1) 

where C>DEABF? is the elastic energy, C is a constant having a value between 0.5 and 1.0 [3], 

< is the material shear modulus, J is the burger vector, and ρI is the dislocation density, 
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which promotes the recrystallization this dislocation density could be as large as 

5'10*+012 for highly deformed materials [3]. In addition, the recrystallized grains work 

effectively to reduce the stored energy in the matrix (specimen) [3]. The process of 

nucleation/recrystallization will take place only if the radius of the new grain (K) becomes 

larger than the value of critical radius (KLMNO), which is expressed as follows: 

KLMNO =
PQRS

TU
VWX1TY

    (Eq. 2.2) 

where, Z[\  is the boundary tension and ] is a constant and is equal to 2 for spherical 

grains. Here, it should be pointed out that the recrystallization driving pressure ( _̂
`ab) is 

the summation of Zener pressure ( ĉ) and the critical pressure ( d̂) , i.e, ( _̂
`ab = ê + d̂). 

In the case of particle-free materials or single-phase materials, no Zener pinning effect is 

considered ( ê = 0), and _̂
`ab = d̂  (explained in detail in section 2.1.2.2.1). 

Accordingly, the recrystallization driving pressure ( _̂
`ab) is considered as the additional 

pinning pressure from fine grains and requires an increased critical size for nucleation. 

These newly recrystallized grains are smaller than the initial deformed grains [40-41]. 

While these small grains can further grow and successfully become independent new 

grains. Generally, the recrystallization is formed by bulging out the high angle grain (with 

low dislocation density) into the higher stored energy grain, that leads to the new grain 

increase in size as the excess stored energy eliminated from the deformed one. This 

mechanism is conceptually treated as the random atomic fluctuations (classical nucleation 

theory) as with phase transformations [41]. 
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2.1.1.2.1 The Classical and Generalized Johnson–Mehl–Avrami (JMAK) Model. 

The sort of recrystallization process curve displayed in Figure 2 is a typical 

representation of various transformation reactions and can be explained in terms of the 

fundamental nucleation and growth processes. The pioneering research in this field was 

performed by Kolmogorov (1937), Johnson and Mehl (1939) and Avrami (1939), and is 

generally known as the JMAK model [42-43]. JMAK concluded nuclei/new grains are 

formed at a rate of (ġ), and that grains grow into the deformed matrix at a linear rate of 

(<̇). If the grains are supposed to be a spherical shape, then the volume changes as a 

function of (i:), where d is the grain diameter. The fraction of recrystallized grains (jk) 

increases rapidly with time at the beginning. However, the new grains will ultimately 

impinge on each other, consequently decreasing the rate of recrystallization, and 

eventually becoming zero when (jk) approaches unity (a fully recrystallized domain) [40, 

42-43]. This is also an alternative way to describe the famous recrystallization kinetics S-

shape. 

The amount of nuclei/grains (ig) which rise in a time period (il) is smaller than 

(ġil) because nuclei/grains cannot grow in the newly recrystallized sub-grains. The 

number of new sub-grains which appear in the recrystallized volume is ġjkil and 

accordingly, the total number of grains (igm) which would have formed at a specific time 

including the recrystallized grains is expressed as igm = ġil = ig + ġjkil. If the 

volume of a recrystallizing grain is n at time l, then the substance/alloy recrystallization 

fraction would be represented as (jkop), which is the ratio between the recrystallized grain 

volume (or area for 2-D simulations) to the whole domain volume (or area for 2-D 
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simulations). If the incubation time (the time before the recrystallization to take place) is 

much shorter than l, then, the volume of recrystallized grains will be expressed as, 

n =
qr

:
<̇:l:                  (Eq.2.3) 

In the case of a constant rate of nucleation/recrystallization (ġ	is constant), the 

recrystallization fraction will be formulated as  jkop =
sṫu̇vOw

q
 [40]. For a small-time

interval (il), the volume increase will be described as ijkop . Since the materials 

unrecrystallized fraction is 1 − jk , then this expansion in volume can be represented as 

ijkop = (1 − jk)ijkop , and the overall fraction of recrystallized material (jk), can be 

written as 

xy = z − {|}	 ~
1�Ä̇Å̇ÇÉÑ

Ç
Ö                (Eq.2.4)

This equation is usually denominated as the Avrami, Johnson–Mehl kinetics or JMAK 

model [40], where n is the Avrami Coefficient/Exponent and it varies based on various 

mechanisms of nucleation and growth. Avrami also investigated different scenarios when 

the nucleation rates were not constant. For example, (7 = 3) for zero nucleation rate with 

interface-controlled growth and (7 > 2.5) for small dimensions and increasing nucleation 

rate with diffusion-controlled growth [44]. 

The JMAK analysis is very simple to quantitatively model or investigate a process 

as complex as recrystallization. In particular, the variation in microstructure throughout 

recrystallization requires explanation from more parameters than Avrami parameters 

(jk	6à	jkop). However, the phase-field model (Diffuse-interface model - described in 

details in chapter III) provides further comprehensive simulations than possible by the 
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JMAK model. Furthermore, the phase-field can efficiently couple the thermal and 

mechanical aspects of the process for more reliable and feasible analyses [40, 45]. 

2.1.1.3 The recrystallized microstructure 

The recrystallization process can generally be classified into two main categories 

known as static and dynamic recrystallization. Static recrystallization (SRX) refers to the 

recrystallization process during annealing. Dynamic recrystallization (DRX) describes the 

recrystallization which occurs during deformation at elevated temperatures. During 

recrystallization, material properties such as strength and hardness often change at much 

higher rates than during recovery [41]. During SRX, the size and energy advantage can be 

obtained by sub-grain growth or sub-grain coalescence. The initiation of recrystallization 

during SRX, denoted as incubation time, refers to the time needed to form large enough 

sub-grains that sufficiently surround the stored energy to overcome the forces caused by 

boundary curvature [41, 46]. However, for DRX, the critical dislocation density is often 

used in place of incubation time, and as explained previously, requires a threshold amount 

of dislocations to initiate the recrystallization process. Lastly, the magnitude of the initial 

grain size affects both the nucleation and growth processes. Factors such as a high strain 

or a small initial grain size result in a small final grain sizes, and hence faster 

recrystallization kinetics [40]. 
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2.1.2 Recrystallization with second-phase particles 

During recrystallization, a formation of a new type of non-deformed grain starts to 

take place; these new sub-grains are strain energy free grains. The second-phase particles 

play a significant role to hinder or enhance the deformation (dislocation) structure in terms 

of stored energy distribution and the preferred heterogeneous sites for recrystallization. In 

return, it should be recognized that deformation (especially in case of irradiation effects) 

may also lead to the evolution of second-phase particles. During either particle growth or 

dissolution, the interface boundary migration is likely to modify the particles shapes and 

deformation density. Additionally, second-phase particles interact with recrystallization 

by either retarding or accelerating nucleation, influencing the orientations of recrystallized 

grains or pinning their growth [41].  
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2.1.2.1 Particles Stimulated Nucleation (PSN) of recrystallization 

 It was observed that multiple nucleation of new grains occurs at large particles, 

which is shown in Figure 3. This observation was described as the well-known phenomena 

of Particle Stimulated Nucleation (PSN) which has been observed in many alloys [40]. In 

PSN, the preferred nucleation sites are well-defined regions around the larger second-

phase particles (e.g. bubbles). In other words, the number of potential nuclei or formation 

of new grains can be defined, and therefore the recrystallized grain size can be controlled. 

Additionally, PSN will likely occur if the dislocation density is introduced below a critical 

temperature or more than the critical dislocation density (and a critical strain energy) [40]. 

Figure 3 Particle stimulated nucleation of recrystallization at 
oxide inclusions in iron, reprinted from [40]. 
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2.1.2.1.1 The influence of PSN on the recrystallization Microstructure 

In second-phase particle alloys, larger particles tend to stimulate the 

recrystallization process. In composites with low particle-volume fractions, or compared 

to small particles, the coarse or larger particles are found to introduce a different impact 

on the final texture or microstructure. If recrystallization originates solely by PSN, it 

would be expected that the fully recrystallized microstructure would comprise equiaxed 

grains [40] of a size given by (â ≈ iãk
*/:), where â is the new recrystallized grain

diameter, ãk is the volume fraction, and i is the particle diameter. The microstructures of 

the both deformed and fully recrystallized alloy (e.g. Al – 0.8% Si) are shown in Figure 4 

[40]. In this figure, small grains were associated with the particles and formed by PSN; 

however, they exist as “island” grains within much larger grains. With more considerable 

dislocation density, more equiaxed grain microstructures will develop, with sizes 

corresponding to the particles’ sizes and densities [40].    
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2.1.2.2 Particle pinning during recrystallization 

As the recrystallization is usually initiated via high-angle grain boundaries 

movement, therefore, the small particles/bubbles may inhibit nucleation/recrystallization. 

Generally, the fine particles limit the average sub-grains size; and the recrystallization will 

be suppressed if these particles are small enough to prevent the growth of sub-grains size 

to an extend such that a high-angle grain boundary can be formed. The gradients 

orientations tend to increase with increasing the dislocation densities, and therefore the 

Figure 4 The recrystallized microstructures in a deformed and annealed 
crystal of Al–0.8%Si (a) PSN grains left as islands within rapidly growing 
grains (b) Equiaxed grains after larger strain, reprinted from [40].  
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critical value to suppress the recrystallization - (ãk
*/:/à), where à is the particle/bubble

radius - will also increase by increasing the dislocation densities [40]. 

2.1.2.2.1 Zener Pinning principle 

Zener pinning [47] refers to the retarding force or pressure on the moving sub-

grain boundaries by a dispersion of fine particles. As presented in figure 5 and by 

considering a moving flat boundary, three surface tensions are connected once the particle 

(C) reaches the boundaries (D) and (E), these surface tensions could be described as the

boundary tension Z[\  and two particle surface tensions Z[d  and Z\d  (see figure 5) [41, 48]. 

The velocity of the boundary is then given by [49]:  

åç = éç(ãç − gèãç)                (Eq. 2.5a) 

where the subscript (J) denotes the boundary and (ê) denotes the particle, åç is the grain 

boundary velocity,  éç is the grain boundary intrinsic (particle-free) mobility, gè is the 

number of particles per grain boundary area, and  ãç is the pinning force that opposes the 

boundary pulling off the particle is given by Smith [47]:  

ãç = 2ëà965í. Z[\. 547í    (Eq. 2.5b) 

As illustrated in figure 5, the region of  à965í  is the interface region between the 

particle and the grain boundary. By considering the pinning force to be only in Y-axis, 

hence the force in X-direction was set to be zero. Also, the maximum force ãìîb will be 

applied where í = 45°, then, 

ãìîb = 	ëZ[\     (Eq. 2.6) 
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The total pinning force acting on the grain boundary could then be given by 

(gó. ëàZ[\), where gó is the surface density of the particles. If all the particles are assumed 

to act by the maximum pinning force on all of the boundaries, then the particles’ surface 

density can be expressed as gk. à , where gk is the number of particles per unit volume. 

By assuming a spherical particle shape, then gk can be expressed as  sòw
v
rMv

 , where 3k  is the

particle volume fraction [41]. This yields the classical Zener pressure expression ê =

:sòQRS
2M

, and the boundary curvature expression d̂ =
PQRS
`

 . 

As expected, the growth process will be hindered/stopped if the Zener pressure 

( ê) value reaches the driving pressure due to the boundary curvature ( d̂) since the grain 

size limitation status will be obtained. The limitation conditions for the grain size can be 

expresses as  âôNì =
qPM

:sò
 [41], where *

`
 is the average curvature radius, and  ] = 2 for

spherical shape grains. 

Figure 5 Schematic graph showing the interaction between a grain 
boundary and a spherical particle. (a) Before interaction; (b) During 
interaction, reprinted from [41, 48]. 
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Another way to express the influence of Zener pinning is by defining the driving 

pressure ( _̂ =
Pöuçõ

2
) as offset by the Zener pinning pressure ( ĉ), and the critical particle 

(PSN) size to be iè =
qQú

Pöuçõ
 , where Zç  is the high angle boundary energy. Then grain 

growth becomes  iù =
qQú

TU1TY
. Thus, as the Zener pinning force increases, the critical 

particle diameter for PSN increases. Finally, it can be concluded that the Zener pinning 

force/pressure can be considered to be one of the major factors to hinder/retard the 

recrystallization process. This can affect both the nucleation and the growth of the grains. 

It will also modify or change the recrystallization microstructure, and hence the thermal 

and mechanical properties of second-phase alloys in general [40]. 

2.1.2.3 The influence of second-phase particles and recrystallization on the 

mechanical properties  

The second-phase particles’ size, distribution, and volume fraction can be modified 

by thermomechanical processing, which helps in controlling the recrystallization 

microstructures along with several mechanical properties. By controlling recrystallization 

and the second-phase particles, the mechanical properties can be improved or deteriorated. 

Recrystallization is regularly followed by a decline in the strength and hardness of a 

material and a concurrent improvement in the ductility and elasticity. 

2.1.2.3.1 Yield strength  

Yield strength and tensile strength both can be strongly influenced by 

recrystallization microstructure and second-phase particles (size, distribution, etc.). A 
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common approach is consists of linearly adding different contributions to the yield stress 

(ûü) can be expressed as ûü = û† + û°° + ûu\ + ûö + ûT [41], where û† is a material 

constant related to the lattice resistance to the dislocation motion, û°° is the stress due to 

the solid solution, ûu\ is stress caused by the grain boundaries, ûö is the stress by the 

dislocation densities, and ûT is stress from particles existence [41, 50]. For the alloys 

systems with non-deformable fine particles, the dislocations will bow around the particle 

during deformation under the Orowan stress (¢) with respect to particle spacing (2r). This 

is given by ¢ = uç

2M
 , where < and  J are the shear modulus and Burgers vector respectively, 

and à is the particle radius [41]. 

If the fine particles deform by the influence of the dislocation density (or applied 

deformation), either due to their small sizes or low strength, they are then sheared by 

moving dislocations. This leads to a reduction in the strength of the particles by decreasing 

their sizes on the slip plane (see Figure 6.b), further leading to a preferred planar slip on a 

few slip planes (Figure 6.d), and eventually to the formation of shear bands [41, 51]. This 

change in dislocation density contributes to grain boundary strengthening. In conclusion, 

a significant contribution of the fine particles on the material strength was approved and 

justified [41, 52]. 
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2.1.2.3.2 Ductility 

Ductility is considered to be one of the most important material properties for the 

majority of materials and it is also often correlated to elongation and fracture properties. 

Ductile fracture incorporates failure by both cavitation and plastic instability. The 

requirements for high yield stress and good ductility are generally contradictory or 

competing each other. A large increase in ductility can be achieved if the void nucleation 

can be delayed or suppressed [41, 53]. 

Fractures can occur by plastic instability, such as the formation of shear bands in 

particle-free materials. In materials containing second-phase particles, fractures may 

appear prematurely due to void formation at these particles. A necessary condition for 

void nucleation is usually derived from energy considerations, i.e., the decrease in elastic 

Figure 6 The effect of particle strength on the distribution of slip. 
A deformable particle (b) leads to slip concentration, as shown in 
(d). A non-deformable particle (c) results in more homogeneous 
slip, as can be seen in (e), reprinted from [40-41]. 
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strain energy (e.g. resulting from the crack formation) be equal to or exceed the surface 

energy associated with the creation of a new surface: û = (
2oQ£
rL
)*/2 where E is the Young 

modulus, 9 is the particle size, and Z° is the surface energy [41, 54]. This can explain why 

the materials with finer particles needs a larger stress to avoid the interfacial voids, and 

therefore improve ductility [41].  

2.1.2.4 Types of Interfaces in solids 

 Many engineering properties of interest are determined by the structure of the 

solid-solid interfaces in the material [55]. Hence, a classification of solid-solid interfaces 

in crystalline systems according to the structure of the interface is required. Firstly, the 

free energy ã  of a system containing an interface of area A and free energy per unit area 

Z is given by ( ã = 3† + §Z ), where 3† is the system initial free energy, here we assume 

all the system materials has the bulk properties. In addition to that,  Z is the excess in free 

energy due to the interface effect. It also represents the work that must be done at constant 

pressure and temperature to create a unit area of interface. A crystalline solid-solid 

interface can be classified into three broad categories based on its structure, e.g., Coherent, 

Semi-coherent, and incoherent interfaces.  
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Coherent interfaces are described as interfaces where the lattice planes are 

continuous. Incoherent interfaces describe a structure in which there is discontinuity in 

lattice planes across the interfaces. The semi-coherent interfaces, which are the typical 

interfaces seen in engineering materials, are neither fully coherent nor incoherent, and are 

then essentially continuous lattice planes interspersed with regions of discontinuity. The 

following subsections will discuss the interfaces between different solid phases, i.e. where 

two adjoining crystals have different crystal structures and/or compositions. As described 

above, interface boundaries in solids can be divided into three classes: coherent, semi-

coherent and incoherent. 

2.1.2.4.1 Fully Coherent Interfaces  

A coherent interface is characterized by two crystals (two grains or particle-grain 

interfaces) with continuous lattice planes across their interface, so that the two different 

lattices will be existing on the same plane across the interface, as seen in figure 7. This 

can only be achieved if the interfacial plane has the same atomic configuration in both 

Figure 7 Coherent interfaces, (a) Crystals have different chemical composition 
with the same structure, (b) Having different lattices, reprinted from [55]. 
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phases, and further requires that the two crystals be oriented relative to each other. When 

the two crystals are joined along their close-packed planes with a parallel close-packed 

direction, the resultant interface is completely coherent (see figure 8). If the distance 

between the atoms at the interface is not identical, that leads to a change in the chemical 

contribution of the interfacial energy (ZL•), but it is still possible to maintain coherency 

as presented in figure 9. 

Figure 8 Close-packed plane and directions in fcc alloys, 
reprinted from [55]. 

Figure 9 A coherent interface with slight mismatch leads to 
coherency strains in the adjoining lattices, reprinted from [55]. 
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2.1.2.4.2 Semi-coherent Interfaces 

The strains correlated among the coherent interface increase the total energy of the 

system, and hence the interfacial areas become energetically more favorable to replace a 

coherent interface with a semi-coherent interface (by introducing a large number of atoms 

misfits), as seen in figure 10. If i] and iJ are the stress-free interplanar spacings in the ] 

and ¶ phases respectively, the misfit ß between the two lattices (i) is defined by: 

 ß =
®©1®™

®™
   (Eq. 2.7) 

If â is the distance between the dislocation (edge dislocations), then â can be expressed 

as â =
®©

´
. If J is the Burger vector of dislocations and can be described as (J =

®™1®©

2
). 

For small	i , the edge dislocations with a spacing â are approximately given by â ≈
ç

´
 . 

This indicated a perfect matching except around the dislocation area, where the lattice 

planes found to be discontinuous. The semi-coherent interface energy can be 

approximated as the sum of two separate parameters: First, the chemical contribution ZL•, 

like the case of fully coherent interface, and second is the structural term Z°O, which is the 

extra energy due to the structural distortions caused by the misfit dislocations, i.e. 

Z(°aìN1L¨•aMa≠O) = ZL• + Z°O  , where Z°O 	∝ ß.  

Figure 10 Semi-coherent interface, reprinted from [55]. 
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2.1.2.4.3 Incoherent Interfaces 

A perfect grain matching across an interface is nearly impossible when the two 

adjoining phases have very different atomic configurations. Often, the atomic pattern of 

the interatomic distances differs in the two faces, leading to an incoherent interface. In 

general, the incoherent interfaces are the result of two randomly oriented crystals joined 

across any interfacial plane, like as shown in figure 11. For simplicity, when the misfit 

parameter (ß) increase under the condition of  ß > 0.25, then the interface will be 

considered as incoherent interface. In other words, when dislocation existing at least at 

every four interplanar spacings, the region where the dislocation exist will have a poor 

fitting, results in an incoherent interface.  

Figure 11 An incoherent interface, reprinted from [55]. 
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2.2 The high burn-up structure (HBS) in nuclear fuel 

For economic reasons and in anticipation of the operating conditions of next 

generation reactors, nuclear fuels have been continuously tested at high burn-up 

conditions. Most of these examinations have summarized the formation of high burn-up 

structure (HBS) [14]. The HBS incorporates finer grains textures along with porous 

particles which is different than the fresh fuel microstructure (large initial grains). The 

following sub-sections investigate the HBS formation and evolution in nuclear ceramic 

(UO2) and metallic (U-Mo) fuel. Moreover, the mechanical and thermal properties 

associated with HBS were also discussed.  

2.2.1 High burn-up structure in UO2 

Initially, the HBS was described as the rim structure due to its existence restriction 

to be at the outer region of the fuel, as observed in light water reactors (LWRs) [14]. 

Figures 12-13 are to present a micrograph of the HBS formation in UO2 fuel [12]. As can 

be seen out of these figures, the HBS clearly forms at the rim region of the pellet. This is 

due to higher burn-up and lower temperature (less chances to anneal the dislocations) in 

this region. 
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Figure 12 A micrograph of standard fuel pellet exhibiting the 
formation of high burn-up structure (HBS), reprinted from [12]. 

Figure 13 Variation of lattice parameter, porosity and local 
burn-up across the fuel pellet, reprinted from [14]. 
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2.2.1.1 Formation of High burn-up structure in UO2 

 HBS forms at the rim region of the UO2 pellet due to higher burn-up (above 50 

GWd/tHM [14]) and lower temperature (below 1373k [14]) in this region. The burn-up 

value at the periphery could be twice as large as in the pellet center as reported in Figure 

13 [14]. This is created due to the occupation of higher Pu concentration emerging from 

the resonance absorption of epithermal neutrons by U238 [12, 14-15]. Nevertheless, in 

heterogeneous fuels such as MOX, the HBS is not only restricted to the rim region, but it 

is dispersed among high local burn up regions [14, 16]. HBS is observed in the colder 

regions of Mixed U-Pu oxide (MOX) fuel, where the Pu rich islands cause fission density 

and the corresponding local burn-up exceed the recrystallization threshold as can be seen 

in figure 14 [8]. HBS is associated with different operation conditions, but irradiation and 

temperature parameters were examined to have more impact on HBS formation and 

evolution. 

Figure 14 MOX fuel: Small sub-grains are observed in a fully restructured Pu-
rich agglomerate while in the U-rich matrix restructuring is starting at the grain 
boundaries, reprinted from [8].  
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2.2.1.2 The driving force and different mechanisms for HBS in UO2 

Different terms were proposed to describe the HBS formation [10-12, 14-17]. The 

central proposed mechanisms are recrystallization and grain subdivision [10, 12, 14, 15-

16]. In the recrystallization case, a new sub-grain nucleates and grows at the boundaries 

of the initially deformed grains. For the second case which is the grain subdivision, the 

original large grains will be divided into smaller sub-grains due to the higher dislocation 

densities. 

Nonetheless, it is more difficult to describe the HBS for ceramic fuels such as UO2 

and MOX [16]. In this case, there is no general understanding of which mechanism is the 

subject to HBS development. Early studies were considering the HBS formation to be a 

subject of the recrystallization in UO2 fuels [14]. This explanation was supported by the 

creation of sub-grains with high angle boundaries and on the surface of the bubbles as 

shown in Figure 15. Although, different investigations described a uniform formation of 

sub-grains (not just near to the bubbles or grain boundaries) with low angle boundaries, 

which is more related to the grain subdivision scenario [14]. 

Furthermore, more recent investigations described the formation of planar defects 

before the formation of HBS in UO2 and MOX fuels [16]. Figure 16 illustrates the 

formation of certain planar defects in UO2. It is considered that these planar defects are 

some sort of UO2 over-structure with smaller lattice parameter [16]. It is estimated that 

the new sub-grains created at the surfaces of these planar defects that themselves 

ultimately converted into bubbles [16]. Finally, the specific behavior of these planar 

defects and the accurate aspects of their role in HBS formation are yet to be understood. 
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Figure 16 Formation of HBS in UO2 fuel pellet, reprinted from [15]. Note 
that most sub-grains are formed close to both intra- and inter-granular 
bubbles, which was considered to be an evidence of recrystallization. 

Figure 15 Formation of planar defects before the formation of HBS in 
UO2, reprinted from [16]. The planar defects are believed to be some 
type of UO2 over-structure with lower lattice parameter. 
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2.2.2 High burn-up structure in U-Mo 

Uranium-molybdenum (U-Mo) composites have been widely investigated for 

power and test reactors extensively. A remarkable variation in the U-Mo fuel 

microstructure was observed when the fission density (3455467/90:) exceeded a specific 

range ((2.5	l6	3.5)'102*	3/90:) [8]. The change in microstructure fairly follows the 

high burn-up structure (HBS) also known as “rim effect”, as explained previously [8, 14, 

16]. The structure is rising from grain refinement or recrystallization and when completely 

developed, it is identified by small grains (≈ 	0.2 − 0.3	049à675) and a large number of 

intergranular pores [8]. 

In some circumstances, the mechanism of HBS formation is clear. For instance, in 

most metallic fuels, the recrystallization scenario seems more plausible. This is due to the 

fact that most of the newly formed grains in these systems are usually observed in the 

neighborhood of original grain boundaries and have high angle boundaries. This is 

captured in Figure 17 [56] that explains the recrystallization of new sub-grains in U-Mo 

metallic fuel. As obvious from the figure, the new sub-grains tend to develop closer to the 

grain boundaries of original grains and then dispersed into the bulk/matrix as the fission 

density rises. It is also clear from the figure that a threshold value for the fission density 

exists below which no HBS is recognized. 
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Figure 17 Development of high burn-up structure (HBS) in U-Mo at 
different fission density levels, reprinted from [56]. The recrystallization 
is believed to be the mechanism by which HBS forms. 



 39 

 Couple forms of U-Mo fuel have been produced and examined under irradiation 

influences. One is a monolithic fuel structure, in which a thin U-Mo alloy foil is placed 

between two planes of aluminum alloy cladding. The other is a dispersion fuel structure, 

expressed as U-Mo/Al, composed of U-Mo fuel particles that are dispersed in the Al 

matrix. The fueled region, including the U-Mo particles and Al matrix, is assigned to the 

fuel meat. Figure 18 represents the cross-sections of a monolithic fuel plate and a 

dispersion fuel plate [57]. 

2.2.2.1 Types of Metallic Nuclear fuel (U-Mo) 

2.2.2.1.1 Monolithic Fuel  

Monolithic foil has the potential to obtain a fissile loading that would enable low 

Enriched Uranium (LEU) conversion of several reactors that cannot be converted with 

dispersions. The monolithic fuel type has some preferences over dispersion fuel: first, it 

has very high loading (up to 17.5 g U/cm3 for U-7Mo) allowing more reactor conversions 

to LEU; second, it has a much lower surface area than dispersion fuel leading to fewer 

reaction with the aluminum plate and the central region of the plate [58].  

Figure 18 Schematic of the U-Mo fuel cross-section (as fabricated) 
(a) monolithic and (b) dispersion miniplates, reprinted from [57].
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2.2.2.1.2 Dispersion Fuel 

U-Mo dispersion fuel, the elected fuel type by U.S. Reduced Enrichment and Test

Reactor (RERTR), was admitted as an advanced fuel development in the last decades, but 

it has been found to show some restrictions under high temperature and burn-up 

circumstances. It is believed that in the normal operation conditions a non-preferable 

phase forms at the interface between the aluminum matrix and the fuel particles. By adding 

a few amounts of silicon to the matrix material, it may hinder the formation of the 

undesirable phase and enhance fuel irradiation performance under harsh operating 

conditions [58].  
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2.2.2.2 High burn-up structure of U-Mo dispersion fuel 

In the last decade, various irradiations of Material Test Reactors (MTR) fuel plates 

consisting of low enriched U-7wt%Mo fuel dispersed in an Al matrix have been conducted 

under several conditions [8]. It was observed that the fuel swelling rate increases at fission 

density range of ( [2.5 − 3.5]'102*3/90: ) [8]. The U-Mo fuel plate was studied and 

investigated extensively, consequently the fuel swelling was performed to be a function 

of location and local burn-up. This observation was demonstrated in many studies as one 

of the most significant concerns for U-Mo fuel type. Figure 19 is to show the swelling as 

a function of burn-up and position [8-9].  

Figure 19 Evolution of the microstructure observed in samples from 
fuel plate U7MD1231 (ZrN coated U(Mo)), reprinted from [33] 
having a fission density as indicated in the graph, reprinted from [8]. 
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 For a fission density above a range of ([2.5 − 3.5]	'102*	3/90:), a noticeable 

variation in the fuel microstructure is identified (as can be seen in figure 20). The change 

in U-Mo microstructure at this range of dislocation density, nearly resembles the high 

burn-up structure (HBS) [10, 14]. Similar to the UO2 case, The HBS structure in U-Mo 

could be characterized by small grains (e.g., 200-300 nm) [8].  

 The lower temperature (no defects annealing) and the high damage in the lattice 

(Pu breeding and high fission density) both contribute to accumulation of stored energy in 

the lattice that drives recrystallization. This circumstance could be existing at typically 

operational burn-up (average ~50-60 GWd/tHM) [8]. Although, there are some 

extraordinary differences in the irradiation of ceramic (UO2) and metallic UMo alloy fuels 

(e.g. temperature, enrichment, burn-up, etc.), there are a lot of similarities in the 

recrystallization process among these two fuel types [59]. It has been already reported the 

similarity of recrystallized grain structure after a burn-up of ~70 GWd/tHM in case of UO2 

and a fission density of 2.9	'102*	3/	90: for UMo fuel case [8, 60]. 

Figure 20 SEM image of the high burn-up sample in as polished and 
fractured surface condition, reprinted from [8]. 
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CHAPTER III 

PHASE FIELD MODEL DEVELOPMENT1 

We treat HBS formation in UO2 as a phase transition.  The model developed here 

builds on the work by Moelans and others on grain growth, migration of recrystallization 

boundaries, and formulation of thermodynamically-consistent multi-phase-fields models 

[61-64]. The model is obtained through a transformation of the grand-potential model with 

a parabolic approximation of the chemical free energy as expressed in [64]. The resultant 

formulation is able to decouple the interfacial properties from bulk properties. This allows 

us to set the interface width independently from the bulk and interfacial thermodynamic 

properties and hence facilitates simulating larger domains at a lower computational cost 

[64]. The formation of new grains is directly accounted for by adding the strain energy 

contribution to the free energy and stochastic terms to the kinetic evolution equations. 

The main goal, is to model and simulate the process of HBS formation and 

evolution in UO2 and U-Mo. To that end, we utilize the phase-field method, which is a 

powerful modeling approach that has been used to investigate different types of phase 

transformations and microstructure evolution processes in heterogeneous materials [18]. 

The phase-field method has also been adapted to investigate irradiation effects in nuclear 

materials [19-23]. The phase-field modeling approach has recently been employed to 

investigate the irradiation-induced recrystallization [24-25]. In these studies, the effects of 

1 Reprinted with permission from Springer “Mesoscale Modeling of High Burn-Up Structure  
Formation and Evolution in UO2” by M. Gomaa Abdoelatef, Fergany Badry, Daniel Schwen, Cody 
Permann, Yongfeng Zhang, and Karim Ahmed, 2019. JOM, Copyright [2019] by The Minerals, Metals 
& Materials Society (JOM).  
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fission rate and grain size on recrystallization kinetics were thoroughly investigated. 

However, in those models, the nucleation rate, recrystallized grain size, and recrystallized 

grain shape/morphology are assumed a priori based on classical nucleation theory. This 

limits those models to predict only the kinetics of recrystallization. Moreover, those 

assumptions directly control both the resultant microstructure and the overall kinetics. 

Therefore, establishing a general model that relaxes these assumptions is desirable.   

We introduce here a novel phase-field model for HBS formation and evolution. 

For simplicity, our model utilizes a continuum dislocation density field instead of 

resolving individual dislocations. Moreover, HBS formation is modeled here as a phase 

transition. Particularly, the self-arrangement of the dislocations into sub-grains can be 

treated in a way similar to the classical disorder-order transitions in alloys, with the 

distinction that the dislocations, not the individual atoms are the ones experiencing the 

self-organization. This model generalizes the grain growth models [30-31] by adding the 

stored strain energy contribution associated with dislocations formed under irradiation. 

Such generalization makes this model capable of simulating the formation and subsequent 

growth of recrystallized grains. The effects of the density and distribution of dislocations 

on the recrystallization kinetics were thoroughly investigated. Moreover, the influence of 

gas bubbles on the overall kinetics of HBS formation was also examined.   
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3.1 Phase Field Modeling of irradiation-induced recrystallization 

Here, we use several order parameters to fully describe a typical HBS 

microstructure as depicted in Figure 21. In order to achieve that goal, such a set of phase 

fields order parameters must be able to distinguish between three different microstructural 

features, e.g., deformed grains, recrystallized grains, and bubbles. We use ! for the 

dislocation density where ! ≠ 0 in a deformed/damaged grain and ! = 0 in a 

recrystallized grain and inside the bubbles. 9 is the gas site fraction and 9̃ is the normalized 

gas concentration. The normalized concentration is defined as 9̃ = L1LW¥

*1LW¥
 , such that it

equals 0 in the solid and 1 in the bubble. 9aµ is the equilibrium gas concentration in the

matrix. In the following, for simplifying we will drop the tilde (~) when we refer to 9̃ the

normalized concentration. ∑ç	uniquely identifies the bubble phase such that it equals to 1

inside the bubble and 0 everywhere else. The deformed/damaged matrix grains are

represented by a set of non-conserved order parameters ∑®ì∏
, while the recrystallized

matrix grains are represented by another set ∑Mì∏
.

Following the theory of gradient thermodynamics suitable for heterogeneous systems [23],

the total free energy of the system is assumed here to have the form

ã = ∫3N≠O + 3ç
∫•in                         (Eq. 3.1)

In the above Eq., 3ç∫•  is the bulk thermodynamic free energy, while 3N≠O  represents the

interfacial free energy due to bubble (free) surfaces and grain boundaries. The interfacial

free energy is given by
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   (Eq. 3.2) 

where §, ZP and … are constants that determine the surface and grain boundary energies. 

This formulation assumes isotropic surface and grain boundary energies. Nonetheless, the 

model can be generalized for anisotropic cases in a straightforward manner as in regular 

grain growth models [31]. The thermodynamic bulk free energy is constructed as  

3ç
∫• = 3L• + 3°O                           (Eq. 3.3) 

Here, 3L• is the chemical free energy and 3°O is the stored strain energy associated with 

dislocations produced at high burn-up.  

The strain energy of dislocations is expressed as   

3°Oº!, ∑i04
, ∑à04

, ∑èæ =
*

2
<J2!(à, l)ℎ®ì							, ℎi0 =

∑ ∑i04
2

4

∑ ∑i04
2

4 +∑ ∑à04
2 +∑J

2
4

    (Eq. 3.4) 

where < is the shear modulus and J is the length of the Burgers vector.	ℎ®ì represents 

the fraction of deformed matrix grains in the domain. The effective/average dislocation 

density can then be calculated as,  

!ass =
*

k
∫!(à, l)ℎi0(à, l)in                    (Eq. 3.5)

The dislocation density !(à, l)  can vary with space and time. In most simulations here, 

for simplicity, !(à, l)	was taken as a constant for all the damaged grains. However, we 

also investigate the effect of non-uniform dislocation density.A parabolic approximation 

of the chemical free energy of the bulk phases is used here, namely,  



 47 

3L• = Ã(9 − ℎç)
2 , ℎç =

Õú
õ

∑ ÕŒœ∏
õ

∏ –∑ Õ—œ∏
õ –Õú

õ
∏

  (Eq. 3.6) 

where Ã is a constant that sets the value of the chemical free energy and ℎç represents the 

bubble fraction. This specific form eliminates any contribution of the chemical free energy 

to the interfacial energy as demonstrated in [64]. Note that this form assumes equal 

curvatures of the parabolas representing the matrix and bubble phases. This is acceptable 

if one assumes the bubbles have their equilibrium pressure, and hence the value of the sole 

curvature can be used to represent the excess free energy in the matrix due to gas atoms 

supersaturation. Specifically, we fix the parabola such that the chemical potential 

calculated from (Eq.3.6) approximates the exact chemical potential given by the ideal 

solution form, e.g.,  

2Ã9 =
“S∫

”
‘7

L

LW¥
  (Eq. 3.7) 

Here,	’\	 is Boltzmann constant, Ω is the atomic volume, ◊ is the absolute temperature, 9 

is the average gas concentration in the matrix, and 9aµ is the equilibrium gas concentration 

in the matrix.  The equilibrium gas concentration has a regular form, viz.,  

9aµ = exp	(−Cs/’\◊)                                (Eq. 3.8) 

where, Cs is the solution energy of a gas atom. 
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The evolution equations for the phase fields/order parameters can be derived from the 

principles of irreversible thermodynamics [23]. The non-conserved order parameters 

evolve according to Allen-Cahn Eqs. [63] as       

¤Õú
¤O
= −‹ç

´›

´Õú
= −‹ç ~

¤s∏fifl

¤Õú
+

¤s‡·

¤Õú
+

¤s£fl

¤Õú
− …∇2∑çÖ + ‚ç  ,   (Eq. 3.9.a) 
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Here, ‹ç	is a constant related to the bubble surface mobility, ‹®ì∏
 is a constant related to 

the boundary mobility of a deformed/damaged matrix grain, ‹Mì∏
 is a constant related to 

the boundary mobility of a recrystallized matrix grain, and ‚P are stochastic terms that 

facilitate nucleation of grains or bubbles. In contrast to Langevin Eq., the stochastic terms 

here not only represent the thermal fluctuations of atoms/particles, but they also account 

for the cutoff of any fast degrees of freedom necessary for deriving coarse-grained free 

energy. Adding those terms to the evolution equations. enables them to explore other 

evolution paths in the vicinity of the most probable path in the phase space. Using constant 

mobility coefficients is equivalent to the assumption of isotropic grain boundary and 

bubble surface mobilities. Nevertheless, the extension to the anisotropic case can be 

achieved by following the standard approach used before in the models of solidification 

and grain growth [23, 30-31]. 
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The gas atom concentration is governed by a Cahn-Hilliard type diffusion Eq., e.g., 

¤L

¤O
= ∇ ∙ (é∇Ë) + ^ + ‚L   (Eq. 3.10.a) 

Ë =
´›

´L
=

¤s‡·

¤L
 (Eq. 3.10.b) 

In the above Eq., é is the chemical mobility of gas atoms, Ë is their chemical potential, ^ 

is a source term representing the on-going production of gas atoms due to fission events, 

and ‚L  is a stochastic term similar to the ones discussed above. The chemical mobility is 

related to the diffusivity (â) through  

¤õs‡·

¤Lõ
é = â ,   (Eq. 3.11.a) 

2Ãé = â.  (Eq. 3.11.b) 

Using constant mobility here amounts to considering bulk diffusion to be the sole 

mechanism of gas atom diffusion. However, grain boundary and surface diffusion 

mechanisms can be added to the model as in the work of Ahmed. et. al. on grain growth 

in porous solids [65-66].  

The effective dislocation density is prescribed according to a constitutive law. In general, 

the dislocation density can change with time and position. These dependencies represent 

the accumulation of radiation damage and the heterogeneity of damage expected in distinct 

types of fuels used in different reactor types. For the sake of simplicity, we utilize here an 

empirical relation that calculates the average dislocation density for a given burn-up (Bu), 

e.g., [11].

log!ass = 2.2'1012ÃÏ + 13.8    (Eq. 3.12) 
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The deformed grains are assumed to have this dislocation density, while the 

recrystallized grains are dislocation free.  

The phase field model parameters are directly related to the thermodynamic and kinetic 

parameters as follows [10, 64]. 

Z®ì = ZMì = ZM® = 1.5  (Eq. 3.13.a) 

~
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 (Eq. 3.13.b) 
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             (Eq. 3.13.c) 
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Zùçℓ  (Eq. 3.13.d) 

‹®ì = ‹Mì =
qÓú

:ℓ
 (Eq. 3.13.e) 

‹ç = 10
_

\ℓõ
  (Eq. 3.13.f) 

In the above, ℓ is the diffuse interface width, Zùç	is the grain boundary energy, Z°	is the 

surface energy, and éùç is the grain boundary mobility. As can be deduced from Eq. 

(3.13), it is assumed here that the recrystallized and deformed grains have the same 

boundary energy and mobility. However, this is not a model restriction, as clear from Eq. 

(3.13), but rather a simplification for the lack of data. (Eq.3.13.f) guarantees that the 

bubble surface motion is diffusion controlled. The grain boundary energy and surface 

energy of UO2 are taken to be 1.04	Ò/02 and 1.8 ± 0.3	Ò/02, respectively [67-68]. In 

case of U-Mo, the shear modulus, burger vector, surface energy of gas bubbles, grain 

boundary energy, and kinetic coefficient were taken as 36.0	<^, 3.42	'	101*†	0, 
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1.64	Û/02, 0.36	Û/02and 1.82'101*q ì
v

¿.°
  respectively [24-25]. The grain boundary 

mobility of UO2 is given by [69]. 

éç = 9.21'101Ù exp(−2.77ˆå/’\◊)	0
q/(Ò. 5)                                (Eq. 3.14) 

The shear modulus and the magnitude of the Burgers vector for UO2 are taken as < =

73	<ê˜	, 	J = 0.39	70 [11]. The interface width was set to 20	70 in all conducted 

simulations (UO2 and U-Mo cases). A temperature of 1200	… is assumed for all the UO2 

simulations cases here.  

3.2 Determination of model parameters and numerical implementation in MOOSE 

The model was implemented using the open-source finite-element code MOOSE, 

which uses its built-in Grain Tracker algorithm [70] to reduce the computational cost. 

Grain Tracker is an algorithm implemented in MOOSE that allows using a few numbers 

of order parameters to represent a large number of grains, which facilitates performing 

large scale simulations of polycrystalline materials [70]. In 2D simulations, only 8 order 

parameters are required to represent a few thousand grains. The grain tracker algorithm 

was utilized here to handle both the deformed grains and the sub-grains (recrystallized 

grains). To that end, 8 more order parameters were reserved to represent the recrystallized 

grains (∑Mì∏
). They are initially zero, and once new grains are formed, they are given new 

identification numbers and represented by one of the reserved order parameters. 

Nucleation takes place directly due to the inclusion of the stochastic terms. A uniform 

random generator with zero mean was used for these stochastic terms. The magnitude of 

the stochastic terms was found not to affect the evolution appreciably, and it was set to 

101: in all simulations. Lastly, the kinetic evolution equations were solved using the same 
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procedure summarized in [71]. Built-in MOOSE adaptive time and mesh steps were also 

utilized to speed up the simulations.  

Figure 21 An illustration of the phase fields (order parameters) used to describe 
the HBS microstructure. Damaged grains are shown in red, recrystallized grains 
are shown in blue, and grain boundaries and bubbles are shown in white, 
reprinted from [74].   
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CHAPTER IV  

RESULTS AND DISCUSSION 

The results presented in this section were obtained by performing simulations of the 

phase field model for irradiation-induced recrystallization. In the first section, we 

conducted test cases to illustrate the capabilities of the model. Moreover, these test cases 

also serve as a benchmark for the model before simulating the real systems. In the second 

section, the model was utilized to study the irradiation-induced recrystallization (HBS 

formation) in UO2 in case of presence/absence of gas bubbles. Finally, the last part of this 

result chapter was reserved for studying the HBS formation and evolution of dispersed U-

Mo fuel by implementing our phase-field model. 

4.1 Test Results 

In this section, we examined the model by investigating simple test cases. In order to 

do that, we have carried out various 2D simulations to study the irradiation-induced 

recrystallization. First, we analyze the growth rate of a recrystallized grain and compare it 

with the theoretical predictions, tailgated by an examination of particle-grain boundary 

interaction investigations. Then, we investigate the irradiation-induced recrystallization 

(formation of the HBS). Finally, we presented a quantitative analysis regarding the 

influence of several interface classes (bubbles matrix interfaces) on the recrystallization 

kinetics. 
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4.1.1 The grain growth. 

Before studying the irradiation-induced recrystallization, we analyze the growth of a 

recrystallized grain. This test case is crucial to provide a benchmark for our model. The 

velocity (¯) of the grain boundary of the newly recrystallized grain (sub-grains), which 

grows at the expense of a deformed grain is given by 

¯ = éç(˘ − Zç…) =
:ôℓ

q
(˘ − Zç…)                                            (Eq.4.1)

Where, ˘ is the stored energy given by (Eq.3.4) and … is the curvature of the grain. 

Additionally, (Eq.3.13e) was giving an expression of the grain boundary velocity in terms 

of the phase field model parameters. Then, we introduced an investigation of the 

growth/shrinkage of a recrystallized grain (circle grain) inserted in a deformed matrix 

grain. Based on (Eq.4.1), the velocity of a circular grain decreases to  

¯ = 	éç ~˘ −
Qú
`
Ö =

:ôℓ

q
(˘ −

Qú
`
)                                                       (Eq.4.2)

where, K is the radius of the grain. The circular grain might grow or shrink based on its 

radius size and the dislocation density (and hence the stored energy) in the deformed grain. 

For the assigned dislocation density, the corresponding critical radius could be determined 

where a grain with a larger radius grows and grain with a smaller radius shrinks. From Eq. 

(4.2), and counting for (Eq.3.4), the critical radius could be given by 

KL =
Qú
ù
=

2Qú
˙çõöW˚˚

                         (Eq.4.3) 

obviously, a critical dislocation density can be performed instead of the critical radius by 

considering a particular initial radius of the recrystallized grain. based on this case, the 
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recrystallized grain will grow only if the dislocation density in the deformed grain will be 

higher than the critical value, e.g., 

!ass
L =

2Qú
˙çõ`

 (Eq.4.4) 

4.1.1.1 The growth rate of a recrystallized grain 

A few 2D simulations were executed to investigate these specific scenarios by utilizing 

our phase-field model. The system size was (1.28	'	1.28)	049à675 — the interface width 

set to be 40	70. Periodic boundary conditions were employed in both directions. Periodic 

boundary conditions were applied in both directions. From (Eq.4.4), the critical 

dislocation density that corresponds to the recrystallized grain critical radius (160	70) is 

!ass
L = 3.3'10*q	012. A three different simulations with different three values for the 

dislocation density (e.g.,	!* = 2.3'10*q	012 , !2 = 3.3'10*q	012 and !: =

4.3'10*q	012) were conducted. As predicted from Eqs. (4.2, 4.3, and 4.4), the 

recrystallized grains grow if the dislocation density was found to be higher than the critical 

otherwise, it will shrink. If the dislocation density approached a constant critical value, 

then the grain radius will remain constant. These sequences were illustrated in Figures 22-

23. As can be seen in figure 22, it proves the growth/shrinkage of the recrystallized grain

at the expense of the deformed bulk grain. In this figure, a few snapshots of the evolution 

of a recrystallized grain in the deformed matrix were performed. If the dislocation density 

in the deformed matrix is higher than the critical value, then the recrystallized grains grow 

(upper row); but it will shrink if the dislocation density in the deformed grain is below the 

critical value (lower row). If the dislocation density is precisely equal to the critical value, 
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then the recrystallized grain will not grow or shrink (middle row), and it will keep at a 

constant size. 

The development/evolution of the recrystallized grain size in the deformed matrix 

at various values of dislocation densities was represented in Figure 23. Remarking that, 

the critical dislocation density is (!assL = 3.3'10*q	012). Then the grain size will increase 

if the dislocation density higher that this value and decreases if the dislocation density 

lower than it. 

Figure 22 The growth/shrinkage of the recrystallized grain at 
the expense of the deformed matrix grain. 
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4.1.1.2 Particles pinning the recrystallized grain. 

The Second-phase particles exert a drag force on a boundary migration, which 

hinders the grain boundary velocity. To study the particle-inhibited grain growth, a few 

theoretical models were introduced in the literature [49, 72-73]. These models can be 

sorted into two classes (mobile or immobile) based on the way to treating the particles 

movement. Second-phase particles such as inclusions or precipitates are usually 

recognized to be immobile, while pores and bubbles are usually reflected as mobile. 

Figure 23 The change of the recrystallized grain radius 
with time for different dislocation densities 
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4.1.1.2.1 Immobile particles 

The impact of immobile particles on the grain growth process was first studied by 

Zener [47] (as explained and described in section 2.1.2.2.1). By considering a randomly 

distributed immobile particles with a spherical shape, Zener proposed the curvature to be 

the driving force for the boundary movement. On the other hand, the particles will exert a 

drag force which leads to hinder the boundary motion. 

(Eq.2.5a) was to present the grain boundary velocity, based on that equation, there 

are two likely scenarios for the interaction between the immobile particles with the grain 

boundary. The first case, where the boundary can break away and hence leaves the 

particles if (ãç ≫ gèãç). Second, if the particle can effectively pin the boundary and halt 

the grain growth, this can exist under the condition of (ãç = gèãç). 

4.1.1.2.2 Mobile particles 

The influence of mobile particles (such as pores or bubbles) on grain growth is 

more complicated. The boundary migration exerts a force on the particle, and hence the 

shape of the particles will be changed. Consequently, the particles can easily be dragged 

by the grain boundary movement [49, 72-73]. The interaction between a mobile particle 

and a grain boundary could be explained in two different scenarios as well. In one case, 

the migrating boundary will be splitter away from the particle. In the other case, the 

migrating boundary could drag the particle onward with it. If the boundary separates from 

the particle, the boundary moves with its velocity as in the particle-free case [49, 72]. 

Lastly, the boundary breakaway will simply occur whenever the grain velocity åç exceeds 

the particle velocity åè , i.e. where éèãè < éç(ãç − gèãç). 
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4.1.1.2.3 Particle-grain boundary interaction test case 

 we conducted a test case to simulate the particle-grain boundary interaction cases. 

For the case of immobile particles effects on the grain boundary motion, the immobile 

particles set to have zero mobility. This was illustrated in Figure 24 (first row). The 

simulation results agree well with the classical Zener model. For immobile particles, 

multiple small particles pin the boundary more than a few larger particles (this was 

demonstrated effectively in a larger scale simulation among this work in the HBS results 

sections). Simply, the immobile particles cases are the opposite to the case of mobile 

particles [49]. The second case, where the influence of particle drags the kinetics, as shown 

in figure 24 (second row). As evident from the figure, its clearly describes the quasi- rigid-

body motion of the particles along with the boundary, which is regularly considered in the 

theoretical models. 

The last case, where the grain boundary motion having higher velocity, so it can 

break the mobile or immobile particles, this case can be seen clearly in figure 24 (last 

row), as the boundary was able to separate far from the particles. This can be explained 

based on the fact that if fewer pining particles exist, the boundary could wrap around the 

particles and reduce its size till it approaches the critical driving force/velocity needed to 

separate from the particles, as observed in experimental micrographs of HBS [11, 17, 49]. 

Finally, Figure 25 presents the recrystallized circular grain evolving in the case of 

mobile/immobile second phase particles vs. the case of no particle exist (single-phase). 
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Figure 25 The evolution of grain radius in case of single-phase 
matrix and mobile/immobile second phase particles. 

Figure 24 Snapshots to illustrate the three different scenarios of particle-
boundary interaction. First row is to show the case of immobile particles effect on 
the grain boundary motion, the second row presents the particle drags the 
boundary kinetics case. Finally, the last row was to show the high-velocity grain 
boundary breaks away from break away from mobile or immobile particles   
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4.1.2 Irradiation-induced recrystallization for a deformed bicrystal system.

This section will show 2D simulations of irradiation-induced recrystallization in 

bicrystal systems, these simulations were executed by the initial version of the current 

model [10, 74]. Usually, there are two famous methods in phase-field modeling to describe 

the nucleation processes [75]. The classical and the more accurate way is to directly 

incorporate Langevin type fluctuations in the evolution equations. the second way is to 

directly add new stable nuclei with a particular rate (estimated from the classical 

nucleation theory). Both approaches have their own advantages and shortcomings. Here 

we implemented a simpler version of the first method (where fluctuations considered in 

the initial conditions). To represent the new grains, we implemented an extra set of order 

parameters, the added new order parameters evolve via the same evolution equation as the 

normal order parameter set, which describes the originally deformed grains.  

We started by investigating the case of irradiation-induced recrystallization at the 

boundary of a deformed grain. The system size was (12.8	'	12.8	)	049à675. The 

thickness of the initially deformed grains (two grains in this case) was set to be 

6.4	049à675 each; the interface width was taken to be 400	70. Two order parameters 

represented the two deformed grains and set of four extra order parameters were 

maintained for the nucleation of new grains description. Various dislocation densities were 

analyzed to investigate the effect of the dislocation density on the recrystallization process. 

The nucleation process would be very similar to what we discussed before about the grain-

growing (there is a critical dislocation density for a recrystallized grain to grow). 

Therefore, if the nuclei/grain couldn't grow into stationary size grains, they will eventually 
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disappear. Indeed, our simulations illustrated that a threshold dislocation density !assL =

3.3'10*q	012  is required for recrystallization to be initiated. 

Figure 26 presents the snapshots of the recrystallization process for two distinct 

dislocation densities higher than the threshold value, with !assL = 6.6'10*q	012  (upper 

row) and !assL = 3.3'10*q	012  (lower row) at 1200K. The higher the dislocation density, 

the larger number of recrystallized grains. That demonstrates the theory, which states that 

there is an energy cost associated with the newly grains initiations. The recrystallized 

grains will increase until they fully replace the entire domain (full recrystallization, i.e., 

the recrystallization fraction is unity).  

Figure 26 Snapshots of the irradiation-induced recrystallization for an 
initially deformed UO2 bicrystal with critical dislocation density of 6.6x1014m-2  
(upper row) and critical dislocation density of 3.3x1014m-2 (lower row) at 
1200K. More recrystallized grains are formed as the dislocation density 
increases, reprinted from [10]. 
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4.1.2.1 Irradiation-induced recrystallization model to simulate HBS in UO2 

The model employs the HBS formation as a phase transformation process. The 

initial version of this model [74] demonstrates its capability to simulate the homogeneous 

(grain subdivision) and heterogeneous (recrystallization) nucleation. to show these 

capabilities, a simulation test case was executed successfully, and the results presented 

here as figure 27. The figure displays snapshots of the nucleation and growth of 

recrystallized grains at several dislocation densities. In this simulation case, the system 

domain was (10.24	'	10.24)	049à675  and grid size was 10	70. For grain subdivision 

scenario (recrystallization happen everywhere), higher dislocation densities should be 

performed. For a lower dislocation density (! = 2.2'10*+	012), the recrystallized grains 

nucleate only at the grain boundary since the nucleation barrier is lower than the matrix as 

expected from heterogeneous nucleation theory [76]. 

For an intermediate value of the dislocation density (! = 2.8'10*+	012), the 

recrystallization starts at the grain boundary first, and then in the deformed bicrystal 

matrix. But for the high dislocation density (! = 6.2'10*+	012 ), a sub-grains case will 

nucleate everywhere in the system (homogeneous nucleation). That shows the capability 

of our model to simulate both homogeneous and heterogeneous nucleation without any ad 

hoc or a priori assumptions. 
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4.1.2.2 Interfaces influence on the recrystallization kinetics. 

As illustrated in section 2.1.2.4, the solid-solid interface can be classified into three 

general categories, Coherent, Semi-coherent, and Incoherent interfaces. The coherent 

interface could be defined as the interface across where lattice planes are continuous. 

Figure 27 Effect of dislocation density on the heterogeneous nucleation of sub-
grains. For the case of low, intermediate and higher dislocation density, 
reprinted from [74]. 
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Incoherent interfaces express the interface where the structure has no lattice plane 

continuity across the interfaces. The semi-coherent interfaces are not entirely coherent or 

incoherent and are then typically continuous lattice planes interlarded with discontinuity 

sites. 

We performed several simulation cases to investigate quantitatively the effect of 

interfaces types on the recrystallization kinetics at Four different bubbles volume fraction 

(1, 5, 10, and 15 %) with three levels (low, mid and high) of dislocation density (non- 

dimensionalized), as can be seen in Figure 28. The simulation results successfully captured 

the behavior of recrystallization kinetics based on the three different bubble-matrix 

interface types. For the case of coherent interface, the recrystallization rate is the slowest 

compared to the other two types of interfaces, and it didn’t even recrystallize at lower 

dislocation density. This behavior was predicted as there are no misfits plans associated 

with the coherent interface and hence no preferable sites for recrystallization to take place. 

At the medium/high dislocation density, the recrystallization process started to take place, 

due to the influence of higher dislocation density. The higher dislocation densities give 

more driving force for the recrystallization to happen, but still, the difference in its rates 

can be remarked at the coherent interface compared with semi-coherent and coherent 

interfaces.  



 66 

One the other hand, the Incoherent interface is considered to have the highest 

misfit, and therefore the recrystallizations happen faster in all the cases. Finally, the semi-

coherent interface, which is the most of real situations, will have lower misfits than the 

incoherent interface and hence the recrystallization rate in such case usually lies between 

the corresponding rate of the other two types (coherent and incoherent interfaces).  

Figure 28 The bubble/matrix interface type influence on the recrystallization 
Kinetics at different bubbles volume fraction and dislocation densities  
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4.2 HBS formation and evolution in UO22 

We investigate here the HBS formation and evolution in polycrystalline UO2. All 

the simulations presented here were conducted in 2D, to reduce the high computational 

cost. Furthermore, for simplicity, the production and stochastic terms in Eqs. (3.9.a) and 

(3.10.a) were set to zero, i.e., nucleation of bubbles was ignored and only their effect on 

the initiation of HBS transformation was considered. The effects of dislocation density 

magnitude and distribution, initial grain size, and bubble radius and number density were 

systematically studied. The simulations proved a strong influence of these parameters on 

the overall kinetics of HBS formation. Moreover, it was demonstrated that these 

parameters control the resultant microstructure of the HBS, and hence its thermal and 

mechanical properties.   

4.2.1 Effects of dislocation density and grain size on HBS formation in UO2 

Several simulations were conducted to understand the formation and evolution of 

HBS in polycrystalline UO2. The simulations utilize a 2D domain of size 

20.48	J˛	20.48	049à675, with an average grid size of 20	70. The initial size of the 

damaged grains was varied between 2.9 − 4.1	049à675. For simplicity, in most 

simulations, all the initial grains were assumed to be damaged and to have the same 

2 Reprinted with permission from springer “Mesoscale Modeling of High Burn-Up Structure Formation 
and Evolution in UO2” by M. Gomaa Abdoelatef, Fergany Badry, Daniel Schwen, Cody Permann, 
Yongfeng Zhang, and Karim Ahmed, 2019. JOM, Copyright [2019] by The Minerals, Metals & 
Materials Society (JOM). 
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dislocation density. However, the effect of non-uniform dislocation density was also 

studied.  

First, we investigate the effect of the magnitude of the dislocation density on the 

process of HBS formation and evolution. This is captured in Figure 29 that represents 

snapshots of the HBS formation and evolution. Due to the high computational cost, the 

initial grain size of the damaged grains was set to be 2.9	049à675, which is close to the 

initial grain size range in UO2 pellets (5 − 10	049à675) [14]. As evident from the figure, 

the value of the dislocation density affects both the size and morphology of the 

recrystallized grains. A critical dislocation density was found below which no 

recrystallization takes place. The value of this critical dislocation density is !ass =

5.17'10*q		012 or equivalently 41 GWd/tHM burn-up. As the dislocation density 

increases (from the upper row !ass = 6.25'10*q		012 or 45 GWd/tHM burn-up to the 

lower row !ass = 2.50'10*+		012 or 72 GWd/tHM burn-up), the recrystallized grain size 

decreases and the number of recrystallized grains increases. This is consistent with the 

fact that the critical radius is inversely proportional to the strain energy difference between 

the damaged and recrystallized grains. Moreover, as the dislocation density increases, the 

morphology of the recrystallized grains changes from coarse equiaxed grains at low values 

of the dislocation density !ass = 6.25'10*q		012 to columnar grains at intermediate 

values !ass = 1.33'10*+		012 to fine equiaxed grains at high values !ass =

2.50'10*+		012. Furthermore, the heterogeneous nature of recrystallization is sensitive 

to the magnitude of dislocation density as manifested in Figure 29, as well. 
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For low values of the dislocation density, recrystallization proceeds only at triple- and 

higher order-junctions (upper row). At intermediate values, recrystallization also takes 

place at the grain boundaries (second row). At high enough dislocation density, new sub-

grains form at the boundaries of the just recrystallized grains (third row). The grain 

subdivision, where nucleation of new grains can occur inside the bulk of damaged grains, 

starts to take place at higher dislocation density (fourth row). Note that the model correctly 

reproduces the different morphologies of grains recrystallized at different junctions, e.g., 

two, triple, and higher-order junctions. All these results are consistent with the 

heterogeneous nucleation theory. This is a major strength of our model where nucleation 

of recrystallization is treated explicitly and no a priori assumptions on the nucleation rate 

and sites or the size and morphology of the recrystallized grains are required. The range 

of dislocation or equivalently burn-up predicted here for HBS formation in UO2 fuel 

agrees well with the experimental data reported in the literature[11, 14, 32-33]. 
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Figure 29 Effect of dislocation density on irradiation-induced recrystallization in 
polycrystalline UO2 at 1200K. The initially damaged grains are presented in red color 
and the recrystallized (dislocation-free) grains in blue. tr is the time at which 
recrystallization is complete. The dislocation density increases from the upper row 
to the lower row. The recrystallization time (tr) reduces with increasing dislocation 
density (see Figure 30).  
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The effect of dislocation density on the overall kinetics of HBS formation in 

polycrystalline UO2 is quantitatively shown in figure 30. At very low dislocation density 

(!ass = 5.00	'10*q		012) no recrystallization takes place, but higher dislocation density 

leads to shorter incubation time and faster recrystallization kinetics (as evident from 

Figure 30a). Moreover, higher dislocation density results in a larger number of 

recrystallized grains, and hence smaller average grain size (as can be seen from Figure 

30b). This is in a good agreement with expectations from the classical nucleation theory 

[76]. Note that after recrystallization is completed, regular grain growth, where the number 

of grains decreases and grain size increases, takes place. For the cases where the resultant 

microstructure resembles the HBS micrographs, i.e., when it develops uniform and fine 

grain structures, the recrystallized average grain size was found to lie within the range of 

0.3	l6	0.5	049à675 corresponding to a range of dislocation densities of ! =

(2.5'10*+ − 2.65'10*+)	012 (or equivalently a burn-up of 70-75 GWd/tHM). These 

ranges of grain size and burn-up agree well with the reported values [11, 14, 32-33].   

We then studied the effect of the grain size of polycrystalline UO2 on the kinetics of 

HBS formation. The investigation considered two different initial grain sizes of 

2.9	˜7i	4.1	049à675 at a dislocation density of  ! = 1.33'10*+	012 . The results of 

these simulations are presented in Figure 31. As can be concluded from this figure, the 

recrystallization proceeds faster with decreasing grain size. This is due to the fact that the 

smaller grain size leads to higher grain boundary area per unit volume, and hence more 

preferable nucleation sites. Moreover, the trend predicted here agrees with the 

experimental date reported for UO2 [11, 32-33]. 
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Figure 30 Effect of dislocation density on the kinetics of recrystallization in 
polycrystalline UO2 at 1200K (a) the increase of the recrystallization fraction 
with time (b) the evolution of the average grain size and (c) the change in the 
total number of grains with time. 



 73 

4.2.2 Effect of the distribution of dislocation density 

In the simulations above, it was assumed that the dislocation density is uniform 

and constant in all grains. However, this is unrealistic in most situations. For instance, 

under non-uniform applied mechanical load or irradiation, the heterogeneous distribution 

of dislocations is expected. For UO2 pellets, it is known that irradiation damage is more 

pronounced at the periphery than in the center of the pellet. That is due to the difference 

in the fission density between those regions. Additionally, the high temperature at the 

center, leads to the annealing of defects. i.e., Irradiation damage and recovery take place 

almost simultaneously at the center of the pellet. Moreover, the stresses arising from the 

temperature gradient across the pellet center also contribute to the heterogeneity of 

Figure 31 Effect of the initial grain size on the recrystallization kinetics. 
Faster recrystallization kinetics is observed for smaller grain size due to 
the higher density of nucleation sites. 
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irradiation damage. Hence, it is expected that the dislocation density will be higher at the 

periphery than in the center. 

We investigate the effect of non-uniform dislocation density by assigning a 

spatially dependent dislocation density. To approximate the distribution of dislocations in 

UO2 pellets, we assign a linear profile for the dislocation density along the radius. This is 

shown in Figure 32 that represents the HBS formation in polycrystalline UO2 pellets. At 

the center of the domain, the dislocation density was set to ! = 6.25'10*q	012 (0.25 in 

the figure as a non-dimentionalized value). The dislocation density attained its maximum 

value	! = 2.5'10*+	012	 (1.00 in the figure as a non-dimentionalized value) at the 

corners of the domain.  As can readily be inferred from the figure, the non-uniform 

distribution of dislocations leads in turn to a heterogeneous HBS. The recrystallized grain 

size, orientation, and morphology change drastically along the radius. This is consistent 

with the above results that demonstrated a strong effect of the value of the dislocation 

density. This will eventually result in non-uniform mechanical and thermal properties 

along the radius as was reported before [14]. 
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4.2.3 Effect of gas bubbles on the kinetics of HBS formation 

We turn our attention to the effect of bubbles on the kinetics of recrystallization in 

polycrystalline UO2. It was reported several times that bubbles formation often precedes 

recrystallization during HBS formation in UO2. Moreover, it is well-known that second-

phase particles in general strongly influence the overall kinetics of both recrystallization 

and grain growth in materials, as explained in the reviewing chapter (Chapter two, in this 

work). On one hand, they act as nucleation sites, leading to enhance the kinetics of the 

D
islocation density 

D
islocation density 

D
islocation density 

D
islocation density 

Figure 32 A Simulation of HBS formation in a UO2 pellet. The dislocation 
density changes radially, i.e., it is lowest in the center and highest at the 
periphery (see text for exact numbers). Only the grain boundaries and the 
initial dislocation distribution are shown here for better visualization. Time 
progresses from top left to bottom right.  
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recrystallization. On the other hand, they also act as pinning sites for the gain boundaries, 

resulting in hindered grain growth kinetics. To investigate the effect of bubbles on the 

HBS formation in UO2, we performed several simulations with different bubble 

configurations. The results of these simulations are summarized in figures 33-35.   

Snapshots of HBS formation and evolution are shown in Figure 33. The number 

of bubbles and bubble radius were varied to investigate their effects on the process. The 

initial grain size of 2.9	049à675 and a relatively low dislocation density of  ! =

6.25'10*q	012  were used. As evident from figure 33, the presence of bubbles enhances 

the kinetics of recrystallization in all cases. It is worth noting that the model correctly 

reproduces the different equilibrium morpholgies of bubbles and recrystallized grains. The 

equilibrium morpholgy is determined through the establishment of the equilibrium 

dihedral angle at the bubble/grain tips/triple-junctions. Moreover, the model predicts that 

the grains recrystallized near the bubbles tend to wrap around the surface of the bubbles 

(as investigated in the result test caseses section) that act as a surface defect, and hence a 

preferred nucleation site. This was observed in experimental micrographs of HBS [11, 

17]. Furthermore, the model can also concurrently simulate grain growth and particle 

coarsening if simulations were to run for longer times as in [65, 71].  

The effects of gas bubbles on the overall kinetics of recrystallization in 

polycrystalline UO2 are quantitatively summarized in figures 34 and 35. Figure 34 

represents the recrystallization rates at different dislocation densities for two distinct 

bubble configurations with the same area fraction. Figure 35 shows the recrystallization 

rates at different dislocation densities for two distinct bubble configurations with the same 
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radius and different number density. As represented in the figures, the recrystallization 

rate increases with bubble number density. The enhancement is more pronounced at lower 

dislocation densities. This is consistent with the fact that bubbles provide extra nucleation 

sites for recrystallization to take place. The effect of the bubble radius was also studied 

but was found negligible compared to the number density. Nonetheless, the effect of 

bubble radius is expected to have a more pronounced effect on the later grain growth 

kinetics (after recrystallization is complete), as demonstarted before in previous studies 

[65-66, 71]. 
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t=3 hr  t= 552 hr   t=1178 hr    t=tr 

Figure 33 Effect of gas bubbles on the recrystallization kinetics in 
polycrystalline UO2 at 1200K.  The first and second rows have the same 
bubble area fraction. The second and third rows have the same number of 
bubbles. In all configurations, bubbles tend to accelerate the overall kinetics 
of recrystallization by providing extra nucleation sites. It is worth noting that 
grains recrystallized at the bubble surface have different morphologies from 
those at grain junctions. Moreover, the model also captures bubble merging 
(coarsening) during grain growth (see the last column). 



 79 

Figure 34 Effect of gas bubbles on (a) the recrystallization kinetics in 
polycrystalline UO2, (b) Average grain size and (c) Number of grains. Two 
different bubble configurations with the same area fraction at different 
dislocation densities were considered. In all cases, gas bubbles increase the 
recrystallization rate. This increase is more pronounced at lower dislocation 
densities. For the same bubble area fraction and dislocation density, 
configurations with the higher number of bubbles recrystallize faster.  
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Figure 35 Effect of bubble number density on (a) recrystallization rate in 
polycrystalline UO2 (b) average grain size and (c) number of grains. For the 
same bubble radius and dislocation density, a higher number of bubbles leads 
to enhanced recrystallization kinetics. This enhancement is more apparent at 
lower dislocation densities. 
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4.3 HBS formation and evolution in U-Mo dispersion fuel 

Various 2D simulations of HBS formation and evolution in U-Mo were conducted 

in this results part. the first case was to study the single-phase (with no bubbles existing) 

recrystallization kinetics. Additionally, the influences of the Fission density magnitude 

and initial grain size on the recrystallization were executed. Finally, the recrystallization 

in case of second-phase particles (gas bubbles) was examined. The system size was the 

same as used in UO2 simulations (20.48	by	20.48	microns) and the grid size was setted 

to be (20	nm). All initial grains (50 grains, with 2.9 microns grain size) were considered 

to be deformed (the same dislocation density was uniformly distributed among the matrix). 

The Grain Tracker algorithm was employed to examine the original deformed grains and 

the recrystallizing new grains [8, 34]. lastly, adaptive time and mesh steps were used to 

decrease the computational cost. 

4.3.1 Fission density influence on HBS formation in U-Mo dispersion fuel 

The influence of fission density on the recrystallization was studied quantitatively, as 

shown in Figure 36.a. As can be seen obviously out of the figure, by increasing the fission 

density, the recrystallization rate will occur faster. Furthermore, the average amount of the 

recrystallized new sub-grains will increase with higher dislocation density. Consequently, 

the average grain size reduces (see figures 36.b). This also agrees strongly with the 

predictions from classical nucleation theory as the average number of recrystallized grains 

is inversely proportional to the driving force (strain energy associated with dislocations) 

of nucleation [76].  
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The quantitative results of recrystallization in U-Mo are in reasonably good 

agreement with other models prediction and experimental data in the literature [8, 13, 24]. 

As can be found out from figure 36.b, the phase-field model predicts a critical grain size 

to lie within a range of  0.3	049à675 at fission density of 3 = 5.50'102*90: which is 

corresponding to the burn-up in the range of ~120 GWd/tHM [8, 13, 24-25, 34].  

(b) (c) 

(a) 

Figure 36 Effect of fission density on the kinetics of recrystallization in U-Mo (a) 
the increase of the recrystallization fraction with time (b) the evolution of the 
average grain size and (c) the change in the total number of grains with time. 
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4.3.2 Grain size influence on HBS formation in U-Mo 

We studied the impact of the initial grain size on the recrystallization process in U-

Mo. The system size was established as the previous simulation with fission density of 

(3 = 2.60'102*90:). Two distinct initial grain size cases were investigated. The first 

case, where the initial grain size was set to be 2.9	049à675 and the second case, the 

average grain size was 4.1	049à675. The effect of initial grain size on the recrystallization 

is illustrated in Figure 37. Out of this figure, the recrystallization kinetics moves faster 

with reducing the grain size. This well agreed with the fact that the specimen with smaller 

grain size has more grain boundary per unit volume and consequently more preferable 

nucleation sites 

Figure 37 Effect of the initial grain size on the recrystallization kinetics. 
Faster recrystallization kinetics is observed for smaller grain size due to the 
higher density of nucleation sites. 
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4.3.3 Gas bubbles effect on HBS kinetics in U-Mo dispersion fuel 

The latest few simulations presented in this work were assigned to study the 

influence of the bubbles on the recrystallization process in U-Mo dispersion fuel. These 

investigations were basically to study the impact of bubbles existence on the HBS 

formation in U-Mo. In that case and according to heterogeneous nucleation theory, the 

nucleation will start first at the bubble surface, followed by the triple-junction, then grain 

boundary, and finally will occur in the bulk, if the fission density rises to higher values. 

The domain size was similar as previously described and the initial grain size (the 

deformed grains) set to be 2.9 microns [8]. Those simulations were executed with different 

bubble configurations. The results of these simulations are summarized in figures 38-39. 

Figure 38 expresses the recrystallization rates at various fission densities for two 

different bubble configurations with the identical area fraction. Figure 39 shows the 

recrystallization rates at various fission densities for two different bubble configurations 

with the same radius and various amounts. As expressed out of the figures, the 

recrystallization kinetics rises with bubble number density increases. The enhancement is 

more noticeable at lower fission densities. This is consistent with the fact that bubbles 

provide extra nucleation places for recrystallization to occur. 
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Figure 38 Effect of gas bubbles on (a) the recrystallization kinetics in 
polycrystalline U-Mo, (b) Average grain size and (c) Number of grains. Two 
different bubble configurations with the same area fraction at different 
dislocation densities were considered. In all cases, gas bubbles increase the 
recrystallization rate. This increase is more pronounced at lower dislocation 
densities. For the same bubble area fraction and dislocation density, 
configurations with the higher number of bubbles recrystallize faster. 
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Figure 39 Effect of bubble number density on (a) recrystallization rate in 
polycrystalline U-Mo (b) average grain size and (c) number of grains. For the 
same bubble radius and dislocation density, a higher number of bubbles leads 
to enhanced recrystallization kinetics. This enhancement is more apparent at 
lower dislocation densities. 
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CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

5.1 Summary 

A quantitative phase field model was introduced for investigating the Irradiation-

induced recrystallization and the high burn-up structure formation and evolution in 

polycrystalline nuclear fuel (UO2 and U-Mo). The model directly simulates the nucleation 

of recrystallization, eliminating the need for making a priori assumptions and 

implementing separate algorithms to model formation of sub-grains. The model accounts 

for the effects of the magnitude and distribution of dislocations on the HBS. In addition, 

the model considers the influence of bubbles on HBS formation and evolution. The kinetic 

evolution equations of the model were solved using a fully coupled and fully implicit 

scheme implemented in the MOOSE framework.  

The simulations showed that the magnitude and distributions of dislocations and 

bubble number density control the overall kinetics of HBS formation. Moreover, these 

factors also determine the resultant microstructure of the HBS, and hence its physical 

properties. The model prediction for the threshold dislocation density related to the HBS 

formation was found to be in good agreement with theory and experiments. For 

polycrystalline UO2 at 1200K, the recrystallized average grain size was found to be on the 

order of 0.4 microns at a dislocation density of ! = 2.50'10*+	012 (or equivalently a 

burn-up of 72 GWd/tHM), which lies within the range of values reported in [11, 14, 32-

33]. The model was able to predict successfully the range of fission density in U-Mo case, 

which lies within the values of 3 = 5.50'102*90: that corresponds to burn-up in the 
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range of ~120 GWd/tHM [8, 13, 24-25, 34]. We expect the agreement to be improved 

when we conduct full 3D simulations.  

5.2 Future Directions 

The model currently can only account for the effect of grain size and temperature 

on the kinetics of the HBS evolution. However, the model currently ignores the effect of 

grain size and temperature on the accumulation of dislocations. Nonetheless, this 

limitation can be alleviated by coupling the current phase-field model to a rate-theory 

model of irradiation damage. This will be the subject of future work. Moreover, in future 

studies, the heat and momentum balance equations will be coupled to the microstructure 

evolution equations to directly investigate the coevolution of microstructure and thermal 

and mechanical properties of HBS. This can be accomplished using MOOSE in a 

straightforward manner [77]. Moreover, the nucleation of gas bubbles, bubble swelling, 

and gas release will be incorporated into the model. Furthermore, full 3D simulations will 

be performed. This will provide a mechanistic mesoscale model capable of predicting 

HBS formation and evolution along with physical properties changes in current and future 

nuclear fuels. Finally, Our Model will be connected to a Machine Learning (ML) 

Algorism, hence it will accelerate the simulating time. The proposed approach will be 

based on implementing a physics-based model that can learn from a ML Algorism. 
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