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ABSTRACT 

 

River meander migration is a product of fluvial activities including erosion and deposition. 

It may cause problems if it is close to vital infrastructure and its migration rate is noticeable for 

design life of infrastructure. Different methods to predict meander migration have been proposed. 

However, most of them do not integrate all general components of meander: geometry, flow, and 

soil.  

The Observation Method for Meander (OMM) is a prediction method which is developed 

by accommodating those components. River geometry is represented by past river movement from 

aerial photos or map observation, river flow is represented by discharge data from United States 

Geological Survey, and soil properties are represented by erosion function parameters obtained 

from erosion tests. This method results critical velocity in the field and soil parameters to create 

calibrated and observed migration versus time plot. For future prediction, the previous OMM used 

deterministic analysis which results in a single precise predicted migration. By including 

probabilistic method, uncertainty that might exist in the prediction is considered. 

Eight meanders in Brazos River near City of Sugar Land were selected for this study. The 

prediction was conducted for next 30 years. Deterministic prediction was carried out by using the 

same method of the previous OMM. Probabilistic prediction was carried out by generating 100 

equally possible future flows from statistical parameters of the past flow. A code was written in a 

single MATLAB code to do calibration, deterministic prediction, and probabilistic prediction. The 

results showed that there was a slight difference between deterministic and probabilistic prediction.     
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1. INTRODUCTION  

 

1.1. Introduction 

River meander migration is a product of fluvial activity involving erosion and deposition. 

It becomes an issue for engineering if the meander is close to vital infrastructure and its migration 

rate is noticeable for design life of infrastructure.  Problems due to river meander migration can be 

bridge pier and abutment scour, levee failures, and loss of floodplain. Therefore, prediction of river 

meander migration is important to minimize the impacts. 

General components in meander migration are soil, geometry, and river. To understand 

meander behavior and to predict migration rate, those three aspects must be taken into account. 

Previous prediction methods have been developed using different approaches. Montalvo-

Bartolomei (2014) developed Observation Method of Meander (OMM) which integrated past 

movement of river, flow history, and soil properties to predict migration based on past meander 

behavior. Although the method can result high accuracy of predicted migration compared to 

observed migration, the problem arises if it is used for predicting future migration because data of 

future flow hydrograph is undiscovered. The main purpose of this study is to solve the problem in 

order to predict future migration more accurately and reasonable.  

1.2. Research Objectives 

The objectives of this research are the following: 

• Improve the previous method (called Observation Method of Meander/OMM) using 

probabilistic prediction for river meander migration. 



 

2 

 

• Apply the previous and the proposed method for river meander migration in Brazos River 

crossing City of Sugar Land for next 30 years to predict whether the future river will be 

likely to reach embankment or not.  

• Compare the prediction from deterministic and probabilistic analysis. 

1.3. General Approach 

Improvement of OMM uses similar input data and procedures with the previous study. 

River selected for this study is Brazos River near City of Sugar Land, Texas and there are eight 

areas of interest (AOI) starting from AOI 3 to AOI 10 (Figure 1). The precise location of bend 

apex of each meander is listed in Table 1. Period of time selected for this study is from 1953 to 

2018 to obtain erosion parameters required for future prediction from 2018 to 2048.  

 

 

 

 
Figure 1. Map of selected sites at Brazos River. Modified from [Google Earth, 2018]. 
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Table 1. Location of bend apex of each meander 

AOI N W 

AOI 3 29o31’47.29” N 95o36’06.24” W 

AOI 4 29o31’33.07” N 95o36’45.98” W 

AOI 5 29o33’33.45” N 95o38’40.04” W 

AOI 6 29o33’58.26” N 95o40’03.28” W 

AOI 7 29o34’33.61” N 95o40’05.60” W 

AOI 8 29o35’00.11” N 95o40’53.87” W 

AOI 9 29o34’14.88” N 95o41’42.37” W 

AOI 10 29o34’13.21” N 95o43’03.23” W 

 

 

 

This research only covers analytical study using existing data obtained from the field, 

laboratory testing, and secondary data. Site investigation and laboratory testing from field samples 

were not conducted by the writer. Secondary data are flow hydrograph of Brazos River from 1953 

to 2018 which is retrieved from USGS website and aerial photos of the river. Analytical study is 

conducted using previous software code and spreadsheet, but it is improved by probabilistic 

approach to predict future migration.  
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2. LITERATURE REVIEW 

 

2.1. Introduction 

Erosion and deposition are main components in river meander migration. Erosion happens 

at the outer bank and deposition happens at the inner bank (Figure 2). These processes is due to 

helicoidal flow from super-elevated water surface against the outer bank (Lagasse et al., 2004). 

Erosion is often a combination of steep cliff undercutting because the highest hydraulic stress is at 

the bottom and sloughing of the overhang into the river. The lowest velocity is at the inner bank 

and it causes deposition of the eroded soil. Water velocity and radius of meander curvature control 

hydraulic shear stress and soil erodibility controls resisting shear stress. (Briaud & Montalvo-

Bartolomei, 2017). Although these processes naturally happen, they can be affected by vegetation 

or human activities.  

 

 

 

 
Figure 2. A. Helicoidal flow at a bend apex; B. model of the flow structure in meandering channels. 

Black lines indicate surface currents and white lines represent near-bed currents. Reprinted from 

[Knighton, 1998 in Lagasse et al., 2004]. 
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Recognition of river geometry is the key in meander study. A channel bend is assumed as 

an arch to reduce complexity of its original shape (Briaud et al., 2007). The parameters of meander 

geometry as illustrated by Figure 3. 

 

 

 

 
Figure 3. Parameters of meander geometry. Reprinted from [Briaud et al., 2007] 

 

 

 

where A is meander amplitude, W is channel width, M is channel migration distance, R is radius 

of curvature, φ is bend angle, θ is relative angle (0≤θ≤φ) within each bend, and t is time.    

2.2. Meander Migration Concepts 

Before river meander migration prediction can be established, its fundamental concepts 

must be recognized. Lagasse et al. (2004) classified meandering streams into stable meander and 

active meander according to migration rate. Stable meander does not have such a noticeable 

migration rate for design life of infrastructure that will trigger little or no risk. Active meander 

happens when a river has sufficient energy to deform its river banks through erosion and 

sedimentation process. Determination of meander stability is a basic screening in migration 

prediction.  
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Brice (1982) distinguished meander lateral stability based on degree of river width after 

comprehensive study from historical documentation and field observation. Highly sinuous and 

equal-width channels are the most stable, equal-width channels with lower sinuosity is slightly 

active, and wider-at-bend channels are the most active. Modified Brice classification (Lagasse et 

al., 2004) helps in screening out channel types which have insignificant lateral migration rate.  

 

 

 

 
Figure 4. Modified Brice classification of meandering channels. Reprinted from [Lagasse et al., 

2004]. 
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Meander bend can be described by four types of movement: extension, translation, 

expansion and contraction, and rotation (Lagasse et al., 2004). Extension is across-valley 

movement and can be measured from its centroid. Translation is down-valley movement and also 

can be measured from its centroid. Expansion is movement by increasing bend radius and 

contraction is movement by decreasing bend radius. Rotation is movement by changing orientation 

of meander bend. However, actual meander bend can migrate in several movements and one part 

of the bend may be deformed faster.  

 

 

 

 
Figure 5. Modes of movement. Reprinted from [Lagasse et al., 2004]. 

 

 

 

2.3. Meander Migration Prediction Methods 

Meander migration has been an issue for hydraulic and geotechnical engineers for many 

years especially meander in a river crossing any infrastructure or residential and commercial area. 

Meander migration prediction is challenging due to various influencing factors and each river may 

have exclusive behaviors. In general, meander migration prediction which has been developed can 

be divided into (Montalvo-Bartolomei, 2014): 

• Time sequences map and extrapolation 

• Empirical methods 

• Analytical methods 
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2.3.1. Time Sequences Map and Extrapolation 

Brice (1982) used aerial photos and maps from two or more different times to measure 

lateral stability of a channel. This method was then reprocessed by Lagasse et al. (2004) in two 

methods: manual and computer-assisted.  

Aerial photos or maps which have been obtained must be on same scale. Then, some 

identifying features which appear in all of the maps or photos, such as highway and specific 

buildings are marked. Riverbank lines are traced and best-fit circles of each outer bank of meander 

are drawn. The radius and centroid of each circle are recorded. Annual rate of river movement can 

be obtained by dividing distance of movement by difference of years as defined by Eq. 1  

∆𝑅𝐶𝐴 = (𝑅𝐶2 − 𝑅𝐶1)/𝑌𝐴     (Eq. 1) 

∆𝑅𝐶𝐵 = (𝑅𝐶3 − 𝑅𝐶2)/𝑌𝐵 

where ΔRCX is rate of change in radius of curvature during period X (in ft/yr or m/yr), RCX is radius 

of curvature in Year X, YX is number of years in Period X.  

This method assumes that the direction and rate of river movement are constant during the 

period (Montalvo-Bartolomei, 2014). For Period C (Year 3 to Year 4), the most recent rate will be 

used instead of long-term average rate to calculate distance of centroid migration (Eq. 2), the 

predicted radius and angle of migration are obtained by extrapolation (Eq. 3 and 4).  

𝐷𝐶 = (
𝐷𝐵

𝑌𝐵
)𝑌𝐶       (Eq. 2) 

𝑅𝐶4 = 𝑅𝐶3 +
𝑅𝐶3−𝑅𝐶2

𝑌𝐵
𝑌𝐶     (Eq. 3) 

𝜃𝐶 = 𝜃𝐵 +
𝜃𝐵−𝜃𝐴

𝑌𝐵
𝑌𝐶      (Eq. 4) 

where DX is distance of centroid migration for Period X (in ft or m), YX is number of years in 

Period X, RC4 is predicted radius of curvature in Year 4 (in ft or m), RC3 is radius of curvature in 
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Year 3 (in ft or m), RC2 is radius of curvature in Year 2 (in ft or m), θC is predicted angle of 

migration for Period C, θA is predicted angle of migration for Period A, and θB is predicted angle 

of migration for Period B. 

 

 

 

 
Figure 6. Best-fit circle from outer bank delineation and the predicted circles . Reprinted from 

[Lagasse el al., 2004]. 

 

 

 

In computer-assisted method, the entire procedures are conducted using GIS-based 

software: Data Logger and Channel Migration Predictor. The result of this method is a database 

containing information such as coordinates of each centroid, radius of each circle, orientation of 

bend centerline, three channel widths (upstream, apex, and downstream) measurement, 

wavelength and amplitude of each bend, and riverbank line files.  

2.3.2. Empirical Methods 

Empirical methods use equations with different variables based on experiment or 

observation to determine migration rate. Most of the equations contain parameter from river 

geometry.  
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 Keady and Priest (1977 in Briaud et al., 2007) developed an equation based on observation 

from rivers in Arkansas, Louisiana, Tennessee, and Alberta, Canada to calculate meander 

migration. 

𝑉

√𝑔𝐴
= 𝜑(𝑠)       (Eq. 5) 

where V is migration rate (in ft/yr), g is acceleration of gravity (in ft/s2), A is meander amplitude 

(ft), s is surface slope, and φ(s) is function of s. Although slope is important, river flow condition 

is also influenced by rainfall which is not involved in the equation and large migration usually 

happens during a flood.  

Hooke (1980) investigated migration rate on rivers in Devon, England and proposed that 

migration rate was related to catchment area.   

Y = 8.67 + 0.114A (r = 0.63)    (Eq. 6) 

Y = 2.45A0.45 (r= 0.73) 

where Y is migration rate (in m/year) and A is catchment area (in km2). Briaud et al. (2007) 

explained that catchment area could represent rainfall and flow rate. However, rivers with the same 

catchment area might have different precipitation level.  

Briaud et al. (2001) summarized and compared their study from some rivers in Texas with 

data used by Brice (1982) which proposed that migration rate is controlled by channel width and 

obtained an equation from regression analysis as follows 

𝑀𝑟 = 0.01𝑏       (Eq. 7) 

where Mr is meander migration rate (in m/yr) and b is channel width (in m). However, rivers with 

wide bend tend to have a higher migration rate than predicted by the equation.  
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Figure 7. Comparison of data used by Brice (1982) and some rivers in Texas. Reprinted from 

[Briaud et al., 2001]. 

 

 

   

 Nanson and Hickin (1983) proposed that migration rate is influenced by radius of 

curvature to channel width ratio (rc/b). Based on their data from 16 bends in Beatton River, the 

highest migration rate is when rc/b is between 2 and 3. Briaud et al. (2001) evaluated this method 

by comparing data from Beatton River to data from some rivers in Texas (Figure 7). At rc/b is 

between 2 and 3, centrifugal force is maximum and forces water to follow the outer bank which 

can produce maximum migration rate. Although the relationship of migration rate and rc/b is 

satisfied, the data are scattered and do not show a clear trendline (Briaud et al., 2007).      
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Figure 8. Comparison of data from Beatton River and some rivers in Texas. Reprinted from 

[Briaud et al., 2001]. 

 

 

   

Odgaard (1987) developed a new equation by correlating erosion rates with channel 

characteristics as follows. 

𝑣̅

𝑢
= 2𝐸

𝑏

𝑟𝑐
(1 +

𝑏

2𝑟𝑐
)
−1

𝐹     (Eq. 8) 

𝐸 =
𝑒

8
(
3𝛼

2

√𝜃

𝑘

𝑚+1

𝑚+2
𝐹𝐷𝑐 − 1), 𝐹 = 1 − exp⁡(−𝐵

𝑟𝑐𝜑

𝑏
(1 −

𝛽

𝜑
)), 𝐵 =

2𝑘2

(𝑚+1)2
𝑏

𝑑𝑐
 

where 𝑣̅ is average erosion rate (in m/yr), u is reach-average mean velocity (in m/s), b is bank-full 

width of channel (in m), rc is radius of curvature (in m), e is erosion constant, α is 1.27, θ is Shield’s 

parameter (equals 0.06), m is friction parameter, k is Karman’s constant (equals 0.4), FDc is particle 

Froude number, φ is bend angle, β is angle from cross over to first bank erosion occurrence, dc is 

center line flow depth.  
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2.3.3. Analytical Methods 

2.3.3.1. TAMU-MEANDER Program 

TAMU-MEANDER is a software developed by Texas Transportation Institute (TTI) in 

2005. The program is available online and free of charge. Detail explanation of the software 

development and guideline can be found in TTI Report 4378-1 which is included with the software. 

The program integrates data from river geometry, soil properties obtained from erosion tests, and 

river flow. For river geometry, the user requires to input coordinate file of the river and river width. 

Critical shear stress, number of points in Erosion Function Apparatus (EFA) tests, shear stress and 

scour rate of each test points, and soil type (sand or clay) are input data for soil properties.  

Hydrologic data can be in discharge or velocity. If using discharge, tables of discharge versus 

velocity and discharge versus water depth are required. If using velocity, table of velocity versus 

depth is required. All these tables are obtained from HEC-RAS simulation. Three analyses used in 

prediction are constant flow, hydrograph which can be retrieved from United States Geological 

Survey (USGS) database, and risk analysis using hydrograph data or a 100-year flood and a 500-

year flood. Results of this method are output plot and output table containing initial coordinates, 

final coordinates, and migration.  

 

 

 

 
Figure 9. Output plot of MEANDER program. Reprinted from [Briaud et al., 2007]. 
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Figure 10. Output table of MEANDER program. Reprinted from [Briaud et al., 2007]. 

 

 

 

2.3.3.2. TAMU OMM 

Texas A&M University – Observation Method for Meander (TAMU OMM) is developed 

by Montalvo-Bartolomei (2014). It is in form of two software programs: MATLAB and Microsoft 

Excel and it requires similar information as MEANDER does; river geometry, soil properties, and 

river flow data. River geometry is obtained from historical maps or aerial photos. Soil properties 

are represented by soil erosion rate obtained from erosion tests. River flow data is obtained from 

USGS database. Further explanation of this method is described in the next chapter. 
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3. OBSERVATION METHOD FOR MEANDER (OMM) 

 

3.1. General Steps 

Procedures to meander migration prediction using OMM are site selection, river 

hydrographs data collection, river movement observation, erosion tests, and calibration. This 

method can be verified by using MATLAB or Microsoft Excel software.    

3.1.1. Site Selection 

A meandering river can be selected for study according to presence of vital infrastructure 

surrounding the river and river stability which can be seen from its shape. Montalvo-Bartolomei 

(2014) studied meander migration at one channel bend from six different rivers in Texas where 

important highways lay above it. While this research studies meander migration at eight different 

channel bends of Brazos River crossing City of Sugarland. The site is close to residential areas and 

crossed by Interstate 69 (Figure 1).    

3.1.2. River Hydrographs Data Collection 

River hydrographs data are collected from USGS stations and these data can be retrieved 

from USGS website. Discharge data provided from USGS can be chosen based on time-series 

(daily or yearly) and statistics (average, minimum, or maximum). For this study, discharge data 

selected is average daily discharge and it needs to be converted to velocity before being used in 

further analysis. The accurate way to obtain velocity is using program to simulate river geometry 

and flow such as HEC-RAS and TAMU-FLOW (Montalvo-Bartolomei, 2014). Generated velocity 

versus time is called hydrograph. 
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Figure 11. Velocity hydrograph of Brazos River from 1953 to 2018. Data retrieved from USGS 

website. 

 

 

 

3.1.3. River Movement Observation 

River movement observation is conducted in a similar way to time sequence map and 

extrapolation method by Lagasse et al. (2004). Delineation is conducted using drawing software 

such as AutoCAD and riverbank line of each year is represented by different color or styles. River 

movement of the period is calculated by drawing a reference line outwards from the bend centroid. 

Direction of the reference line should represent the migration of the meander during the period. 

Ideally, the line is perpendicular to the migration direction. However, as explained by Lagasse et 

al. (2004), a meander can have more than one movement type or rotation movement which makes 

the line drawing more difficult. Figure 12 shows that AOI 6 in Brazos River tends to have rotation 

movement move in two directions thus two references are drawn to find the direction which is 

more critical.  



 

17 

 

 
Figure 12. River movement observation at AOI 6 in Brazos River 

 

 

 

3.1.4. Erosion Tests 

Samples from the field are tested in laboratory to determine soil classification and 

erodibility. Erosion Function Apparatus (EFA) test is one of laboratory tests for erosion which was 

first developed in the early 1990s. Soil sample is put in Shelby tube and the tube is placed under a 

conduit with constant water velocity (Figure 13). The sample is pushed out by piston as it is being 

eroded. For each velocity, erosion rate (ż) is calculated by Eq. 9 and shear stress is calculated using 

Moody’s chart. 

𝑧̇ =
ℎ

𝑡
        (Eq. 9) 

where ż is erosion rate, h is length of sample eroded, and t is time required. 
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Figure 13. Erosion Function Apparatus (EFA); principle (a) and equipment (b). Reprinted from 

[Briaud, 2013]. 

 

 

 

After years of erosion testing experience, erosion categories chart for soils and rocks based 

on velocity and shear stress is proposed. If there is no sample for erosion tests, the soil erodibility 

can be determined by using the chart based on soil classification of the sample (Figure 14). Unit 

of erosion rate in the chart is mm/hr and it is required to be converted to m/s for analysis due to 

consistency in the unit of the data.    

 

 

 

 
Figure 14. Erosion categories for soil and rocks based on velocity. Reprinted from [Briaud, 2013]. 
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EFA test results from field samples in Brazos River shows that soil of the riverbank is in 

category III (medium erodibility) (Figure 15). Soil erosion function is presented by a straight line 

that divided two categories and it is defined by Eq. 10 as follows 

𝑧̇ = 𝛼𝑣𝛽       (Eq. 10) 

where ż is erosion rate, v is velocity, α and β are soil parameters in erosion function. The equation 

is normalized to make both sides of the equation dimensionless and the model in OMM uses critical 

velocity (vc) instead of velocity (Montalvo-Bartolomei, 2014). Critical velocity is defined as the 

velocity corresponding to a very low erosion rate of żc = 0.1 mm/hr or 2.78x10-8 m/s. 

 
𝑧̇

𝑣𝑐
= 𝛼′ (

𝑣

𝑣𝑐
)
𝛽

      (Eq. 11) 

the coefficient of α’ is obtained from  

𝛼′ =
𝑧̇𝑐(0.1)

𝑣𝑐
       (Eq. 12)  

 

 

 

 
Figure 15. EFA test results from field samples in Brazos River  

 



 

20 

 

Critical velocity of soil sample can be calculated using the above equations. However, it 

cannot be directly used to predict erosion rate in the field due to various factors influencing 

differences between small-scale testing and actual river condition. Thus, critical velocity in the 

field must be obtained by calibration step with an assumption that β is same for soil sample and 

soil in the field.   

3.1.5. Calibration 

Critical velocity in the field is obtained by automation process using OMM spreadsheet or 

OMM code. Input data for this calibration step are average daily velocity during the period, β value 

from the previous step, and river movement observation data. During the process, the spreadsheet 

or the code will calculate an estimated magnitude of migration (ΔM) for each day using this 

equation  

∆𝑀 = 𝛼′ (
𝑣

𝑣𝑐𝑓𝑖𝑒𝑙𝑑
)
𝛽

𝑣𝑐𝑓𝑖𝑒𝑙𝑑∆𝑡     (Eq. 13) 

where Δt is increment of time (in seconds). Because it uses average daily data, increment of time 

is 86400 seconds.  

The OMM will compare observed data with estimated data for each critical velocity until 

obtaining the smallest difference which is presented by Ranking Index (RI). The RI is calculated 

by using the following equation 

𝑅𝐼 = |𝜇(𝑎)| + 𝜎(𝑎)      (Eq. 14) 

where μ is average of all values, a is ratio of calibrated migration to observed migration (Mc/Mo), 

and σ is standard deviation of a value.  

Results of this method are migration (both calibrated migration and observed migration) 

versus time plot and critical velocity in the field which can be used for prediction.  
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Figure 16. Calibrated and observed migration versus time plot for AOI 6 Direction 1 

 

 

 

 
Figure 17. Observed migration versus calibrated migration plot for AOI 6 Direction 1 

 

 

 

3.2. Deterministic Analysis 

The procedures explained above is to obtain critical velocity in the field (vc) and soil 

parameters (α’ and β) from past to present river movement. These parameters are then used to 

predict river movement from present to future. In deterministic analysis, future hydrograph is in a 

single value which can be obtained from the past hydrograph with or without consideration of 
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flood.  An example for 30-year future prediction, if it does not consider any flood, discharge values 

for future time period are copied from the last 30 years data. Meanwhile, if it considers flood such 

as 500-year flood, certain discharge of the flood is added in the middle of the future period.  

3.3. Probabilistic Analysis 

In probabilistic analysis, future hydrograph has a large number of possible values which 

each set of values should satisfy statistical distribution. Figure 18 shows that the flow hydrograph 

fits a lognormal distribution. Predicted future hydrograph can be generated using random sampling 

from cumulative density function (CDF) of the original data thus future and past flow hydrograph 

will have identical distribution. 

If possible future hydrograph is generated 100 times, there will be 100 possible migration 

distances of the river. The distribution of these values is then plotted to determine the migration 

distance of each certain probability. The advantage of using probabilistic analysis is uncertainty 

related to each variable in meander migration is considered. However, generating future flow 

hydrograph must reasonably satisfy principles of hydrology and the existing OMM has not 

incorporated probabilistic analysis. Therefore, this study will mainly focus on these two problems.  
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Figure 18. Probability density function (PDF) and cumulative density function (CDF) of original 

and fitted distribution 
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4. FIELD APPLICATION STUDY WITH PROBABILITY ANALYSIS 

 

4.1. Description of Case Histories 

The site for this study is located at Brazos River near City of Sugar Land, Texas and there 

are eight meanders as area of interest (AOI) starting from AOI 3 to AOI 10. Figure 1 shows the 

entire area for this study and Table 1 gives the detail location of each AOI. Period of time selected 

for this study is from 1953 to 2018 to obtain erosion parameters required for future prediction from 

2018 to 2048. Degree of sinuosity of the study area is 1.36. In general, the area has meander 

migration problems and some meanders are close to residential area.  

The nearest river gage station is Brazos River at Richmond, Texas with station ID 

08114000 and it is about 6.3 km (4 miles) upstream of the AOI 10. The discharge data retrieved is 

average daily flow and it needs to be converted into velocity by dividing the flow by the cross-

section area. However, because the cross-section area is not constant depending on the river 

geometry, the accurate way to obtain velocity is using programs such as HEC-RAS and TAMU-

FLOW (Montalvo-Bartolomei, 2014). Hydraulic modelling using HEC-RAS was performed and 

resulted in discharge vs velocity curve and the fitted trendline equation. 

𝑣 = −6 × 10−30𝑄6 + 4 × 10−24𝑄5 − 9 × 10−19𝑄4 + 10−13𝑄3 − 6 × 10−9𝑄2 + 0.0002𝑄 +

0.8021           (Eq. 15) 
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Figure 19. HEC-RAS discharge vs velocity curve for Brazos River 

 

 

 

Linear interpolation can be used to get more precise result. For flow discharge less than 

200 cfs, the velocity is assumed to be constant at 0.61 ft/s.  Figure 20 shows the velocity 

hydrograph from 1953 to 2018 after being converted from flow discharge data.  

 

 

 
Table 2. HEC-RAS interpolation 

Flow  

(1,000 cfs) 
206 164 147 103 68.7 51.5 34.3 25.7 17.2 8.6 4 0.2 

Velocity 

(ft/s) 
6.77 5.91 5.54 4.34 3.47 3.07 2.75 2.6 2.44 2.07 1.66 0.61 
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Figure 20. Velocity hydrograph of Brazos River from 1953 to 2018 after being converted from 

discharge data of USGS Gage 08114000. 

 

 

 

The following figures show the result of river movement observation by using historical 

aerial photos. The number of observation is seven: 1953, 1968, 1995, 2002, 2010, 2014, and late 

2017 or early 2018 (after Hurricane Harvey). Extrapolation of the aerial images and riverbank 

delineation were conducted by using AutoCAD. The directions lines were drawn to represent 

meander migration. Observed migration is measured along the direction lines and then it is used 

for input data of calibration steps. 
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Figure 21. River movement observation at AOI 3 

 

 

 

 
Figure 22. River movement observation at AOI 4 



 

28 

 

 
Figure 23. River movement observation at AOI 5 

 

 

 

 
Figure 24. River movement observation at AOI 6 
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Figure 25. River movement observation at AOI 7 

 

 

 

 
Figure 26. River movement observation at AOI 8 
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Figure 27. River movement observation at AOI 9 

 

 

 

 
Figure 28. River movement observation at AOI 10 
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Seven samples from the field were tested as explained in Section 3.14 to obtain soil 

classification and soil erodibility.  All of soil samples from depth above 50’ are high plasticity 

clays (CH), sample at depth 50’ is low plasticity clay (CL), and the lowest sample is poorly graded 

sand (SP). The result of EFA shows that soil of the riverbank is in category III (medium erodibility) 

for the clay and category II (high erodibility) for the sand (Figure 29). The gray line dividing 

category II and III is considered as the average erosion function for all the samples. The slope of 

the line is β = 5.24. This value is used for all meanders in the study area because the soil 

stratigraphy of the riverbank is assumed to be equal.   

 

 

 

 
Figure 29. EFA test results from field samples in Brazos River 

 

 

 

4.2. Calibration Step 

Calibration step is conducted by using OMM spreadsheet or OMM code. The main result 

of the calibration step is critical velocity in the field (vc) which is the lowest velocity at which the 

erosion starts to occur. Critical velocity value will be different for each meander and it is an 

important variable for meander prediction.  
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The following tables and figures show the results of calibration step for each meander of 

each AOI. The results consist of α’ value, critical velocity in the field (vc), Ranking Index (RI), 

observed migration (Mo), and calibrated migration (Mc). 

4.2.1. Area of Interest (AOI) 3 

 

 

 
Table 3. Calibration data of AOI 3 Direction 1  

α’ 3.9714 x 10-8 

vc 0.7 m/s 

RI 0.3163 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 7.45 5.42 

1995 16.22 15.06 

2002 13.24 17.32 

2010 16.50 20.58 

2014 15.95 21.16 

2018 37.43 24.65 

 

 

 

 

 
Figure 30. Calibrated and observed migration of AOI 3 Direction 1 
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Table 4. Calibration data of AOI 3 Direction 2 

α’ 4.088 x 10-8 

vc 0.68 m/s 

RI 0.6196 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 15.05 6.56 

1995 27.64 18.42 

2002 10.72 21.23 

2010 16.58 25.16 

2014 15.69 25.88 

2018 38.87 30.03 

 

 

 

 
Figure 31. Calibrated and observed migration of AOI 3 Direction 2 

 

 

 
Table 5. Calibration data of AOI 3 Direction 3 

α’ 5.0545 x 10-8 

vc 0.55 m/s 

RI 0.6632 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 80.19 23.48 

1995 81.42 67.83 

2002 67.17 78.38 

2010 68.85 92.36 

2014 59.21 95.09 

2018 87.00 108.76 
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Figure 32. Calibrated and observed migration of AOI 3 Direction 3 

 

 

 

4.2.2. Area of Interest (AOI) 4 

 

 

 
Table 6. Calibration data of AOI 4 Direction 1 

α’ 4.2121 x 10-8 

vc 0.66 m/s 

RI 0.8472 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 30.76 7.96 

1995 35.30 22.59 

2002 29.83 26.10 

2010 26.52 30.85 

2014 14.97 31.74 

2018 15.96 36.70 

 



 

35 

 

 
Figure 33. Calibrated and observed migration of AOI 4 Direction 1 

 

 

 
Table 7. Calibration data of AOI 4 Direction 2 

α’ 4.8772 x 10-8 

vc 0.57 m/s 

RI 0.7014 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 68.01 19.11 

1995 58.35 55.25 

2002 58.64 63.85 

2010 78.73 75.35 

2014 52.82 77.55 

2018 47.29 88.80 
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Figure 34. Calibrated and observed migration of AOI 4 Direction 2 

 

 

 
Table 8. Calibration data of AOI 4 Direction 3 

α’ 5.0545 x 10-8 

vc 0.55 m/s 

RI 0.6268 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 67.13 23.48 

1995 66.92 67.83 

2002 70.48 78.38 

2010 81.48 92.36 

2014 68.20 95.09 

2018 53.73 108.79 
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Figure 35. Calibrated and observed migration of AOI 4 Direction 3 

 

 

 

4.2.3. Area of Interest (AOI) 5 

 

 
 

Table 9. Calibration data of AOI 5 Direction 1 

α’ 5.9149 x 10-8 

vc 0.47 m/s 

RI 0.4804 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 128.99 55.83 

1995 178.37 161.28 

2002 161.03 186.33 

2010 156.63 219.64 

2014 154.40 226.22 

2018 207.00 258.18 
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Figure 36. Calibrated and observed migration of AOI 5 Direction 1 

 

 

 
Table 10. Calibration data of AOI 5 Direction 2 

α’ 6.3182 x 10-8 

vc 0.44 m/s 

RI 0.3863 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 159.79 79.23 

1995 258.27 228.93 

2002 257.64 264.49 

2010 261.07 311.72 

2014 262.97 321.09 

2018 303.49 366.39 
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Figure 37. Calibrated and observed migration of AOI 5 Direction 2 

 

 

 
Table 11. Calibration data of AOI 5 Direction 3 

α’ 6.3182 x 10-8 

vc 0.44 m/s 

RI 0.3377 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 130.04 79.23 

1995 227.32 228.93 

2002 220.59 264.49 

2010 249.58 311.72 

2014 252.10 321.09 

2018 307.58 366.39 
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Figure 38. Calibrated and observed migration of AOI 5 Direction 3 

 

 

 

4.2.4. Area of Interest (AOI) 6 

 

 

 

Table 12. Calibration data of AOI 6 Direction 1 

α’ 5.9149 x 10-8 

vc 0.47 m/s 

RI 0.2535 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 89.71 55.83 

1995 176.16 161.28 

2002 168.48 186.33 

2010 193.21 219.64 

2014 199.64 226.22 

2018 222.70 258.18 
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Figure 39. Calibrated and observed migration of AOI 6 Direction 1 

 

 

 
Table 13. Calibration data of AOI 6 Direction 2 

α’ 6.0435 x 10-8 

vc 0.46 m/s 

RI 0.4903 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 155.86 62.60 

1995 175.89 180.85 

2002 174.27 208.95 

2010 187.69 246.28 

2014 185.81 253.67 

2018 225.12 289.47 

 

  



 

42 

 

 
Figure 40. Calibrated and observed migration of AOI 6 Direction 2 

 

4.2.5. Area of Interest (AOI) 7 

 

 

 
Table 14. Calibration data of AOI 7 Direction 1 

α’ 5.0545 x 10-8 

vc 0.55 m/s 

RI 0.7337 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 75.98 23.48 

1995 107.15 67.83 

2002 59.51 78.33 

2010 63.16 92.36 

2014 49.99 95.09 

2018 65.22 108.79 
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Figure 41. Calibrated and observed migration of AOI 7 Direction 1 

 

 

 
Table 15. Calibration data of AOI 7 Direction 2 

α’ 6.0435 x 10-8 

vc 0.46 m/s 

RI 0.4240 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 124.84 62.60 

1995 185.06 180.85 

2002 175.75 208.95 

2010 198.99 246.28 

2014 188.35 253.66 

2018 214.63 289.47 

 



 

44 

 

 
Figure 42. Calibrated and observed migration of AOI 7 Direction 2 

 

 

 

4.2.6. Area of Interest (AOI) 8 

 

 

 
Table 16. Calibration data of AOI 8 Direction 1 

α’ 5.7917 x 10-8 

vc 0.48 m/s 

RI 0.3106 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 84.33 49.91 

1995 154.08 144.16 

2002 150.96 166.56 

2010 175.79 196.34 

2014 158.22 202.23 

2018 179.11 230.81 
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Figure 43. Calibrated and observed migration of AOI 8 Direction 1 

 

 

 
Table 17. Calibration data of AOI 8 Direction 2 

α’ 5.2453 x 10-8 

vc 0.53 m/s 

RI 0.4445 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 67.98 28.96 

1995 84.17 83.77 

2002 87.76 96.77 

2010 98.96 114.10 

2014 96.09 117.50 

2018 111.52 134.26 
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Figure 44. Calibrated and observed migration of AOI 8 Direction 2 

 

 

 

4.2.7. Area of Interest (AOI) 9 

 

 

 
Table 18. Calibration data of AOI 9 Direction 1 

α’ 6.4651 x 10-8 

vc 0.43 m/s 

RI 0.5852 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 248.33 89.54 

1995 238.13 258.62 

2002 244.50 298.78 

2010 270.59 352.11 

2014 238.75 362.70 

2018 292.14 413.83 

 



 

47 

 

 
Figure 45. Calibrated and observed migration of AOI 9 Direction 1 

 

 

 
Table 19. Calibration data of AOI 9 Direction 2 

α’ 5.9149 x 10-8 

vc 0.47 m/s 

RI 0.4391 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 117.79 55.83 

1995 160.18 161.28 

2002 166.01 186.33 

2010 174.29 219.64 

2014 153.52 226.22 

2018 207.61 258.18 
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Figure 46. Calibrated and observed migration of AOI 9 Direction 2 

 

 

 

4.2.8. Area of Interest (AOI) 10 

 

 

 
Table 20. Calibration data of AOI 10 Direction 1 

α’ 5.2453 x 10-8 

vc 0.53 m/s 

RI 0.6650 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 84.53 28.96 

1995 108.78 83.77 

2002 106.64 96.77 

2010 100.17 114.10 

2014 94.53 117.50 

2018 60.95 134.26 
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Figure 47. Calibrated and observed migration of AOI 10 Direction 1 

 

 

 
Table 21. Calibration data of AOI 10 Direction 2 

α’ 6.3182 x 10-8 

vc 0.44 m/s 

RI 0.4385 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 181.25 79.23 

1995 231.08 228.93 

2002 260.54 264.49 

2010 273.75 311.72 

2014 262.66 321.10 

2018 261.02 366.39 
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Figure 48. Calibrated and observed migration of AOI 10 Direction 2 

 

 

 
Table 22. Calibration data of AOI 10 Direction 3 

α’ 6.0435 x 10-8 

vc 0.46 m/s 

RI 0.4432 

Time (years) Mo (m) Mc (m) 

1953 0.00 0.00 

1968 129.86 62.60 

1995 208.14 180.85 

2002 183.27 208.95 

2010 200.92 246.28 

2014 183.43 253.66 

2018 197.14 289.47 
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Figure 49. Calibrated and observed migration of AOI 10 Direction 3 

 

 

 

4.3. Deterministic Prediction 

Previous OMM for prediction step only used spreadsheet. In this study, OMM code is 

improved for prediction step because there is any limitation using spreadsheet particularly for 

probabilistic prediction. Input data for this step are critical velocity in the field (vc) and soil 

parameters (α’ and β) from calibration steps, and future flow discharge. The difference between 

deterministic and probabilistic prediction comes from future flow discharge data. In deterministic 

prediction, future hydrograph is in a single value which can be obtained from the past hydrograph 

with or without consideration of flood.   

Deterministic prediction for this study is carried out in two analyses. First, by using last 30 

years hydrograph and the second is by using last 30 years hydrograph with a 500-year flood. The 

flood discharge, Q500 = 206,000 cfs is applied for a week (seven days) in the middle of the future 

period (21 to 27 July 2033). The results of the deterministic prediction are shown by the following 

figures and tables. Because the prediction uses the copied flow hydrograph, the future migration 

duplicates the past migration and all the meanders have the same pattern of future migration line. 
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Table 23. Future predicted position and migration distance by deterministic prediction  

Meander Name 

Last 

Position 

(in 2018) 

(m) 

Without Flood With 500-Year Flood 

Predicted 

Position 

(in 2048) 

(m) 

Migration 

Distance 

(m) 

Predicted 

Position 

(in 2048) 

(m) 

Migration 

Distance 

(m) 

AOI 3 Direction 1 37.43 51.20 14.54 56.06 18.63 

AOI 3 Direction 2 38.87 55.53 16.66 61.18 22.31 

AOI 3 Direction 3 87.00 145.20 58.20 162.39 75.39 

AOI 4 Direction 1 15.96 36.13 20.17 42.74 26.78 

AOI 4 Direction 2 47.29 94.98 47.69 109.23 61.94 

AOI 4 Direction 3 53.73 111.93 58.20 129.12 75.39 

AOI 5 Direction 1  207.00 344.32 137.32 383.48 176.48 

AOI 5 Direction 2 303.49 498.25 194.76 553.59 250.10 

AOI 5 Direction 3 307.58 502.34 194.76 557.68 250.10 

AOI 6 Direction 1 222.70 360.02 137.32 399.18 176.48 

AOI 6 Direction 2 225.12 379.04 153.92 422.88 197.76 

AOI 7 Direction 1 65.22 123.42 58.20 140.61 75.39 

AOI 7 Direction 2 214.63 368.56 153.93 412.39 197.76 

AOI 8 Direction 1 179.11 301.92 122.81 337.00 157.89 

AOI 8 Direction 2 111.52 183.20 71.68 204.07 92.55 

AOI 9 Direction 1 292.14 512.08 219.94 574.49 282.35 

AOI 9 Direction 2 207.61 344.92 137.31 348.09 140.48 

AOI 10 Direction 1 60.95 132.62 71.67 153.50 92.55 

AOI 10 Direction 2 261.02 455.79 194.77 511.11 250.09 

AOI 10 Direction 3  197.14 351.07 153.93 394.90 197.76 

 

 

 

 
Figure 50. Deterministic prediction of AOI 3 Direction 1 
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Figure 51. Deterministic prediction of AOI 3 Direction 2 

 

 

 

 
Figure 52. Deterministic prediction of AOI 3 Direction 3 
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Figure 53. Deterministic prediction of AOI 4 Direction 1 

 

 

 
Figure 54. Deterministic prediction of AOI 4 Direction 2 
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Figure 55. Deterministic prediction of AOI 4 Direction 3 

 

 
Figure 56. Deterministic prediction of AOI 5 Direction 1 
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Figure 57. Deterministic prediction of AOI 5 Direction 2 

 

 
Figure 58. Deterministic prediction of AOI 5 Direction 3 
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Figure 59. Deterministic prediction of AOI 6 Direction 1 

 

 
Figure 60. Deterministic prediction of AOI 6 Direction 2 
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Figure 61. Deterministic prediction of AOI 7 Direction 1 

 

 
Figure 62. Deterministic prediction of AOI 7 Direction 2 
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Figure 63. Deterministic prediction of AOI 8 Direction 1 

 

 

 
Figure 64. Deterministic prediction of AOI 8 Direction 2 
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Figure 65. Deterministic prediction of AOI 9 Direction 1 

 

 

 
Figure 66. Deterministic prediction of AOI 9 Direction 2 
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Figure 67. Deterministic prediction of AOI 10 Direction 1 

 

 

 
Figure 68. Deterministic prediction of AOI 10 Direction 2 
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Figure 69. Deterministic prediction of AOI 10 Direction 3 

 

 

 

After the migration distance is obtained from deterministic prediction, the predicted outer 

riverbank line can be drawn to find out whether the river will be likely to migrate beyond levee or 

to move until reaching residential areas by the river. The geometry of the predicted riverbank line 

in 2048 is assumed to follow the geometry of the current riverbank because this prediction does 

not consider any changes in geometry that might happen during the future period.   
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Figure 70. River position of AOI 3 in 2048 based on deterministic prediction 

 

 

 

 
Figure 71. River position of AOI 4 in 2048 based on deterministic prediction 
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Figure 72. River position of AOI 5 in 2048 based on deterministic prediction  

 

 

 

 
Figure 73. River position of AOI 6 in 2048 based on deterministic prediction 
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Figure 74. River position of AOI 7 in 2048 based on deterministic prediction 

 

 

 

 
Figure 75. River position of AOI 8 in 2048 based on deterministic prediction 
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Figure 76. River position of AOI 9 in 2048 based on deterministic prediction 

 

 

 

 
Figure 77. River position of AOI 10 in 2048 based on deterministic prediction 
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4.4. Probabilistic Prediction 

4.4.1. Future Hydrograph 

Probabilistic prediction is conducted by improving the previous code. Input data for 

probabilistic prediction are same with the data for deterministic prediction except the future flow 

discharge. Numerous studies of river flow prediction have been improved by using various 

methods. In this study, it is conducted by extracting the statistical properties of the past flow 

hydrograph. Additional parameters such as rainfall and potential evapotranspiration are not 

considered.  

First, the distribution of past flow discharge is plotted. Figure 78 shows that past flow 

hydrograph fits a lognormal distribution. It is common that data from measurements will have 

lognormal distribution. If Q is lognormally distributed, then Y = ln(Q) is a normal random variable. 

The probability density function (PDF) of Q is 

𝑓(𝑄|𝜇, 𝜎) =
1

𝑄𝜎√2𝜋
𝑒
−
(ln𝑄−𝜇)2

2𝜎2    (Eq. 16) 

where μ and σ are the mean and standard deviation of Y respectively. If m and s are the mean and 

standard deviation of Q, they can be calculated as follows 

𝑚 = 𝑒𝜇+
𝜎2

2       (Eq. 17) 

𝑠 = √(𝑒2𝜇+𝜎
2
)(𝑒𝜎

2
− 1)    (Eq. 18) 

𝜇 = ln (
𝑚2

√𝑚2+𝑠2
)     (Eq. 19) 

𝜎 = √ln (
𝑠

𝑚
)
2

+ 1     (Eq. 20) 
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The lognormal fitting and the calculation of each parameters are executed by the code. Mean and 

standard deviation of the original data from the past hydrograph are symbolized by mQ and sQ 

respectively, while mean and standard deviation of its normal distribution are symbolized by μY 

and σY  respectively. The parameters for the fitted distribution are also calculated and the 

comparison between original and fitted distribution is shown by Table 24. For confidence level of 

99%, the confidence intervals of μY and σY for the fitted distribution are 𝜇𝑌 ∈ (8.078, 8.120)⁡and 

𝜎𝑌 ∈ (1.256, 1.286). 

 

 

 

 
Figure 78. Probability density function (PDF) and cumulative density function (CDF) of original 

and fitted distribution of the past flow hydrograph 

 

 

 
Table 24. Comparison of statistical parameters of original data and fitted lognormal distribution 

Parameters Original Data (cfs) Fitted Distribution (cfs) % Error 

μY 8.3013 8.0992 2.43 

σY 1.1232 1.2704 13.10 

mQ 7571.7 7377.3 2.57 

sQ 12047 14796 22.82 
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The error percentage of the standard deviation sQ  is 22.82% and the original data μY and 

σY are outside of the 99% confidence level of the fitted distribution. It shows that the past flow 

hydrograph does not fit closely to lognormal distribution. Therefore, prediction of future flow 

hydrograph using cumulative density function (CDF) of fitted lognormal distribution will be 

overestimated. Therefore, the better approach to generate future flow discharge for probabilistic 

prediction is by using random sampling from cumulative density function (CDF) of the original 

data.  

 

 

 

Table 25. Comparison of random sampling from lognormal distribution and original data 

Random sampling 
Using CDF of Lognormal 

Distribution (in cfs) 

Using CDF of Original Data 

(in cfs) 

Mean 1 7600.1 7241.5 

Standard deviation 1 19404 13084 

Mean 2 7548.4 7443.8 

Standard deviation 2 14358 14171 

 

 

 

Future flow hydrograph will have identical distribution with past hydrograph regardless 

the number of random sampling and repetition (Figure 79). Both predicted and past hydrograph fit 

to lognormal distribution. The greater number of random sampling, the smoother fitted curve of 

future hydrograph. However, the code will take a longer time to run. For this study, the future 

hydrograph is generated 100 times. 
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Figure 79. CDF of original data and random sample 

 

 

 

 
Figure 80. Past and predicted flow hydrograph  

 

 

 

4.4.2. Future Migration 

After being generated by using CDF of original data, each future hydrograph is applied to 

determine future migration of the meanders. The number of future migrations depends on the 

number of generated future hydrograph. The code will continue to plot histogram and cumulative 



 

71 

 

probability of future migrations of each meander or direction. The distribution relatively fits to 

normal distribution (Figure 81).  

 

 

 

 
Figure 81. PDF and CDF of future migration prediction 

 

 

 

The inverse cumulative distribution function is then calculated to determine the probability 

of exceedance curve and it is obtained by subtracting the CDF from 1 (Figure 82). A point (x, y) 

means that it has y probability to be equal or exceed the future distance x. The exceedance curve 

is used to determine future migration with probability of 50%, 10%, and 1%.        
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Figure 82. Exceedance curve of future migration 

 

 

  

The following table and figures present the future migration of each probability of 

exceedance from all meanders in the study area.  

 

 

 

Table 26. Future predicted position and migration distance by probabilistic prediction  

Meander Name 
Latest Position 

in 2018 (m) 

Exceedance 

Probability 

Predicted Position 

(in 2048) (m) 

Migration 

Distance (m) 

AOI 3 Direction 1 37.43 

0.5 49.05 11.62 

0.1 49.57 12.14 

0.01 50.00 12.57 

AOI 3 Direction 2 38.87 

0.5 53.05 14.18 

0.1 53.62 14.75 

0.01 54.03 15.16 

AOI 3 Direction 3 87.00 

0.5 138.50 51.50 

0.1 140.40 53.40 

0.01 142.00 55.00 

AOI 4 Direction 1 15.96 

0.5 33.30 17.34 

0.1 33.90 17.94 

0.01 34.45 18.49 

AOI 4 Direction 2 47.29 

0.5 89.30 42.01 

0.1 90.94 43.65 

0.01 92.25 44.96 

AOI 4 Direction 3 53.73 

0.5 105.06 51.33 

0.1 106.90 53.17 

0.01 108.40 54.67 

AOI 5 Direction 1 207.00 0.5 328.64 121.64 
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Table 26. Continued 

Meander Name Latest Position 

in 2018 (m) 

Exceedance 

Probability 

Predicted Position 

(in 2048) (m) 

Migration 

Distance (m) 

AOI 5 Direction 1 207.00 
0.1 333.00 126.00 

0.01 336.80 129.80 

AOI 5 Direction 2 303.49 

0.5 476.80 173.31 

0.1 482.00 178.51 

0.01 486.20 182.71 

AOI 5 Direction 3 307.58 

0.5 480.89 173.31 

0.1 487.10 179.52 

0.01 492.30 184.72 

AOI 6 Direction 1 222.70 

0.5 344.42 121.72 

0.1 348.30 125.60 

0.01 351.80 129.10 

AOI 6 Direction 2 225.12 

0.5 361.90 136.78 

0.1 366.40 141.28 

0.01 370.20 145.08 

AOI 7 Direction 1 65.22 

0.5 116.55 51.33 

0.1 118.40 53.18 

0.01 119.90 54.68 

AOI 7 Direction 2 214.63 

0.5 351.23 136.60 

0.1 355.09 140.46 

0.01 359.80 145.17 

AOI 8 Direction 1 179.11 

0.5 287.86 108.75 

0.1 291.90 112.79 

0.01 295.20 116.09 

AOI 8 Direction 2 111.52 

0.5 175.02 63.50 

0.1 177.00 65.48 

0.01 178.80 67.28 

AOI 9 Direction 1 292.14 

0.5 487.46 195.32 

0.1 494.10 201.96 

0.01 499.70 207.56 

AOI 9 Direction 2 207.61 

0.5 329.26 121.65 

0.1 333.70 126.09 

0.01 337.50 129.89 

AOI 10 Direction 1 60.95 

0.5 124.45 63.50 

0.1 126.50 65.55 

0.01 128.10 67.15 

AOI 10 Direction 2 261.02 

0.5 434.33 173.31 

0.1 440.50 179.48 

0.01 445.70 184.68 

AOI 10 Direction 3 197.14 

0.5 335.60 138.46 

0.1 338.00 140.86 

0.01 341.80 144.66 
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Figure 83. Exceedance curve of future migration in AOI 3 

 

 

 

 
Figure 84. Exceedance curve of future migration in AOI 4 
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Figure 84. Continued 

 

 

 

 

 
Figure 85. Exceedance curve of future migration in AOI 5 
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Figure 86. Exceedance curve of future migration in AOI 6 

 

 

 

 
Figure 87. Exceedance curve of future migration in AOI 7 
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Figure 88. Exceedance curve of future migration in AOI 8 

 

 

 

 
Figure 89. Exceedance curve of future migration in AOI 9 
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Figure 90. Exceedance curve of future migration in AOI 10 

 

 

 

 

The following step is similar to deterministic prediction; drawing the predicted outer 

riverbank line to estimate whether the river will be likely to migrate beyond levee or to move until 

reaching residential areas by the river. The geometry of the predicted riverbank line in 2048 is 

assumed to follow the geometry of the current riverbank because this prediction does not consider 

any changes in geometry that might happen during the prediction time.   
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Figure 91. River position of AOI 3 in 2048 based on probabilistic prediction 

 

 

 

 
Figure 92. River position of AOI 4 in 2048 based on probabilistic prediction 
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Figure 93. River position of AOI 5 in 2048 based on probabilistic prediction 

 

 

 

 
Figure 94. River position of AOI 6 in 2048 based on probabilistic prediction 
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Figure 95. River position of AOI 7 in 2048 based on probabilistic prediction 

 

 

 

 
Figure 96. River position of AOI 8 in 2048 based on probabilistic prediction 
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Figure 97. River position of AOI 9 in 2048 based on probabilistic prediction 

 

 

 

 

 
Figure 98. River position of AOI 10 in 2048 based on probabilistic prediction 
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4.5. Comparison of Deterministic Prediction with Probabilistic Prediction 

Section 4.3 and 4.4. present the result of deterministic and probabilistic prediction 

respectively. Beside the number of migration distance resulted, the noticeable difference between 

those two approaches is deterministic prediction gives the higher migration distance than the 

probabilistic does, even the maximum distance from probabilistic prediction is still smaller than 

the result from the deterministic prediction without flood. This problem comes because the 

difference of future flow hydrograph used in prediction.  

In deterministic prediction, the future flow duplicates the last 30 years of past flow, 

including the flow during Hurricane Harvey in August 2017. Mean of the data is 8258 cfs or about 

9% higher than the mean of the original past flow from 1953 to 2018. Meanwhile, in probabilistic 

prediction, the future flow used in migration calculation is the flow which is generated from CDF 

of the original data and has the lower mean than the original data (Table 25).  

4.6. Discussion of Results 

Deterministic and probabilistic prediction using OMM can give reasonable result of future 

migration. However, in the calibration step, the OMM gives relatively high value of calibrated 

migration and does not fit perfectly to the observed migration. Compared to the Ranking Index 

(RI) value in Montalvo-Bartolomei (2014) which is quite low, the calibration step in this study 

results in higher value averaging 0.51. If the value of RI is closer to 0, the prediction result is more 

optimized (Briaud & Montalvo-Bartolomei, 2017). The high value of RI in this study is influenced 

by different migration rate between 1953-1968 period and 1968-2018 period. The OMM does not 

consider this issue and it only calculates erosion parameters that represent the entire period. 
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4.7. Prediction for 65-Year Period 

Deterministic prediction result should be similar to probabilistic prediction with 50% of 

exceedance probability. However, because this study uses different period between past data and 

future prediction, the result of deterministic prediction is higher as explained in Section 4.5. If the 

prediction period is changed to be 65 years, there is a slight difference of result from both 

prediction. The following table and figures show the result of future prediction for next 65 years. 

 

 

 

Table 27. Future predicted position from deterministic and probabilistic prediction for next 65 

years 

Location 
Deterministic 

Prediction (m) 

Probabilistic Prediction (m) 

50% 

Probability 

10% 

Probability 

1%  

Probability 

AOI 3 Direction 1 62.08 61.90 62.75 63.30 

AOI 3 Direction 2 68.90 68.80 69.80 70.26 

AOI 3 Direction 3 195.80 195.20 198.00 200.20 

AOI 4 Direction 1 52.66 52.50 53.49 54.19 

AOI 4 Direction 2 136.09 135.20 137.40 139.70 

AOI 4 Direction 3 162.53 162.00 164.70 167.00 

AOI 5 Direction 1  465.20 463.10 470.00 475.30 

AOI 5 Direction 2 667.00 668.00 677.00 684.00 

AOI 5 Direction 3 674.00 673.10 680.50 687.20 

AOI 6 Direction 1 480.90 478.80 485.70 490.90 

AOI 6 Direction 2 514.62 513.90 520.10 525.10 

AOI 7 Direction 1 174.02 173.00 176.40 178.30 

AOI 7 Direction 2 504.13 501.60 509.60 517.20 

AOI 8 Direction 1 409.93 408.30 413.80 418.90 

AOI 8 Direction 2 245.79 245.40 249.10 251.50 

AOI 9 Direction 1 706.01 703.70 714.30 723.30 

AOI 9 Direction 2 465.81 463.70 470.20 474.50 

AOI 10 Direction 1 195.22 194.90 197.80 199.60 

AOI 10 Direction 2 627.45 624.50 633.60 641.90 

AOI 10 Direction 3 486.63 485.90 492.00 497.10 
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Figure 99. Future position of AOI 3 Direction 1 in 2083 

 

 

 

 

 
Figure 100. Future position of AOI 3 Direction 2 in 2083 
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Figure 101. Future position of AOI 3 Direction 3 in 2083 

 

 

 

 

 
Figure 102. Future position of AOI 4 Direction 1 in 2083 
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Figure 103. Future position of AOI 4 Direction 2 in 2083 

 

 

 

 

 
Figure 104. Future position of AOI 4 Direction 3 in 2083 
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Figure 105. Future position of AOI 5 Direction 1 in 2083 

 

 

 

 

 
Figure 106. Future position of AOI 5 Direction 2 in 2083 
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Figure 107. Future position of AOI 5 Direction 3 in 2083 

 

 

 

 

 
Figure 108. Future position of AOI 6 Direction 1 in 2083 
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Figure 109. Future position of AOI 6 Direction 2 in 2083 

 

 

 

 

 
Figure 110. Future position of OAI 7 Direction 1 in 2083 
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Figure 111. Future position of AOI 7 Direction 2 in 2083 

 

 

 

 

 
Figure 112. Future position of AOI 8 Direction 1 in 2083 
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Figure 113. Future position of AOI 8 Direction 2 in 2083 

 

 

 

 

 
Figure 114. Future position of AOI 9 Direction 1 in 2083 
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Figure 115. Future position of AOI 9 Direction 2 in 2083 

 

 

 

 

 
Figure 116. Future position of AOI 10 Direction 1 in 2083 
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Figure 117. Future position of AOI 10 Direction 2 in 2083 

 

 

 

 

 
Figure 118. Future position of AOI 10 Direction 3 in 2083 
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5. CRITICAL ANALYSIS OF THE OMM 

 

5.1. Optimum Prediction Direction 

In a meandering river with ideal geometry, the optimum direction to measure the meander 

migration is a straight line from the center of curvature radius to bend apex for across-valley 

migration or a straight line from the center of curvature radius and perpendicular to river flow for 

down-valley migration. However, rivers in the nature do not always have an ideal geometry and 

can have multiple migration types in one meander.  This condition is challenging to choose the 

best direction which can represent all of migration types.  

In this study, the selection of prediction direction is primarily based on the migration type 

observed from sequential aerial photos. Meanders in the study area are dominantly by extension 

or across-valley migration type except meander in AOI 9. The first direction is from the center of 

curvature radius to bend apex. It is strongly recommended to take more than one direction for each 

meander. Ideally, two additional direction with certain angle from the first direction line is the 

better option. However, because the meanders are not perfectly symmetrical, the additional 

directions are drawn without specific angle but still represent the meander migration.   

Each direction has different critical velocity (vc) which represents the amount of migration 

at certain part of a meander. By having multiple direction lines, multiple predicted positions of the 

meander will be obtained and the drawing of outer riverbank line can be more reasonable and can 

illustrate its migration type(s). Result of pas river movement observation shows the location of 

meander node, the point which the migration is zero (Edwards & Smith, 2002). Although the OMM 

does not directly consider the migration types, the results both from deterministic and probabilistic 
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prediction show the meander node at the similar location. It presents that the OMM can give 

specific result according to the prediction direction.  

Another issue with prediction direction is the OMM code assumes that the river always 

migrates forward along the time. However, results from observation method using aerial photos 

show that several meanders had retrograding migration(s) during the period. Retrogradation might 

happen because outer bend apex has more sedimentation than erosion. Sedimentation keeps go on 

if the river has low discharge in a long period. Also, the sediment can be more compacted and 

allow vegetation to exist thus the soil needs higher velocity to erode it. Therefore, the outer 

riverbank line will move backwards. 

In the past, the effect of sedimentation rate is represented by river movement. However, 

for future prediction, the OMM assumes that river will move at the same critical velocity in the 

field obtained from past movement.    

5.2. Future Hydrograph 

Although the future flow hydrograph has identical distribution with the past flow 

hydrograph, time dependency is not considered during the generation of future hydrograph in this 

study because this study focuses on the sum migration distance during the period, not daily 

migration. Therefore, the predicted flow in a certain day is not affected by the flow in the previous 

day and it will result in a highly random future flow hydrograph. For example, in January 28, 2030, 

the predicted flow will reach the maximum discharge, it might have the minimum discharge in 

January 29, and then it can come back to the maximum discharge in January 30. In addition, the 

random sampling does not consider the seasonal cycle. The future flow hydrograph might have 

maximum discharge during summer and minimum discharge during winter. Therefore, the future 

hydrograph can be visually irrelevant with the past hydrograph (Figure 80).  
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However, the hydrograph is still credible to be used for prediction because it can give future 

migration with the similar pattern with deterministic prediction. 

 

 

 

 
Figure 119. Future migration from one random sampling of probabilistic prediction 

 

 

 

Using maximum yearly flow can result in more similar pattern of flow hydrograph and 

reduce the randomness of the predicted future flow because of the fewer number of data (Figure 

99). However, as being explained in Section 4.3, the smaller amount of data will result in a rugged 

fitted curve of distribution (Figure 100). Table 27 shows the calculation of statistical parameters 

from original data and fitted distribution of maximum yearly flow by applying the same concept 

of lognormal and normal distribution.  For confidence level of 99%, the confidence intervals of μY 

and σY for the fitted distribution are  𝜇𝑌 ∈ (10.5011, 10.9323)⁡and 𝜎𝑌 ∈ (0.5322, 0.8430). The 

error percentage of the standard deviation sQ  is 46.54% and the original data σY are outside of the 

99% confidence level of the fitted distribution. It shows that maximum yearly flow does not fit to 

lognormal distribution.  
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Table 28. Comparison of random sampling from original data dan fitted distribution of maximum 

yearly flow 

Parameters Original Data (cfs) Fitted Distribution (cfs) % Error 

μY 10.7712 10.7167 0.51 

σY 0.4890 0.6547 33.89 

mQ 53679 55884 4.11 

sQ 27901 40885 46.54 

 

 

 

 
Figure 120. Past and predicted flow hydrograph using maximum yearly flow 

 

 

 

  
Figure 121. Cumulative density function (CDF) of original and fitted distribution of the past flow 

hydrograph using maximum yearly flow 
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In addition, maximum yearly flow cannot be applied for entire year. Kwak (2000) had 

similar problem in scour depth prediction. He obtained a whole hydrograph by transforming 

constant flow with the maximum velocity lasting the equivalent time (teqv). First, the equivalent 

time for each meander is calculated using Eq.13 by substituting time increment (Δt) with the 

equivalent time (teqv) and velocity with maximum velocity (vmax). In this study, the data set used 

for regression analysis is from the direction which has the lowest Ranking Index (RI) value of each 

meander. The calculation of equivalent time and selected parameters for regression analysis is 

shown by Table 27. In regression analysis, the variables used are thydro, teqv, and vmax-vc. Variable 

α' and vc are excluded because the product of α' and vc is zi with the equal value in all data sets. 

 

 

 
Table 29. Equivalent time calculation for regression analysis 

Location 
Time 

period 

ΔMi 

(m) 

α' 

(x10-8) 

thydro 

(years) 

vmax-

vc 

(m/s) 

vmax 

(m/s) 

vc 

(m/s) 
te (s) 

teqv 

(years) 

AOI 3 

Direction 

1 

1953-1968 7.45 4.09 15 0.750 1.45 0.70 5,896,618 0.19 

1953-1995 16.22 4.09 42 0.750 1.45 0.70 12,848,149 0.41 

1953-2002 13.24 4.09 49 0.750 1.45 0.70 10,481,807 0.33 

1953-2010 16.50 4.09 57 0.750 1.45 0.70 13,066,186 0.41 

1953-2014 15.95 4.09 61 0.750 1.45 0.70 12,633,319 0.40 

1953-2018 37.43 4.09 65 0.800 1.50 0.70 24,818,657 0.79 

1968-1995 8.78 4.09 27 0.550 1.25 0.70 15,130,050 0.48 

1968-2002 5.79 4.09 34 0.550 1.25 0.70 9,979,692 0.32 

AOI 4 

Direction 

3 

1953-1968 67.13 5.05 15 0.900 1.45 0.55 15,024,638 0.48 

1953-1995 66.92 5.05 42 0.900 1.45 0.55 14,977,637 0.47 

1953-2002 70.48 5.05 49 0.900 1.45 0.55 15,774,415 0.50 

1953-2010 81.48 5.05 57 0.900 1.45 0.55 18,236,370 0.58 

1953-2014 68.20 5.05 61 0.900 1.45 0.55 15,264,119 0.48 

1953-2018 53.53 5.05 65 0.950 1.50 0.55 10,030,781 0.32 

1968-1995 0.21 5.05 27 0.700 1.25 0.55 102,298 0.00 

1968-2002 3.35 5.05 34 0.700 1.25 0.55 1,631,894 0.05 

AOI 5 

Direction 

3 

1953-1968 7.45 6.32 15 1.010 1.45 0.44 517,584 0.02 

1953-1995 16.22 6.32 42 1.010 1.45 0.44 1,127,766 0.04 

1953-2002 13.24 6.32 49 1.010 1.45 0.44 920,056 0.03 
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Table 29. Continued 

Location 
Time 

period 

ΔMi 

(m) 

α' 

(x10-8) 

thydro 

(years) 

vmax-

vc 

(m/s) 

vmax 

(m/s) 

vc 

(m/s) 
te (s) 

teqv 

(years) 

AOI 5 

Direction 

3 

1953-2010 16.50 6.32 57 1.010 1.45 0.44 1,146,904 0.04 

1953-2014 15.95 6.32 61 1.010 1.45 0.44 1,108,909 0.04 

1953-2018 37.43 6.32 65 1.060 1.50 0.44 2,178,495 0.07 

1968-1995 8.78 6.32 27 0.810 1.25 0.44 1,328,063 0.04 

1968-2002 5.79 6.32 34 0.810 1.25 0.44 875,982 0.03 

AOI 6 

Direction 

1 

1953-1968 89.71 5.91 15 0.980 1.45 0.47 8,811,173 0.28 

1953-1995 176.16 5.91 42 0.980 1.45 0.47 17,301,607 0.55 

1953-2002 168.48 5.91 49 0.980 1.45 0.47 16,547,114 0.52 

1953-2010 193.21 5.91 57 0.980 1.45 0.47 18,975,738 0.60 

1953-2014 199.64 5.91 61 0.980 1.45 0.47 19,607,666 0.62 

1953-2018 222.70 5.91 65 1.030 1.50 0.47 18,312,737 0.58 

1968-1995 86.45 5.91 27 0.780 1.25 0.47 18,479,481 0.59 

AOI 7 

Direction 

2 

1953-1968 124.84 6.04 15 0.990 1.45 0.46 10,954,520 0.35 

1953-1995 185.06 6.04 42 0.990 1.45 0.46 16,238,827 0.51 

1953-2002 175.75 6.04 49 0.990 1.45 0.46 15,422,013 0.49 

1953-2010 198.99 6.04 57 0.990 1.45 0.46 17,461,390 0.55 

1953-2014 188.35 6.04 61 0.990 1.45 0.46 16,527,281 0.52 

1953-2018 214.63 6.04 65 1.040 1.50 0.46 15,767,866 0.50 

1968-1995 60.22 6.04 27 0.790 1.25 0.46 11,501,327 0.36 

1968-2002 50.91 6.04 34 0.790 1.25 0.46 9,723,527 0.31 

AOI 8 

Direction 

1 

1953-1968 84.33 5.79 15 0.970 1.45 0.48 9,249,038 0.29 

1953-1995 154.08 5.79 42 0.970 1.45 0.48 16,897,948 0.54 

1953-2002 150.96 5.79 49 0.970 1.45 0.48 16,555,539 0.52 

1953-2010 175.79 5.79 57 0.970 1.45 0.48 19,278,823 0.61 

1953-2014 158.22 5.79 61 0.970 1.45 0.48 17,352,273 0.55 

1953-2018 179.11 5.79 65 1.020 1.50 0.48 16,446,277 0.52 

1968-1995 69.74 5.79 27 0.770 1.25 0.48 16,647,897 0.53 

1968-2002 66.62 5.79 34 0.770 1.25 0.48 15,902,642 0.50 

AOI 9 

Direction 

2 

1953-1968 117.79 5.91 15 0.980 1.45 0.47 11,568,782 0.37 

1953-1995 160.18 5.91 42 0.980 1.45 0.47 15,731,860 0.50 

1953-2002 166.01 5.91 49 0.980 1.45 0.47 16,304,829 0.52 

1953-2010 174.29 5.91 57 0.980 1.45 0.47 17,118,241 0.54 

1953-2014 153.52 5.91 61 0.980 1.45 0.47 15,078,218 0.48 

1953-2018 207.61 5.91 65 1.030 1.50 0.47 17,071,980 0.54 

1968-1995 42.39 5.91 27 0.780 1.25 0.47 9,060,963 0.29 

1968-2002 48.22 5.91 34 0.780 1.25 0.47 10,308,034 0.33 
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Table 29. Continued 

Location 
Time 

period 

ΔMi 

(m) 

α' 

(x10-8) 

thydro 

(years) 

vmax-

vc 

(m/s) 

vmax 

(m/s) 

vc 

(m/s) 
te (s) 

teqv 

(years) 

AOI 10 

Direction 

2 

1953-1968 181.25 6.32 15 1.010 1.45 0.44 12,599,686 0.40 

1953-1995 231.08 6.32 42 1.010 1.45 0.44 16,063,562 0.51 

1953-2002 260.54 6.32 49 1.010 1.45 0.44 18,111,137 0.57 

1953-2010 273.75 6.32 57 1.010 1.45 0.44 19,029,712 0.60 

1953-2014 262.66 6.32 61 1.010 1.45 0.44 18,258,715 0.58 

1953-2018 261.02 6.32 65 1.060 1.50 0.44 15,191,563 0.48 

1968-1995 49.83 6.32 27 0.810 1.25 0.44 7,539,146 0.24 

1968-2002 79.28 6.32 34 0.810 1.25 0.44 11,995,706 0.38 

 

 

 

The regression analysis results in the following equation 

𝑡𝑒𝑞𝑣(𝑖𝑛⁡𝑦𝑒𝑎𝑟𝑠) = 0.046 × (𝑣𝑚𝑎𝑥 − 𝑣𝑐)
0.34(𝑡ℎ𝑦𝑑𝑟𝑜)

0.51
   (Eq. 21) 

The value of equivalent time substitutes time increment (Δt) during deterministic or probabilistic 

prediction using maximum annual flow. The calculation of equivalent time for one year in each 

meander location is shown by Table 29. By using maximum velocity from past flow of 1.5 m/s, 

the average of equivalent time for this study is 16.7 days. It means that the maximum yearly flow 

over 16.7 days will create the same amount of migration distance from mean daily flow over one 

year. 

 

 

 
Table 30. Equivalent time calculation for prediction 

Location vc (m/s) vmax-vc (m/s) teqv (years) teqv (days) teqv (sec) 

AOI 3 Dir 1 0.70 0.80 0.042639 15.6 1,344,668 

AOI 3 Dir 2 0.68 0.82 0.042999 15.7 1,356,005 

AOI 3 Dir 3 0.55 0.95 0.045205 16.5 1,425,576 

AOI 4 Dir 1 0.66 0.84 0.043352 15.8 1,367,160 

AOI 4 Dir 2 0.57 0.93 0.044879 16.4 1,415,300 

AOI 4 Dir 3 0.55 0.95 0.045205 16.5 1,425,576 

AOI 5 Dir 1 0.47 1.03 0.046465 17.0 1,465,309 

AOI 5 Dir 2 0.44 1.06 0.046920 17.1 1,479,682 
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Table 30. Continued 

Location vc (m/s) vmax-vc (m/s) teqv (years) teqv (days) teqv (sec) 

AOI 5 Dir 3 0.44 1.06 0.046920 17.1 1,479,682 

AOI 6 Dir 1 0.47 1.03 0.046465 17.0 1,465,309 

AOI 6 Dir 2 0.46 1.04 0.046618 17.0 1,470,130 

AOI 7 Dir 1 0.55 0.95 0.045205 16.5 1,425,576 

AOI 7 Dir 2 0.46 1.04 0.046618 17.0 1,470,130 

AOI 8 Dir 1 0.48 1.02 0.046311 16.9 1,460,456 

AOI 8 Dir 2 0.53 0.97 0.045526 16.6 1,435,710 

AOI 9 Dir 1 0.43 1.07 0.047070 17.2 1,484,414 

AOI 9 Dir 2 0.47 1.03 0.046465 17.0 1,465,309 

AOI 10 Dir 1 0.53 0.97 0.045526 16.6 1,435,710 

AOI 10 Dir 2 0.44 1.06 0.046920 17.1 1,479,682 

AOI 10 Dir 3 0.46 1.04 0.046618 17.0 1,470,130 

 

 

 

Prediction using maximum yearly flow is conducted by applying the same methods with 

the prediction except the time increment. By applying 16.7 days ≈ 17 days as the increment time,  

comparison of prediction using maximum yearly flow and mean daily is shown by Figure 101. In 

general, prediction using mean daily flow gives higher value than using maximum yearly flow. 

The biggest difference is from deterministic prediction while the smallest difference is from 

probabilistic prediction with exceedance probability of 1%.     
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Figure 122. Comparison of prediction using mean daily flow and maximum yearly flow 

 

 

 

 

5.3. Probability Density Function (PDF) of Meander Migration 

The purpose of probabilistic prediction is to obtain various migration distance with certain 

probability. However, results from probabilistic prediction show that there is no significance 

difference in migration distance with exceedance probability of 50%, 10%, and 1% and the 

histogram also presents the narrow range from the minimum to maximum future migration. It 

might be because of the future flows are similar to each other which results in small error. It is also 

related to the prediction period. The longer prediction period will give the wider interval because 

the error is increasing.  
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Figure 102 shows the influence of prediction period in AOI 5 Direction 2. The current 

position in 2018 is 303.5 m away from its initial position. The predicted position in 2048 is from 

466 m to 486 m which means that the meander is predicted to migrate 162.5 m to 182.5 m in the 

next 30 years or 5.4 – 6.1 m/year. By increasing the prediction period to 40 years, the future 

migration distance is 216 – 244 m (future position will be 522 – 550 m) or the interval is 28 m. 

Meanwhile, by reducing the  prediction period to 20 years, the future migration distance is 108.5 

– 126.5 m (future position will be 412 – 430 m) or the interval is 18 m. 

If a wider interval of migration distance is necessary, the prediction period can be 

increased. However, prediction period is related to life design of infrastructure and sometimes in 

certain years. Consideration of flood discharge can be applied in probabilistic prediction to get 

more diverse value of future migration distance.  

   

 

 

 
Figure 123. Future migration of AOI 5 Direction 2 probabilistic prediction for 20-year and 40-year 

prediction 
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5.4. Uncertainties Excluded in OMM  

While probabilistic prediction is mainly used to consider any uncertainties of a problem, 

the OMM method only involves uncertainty in future flow hydrograph. For soil parameters, OMM 

assumes that the future soil is constant thus it uses the same critical velocity in the field (vcfield), β, 

and α’. For river geometry, OMM also assumes that the future migration happens in the same way 

as the past migration occurred. Any disturbances which might appear such as vegetation and 

infrastructure are also excluded from OMM method for future prediction.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. Conclusions 

River meander migration is a product of fluvial activities including erosion and deposition. 

It may cause problems if it is close to vital infrastructure and its migration rate is noticeable for 

design life of infrastructure. Various studies have been conducted to analyze meander migration 

prediction by using different methods which can be classified into three categories: time sequences 

map and extrapolation, empirical methods, and analytical methods. However, most of them do not 

integrate all general components of meander: geometry, flow, and soil.  

The Observation Method for Meander (OMM) is a prediction method which is developed 

by accommodating those components. River geometry is represented by past river movement from 

aerial photos or map observation, river flow is represented by discharge data from United States 

Geological Survey, and soil properties are represented by erosion function parameters obtained 

from erosion tests. This method results critical velocity in the field and soil parameters to create 

calibrated and observed migration versus time plot. For future prediction, the previous OMM used 

deterministic analysis by duplicating past flow and results in a single precise predicted migration.  

Eight meanders in Brazos River near City of Sugar Land were selected for this study. The 

prediction was conducted for a 30-year period. Deterministic prediction was carried out by using 

the same method of the previous OMM. Probabilistic prediction was carried out by generating 100 

equally possible future flows from statistical parameters of the past flow and them applying them 

to predict future migration. Each future migration will have certain probability of exceedance. 
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Compared to the previous study, the calibration step in this study results in higher Ranking 

Index (RI) value averaging 0.5 because there might be migration rate changes in the past and this 

issue cannot be considered by the OMM.  

The further analyses result in some issues about the OMM. Although there is no specific 

method to choose the best prediction direction line, drawing more than one lines for each meander 

can give a more reasonable prediction. Future flow prediction without time-dependent analysis 

will result a highly random daily hydrograph. However, it is not a fundamental concern because 

the OMM focuses on the total migration during the prediction period instead of daily migration. 

Maximum yearly flow can be used by applying equivalent time but it requires additional steps to 

analyze. In addition, the prediction period influence the interval between minimum and maximum 

future migration. 

6.2. Recommendations 

This study has improved the previous OMM method by including probabilistic prediction. 

It can provide the simple and quick way to predict meander migration in a single MATLAB code 

which can be modified as needed. The following are recommended concerns for further research 

to improve the result of the OMM. 

1. The current OMM only uses past flow data without considering additional parameters such 

as rainfall and evapotranspiration. It should be improved to provide a better and more 

reasonable solution for future flow prediction. 

2. The Erosion Function Apparatus (EFA) tests should be conducted on soil samples at each 

meander to improve the accuracy in calibration step.  

3. The current OMM only assumes constant erosion and does not consider sedimentation rate in 

the future which can cause any changes in migration rate and retrogradation movement.  
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4. If there is a flood during past flow, it is recommended to use prediction period with the same 

length as past flow to have similar statistical properties between deterministic and 

probabilistic future flow.  
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APPENDIX  

OBSERVATION METHOD FOR MEANDER (OMM) MATLAB CODE 

close all 

clear all 

clc 

  

disp('TAMU OMM for Meander Prediction'); 

disp(' '); 

disp(' '); 

  

%A. Calibration Step% 

%1. Load USGS Database from Excel "USGSdatabase.xlsx" 

Input1 = readtable ('USGSdatabase.xlsx'); 

t = Input1 {:,2}; 

Q = Input1 {:,3}; 

%2. Velocity from flow 

HECQ=[206000 164000 147000 103000 68667 51500 34333 25750 17167 8583 4000 200 

0]'; 

HECV=[6.77 5.91 5.54 4.34 3.47 3.07 2.75 2.6 2.44 2.07 1.66 0.61 0.61]'; 

Velocity=interp1(HECQ, HECV, Q); 

v=Velocity/3.28; 

%3. Input other parameters 

B = input ('Enter the beta component: '); 

zdotc = input ('Enter the erosion rate at critical velocity: '); 

deltat = input ('Enter the increments of time (delta t): '); 

number = input ('Enter the number of observations: '); 

  

disp(' '); 

  

for i=1:number 

    i 

    t0(i,1)=input('Enter the year of observation: '); 

    M0(i,1)=input('Enter the position of the river: '); 

end 

  

tomo=[t0,M0]; 

  

vmin=min(v); 

vmin=round(vmin/.01)*.01; 

vmax=max(v); 

vmax=round(vmax/.01)*.01; 

  

vec=[vmin:.01:vmax]; 

  

lt=length(t); 

Ma=zeros(lt,1); 

M=zeros(lt,1); 

  

for i=1:length(vec) 

a=zdotc/vec(i); 

    for j=1:length(t) 

        if (v(j)/vec(i))>1 
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            M(j)=a*((v(j)/vec(i))^B)*vec(i)*deltat; 

        else 

            M(j)=0; 

        end 

         

        Ma(1)=M(1); 

    end 

     

    for j=2:length(t) 

        Ma(j)=Ma(j-1)+M(j); 

    end 

   

td(1,:)=[t(1),Ma(1)]; 

  

for k=1:(length(t0)-1); 

    td(k+1,:)=[t((t0(k+1)*365-t0(1)*365)+1),Ma((t0(k+1)*365-t0(1)*365)+1)]; 

end 

  

    Mcp=[td(:,2)]; 

    Mco=[tomo(:,2)]; 

     

for kk=1:(length(t0)-1); 

     

    Mcpp(kk,1)=Mcp(kk+1,1); 

    Mcoo(kk,1)=Mco(kk+1,1); 

end 

  

average=abs(mean(log(Mcpp./Mcoo))); 

standard=std(log(Mcpp./Mcoo)); 

  

RI=standard+average; 

results(i,:)=[vec(i),RI,standard,average]; 

  

end 

  

[minnum,minindex]=min(results(:,2)); 

[row, col]=ind2sub(size(results(:,2)), minindex); 

  

Vc=results(row,1); 

RI=results(row,2); 

  

for j=1:length(t) 

a=zdotc/Vc; 

        if (v(j)/Vc)>1 

            M(j)=a*((v(j)/Vc)^B)*Vc*deltat; 

        else 

            M(j)=0; 

        end 

    Ma(1)=M(1); 

end 

  

for j=2:length(t); 

    Ma(j)=Ma(j-1)+M(j); 

end 
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for k=1:(length(t0)-1); 

    td(k+1,:)=[t((t0(k+1)*365-t0(1)*365)+1),Ma((t0(k+1)*365-t0(1)*365)+1)]; 

end 

  

Mcp=[td(:,2)]; 

Mco=[tomo(:,2)]; 

  

for kk=1:(length(t0)-1); 

    Mcpp(kk,1)=Mcp(kk+1,1); 

    Mcoo(kk,1)=Mco(kk+1,1); 

end 

  

%%Figures%% 

  

disp(' '); 

disp('Critical velocity (m/s) is'); 

Vc 

disp(' '); 

disp('Alpha prime is'); 

a 

disp(' '); 

disp('Ranking Index is'); 

RI 

  

figure(1) 

plot(t,Ma,'linewidth',.5); 

grid on; 

  

title({'Calibrated and Observed Migration','AOI Direction 

'},'fontweight','bold'); 

xlabel('t(years)','fontweight','bold'); 

ylabel('M(meters)','fontweight','bold'); 

  

hold on 

scatter(t0,M0); 

  

figure(2) 

x=[0:.01:100]; 

x=x'; 

xx=(x/Vc); 

for i=1:length(x) 

    if xx(i)<1 

        xx(i)=0; 

    else 

        xx(i)=xx(i); 

    end 

end 

  

yy=a.*(xx.^B); 

loglog(xx,yy) 

  

xlabel('V/Vc','fontweight','bold'); 

ylabel('zdotc/Vc','fontweight','bold'); 

title('Dimensionless EFA curve from predicted critical 

velocity','fontweight','bold'); 
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figure(3) 

  

plot (t,v) 

xlabel('Time (days)','fontweight','bold'); 

ylabel('Velocity (m/s)','fontweight','bold'); 

title('Velocity vs Time','fontweight','bold'); 

  

hold on 

plot(t,Vc,'r') 

  

figure(4) 

  

scatter(Mcp,Mco,'k'); 

  

title('Brazos River','fontweight','bold'); 

xlabel('Mc(m)','fontweight','bold'); 

ylabel('Mo(m)','fontweight','bold'); 

grid on; 

  

title('Observed vs Calibrated','fontweight','bold'); 

  

hold on 

  

Mmax=max(Mcpp); 

if max(Mcoo)>Mmax 

    Mmax=max(Mcoo); 

end 

  

Mmax=round(Mmax/10)*10; 

xxx=[0,Mmax]; 

yyy=[0,Mmax]; 

plot(xxx,yyy,'k'); 

  

%B. Deterministic Prediction Steps% 

%1. Input flow from past hydrograph 

DetFutHyd=Input1{12509:23786,3}; 

t1 = datetime(2018,2,15,'Format', 'MM/dd/yyy'); 

t2 = datetime(2048,12,31,'Format', 'MM/dd/yyy'); 

FutureTime=[t1:t2]; 

 

%2. Velocity from flow 

HECQ=[206000 164000 147000 103000 68667 51500 34333 25750 17167 8583 4000 200 

0]'; 

HECV=[6.77 5.91 5.54 4.34 3.47 3.07 2.75 2.6 2.44 2.07 1.66 0.61 0.61]'; 

DetFutVel=interp1(HECQ, HECV, DetFutHyd); 

DetFutVelSI=DetFutVel/3.28; 

 

%3. Input other parameters 

beta=B; 

vcfield=Vc; 

deltatime=deltat; 

alphaprime=zdotc/vcfield; 

Mt=M0(end,:); 
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for i=1: length(FutureTime) 

    year(i)=t(end,:)+i/365 

end 

  

period=year; 

Mdp=zeros(length(FutureTime),1); 

Mdpday=zeros(length(FutureTime),1); 

  

for j=1:length(period) 

    if (DetFutVelSI(j)/vcfield)>1 

        

Mdpday(j)=alphaprime*((DetFutVelSI(j)/vcfield)^beta)*vcfield*deltatime; 

    else 

        Mdpday(j)=0; 

    end 

     

    Mdp(1)=Mt;    

end 

  

for j=2:length(period) 

    Mdp(j)=Mdp(j-1)+Mdpday(j) 

end 

  

%4. Figures 

figure 

plot(FutureTime,Mdp,'linewidth',1.5); 

grid on; 

title ({'Deterministic Prediction 2018-2048','AOI 

Direction'},'fontweight','bold') 

xlabel ('t(years)','fontweight','bold') 

ylabel ('M(meters)','fontweight','bold') 

 

%C. Probabilistic Prediction Steps% 

%1. Distribution of Past Flow 

%%Creating and fitting the probability density function pdf 

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

[CdfF,CdfX] = ecdf(Q,'Function','cdf');  % compute empirical cdf 

BinInfo.rule = 1; 

[~,BinEdge] = internal.stats.histbins(Q,[],[],BinInfo,CdfF,CdfX); 

[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

hLine = bar(BinCenter,BinHeight,'hist'); 

set(hLine,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 

    'LineStyle','-', 'LineWidth',1); 

title('Density of the Past Flow', 'fontweight','bold','fontsize',14); 

xlabel('Discharge (cfs)'); 

ylabel('Density') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 

  

%--- Create grid where function will be computed 

XLim = get(gca,'XLim'); 
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XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

XGrid = linspace(0,XLim(2),100); 

  

%--- Create fit "Lognormal Fit" 

%%%Fit this distribution to get parameter values 

pd1 = fitdist(Q, 'lognormal'); 

YPlot = pdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Lognormal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 

  

%%Creating and fitting the cumulative density function pdf 

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

hLine = stairs(CdfX,CdfF,'Color',[0.333333 0 0.666667],'LineStyle','-', 

'LineWidth',1); 

title('Cummulative Probability of the Past Flow', 

'fontweight','bold','fontsize',14) 

xlabel('Discharge (cfs)'); 

ylabel('Cumulative Probability') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 

  

%--- Create fit "Lognormal Fit" 

YPlot = cdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Lognormal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 
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%---The 99% confidence of mu and sigma for the fitted lognormal distribution 

[parmhat,parmci] = lognfit(Q,0.01); 

[M,V]= lognstat(parmhat(1),parmhat(2)); 

FittedMean=M; 

FittedStd=sqrt(V); 

  

%Computing the actual average and the standard deviation of the flow data 

ActualAvgQ = mean(Q); 

ActualStdQ =std(Q); 

ActualAvgV = mean(Velocity); 

ActualStdV =std(Velocity); 

ActualAvgVSI = ActualAvgV/3.28; 

ActualStdVSI =ActualStdV/3.28; 

%Computing the actual average and standard deviation of Y=lnQ, based on the 

the actual average and the standard deviation of the flow data and using 

lognormal equations  

ActualAvgY = log(ActualAvgQ^2/sqrt(ActualAvgQ^2+ActualStdQ^2)); 

ActualStdY =sqrt(log((ActualStdQ/ActualAvgQ)^2+1)); 

  

%2. Creating Future Flow 

num = length(FutureTime); 

RandFlow = zeros(num,100); %matrix containing 100 vectors of future discharge 

RandUniValue=zeros(num,1); %matrix containing 100 vectors of random uniform 

values 

  

for i=1:100 

    %%Generate random values from uniform distribution 

    RandUniValue= rand(num,1); 

    for j=1:num 

    %%Compare to the eCDF, and draw samples from the eCDF 

    [m,n] = min(abs(RandUniValue(j)-CdfF)); 

    RandFlow(j,i) = CdfX(n); 

    end 

end 

  

%3. Distribution of Future Flow 

%Mean, Std and eCDF of 1 randomly generated sample for validation 

RandSamplemean=mean(RandFlow(:,1)); 

RandSamplestd=std(RandFlow(:,1)); 

  

[CdfF2,CdfX2] = ecdf(RandFlow(:,1)); 

figure 

plot(CdfX,CdfF,'linewidth',2) 

set(gca,'fontsize',12) 

title({'Cummulative Probability','Past Flow and Future Flow'}, 

'fontweight','bold','fontsize',16) 

xlabel('Discharge (cfs)','fontweight','bold','fontsize',16) 

ylabel('Cumulative Probability','fontweight','bold','fontsize',16) 

hold on 

plot(CdfX2,CdfF2,'linewidth',2) 

legend('Original Data', 'Random Sample') 

  

%Future velocity from HEC-RAS Interpolation 

ProbFutVel=interp1(HECQ, HECV, RandFlow); 
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ProbFutVelSI=ProbFutVel/3.28; 

 

%4. Plotting Past and One Random Sampling Future Flow 

%%Creating the total time string array 

TotalTime = strings(35064,1); 

TotalTime(1:23786)=datetime(Input1{:,1},’Format’,’MM/dd/yyy’); 

TotalTime(23787:35064)=datetime(FutureTime, ’Format’,’MM/dd/yyy’); 

TotalTime1=datetime(TotalTime, ’Format’,’MM/dd/yyy’); 

 

%%Creating the total flow array (past flow and 1 sample of the future flow) 

TotalFlow=zeros(35064,1); 

TotalFlow(1:23786)=v; 

TotalFlow(23787:35064):ProbFutVelSI(:,50); 

 

%%Plot the Hydrograph from 1953 to 2048 

figure 

plot(TotalTime1, TotalFlow,’b’); 

set(gca,’fontsize;,12); 

title({'Flow Hydrograph','from 1953 to 

20148'},'fontweight','bold','fontsize',14); 

xlabel('Year’,'fontweight','bold','fontsize',12); 

ylabel('Velocity (m/s)','fontweight','bold','fontsize',12)) 

 

  

%5. Meander Migration Calculation 

%Input other parameters 

beta=B; 

vcfield=Vc; 

deltatime=deltat; 

alphaprime=zdotc/vcfield; 

Mt=M0(end,:); 

  

for i=1: length(FutureTime) 

    year(i)=t(end,:)+i/365 

end 

  

period=year; 

Mpp=zeros(length(FutureTime),1); 

Mppday=zeros(length(FutureTime),1); 

  

for j=1:length(FutureTime) 

    for k=1:100 

    if (ProbFutVelSI(j,k)/vcfield)>1 

        

Mppday(j,k)=alphaprime*((ProbFutVelSI(j,k)/vcfield)^beta)*vcfield*deltatime; 

    else 

        Mppday(j,k)=0; 

    end 

     

    Mpp(1,k)=Mt+Mppday(1,k); 

    end 

end 

  

for j=2:length(FutureTime) 

    for k=1:100 
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    Mpp(j,k)= Mpp((j-1),k)+Mppday(j,k); 

    end 

end 

  

%68. Distribution of Meander Migration 

ProbFutMigration = transpose(Mpp(end,:)); 

ProbFutMigrationMean = mean(ProbFutMigration); 

ProbFutMigrationStd = std(ProbFutMigration); 

  

%%Creating and fitting the probability density function pdf 

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

[CdfF,CdfX] = ecdf(ProbFutMigration,'Function','cdf');  % compute empirical 

cdf 

BinInfo.rule = 1; 

[~,BinEdge] = 

internal.stats.histbins(ProbFutMigration,[],[],BinInfo,CdfF,CdfX); 

[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

hLine = bar(BinCenter,BinHeight,'hist'); 

set(hLine,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 

    'LineStyle','-', 'LineWidth',1); 

title ({'PDF of Future Migration','AOI 

Direction'},'fontweight','bold','fontsize',12) 

xlabel('Future Migration (m)'); 

ylabel('Density') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 

  

%--- Create grid where function will be computed 

XLim = get(gca,'XLim'); 

XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

XGrid = linspace(min(ProbFutMigration),XLim(2),max(ProbFutMigration)); 

  

%--- Create fit "Normal Fit" 

%%%Fit this distribution to get parameter values 

pd1 = fitdist(ProbFutMigration, 'normal'); 

YPlot = pdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Normal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 
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%%Creating and fitting the cumulative density function pdf 

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

hLine = stairs(CdfX,CdfF,'Color',[0.333333 0 0.666667],'LineStyle','-', 

'LineWidth',1); 

title ({'CDF of Future Migration','AOI 

Direction'},'fontweight','bold','fontsize',12) 

xlabel('Future Migration (m)'); 

ylabel('Cumulative Probability') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 

  

%--- Create fit "Lognormal Fit" 

YPlot = cdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Normal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 

  

% Plot Exceedance Curve  

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

[eCdfF,eCdfX] = ecdf(ProbFutMigration,'Function','survivor');  % compute 

empirical cdf 

BinInfo.rule = 1; 

[~,BinEdge] = 

internal.stats.histbins(ProbFutMigration,[],[],BinInfo,eCdfF,eCdfX); 

[BinHeight,BinCenter] = ecdfhist(eCdfF,eCdfX,'edges',BinEdge); 

hLine = bar(BinCenter,BinHeight,'hist'); 

set(hLine,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 

    'LineStyle','-', 'LineWidth',1); 

title ({'PDF of Future Migration','AOI 

Direction'},'fontweight','bold','fontsize',12) 

xlabel('Future Migration (m)'); 

ylabel('Density') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 
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%--- Create grid where function will be computed 

XLim = get(gca,'XLim'); 

XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

XGrid = linspace(min(ProbFutMigration),XLim(2),max(ProbFutMigration)); 

  

%--- Create fit "Normal Fit" 

%%%Fit this distribution to get parameter values 

pd1 = fitdist(ProbFutMigration, 'Normal'); 

YPlot = pdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Normal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 

  

%%Creating and fitting the survivor function pdf 

figure 

hold on; 

LegHandles = []; LegText = {}; 

  

% --- Plot data originally in dataset "Original Data" 

hLine = stairs(eCdfX,eCdfF,'Color',[0.333333 0 0.666667],'LineStyle','-', 

'LineWidth',1); 

title ({'Exceedance Curve of Future Migration','AOI 

Direction'},'fontweight','bold','fontsize',12) 

xlabel('Future Migration (m)'); 

ylabel('Probability of Exceedance') 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Original Data'; 

  

%--- Create fit "Normal Fit" 

YPlot = 1-cdf(pd1,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Normal Fit'; 

  

%--- Adjust figure 

box on; 

grid on; 

hold off; 

  

%--- Create legend from accumulated handles and labels 
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hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 9, 

'Location', 'northeast'); 

set(hLegend,'Interpreter','none'); 
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GUIDELINE FOR OMM CODE 

 

1. Have a spreadsheet file of flow hydrograph containing time and flow discharge column. 

2. Open the code in MATLAB.  

3. Adjust some parts according to the condition and necessity, such as:  

• name of the spreadsheet file (line 11) 

• HEC-RAS interpolation to convert the flow into velocity (line 15 – 16) 

 
• future flow for deterministic prediction (line 14) 

• future time for deterministic prediction and probabilistic (line 195 – 196) 

 
• number of random sampling (line 334) 

 
4. Run the program. 

5. Enter the value of β exponent, erosion rate at critical velocity (żc), increments of time or Δtime 

(86400 if using average daily flow), and total number of observations. 

6. Enter the year of the first observation. 

7. Enter the position of the river at the year (0 for the first year). 

8. Repeat the step 5 and 6 until reaching the total number of observations. 
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9. The program will calculate critical velocity (vc) and α’ with the lowest Ranking Index (RI) 

value.    

 
 

10. The program will continue to run until obtaining the result.  

11. Result:  

• Calibrated and observed migration 

• Dimensionless EFA curve from predicted critical velocity 

• Velocity vs time hydrograph 

• Observed vs calibrated migration 
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• Deterministic prediction 

• Density past flow 

• Cumulative probability of the past flow 

• Cumulative probability of the past and future flow 

• Flow hydrograph of past and future flow 

• PDF of future migration 

• CDF of future migration 

• PDF of exceedance curve 

• Exceedance curve   
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WORKFLOW OF THE OMM CODE 

                    

  

 

 

 

Deterministic Prediction 

Probabilistic Prediction 
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The code will automatically  

repeat x times 
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