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ABSTRACT 

 

 Atmospheric aerosols are a key contributor to pollution, adversely affect human 

health, and can alter global climate. Several questions concerning atmospheric aerosols 

persist, including: ‘Which atmospheric species are integral for aerosol formation in the 

atmosphere?’, ‘What happens to aerosols after emission into or formation in the 

atmosphere?’, ‘Does maternal exposure to aerosols during pregnancy fundamentally 

alter her offspring?’, and ‘Can we utilize gas phase chemistry models to further our 

understanding of atmospheric aerosols?’. A series of chamber, observational, and 

computational studies have been conducted to investigate these scientific questions.  

  Globally, new particle formation (NPF) events account for more than 50% of the 

aerosols in the troposphere, but the chemical species and mechanisms responsible for 

NPF have yet to be fully understood. To explicate the role of organic compounds in 

NPF, laboratory experiments have been conducted to investigate aerosol nucleation and 

growth from the photochemical oxidation of biogenic and anthropogenic volatile organic 

compounds (VOCs). Here we show that the NPF is dependent on the VOC species and 

that the global pattern of NPF is likely governed by the available VOCs. 

 A suite of instruments was deployed in Beijing to measure a comprehensive set of 

aerosol properties in order to elucidate the aerosol formation mechanisms and the 

evolution of aerosol properties. NPF consistently occurred on clean, windy days, and the 

high aerosol mass observed during haze events is attributable to the continuous growth 

from the nucleation-mode particles over multiple days to produce a high concentration 
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of larger particles. Our results reveal that the severe haze in Beijing is likely due to the 

concentrated aerosol precursor gases and the large-scale meteorological conditions. 

Model simulations indicate that the persistent high concentrations of NO2 in Beijing and 

the frequent periods of high aerosol loading leads to elevated HONO levels and 

sustained oxidizing capacity. 

 To determine the mechanism through which aerosols influence human health, a 

series of animal exposure studies have been conducted to investigate the 

transgenerational effects. In each experiment, Sprague-Dawley rats were continuously 

exposed between days 0 and 18 of gestation to controlled conditions to represent either 

clean (~5 µg m-3) or polluted (~150 µg m-3) environments. The gestation length, litter 

size, birth weight, and sex ratio were assessed throughout the animal exposure studies. 

The preliminary results indicate the development of several organs and the birth weight 

may be influenced by prenatal exposure to pollutants and the degree of response may 

also be sex dependent. 
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MM    Master Mechanism 

NAAQS   National Ambient Air Quality Standards 

NCAR   The U.S. National Center For Atmospheric Research 
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NOAA   National Oceanic And Atmospheric Administration  
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OA   Organic Aerosols 

Ox   O3 + NO2, Odd-Oxygen 
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PBL   Planetary Boundary Layer 

PKU    Peking University 

PM    Particulate Matter  
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PM10    Particulate Matter smaller than 10.0 µm in diameter 

PM2.5   Particulate Matter smaller than 2.5 µm in diameter 

POA   Primary Organic Aerosol 

PPB   Parts Per Billion 
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PPT   Parts Per Trillion 

PSL    Polystyrene Latex Spheres 

PSM    Particle Size Magnifier 

PSS    Photostationary State 

PTR-MS   Proton Transfer Reaction – Mass Spectrometer  

SIM    Selected Ion Monitoring  
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SOA   Secondary Organic Aerosol 
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TD–ID–CIMS  Thermal Desorption – Ion Drift – Chemical Ionization Mass 

Spectrometer 

TEOM   Tapered Element Oscillating Microbalance 

TSP    Total Suspended Particles 

TUV   Tropospheric Ultraviolet Visible Model  

Ultrafine Particles  Particulate Matter smaller than 1.0 µm in diameter  

VOC   Volatile Organic Compound 

WHO    The World Health Organization 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Atmospheric aerosols, solid particles or liquid droplets suspended in a gas, have 

a broad range of impacts on the environment, including modulating photochemistry 

[Horvath, 1993; Haywood and Boucher, 2000; Li et al., 2005; Lohmann and Feichter, 

2005], enhancing multiphase chemistry [Li et al., 2005], modifying cloud formation 

[Twomey, 1977; Fan et al., 2007; 2008], altering large scale meteorological systems 

[Albrecht, 1989; Zhang et al., 2007; Levin and Cotton, 2009; Wang et al., 2014a, b], and 

degrading local, regional, and global air quality [Jacobson, 2001; Ramanathan et al., 

2001]. Measurements of atmospheric aerosols largely focus on quantifying the particle 

number, size, and composition because these properties most influence human health, 

climate, and cloud microphysics [Zhang et al., 2015b]. Aerosols vary significantly 

depending on the location of study due to the numerous potential sources, and the overall 

impact of aerosols is dependent on the size, concentration, and chemical composition of 

the particles within an air mass [Jimenez et al., 2009; Zhang et al., 2015b]. Once emitted 

into the atmosphere, aerosols undergo chemical and physical transformations and are 

subjected to regional and long-range.  

Atmospheric pollution is comprised of a complex combination of primary and 

secondary aerosols, also known as particulate matter (PM), and gaseous pollutants, such 

as ozone (O3), NO2, benzene, toluene, ethylbenzene, xylenes, and SO2. Gas phase 

pollutants also have significant impacts on air quality and the health of humans and the 
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ecosystem [WHO, 2005; He et al., 2014]. Aerosols are broadly classified by three 

systems: 1) primary (e.g. directly emitted into the atmosphere) or secondary (e.g. formed 

in situ through gas-to-particle conversion processes); 2) natural (e.g. forest fires, 

volcanoes, and biogenic emissions) or anthropogenic (e.g. vehicle exhaust, industrial 

sources, and biomass burning); and 3) fine (particles with a diameter less than 2.5 

microns) or coarse (particles with a diameter less than 10 microns). Fine aerosols are 

dominantly produced by fossil fuel combustion and gas-to-particle conversion and are 

mainly composed of sulfates, nitrates, ammonium, trace metals, and organic compounds 

[Zhang et al., 2015b]. The atmospheric lifetime of fine aerosols is typically a few days to 

weeks [Seinfeld and Pandis, 2006]; therefore, fine aerosols can be transported over 

several thousand kilometers [Zhang et al., 2015b]. Fine particles are sometime further 

decomposed into ultra fine particles (diameter less than 1.0 micron) due to the notable 

health implication of these small particles. Coarse aerosols are largely attributable to 

road dust, soils, pollen, construction, demolition, industrial fugitive emissions, and tire 

or brake wear. The lifetime of coarse mode particles is on the order of hours to days due 

to gravitational settling, so the dispersion is limited to several hundred kilometers from 

the source region [Seinfeld and Pandis, 2006]. 

Globally, air pollution is increasing in severity and is affecting more people than 

ever before. For the first time in history, more people live in urban centers than in rural 

areas [UN, 2014]. Between 1950 and 2010, the percentage of the population living in 

urban regions increased by over 25%. In the past, the world’s largest urban centers were 

in developed countries, which have stricter environmental regulations; however, today’s 
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fastest growing cities are in found in developing country in Asia and Africa. Presently in 

North America, Latin America, and Europe, 82, 80, and 73% of the populations reside in 

urban areas; however, Asia is home to 53% of the world’s urban population [UN, 2014]. 

China, in particular, is urbanizing at an astounding rate. In only 35 years, the country 

added more than 500 million people to its urban regions, a population rivaling the entire 

North American population. This economic development has resulted in the rapid 

expansion of large urban centers that did not exist 40 years ago. According to the 

Organisation for Economic Co-operation and Development, there are currently 15 

megacities (i.e. cities with more than 10 million inhabitants) and 221 cities with more 

than 1 million residents in China [OECD, 2015]. For comparison there were 83 cities 

with populations exceeding one million globally in 1950. This global urbanization trend 

is expected to continue. By 2030, the world is projected to have 41 megacities, and the 

urban population in China alone is expected to surpass one billion [OECD, 2015]. By 

2050, 70% of the population will be living in urban centers, an additional 2.5 billion 

people [UN, 2014].  

Concurrently, unprecedentedly high aerosol concentrations are being measured in 

these urban areas in developing countries. The particulate matter (PM) concentrations in 

many regions of China, Africa, and India have considerably exceeded the level that is 

considered healthy (10 µg m-3) by The World Health Organization (WHO) [WHO, 2005; 

Boman et al., 2009; Kothai et al., 2011; Guo et al., 2014]. For example, the average 

PM2.5 (particulate matter under 2.5 µm in diameter) in Beijing was 101.85 µg m-3 in 

2013 [U.S. Department of State, 2013] and 103 µg m-3 during 2007–2009 at a site in 
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Delhi [Chelani, 2013]. For reference, the current U.S. Environmental Protection Agency 

(EPA) National Ambient Air Quality Standard (NAAQS) for PM2.5 is 35 µg m–3 for a 24 

hr. period, and the annual average PM2.5 primary standard is 12 µg m–3 (see Table 1). 

Model projections based on a ‘business-as-usual’ emission scenario indicate that 

premature mortality due to air pollution to could double by 2050 [Lelieveld et al., 2015].  

Significant progress has been made towards understanding the chemistry of air 

pollution, but the mechanisms of several important processes remain unclear. Modeling 

of aerosol processes in climate models is presently flawed because of the lack of 

understanding of their formation mechanisms and the complicated physicochemical 

properties of aerosols. Particularly the formation mechanisms leading to urban haze 

episodes remain uncertain and controversial [Zhang et al., 2012; Guo et al., 2014; He et 

al., 2014; Sun et al., 2014], which hinders the development of effective mediation 

policies. Furthermore, different urban centers (e.g. Mexico City, Houston, Los Angeles, 

or Beijing) and pristine environments (e.g. over the ocean, the amazon rain forest, etc.) 

exhibit distinct aerosol formation and growth mechanisms due to the diverse conditions 

[Zhang et al., 2013; Zhang et al., 2015b]. The global variation in the particle number, 

size, and composition of aerosols creates major challenges when evaluating the impacts 

on weather, air quality, and climate at both the regional and global scale; therefore, many 

field, laboratory, and modeling studies have been conducted in an effort to better 

understand the role of aerosols in the atmosphere [Forster et al., 2007; Cheng et al., 

2009; Aiken et al., 2010; Bond et al., 2013; IPCC, 2013; Levy et al., 2013; Guo et al., 

2014; Levy et al., 2014a].  
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i) Climate Effects  

Aerosol research remains an active field because aerosols produce the greatest 

source of uncertainty when projecting global climate change [Forster et al., 2007; 

Zhang, 2010]. This uncertainty arises due to the wide range of effects aerosols can have 

on the atmosphere. Aerosols influence the climate directly through scattering and 

absorption solar radiation [Haywood and Boucher, 2000; Ramanathan et al., 2001; 

Forster et al., 2007] and indirectly by modifying cloud formation [Twomey, 1977; 

Albrecht, 1989; Fan et al., 2007; Fan et al., 2007; 2008]. Aerosols have a net cooling 

effect in the atmosphere since the dominant species, such as mineral dust, sulfates, 

nitrates, and organic carbon, reflect solar radiation; however, some species, such as 

black and brown carbon [Bond and Bergstrom, 2006; Moosmuller et al., 2009; Bond and 

Bergstrom, 2013], absorb solar radiation and are major contributors to global warming 

[Jacobson, 2000, Jacobson, 2001; Bond et al., 2013]. One particular challenge is the 

evaluation of direct radiative forcing when non–absorbing aerosols and light absorbing 

aerosols are co-located within the same air mass [Ramanathan and Carmichael, 2008; 

Ramana et al., 2010]. Laboratory experiments [Khalizov et al., 2009a; Xue et al., 2009a, 

b; Qiu et al., 2012; Khalizov et al., 2013], modeling calculations [Jacobson, 2001], and 

field observations [Knox et al., 2009; Moffet and Prather, 2009] have revealed that, 

when mixed with non–absorbing aerosol constituents, such as sulfate or organic 

aerosols, the absorption by black carbon is enhanced, and the mixture exerts a higher 

positive direct radiative forcing. The combination of these processes may prevent a 

significant portion of solar radiation from reaching the earth’s surface, affecting thermal 
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structure and stability of the atmosphere. Highly concentrated aerosols may result in a 

dimming effect due to the decreased solar radiation reaching the surface as can be seen 

in Figure 1. Ramanathan et al. [2007] compared the aerosol optical depth (AOD) over 

26 mega cities and found that urban centers have distinct contributions to the AOD, 

indicating that they may have different degrees of impact on global and regional climate. 

It was determined that the annual reduction of net solar radiation at the surface in most 

tropical megacities exceeds 20 W m-2, which is equivalent to reducing solar irradiance at 

the top of the atmosphere by more than 10%.  

 

ii) Alteration of Global Weather Patterns 

Once emitted into the atmosphere, pollutants can alter cloud microphysics, weather 

systems, and air quality worldwide, but the extent of these impacts remains largely 

unknown. Some aerosols act efficiently as cloud condensation nuclei (CCN) and ice 

Figure 1. An example of light scattering caused by aerosols resulting in a dimming 
effect. These photographs were taken on the campus of Peking University in Beijing at 
the same time of day. The photo on the left was taken on a clean day, and the photo on 
the right was taken on a polluted day.  
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nuclei, resulting in greater concentrations of smaller cloud particles than would be 

generated naturally [Lohmann and Feichter, 2005]. Some studies have shown that 

increasing the amount of aerosols may reduce precipitation efficiency; thus, increasing 

cloud lifetime and total reflectivity [Lohmann and Feichter, 2005]. Generally, the 

aerosol number concentration is higher in urban areas when compared to cleaner 

regions; therefore, urban clouds contain a greater concentration of smaller particles and 

exhibit longer cloud lifetime, suppressed drizzle, and enhanced deep cloud convection 

[Rosenfeld et al., 2014]. As precipitation efficiency is inhibited, an enhancement of deep 

convection is possible, as clouds retain water longer [Seifert and Beheng, 2006]. In 

addition, the increased aerosol number concentration results in smaller ice particles that 

precipitate more slowly from the anvil region of deep convective clouds. This can create 

larger and longer-lasting cirrus clouds [Rosenfeld et al., 2014]. These alterations of cloud 

properties have significant impacts on the hydrological cycle, producing droughts in 

regions accustomed to heavy precipitation and floods in otherwise naturally arid regions 

[Levin and Cotton, 2009]. For example, a marked increase in the cloud to ground 

lightning has been observed in regions of the highest AOD near the Pearl River Delta 

megacity area confirming the enhancement of the convective systems in the region 

[Wang et al., 2011]. 

Recent studies indicate that Asian air pollution is strengthening storms in the Pacific 

Ocean, causing more precipitation, and enhancing the transport of heat from the tropics 

toward the North Pole [Wang et al., 2014a, b]. Models have indicated that PM produced 

in China can be transported as high as nine km vertically into the atmosphere, where it is 
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introduced into the jet stream and subsequently globally dispersed [Wang et al., 2014a]. 

The Pacific storm track is a major driving force of global weather patterns, especially for 

areas downstream, such as North America, and is also a key component in the transport 

of heat and moisture from low to high latitudes. Notably, Chinese air pollution impacts 

the air quality in the United States [Ewing et al., 2010; Wang et al., 2014a; Lin et al., 

2014]. Measurements on the U.S. West Coast have revealed that nearly a 30% of certain 

pollutants, particularly sulfate and lead, originated in China [Ewing et al., 2010; Lin et 

al., 2014]. 

 

iii) Visibility  

Visibility, the distance we are able to perceive, is determined by the mass and size 

distribution of particles in the atmosphere. When aerosols are sufficiently large, they 

scatter and absorb sunlight efficiently enough to reduce visibility (often resulting in 

haze) and reddened sunrises and sunsets. Field results reveal that 72% of light scattering 

is attributed primarily to aerosols with sizes that range from 260 to 900 nm, 

corresponding to the wavelength band of visible light [Lee et al., 2005]. Sulfate has been 

found to be a dominant aerosol that affects both the light scattering coefficient and 

visibility. When the particles are small (diameter < 0.5 nm) the amounts of light is 

equally scattered in the forward and backward directions, referred to as Rayleigh 

scattering [Seinfeld and Pandis, 2006]. As the particle size increases, solar radiation is 

more efficiently scattered in the forward direction. When the particles are roughly the 

same size as the incoming solar radiation, all wavelengths of visible light are scattered 
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nearly equally, and the haze appears to be white or gray due to Mie scattering, as can be 

seen in Figure 1.  

Recent severe haze events in China have attracted significant public attention due 

to the severely reduced visibility and unprecedentedly high pollutant concentrations 

caused by the rapidly expanding economic and industrial developments. Observations by 

the Chinese Meteorological Association reveal that the visibility has significantly 

decreased over the last 50 years in many locations in China (Figure 2) [Zhang et al., 

2012]. In one extreme example, the city of Harbin in northern China was forced to 

cancel school, temporarily shut down the airport, and suspend bus routes because the 

visibility was less than 50 meters (164 feet) [Associated Press, 2013].  

 

iv) Air Quality Standards 

 The U.S. EPA has established standards for six "criteria" pollutants which are 

considered harmful to public health and the environment: sulfur dioxide, nitrogen 
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and the gross domestic product in China, and B) the visibility in Beijing, Xi’an, Nanjing, 
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dioxide, carbon monoxide, lead, ozone, and PM. The U.S. EPA utilizes two benchmarks 

for determining national standards: ‘primary standards’, which focus on protecting 

public health, and ‘secondary standards’, which protect the public against adverse 

environmental effects [U.S. EPA, 2015]. U.S. law requires primary standards to protect, 

with an adequate margin of safety, the health of the public most at risk from pollutant 

exposure, such as individuals with heart or lung disease, asthmatics, children, the 

elderly, and people of lower socioeconomic status. Secondary standards must protect the 

public welfare from both known and anticipated adverse effects, such as decreased 

visibility from haze and damage to animals, crops, vegetation, and buildings. For 

comparison, Table 2 presents a comparison of the U.S. standards with the ambient air 

quality standards in China, as detailed in GB 3095-2012, and the air quality standards 

that have been suggested by WHO. The Chinese standards were phased-in beginning in 

2012 in the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta regions 

and will be enforced for all cities nationwide in 2016. The Chinese government has 

established two benchmarks for determining national standards: Class 1 standards, which 

apply to special regions such as national parks, and Class 2 standards, which apply to all 

other areas, including residential, commercial, industrial urban, and rural areas. WHO 

has established four air quality benchmarks [WHO, 2006]. The air quality guideline 

(AQG) indicates the lowest concentrations at which cardiopulmonary cancer mortality 

have been shown to increase with more than 95% confidence in response to long-term 

exposure. Interim target-1 (IT-1) indicates the concentrations that have been associated 

with an approximate 15% increases long-term mortality risk relative to the AQG level. 
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Standard U.S. 
Primary 

U.S. 
Secondary China (I) China (II) WHO 

IT-1 
WHO 
AQG 

CO 
1 hour ave. 35 ppm - 10 mg m–3 10 mg m–3 - 30 mg m–3 

CO 
24 hour ave. 

9 ppm 
**** - 4 mg m–3 4 mg m–3 - 10 mg m–3 

**** 
Lead 

annual ave. 0.15 ** 0.15 ** 0.5 0.5 - 0.5 

NO2 
1 hour ave. 100 ppb - 200 200 - 200 

NO2 
annual ave. 53 ppb 53 ppb 40 40 - 40 

NO2 
24 ave. - - 80 80 - - 

O3 
1 hour ave. - - 160 200 - 200 

O3 
8 hour ave. 75 ppb 75 ppb 100 160 160 100 

PM10 
annual ave. - - 40 70 70 20 

PM10 
24 hour ave. 150 150 50 150 150 50 

PM2.5 
annual ave. 12 15 15 35 35 10 

PM2.5 
24 hour ave. 35 35 35 75 75 25 

SO2 
1 hour ave. 75 ppb 500 ppb 

*** 150 500 - 500 * 

SO2 
annual ave. 

- - 20 60 - 50 

SO2 
24 hour ave. 

- - 50 150 125 20 

TSP 
24 hour ave. 

- - 120 300 - - 

TSP 
annual ave. 

- - 80 200 - - 

       

       

       

*10 minute ave. ** 3 month rolling ave. *** 3 hour max **** 8 hour ave. 
Table 1. Air pollution standards established by the United States, China, and The World 
Health Organization. The concentrations have been listed in µg m–3 unless otherwise 
indicated. 
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Interim target-2 (IT-2) indicates the concentrations that reduce the risk of premature 

mortality by approximately 6% relative to the IT-1 level. Interim target-3 (IT-3) 

indicates the concentrations that reduce the mortality risk by approximately 6% relative 

to the IT-2 level. While publishing the actual concentration is the most precise way of 

quantitatively describing air pollution, this method isn’t the most ideal for public 

awareness and multiple pollutant comparisons. Therefore, pollution monitors often 

display real-time data in terms of the air quality index (AQI). The AQI qualitatively 

 describes air pollution as ‘good’, ‘moderate’, ‘unhealthy for sensitive groups’, 

‘unhealthy’, ‘very unhealthy’, and ‘hazardous’, which is easily comprehensible to the 

general public. The AQI indicates the health effects of continuous exposure over a 24 

hour period. A ranking of ‘good’ (i.e. AQI 0 – 50) indicates that the air quality is 

considered satisfactory and poses little or no risk to the public. A ranking of ‘moderate’ 

(i.e. AQI 51 – 100) indicates that the air quality is acceptable; however, some pollutants 

may pose a moderate health concern for certain extremely sensitive individuals. A 

ranking of ‘unhealthy for sensitive groups’ (i.e. AQI 101 – 150) indicates that the air 

quality may affect certain people (i.e. individuals with lung disease, older adults, and 

children), although the public is not likely to be affected overall. A ranking of 

‘unhealthy’ (i.e. AQI 151 – 200) indicates that all individuals may begin to experience 

adverse health effects due to the poor air quality. A ranking of ‘very unhealthy’ (i.e. AQI 

201 – 300) indicates that the entire populous may experience serious health effects. A 

ranking of ‘hazardous’ (i.e. AQI greater than 300) indicates that the air quality triggers 

an emergency health warning, and the entire population is likely to be affected. Both the 
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U.S. and China use AQI systems that rank the air quality from 0 – 500, however, 

confusion can arise due to the countries employing different thresholds for each level 

(see Table 2). Overall, the U.S. standards are stricter at lower concentrations, but 

compare similarly at higher concentrations. For comparison, the AQI values used by the 

European Union have also been displayed.  

AQI 
United States China Europe    

Name 24 hour ave. 
(µg m–3) Name 24 hour ave. 

(µg m–3) Name 24 hour ave. 
(µg m–3) 

0 - 50 Good < 12 Excellent < 35 Very Low < 10 

51 - 100 Moderate 12.1 – 35.4 Good 35 – 75 Low 10 – 20 

101-150 
Unhealthy 

for Sensitive 
Groups 

35.5 – 55.4 Light 75 – 115 Medium 20 – 30 

151 - 200 Unhealthy 55.5 – 150.4 Moderate 115 – 150 High 30 – 60 

201 - 300 Very 
Unhealthy 150.5 – 250.4 Heavy 150 – 250 Very High > 60 

> 300 Hazardous > 250.5 Serious > 250   
 Table 2. Comparison of the air quality index for PM2.5 in the United States, China, and 
Europe. 
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CHAPTER II 

WHICH ATMOSPHERIC SPECIES ARE INTEGRAL FOR AEROSOL FORMATION 

IN THE ATMOSPHERE? INVESTIGATION INTO THE ROLE OF ORGANICS IN 

ATMOSPHERIC NEW PARTICLE FORMATION 

i) Introduction 

 New particle formation (NPF) events have been observed for many years and 

account for the production of more than 50% of the global CCN concentration 

[Merikanto et al., 2009], but the chemical species and mechanisms responsible for NPF 

have yet to be fully understood or reproduced in atmospheric models. While sulfuric 

acid has been identified as essential for atmospheric nucleation to occur because sulfate 

represents an important component of the nucleation mode aerosol, a variety of other 

species have also been associated with aerosol nucleation, including ammonia, amines, 

organic acids, ion clusters, cosmic rays, and pre-existing background aerosols [deReus et 

al., 1998; Kavouras et al., 1998; Korhonen et al., 1999; Kulmala et al., 2000; Yu and 

Turco, 2001; Zhang et al., 2004; Kurtén et al. 2008; Zhang et al., 2009; Sipilä et al., 

2010; Wang et al., 2010; Kirkby et al., 2011; Yu et al., 2012; Zhang et al., 2012; Kirkby 

et al., 2011; Kulmala et al., 2014; Riccobono et al., 2014]. However, the nucleation 

binary theory (water and sulfuric acid) does not explain atmospheric NPF at all the 

observed locations, and it is clear the presence of sulfuric acid, organic amines, or 

ammonia is not enough to induce nucleation as all three compounds have been measured 

at locations where NPF is rarely observed such as Atlanta, Georgia, the Amazon Basin, 

and Tijuana, Mexico [Zhou et al., 2002; Woo et al., 2010; Levy et al., 2014a]. Solving 
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this “nucleation puzzle” is necessary to assess the role that NPF has in the tropospheric 

loading of atmospheric aerosols and its impact on climate, cloud formation, and 

regulatory implications [Andreae, 2013]. Atmospheric measurements of NPF reveal 

distinct spatial patterns in the global continental troposphere: NPF occurs on a regular 

basis near boreal forests [Boy et al., 2004; Kulmala et al., 2004], sporadically in many 

urban centers [Dunn et al., 2004; Stanier et al., 2004; Levy et al., 2013], but rarely in 

other locations, including the Amazon Basin [Zhou et al., 2002], the 1999 Atlanta 

supersite [Woo et al., 2001], the 2009 Study of Houston Radical precursors (SHARP) 

field campaign [Levy et al., 2013], Tijuana, Mexico during the 2010 California – Mexico 

(Cal-Mex) field study [Levy et al., 2014a], and during the southeastern U.S. during the 

2013 Southern Oxidant and Aerosol Study (SOAS) field campaign [Uin et al., 2013]. 

These environments exhibit distinct species of anthropogenic and biogenic VOCs, i.e. 

higher concentrations of pinenes in boreal forests, elevated aromatic hydrocarbons 

combined with biogenic VOCs in urban regions, higher concentrations of isoprene in the 

Amazon Basin, and anthropogenically dominated VOCs at the U.S.-Mexico border. The 

photochemical oxidation of VOCs emitted from the biosphere, as well as, anthropogenic 

activities lead to the formation of non-volatile products, some of which may contribute 

to aerosol nucleation and growth [Ehn et al., 2007]. Biogenic sources dominate VOC 

emissions globally (~ 1150 Tg yr-1) when compared to anthropogenic sources (~ 142 Tg 

yr-1), representing a major source of secondary organic aerosols (SOA) (up to 90% or 

more by mass) in the troposphere [Goldstein and Galbally, 2007; Merikanto et al., 2009; 

Sipilä et al., 2010; Hallar et al., 2011; Shen et al., 2011; Pöhlker et al., 2012; Jung et al., 
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2013]. O’Dowd et al. [2002] determined that the clusters produced during NPF events in 

the boreal forests in Finland were most likely composed of organic compounds such as 

pinic acid or cis-pinonic acid and that the nucleation mode particles could not be 

inorganic in composition. 

 The formation of thermodynamically stable clusters from low vapor pressure 

atmospheric gas phase species is known as homogeneous nucleation. The process 

leading to new particles is frequently divided into two-steps: the formation of 

thermodynamically stable clusters and the subsequent growth of these clusters. 

Formation of molecular clusters in the atmosphere occurs through random collisions and 

rearrangements of atoms or molecules of the gas phase species. In order for nucleation to 

occur, clusters must overcome the ‘nucleation barrier’. Newly formed clusters are 

exothermic; therefore, they are thermodynamically favorable according to the first law 

of thermodynamics. However, the clusters are unfavorable according to the second law 

of thermodynamics [Zhang et al., 2011]. Hence, a free energy barrier must be overcome 

before the transformation to a cluster becomes spontaneous. In the atmosphere, several 

species are often needed for nucleation to occur, since the equilibrium vapor pressures of 

mixed systems are typically lower than pure systems, and homomolecular nucleation 

requires an extremely high supersaturation [Zhang et al., 2011]. Given that pristine high 

supersaturation, supercooled environments are not common in the atmosphere, 

heterogeneous nucleation, i.e. nucleation that occurs on pre-existing small particles or 

ions which assist in overcoming the free energy barrier, is the dominant mechanism in 

the environment. Another major restriction on the nucleation and growth of atmospheric 
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nanoparticles is that the elevated equilibrium vapor pressures above small clusters, 

resulting from the increased surface curvature at these sizes, inhibits the growth of 

freshly nucleated nanoparticles, known as the Kelvin or curvature effect. The freshly 

nucleated nanoparticles must also compete with capture and removal processes by 

coagulation with other pre-existing aerosols. Several prominent homogeneous nucleation 

theories have been suggested to explain the first step in nucleation: 1) binary nucleation 

of sulfuric acid and water, 2) ternary nucleation of sulfuric acid, water, and ammonia, 3) 

and ion-induced nucleation, and it is probable that the distinctive mechanisms dominate 

in different locations [Korhonen et al., 1999; Kulmala et al., 2004; Kurtén et al., 2008]. 

Once a cluster has reached the size of the ‘critical cluster’, the size for which the 

probabilities of particle growth and decay are equal, the droplet will persist and most 

likely grow by condensation of gas phase molecules. Clusters with diameters smaller 

than the critical size are more likely to undergo evaporation than condensation, so they 

frequently dissociate into the separate gas molecules again [Zhang et al., 2011]. After 

reaching a critical size, further growth of the cluster becomes spontaneous. Other 

condensable species, such as supersaturated organic compounds with higher nucleation 

barriers due to a large Kelvin effect, are thought to be largely responsible for the growth 

of freshly nucleated particles. The nucleation rate (J) is the number of clusters that grow 

beyond the critical size per second. 

  NPF events are typically identified by the signature ‘banana curve’ as shown in 

Figure 3A. NPF events are typically comprised of three phases: 1) rapid increase in the 

particle number concentration of small particles (< 30 nm), 2) ongoing particle growth 
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due to the condensation of gas phase species, typically in the size range 30 – 100 nm but 

the resultant particle size is dependent on the environment, and 3) the gradual decrease 

of the particle number concentration due to coagulation and dilution. Some NPF events 

are called ‘apples’ because they solely exhibit the first phase; therefore, they are 

observed as highly concentrated, short-lived pulses of small particles. NPF events do not 

contribute significantly to the mass concentration initially (Figure 3B); however, as the 

particles grow, the mass increases, which can result in a rapid increase in the PM2.5 mass 

concentration. 

Figure 3. A) The iconic ‘banana curve’ that indicates new particle formation. B) The 
subsequent changes in the total number (black dots) and mass concentration (red dots) 
during and after new particle formation. 

A 

B 
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 Many NPF laboratory studies have been conducted to try to elucidate what 

species regulate NPF events. Experiments have frequently been conducted with flow 

reactors [e.g., Berndt and Böge, 1997; Ball et al., 1999; Bonn and Moortgat, 2002; Wang 

et al., 2009; Berndt et al., 2010; Sipilä et al., 2010; Wang et al., 2010] and aerosol 

chambers [e.g., Forstner et al., 1997; Hallquist et al., 1999; Iinuma et al., 2004; 

Riccobono et al., 2014] to try to isolate aerosol nucleation and growth. In particular, the 

nucleation potential of H2SO4 and α-pinene have been extensively studied [e.g., Marti et 

al., 1997; Hoffman et al., 1998; Ball et al., 1999; Bonn and Moortgat, 2002; Iinuma et 

al., 2004; Wang et al., 2009]. Many nucleation chamber studies introduce to other 

atmospherically relevant species, such as seed aerosols [e.g., Stern et al., 1987; Odum et 

al., 1996; Forstner et al., 1997; Iinuma et al., 2004; Kroll et al., 2006;], nitrogen oxides 

(NOX, NOX = NO + NO2) [e.g., Aschmann et al., 1998; Stern et al., 1987; Wildt et al., 

2013], or sulfur dioxide (SO2) / sulfuric acid [e.g., Kim et al., 1998; Berndt et al., 2010; 

Sipilä et al., 2010; Riccobono et al., 2014], to observed the modified NPF efficiency. 

Several species have been used to initiate the nucleation process, including ozone [e.g., 

Bonn and Moortgat, 2002; Iinuma et al., 2004;], hydrogen peroxide [e.g., Hildebrandt et 

al., 2009], NO3 [e.g., Berndt and Böge, 1997; Hoffman et al., 1998; Bonn and Moortgat, 

2002], and CH3ONO [e.g., Aschmann et al., 1998; Bonn and Moortgat, 2002]. Bonn and 

Moortgat [2002] compared the efficiency of NPF from the oxidation of α- and β-pinene 

when ozone, OH, and NO3 were used as the oxidant. The results indicated a considerably 

higher nucleation potential of the ozonolysis mechanism than either OH or NO3. Also of 

the three oxidants, only the ozonolysis reaction was effected by water vapor 
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concentration. Ball et al. [1999] conducted experiments using the binary H2SO4-H2O 

vapor system and reported that a critical cluster typically consisted of 7–8 molecules of 

H2SO4 and 5 molecules of H2O. Sipilä et al. [2010] reported that particles with diameters 

near 1.5 nanometers were observed immediately after their formation at atmospherically 

relevant sulfuric acid concentrations and correlations between measured nucleation rates 

and sulfuric acid concentrations suggest that freshly formed particles are composed of 

one to two sulfuric acid molecules. However, Zhang [2010] proposed that one or two 

sulfuric acid molecules (a monomer or dimer) are not large enough overcome the 

nucleation barrier, as a hydrated sulfuric acid dimer has a diameter of 0.7 nm, and the 

presence of organic acids may be required to form a critical nucleus. Riccobono et al. 

[2014] showed that sulfuric acid and oxidized organic species at atmospheric 

concentrations reproduce particle nucleation rates observed in the lower atmosphere. The 

experiments revealed the newly formed critical clusters contained both sulfuric acid and 

oxidized organic molecules. Jokinen et al. [2015] reported that extremely low volatile 

organic compounds promote aerosol particle formation. They showed that under 

atmospherically relevant concentrations, species with an endocyclic double bond 

efficiently produce extremely low volatile organic compounds, and that the ozonolysis 

of monoterpenes produced a higher particle concentration than the OH radical-initiated 

reactions. Also, isoprene-derived products were found to suppress atmospheric new 

particle formation, but they supported particle growth. Kiendler-Scharr et al. [2009] 

presented evidence from experiments conducted in a Jülich Plant Aerosol Chamber that 

revealed that isoprene significantly inhibits new particle formation due to the high 
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reactivity of isoprene with OH. Amines and carboxylic acids have also been recognized 

as important precursor species in atmospheric new particle formation [Hoffman et al., 

1998; Ball et al., 1999; Yu et al., 2012]. The initial concentration of the reacted species 

has also been found to alter the aerosol production in several of these chamber studies 

[Hallquist et al., 1999; Bonn and Moortgat, 2002]. 

 

ii) Methodology 

 To assess the role of organic compounds in NPF, we performed laboratory 

studies of the homogenous nucleation from the photochemical oxidation of biogenic (α-

pinene and isoprene) and anthropogenic (m-xylene and toluene) VOCs, which are 

described in Table 3 [Toby et al., 1985; Seinfeld and Pandis, 2006]. All experiments 

VOC Molar Mass 
KOH  

(cm3 molecule-1 s-1) 
KO3  

(cm3 molecule-1 s-1) Structure 

α-Pinene  
(C10H16) 

136.24 g mol-1 5.37 x 10-11 8.66 x 10-17 

 

Isoprene 
(C5H8) 

68.12 g mol-1 1.01 x 10-10 1.28 x 10-17 

m-Xylene 
(C8H10) 

106.16 g mol-1 2.31 x 10-11 8.48 x 10-22 

Toluene 
(C7H8) 

92.14 g mol-1 5.63 x 10-12 3.90 x 10-22 

 
Table 3. Properties of the four VOCs utilized in the new particle formation experiments.  
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were performed in a 1.2 m3 collapsible environmental chamber (Teflon® PFA) equipped 

with a row of nine black light lamps on two sides of the chamber (F30T8/350BL, 

Sylvania) and reflective aluminum sheets on all sides. The experiments were conducted 

with a comprehensive suite of instruments to detect the trace gases and nano-sized 

aerosols, including a compact proton transfer reaction – mass spectrometer (PTR-MS, 

Ionicon Analytik), an ultrafine condensation particle counter (CPC, model 3025A, TSI, 

Inc.), a nano differential mobility analyzer (NDMA, model 3081, TSI, Inc), a particle 

size magnifier (PSM), and a thermal desorption – ion drift – chemical ionization mass 

spectrometer (TD–ID–CIMS, Figure 4). The time-resolved particle size distributions, 

concentrations, and chemical compositions for 1.5 to 50 nm particles were obtained with 

this combination of instruments.  

At the beginning of each experiment, the chamber was filled with ~750 liters of  

purified air. During experiments, the relative humidity and temperature in the chamber 

were approximately 8% and 302-304 K, respectively. Hydrogen peroxide was utilized in 

the experiments as an OH radical precursor (H2O2 + hν → 2OH, k300 = 5.26 x 10-42 cm3 

Collapsible Chamber  
With Black Light Lamps 

Purified 
Air 

H2O2 

VOC 

PTR-MS 

Bipolar 
Charger 

DMA 

CPC 

PSM 

TD-ID-CIMS 

VOC 

Figure 4. Schematic of instruments operated in new particle formation experiments. 
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molecule-1 s-1) [Sellevåg et al., 2009]. Many NPF experimental studies utilize O3 as the 

oxidizing agent; however, OH is the dominant oxidant for isoprene, m-xylene, and 

toluene and is comparable for α-pinene (0.21 versus 0.11 days, assuming 106 molecules 

cm-3 and 50 ppb, for its reaction with OH and O3, respectively) [Hoffmann et al., 1998; 

Bonn and Moorgat, 2002]. The hydrogen peroxide aqueous solution (35 weight %, 200 

µL) was injected into a glass reservoir and then flushed into the chamber with purified 

air. The VOCs were then injected into the glass reservoir and carried into the chamber 

by purified air. A filter with a Teflon liner and glass wool was placed between the glass 

reservoir and chamber to prevent any particulate matter from entering the chamber via 

the reservoir. After both injections, a fan was turned on for thirty seconds to thoroughly 

mix the gaseous species in the chamber. At this point, the inflow and outflow air valves 

were closed, and the nucleation occurred in a static system. Once the desired reactant 

concentration was established the black light lamps were turned on to initiate H2O2 

photolysis. The lights reamined on thorughout the entire experiment. After the 

concentration reached a steady state, collection by the TD-ID-CIMS was initated, which 

typically occurred for 2-6 hours depending on the initial concentration and species. 

 Throughout the experiment, the concentration of the VOC was then monitored by 

a PTR-MS as can be seen Figure 5A. PTR-MS is a very sensitive technique for real-time 

simultaneous monitoring of trace VOCs with a fast response time of less than 100 ms. 

PTR-MS instruments are known for their low detection limits down to parts per trillion 

(ppt) because it does not dilute low concentrated samples with a carrier gas and there is 

minimal precursor ions loss between the ion source and the drift tube. Also, the 
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hydronium, H3O+, ions do not react with any of the major components present in clean 

air (i.e. nitrogen, oxygen, carbon dioxide, carbon monoxide, methane, and ozone) due to 

their low proton affinity, so this method is ideal for trace gases. Furthermore, proton ion 

transfer from H3O+ is a soft ionization method, which lessens fragmentation. The system 

was operated in multiple-ion mode, which simultaneously measures H3O+ (m/z 19), 

isoprene (m/z 69), toluene (m/z 93), m-xylene (m/z 107), and α-pinene (m/z 137). The 

TD-ID-CIMS has been proven to detect chemical species in the sub nanogram mass 

range and with a diameter less than 2 nm.  

The size distribution and number concentration were determined using the DMA, 

PSM, and CPC. The DMA operated in a recirculating flow configuration, with a sheath  

Figure 5. The A) concentration of isoprene (red) and α-pinene (blue) measured by the 
PTR-MS and B) size distributions of particles with a diameter between 1.5 and 40 nm. 
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flow of 6.50 liters per minute (LPM) and a sample flow of 1 LPM. The relatively low 

sheath-to-sample flow ratio results in a better detection of small particle concentrations 

and a shorter residence time. A detailed description of the operating systems has been 

published previously [Khalizov et al., 2009a, Pagels et al., 2009; Xue et al., 2009a, b]. 

The system was typically operated in one of two modes: scanning mobility particle 

sizing (i.e. DMA-PSM-CPC) and without size selections (PSM-CPC). The first mode 

obtains the size-resolved particle concentration as shown in Figure 6A, and the second 

mode calculates the total particle concentration as shown in Figure 6B. The PSM was 

used to enhance the detection of the number concentration of the nanoparticles since 

traditional CPCs fail to detect particle smaller than 3 nm [Xu et al., 2014]. This is 

necessary since critical nuclei in the atmospheric nucleation are roughly 1.5 nm in size.  

Figure 6. An example of the two methodologies utilized for collecting new particle 
formation data: the condensation particle counter, which determine the total 
concentration (shown in green dots) and scanning mobility particle sizing, which 
determines the particle size distribution (hours 2-9). The decrease in concentration 
between hours 2 and 6 is due to particles being collected by the TD-ID-CIMS to 
determine the chemical composition. 
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The chemical composition was determined by utilizing a TD–ID–CIMS equipped 

with a triple quadrupole mass analyzer. The nucleated particles generated in the chamber 

were charged using a unipolar 210Po charger and electrostatically deposited on a charged  

platinum precipitator. The collected particle mass was subsequently thermally desorbed 

at 300  °C and analyzed. The reagent ions H3O+ and CO3
−/CO4

− were employed for 

positive mode and negative mode analysis, respectively. The collection varied between 

two and four hours depending on the concentration of particles in the chamber.  

  Between each experiment, the chamber was cleaned overnight for at least 12 

hours with a steady stream of purified air (Aadco 737-11, Aadco Inc.) and irradiated by 

black light lamps to remove any residual chemicals. Before each experiment, the 

chamber had a particle number concentration less than 0.01 cm−3 and the total 

hydrocarbons were less than 1 part per billion (ppb). Blank and background experiments 
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have been performed under conditions, such as VOC injection without black lights, no 

VOC injection with black lights, and neither VOC or black lights. No significant change 

in particle size or mass was observed during these experiments as can be seen in Figure 

7A. Figure 7B shows the absence of VOCs in the chamber before an experiment. 

  

iii) Results and Discussion 

 Figure 8 exhibits the concentrations of nucleation mode particles formed in the  

Figure 8. The concentration of particles formed from the photochemical oxidation of A) 
α-pinene with an initial concentration of 5 (red), 10 (black), 20 (blue), 50 (green), and 
100 ppb (pink); B) m-xylene with an initial concentration of 20 (red), 50 (black), 100 
(blue), and 200 ppb (green); and C) toluene with an initial concentration of 100 (red), 
200 (black), and 400 ppb (blue) as a function of time. D) The new particle formation 
rates (J, s-1 cm-3) for α-pinene (blue circles), m-xylene (black triangles), and toluene (red 
squares) at various initial concentrations 
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chamber as a function of time after the photochemical oxidation was initiated for A) α-

pinene, B) m-xylene, and C) toluene, and the D) corresponding formation rates. The 

photochemical oxidation of α-pinene produced the highest concentration of new 

particles, followed by m-xylene, and then toluene (also shown in Figure 9). Isoprene did 

not produce NPF even at unrealistically high concentrations (500 ppb), which is in 

agreement with several previous studies [Kiendler-Scharr et al., 2009; Kanawade et al., 

2011]. The formation rates of α-pinene with initial concentrations of 5, 10, and 20 ppb 

were less than 5 s-1 cm-3, but the formation rate was significantly enhanced at 50 ppb (~ 

25 s-1 cm-3) and 100 ppb (~ 51 s-1 cm-3). The formation rates of m-xylene and toluene 

ranged between 0.01 and 0.65 s-1 cm-3. Increasing the initial concentrations resulted in a 

higher concentration of nucleated particles and a faster equilibrium time. The 

equilibrium time indicates the amount of time lapse before the concentration reaches a 
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Figure 9. A comparison of the number concentration (cm-3) produced from the 
photochemical oxidation of α-pinene (red), m-xylene (black), and toluene (blue) at 
various initial concentrations. 
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steady state. For example in Figure 6B, the equilibrium time would be ~30 minutes. In  

the α-pinene experiment with an initial concentration of 100 ppb, the resultant particle 

concentration stabilized 15 minutes after light exposure near 2.3 x 104 molecules cm-3; 

whereas, the 5 ppb experiment required 75 minutes to stabilize near 50 molecules cm-3. 

Comparing the 100 ppb experiments for each VOC, the elapsed time before the 

concentration stabilized was significantly longer for m-xylene (120 minutes) and toluene 

(210 minutes) than α-pinene (15 minutes). In the toluene experiments, NPF only 

occurred after a certain threshold concentration was exceeded, which is substantially 

higher than the concentration observed in the ambient atmosphere.   

Figure 10 shows the Selected Ion Monitoring (SIM) of the monomers (Figure 

10A-C) and dimers (Figure 10D-F) produced by the oxidation α-pinene, m-xylene, and 

toluene determined by the TD-ID-CIMS. Figure 10A reveals the presence of several 

organic compounds generated after the oxidation of α-pinene. The mass-to-charge ratios 

(m/z) at 169, 171, 173, 185, 187, and 201 have been assigned to pinonaldehyde, pinalic 

acid, norpinic acid, pinonic acid, pinic acid, and hydroxypinonic acid, respectively 

[Hoffman et al., 1998]. This is consistent with previous results that indicated that the 

oxidation of α-pinene might proceed through several reaction channels leading to a 

variety of different chemical structures including monocarboxylic and dicarboxylic acids 

[Hoffman et al., 1998; Boy et al., 2004]. Pinonaldehyde has a higher volatility and is not 

thought to be a significant promoter of particle nucleation, but has been observed in the 

particle phase during nucleation events [Kavouras et al., 1999; Boy et al., 2004]. 

Moreover, mass region corresponding to the dimerized products of the oxidation of      
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α-pinene (Figure 10D) revealed the presence of both homomolecular and 

Figure 10. A-C) The protonated monomers of the oxidation products of α-pinene, m-
xylene, and toluene shown in the mass-to-charge ratio (m/z) determined by TD-ID-
CIMS analysis of the particle composition in positive ion mode. D-F) The protonated 
dimers of the corresponding oxidation products.  
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heteromolecular dimers of the various organic acids, especially diprotic acids (i.e. pinic 

and norpinic acid).  

 Figure 10B shows the chemical composition of particles formed in the chamber 

from the oxidation of m-xylene in the nucleation chamber. As indicated in the mass  

spectrum, the photooxidation of m-xylene produces m-tolualdehyde, 2,6-xylenol 

isophthalaldehyde, m-toluic acid, 3-formylbenzoic acid, and isophthalic acid, which 

have all been previously observed as products from the oxidation of m-xylene in field 

observation [Forstner et al., 1997; Zhao et al., 2005a]. However, the mass spectrum of 

the dimerized products (Figure 10E) revealed few acidic dimers, limited to the dimers of 

m-toluic acid and 3-formylbenzoic acid. This observation suggests that as the presence  

of nonacidic monomers increases, the efficiency of particle formation decreases, as there 

are fewer low volatility acidic species able to contribute to the critical nuclei.  

Figure 10C exhibits the chemical analysis of particles formed from the oxidation of 

toluene in the nucleation chamber. The monomer mass spectrum revealed the presence 

of methylglyoxal, benzaldehyde, and benzoic acid, and the ion peak at m/z = 141 may be 

the epoxy dicarbonyl [Yu and Jeffries, 1997; Hamilton et al., 2005; Wu et al., 2014]. 

Figure 10F demonstrates that only two of the detected dimerized products were acidic in 

nature: the homomolecular dimer of benzoic acid and the heteromolecular dimer of 

benzaldehyde and benzoic acid at m/z = 229. Although benzaldehyde does not have a 

carboxylic group to hydrogen bond with benzoic acid, the presence of this m/z peak at 

229 may correspond to the adduct of benzoic acid with benzaldehyde.  
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An investigation into the presence of sulfate species in the chamber and the 

possible clustering of VOC oxidation species with sulfate species was conducted with 

the TD–ID–CIMS. The mass spectrum did not identify any significant peaks that could 

be attributed to VOC-sulfate clusters. Also considering the relative concentrations of any 

potential sulfate contaminants and VOCs in the chamber, we have determined that 

sulfate did not play a role in the nucleation events observed in these experiments.  

 We also investigated the modification of the NPF efficiency in the presence of   

multiple VOCs, which is a better representation of an urban atmosphere. Figure 11A-C 

displays the particle concentration produces by the photooxidation of α-pinene (20 ppb), 

m-xylene (200 ppb), and toluene (400 ppb) combined with increasing concentrations of 

isoprene. In all the experiments, the mixtures generated a lower concentration of 

particles than the pure sample, and increasing the concentration of isoprene further 

suppressed nucleation. The overall concentration of 20 ppb α-pinene, 200 ppb m-xylene, 

and 400 ppb toluene was reduced by 62, 68, and 78%, respectively, when an equal 

concentration of isoprene (i.e. 20, 200, and 400 ppb, respectively) was added to the 

chamber. Adding isoprene also reduced the rate of formation of particles in the α-pinene 

and m-xylene experiments. For example, adding 20 and 100 ppb of isoprene to 20 ppb of 

α-pinene increased the experimental time by about 30 and 90 minutes, respectively. The 

suppression of NPF by isoprene has also been observed in field and plant chamber 

studies [Kiendler-Scharr et al., 2009; Kanawade et al., 2011]. m-Xylene and toluene 

also substantially reduced the concentration of newly formed particles of α-pinene, by 90 

and 70%, respectively (Figure 11D). The combination of m-xylene and toluene also  
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Figure 11. The concentration of particles (cm-3) formed from the photochemical 
oxidation of A) 20 ppb of α-pinene mixed with increasing concentration of isoprene, B) 
200 ppb of m-xylene mixed with increasing concentration of isoprene, C) 400 ppb of 
toluene mixed with increasing concentration of isoprene, D) 50 ppb of α-pinene mixed 
with 50 ppb of m-xylene and toluene, and E) 200 ppb of m-xylene, 400 ppb of toluene, 
and their mixture. F) Comparison new particle formation rates (J, s-1 cm-3) from the 
photooxidation of α-pinene (blue circles), m-xylene (black triangles), and toluene (red 
squares) with increasing isoprene concentrations. 
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resulted in a diminished particle concentration, but this reduction was inconsequential 

(Figure 11E). The resultant particle concentration is likely reduced due to the combined 

limitations of the different nucleation rate and chemical kinetics between the species 

(Table 3). For example, m-xylene reduced the particle production of α-pinene more  

effectively than toluene. The reaction rate of m-xylene (2.31 x 10-11 cm3 molecule-1 s-1) is 

significantly faster than toluene (5.63 x 10-12 cm3 molecule-1 s-1); therfore, m-xylene is 

depleting the OH concentration a higher rate compared to toluene (also see Figure 5). 

Subsequently, less oxidizing agent is available in the chamber to react with α-pinene, 

which corresponds with our previous findings that a lower initial concentration produces 

fewer particles. Furthermore, the particle production of m-xylene is less efficient than α-

pinene so the resultant particle concentration of a mixture is correspondingly lower. 

 In Figure 12A, a particle size distribution from each VOC is exhibited. The 

particles produced in the chamber were less than 10 nm in diameter, with a peak particle 

size near 1.7 nm. This diameter is consistent with previous works that estimated the 

critical cluster diameter to be between 1 and 2 nm [Zhang et al., 2004; Zhang et al., 

2009; Zhang, 2010]. The oxidation of α-pinene produced the greatest concentration of 

nanoparticles followed by m-xylene and toluene. In Figure 12B, the particle size 

distribution as a function of time for 50 ppb of α-pinene is shown. Even after several  

 hours of observations, the particles did not exhibit growth. In the ambient atmosphere, 

particles typically originate near this size and exhibit growth, although a number of 

locations have exhibited no particle growth after nucleation [Cheung et al., 2011; Betha 

et al., 2013; Young et al., 2013; García et al., 2014]. There are several possible reasons 
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that may explain the absence of particle growth in our system. Many nucleation chamber 

studies introduce seed aerosols, other gaseous precursors, such as NOx, SO2, or live 

plants into the chamber, but our system is a pristine environment with no preexisting 

particles or gases [Stern et al., 1987; Odum et al., 1996; Forstner et al., 1997; Bonn and 

Moorgat, 2002; Kroll et al., 2006; Sipilä et al., 2010; Wildt et al., 2013]. Our system is 

100 ppb 

Figure 12. A) The particle size distributions of the new particle formation from α-
pinene (black), m-xylene (green), toluene (blue), and isoprene (red) with an initial 
concentration of 100 ppb, and B) the initial (black) and succeeding particle size 
distribution measured hourly for seven hours (red, orange, yellow, green, blue, indigo, 
and violet) of α-pinene with an initial concentration of 50 ppb. 
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static with virtually no moving air after the initial injection of the VOC, which differs 

from the ambient atmosphere or chamber experiments with flow tubes or constant 

injection. García et al. [2014] reported that NPF events that exhibited little or no particle 

growth occurred during reduced wind speeds and low SO2 concentrations. Cheung et al. 

[2011] reported that these nucleation bursts (i.e. NPF without growth or ‘apples’) 

occurred when winds blew from industrial point sources, but then due to convective and 

turbulent winds, the freshly nucleated particles were transported away from the source 

and dispersed in the ambient air before they could agglomerate and grow.  

 The oxidation products from by the photooxidation of the various VOCS also 

govern the growth of nucleation-mode particles. We have demonstrated that not all 

species produce enough organic acids to effectively generate a NPF event; therefore, it is 

likely that growth potential is also regulated by the structure and properties of the 

products. A previous publication demonstrated that the Kelvin effect represents a major 

limitation for the spontaneous growth of nanoparticles, particularly for freshly formed 

nucleation-mode particles [Wang et al., 2009; Zhang et al., 2011]. Since the Kelvin 

barrier is sufficiently elevated, condensation on nanometer-sized particles is unlikely 

even for organics with low volatility [Wang et al., 2009].  
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CHAPTER III  

WHAT HAPPENS TO AEROSOLS AFTER EMISSION INTO OR FORMATION IN 

THE ATMOSPHERE? FIELD MEASUREMENTS IN BEIJING OF PARTICULATE 

MATTER PROPERTIES* 

i) Introduction 

Three decades of rapid industrialization have made China an economic 

powerhouse and a geopolitical force to be reckoned with. As the gross domestic product 

continues to grow, the number of vehicles in China, specifically in Beijing, has 

dramatically increased due to increased affluence. Beijing alone has added nearly 4 

million of its 5 million vehicles since 2000 (Figure 2) [Ministry of Environmental 

Protection of China, 2014]. However, this economic development has resulted in a 

deterioration of the quality of air, water, land, and health of the population and 

ecosystems [WHO et al., 2006; Wang et al., 2008; Yang et al., 2013]. As the population 

continues to migrate to large cities, the demand for transportation and energy has 

increased correspondingly. Therefore, emissions of NOx, which are produced by 

vehicles, and SO2, which is produced by coal combustion in industrial sources and 

power plants, have dramatically increased since the 1990s. NOX and SO2 negatively 

influence the ecosystem in many ways, including the formation of acid rain, ozone, and 

particulate matter and increase respiratory diseases [Peel et al., 2012]. Recent severe 

                                                

*Portions of this section have been reproduced with permission of the National Academy of Sciences from 
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., ... & Zhang, R. (2014). Elucidating severe 
urban haze formation in China. Proceedings of the National Academy of Sciences, 111(49), 17373-17378. 
Copyright 2014 National Academy of Sciences, USA.. 
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haze events in China have attracted significant public attention due to the unprecedented 

pollutant concentration, severely reduced visibility, and severe health effects [Chang et 

al., 2009; Zhang et al., 2012; Sun et al., 2013; Zhang et al., 2013; Huang et al., 2014]. 

The annual mean PM2.5 concentration at the U.S. Embassy in Beijing in 2013 was 

101.85 µg m−3 [U.S. Department of State, 2013]. This concentration considerably 

exceeds the WHO’s suggested PM2.5 concentration level of 10 µg m−3 at which 

cardiopulmonary and lung cancer mortality have been shown to noticeably increase. It 

has been projected that the 500 million residents living in northern China have lost a 

total of 2.5 billion years of life expectancy, which is about a 5.5 year reduction per 

person, due to an increased incidence of cardiorespiratory mortality. Furthermore, the 

average cancer risk from exposure to inhalable PM toxic metals on haze days is one 

order of magnitude higher than in developed cities [Lin et al., 2015]. It has also been 

calculated that hazardous levels of air pollution in China have resulted in the premature 

death of up 1.2 million citizens annually [Yang et al., 2013] or an estimated 4,000 

mortalities per day [Rohde and Muller, 2015].  

These events have attracted attention from the Chinese government and the 

scientific community who have endeavored to understand the mechanisms that produce 

these high concentrations of particulate matter and that allow the haze conditions to 

persist for several days. As a result, the Chinese government has committed nearly 300 

billion U.S.D to address these air quality concerns. In September of 2013, the Chinese 

Central Government announced that the air quality in China will be “significantly 

improved” by the end of 2017 and that the PM2.5 concentration in all major cities will be 
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reduced by 10% below 2012 levels [The Ministry of Environmental Protection, 2013]. 

Furthermore, the PM2.5 mass concentration in Beijing will be reduced by an additional 

15%. Beijing, one of the world’s most heavily polluted and populated regions, has 

become this generation’s ‘poster child’ for poor air quality. The action plan intends to 

reduce the annual average PM2.5 concentrations in Beijing to 60 µg m-3 by 2017, which 

will largely be accomplished by reducing coal consumption, updating the vehicle fleet, 

and improving the legal system to allow for environmental law enforcement, taxation, 

and subsidies. The Chinese government has successfully demonstrated a reduction in the 

SO2 concentration after the passing of the 11th Five-Year Plan in 2006 (see to Figure 

2A).  

It has become evident that the mechanism of haze formation in Beijing is distinct 

from other regions of the world. The transition from clean conditions can be remarkably 

fast. For example, the mass concentration in Beijing increased by over 769 µg m-3 in less 

than one day on January 22, 2012 [U.S. Department of State, 2013]. This rapid PM2.5 

increase has not been observed in any other region of the world. In addition, the 

efficiency of NPF events is higher in Beijing when compared to other urban regions, 

such as Houston, Texas, Los Angeles, California, or Mexico City [Zhang et al., 2015b]. 

Ambient measurements and receptor model analysis of the annual mean PM2.5 mass 

concentration indicates that the aerosols in Beijing are mainly generated from industrial 

pollution and secondary inorganic aerosol formation, and negligibly from primary traffic 

emissions [Zhang et al., 2012; Sun et al., 2013; Zhang et al., 2013; Huang et al., 2014]. 
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The Chinese government has announced that it intends to predict and control the 

air quality in Beijing. However, recent studies indicate that the air pollution in China is 

far more complicated than previously realized. It is necessary to have accurate and 

extensive field measurements so that these complex interactions can be better understood 

and effectively reproduced in air quality models. Once the air quality can be properly 

modeled, it will be easier to decide which mitigation strategies would be the most 

effective. Therefore two field campaigns have been conducted to measure ambient 

particulate matter and gaseous concentration in Beijing, China between 25 September to 

13 November 2013 and between December 2014 and February 2015. 

 

ii) Methodology 

All measurements were conducted on the campus of Peking University (PKU, 

39°59’21” N, 116°18’25’ E) located in northwestern Beijing. The instruments were 

located in an air conditioned room on the roof of a building about 15 m above ground 

level. This urban site is located outside the fourth-ring road and is mainly influenced by 

mobile sources (a major highway is located 200 m east of the measurement site) with no 

significant stationary sources, which is likely representative of the Beijing urban area. A 

suite of instruments were deployed to simultaneously measure several gaseous species 

and aerosol properties, including particle mass concentration, size distribution, chemical 

composition, temporally and size resolved effective density, and hygroscopicity.  

A Tapered Element Oscillating Microbalance (TEOM, 1400a, Thermo, USA.) 

with a PM2.5 cyclone inlet was used to measure the ambient PM2.5 mass concentration. 
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The sampling flow was 16.7 LPM, of which 1 LPM was introduced to the instrument. 

The TEOM measures the mass collected on a filter by monitoring the corresponding 

frequency changes of a tapered element. As the mass concentration increased on the 

exchangeable filter, the tube's natural frequency of oscillation decreased. The mass 

concentration was determined from the change in the oscillation frequency. 

An Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-

ToF-AMS) was employed to measure the size-resolved chemical compositions of 

submicron particles. The HR-ToF-AMS operated in 5 minute cycles, including a V-

mode to obtain the mass concentrations of non-refractory species such as ammonium, 

sulfate, nitrate, organics, and chloride, a W-mode to obtain high resolution mass spectral 

data, and a particle time-of-flight mode to determine size distributions of species 

measured with the V-mode. The HR-ToF-AMS was calibrated for inlet flow, ionization 

efficiency, and particle sizing at the beginning, middle, and end of the measurements, as 

suggested in the protocol. The calibration of ionization efficiency was conducted with 

size-selected pure ammonium nitrate particles. The HR-ToF-AMS detection limits were 

determined for each species by passing filtered ambient air through the system and 

measuring the corresponding species signals for three five-minute intervals. The 

detection limit was defined as three times the standard deviations of the observed 

signals. The detection limits of sulfate, nitrate, ammonium, chloride, and organics were 

determined to be 0.008, 0.004, 0.026, 0.004, and 0.033 µg m-3, respectively. Using 

known properties (i.e. the oxygen/carbon ratio, O/C) of the measured organic aerosols 

(OA), the OA component can be further decomposed into hydrocarbon-like organic 
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aerosols (HOA, O/C = 0.04 - 0.13), semi-volatile oxygenated organic aerosols (SV-

OOA, O/C = 0.27 - 0.48) factors, and low volatility oxygenated organic aerosols (LV-

OOA, O/C = 0.59). HOA is frequently employed as a surrogate of primary organic 

aerosols (POA), whereas, the sum of the concentrations of SV-OOA and LV-OOA is the 

surrogate SOA [Sun et al., 2012]. 

Ambient aerosols were sampled at a rate of 1 LPM through a 3 m long thermally 

insulated 3/8” stainless steel tube and then passed through a series of Nafion driers (PD–

070–18T–24SS, Perma Pure, Inc.) to reduce the relative humidity of the aerosols to less 

than 10%. A scanning mobility particle sizer (SMPS) and a nano-SMPS were used to 

concurrently measure the number size distribution of particles between 3 and 500 nm in 

the ambient air. In the SMPS/nano-SMPS configuration, polydisperse aerosols were 

brought to charge equilibrium and passed through the DMA and CPC to determine the 

particle size and concentration. The sheath flow rate was maintained at 3 LPM for the 

DMA and 20 LPM for nano-DMA. The particle size was calibrated with mono-disperse 

polystyrene latex spheres (PSL, Duke Scientific, Palo Alto, California, USA.) with 

nominal diameters of 100 – 700 nm. To determine the size resolved effective density, the 

flow was then passed through an Aerosol Particle Mass analyzer (APM, model 3600, 

Kanomax Inc., Japan). Effective density is defined as the measured mass over the 

volume if the particle was assumed to be a sphere determined by the measured particle 

size; therefore compounds with the same mass but different shapes may have extremely 

different effective densities. The effective densities for five-particle sizes were obtained 

hourly. Since the mobility diameter corresponds to a unique voltage, if the applied 
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voltage and effective density of PSL are known, the effective density of the sample 

aerosols can be calculated by the following equation, 

𝜌!"" =
𝑉!"#

𝑉!"#,!"# ×  𝜌!"# 

where VAPM and VAPM,PSL are the peak APM voltages corresponding to the masses of 

sample and PSL particles, respectively. The material density of the PSL particles is 

1.054 g cm–3. Each effective density distribution scans from 0.1 to 2.2 g cm-3. Effective 

density peaks at 1.76, 1.78, and 1.73 g cm-3 corresponding to ammonium sulfate, 

ammonium bisulfate, and ammonium nitrate. The effective density of organic aerosols 

can vary significantly due to the numerous compounds in this category, the different 

emission sources, and the distinct structures of the compounds. Turpin and Lim [2001] 

reported that SOA from the oxidation of aromatics and alkanes had a density between 

1.20 and 1.40 g cm–3, whereas Kostenidou et al. [2007] determined SOA density can 

vary between 1.40 and 1.65 g cm–3. The effective densities of fresh black carbon, 

mineral dust, and sea salt are 0.1 – 0.6, 2.65, and 2.2 g cm–3, respectively [Geller et al., 

2006; Khalizov et al., 2009b]. This methodology has been utilized and discussed 

previously [Levy et al., 2013, 2014a]. 

A Hygroscopic Tandem DMA (HTDMA) was used to determine the size 

resolved hygroscopic growth factor (HGF) distributions. During hygroscopicity 

measurements, a monodisperse aerosol flow of known size was produced by the first 

DMA and exposed to relative humidity near 90% in a multi-tube Nafion drier/humidifier 

(PD–070–18T–24SS, Perma Pure, Inc.). The particles were then passed through a second 

DMA to measure the change in the mobility diameter compared to the initial 
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monodispersed flow. The growth factor is determined by the ratio of the initial dry 

particle diameter (Do) and the processed diameter (Dp). A HGF of unity indicates no 

change in particle size after exposure to 90% relative humidity, a value less than one 

indicates a decrease in mobility particle size, and a value greater than one indicates an 

increase in size. Pure ammonium sulfate has a HGF of 1.70 at 90% RH [Wise et al., 

2003]. Organics exhibit lower HGFs, ranging from 1.08 to 1.17 at 90% RH, with POA 

occurring at the lower values and the more oxidized secondary organic aerosols in the 

upper values [Meier et al., 2009]. The HGF for both black carbon and mineral dusts is 

typically near 1.0 due to their hydrophobic properties.  

The hygroscopicity was also quantified by using the parameter kappa (κ). Kappa 

is derived using the following formula: 

 

where M, ρ, ν, and ε, are the molecular weight, molecular densities, van Hoff factor, and 

volume fraction of the component in the aerosols mass, respectively. Using the volume-

weighted average fraction determined by the AMS measurement and an εi of 0.0, 0.09, 

0.48, 0.58, 0.55, and 0.246 for black carbon, organic aerosols, SO4, NO3, NH4, and Cl, 

respectively, the chemical composition derived kappa was calculated.  

The concentration of nitric oxide (NO) and nitrogen dioxide (NO2) were 

determined using a chemiluminescent NO-NOX analyzer (Thermo Inc., Model 42i). NO 

and O3 reacted and produced a luminescence that is linearly proportional to the NO 

concentration. The concentrations of NOX was determined by passing the sample 

through a reducing molybdenum NO2-to-NO converter, and the NO2 concentration was 
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calculated by subtracting the measured NO concentration from the total. The ozone 

concentration was determined using a Thermo 49i (Thermo Inc., Model 49i). The O3 

concentration was determined by the amount of UV light absorption at 254 nm. The SO2 

concentration was measured by a Thermo 43i analyzer (Thermo Inc., Model 43i-TLE). 

SO2 molecules were excited to a higher energy state by the absorption of UV light, 

which decayed to a lower energy level and released a photon. The SO2 concentration 

was proportional to the intensity of UV light observed. 

A commercial PTR-MS (Ionicon Analytik, Innsbruck, Austria) was used to 

measure ambient VOCs. The detailed operation and calibration procedures for the 

instrument have been described previously [Zhang et al., 2015b]. Background signals 

were measured by passing ambient air through a platinum coated-wool trap (Shimadzu 

Inc., Japan) heated to 350 °C for 30 cycles after every 300 cycles of ambient 

measurements. The PT-RMS was calibrated by cylinder gas standards (provided by 

Apel-Riemer Environmental Inc., USA). The system was operated in multiple-ion mode 

with 24 simultaneous masses measured including H3O+, benzene (m/z 79), toluene (m/z 

93), styrene (m/z 105), C8 aromatics (m/z 107), C9 aromatics (m/z 121), methanol (m/z 

33), acetaldehyde (m/z 45), acetone (m/z 59), methyl vinyl ketone / methacrolein (m/z 

71), methyl ethyl ketone (m/z 73), isoprene (m/z 69), and acetonitrile (m/z 42). 
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iii) Results and Discussion 

a) Beijing 2013 

The PM2.5 mass concentration, number size distribution, mean diameter, and total 

number concentration during the period of 25 September to 13 November 2013 are 

exhibited in Figure 13. We further elucidated the processes regulating the particle  

number and mass concentrations by examining in detail the PM2.5 cycle that  occurred 

between 25 and 29 September 2013. The temporal evolutions of particle number size 

distribution and mean diameter (white dashed curve) are shown in Figure 14A, and the 

PM2.5 mass concentration (black solid line), mean diameter (purple dashed line), and 

PM1 (particulate matter smaller than 1.0 µm) chemical composition are shown in Figure 

14B. The development of the pollution episode was comprised of two distinct secondary 

aerosol formation processes: NPF and growth. The measurements exhibited a clear 

periodic cycle (Figure 13A) with the PM2.5 concentration less than 20 µg m-3 during the 

initial clean phase, continuous particle mass growth of 50 - 110 µg m-3 occurring during 

the transition period, and a PM2.5 concentration exceeding several hundred µg m-3 

(polluted) within 2 - 4 days. It is interesting to observe how rapidly the air quality could 

shift from being extremely polluted to clean. The PM2.5 mass concentration frequently 

decreased by hundreds of µg m−3 at the end of the haze events in a span of a few hours. 

The mean particle diameter (Figure 13C) displayed a similar cycle as that of the mass 

concentration: continuously increasing diameter from the clean (20 nm) to polluted (200 

nm) period, with 40 – 60 nm daily growth during the transition period. The measured 

particle size distributions (Figure 13B) exhibited high number concentrations of small  
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Figure 13. Temporal evolutions of A) PM2.5 mass concentration, B) number size 
distribution, C) mean diameter, and D) total number concentration during the period of 25 
September to 13 November 2013. The colors in A, C, and D represents the air mass 
originating from the south (black), northwest (blue and red), and northeast (yellow). 
Reprinted with permission of the National Academy of Sciences from Guo, et al., (2014). 
Elucidating severe urban haze formation in China. Proceedings of the National Academy of 
Sciences, 111(49), 17373-17378. Copyright 2014 National Academy of Sciences, USA. 
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particles (< 20 nm) during the clean period, but lower particle number concentrations 

and larger particle diameters during the polluted period. The total particle number 

concentration exceeded 200,000 cm-3 during the clean period, but as the pollution event 

developed, the total number decreased slightly and remained at about 80,000 cm-3 

(Figure 13D). The occurrence of high concentrations of nano-sized particles during the 

clean period is characteristic of aerosol nucleation (Figure 13D). Interestingly, there is a 

noticeable absence of new particle formation as the PM2.5 mass concentration increased, 
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Figure 14. A) Temporal evolutions of particle number size distribution and mean 
diameter (white dashed curve) and B) PM2.5 mass concentration (black solid line), mean 
diameter (purple dashed line), and PM1 (particulate matter smaller than 1.0 µm) 
chemical composition between 25-28 September 2013. Reprinted with permission of the 
National Academy of Sciences from Guo, et al., (2014). Elucidating severe urban haze 
formation in China. Proceedings of the National Academy of Sciences, 111(49), 17373-
17378. Copyright 2014 National Academy of Sciences, USA.  
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indicating the suppression of nucleation by pre-existing background particles. Favorable 

conditions for NPF events often include low pre-existing aerosol concentrations because 

aerosol surfaces easily act as a sink for condensable vapors. During the transition from 

the clean to polluted periods, the evolution of the nucleation mode particles was clearly 

detected by the changes in the mean particle size over the course of three days (Figures 

13 and 14), which increased from about 10 to 200 nm. Periodically high concentrations 

of 30 - 100 nm particles were observed during the morning (6:00 - 9:00) and evening 

(18:00 - 21:00) rush hours. The timing and size of the elevated aerosols are indicative of 

primary particle emissions originating from local transportation (Figure 14A). Although 

the local traffic emissions were clearly discernible by the transiently elevated number 

concentrations (Figure 14), the primary particles did not appear to appreciably alter the 

particle growth process. The minor fluctuations in the mass concentration can largely be 

explained by variations in the wind speed and direction. For example, the noticeable 

decrease in the mass concentration during the morning hours of 9/26, 9/27, and 9/28 

coincided with an increasing wind speed by 1.8, 0.5, and 1.8 m s-1, respectively.  

  The shaded regions in Figure 14B represent the mass concentrations of aerosol 

constituents determined by AMS. The aerosol composition was dominantly composed of 

organic aerosols (44%), followed by nitrates (22%), sulfate (17%), ammonium (15%), 

and chloride (2%), which is comparable to many other large urban centers in the world 

[Jimenez et al., 2009; Zhang et al., 2011; Guo et al., 2012; Guo et al., 2013]. Similar 

particle size and mass evolutions to those shown during the clean period (i.e., from 9:00 

to 24:00 on 9/25) have also been commonly observed under diverse environmental 
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conditions, including in pristine areas and urban centers. Typically, new particle 

formation and growth cycles occur daily [Boy et al., 2004], but few other locations 

exhibit the sustained and efficient particle growth as those displayed during the 

transition and polluted periods in Beijing (i.e., between 9/26 and 9/29 in Figure 13A, B). 

The chemical composition measurements from the 25 - 29 September episode revealed 

continuously increasing organic, sulfate, and nitrate aerosols, which was closely 

associated with the increasing PM2.5 mass concentration and mean particle size (Figure 

15). The organic mass fraction dominated in the clean period, and remained the largest 

throughout the haze event, but decreased from 77 to 42% from the clean to polluted 

periods (Figure 15A). Therefore, organic aerosols were likely responsible for NPF 

during the clean period. Additional AMS-positive matrix factor analysis revealed the 

organic dominant composition was comprised of both primary and secondary organic 

aerosols and that the SOA fraction was the largest throughout the episode. The POA 
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Figure 15. A-C) Chemical composition for 80, 100, and 240 nm particles from the 
corresponding particle mean diameter during the clean (12 µg m-3), transition (167 µg m-

3), and polluted periods (288 µg m-3), respectively. Reprinted with permission of the 
National Academy of Sciences from Guo, et al., (2014). Elucidating severe urban haze 
formation in China. Proceedings of the National Academy of Sciences, 111(49), 17373-
17378. Copyright 2014 National Academy of Sciences, USA. 
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mass fraction decreased considerably during the transition and polluted periods, 

indicating small contributions of primary aerosol emissions to the development of haze 

events. The contributions of sulfate and nitrate to the particle mass concentration 

increased, with the mass fractions of 8 and 6% during the clean period and 26 and 12% 

during the polluted period, respectively.  

The variation in the particle chemical composition was also reflected in the 

measured effective density and hygroscopicity. The weighted average effective density 

for 81, 97, 151, and 240 nm particles are exhibited in Figure 16, and the hygroscopic 

growth distributions of 46, 81, 97, and 151 nm particles are shown in Figure 17. The 81 

and 240 nm particles exhibited the least (1.45 to 1.53 g cm-3 on an average day) and 

greatest (1.27 to 1.45 g cm-3 on average) amount of diurnal variability, suggesting that 

the larger particles exhibited more efficient growth or greater variability in the 

composition of the aerosols throughout the day. The lowest effective density was 

observed between 5 and 7 a.m. for all particle sizes; however, the larger particles 
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Figure 16. The weighted average effective density of 81 (blue), 97 (green), 151 (black), 
and 240 nm (red) particles during the 2013 Beijing field campaign.  
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exhibited a much lower effective density overall between 6 p.m. and 7 a.m., likely due to 

the increased concentration of black carbon. Previous observations with a similar 

methodology have demonstrated that black carbon is most ubiquitous near 151 and 240 

nm particles [Levy et al., 2014a]. Diesel trucks, which emit copious amounts of black 

carbon, are only permitted in the city between 9 p.m. and 7 a.m. The effective densities 

increased from the morning to the early afternoon, likely due to the increase in the 

particle-phase oxidized organic and sulfates components. The hygroscopic distributions 

of 46, 81, 97, and 151 nm particles determined by a HTDMA is presented in Figure 17. 

The hygroscopicity measurements indicate that the HGF distributions were dominantly 

unimodal, indicating an internally mixed aerosol composition or one dominant aerosol 

source. The pollution cycle was most evident in the hygroscopicity of the larger particles 

(i.e. 151 nm): the peak HGF was near 1.1 during the clean phase, between 1.3 and 1.6 

during the heavily polluted phase, and rapidly increased from 1.1 to 1.8 during the 

transition period on 27 September (Figure 17D). The hygroscopicity of the 46 nm was 

less influenced by the variations in the mass concentration since the mean diameter of 

the particles during the haze events was larger than 50 nm. Diurnally, the highest HGFs 

were observed during the early afternoon, likely due to the increased gas-to-particle 

conversion of hygroscopic components, such as nitrate and sulfate, due to enhanced 

oxidation during the afternoon. The periodic pulses of HGFs near 1.05 observed during 

the morning (6 a.m. – 9 a.m.) and evening (6 p.m. – 9 p.m.) rush hours are indicative of 

primary particle emissions originating from local transportation. However, during the 

haze event (i.e. 28 September) the transient mass of hydrophobic aerosols was not  
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Figure 17. The hygroscopic distributions of A) 46, B) 81, C) 97, and D) 151 nm 
particles determined by a HTDMA. The intensity of the colors correlate to the 
concentration of particles: the more red, the higher the relative concentration. E) A 
comparison of the weighted hygroscopic growth factor (black) and kappa (red) between 
25 and 29 September. 
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discernible in the hygroscopic distributions suggesting that the primary aerosols were 

insignificant to the overall mass concentration. The comparison of the hygroscopicity 

derived from the HTDMA (hygroscopic growth factors) and the chemical composition 

(kappa) is shown in Figure 17E. Both approaches exhibit similar trends diurnally and 

throughout the pollution cycle. 

During the clean period, the lower average effective density and the unimodal 

hygroscopic distributions were both indicative of an organic-dominant composition 

[Turpin and Lim, 2001; Kostenidou et al., 2007; Swietlicki et al., 2008; Khalizov et al., 

2009b; Massoli et al., 2009; Meier et al., 2009]. In addition, the increased 

hygroscopicity and effective density during the transition and polluted periods 

correspond to the formation of an internally mixed secondary organic and inorganic 

species due to the increasing contributions from sulfate and nitrate. During the transition 

and polluted periods, the average HGFs were 1.50 and 1.53, and the effective densities 

were 1.48 and 1.51 g cm-3, respectively. There was also a noticeable absence of the 

primary aerosol constituents from the hygroscopicity and effective density 

measurements during the transition and polluted periods, including black carbon, POA, 

and mineral dusts. Hence, our analysis of the aerosol chemical compositions suggests 

that SOA are principally responsible for producing the nucleation mode particles and 

SOA and inorganic salts contribute jointly to particle growth, further confirming that the 

secondary formation dominates the development of PM2.5 pollution episodes in Beijing, 

with small contribution from primary particle emissions.  
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Since measurements at a fixed site are affected by local emissions, transport, and 

chemistry, we analyzed the evolution of the particle size, mass, number concentration, 

chemical composition, and meteorological parameters, such as wind direction and speed, 

back-trajectories, and mixing layer depths, in order to decouple the various processes. 

The back-trajectories were determined by utilizing the National Oceanic and 

Atmospheric Administration’s (NOAA) hybrid single-particle Lagrangian integrated 

trajectory (HYSPLIT) model. During the observation period, southerly winds were most 

prevalent (black, 50%), followed by winds from the northwest (blue and red, 42%) and 

northeast (yellow, 7%, Figure 14A). The stronger northwesterly (i.e. blue) and 

northeasterly winds typically occurred during the clean periods (Figure 14B), carrying 

 

Figure 18. A) Map demonstrating the location of the sampling site and back–trajectories 
using the NOAA–HYSPLIT model to illustrate the frequency of synoptic flow patterns 
observed during the field campaign. B) The predominant wind direction throughout a 
haze event. Reprinted with permission of the National Academy of Sciences from Guo, et 
al., (2014). Elucidating severe urban haze formation in China. Proceedings of the National 
Academy of Sciences, 111(49), 17373-17378. Copyright 2014 National Academy of 
Sciences, USA. 
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unpolluted air masses from the less populated mountainous areas. During the transition 

and polluted periods, the wind decreased and shifted from northerly to southerly winds, 

resulting in the transport of air masses from the more populated southern industrial 

regions and stagnant conditions that trapped the local gaseous pollutants from city 

traffic. The average mass concentrations were 35 and 114 µg m-3 during the northerly 

and southerly wind conditions, respectively (Figure 14B). It is clear that the 

meteorological conditions are a critical parameter in the cycling of pollution episodes in 

Beijing. During the most polluted period, the movement of the air mass was less than 25 

km day-1 (the Beijing metropolis is 16,801 km2) [Zhang et al., 2015b], suggesting that 

during the severe PM2.5 episodes regional transport is negligible.  

The presence of particle-phase OA, sulfate, and nitrate was largely attributable to 

the conversion of gaseous VOCs, SO2, and NOx, respectively. Photochemical 

oxidation and multi-phase reactions of VOCs, SO2, and NOX in the atmosphere lead to 

the formation of less or non-volatile species. Our gaseous measurements show highly 

elevated concentrations of these species during pollution episodes (Figure 19). For 

example, during the pollution episodes the peak SO2 and NOX concentrations exceeded 

40 and 200 ppb, respectively, and the aromatic VOCs (i.e. xylenes and toluene) 

represented the most abundant type of VOCs, with peak xylene concentration exceeding 

10 ppb. The peak isoprene concentration was typically around 1-2 ppb. For reference, 

the annual SO2 concentration in Houston, Texas, Los Angeles, California, Mexico City, 

Mexico, and Beijing, China were 0.35, 0.37, 2.50, and 7.8 ppb [Zhang et al., 2015b]. 

The NOX and SO2 concentrations were the lowest in the presence of northerly and  
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Figure 19. Concentrations (ppb) of A) aromatic VOCs, B) biogenic VOCs, and C) SO2 
measured between 16 October and 31 November (i.e. the period when these instruments 
were online) and of D) ozone, E) biogenic VOCs, and F) PM2.5 mass concentration (µg 
m–3) measured between 25 September and 10 November 2013. 
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northeasterly winds (i.e. the clean period), but increased considerably with northwesterly 

and southerly winds (i.e. the transition and polluted periods). The average ozone 

concentration was 17 ppb during the entire observational period, but higher 

concentrations were observed at the beginning of the campaign than near the end, likely 

reflecting a seasonal variation. The ozone concentration was noticeably elevated for the 

PM2.5 events on 27 September (110 ppb) and 5 October (99 ppb), indicating the efficient  

photochemical activity during the transition and polluted periods. While traffic 

emissions represent the dominant sources of VOCs and NOX in Beijing, industrial 

emissions contribute mainly to the SO2 concentration. Considering the relatively 

stagnant air mass during the pollution periods and the atmospheric lifetimes of 

aromatics, SO2, and NOX (about 0.5 - 2.5 days, 9.6 days, and 1.0 days, respectively), the 

SO2 level in Beijing was likely due to a large regional contribution from the southern 

industrial area, and the VOC and NOX concentrations were dominated by local traffic 

emissions. Furthermore, the AMS measurements reveal a non-negligible mass fraction 

of ammonium during the transition and polluted periods, which is also likely linked to 

automobile emissions.  

In order to further confirm that the high PM2.5 concentration was predominantly 

produced locally and not due to transport, analyses of the AOD and the relationship 

between SOA formation and odd-oxygen (the combined concentrations of O3 and NO2, 

Ox) have been conducted (Figure 20). The AOD is a measure of the extinction of the 

solar beam by particles in the atmosphere i.e. (dust, smoke, pollution). It is a 

dimensionless number that is directly related to the number of aerosols in the vertical 
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atmospheric column over the observation location. A value, such as 0.01, indicates an 

extremely clean atmosphere, and hazy conditions in the U.S. may be near 0.40. The 

average AOD in the U.S. is between 0.1 and 0.15 [ESRL, 2015]. The AOD values were 

obtained through the Aerosol Robotic Network (AERONET) site on the roof of the 

Institute of Atmospheric Physics building in Beijing (39.97689° N, 116.38137° E) 

[AERONET, 2015]. An analysis of the AOD can be instructive because it reveals the 

mass concentration in the entire atmospheric column and can be used to decouple 

vertical and horizontal transport. The planetary boundary layer (PBL) is the lowest level 

of the atmosphere that determines the volume of air that pollutants will be mixed into on 

short time scales. Typically the PBL is low (on the order of hundreds of meters high) 
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Scatterplots of odd-oxygen (O3 + NO2, Ox) and secondary organic aerosols during the 
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overnight, but as the sun rises in the morning, the ground and air are heated, resulting in 

ascending air. As the air rises, the mixing layer height increases, therefore allowing 

emitted pollutants to mix into a larger volume (on the order of a few thousands of meters 

high). As the sun’s intensity begins to wane in the afternoon, the mixing region begins to 

decrease, which compresses the pollutants into a smaller volume. While a majority of the 

PM2.5 mass concentration will be in the mixed layer, it is possible that aerosols produced 

in an adjacent city could be transported into the atmospheric column over the city in the 

residual layer (the middle portion of the nocturnal atmospheric boundary layer 

containing pollutants remaining from the mixed layer of the previous day) when the PBL 

is low overnight. In this scenario, as the PBL height increases due to daytime heating, 

the transported aerosols would mix downward and increase the mass concentration at the 

surface; however, the mass concentration in the total atmospheric column would not 

exhibit significant fluctuations because the aerosols are not being created but simply 

being transported between layers. Conversely, if aerosols are brought into the region by 

horizontal transport or are produced locally, a dramatic increase in the total column 

would be observed. This would be particularly evident in the Beijing case where the 

mass concentration can increase by several hundred micrograms in a short period of 

time. Figure 20A shows that the AOD increased simultaneously as the PM2.5 and SOA 

mass concentrations increase, indicating that the aerosols were not mixed in from the 

upper troposphere and vertical transport was not a significant source.  

A scatterplot of the SOA and Ox mass concentrations can be used to identify if 

horizontal transport is a major source of aerosols in the observed region. Since SOA are 
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formed as the result of gas-to-particle partitioning of low-volatility compounds and Ox is 

formed as a by-product of VOC oxidation, the high formation rate for both species is 

high during periods of intense photochemistry. It has previously been demonstrated that 

odd-oxygen and SOA are strongly correlated in air masses where both species were 

formed on similar timescales and poorly correlated when their formation timescales or 

formation location differed greatly [Wood et al., 2010]. Therefore if the correlation is 

strongly positive, then horizontal transport must not be a significant SOA mass 

concentrations source. The scatterplot from the daytime during the clean phase is weakly 

positive, which indicates that the aerosols were locally produced; however, the aerosol 

production rate was quite low. The scatterplot from the daytime and early evening 

during the transition period is positive (R2 = 0.97) indicating that the aerosols were 

formed locally and produced recently. It possible for an influx of aerosols to occur 

simultaneously as the rise in photochemical activity during the morning and early 

afternoon, thus mimicking a rise in SOA formation; however, this correlation was 

present in other haze cycles and the large scale meteorological patterns did not 

recommend this scenario. The poor correlation of SOA with Ox observed during the 

polluted phase (R2 = 0.21), indicates large differences in the timescales of production 

between SOA and Ox, i.e. the aerosols were not formed on that day, which corresponds 

with the high concentration of aerosol that were trapped due to the stagnant conditions. 

The clustering of points observed during the afternoons in the clean and polluted phases 

was likely caused by a combination of several factors such as entrainment of air with 
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variable OOA and Ox concentrations due to changes in the PBL height, changes in the 

production rates of SOA and Ox, or dry deposition of SV-OOA [Wood et al., 2010].  

 

b) Beijing 2015 

During the winter of 2014-2015, we analyzed the size-resolved effective density, 

PM2.5 concentration, particle size distributions, and chemical composition of ambient 

aerosols with a focus on understanding the winter haze formation mechanism and 

elucidating how the formation processes compare between seasons. The haze events 

have historically been most severe during the wintertime in China. In Figure 21A, the 

2013, 2014, and 2015 PM2.5 mass concentrations in January and February are presented. 

The three years appear to exhibit the same general trends and concentrations, and all 
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Figure 21. Comparisons of the winter PM2.5 concentration between 2010 and 2015 in 
Beijing, China measured at the U.S. Embassy [U.S. Department of State, 2013].  
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three years experienced at least one ‘hazardous’ episode. Both the public and the 

scientific community have extensively discussed the PM2.5 mass concentrations in 2013 

and 2014 since these winters were exceptionally polluted (Figure 21B), which resulted in 

global awareness of the extreme haze events [Gou et al., 2014; Sun et al., 2014]. In 

comparison, January and February 2015 appeared to be less polluted due to the 

implementation of new regulations and mitigation strategies; however, the 2015 PM2.5 

mass concentration was comparable to the concentrations observed between 2010 and  

2012 (Figure 21B). It is noteworthy to add that if the mixing layer depths from winter 

2015 and winter 2013, i.e. the winter that produced extraordinarily high mass 

concentrations, are compared, winter 2015 exhibited higher mixing layer depths, which 

may partially explain the lower average mass concentration in winter 2015. 

 In Figure 22, the PM2.5 mass concentration measured between 21 January and 5 

February 2015 and the corresponding AQI have been displayed. During this two week 

measurement period when all the instruments were online, we were able to examine 

Figure 22. The PM2.5 mass concentration and the corresponding air quality index 
between 21 January and 5 February 2015. 
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three pollution cycles, two of which reached a ‘hazardous’ ranking according the U.S. 

AQI criterion. In order to better understand the mechanisms that led to these events, we 

focused on the temporal evolutions of the number size distribution, PM2.5 mass 

concentration, chemical composition, total number concentration, and average diameter 

measured between 21 and 27 January 2015 (Figure 23). Each haze event began with a 

NPF event, which was followed by continuous particle growth over several days (Figure 

23A). The total number concentration exceeded 300,000 cm-3 during the NPF events,  

but generally remained below 200,000 cm-3 otherwise (Figure 23 C). The average 

diameter of the particles was about 10 nm during the NPF events and steadily increased 

until their average diameter was near 150 nm (Figure 23D). In the subsequent days, the 

average diameter cycled between 50 and 130 nm. The influence of the PBL was apparent 

because the highest concentrations were frequently observed overnight after the PBL 

contracted (Figures 23B, C). During overnight 22 January and the morning of 24  

January, the concentration initially increased and the diameter decreased; so it is possible 

that as the atmosphere compressed, smaller particles were brought down from the upper 

boundary layer. Minor mass growth was observed on 21 January (Figure 23B), with an 

increase from 8 to 30 µg m-3, and the most rapid mass concentration increase occurred 

on 22 January, with an increase from 30 to 300 µg m-3. The chief difference between 

these two days was the relative humidity; the relative humidity was below 30% on 21 

January and greater than 60% on 22 January. At first glance, the mass concentration 

appears to indicate that this event should be broken into two separate episodes (21-23 

and 24-26 January); however, the properties of the aerosols (i.e. size, chemical  
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composition, and effective density) were consistent throughout the entire period and no 
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NPF event was observed. In Figure 24, the mass concentration and the mass fraction 

have been displayed. It is clear that even though the mass concentration exhibited a 

substantial decrease, the ratio of the aerosol constituents remained quite constant, 

indicating that the air mass as a whole was the same. Furthermore, a back-trajectory 

analysis using the HYSPLIT model revealed that on 23 January the boundary layer was 

very low (~ 350 m during the afternoon) and the winds were calm, thus creating 

extremely stagnant conditions. Conversely, on 24 January a weak front passed through 

the region, which initially created weak winds from the north and enough vertical lift to 

increase the PBL to around 700 m. The increased winds and enhanced boundary layer 

height diluted the mass concentration in Beijing. However, after the frontal passage, the 

winds shifted to southerly, which recirculated the air mass back into the region. On 25 

January, weak winds continued to come from the south and the boundary layer height 
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increased to about 300 m; therefore, the stagnant conditions and accumulation of 

pollutants resumed.  

  Organic aerosols accounted for the largest percent of the aerosol mass (Figure 

25) during both the clean (58%, 21 January) and the polluted phase (52%, 23 January). 

Nitrate, ammonium, and sulfate accounted for 12, 12, and 16%, respectively, during the 

clean phase, and they remained fairly constant throughout the polluted phase at 20, 14, 

and 12%. Nitrate exhibited the largest percentage increase of the three. Chloride 

remained constant at about 2%. It is apparent in Figure 23B that a large percentage of the 

PM2.5 was unaccounted for in the AMS measurements. The AMS provides quantitative 

measurement of the chemical composition of non-refractory aerosols with a diameter 

between 40 and 1000 nm; therefore, any particles with a diameter between 1.0 and 2.5 

microns or are composed of black carbon or mineral elements will be excluded. It is 

likely that the exclusion of black carbon accounts for some of this discrepancy, since it 

accounted for 5-15% of the aerosol mass during the fall campaign and this percentage 

would likely be higher in the winter due to increased heating demands during the winter 
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(Figure 14). In addition, several substantial dust storms occurred during early 2015 in 

Beijing; therefore, dust may account for a large portion of the missing aerosols.  

 The hygroscopicity of the aerosols determined on the basis of chemical 

composition between 21 January and 29 January 2015 is shown in Figure 26A. Both a 

diurnal cycle and an overall trend governed by the pollution cycle are evident in the 

aerosol hygroscopicity. Diurnally, the least hygroscopic aerosols were observed 

overnight, while the most hygroscopic were observed near sunset. The reduced nighttime 
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hygroscopicity was concurrently observed as the transiently elevated organic aerosol 

mass concentration (Figure 23B) and reduced effective density of the larger particles 

(Figure 26B), therefore this may be due to the increase of diesel vehicles in the city 

overnight, which produce copious amounts of hydrophobic POAs and black carbon. The 

increased hygroscopicity in the mid-morning and early afternoon hours (9 a.m. to 1 p.m.) 

was due to the rapid increase in the mass concentrations of nitrate, ammonium, and 

sulfate aerosols (Figure 23B). Previous work in Mexico City revealed that ammonium 

nitrate (NH4NO3) dominated the inorganic aerosol fraction and rapid production of NO3
− 

was observed in the morning hours between 08:00–12:45. A box model was used to 

analyze these variations and found that the concentration increase was caused chiefly by 

secondary formation (∼80%), with a lesser contribution from the entrainment of air from 

the free troposphere (∼20%) [Hennigan et al., 2008]. It is probable that a similar 

mechanism is occurring in the Beijing region given the rapid increase of both 

ammonium and nitrate. From the onset of the first pollution cycle on 21 January to the 

peak hygroscopicity on the morning of 25 January, the hygroscopicity increased from 

0.15 to 0.42, revealing that the conversion of an air mass that is predominantly 

composed of organic aerosols (kappa ranges between 0.07 to 0.29 dependent on the 

species and degree of oxidation [Chang et al., 2010]) to one that also contains organics, 

nitrates (0.58), ammonium (0.55), and sulfates (0.48). 

 The effective density for 81, 97, 151, and 240 nm particles are exhibited in 

Figure 26B. During the clean phase, all four particle sizes exhibited effective densities 

that clustered near 1.38 g cm-3, but as the cycle progressed, the effective densities 
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became dissimilar. As the PM2.5 mass concentration decreased at the end of the haze 

event (i.e. 27 January), the effective density of the particles again clustered near 1.35 g 

cm-3. The lower average effective density during the clean period can be attributed to the 

organic dominated aerosols composition. Furthermore, the increasing effective density 

corresponds to the increasing sulfate and nitrate composition that was observed as the 

haze events progressed (Figure 23B). Generally, the effective density distributions were 

unimodal, indicating that the aerosols were internally mixed. The weighted average, i.e. 

the effective density weighted by the total number concentration of particles near each 

size, of the four particles sizes is depicted by the black lines. It is clear that the average 

effective density increased throughout the haze event, but this was largely due to the 
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changes in the particles smaller than 100 nm. The smaller particles (i.e. 81 and 97 nm) 

increased in effective density as the region became more polluted; whereas, the larger 

particles (i.e. 151 and 240 nm) remained near 1.37 g cm-3. In Figure 27, the average 

diurnal cycle of the effective density of 81, 97, 151, and 240 nm particles are displayed 

from the full observational period, the polluted period, and the clean period. It is clear 

that a diurnal cycle existed, i.e. an increasing effective density overnight, decreasing 

effective densities during the morning and evening rush hours, and moderately stable 

effective densities during the day. In the full campaign, the lowest average effective 

densities were observed during the afternoon hours (i.e. 1.38 g cm–3 for 81 nm particles), 

and the highest average effective density (~ 1.41 g cm–3 for 81 nm particles) was 

observed in the early morning before the intensification of traffic.  During the elevated 

traffic periods (i.e. 6 - 9 a.m. and 4 - 8 p.m.), the effective density decreased likely due to 

the increased concentration of black carbon and POAs. Overnight, the effective density 

likely increased to due to aerosol aging. The variation in the effective density was 

suppressed during the polluted days. This may be due to the variations in the PBL (i.e.  

high on clean days, but low on polluted days) and because the newly emitted particles 

were being mixed into a higher concentration of particles; therefore, the average 

effective density of the entire air mass was not as sensitive to the individual particles.  

Frequently, the large-scale meteorology governed the length and severity of haze 

events because the region was either exceedingly stagnant or there were strong, 

cleansing winds. On the clean days (i.e. 21 January and 27 January) the winds were very 

strong and the PBL was high, which enhanced the dilution of pollutants both vertically 
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and horizontally (Figure 28). The days with the highest concentration (i.e. 22 January 

and 26 January) exhibited calm winds and low PBL heights, which trapped the 

pollutants near their emission source.  

  

c) Comparisons of Beijing Aerosol Properties from Fall 2013 and Winter 2015  

 One of the primary goals of conducting a second field campaign during the 

winter period was to elucidate the seasonal variations, if any, in the haze formation 

mechanisms. In Figure 29, a comparison of the mass concentration, total number 

concentration, and the average diameter from the fall 2013 and winter 2015 field 

campaigns has been displayed, and a comparison of the chemical composition during the 

clean and polluted period from both campaigns is exhibited in Figure 29. Both seasonal 
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The forward trajectories and mixing depths were determined by the HYSPILT model. 
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haze events began with NPF events, which were typically followed by particle growth 

over several days. The large-scale meteorological processes heavily influenced the haze 

cycles during both seasons. Overall various properties (i.e. particle size, number 

concentration, chemical composition) appear to be similar in the fall and winter 

Figure 29. A comparison of the A) mass concentration, B) total number concentration, 
C) average diameter, and D) hygroscopicity between the fall 2013 and winter 2015 field 
campaigns.  
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campaigns, with a few notable caveats (Figures 29 and 30). The particle growth and 

formation was more efficient in the fall campaign: i.e. the final particle size was near  

200 nm in the fall compared to 150 nm in the winter, and the NPF events resulted in a 

greater total number concentration. This could be due to several reasons. First, it has 

been shown in previous work that increased RH enhances particle growth particularly 

for hygroscopic particles, such as sulfates, but the winter of 2015 was especially dry, i.e. 

there was only one very light winter weather event in the two months the researchers 

were in Beijing. Therefore, the dry conditions during this winter may have suppressed 

particle growth, which in turn reduced the total mass concentration. Also, the efficiency 
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Figure 30. A comparison of the chemical composition during the clean and polluted 
period from both campaigns.  
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of NPF events is dependent on the intensity of solar radiation: the stronger the sunlight, 

the more efficient the NPF events. Therefore, the fall haze events were seeded with a 

higher concentration of particles, which then grew and resulted in a higher mass 

concentration. Furthermore, if the mixing layer depth is taken into consideration (see 

Figure 31), the particle growth and formation was likely much more efficient in the fall 

because while the resultant concentrations were similar, the mixing layer was nearly 

twice as high during the fall.  

The trends in the hygroscopicity of the particles are similar between the two 

seasons (Figure 29D), with the only significant difference occurring on the clean days 

(i.e. 21 January, 25 September, 27 January, and 1 October). The hygroscopicity of the 

fall aerosols (25 September) during the clean phase was much lower (0.2) than the 
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hygroscopicity of the wintertime aerosols (0.35). This is likely due to the increase 

presence of sulfate (7% in the fall, 16% in the winter, Figure 30) due to residential 

heating and suppressed dilution of local pollutant (mixing layer depth of 1100 m 

compared to 2200 m, Figure 31).  
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CHAPTER IV  

DOES MATERNAL EXPOSURE DURING PREGNANCY FUNDAMENTALLY 

ALTER HER OFFSPRING? ANIMAL PROXY STUDIES OF EXPOSURE TO 

POLLUTANTS UNDER ATMOSPHERICALLY RELEVANT CONDITIONS 

i) Introduction 

Atmospheric aerosols affect human health in numerous ways, ranging from 

aggravating allergies, the development of serious chronic diseases, or leading to pre-

mature death [Dockery et al., 1993; Dockery and Pope, 1994; Gauderman et al., 2004; 

Kunzli et al., 2005; Yan et al., 2014]. After inhalation, aerosols can affect nearly all the 

vital structures of the body including the lungs, heart, brain, and vascular system. The 

WHO estimated that in 2005 over 800,000 deaths occurred as a result of poor outdoor air 

quality, and recent studies are indicating that this assessment may have severely 

underestimated the mortalities due to air pollution. According to a 2014 news release, 

WHO now states that indoor air contributes to 4.3 million deaths globally and outdoor 

air pollution from urban and rural sources is likely linked to 3.7 million deaths in 2012. 

As the global urbanization trend continues these number are likely to correspondingly 

increase. The mortality rates are disproportionately high in low and middle income 

countries (88%), and the greatest burden of diseases has been found to be in the Western 

Pacific and South-East Asia regions [WHO, 2014]. A recent study calculated that 1.6 

million deaths each year (or 4,000 deaths per day) could be attributed to PM2.5 air 

pollution in China [Rhode and Muller, 2015]. It has been projected that the 500 million 

residents living in northern China have lost a total of 2.5 billion years of life expectancy, 
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which is roughly a 5.5 year life reduction per person, due to an increased incidence of 

cardiorespiratory mortality [Chen et al., 2013]. Fatalities due to aerosol exposure result 

from many pathways including respiratory infection, interference with lung function, 

cancers, cardiovascular disease, and stroke [Dockery et al., 1993; Dockery and Pope, 

1994; Millman et al., 2008]. WHO attributed 40% of mortalities to ischemic heart 

disease, 40% of mortalities to stroke, 11% of mortalities to chronic obstructive 

pulmonary disease (COPD), 6% of mortalities to lung cancer, and 3% of mortalities to 

acute lower respiratory infections in children [WHO, 2014].  

Not all atmospheric compounds and particle sizes are equally dangerous to 

human health; however, PM2.5 is often treated as a uniform pollutant in health related 

studies, regardless of its properties and chemical composition. Ultrafine aerosols, i.e. 

particles with a diameter less than 100 nm, have greater effects on health as they are 

small enough to bypass the natural defenses in the human body and can be carried deep 

into the lungs where they can cause inflammation and worsen heart and lung diseases 

[COMEAP, 2006]. Although ultrafine aerosols contribute little to the overall ambient 

aerosol mass concentration, they are often present in high concentrations (see Figures 13 

and 22). The relatively large surface area of ultrafine aerosols and their ability to form 

radical species are believed to induce inflammatory effects and cause cellular DNA 

damage [Kreyling et al., 2004; Araujo et al., 2008]. Other factors, such as aerosol 

hygroscopicity, may influence the uptake of aerosols within the lungs [Broday and 

Georgopoulos, 2001]. Knowledge of the impacts of the individual species and physical 

properties of particles is crucial to truly evaluate health impacts since biological 
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responses to PM will not always be linked with the major constituents, but rather with a 

minor, more influential species [Schlesinger et al., 2006]. It has also been proposed that 

the toxicity of a mixture of primary and secondary gaseous species and PM can differ 

greatly from exposure to just one of the individual pollutants [Mauderly and Samet, 

2009].  

Unfortunately, certain individuals within a community are particularly sensitive 

to PM2.5, such as children. Given the global urbanization trend, more children are 

conceived, gestated, and maturate in polluted environments than ever before. Therefore, 

many studies have recently been conducted to determine how pollutant exposure during 

gestation alters the lifetime health of the individual. Reduced fetal and childhood 

growth, asthma, allergies, developmental impairment, preterm birth, reduced birth 

weight, an increased occurrence of intrauterine growth restriction, and increased risk of 

cancer in children have frequently been correlated with high PM2.5 loading [Millman et 

al., 2008; Morgenster, et al., 2008; Pereira et al., 2012; Lung et al., 2013]. Birth weight 

is a significant factor in neonatal survival (0 - 27 days of life) and lifelong health. Not 

only is low birth weight associated with increased perinatal morbidity and mortality, it is 

also associated with an increased incidence of certain diseases, such as diabetes, seizure 

disorders, cardiovascular diseases, and a number of neurological disorders later in life 

[McCormick, 1985; McCormick et al., 1992; Norris, 2013].  

Rats and other laboratory animals have frequently been used as human surrogates 

to assess potential health effects of inhaled particulate matter. The total deposition 

percent for 10, 50, and 100 nm particles was found to be 71, 40, and 22% in human 



 

 80 

lungs and 52, 31, and 18% in rat lungs, respectively [Bergmann, 1998]. An analysis of 

the particle deposition efficiency of diesel exhaust PM in human and rat lungs performed 

by Yu and Xu [1986] found that despite the considerable differences in lung structure, 

airway size, and breathing parameters, human and rats exhibited similar deposition 

patterns of pollutants in the lungs. Dosimetric calculations indicate that rats may be less 

susceptible to inflammatory responses than humans from acute PM exposures, but more 

susceptible than humans to adverse pulmonary effects from chronic exposures to high 

levels of PM. However, since the clearance of PM is faster from the lung of rats than 

humans, much higher exposure concentrations may be required for the rat to simulate 

retained burdens [Brown et al., 2005]. Laboratory animals are frequently exposed to 

pollutants by administering intranasal or intratracheal doses [e.g., Wang et al., 2013] or 

full body exposure systems [e.g., Mauad et al., 2008; Veras et al., 2008], with a variety 

of research objectives. Veras et al., [2008] continuously exposed rats to pollution from a 

major highway exposed during pre-gestational and gestational periods and found 

changes in the functional morphology of the placenta. A two-way analysis of the 

variance revealed that both periods of exposure led to significantly smaller fetal weights 

when compared to rats in filtered exposure chambers. In a similar study, mice were 

exposed from the 10th to the 120th days of life in open-top chambers (filtered ~ 3 µg m-

3, nonfiltered ~ 17 µg m-3) placed 20 m from a street with heavy traffic in Sao Paulo, 

Brazil for 24 hours/day for an 8 month period [Mauad et al., 2008]. After the mating and 

birth of offspring, the pups were divided into four groups: non-exposure, prenatal 

exposure, postnatal exposure, and pre and postnatal exposure. Mice exposed to traffic-
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related PM in the pre- and postnatal period developed significant alterations of alveolar 

structure and lung elastic properties, indicating that traffic-related pollution adversely 

impacts lung growth [Mauad et al., 2008]. In order to understand the mechanism by 

which ambient PM2.5 can affect the cardiovascular system, Wistar rats were 

intratracheally exposed to concentration of 0.2, 0.8, or 3.2 mg/rat of particulate matter 

[Wang et al., 2013]. The heart rates, systolic blood pressure, and electrocardiogram were 

monitored at approximately 24-h after the 3rd exposure and 6th exposure. The results 

revealed that PM2.5 exposure can trigger a significant increase of systemic inflammation 

biomarkers and decreased heart rate variability. Furthermore, if the rats were 

concurrently exposed to ozone, the negative responses were found to be exacerbated 

[Wang et al., 2013]. In a study conducted by Morishita et al., [2004], Brown Norway 

rats, with and without ovalbumin-induced allergic airway disease, were exposed to 

concentrated air particles generated from ambient air in an urban Detroit community 

where the pediatric asthma rate was three times higher than the national average. Rats 

were exposed to either 676 µg m-3 or 313 µg m-3. It was found that the exposed rats 

demonstrated a higher retention of particle in allergic airways of air particulates derived 

from identified local combustion sources after a short-term exposure. Pollutant exposure 

has also been found to alter fertility markers (i.e. a reduction in the number of 

reproductive cycles, a significant increase in time necessary for mating, and a 70% 

increased post-implantation loss rates). Veras et al. [2009] demonstrated that exposure to 

ambient urban traffic PM negatively affects different functions and stages of the 

reproductive process, even if the exposure occurs only before conception. In this study, 
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both pre-gestational and gestational period exposure was linked to reduction in the fetal 

weight of the offspring [Veras et al., 2009]. Interestingly, the reduction was similar for 

both pre-gestational and gestational exposure rats, with about a 20% reduction in the 

birth weight. 

To date, scientists have not yet identified how a mother’s exposure to air 

pollution alters the lifetime health of the offspring. This is due to complex processes that 

the fetus and mother undergo during gestation and is complicated by the fact that the 

mother will be exposed to many different pollutants throughout the protracted 

pregnancy. Due to the relative infancy of this area of investigation and the complex 

nature of the atmospheric pollutants, many effects have been identified through 

epidemiological studies; however, few animal model studies have been conducted to 

determine the cellular and molecular effects of air pollution on fetal development 

[Oldham et al., 2004; Veras et al., 2008; Guillette and Iguchi, 2012]. To try to 

understand the mechanism by which aerosols diminish human health, a series of animal 

exposure studies has been conducted to investigate the physiological responses of the 

mothers and offspring.  

This project was funded as one of Texas A&M University’s Tier One Program 

(TOP) grants. The program was designed to offer special faculty grants offered by the 

university to facilitate hands-on, interdisciplinary educational experiences that integrate 

emerging scholarly work with experiential and high impact learning practices into 

curricular offerings for students at Texas A&M. In order to qualify for a grant, the 

proposal must be a joint effort between faculty members of two or more academic 
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colleges. Our project, entitled ‘Enhancing Teaching and Research in Health Impacts of 

Air Pollution’, was done in collaboration with the Department of Animal Science in the 

College of Agriculture and Life Sciences and the Veterinary Integrative Biosciences 

Department in the College of Veterinary Medicine & Biomedical Sciences at Texas 

A&M University. Each department was responsible for different phases of the project. 

Our group in the Department of Atmospheric Science was tasked to design, test, and 

maintain a system that would continuously expose laboratory animals to pollutants of 

known size, concentration, and composition for weeks at a time. The Department of 

Animal Science was responsible for obtaining, caring for, humanely euthanizing, and 

dissecting the experimental animals. The Departments of Animal Science and Veterinary 

Integrative Biosciences were jointly responsible for collecting samples and conducting 

analysis of the dams and offspring including: weight variations, food intake data, 

metabolic chamber data, vascular ring stretch data, plasma analysis, gene expression in 

organs, and histology of organs. The tissues collected for analysis from dams and 

offspring pups included: heart, skeletal muscle, kidney, spleen, small intestine, brain, 

lung, testis, liver, ovary, white adipose, uterus, brown adipose, and trachea. The ultimate 

goal of the project is to elucidate the physiological responses by the mothers and the 

transgenerational effects of maternal air pollutant exposure on utero development. 
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ii) Developing the Animal Exposure System 

a) The Chamber 

The design of the chambers needed to address several criteria: 1) the pollutants 

must be evenly distributed throughout the chambers so that the animals are equally 

exposed, 2) the individual compartments must meet the requirement set forth by federal 

regulations, 3) the enclosure must allow for easy access to the animals in order to tend to 

the animal’s daily needs, 4) the air flow must be rapid enough to generate at least 15 

complete air exchanges per hour, 5) the system must be reasonably quiet since rats are  

sensitive to sight, sounds, and smells, and 6) the system must be able to operate for long 

periods of time unattended. A previous experiment that utilized a mobile whole-body 

exposure system that was designed to hold nine mice was used as the basis of our 

chamber design. While the space requirements differ between mouse and rat 

experiments, this prototype demonstrated inner plumbing that effectively produced no 

stagnant areas and good mixing throughout the exposure cage [Oldham et al., 2004]. 

 The custom-built compact whole-body stainless steel cage enables the uniform 

exposure of several animals simultaneously in individual compartments, while 

minimizing PM losses by deposition. The animal exposure chamber design consisted of 

a 12” x 8” x 32” stainless steel box with four inner compartments and a ¼” clear cast 

acrylic lid as shown in Figure 32. Air is continuously pumped through the chamber by 

stainless steel tubing attached to the lid and bottom of the chamber (Figures 32 and 33). 

The u-shaped inflow lines, attached to the underside of the lid, have evenly distributed  
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holes over each of the compartments to produce even flow and exposure in each 

individual space. The inflow lines bring in ambient room air, which typically has a mass  

Figure 32. Schematic of the animal exposure chamber. The top panel depicts the 
underside of the lid, the middle panel is the bottom of the chamber, and the bottom panel 
illustrates the airflow within the chamber. The u-shaped inflow lines, attached to the 
underside of the lid, have evenly distributed holes over each of the compartments to 
produce even flow and exposure in each individual space. The outflow line, attached to 
the bottom, also has evenly distributed holes under each of the compartment to facilitate 
uniform removal of the chamber air. 

A 

B

C
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concentration less than 5 µg m-3. The average mass concentration from background 

measurements was 3.03 µg m-3 (Figure 35D). The animal facility is a strictly controlled  

macro- and micro-environments, where the air is filtered and the temperature, humidity, 

light cycles, space, food, water, and bedding are all monitored and maintained within 

established parameters appropriate for the species.  

The outflow line, attached to the bottom of the chamber, has evenly distributed 

holes under each of the compartments to facilitate uniform removal of the chamber air. 

The system flow rate is 55 LPM or 67 chamber turnovers per hour. The transparent lid 

Figure 33. Diagram of the animal exposure chambers and instruments. Pure ambient air 
is pumped into the clean chamber, and doped ambient air is pumped into the polluted 
chamber. The polluted and clean systems are independent of each other. The system 
flow rate is 55 LPM or 67 chamber turnovers per hour. The polluted chamber aerosols 
are sampled at a rate of 1 LPM by the DMA and CPC. 
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permits direct observation of the animals during the exposure experiments, and the 

suspended perforated cast acrylic removable floor maintains a clean environment for the 

animals. Two independent chambers were built for the polluted and clean systems as can 

be seen in Figure 34. 

 

6"

Figure 34. The chambers constructed for the animal exposure experiments.  
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b) Producing and Maintaining High Aerosol Loading 

In addition, the polluted system comprises an atomizer to produce a steady flow 

of aerosols, a multi-tube Nafion drier to remove excess water vapor, and an SMPS to 

constantly monitor the size distribution of particles (Figure 33). A continuous atomizer is 

positioned between the pump and the polluted chamber in order to raise the mass 

concentration in the ambient air to a near 150 µg m-3, a concentration is frequently 

observed in Beijing, as can be seen in Figure 35. The average mass concentration in 

Figure 35B is 152.96 µg m-3 and typically varies between 100 and 200 µg m-3. The red 

points indicate the times when daily animal care was performed, and the blue dots 

indicate the time when machine maintenance or calibration was typically conducted. 

During these times, the animals may have been weighed, the cages may have been 

cleaned, or the instruments was calibrate; therefore one or both of the pumps may have 

been turned off, resulting an over or underestimation of the PM concentration in the 

chamber. The aerosols are sampled at a rate of 1 LPM through a thermally insulated 3/8” 

stainless steel tubing and then passed through a series of Nafion driers to reduce the 

relative humidity of the aerosols to less than 10%. The sheath flow rate was maintained 

at 3 LPM. Then the polydispersed aerosols were brought to charge equilibrium and 

passed through the DMA and CPC to determine the particle size distribution between 3 

and 400 nm in the ambient air. Particle size distributions are acquired approximately 

every five minutes, and the data is averaged and recorded every 15 minutes. The particle 

size distributions shown in Figure 35 demonstrate the relative stability of the mass 

concentration over an hour’s time. The median particle size for different PM species can 
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be varied in the range from a few nanometers to few hundred nanometers by adjusting 

Figure 35. The number concentration distributions and the calculated total mass (µg m-3) 
of ammonium sulfate measured by a Differential Mobility Analyzer A-B) in the chamber 
and C-D) in the ambient room air. The scans were measured on various days throughout 
the experiment. The red points indicate the times when daily animal care was performed, 
and the blue dots indicate the time when machine maintenance or calibration was 
typically conducted. 
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the particle formation conditions. Using the known effective densities of the pollutant 

aerosols, i.e. 1.77 g cm-3 for ammonium sulfate, and number size distributions, the mass 

concentration was determined by the following equation:  

Mass  Concentration =
1
6   x  dN  x  π  x  𝐷

!  x  ƿ!""  x  ∆𝐷
!""!"

!  !"
 

where dN is the total concentration, D is the particle diameter, and ƿ!"" is the effective 

density.  

Given that the atomizer may increase the number of charges on the particles 

introduced into the polluted chamber, the experimental system may result in enhanced 

deposition in the lungs of the rats compared to natural aerosol. However, it is difficult to 

estimate the significance of this enhancement. Experimental studies indicate an 

enhanced deposition of about 12% in the tracheobronchial region and 23% in the 

alveolar region for 0.3 µm particles during normal breathing. However this deposition 

enhancement was dramatically different for light breathing, exercise breathing, and 

sitting breathing [Majid et al., 2012]. For singly charged 20-nm particles deposition 

efficiency was found to about 3 times that for neutralized aerosols and 5 times the 

deposited for zero-charged particles, although, these values are not directly applicable to 

our scenario because ambient atmospheric particles are frequently charged [Cohen et al., 

1998]. 
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c) Methodology for Animal Experiments 

This project is intended to be the foundational experiment for a series of more 

complex combination of pollutants. In this base scenario, the animals were exposed to 

pure ammonium sulfate aerosols, which have a low toxicity [Schlesinger, 1984], in order 

to assess the influence of aerosols processing by the animals, without the confounding 

toxic effects that might occur due to exposure to the compounds themselves, such as by 

black carbons which contain polycyclic aromatic hydrocarbons (PAHs) that have been 

highly correlated with the development of cancer. In each experiment, pregnant Sprague-

Dawley rats (4 control, 4 polluted per experiment) were individually housed and 

continuously exposed to ambient air with and without added ammonium sulfate aerosols. 

Sprague-Dawley rats are fast growing, docile, and easy to handle albino outbred rats that 

are ideal for general multipurpose model, safety and efficacy testing, aging, nutrition, 

diet-induced obesity, oncology, toxicology, and surgical models. The gestation length of 

healthy Sprague-Dawley rats is 21 days, and the average litter size is 11 pups. 

 On the first day of the experiment, 70 day old female rats, i.e. dams, were housed 

with age-matched males, i.e. bucks, until a vaginal plug was observed, which indicates 

that mating has transpired. Mating generally occurs within 24 hours of introducing a 

dam to a buck. Once the plug was observed, the dam was immediately placed into one of 

the chambers. The dams remained in the chambers from prenatal day 0 – 18, where day 

0 indicates the day of mating. Throughout this period, the dams were weighed on 

prenatal day 0, 6, 12, and 18, and their water and food consumption was monitored. 

Between day 0 of pregnancy and weaning, dams had free access to food and drinking 
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water. On prenatal day 19, the dams were removed from the atmospheric chambers and 

housed individually in standard cages until parturition to ensure that none of the dams 

gave birth within the experimental chambers. At birth, i.e. postnatal day 0, the rat litters 

were reduced to eight rats, four males and four females. The other offspring were 

weighed, euthanized, and their tissues snap frozen in liquid nitrogen for further analysis. 

The remaining eight pups from each litter were reared on their dam until weaning. At 

postnatal day 21, the four rat pups (two males and two females) and dams were weighed, 

sacrificed, and their tissues were snap frozen in liquid nitrogen or fixed in 

paraformaldehyde for further analysis. The remaining 4 pups began either a low or a 

high fat diet for a 12-week period [Jobgen et al., 2009]. At postnatal day 105, these pups 

were weighed, sacrificed, and their tissues snap frozen in liquid nitrogen or fixed with 

paraformaldehyde for further analysis. The tissues collected at euthanization for analysis 

from the offspring pups included: heart, skeletal muscle, kidney, spleen, small intestine, 

brain, lung, testis, liver, ovary, white adipose, uterus, brown adipose, and trachea. The 

tissues were stained with hematoxylin and eosin for initial analysis to determine 

abnormalities and variations in histology in the exposed versus control rats. Portions of 

all organs were snap frozen in liquid nitrogen and a portion preserved in 4% 

paraformaldehyde for future studies that are beyond the scope of the current project. 

 The gestation length, litter size, average and total pup size, and sex ratio were 

assessed throughout the animal exposure studies. Treatment, sex, and treatment by sex 

interactions were also analyzed. All organ weights were adjusted using pup weight as a 

covariate in the model. Throughout the experiments clean lab coats, shoe covers, and a 
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hair bonnet were worn in all hallways, housing rooms, and animal procedure rooms in 

order to keep the animals free from exposure to disease, bacteria, viruses, and other 

pathogens. 

 

iii) Results and Discussion 

 While the bulk of the experimental data and conclusions will be included in the 

dissertations of the graduate science students in the Departments of Animal Science and 

Veterinary Integrative Biosciences, I will briefly highlight the conclusions to establish 

the validity of the methodology. Our analysis revealed that maternal exposure to 

pollutants does negatively affect the offspring. In total, 326 dissections (20 dams, 306 

offspring) were completed. The results indicate that in utero exposure to ammonium 

sulfate aerosols during gestation altered the developmental trajectory of offspring, with 

perturbation that were still evident on postnatal day 105. At birth, differences in the 

gestation length, birth weight, and in the development of several major vital organs, 

including the brain, liver, kidney, and spleen, were discernible. Furthermore, the female 

offspring were more adversely affected by the high aerosol loading with further 

discernible differences in the stomach and in the distribution of body fat.  
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CHAPTER V  

CAN WE UTILIZE GAS PHASE CHEMISTRY MODELS TO FURTHER OUR 

UNDERSTANDING OF ATMOSPHERIC AEROSOLS? ELUCIDATION OF THE 

GAS PHASE CHEMISTRY IN BEIJING, CHINA 

i) Introduction 

It has become evident that the mechanism of haze formation in Beijing is unique 

from other regions of the world; however, the gas phase chemistry in China, particularly 

the chemistry that leads to aerosol formation, has yet to be completely reproduced in 

chemical models. Several previous modeling endeavors in Beijing have concluded that 

the sources leading to aerosol formation must be underestimated or missing because 

models have frequently failed to reproduce the temporal trend and concentration of some 

gas phase species [Fu et al., 2009; Lu et al., 2013]. As we have shown, gaseous 

emissions are largely responsible for the elevated aerosol nucleation potential and the 

efficient and prolonged secondary aerosol formation that leads to the PM2.5 haze events. 

Laboratory studies have revealed that SOA formation is highly dependent on a wide 

range of experimental conditions, including NOX concentration, particle acidity, the 

concentration of pre-existing aerosols, and oxidation rate [Kroll and Seinfeld, 2008]. 

Several laboratory and field studies have also shown that organic peroxy radicals (RO2) 

and O3 can govern the formation of aerosols [Finlayson-Pitts and Pitts, 2000; Zhang et 

al., 2003; Li et al., 2007; Kroll and Seinfeld, 2008; Orlando and Tyndall, 2012]. RO2, 

formed by the oxidation of VOCs, can control the oxidative capacity of the atmosphere 

and is a dominant removal pathway of several pollutants. However, of foremost 
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importance is the hydroxyl radical (OH). OH is a highly reactive, short-lived species that 

is often labeled the ‘detergent’ or ‘vacuum cleaner’ of the atmosphere because it is 

frequently the first step in the removal process of atmospheric pollutants [Levy, 1974; 

Forster et al., 2007]. OH is so efficient at removing atmospheric species that the lifetime 

of most molecules can easily be estimated by solely using its reaction rate with OH. 

However measurements of OH can be difficult because concentrations can be extremely 

variable over short spatial and time scales and are dependent on the time of day, 

elevation, season, and geographical location.  

Radical chemistry, particularly through oxidation reactions with OH, greatly 

influences the concentration and distribution of many atmospheric species, including 

VOCs, NOx, and SO2, which all undergo gas-to-particle conversion processes; therefore, 

in order to accurately model the SOA formation, the radical chemistry must first be well 

characterized. With the ultimate goal of elucidating the chemistry that leads to the 

production of aerosols, an analysis of the fundamental radical chemistry and gas phase 

species has been conducted for the period between 26 and 28 September 2013. This 

period was selected in order to compare the concentration and trends of the gas phase 

species during the time prior to, during, and after the rapid production of PM2.5. The 

analyses were conducted by employing The National Center for Atmospheric Research’s 

(NCAR) Master Mechanism box model.  
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ii) The NCAR Master Mechanism Model  

 The Master Mechanism version 2.4 (originally developed by Madronich and 

Calvert [1989] and updated in March 2015) is an explicit and detailed gas phase 

chemical mechanism combined with a box model solver and a coupled online photolysis 

rate calculator. The model can simulate approximately 2000 species and 5000 gas phase 

reactions. If available, direct kinetic or mechanistic measurements are utilized, but for 

reactions that have yet to be directly measured, similar and analogy processes are used to 

derive both the product identity and rate constants [Madronich and Calvert, 1989]. The 

photolysis coefficients were calculated using the Tropospheric Ultraviolet Visible Model 

(TUV, version 5.0 updated November 2010) [Madronich et al., 2011]. TUV is a robust 

one dimensional radiative transfer model program that calculates the spectral irradiance, 

the spectral actinic flux, photo-dissociation coefficients, and biologically effective 

irradiance in the 280 - 420 nm wavelength range in 1 nm intervals. The radiation is 

calculated using a 2-stream delta-Eddington code, and values are the sum of the direct 

sun and diffuse radiation [Madronich et al., 2011]. The Master Mechanism has been 

previously used to model and compare hydrogen peroxide (H2O2), O3, carbon monoxide 

(CO), SO2, NO, NO2, benzene, toluene, ethylbenzene and xylene with observations from 

various field studies [Acker et al., 2008; Apel et al., 2010; Pehnec et al., 2010; Liang et 

al., 2013]. 

An atmospheric box model provides insight into the temporal behavior of 

atmospheric species in idealized and controlled conditions. Four main processes control 

the concentrations of chemical species at a given location: emissions, chemical reactions, 
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meteorological processes, and deposition (either by dry deposition or scavenging by 

atmospheric hydrometeors). Chemical species are emitted to the atmosphere by a variety 

of natural (the biosphere, volcanoes, soil, bacteria, etc.) and anthropogenic (vehicle 

exhaust, biomass burning, industrial processes, etc.) sources. Even though the sources 

tend to be similar in all urban environments, the emission profiles can differ dramatically 

between urban centers due to the differences in the vehicle fleet, industrial processes, 

and governmental regulations [Liu et al., 2007; Levy et al., 2013; Guo et al., 2014; Levy 

et al., 2014a; Zhang et al., 2015b]. The Master Mechanism allows the user to modify the 

emission concentrations and diurnal profiles, set the temperature, pressure, dilution, 

cloud fraction, and boundary layer height as a function of time, incorporate deposition, 

Initial Conditions Emissions Background 
Concentrations 

 
NCAR Master Mechanism 

  

Meteorological Profiles   Species Constraint  PBL Profile  Dilution Profile 

All reaction rates at the end of 
the simulation and reaction rates 

as a function of time for 
requested species 

A summary file of initial, 
average, and final 

concentrations of all species 

Concentration (molecules cm-3) 
as a function of time for all 

requested species 

Figure 36. An overview of the NCAR Master Mechanism box model. 
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establish background and initial concentrations, and constrain any species of interest 

with respect to time (Figure 36). 

 

iii) Adaptation of the Model to Beijing, China  

a) Emission and Meteorological Profiles 

In Figure 37A-E the input profiles of the meteorological parameters are 

displayed. The temperature profile was adapted from the in situ measurements at the 

meteorological station at PKU. The H2O profile was incorporated to reproduce the 

increasing relative humidity throughout the haze cycle, which may be an important 

component due to the enhancement of multiphase chemistry and aerosol formation at 

high relative humidity [Jia and Xu, 2014; Zhang et al., 2015a].Vertical and horizontal 

transports are somewhat crudely accounted for by variations in the PBL height that 

allows for time-varying exchange of PBL gases with those in the residual layer above, 

and horizontal ventilation, respectively. The ventilation rate is derived from the wind 

speed and size of the modeled location. The wind was also obtained from measurements 

at the PKU meteorological station, and Beijing was considered to be 50 km wide, i.e. the 

approximate distance between the east and west side of the 6th Ring Road. The height of 

the PBL is a critical parameter because it strongly influences the dispersion of air 

pollutants. A low PBL height can trap the pollutants in the surface layer, producing 

stagnant conditions that can lead to the accumulation of pollutants, whereas a high PBL 

will provide vertical ventilation and dilution of the mass concentration. The variation in 

the PBL height is driven by wind speed and the thermal elements (i.e. air temperature 
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and solar intensity), which heat the surface and produce rising air and atmospheric 

instability. A low wind speed reduces entrainment and restricts the enhancement of the 

PBL. Previous studies in Beijing have demonstrated the variation of the PBL height as a 

function of the pollution cycle and time of day on the basis of satellite and LIDAR (light 

detection and ranging) observations [Liu et al., 2013; Quan et al., 2013]. The averaged 

PBL height was about 1 – 1.3 km during noon/afternoon-time, and 0.2 – 0.3 km during 

the nighttime. During the clean period, the PBL was higher during the afternoon hours 

(for example, 1.5 km on 23 September 2011), but as the pollution cycle progressed the 

PBL development became suppressed (0.75 km on 25 September 2011) [Liu et al., 

2013]. This PBL progression was also examined in a previous chapter (see Figures 28 
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Figure 37. A-E) The temperature, H2O (i.e. relative humidity), wind speed (used to 
estimate horizontal dilution), PBL height, and cloud factor profiles for the three days 
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NO) sources. H) Seasonal emission profile for NOx. 
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and 31). The PBL suppression is due, in part, to a positive feedback cycle. The PBL 

development is dependent on the amount of solar radiation that reaches the surface, but 

as the aerosols mass begins to accumulate, the transmission of solar radiation decreases. 

As the PBL temperature decreases due to the declining solar radiation, the PBL height 

decreases, which further compresses and accumulates the aerosol mass. Measurements 

of the heat flux directly observed this process at the surface during heavy pollution 

[Quan et al., 2013]. Furthermore, as the surface temperature cools, the relative humidity 

increases, which can enhance SOA formation [Zhang et al., 2015a]. A strong external 

force such as high wind or a frontal system is needed to interrupt the further 

development of this extreme air pollution episode [Liu et al., 2013; Quan et al., 2013]. 

Using this information and PBL data from days with similar temperatures and mass 

concentrations, the profile shown is Figure 37D was constructed.  

A cloud factor was incorporated in the model to mimic the weakened 

photochemical activity due to the dimming effect by the high aerosol loading during 

heavily polluted periods [Zheng et al., 2014]. In the model, a cloud factor of zero 

indicates a night with no moon, and a value of unity indicates full sunlight. Ground 

based JNO2 measurements obtained during the field campaign revealed that the photolysis 

rate decreased by 23 and 63% on the second and third day, respectively, compared to the 

clean day. Therefore, we assumed that photolysis was suppressed by 15 and 41% in the 

model (a 35% reduction from the ground based measurements) since the PM2.5 mass 

concentration will be denser at the surface than in the middle of the PBL, i.e. the middle 

of the PBL experiences only about half of the reduction observed at the surface. 
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b) Emission Inventory 

In Figure 37F-H an example of a daily biogenic, daily anthropogenic, and a 

seasonal anthropogenic emission profile is depicted. Biogenic emissions are closely 

associated with the solar cycle, with a peak near noon; whereas, anthropogenic 

emissions peak during the morning and evening rush hours due to increased traffic, but 

are generally elevated throughout the day. Establishing an appropriate emission  

inventory can be problematic since emissions are distinct for each urban center and it is 

not uncommon for specific sources to be underestimated which can create discrepancies 

when attempting to simulate the urban and regional chemistry [Liu et al., 2007].We 

employed a combination of the data from the Multi-resolution Emission Inventory for 

China (MEIC) and from preceding publications by Zhang et al. [2009], Zhou et al. 

[2010], and Wang et al. [2014c] to establish our base emission inventory. The black 

carbon, carbon monoxide, nitrogen oxides, organic carbon, PM10, PM2.5, and sulfur 

dioxide data (Table 4) were acquired through the MEIC website [MEIC, 2015]. 

Emission inventories are typically were presented in Gg year-1, so in order to convert to 

molec s-1 cm-2, Beijing was assumed to be 2360 km2. The MEIC, developed by Tsinghua 

University, is a bottom-up air pollutant emission inventory with more than 700 emission 

sources and production categories. This inventory accounts for over 800 anthropogenic 

sources, which are aggregated to four sectors (power, industry, residential, and 

transportation). The speciated VOC data in Tables 4 and 5 were obtained from Wang et 

al. [2014c], in which online observations of VOCs in Beijing from July 2009 to January 

2012 were presented. In order to appropriately model the chemistry during our selected  
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Species MM Name Emission Rate 
Gg/yr molec s-1 cm-2 

Black Carbon BLKC 10.25 1.11E-11 
Carbon Monoxide CO 971.20 2.53E+13 
Nitrogen Oxides NOx 155.86 3.87E+12 
Organic Carbon ORGC 8.64 8.28E-12 
PM10 PM10 72.53 9.11E-11 
PM2.5 PM25 51.26 6.25E-11 
Sulfur Dioxide SO2 160.96 1.89E+12 
Ethane C2H6 21.94 5.31E+11 
Propane C3H8 22.21 3.67E+11 
i-Butane c042 16.03 2.00E+11 
n-Butane c041 16.15 2.03E+11 
i-Pentane c053 15.89 1.61E+11 
n-Pentane c052 9.5 9.58E+10 
2,3-Dimethylbutane c062 41.43 3.50E+11 
Ethylene C2H4 23.86 6.19E+11 
Propene C3H6 10.39 1.79E+11 
trans-2-Butene u041 9.31 1.20E+11 
1-Butene u043 3.88 5.03E+10 
Isoprene uu51 2.24 2.40E+10 
Benzene C6H6 15 1.40E+11 
Toluene r071 27.93 2.21E+11 
m,p-Xylene r081 55.71 3.82E+11 
Methanol o011 58.3 1.32E+12 
Formaldehyde CH2O 14.52 3.52E+11 
Acetaldehyde d021 8.73 1.45E+11 
Propanal d031 0.96 1.20E+10 
n-Butanal d041 0.49 4.94E+09 
n-Pentanal d051 0.52 4.40E+09 
n-Hexanal d061 3.36 2.44E+10 
Acetone k031 19.07 2.40E+11 
Methylethylketone k041 5.97 6.03E+10 
Acetylene C2H2 15.06 4.21E+11 
    

Table 4. Emission inventory used in the Master Mechanism. The black carbon, carbon 
monoxide, nitrogen oxides, organic carbon, PM10, PM2.5, and sulfur dioxide data were 
acquired through the MEIC website [MEIC, 2015], and the speciated VOC data were 
obtained from Wang et al. [2014c]. The second column indicates the naming system 
used by the Master Mechanism box model. 
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Species MM 
Name Gg/yr Species MM 

Name Gg/yr 

Alkanes  143.11 Alkenes Cont.   
ethane C2H6 21.94 1,3-butadiene uu51 1.67 

propane C3H8 22.21 1-pentene u041 0.88 
i-butane c042 16.03 trans-2-pentene u041 1.11 
n-butane c041 16.15 cis-2-pentene u041 1.05 

cyclopentane c053 0.84 1-hexene u041 1.14 
i-pentane c053 15.05 isoprene uu51 0.57 
n-pentane c052 9.5 Aromatics  98.65 

2,2-dimethylbutane c062 0.37 benzene C6H6 15 
2,3-dimethylbutane c062 1.58 toluene r071 27.93 

2-methylpentane c062 6.23 ethylbenzene r081 11.63 
3-methylpentane c062 4.95 m,p-xylene r081 18.74 

n-hexane c062 6.78 o-xylene r081 7.01 
2,4-dimethylpentane c062 0.38 styrene r081 5.12 
methylcyclopentane c062 3.16 i-propylbenzene r081 0.46 

2-methylhexane c062 1.81 n-propylbenzene r081 0.77 
cyclohexane c062 1.52 m-ethyltoluene r081 2.85 

2,3-dimethylpentane c062 1.01 p-ethyltoluene r081 1.15 

3-methylhexane c062 2.64 1,3,5-
trimethylbenzene r081 1.31 

2,2,4-trimethylpentane c062 0.24 o-ethyltoluene r081 1.1 

n-heptane c062 2.62 1,2,4-
trimethylbenzene r081 4.22 

methylcyclohexane c062 1.25 1,2,3-
trimethylbenzene r081 1.35 

2,3,4-trimethylpentane c062 0.11 OVOCs  111.92 
2-methylheptane c062 1 Methanol o011 58.3 
3-methylheptane c062 0.73 Formaldehyde CH2O 14.52 

n-octane c062 1.74 Acetaldehyde d021 8.73 
n-nonane c062 1.97 Propanal d031 0.96 
n-decane c062 1.34 n-Butanal d041 0.49 
Alkenes  50.35 n-Pentanal d051 0.52 
ethylene C2H4 23.86 n-Hexanal d061 3.36 
Propene C3H6 10.39 Acetone k031 19.07 

trans-2-butene u041 2.81 Methylethylketone k041 5.97 
1-butene u043 3.88 Others  15.06 

cis-2-butene u041 2.32 Acetylene C2H2 15.06 
 
Table 5. Detailed emission inventory of the non-methane hydrocarbons from Wang et 
al. [2014c]. The second column indicates the naming system used by the Master 
Mechanism. Similar compounds were aggregated (shown in red) to reduce the 
number of species. 
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period, the values were fitted to the seasonal (not shown) and diurnal profiles exhibited 

in Figure 37, which were obtained from Zhang et al. [2009] and Zhou et al. [2010], 

respectively. Since the box model does not have the capacity to simulate all known 

urban VOCs, some species were aggregated in the emission inventory as indicated by 

the red font.  

 The emission inventory is representative of the Beijing airshed, and therefore it 

does not characterize the emission at every location, but the region as a whole. In order 

to best reproduce the observations from the model period, a sensitivity study of the NOX 

and VOC concentrations was conducted for ozone, NOX, toluene, Ox, OH, and HO2, as 

shown in Figure 38. The additional HONO chemistry discussed in the following section 

was included to generate these values. The model-generated peak values were 

determined as a function of NOX and VOC emissions; where NOX = 1 and VOCs = 1 are 

the suggested concentrations of 3.34 x 1017 and 5.38 x 1017 molecules day-1 cm-2, 

respectively, and NOX = 0.5 and VOCs = 0.5 is half of the suggested values. The plus 

signs indicate where the model-generated peak values reasonably match the measured 

values (i.e. 92 ppb of NOx, 5 ppb of toluene, 57 ppt of HO2, 7.5 x 106 molecules cm-3 of 

OH, 31.7 ppb of Ox, and 100 ppb of Ozone). When we utilized the values as suggested, 

the simulated NOx, VOC, and Ox concentrations were overestimated and OH and HO2 

concentrations were significantly underestimated. Therefore, we modified the emission 

inventory to attempt to reconcile these disparities. After several iterations, it was 

determined that the best combination was NOX = 0.7 (i.e. 2.33 x 1017 molecules day-1 

cm-2) and VOC = 0.5 (i.e. 2.69 x 1017 molecules day-1 cm-2), which indicates that the 



 

 105 

emissions ratios of NOX and VOCs are comparable at the PKU site to the Beijing 

airshed, but the overall concentration is lower. This may be due to the fact that the PKU 

site is located on the fourth ring in northwest Beijing, but still is chiefly influenced by 

local vehicle emissions. 

 

c) The Necessity of Nitrous Acid Chemistry in Beijing 

Initial model simulations revealed that the Master Mechanism was unable to 

satisfactorily reproduce the measurements, as many species that participate in radical 

chemistry were consistently underestimated (Figure 38). As the Master Mechanism has 
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Figure 38. The model-generated peak values determined as a function of NOX and VOC 
emissions for 27 September, where NOX = 1 and VOCs = 1 is the concentrations 
suggested values by the MEIC [2015] (3.34 x 1017 molecules day-1 cm-2) and Wang et al. 
[2014c] (5.38 x 1017 molecules day-1 cm-2) emissions inventories, respectively, The plus 
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been successfully used to simulate radical chemistry in other major urban centers such as 

Mexico City, Mexico; Zagreb, Croatia; and Shanghai, China [Acker et al., 2008; Geng et 

al., 2008; Apel et al., 2010], there must exist a missing radical source or ancillary 

chemistry in Beijing that is not properly captured by the base reaction scheme. Recent 

studies have established that nitrous acid (HONO) may play a greater role in oxidation 

chemistry and ozone production than was previously thought, and potentially up to 30% 

of primary OH radical production can be attributed to the photolysis of HONO [Yang et 

al., 2014]. The photolysis of HONO has been found to be a significant HOx source in the 

early morning and midday, and increased overnight HONO concentrations have been 

shown to noticeably enhance the following daytime O3 concentration [Finlayson-Pitts 

and Pitts, 2000; Ren et al., 2010; 2013; Levy et al., 2014b]. However, present knowledge 

of HONO sources remains incomplete, as the dominant gas-phase HONO source in 

traditional chemistry frequently fails to explain the high HONO concentrations observed 

in many cities [Liu et al., 2014; Li et al., 2015]. Furthermore, several measurements have 

revealed HONO trends that could not be attributed to traditional HONO chemistry. In 

Beijing, photolysis of HONO from an unknown heterogeneous source was found to be 

the predominant primary OH source at 2.2 ppb h−1 [Liu et al., 2012]. Measurements of 

ambient OH and HO2 radicals by laser induced fluorescence during the Campaigns of 

Air Quality Research in Beijing and Surrounding Region (CAREBeijing 2006) field 

campaign also indicated a missing primary HOx source (~ 3 ppb h−1) during high NOX 

conditions when a plume from Beijing was encountered [Lu et al., 2013]. HONO 

measurements from CAREBeijing2006 determined that the average diurnal HONO 
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concentration varied from 0.33 to 1.2 ppb, and the net OH production rate from HONO 

was 7.1 × 106 molecule cm-3 s-1, 2.7 times higher than from O3 photolysis. Furthermore, 

an unknown HONO source, with an average rate of 7.3 × 106 molecule cm-3 s-1 that 

peaked near noon, was identified, which produced four times more HONO than the 

reaction of NO with OH. An analysis of the correlations between the unknown source 

and other known HONO precursor mechanisms indicated that NO2 was not likely the 

major precursor of the missing HONO source [Yang et al., 2014]. Another set of HONO 

measurements were conducted in Beijing during the following year [Spataro et al., 

2013], which also identified an unknown daytime HONO signature that produced an 

average 2.58 ppb h− 1 of HONO during the summer months. The daily average HONO 

concentrations were in the range of 0.03 – 2.91 ppb, and no temporal variation between 

the winter and summer seasons were observed. However, the trends in the HONO 

concentration were largely affected by meteorological conditions. Many proposed 

HONO formation pathways have been suggested to identify the mechanism of theses 

unknown HONO concentrations, including the conversion of NO2 through the 

heterogeneous reaction on wet surfaces in the absence of light, the photolysis of 

deposited HNO3, missing gas-phase chemistry reactions, direct emission by soils, and 

reactions occurring on aerosol surfaces [Ammann et al., 1998; Finlayson-Pitts et al., 

2003; Kleffmann et al., 2003; Zhou et al., 2003; Stemmler et al., 2006; Khalizov et al., 

2010; Su et al., 2011; Oswald et al., 2013; Liu et al., 2014; Michoud et al., 2014; Li et 

al., 2015].  
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Until recently, NOX was believed to be permanently removed from the 

atmosphere by HNO3 formation and deposition; however, experimental and modeling 

results indicate that HNO3 on ground surfaces can be photolyzed to HONO and NOx. 

Furthermore, the HNO3 photolysis rate constants on surfaces are 1 - 2 orders of 

magnitude higher than those in the gas and aqueous phases [Kleffmann et al., 2003; Gao, 

2011; Li et al., 2015]. During the MEGAPOLI summer and winter field campaigns at 

SIRTA observatory in Paris, a major HONO source of unknown origin exhibited a bell-

shaped diurnal profile with a maximum production around noon that produced up to 0.25 

ppb h−1, resulting in 1.7 ppb of unidentified HONO [Michoud et al., 2014]. Concurrent 

measurements indicated that this missing source was likely photolytic and might be 

caused by heterogeneous surface reactions involving water content available on the 

ground. 

Given the high aerosol loading and abundance of NOx, it is probable that 

heterogeneous reactions would be enhanced in this environment. Concurrent 

observations of HONO, NO2, and aerosols in Mexico City (Mexico), Houston (USA), 

and Xi’an (China) revealed that NO2 heterogeneous reactions with semi-volatile 

organics from diesel vehicle emissions were essential for the nighttime accumulation of 

HONO (typically accounting for 75-90% of HONO formation); while NO2 

heterogeneous reaction on ground surfaces and with semi-volatile organics and the 

homogeneous reaction of NO reaction with OH chiefly contributed to the daytime 

HONO concentration [Li et al., 2015]. In Kathmandu, high ratios of chemically formed 

secondary HONO to NO2 were found, indicating unexpectedly efficient chemical 
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conversion of NO2 to HONO. The authors proposed that this was due to high humidity, a 

strong and low inversion layer at night, and high aerosol loading, which is similar to 

meteorological conditions during haze events in Beijing [Yu et al., 2009]. In Houston, 

observations have indicated that the heterogeneous conversion of HNO3 on the surface 

of POAs is a significant HONO pathway, with an average of 0.97 ppb per event and a 

maximum increase of 2.2 ppb over 4 hours [Ziemba et al., 2010]. Furthermore, on the 

basis of WRF–Chem modeling, heterogeneous reactions account for 59% of the 

simulated HONO concentrations in the Beijing, Tianjin, and Hebei Province [Li et al., 

2011] 

Therefore, the HONO chemistry in the Master Mechanism was expanded to 

incorporate several of the proposed mechanisms to investigate the impact of HONO on 

radical chemistry in Beijing. The base HONO reactions set utilized in the Master 

Mechanism chemical scheme includes:  

(1) OH + NO + (M) > HONO + (M) 4.80 x 10-12 cm3 molecule-1 s-1 

(2) HONO + hv > OH + NO   2.44 x 10-3 s-1 

(3) HONO + O3 > HNO3 + O2  5.00 x 10-19 cm3 molecule-1 s-1  

(4) HONO + NO3 > HNO3 + NO2  5.00 x 10-14 cm3 molecule-1 s-1  

(5) HONO + OH > H2O + NO2  4.50 x 10-12 cm3 molecule-1 s-1 

Five additional reaction proposed in the literature [Calvert et al., 1994; Ziemba et al., 

2010; Yu et al., 2009; Gao, 2011; Liu et al., 2014; Michoud et al., 2014; Li et al., 2015] 

were then added to the added to the chemical scheme: 

(6) HONO + HONO > H2O + NO2 + NO 9.50 x 10-19 cm3 molecule-1 s-1 
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(7) HO2 + NO2 > HONO + O2  8.00 x 10-15 cm3 molecule-1 s-1 

(8) H2O + NO + NO2 > HONO + HONO 6.30 x 10-38 cm3 molecule-1 s-1 

(9) HNO3 + hv > HONO + O3P + HNO3 7.07 x 10-5 s-1 

(10) PM2.5 + NO2 > HONO + PM2.5     3.00 x 10-18 cm3 molecule-1 s-1 

The photolysis rate constants shown are the peak daytime value, but will vary as 

function of sunlight. Reactions 6 - 8 are processes that have been observed to occur in 

the atmosphere in polluted urban environments [Calvert et al., 1994]; whereas, 

Reactions 9 and 10 are essentially a proxy for reactions occurring on ground and aerosol 

surfaces, respectively. These are not gas phase reactions, but this model was designed to 

simulate gas phase species, so it cannot directly account for chemical reactions that 

occur on surfaces. In Reaction 9, HNO3 is both created and destroyed because HONO is 

a byproduct of the photolysis of deposited HNO3. This HNO3 has already been removed 

from the atmosphere so the reaction does not modify the existing HNO3 concentration. 

However, HONO is added to the system as it is produced from the deposited HNO3. As 

the concentration of HNO3 increases, both its deposition and the subsequent HONO 

concentration produced by this mechanism would be enhanced. Aerosols provide 

available surface areas for multi-phase reactions, and both laboratory and field 

measurements have demonstrated that as the aerosol mass load increases, the HONO 

concentration correspondingly increases [Ziemba et al., 2008; Yu et al., 2009; Liu et al., 

2014; Yang et al., 2014]. The PM2.5 mass concentration was manually constrained in the 

model to reproduce the field measurements during the measurement period (shown in a 

previous chapter); therefore, as the pollution cycle progresses, Reaction 10 would 
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become a more significant HONO source. The reaction rates for both (9) and (10) were 

created by reproducing the observed HONO concentration and temporal trends as shown 

in Figure 39. In Figure 39A, an analysis of the total concentration and temporal trends of 

the newly incorporated sources compared to the ‘base’ case, which only utilizes 

Figure 39. A) Source optimization of the various HONO sources in the MM Model. 
Days 0 - 2 correspond to 26 - 28 September 2013, respectively. The ‘base’ case utilized 
only the standard HONO chemistry provided in the model (1 - 5). The ‘chemistry’ case 
included only Reactions 1 - 8. The ‘aerosol’ run utilized the additional ‘chemistry’ 
reactions and HONO created by reactions on the surface of aerosols (1 - 8, 10). The 
‘HNO3 photolysis’ case included the additional ‘chemistry’ reactions and HONO 
produced through the photolysis of HNO3 on surfaces (1 - 9). B) The total concentration 
produced through the three pathways. C) The simulation incorporating all reactions is 
compared to HONO measurements that were obtained in 2006 [Yang et al., 2014] and 
2007 [Spataro et al., 2013] in the Beijing province. 
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Reactions 1 - 5, is shown. The ‘chemistry’ case includes the additional homogenous and 

heterogeneous chemical reactions (i.e. Reactions 1 - 8). The ‘aerosol’ case includes 

Reactions 1- 8 and HONO created by reactions on the surface of aerosols (i.e. Reaction 

10). The ‘HNO3 Photolysis’ case includes Reactions 1 - 8 and HONO produced through 

the photolysis of HNO3 on surfaces (i.e. Reactions 9). All sources were incorporated for 

the ‘Combination’ case (i.e. Reactions 1 - 10). In Figure 39B, the total concentration 

produced through the three pathways is shown. These concentrations were determined 

by adding a tracer in the model so it only reflects the concentration of HONO produced 

through the various mechanisms and not the removal. This is why the peak concentration 

on day 1 is ~ 2 ppb in Figure 38A compared to ~ 15 ppb in Figure 38B. The total 

concentration in Figure 38B was influenced by other model parameter (i.e., dilution due 

to wind and variations in the PBL height); hence, the apparent decrease in the 

concentration during the afternoon of day 1 and 2. In Figure 39C, the ‘Combined’ case, 

which was used in the modeling experiments, is not compared to HONO measurements 

that were obtained in 2006 [Yang et al., 2014] and 2007 [Spataro et al., 2013]. It is 

important to note that these measurements were conducted during different months 

(August and early September) within the Beijing province; therefore, these values are 

only exhibited to suggest an order of magnitude and the basic diurnal trends and cannot 

be directly compared. It is evident that the model did not capture the diurnal HONO 

trend with the base reaction set, but adding the first three additional reactions 

significantly improved the model simulation (i.e. a reasonable temporal trend). However, 

the ‘chemistry’ case failed to capture the lesser afternoon peaks and the overall 
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concentration was too low, which was resolved by including the photolysis of HNO3. 

The HONO concentration did not increase as the pollution cycle progressed in the 

‘Base’, ‘Chemistry’, or ‘HNO3 photolysis’ simulation, as has been observed. For 

example, during a moderately polluted period (day 1, 132 µg m-3) in 2006, the HONO 

concentration was 0.97 ppb at midnight, which increased to 2.75 ppb during the severely 

polluted period at midnight (day 2, 300 µg m-3). The pollution cycle was evident only 

after the heterogeneous conversion of NOX to HONO on aerosol surfaces was included. 

The total production of HONO was similar between the clean and polluted periods, but 

the dominant mechanism changed as the pollution cycle progressed (Figure 38B).  

Figure 40. The temporal variations of various gas phase species when the expanded 
HONO chemistry is included (shown in blue) or excluded (shown in red) determined by 
the NCAR Master mechanism. Days 0-2 correspond to 26-28 September 2013, 
respectively.  
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A comparison of the concentration of HONO, NOx, OH, and O3 during the base 

case (Reactions 1 - 5) with the expanded HONO chemistry set (Reactions 1 - 10) is 

shown in Figure 40. The base and expanded NOX were similar on day 0, but as the haze 

event began to intensify, a noticeable difference could be observed as NOX was more 

efficiently converted into HONO. In the base case, the OH concentration decreased as 

the pollution cycle progressed; however, field studies have demonstrated that the OH 

concentration can remain fairly constant or slightly increase as the PM2.5 concentration 

increases [Lu et al., 2013]. The OH concentration was enhanced in the expanded scheme 

by 27, 71, and 60% on days 0 – 2, respectively, which better represents measured OH 

values (4 – 17 × 106 cm−3 in August 2006) [Lu et al., 2013]. The peak ozone 

concentration was enhanced by 15, 18, and 29% on days 0-2, respectively, with the most 

noticeable enhancement occurring between 1 and 6 p.m.  

 

iv) Results and Discussion 

a) Sensitivity Study of the Relationship between NOX and VOC  

In order to understand the oxidation efficiency of the region, a sensitivity study 

of the NOX and VOC ratio was conducted. In Figure 41, the model-generated ozone peak 

values determined as a function of NOX and VOC emissions is exhibited. O3 is 

photochemically formed through a complex set of nonlinear photochemical reactions 

involving free radicals (HOx = OH + HO2), VOCs, and NOX. Depending on the ratio of 

these atmospheric, NOX emissions can lead to the formation or destruction of ozone. The 

instantaneous ozone formation rate is dependent on the ratio of VOC to NOX (VOC/ 
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NOX). At high VOC/NOX ratios, ozone formation is governed by the amount of NOX 

available, known as a “NOX limited” or “VOC saturated” environment [Seinfeld and 

Pandis, 2012]. In this regime, the NOX and ozone concentrations are positively related, 

while ozone is insensitive to variations in the VOC concentration. This occurs when the 

rate of ozone production is NOX limited because the rate of OH production is greater 

than the rate of emission of NOX. The reaction rate of OH with VOCs is faster than its 

reaction with NO. At low VOC/NOX ratios, known as “VOC limited” or “NOX 

saturated” environments, the O3 concentration responds inversely to variations in the 

concentration of NOX, but correspondingly with fluctuations in the VOC concentration. 

In this regime, the production of OH is less than the emission rate of NOX, and ozone 
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Figure 41. The model-generated peak values of ozone (ppb) determined as a function of 
NOX and VOC emissions for 27 September. The circle indicates the base ratio of VOC 
and NOX, and the dashed and solid lines indicate a 50% reduction of VOC and NOX, 
respectively. 
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production is restricted by the availability of VOCs. Here, ozone is most effectively 

reduced by lowering the emissions of VOCs. Between the NOX and VOC limited 

regimes, there exists a transitional region where ozone is nearly equally sensitive to each 

species and relatively insensitive to marginal changes in both NOX and VOC in this 

situation environment [Seinfeld and Pandis, 2012]. Table 6, the emission rates of VOC 

and NOX used in this study and from three other emission inventories are displayed. 

Even though the inventories span different geographical regions (i.e. Beijing proper 

versus the administrative borders of Beijing) and years, the inventories reveal that VOCs 

are emitted at a slightly elevated rate when compared to NOx, with values of the 

VOC/NOX ratio ranging between 1.1 and 1.7. Previous studies have generated 

conflicting conclusions on whether the region is NOX or VOC limited [Xu et al., 2008; 

Wang et al., 2009; Tang et al., 2010; Liu et al., 2012; Chen et al., 2013; Wang et al., 

2014d]. This discrepancy appears to be largely due to the spatial and temporal 

differences of ozone formation chemistry. Many studies have shown that that the 

 Emissions of NOX Emissions of VOCs VOC/NOX Ratio 
This Study 

(Molecules day-1 cm-2) 3.34 x 1017 5.38 x 1017 1.61 

INTEX-B 
(Tonnes/year per 0.5 

degree cell) 
155.86 219.09 1.41 

Zhang et al. [2009] 
(Gg/yr) 327.00 497.00 1.52 

Zhao et al., [2012] 
(x 10,000 T/yr) 30.90 34.60 1.12 

 

Table 6. Comparison of the VOC/NOX ratios 
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formation of O3 is VOC limited in the urban areas of Beijing, while being more sensitive 

to NOX levels in the suburban and downwind areas [Xu et al., 2008; Wang et al., 2009; 

Tang et al., 2010; Wang et al., 2014d]. However Liu et al. [2012] suggested that the 

region is neither NOX nor VOC limited, but in a transition regime where the reduction of 

either NOX or VOCs could result in reduced O3 production. There were conflicted results 

for the specific region where our measurements were conducted: Wang et al. [2009] 

determined that the northern region of Beijing where PKU is located was NOX limited; 

whereas, Shao et al. [2009] indicated that the PKU site was within the VOC limited 

regime. In addition, an ozone weekend effect, i.e. higher concentration of ozone on 

weekends, has been reported in the metropolitan area of Beijing–Tianjin–Hebei [Wang 

et al., 2014d]. The authors suggested that this was due to a minor decrease in the VOC 

concentration and greater decrease in the NOX concentrations on the weekends that lead 

to a higher VOC/NOX ratio. There was also found to be a vertical regime change with 

VOC-limited environment below 1 km and NOX limited environment above [Chen et al., 

2013]. Our results indicate (Figure 38B) that the region is VOC limited, but the ozone 

formation responds more aggressively to perturbations of the NOX concentration. For 

example, if the NOX emission rate was held constant and the VOC emission rate was 

reduced by 50%, the peak ozone concentration would have been on the order of 70 ppb, 

a 29% reduction from the 98.7 ppb during the base case; whereas when the VOC 

emission rate was held constant and the NOX emission rate was reduced by 50%, the 

peak ozone concentration increased to 165.0 ppb, a 67% enhancement from 98.7 ppb. If 
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both emission rates were reduced by 50%, the resultant ozone concentration was 111.3 

ppb.  

 

b) Model Results 

The final model-generated values of the gas phase species determined by the 

NCAR Master Mechanism are shown alongside field measurements in Figure 42. O3, 

Ox, CO, NOX, and JNO2 were measured during the model period (i.e. 26 - 28 September 

2013) at the PKU site; whereas, the toluene and benzene concentrations were measured 

at the PKU site in October 2013. The OH [Lu et al., 2013], HO2 [Lu et al., 2013], and 

HONO [Yang et al., 2014] values were determine on the basis of measurements 

conducted in the Beijing region that were previously published; these values were used 

to recommend an order of magnitude. The peroxy radical (i.e. RO2 + HO2) values are 

compared to the peroxy radical concentration determined by the deviation from the 

photostationary state (PSS) [Cantrell et al., 1997]:  

  PSS =   
k!!
k!"

J!"#  [NO!]
k!!  [NO]

− [O!]  

(11) NO + O3 > NO2 + O2 k1 = (1.4 x 10-12)*exp(-1310/T) cm3 molecule-1 s-1 

(12) NO + HO2 > NO2 + OH  k2 = (3.6 x 10-12)*exp(270/T) cm3 molecule-1 s-1 

Overall, the model was able to capture the temporal trends and concentrations of 

the species. The only exception was the peroxy radical concentration, which failed to 

reproduce both the magnitude and the timing of the peak. The previous measured HO2 

compare reasonably to the PSS calculation, providing validation for the observations. 
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The model was able to effectively capture the daily fluctuation in the CO, NOx, and O3 

concentration, and the cloud factor effectively reproduced the suppressed photolysis rate 

as the pollution cycle progressed. According to supplementary measurements, the model 

also predicted reasonable OH, HONO, and VOC concentrations. Measurements 

conducted between 18 August – 7 September 2006 observed daily concentration maxima 

Figure 42. The temporal variations of various gas phase species (shown in red) 
determined by the NCAR Master mechanism compared to field measurements (black, 
purple, or aqua). A solid black line indicates that the measurements were collected at the 
PKU site. A purple line indicates that the values were reported from by previous 
publications [Lu et al., 2013; Yang et al., 2014]. A dashed line indicates that the 
measurements were not obtained during the model period. The aqua line is the peroxy 
radical concentration determined by the deviation from the photostationary state 
calculation. In the VOC panel, the darker lines indicate toluene and the lighter shades 
indicate benzene. Days 0 - 2 correspond to 26 - 28 September 2013, respectively. 
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in the range of 4 – 17 × 106 cm−3 for OH [Lu et al., 2013], therefore, even though the OH 

concentration appears to be underestimated, the predicted value is near the lower bounds 

of the observed OH concentrations in Beijing. Furthermore, there exist serious 

uncertainties in the measurements of OH [Mao et al., 2012]. A comparison of the 

derived concentration of OH by laser-induced fluorescence in low-pressure detection 

chambers (called Fluorescence Assay with Gas Expansion (FAGE)) with a new chemical 

removal method revealed that the conventional FAGE method might be overestimating 

the OH concentration by 40 - 60%. This overestimation was hypothesized to be due to 

internally generated OH from the oxidation of biogenic VOCs. If the lower bound of the 

overestimation was used to correct the field measurements, than the daily concentration 

maxima would be in the range of 1.6 – 6.8 × 106 cm−3. 
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CHAPTER VI  

CONCLUDING REMARKS AND FUTURE WORK 

i) The Role of Volatile Organic Compounds in New Particle Formation  

Our experiments revealed that the photooxidation of both biogenic and 

anthropogenic VOCs can produce homogenous nucleation; however, the formation rate 

is strongly dependent on the identity and initial concentration. The two biogenic VOCs 

utilized in the experiments exhibited the most efficient (α-pinene) and least efficient 

(isoprene) nucleation rate, underscoring the necessity of identification of VOCs, even in 

pristine environments, when trying to predict new particle formation in models. 

Considering that the oxidation of α-pinene may proceed through several reaction 

channels leading to a variety of different chemical structures including monocarboxylic 

and dicarboxylic acids, each of the newly formed acidic species may contribute to 

hydrogen bonding to form stable critical clusters, which likely explains why α-pinene 

produces a higher concentration of particles. The selected anthropogenic VOCs (m-

xylene and toluene) produce lower concentrations particles at atmospherically relevant 

concentrations compare to α-pinene. The mass spectrometry data suggests that the more 

efficient VOCs produced mainly low-volatility acidic products that can easily form 

stable critical clusters.  

The dramatically different particle yields explain the observed distinct spatial 

patterns of NPF events globally. Isoprene-dominant regions, such as the Amazon Basin 

and the southeastern U.S., exhibit very few NPF events, whereas regions dominated by 

α-pinene, such as the boreal forests, may exhibit daily NPF events. This may also be 
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partially responsible for the lack of NPF events in locations dominated by anthropogenic 

VOCs such as Tijuana, Mexico. Increasing the initial VOC concentration resulted in a 

higher concentration of nucleated particles and a faster equilibrium time, which may 

explain why some cities exhibit much more efficient NPF events (i.e. a greater yield of 

particles) when compared to other regions that produce similar species and ratios of 

VOCs. Furthermore, it was found that mixing the VOC species altered the particle yield. 

The fluctuating combinations and concentrations of biogenic and anthropogenic VOCs 

in a complex urban environment may explain why NPF is only observed on select days 

within a given city.  

It is clear from our chamber experiments that while α-pinene, m-xylene, and 

toluene produce NPF events, they did not contribute to particle growth. Future 

experiments should incorporate other atmospheric relevant gas phase species, such as 

SO2, NOX, amines, or other VOCS, in order to determine the species that govern particle 

growth in the atmosphere. 

 

ii) Beijing Haze Formation 

We have decoupled the interplay between meteorology, local emissions, and 

aerosol processes the lead to severe haze events in Beijing by conducting comprehensive 

aerosol and gas phase measurements. The mechanism that produces haze formation in 

Beijing is comprised of two distinct processes of secondary aerosol formation, i.e., 

nucleation to initially produce high concentrations of nano-sized particles and the 

subsequent continuous growth from the nucleation mode particles. The results indicate 
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that the nucleation during the clean phase likely occurs on the regional scale (several 

hundred kilometers) and growth processes during the transition and polluted phases 

likely occur on the urban (about one hundred kilometers) scale. Our analysis of the 

aerosol chemical compositions suggests that organic aerosols are primarily responsible 

for producing the nucleation mode particles, while secondary organic aerosols and 

inorganic salts contribute jointly to the particle growth. New particle formation and 

growth occurs daily in many regions worldwide, but few other locations exhibit the 

sustained and efficient particle growth as was observed during the transition and polluted 

periods in Beijing. The combination of the high aerosol nucleation potential and efficient 

subsequent growth over several days uniquely differentiates the severe PM2.5 episodes in 

Beijing from those typically observed in other regions worldwide. We have shown that 

the periodic cycles of haze episodes during the fall and winter seasons in Beijing are 

closely linked to the large-scale meteorological conditions. During haze events, 

stagnation typically developed under calm or weak southerly wind from polluted 

industrial source regions, which trap local pollutants. Gaseous emissions of VOCs, NOx, 

and SO2 are jointly responsible for the large secondary formation of the PM2.5 events; 

while primary emissions and regional transport of PM2.5 are insignificant to the 

formation of severe haze events. Since the particle chemical composition in Beijing is 

comparable to many other large urban regions in the world, it must be the abundant 

condensable gases produced in the city that lead to the observed rapid and efficient 

particle formation and growth. Considering the relatively stagnant air mass during the 

pollution periods and the atmospheric lifetimes of aromatics (0.5-2.5 days), SO2 (9.6 
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days), and NOx, (1.0 days), the SO2 level in Beijing likely includes a large regional 

contribution from the southern industrial areas, but the VOC and NOX concentrations are 

dominated by local traffic emissions. 

 From the mediation perspective, it would be impractical to regulate new particle 

formation since it occurs on clean days and is naturally occurring, but it may be feasible 

to suppress the aerosol growth processes to reduce the PM2.5 levels in Beijing. Since 

primary particles contribute insignificantly to the severe haze events, an effort to solely 

control emissions of primary particles would result in only a minor reduction of the 

PM2.5 mass concentration. Our results imply that reductions in emissions of the aerosol 

precursor gases, i.e., VOCs and NOX from local transportation and SO2 from regional 

industrial sources, are critical for remediation of the haze pollution in Beijing. 

Observations from the 2008 Beijing Olympics and the 2014 APEC meeting provide 

validation for this conclusion. During the 2008 Beijing Olympics (8 – 24 August 2008), 

on-road vehicles were reduced by about 2 million, chemical plants in the city were 

closed, iron and steel mills reduced production, and construction was halted. The 

monthly average in August 2008 was 65.4 µg m-3, which is substantially lower than the 

monthly concentration observed during the next three years (107.3, 97.7, and 103.7 µg 

m-3, respectively) [U.S. Department of State, 2013]. Between 1 – 12 November 2014, 

numerous factories, such as steel mills, petroleum refineries, chemical manufactures, and 

power plants, stopped or reduced production and vehicles traffic was reduced by 50%. 

During this time period, the average PM2.5 mass concentration was 43 µg m-3, a 38% 

reduction from the projected ‘business as usual’ concentration of 69.5 µg m-3 [Ministry 
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of Environmental Protection of China, 2014]. The SO2, NOx, and VOC concentrations 

were reduced by 39.2, 49.6, and 33.6%, respectively.  

 

iii) Development of an Animal Exposure System 

We designed and built a chamber system that exposes pregnant rats to either pure 

or doped ambient air, with the focus of elucidating the transgenerational effects of 

maternal air pollutant exposure on in utero development and the physiological responses 

by the mothers. The custom-built compact whole-body stainless steel cage enables the 

uniform exposure of several animals simultaneously in individual compartments, while 

minimizing PM losses by deposition. In each experiment, pregnant Sprague-Dawley rats 

(4 control, 4 polluted per experiment) were continuously exposed to clean (~5 µg m-3) or 

doped ambient air (~ 150 µg m-3) for the first 18 days of gestation. In the base scenario, 

the animals were exposed to ammonium sulfate aerosols, which have a low toxicity, in 

order to assess the influence of aerosols processing by the animals. The results indicate 

that in utero development under maternal exposure to ammonium sulfate aerosols during 

gestation altered the developmental trajectory of the offspring, with perturbation that 

were still evident on postnatal day 105. At birth, differences in the gestation length, birth 

weight, and in the development of several major vital organs, including the brain, liver, 

kidney, and spleen, were discernible. Furthermore, the female offspring were more 

adversely affected by the high aerosol loading with further discernible differences in the 

stomach and in the distribution of body fat. 
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This work is intended to lay the foundation for future experiments involving 

more complex pollutant combinations. Several atmospheric compounds not yet explored 

by this project have previously been linked to health effects, including ozone, sulfuric 

acid, black carbon, NOx, and organic aerosols. Unfortunately many of these studies have 

utilized a broad range of experimental methods, varying the method of exposure, 

concentrations, and exposure time; therefore, it is difficult to quantitatively compare the 

degradation of health between the various compounds. It would be beneficial to study 

these compounds in a systematic manner under the same experimental procedure. It is 

also imperative that we study the synergetic and additive nature of co-present pollutants 

since this is much more atmospherically realistic and is required to accurately evaluate 

health impacts of polluted air when elevated levels of several different gaseous and 

particle phase species are present simultaneously. A few studies have analyzed the co-

presence of ozone with other pollutants and found that lung damage in rats due to 

inhaled ozone was exacerbated by the presence black carbon and sulfuric acid [Jakab 

and Hemenway, 1994; Kimmel et al., 1997]. It is likely that this synergism is true of 

other frequently co-present pollutants, but has not yet been identified or quantified.  

 

iv) Gas Phase Chemistry Model of Beijing Radical Chemistry  

The NCAR Master Mechanism Model was successfully utilized to model several 

radical species and photochemical oxidants in the Beijing atmosphere. Overall, the 

model was able to capture the temporal trends and concentrations of the species, with the 

exception of peroxy radicals. Sensitivity studies of the relationship between NOX and 
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VOC indicate that the region is VOC limited. In order to simulate realistic 

concentrations, the base chemistry scheme was expanded to account for five new 

reactions; notably representations of HONO formed on aerosol and ground surfaces were 

incorporated. Despite the weakening of photochemical activity due to the dimming 

effect by the high aerosol loading during heavily the polluted period, OH and ozone did 

not exhibit reduced formation rates and the concentrations remained relatively stable. 

This may due to the shifting of the dominant HONO formation mechanism as the 

pollution cycle progressed. Initially, HONO was chiefly formed by the non-particle 

phase reactions, but as the mass concentration increased, HONO formed on the surface 

of aerosols became a dominant source. It is likely that the combination of the persistent 

high concentrations of NO2 in Beijing and the frequent periods of high aerosol loading 

leads to elevated HONO levels and sustained oxidizing capacity. 

This work was completed with the ultimate goal of elucidating the chemistry that 

leads to the production of severe haze events in Beijing, China. Future work includes 

applying the knowledge gained from the simple box model experiments into the 

‘Generator Of Explicit Chemistry and Kinetics of Organics in the Atmosphere’ (Gecko-

A) model, which has been proven to effectively reproduce the SOA formation processes 

by resolving gas/particle partitioning in complex urban environments.  
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