
A DECOUPLING PRINCIPLE FOR SIMULTANEOUS LOCALIZATION AND

PLANNING UNDER UNCERTAINTY IN MULTI-AGENT

DYNAMIC ENVIRONMENTS

A Dissertation

by

MOHAMMADHUSSEIN RAFIEISAKHAEI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, P. R. Kumar
Co-Chair of Committee, Suman Chakravorty
Committee Members, Srinivas Shakkottai

Aniruddha Datta
Head of Department, Miroslav M. Begovic

December 2017

Major Subject: Electrical Engineering

Copyright 2017 Mohammadhussein Rafieisakhaei

ABSTRACT

Simultaneous localization and planning for nonlinear stochastic systems under

process and measurement uncertainties is a challenging problem. In its most general

form, it is formulated as a stochastic optimal control problem in the space of feedback

policies. The Hamilton-Jacobi-Bellman equation provides the theoretical solution of

the optimal problem; but, as is typical of almost all nonlinear stochastic systems,

optimally solving the problem is intractable. Moreover, even if an optimal solution

was obtained, it would require centralized control, while multi-agent mobile robotic

systems under dynamic environments require decentralized solutions.

In this study, we aim for a theoretically sound solution for various modes of

this problem, including the single-agent and multi-agent variations with perfect and

imperfect state information, where the underlying state, control and observation

spaces are continuous with discrete-time models. We introduce a decoupling principle

for planning and control of multi-agent nonlinear stochastic systems based on a

small noise asymptotics. Through this decoupling principle, under small noise, the

design of the real-time feedback law can be decoupled from the off-line design of the

nominal trajectory of the system. Further, for a multi-agent problem, the design of

the feedback laws for different agents can be decoupled from each other, reducing the

centralized problem to a decentralized problem requiring no communication during

execution. The resulting solution is quantifiably near-optimal.

We establish this result for all the above-mentioned variations, which results in

the following variants: Trajectory-optimized Linear Quadratic Regulator (T-LQR),

Multi-agent T-LQR (MT-LQR), Trajectory-optimized Linear Quadratic Gaussian

(T-LQG), and Multi-agent T-LQG (MT-LQG). The decoupling principle provides

ii

the conditions under which a decentralized linear Gaussian system with a quadratic

approximation of the cost, obtained by linearization around an optimally designed

nominal trajectory can be utilized to control the nonlinear system. The resulting de-

centralized feedback solution at runtime, being decoupled with respect to the mobile

agents, requires no communication between the agents during the execution phase.

Moreover, the complexity of the solution vis-a-vis the computation of the nominal

trajectory as well as the closed-loop gains is tractable with low polynomial orders of

computation. Experimental implementation of the solution shows that the results

hold for moderate levels of noise with high probability.

Further optimizing the performance of this approach we show how to design a

special cost function for the problem with imperfect state measurement that takes

advantage of the fact that the estimation covariance of a linear Gaussian system is

deterministic and not dependent on the observations. This design, which corresponds

in our overall design to “belief space planning”, incorporates the consequently deter-

ministic cost of the stochastic feedback system into the deterministic design of the

nominal trajectory to obtain an optimal nominal trajectory with the best estimation

performance. Then, it utilizes the T-LQG approach to design an optimal feedback

law to track the designed nominal trajectory. This iterative approach can be used to

further tune both the open loop as well as the decentralized feedback gain portions

of the overall design. We also provide the multi-agent variant of this approach based

on the MT-LQG method.

Based on the near-optimality guarantees of the decoupling principle and the T-

LQG approach, we analyze the performance and correctness of a well-known heuris-

tic in robotic path planning. We show that optimizing measures of the observability

Gramian as a surrogate for estimation performance may provide irrelevant or mis-

leading trajectories for planning under observation uncertainty.

iii

We then consider systems with non-Gaussian perturbations. An alternative

heuristic method is proposed that aims for fast planning in belief space under non-

Gaussian uncertainty. We provide a special design approach based on particle filters

that results in a convex planning problem implemented via a model predictive control

strategy in convex environments, and a locally convex problem in non-convex envi-

ronments. The environment here refers to the complement of the region in Euclidean

space that contains the obstacles or “no fly zones”.

For non-convex dynamic environments, where the no-go regions change dynam-

ically with time, we design a special form of an obstacle penalty function that in-

corporates non-convex time-varying constraints into the cost function, so that the

decoupling principle still applies to these problems. However, similar to any con-

strained problem, the quality of the optimal nominal trajectory is dependent on the

quality of the solution obtainable for the nonlinear optimization problem.

We simulate our algorithms for each of the problems on various challenging sit-

uations, including for several nonlinear robotic models and common measurement

models. In particular, we consider 2D and 3D dynamic environments for heteroge-

neous holonomic and non-holonomic robots, and range and bearing sensing models.

Future research can potentially extend the results to more general situations includ-

ing continuous-time models.

iv

DEDICATION

To my mother

whose passionate effort is the reason behind lots of my achievements.

v

ACKNOWLEDGEMENTS

I would like to express my great respect and gratitude to my advisor Prof. P.

R. Kumar, and my co-advisor Prof. Suman Chakravorty. Over the course of my

PhD, Dr. Kumar has taught me the importance of mathematical rigor in theory

and Dr. Chakravorty has taught me the importance of intuition behind the practical

aspects of the problems. Both were very supportive and provided resources whenever

I needed them. In particular, they created an environment that was very open for

new ideas and trained me for independent research. I also enjoyed long construc-

tive brainstorming discussions along with mentorship relation with Suman and exact

problem analysis meetings with Dr. Kumar. I would like to thank my committee

members Dr. Srinivas Shakkottai and Dr. Aniruddha Datta for their helpful com-

ments and advice. I also want to express my gratitude to Dr. Behbood B. Zoghi

who helped me a lot in successful transitioning in the beginning of my studies.

During my studies, I have enjoyed the support of my friends who helped me along

my stay in College Station. I express my sincere thanks for Babak Barazandeh for

being a great support and a helpful friend, Arash Torkan for being always there

to reach out when I needed and ask for help, and Maricruz Salinas for being an

invaluable friend, help and support during the work that I did for my research. I

was privileged to work with Dr. Chakravorty’s group in Estimation, Decision and

Planning Laboratory (EDPLab) and Dr. Kumar’s group in Cyber-Physical Systems

Lab. I would like to thank all my friends and colleagues Amir Hossein Tamjidi,

Saurav Agarwal, Dan Yu, Abhishek Halder, Simon Yao, Jonnathon Ponnniah, Woo-

Hyun Ko, Bharadwaj Satchidanandan, and my office-mate Ping-Chun Hsieh with

whom I had a lot of constructive discussions. I also thank Mostafa Ghoreyshi and

vi

Reza Manshouri for their great friendship. I would extend my gratitude for Ali-

Akbar Agha-Mohammadi who introduced this field of study to me and was always

supportive during my study.

Last but not least, I cannot thank enough from my Mom and Dad and my Sisters

for their passionate support. They are an invaluable source of love for me, whom I

can always trust and reach out.

vii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

Amir Hossein Tamjidi has contributed in the simulations and work of Chapter

11 that were also illustrated in [1].

Funding Sources

Graduate study was supported by Graduate Assistantships and ISFAA grants

from Texas A&M University. The material on this dissertation is based upon work

partially supported by the NSF under Contract Nos. CNS-1302182, CNS-1646449,

and Science & Technology Center Grant CCF-0939370, the AFOSR Contract No.

FA9550-13-1-0008, the U.S. Army Research Office under Contract No. W911NF-

15-1-0279, and NPRP grants NPRP 6-784-2-329 and NPRP 8-1531-2-651 from the

Qatar National Research Fund, a member of Qatar Foundation.

viii

NOMENCLATURE

SLAP Simultaneous Localization and Planning

EKF Extended Kalman Filter

OG Observability Gramian

T-LQG Trajectory-optimized Linear Quadratic Gaussian

T-LQR Trajectory-optimized Linear Quadratic Regulator

MT-LQG Multi-agent Trajectory-optimized Linear Quadratic Gaussian

MT-LQR Multi-agent Trajectory-optimized Linear Quadratic Regulator

MPC Model Predictive Control

RHC Receding Horizon Control

MDP Markov Decision Process

POMDP Partially Observed Markov Decision Process

Dec-POMDP Decentralized Partially Observed Markov Decision Process

ix

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . v

ACKNOWLEDGEMENTS . vi

CONTRIBUTORS AND FUNDING SOURCES viii

NOMENCLATURE . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xiv

LIST OF TABLES . xx

I THE DECOUPLING PRINCIPLE . 1

1. INTRODUCTION AND LITERATURE REVIEW 2

1.1 Introduction . 2
1.2 Literature Review . 6

1.2.1 General Background . 6
1.2.2 Decentralized POMDPs . 7
1.2.3 Small Noise Theory . 9
1.2.4 Point-Based POMDP Solvers 11
1.2.5 More on LQG-Based Methods 12
1.2.6 Model Predictive Control (MPC)-Based Methods 14

2. GENERAL BACKGROUND . 17

2.1 Single-Agent Model . 17
2.1.1 Features of the Conditional Distribution 18

2.2 Elements of the Stochastic Control Problem 21
2.3 Theoretical Solution of the General Problem 24

3. DECOUPLING PRINCIPLE: FOUR PROBLEMS, FOUR RESULTS . . . 26

x

3.1 Single-Agent Model . 26
3.2 Multi-Agent Model . 27
3.3 Problem Definitions . 29
3.4 Main Results of Part I . 32

4. FULLY-OBSERVED SINGLE-AGENT SYSTEM 34

4.1 Introduction . 34
4.2 Small Random Perturbations of a Linear System 36
4.3 The Fully-Observed System . 40
4.4 Case I: The Deterministic Optimal Policy 41
4.5 Case II: Trajectory-optimized LQR (T-LQR) 51

4.5.1 Preliminaries . 51
4.5.2 First-Order Analysis . 55
4.5.3 Discussion . 59

4.6 Example . 62
4.7 Second-Order Optimality of The Deterministic Law 63
4.8 Near-Second-Order Optimality of T-LQR 74

5. FULLY-OBSERVED MULTI-AGENT SYSTEM 81

5.1 Multi-Agent Decoupling of Open-Loop and Closed-Loop Designs . . . 81
5.2 Decoupling of Feedback Designs . 84
5.3 MT-LQR: Multi-agent Trajectory-optimized LQR 85

6. PARTIALY-OBSERVED SINGLE-AGENT SYSTEM 87

6.1 Case I: The Deterministic Optimal Policy 87
6.1.1 Analysis of the Cost . 91

6.2 Case II: T-LQG . 95
6.2.1 Analysis of the Cost . 109

6.3 Near-Second-Order Optimality of The Deterministic Law 112
6.4 Near-Second-Order Optimality of T-LQG 128

7. PARTIALY-OBSERVED MULTI-AGENT SYSTEM 141

7.1 Multi-Agent Decoupling of Open-Loop and Closed-Loop Designs . . . 141
7.2 Decoupling of Feedback and Estimator Designs 144
7.3 MT-LQG: Multi-agent Trajectory-optimized LQG 146

II BELIEF SPACE PLANNING . 148

8. BELIEF-SPACE PLANNING FOR SINGLE-AGENT SYSTEM 149

xi

8.1 Introduction . 150
8.2 General Problem . 155
8.3 Belief Space Planning Method: T-LQG 155

8.3.1 Discussion . 162
8.4 Non-Convex State Constraints . 164

8.4.1 Homotopy Classes . 166
8.5 Comparison of Methods . 167

8.5.1 An Overall Summary of the Methods 171
8.5.2 Comparison on Important Issues 174
8.5.3 Comparison on Other Issues 177

8.6 Simulation Results . 179
8.7 Conclusion . 185

9. BELIEF-SPACE PLANNING FOR MULTI-AGENT SYSTEMS 187

9.1 Introduction . 187
9.2 MT-LQG . 190
9.3 Simulation Results . 201

9.3.1 Heterogeneous Robots . 203
9.4 Conclusion . 207

III OBSERVABILITY GRAMIAN . 212

10. ON THE USE OF OBSERVABILITY GRAMIAN IN ROBOTIC PATH
PLANNING AND CONTROL . 213

10.1 Introduction . 213
10.2 Preliminaries . 216

10.2.1 Observability Gramian . 217
10.2.2 Standard Fisher Information Matrix 218
10.2.3 Covariance Evolution . 219

10.3 Analytic Evaluation of OG-Based Designs 219
10.3.1 Range-Only Example . 220
10.3.2 Bearing-Only Example . 222
10.3.3 Range-Squared-Only Example 223
10.3.4 Observations . 225

10.4 Comparison of Trajectory Planning Approaches 225
10.4.1 Range-Squared-Only Observations 229
10.4.2 Range-Only Observations . 230
10.4.3 Bearing-Only Observations . 231
10.4.4 Another Range-Only Scenario 233

10.5 Detailed Analysis Using Various Measures and Parameters 236

xii

10.6 Calculations of the Observability Gramian 239
10.6.1 Range-Only Model . 245
10.6.2 Bearing-Only Model . 246
10.6.3 Range-Squared-Only . 247

10.7 Calculations of the Covariance Evolution 247
10.7.1 Range-Only Model . 247
10.7.2 Bearing-Only Model . 249
10.7.3 Range-Squared-Only . 251

10.8 Conclusion . 253

11. CONVEX BELIEF SPACE PLANNING UNDER NON-GAUSSIAN UN-
CERTAINTY . 254

11.1 Particle-Filter-Based Belief Space Planning 258
11.2 Approximation of the Cost . 261
11.3 Special Case: Linear Process Model 263

11.3.1 Convexifying the Cost Function 264
11.3.2 Examples of Observation Models 266
11.3.3 Convex Optimization Problem 269
11.3.4 Static Environment with Non-Convex Constraints 269
11.3.5 Problem: Dynamic Environment with Time-Varying Constraints271
11.3.6 Receding Horizon Control (RHC) Implementation 273
11.3.7 A Discussion and Comparison on Complexity 275

11.4 Simulation Results . 279
11.4.1 Comparison Test in a Convex Scenario 279
11.4.2 Robot Within Two Walls . 281
11.4.3 Complex Scenario in a Room 283
11.4.4 Comparison Test Between Homotopy Classes 284
11.4.5 KUKA YouBot . 286
11.4.6 Dynamic Environment . 288

12. CONCLUDING REMARKS . 292

12.1 Contributions . 292
12.2 Future Extensions . 294

REFERENCES . 295

xiii

LIST OF FIGURES

FIGURE Page

4.1 Optimized vs. a typical execution trajectory for a car-like robot. . . 61

4.2 Evolution of average NMSE as ε ↓ 0 for feedback compensated and
open-loop systems with the same nominal trajectories. 62

8.1 Comparison of T-LQG and an MLO plus RHC-based method [58].
In each figure, the dashed line shows the ground truth trajectory,
and the solid line shows the state estimate trajectory. A purple cir-
cle denotes the target, and the white region shows the landmark for a
range and bearing observation model. a) In the RHC-based method,
re-planning is triggered at every step. However, these methods for
stochastic systems fail to reach the goal after K steps, and require
heuristic adjustments to work; b) however, in T-LQG, for this exam-
ple, planning only happens once, and the resulting feedback policy
is executed for the entire horizon, reaching the goal state after K
steps. 152

8.2 Homotopy classes. The solid trajectories are in a different homotopy
class from the dashed trajectory. 167

8.3 The overall feedback control loop. 180

8.4 Simulation results for an obstacle-free situation with different ob-
servation models. The information is color-coded. A lighter shade
denotes less noisy observations. The dashed green line represents
the initial trajectory; the solid yellow line shows the optimized tra-
jectory. In all cases, x̂0 = (0, 0, 0), xg = (2, 2, 2), and rg = 0.1. . . . 181

8.5 Simulation results for two different initializations with obstacles.
The obstacles are the red solid polygons; the ellipses show the in-
flated regions around them, avoided by the configuration of points
that represent the robot (they are also the argument of the Gaus-
sian function in the obstacle cost). In all cases, x̂0 = (0.25, 0.25, 0),
xg = (0.5, 2.7, 2), and rg = 0.1. The optimized trajectory in case (b)
has a lower overall cost. 182

xiv

9.1 Four youBots moving diagonally in a circle. The initial paths (the
yellow, dashed lines) are straight lines and highly conflicting. The
optimized paths (solid lines) are optimized, collision-free, and utilize
the information with respect to the limited resources of effort, hori-
zon, and collision-avoidance obstacles. The observations consists of
range and bearing from landmarks, shown in lighter areas. In a)
both the trajectories and robot snapshots are depicted, whereas in
b) only trajectories are depicted. 197

9.2 Two agents in a 3D environment, with GPS observations. Higher
altitudes offer less building clutter and represent less observation
noise. The dashed and solid lines provide the initial and optimized
trajectories of each agent. The time-stamped trajectories (marked
with markers) indicate that the optimized trajectories are collision-free.199

9.3 Two youBots in a cluttered environment. The initial trajectories
(dashed lines) show collisions between robots (and with obstacles for
the robot shown on the right side). The optimized solid trajectories
are fully safe, and optimized with respect to the information sources.
The purple circles on the upper side of the plot show the targets. . 204

9.4 Two flying robots with information sources available as antennas,
providing the range information. The initial and optimized paths are
shown with dashed and solid paths, respectively. In the optimized
paths, no collision occurs, and the robots fly close to the antennas.
The robots are considered to be spherical, but for the clarity of the
picture, only their centers are depicted. The targets are shown with
purple circles, and the markers on the paths indicate the trajectory
points. 205

9.5 Two agents (spherical) in a 3D dynamic environment, with range
sensors with respect to three ground antennas. Two tall buildings
are the large static obstacles. The snapshot of a flying object is
depicted. This object can represent a previously flying agent, a bird,
or any similar object. No collisions occur between any objects. For
simplicity only 2D elliptical projections of the 3D safety ellipsoids
around the obstacles are depicted. The initial and optimized paths
are shown with the dashed and solid lines respectively. The targets
of the drones are shown with purple circles. 208

xv

9.6 Simulation results for two car-like agents (left and right) and one
youBot base (middle) in a cluttered environment with narrow pas-
sages and some features to obtain range and bearing information.
The targets are depicted with purple circles. The ellipses show the
regions designed to be avoided by the trajectories of the centers of
the robots. Optimal planned trajectories for initial step are shown
with solid lines. 209

9.7 Simulation results for two car-like agents (left and right) and one
youBot base (middle) in a cluttered environment with narrow pas-
sages and some features to obtain range and bearing information.
The targets are depicted with purple circles. The ellipses show the
regions designed to be avoided by the trajectories of the centers of
the robots. Typical execution trajectories for ε = 5% are shown with
solid lines. 210

9.8 For the simulation scenario with two car-like agents and one youBot
base, a Monte Carlo analysis is performed to depict the average
number of replannings and their standard deviations for different
noise levels. 211

10.1 Simulation results for the planning problem (17) based on the con-
dition number of the OG for range-squared and range observation
models in (a) and (c), and the planning problem (18) using the trace
of the covariance for range-squared and range observation models in
(b) and (d), respectively. The information sources are located at
the centers of the light areas. The dashed orange line represents
the initial trajectory, while the solid cyan line shows the optimized
trajectory. 230

10.2 Evolution of the trace of the covariance along the trajectory for the
initial trajectory, with optimization based on the OG measure, and
optimization based on the covariance measure of the trajectories in
Fig. 10.1. 231

10.3 Range-only observation model: a) The optimized state trajectory of
the planning problem (17) using the condition number of the OG as
the cost function, b) The optimized state trajectory of the planning
problem (18) using the trace of the covariance as the cost function.
The information sources are located at the centers of the light areas.
The dashed orange line represents the initial trajectory, while the
solid cyan line shows the optimized trajectory. 232

xvi

10.4 Range observation model. Evolution of the trace of the covari-
ance along the trajectory for the initial trajectory, with optimization
based on the OG measure, and optimization based on the covariance
measure of the trajectories in Fig. 10.3. 233

10.5 Bearing-only observation model: a) The optimized state trajectory of
the planning problem (17) using the condition number of the OG as
the cost function, b) The optimized state trajectory of the planning
problem (18) using the trace of the covariance as the cost function.
The information sources are located at the centers of the light areas.
The dashed orange line represents the initial trajectory, while the
solid cyan line shows the optimized trajectory. 234

10.6 Bearing observation model. Evolution of the trace of the covari-
ance along the trajectory for the initial trajectory, with optimization
based on the OG measure, and optimization based on the covariance
measure of the trajectories in Fig. 10.5. 235

10.7 The OG-based planning (range-only): Simulation results for range-
only observation model, where the caption indicates the measure
of Gramian used in the planning problem (17). The information
sources are located at the centers of the light areas. The dashed
orange line represents the initial trajectory, while the solid cyan line
shows the optimized trajectory. 240

10.8 The OG-based planning (bearing-only): Simulation results for bearing-
only observation model, where the caption indicates the measure of
Gramian used in the planning problem (17).The information sources
are located at the centers of the light areas. The dashed orange line
represents the initial trajectory, while the solid cyan line shows the
optimized trajectory. 241

10.9 The OG-based planning (range-squared-only): Simulation results for
range-squared-only observation model, where the caption indicates
the measure of Gramian used in the planning problem (17). The
information sources are located at the centers of the light areas.
The dashed orange line represents the initial trajectory, while the
solid cyan line shows the optimized trajectory. 242

xvii

10.10 Covariance-based planning (correlated initial noise, effect of obser-
vation noise covariance): Simulation results for all three observa-
tion models and two different observation noise covariances, and a
correlated initial covariance, where the caption indicates the obser-
vation model used in the planning problem (18). For both rows,
Σx0 = (0.005, 0.001; 0.001, 0.005), and Σwt = diag(0.001, 0.001). For
the first row, Σvt = 0.01 and for the second row, Σvt = 0.00001. The
information sources are located in the centers of the light areas. The
dashed orange line represents the initial trajectory, while the solid
cyan line shows the optimized trajectory. 243

10.11 Covariance-based planning (effect of initial and process noise covari-
ances): Simulation results for all three observation models and vari-
ous different initial and process noise covariances, where the caption
indicates the observation model used in the planning problem (18).
For the first row, Σx0 = diag(0.005, 0.002), Σwt = diag(0.003, 0.001).
For the second row, Σx0 = diag(0.005, 0.001), Σwt = diag(0.001, 0.003).
For the third row, Σx0 = diag(0.005, 0.005), Σwt = diag(0.005, 0.005).
For the entire simulation, Σvt = 0.01. The information sources are
located in the centers of the light areas. The dashed orange line
represents the initial trajectory, while the solid cyan line shows the
optimized trajectory. 244

11.1 The overall feedback control loop. 274

11.2 Comparison of method of this chapter with traditional belief propa-
gation methods. 276

11.3 Light-dark example. Lighter states on the right signify lesser obser-
vation noise. The solid blue and red dotted lines show the results of
our method and the implementation of [109], respectively. The axes’
units are in meters. 283

11.4 Robot within two walls. The OPF is visualized within the walls.
The green and red lines show the results for optimization with and
without considering the walls. The axes’ units are in meters. 284

xviii

11.5 A holonomic system in a complex scenario. Solid lines show the
optimal trajectories, dotted lines show the initial trajectory, for two
different scenarios. The longer trajectory includes obstacles, and
the other, no obstacles. The dots around the start points show the
initial particles. Landmarks are marked as stars and information is
coded with color (lighter means more information). Lookahead time
horizon for the longer and shorter trajectories is 100 seconds and 30
seconds, respectively. The axes’ units are in meters. 285

11.6 Modified visibility graph. There are two homotopy classes between
the start and goal points that are found using the visibility graph
and are indicated as the red dotted and blue dashed paths. The
axes’ units are in meters. 286

11.7 Comparison of paths in different homotopy classes. Cases (a) and
(b) show the resulting paths generated by optimizing without con-
sidering the information sources, whereas cases (c) and (d) consider
information sources. The axes’ units are in meters. 287

11.8 Controlling a youBo0s base. There are three obstacles and two land-
marks. The robot base is shown by a rectangle with a line at the
heading. Initial and planned trajectories are depicted by dashed and
solid lines, respectively. The axes’ units are in meters. 289

11.9 Dynamic environment. The robot heads towards the landmark to
reduce its uncertainty, and avoids the moving objects by changing
its path to point in a direction opposite to the objects. The axes’
units are in meters. 290

11.10 Moving object. The robot spends most of its time near the infor-
mation source and avoids the object, which is moving in a spiral
path, and heads towards the goal region safely. The axes’ units are
in meters. 291

xix

LIST OF TABLES

TABLE Page

8.1 Comparison of belief space planning methods on important issues. . . 169

8.2 Comparison T-LQG with method of [58]. 183

10.1 Simulation results of cost, constraint satisfaction, and time to opti-
mize in the optimization problems of Figs. 10.1, 10.5, and 10.3. . . . 234

10.2 The OG-based planning (range-only): Initial and final costs and con-
straint satisfaction for simulations of Fig. 10.7. 238

10.3 The OG-based planning (bearing-only): Initial and final costs and
constraint satisfaction for simulations of Fig. 10.8. 239

10.4 The OG-based planning (range-squared-only): Initial and final costs
and constraint satisfaction for simulations of Fig. 10.9. 239

10.5 The covariance-based planning: Initial and final costs and constraint
satisfaction for simulations of Fig. 10.10. 240

10.6 The covariance-based planning: Initial and final costs and constraint
satisfaction for simulations of Fig. 10.11. 241

11.1 The results of comparative simulations for several time horizons and
particle numbers in a convex light-dark scenario. 282

xx

I. THE DECOUPLING PRINCIPLE

1

1. INTRODUCTION AND LITERATURE REVIEW

In this chapter, we introduce the problem that is discussed in this research, pro-

vide a literature review of previous related work, lay out a brief overview of the

organization of the dissertation, and discuss the contributions of this work as well as

possible future developments.

1.1 Introduction

Planning under uncertainty is a challenging problem for stochastic systems. Many

problems in robotics fall in this category since there is inherent uncertainty in the

measurements obtained from sensors in addition to the uncertainty in the robot’s

motion. The uncertainty can result from several causes such as unpredicted forces,

e.g., wind forces that occur in aerial vehicles or sudden unexpected interactions of

a robot with its environment. It may also arise in medical robotics while steering

a needle in a tiny environment surrounded with soft tissues of a live organ. The

actions prescribed by the controller of a ground robot might not be performed well

due to unmodeled friction. Many robotic systems are equipped with noisy actuators

that require feedback compensation or planning ahead and a policy that accounts for

the random perturbations even in perfect environments. Simply ignoring the noise

and planning for the unperturbed equivalent of the stochastic system can result in

crucial errors, leading to failure in reaching the end-goal, or cause the system to fall

into unsafe states.

The main challenge in this category of problems is that the controller’s knowledge

about the true state of the system is limited to the conditional probability distribu-

tion of the state given the past data history of actions and observations, which is an

information state that is a sufficient statistic for the problem [2]. We will just refer

2

to it as the “information state” in the general case, and as the “belief” for the specific

case of a linear Gaussian system where the conditional distribution is Gaussian. The

controller needs to plan over the space of all possible probability distributions over

the state, referred to as the information (belief) space, which is infinite-dimensional

in practical problems where the underlying state space is a finite-dimensional vector

space. In the special case of a linear Gaussian system where the belief can be repre-

sented by just a vector of mean and covariance, the belief space is a finite-dimensional

vector space. The most general case of the problem can be formulated as a stochas-

tic optimal control problems in the space of policies, or equivalently is framed as a

Partially Observed Markov Decision Process (POMDP) [3], [4], [5], whose solution

involves iteratively solving a set of Dynamic Programming (DP) equations over the

information (belief) space. This is generally difficult to solve. The major concerns

vis-a-vis solutions of the multi-agent problem are tractability of the solution, as well

as the amount of communication between the agents required during the execution

of the policies.

In this work, we address the nonlinear stochastic control problem for a multi-

agent system and propose an architecture under which, first, the centralized design

of feedback policies for different agents can be decoupled near-optimally to a decen-

tralized solution; and second, the design of an optimal open-loop control sequence

and a feedback policy to track that trajectory can be near-optimally decoupled. We

term this overall result as a decoupling principle, and state and prove it rigorously

for single-agent and multi-agent systems with perfect or imperfect information. In

particular, we show that under a small noise assumption, the decoupling of the nom-

inal trajectory design and a feedback control law to track the nominal trajectory

holds for a nonlinear stochastic system. For the multi-agent situation, this leads to

a near-optimal decoupled design of the feedback policies for different agents.

3

We quantify the first-order stochastic error for small-noise levels based on large-

deviations theory [6], and show that the expected first-order deviation of the cost

function is zero. That is, the first-order approximation of the expected stochastic cost

function is dominated by the nominal cost, independent of the linear feedback gain.

We thereby arrive at Trajectory-optimized Linear Quadratic Regulator (T-LQR)

or Trajectory-optimized LQG (T-LQG) designs for a single-agent fully-observed or

partially-observed nonlinear stochastic systems, respectively, under Gaussian small-

noise perturbations. Then, we extend the results to a multi-agent setting and obtain

the Multi-agent T-LQR and Multi-agent T-LQG designs.

In short, for a single-agent problem, the design can be broken into two parts: i)

an open-loop optimal trajectory planning problem that designs the nominal trajec-

tory of the LQR/LQG controller, which respects the nonlinearities; ii) the design of

an LQR/LQG policy to track the optimized nominal trajectory. For the multi-agent

setting, we assume that the dynamics of different agents are independent and they

are only coupled with respect to a cost function that needs to be optimized. This

leads to the near-optimal policy design, which involves first solving the joint nom-

inal trajectory optimization problem followed by the design of feedback laws (and

estimators) for each agent independently from the other agents.

The quadratic cost of the LQG design can be chosen such that it results in a

decoupled feedback law where the agents do not need to estimate or employ each

other’s states. This sheds light into the circumstances under which a centralized

multi-agent stochastic optimal control problem can be reduced near-optimally into

a factored decentralized problem and then near-optimally solved. Importantly, all

these methods require only a polynomial order of computations. Therefore, this

reduces both the communication requirements as well as the computational burden

of those classes of multi-agent nonlinear stochastic problems, while still resulting in

4

a near-optimal solution.

To substantiate the decoupling principle, we determine conditions under which

the general nonlinear stochastic system with additive Gaussian perturbations can be

controlled via a surrogate linear Gaussian system around a nominal solution. This

system is constructed via linearizing the nonlinear models around the optimized

nominal trajectory. Due to the nonlinearity, the original system’s distributions re-

main non-Gaussian, whereas the linear surrogate system’s conditional distribution

is Gaussian. We analyze the validity of these approximations and characterize the

probabilistic bounds precisely. Then, we utilize the well-defined characteristics of

the belief evolution of the linear surrogate system to define a specific form of cost

function in terms of the belief to obtain nominal trajectories that aim for better esti-

mation performance as well as resulting in a decoupling of the control law. We refer

to this form of the problem as the belief space planning. We utilize the T-LQG and

the MT-LQG framework to obtain the decoupled problems for belief space planning

as well.

Next, based on the theoretical guarantees of the T-LQG method, we analyze the

usage of the Observability Gramian (OG) in robotic path planning problems. We

analyze the limitations and the practical usage of designs based on the OG.

Last, we consider systems with non-Gaussian additive uncertainty and design

a heuristic trajectory design approach for tackling problems under non-Gaussian

uncertainty using particle filters. The optimization problem that is solved in this

approach is a convex program for common nonlinear observation models in convex

environments. Moreover, the resulting approach is implemented via a model predic-

tive control that provides feedback.

Finally, we present simulation results and analyze the performance aspects of our

method, such as the dependence of the performance on the tuning parameters for

5

various models and environments.

1.2 Literature Review

In this section, we review the related literature in the category of the problems

relevant to the current work. After providing a general background, we review the

related methods in multi-agent literature, small noise theory, Point-based POMDP

solvers, LQG-based methods and MPC-based methods.

1.2.1 General Background

In a stochastic environment, the general problem of sequential decision-making is

formulated as a Markov Decision Process (MDP) [2, 7]. The optimal solution of the

stochastic control problem can be obtained iteratively by value or policy iteration

methods to solve the Hamilton-Jacobi-Bellman equation [7]. Except in special cases,

such as in a linear Gaussian environment, this involves discretization of the underly-

ing spaces [8]; an approach whose scalability faces the curse of dimensionality [9]. As

a result, they require a computation time that is provably exponential in the state

dimension, in a real number based model of complexity, without any assumption

that P 6= NP [10].

In a situation with imperfect state information where the sensing data is con-

taminated with noise, the problem can be formulated as a Partially Observed MDP

(POMDP) [11]. In this setting the notion of “information state” or “belief state”

of the system, which encompasses the entire data history of the problem as a con-

ditional distribution of the state given the past observation, controls and the prior

distribution, is a sufficient statistic for analysis [2, 12, 13, 14]. The stochastic optimal

problem to be solved in this setting can be formulated as a search for a policy in the

high-dimensional information (belief) space [2, 13, 14, 15]. Attempts to optimally

solve this problem through Dynamic Programming (DP) [7] face the curse of history,

6

i.e., the exponential growth of number of possible policies with time-horizon [16].

Many approaches have been proposed based on their tractability. Point-based

POMDP solvers, which are the forward search-based variants of solving the HJB

equation, have had successes during recent years in scaling to larger problems [16, 17].

However, these methods suffer both curses of dimensionality and horizon due to the

exponential growth of the number of policies [16, 18, 19, 20, 21, 22, 17, 23, 24, 25, 26].

Model Predictive Control (MPC)-based methods [27, 28], robust formulations [29,

30], and other designs that relate to the Pontryagin’s Maximum Principle [31], are

some of the methods that have been successfully used as surrogate design approaches.

Another popular approach is utilizing Differential Dynamic Programing (DDP)

[32] and DDP-based variations, such as the Stochastic DDP [33], iLQR and iLQG

[34] and iLQG-based methods [35, 36]. These methods rely on local second-order

linearizations of the cost function and second order (in DDP) or first-order (iLQG)

approximation of the dynamics and propose iterative methods based on policy and

value iterations. Heuristically, they attempt to find “locally-optimal” solutions in a

tube (uncharacterized in properties) around a nominal trajectory [34]. These meth-

ods couple the design of the nominal trajectory and the feedback policy via iterative

incremental local updates of the policy and run into relatively high-dimensional op-

timization problems with high order of complexity. Last, similar other methods such

as [37] also have attempted to provide local linear quadratic approximations of the

stochastic optimal problem by providing iterative methods.

1.2.2 Decentralized POMDPs

In a multi-agent setting, optimally solving the problem can be formulated as a

stochastic optimal control problem in the space of joint policies. Many variations

of this problem have been characterized and successfully tackled based on the level

7

of observability, in/dependence of the dynamics, cost functions and communications

[38, 39, 40]. This has resulted in a variety of solutions from fully-centralized [41]

to fully-decentralized approaches with many different subclasses [42, 43]. Most of

the body of literature in the multi-agent belief space planning problem utilizes the

general framework of the Decentralized-POMDPs (Dec-POMDPs) [44, 42, 45, 46].

While the single-agent finite-horizon POMDP problem is proven to be PSPACE-

complete [47, 48, 49], the Dec-POMDP problem is in the NEXP class [46].

The major concerns of the multi-agent problem are tractability of the solution

and the magnitude and frequency of communication required during the execution of

the policies. While the broader knowledge assumed by the planner in a centralized

approach as in Multi-agent MDP (MMDP) and Multi-agent POMDP (MPOMDP)

can increase the computational tractability [50, 51, 52], it can also load the plan-

ner with a high-dimensional problem, meanwhile assuming full connectivity with a

central authority during the execution. Factored Dec-POMDPs on the other hand

assume some structure of independence either in observations, actions or rewards,

and require less communication burdens [53, 54, 55]. A fully-decentralized approach

ideally provides the lowest communication burden; however, determining the optimal

policy is a more daunting task. Recent success in extending Dec-POMDP solutions

have provided important computational improvements. While naive extension of

POMDPs to multi-agent problems can provide poor performance, methods such as

[56] plan macro-actions centrally for agents, and implement local plans for each agent

in a distributed manner.

In a single-agent POMDP setting, [57, 58, 15, 59] utilize Linear Quadratic Gaus-

sian (LQG)-based policies. [57] and [58] utilize the Most-Likely Observation (MLO)

heuristic to predict the estimation covariance of the Extended Kalman Filter (EKF),

and [15] takes into account all possible observations. Naive extension of the single-

8

agent methods such as [35, 36, 60] to a multi-agent setting with m agents and a

state dimension of n, increases the dimension of the belief space from ((n)2 + n)

to ((mn)2 + mn) leading to un-scalable complexity of the optimization problems.

Extension of MPC-based methods such as [61, 62], which utilize Monte-Carlo repre-

sentation of beliefs, into a multi-agent setting, require planning at every time step,

and more importantly, require coordination, connectivity and communication be-

tween the agents at all time steps. Furthermore, in the Monte-Carlo-based methods,

an accurate belief-approximation requires an exponential growth in the number of

representative samples with n.

1.2.3 Small Noise Theory

Much of the work conducted in the small noise control of stochastic systems has

been devoted to the fully-observed single-agent problem. Earlier works, such as [63],

have considered asymptotic expansions of the control correction term in the presence

of small perturbations. [64], considers a special case of nonlinear systems with perfect

information where the process model is linear in the control variable, i.e., f(xt,ut) =

f1(xt) + f2(xt)ut, and the process model is perturbed by additive noise with ε-

variance. In this work, three results are proven. The first result concerns the O(ε)-

optimality of the optimal deterministic law under convexity of J in the control (i.e.,

vT (∇uuJ)v � 0 , ∀v), and additional smoothness and regularity conditions. The

second result concerns the O(ε2)-optimality of the optimal deterministic law under a

stronger convexity condition of J in the control (i.e., vT (∇uuJ)v � c(||u||)||v||2 ,∀v,

and c(·) : R → R is a monotonically non-increasing positive function), and some

smoothness and regularity conditions. The third result concerns the O(ε)-optimality

of the optimal deterministic sequence under the latter condition. Our result, on

the other hand, provide the O(ε)-optimality of the proposed design approach for a

9

broader class of processes f(xt,ut) with nonlinear dependence in the control variable

and more general cost functions. Most importantly, they do not assume the linear

dependence on the control sequence. In fact, our simulations in [65] are performed for

a car-like robot with nonlinear dependence on the control variables. We also prove

the first-order optimality of the globally optimal deterministic policy to be found by

DP for the same cost and dynamics that we have considered. Furthermore, while

the above mentioned results are for single-agent fully-observed systems, our results

hold for multi-agent partially-observed systems, as well.

Later works, such as [66] for linear quadratic problems, or [67] for open-loop

control, have successfully utilized the results of [64] and provided a deeper insight into

the fully-observed problem. [68] has considered the small noise control of discrete-

time systems and [69] has considered discrete-time Wentzell-Freidlin theory. [70] has

considered the asymptotic small noise expansions of the HJB equation for certain

classes of problems. [71] has also utilized the HJB equation for asymptotic small

noise results. Last, [72] provides results similar in nature to the result of [64] via a

different approach.

In the context of partially-observed problems, much of the literature has been

devoted to the effort of separating the control policy design problem from the esti-

mation problem [73, 74, 75], and its various generalizations or special cases to more

broad classes of problems, e.g., [76, 77, 78, 76, 79, 80, 81]. Other separated stochastic

control problems have also been introduced as in [82], based on defining a measure-

valued process for the unnormalized conditional distribution of state given the past

observation and controls. [83] has discussed similar partially-observed diffusion pro-

cesses. Regarding the small noise perturbation of the partially-observed systems,

[84, 85, 86, 87] have discussed the small noise filtering problem.

While Pontryagin’s Maximum Principle provides the necessary conditions for

10

open-loop control optimality in deterministic control [31], the Stochastic Maximum

Principle (SMP) provides necessary condition in order to obtain the extremal controls

[88, 89, 90]. It has been also proven that designs based on the SMP for some special

cases are optimal, as well [91]. More importantly, the SMP proves that the optimal

control in a stochastic setting is necessarily a feedback law [91] and examples have

been provided for fully-observed systems [92]. The extensions of the SMP to partially-

observed problems have also been provided in [93], which shows that the solution in

this case is necessarily a time-varying feedback function of the observation process.

Last, [94] has also discussed necessary conditions for partially-observed problems.

1.2.4 Point-Based POMDP Solvers

Major point-based POMDP solvers [95] like PBVI[96], HSVI [97], Perseus [98],

SARSOP [99], consider finite state, observation and action spaces (that results from

discretizing the underlying spaces) and develop a decision tree that can exactly solve

the POMDP problem for the initial belief state [100, 101, 102]. Recent point-based

solvers such as MCVI [103, 104] can allow continuous state spaces. However, they

still handle the belief space though a global discrete representation of the value func-

tion. These algorithms consequently suffer from the curse of dimensionality [5], [105].

Generally, in point-based solvers, the time complexity of the algorithms grows expo-

nentially with the number of (sampled) states and time horizon [49, 106]. They also

suffer from the curse of history [96] due to the exponential growth of decision choices

because of dependency of future decisions on previous ones. Further, they guarantee

optimality of their solution only for the particular initial belief state. This means

that if there is a deviation from the planned trajectory during the execution (which

happens with probability one), it becomes impractical to re-plan and compensate for

the accumulated errors due to te computational cost. Therefore, these methods are

11

not suitable for use in on-line planning where the planner should constantly compen-

sate for the errors due to the stochastic nature of the system. In such applications,

the environment can also change, obstacles can move, or new objects might appear.

Control strategies such as Receding Horizon Control (RHC) [107, 108, 109] are better

suited for such on-line applications if they have a fast re-planning algorithm.

1.2.5 More on LQG-Based Methods

In this subsection, we review some of the LQG-based methods that tackle similar

problems.

Feedback-based Information RoadMap (FIRM) [110], [15] is a general framework

to overcome the curse of history that attempts to solve an MDP in the sampled belief

space. The graph-based solution of FIRM introduced an elegant method for solving

POMDPS with continuous underlying spaces. However, attention is restricted to

Gaussian [111, 112] belief spaces which can be insufficient in some problems. In [113]

the stochastic control problem is reduced to a path planning algorithm in the spaces

of poses×covariances, and two algorithms are given to minimize the execution time

and minimize final covariance. The first algorithm extends classical graph-search

methods, and the second a back-projection of uncertainty constraints in the grid-

based space. [114] proposes an algorithm that restricts attention to the most-likely

observation and finds trajectories using non-linear optimization methods.

Basic LQG methods [7] find locally optimal feedback laws. However, in these

methods, the policy is independent of process and measurement uncertainties. It-

erative Linear Quadratic Gaussian (iLQG) [34] generalizes the LQG framework to

incorporate the process uncertainty with full observation (or an independent estima-

tor) of the state. Several methods incorporate partial or noisy observations where

the controller needs to actively gain information about the state. Belief roadmaps

12

(BRM) [115] and icLQG [116] which are based on Probabilistic Roadmaps (PRM)

[117, 118, 119, 120, 121] provide locally optimal solutions, by combining iterative

LQG with a roadmap. LQG-MP method [59] simulates LQG on a finite set of RRT

generated paths and compares its performance on those paths to find the better

trajectory. However, this method does not utilize the most likely observation as-

sumption which was used in [122, 108] to make the belief propagation deterministic.

Therefore, LQG-MP does not construct a trajectory; rather, it finds the best among

given trajectories. [123] builds a belief tree over paths generated by RRT [124]; how-

ever, they use RRT* [125] to find the optimal underlying trajectory and then apply

a variant of LQG-MP to find a global optimal trajectory in the belief space. In [126]

a chance-constrained optimal control problem is solved by assuming fixed control

gains on each segment of the trajectory. [127] through interleaving the iteration

of the controller and estimator to find a locally optimal solution, in a setting with

control-dependent process and observation uncertainty, but no obstacles. Moreover,

their controller is only optimal under the fixed estimator gain assumption. [128] uses

stochastic differential dynamic programming (sDDP) to extend the LQG-MP meth-

ods to roadmaps. In [35], they extend this method by performing the value iterations

using iLQG which improves their speed by one order. In fact, their approach is a be-

lief space variant of iLQG to perform value iteration. However, the time-complexity

of the latter method is still of order 6 in state dimension. Moreover, the number of

cycles to be performed for near convergence is not generally known. This method

also takes a feasible solution such as a RRT-generated path and computes the control

law by a backward recursion of the quadratic value function. Then, this policy is

used to compute a new nominal trajectory starting from the initial distribution. The

procedure is performed iteratively for new trajectories until it converges to the locally

optimal trajectory. This is mainly due to the line search algorithm that is used in

13

the Newton-like optimization methods that require a feasible solution to begin with

and an appropriate step size to avoid divergence.

Generally, roadmap methods return an optimal trajectory instead of a feedback

law. Therefore, re-planning becomes unavoidable because of large deviations from

the nominal path caused by uncertainty and noise. However, unless the planning do-

main and horizon are small, computationally expensive methods are impractical [129]

since, in case of a large deviation a new query for a new initial belief is requested. In

our research, we provide a method whose core problem is computationally light and

the number of optimization decision variables is the same as the number of control

inputs. Moreover, in the existence of obstacles, the problem is still computationally

efficient because of the low number of decision variables and hard constraints. There-

fore, our method is scalable, and, as we will discuss later, it utilizes the stochasticity

of the problem in its planning.

1.2.6 Model Predictive Control (MPC)-Based Methods

Other closely related methods to our method are Model Predictive Control (MPC)

or RHC-based methods[130, 28]. In MPC-based methods, at each sampling step

and given the initial state of the system, a finite horizon open-loop optimal control

problem is solved [131, 132, 133]. The first control in the optimal control sequence

resulting from the optimization is applied to the plant and the new state of the

system is used as the initial state for the next period. MPCs can cope with hard

constraints on controls and states [134, 135], and therefore have been widely used

in deterministic constrained problems where the evolution of the state is considered

noiseless and the observations are perfect. An overview of industrial applications of

MPCs is provided in [136]. Their stability and optimality results have been exten-

sively studied in [131]. Although MPC solves a standard optimal control problem, it

14

differs from the H2 or H∞ linear optimal control problems in that they usually solve

for infinite horizon while in MPC the optimal control problem is solved for a finite

horizon [137, 138, 139]. This is the appealing advantage of MPCs for our research

in that, unlike the traditional POMDP solvers which are used in obtaining off-line

a feedback policy (which determines the optimal control for all (belief) states whose

computation is expensive), MPCs have a natural on-line planning method for the

current state of the plant. In most practical robotic problems, due to the inherent

stochasticity of the problem resulting from unmodeled or unpredicted uncertainty,

uncertainty in a robot’s actions and inherent noise in sensor measurements or changes

in environment map (such as moving objects), off-line plans are not reliable enough

after execution of a few steps of planned actions. In such problems, the planner needs

to re-plan to compensate and refine its policy. From the implementation point of

view, MPC’s solving of an open loop policy where the initial state is the current state

to be controlled, can be considered as a mathematical program [140, 141]. Whereas,

in determining the feedback control law, the solution of Hamilton-Jacobi-Bellman

(HJB) equation [142, 143] basically deals with a differential or difference equation

which is generally more difficult [144]. However, it is required in MPCs that the

finite horizon control problem is solvable in a reasonable amount of time. Moreover,

as mentioned before, MPCs have been extensively used for deterministic problems.

Much of the work on stochastic MPCs has been performed on robust planning

over process uncertainty. There have been two major methods that have been prac-

ticed. In the first category, it is common to ignore the uncertainty in the planning

and solve for control actions for a given initial state using the nominal model whose

resulting control sequence is robustly stable for small disturbances under some con-

ditions [28, 145, 146, 147]. A second approach is to robustly program for all possible

disturbances or just account for a range of uncertainties [148, 149]. A major disadvan-

15

tage of this approach is that the diameter of the tube that considers the trajectories

resulting from the disturbances can become so large that the problem can become

infeasible [150]. Moreover, the tube generated open-loop sequence might be signif-

icantly different from the infinite horizon feedback policy which tends to keep the

trajectories in a small neighborhood with small dispersion from the nominal trajec-

tory [151, 150, 28]. However, the most important disadvantage of these methods is

their conservatism due to the fact that the tube-generated trajectories are a poor

prediction of closed-loop behavior [28]. In the same category, state-dependent uncer-

tainties have been discussed in [152]. The tube-based MPCs have been introduced

to partly mitigate these problems [153, 154]. This method applies a local feedback

about a nominal trajectory keeping the resultant trajectories of disturbances in a

small neighborhood of the reference trajectory [155]. However, in these methods,

uncertainties are assumed to be bounded. A class of other methods has considered

soft constraints where the constraints need not be satisfied for all possible realization

of uncertainties. Much of the attention in the literature regarding this area has been

limited to linear systems (both process and observation models) with additive un-

certainties. In most of the methods, the resulting optimizations are non-convex and

the resulting programs are computationally expensive. Monte-Carlo based methods

[156, 157], and related methods such as scenario approach [158], have also been suc-

cessful in providing high confidence probabilistic guarantees for convex problems,

and the results have been applied on MPCs in [27]. There is an extensive overview

of the feedback control methods as well as recent developments in [159].

16

2. GENERAL BACKGROUND

In this chapter, we define the general background regarding the stochastic optimal

control of a single-agent system. We will only consider the problem with imperfect

state information, which is more general than the problem with perfect state infor-

mation. In the next chapter, we define the specific problems that are tackled in this

research.

2.1 Single-Agent Model

Probability space (notation): Let {
,F , P} be a probability space with the ran-

dom variables on some measurable space (X,B), where X is generally a Euclidean

space with dimension of nx or a smooth manifold in this space, and B is the corre-

sponding σ-algebra of Borel sets.

Notations: Let x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , and z ∈ Z ⊂ Rnz denote the

state, control and observation vectors, respectively, and f : X × U × R → X, and

h : X× R→ Z denote the process and measurement model, respectively.

Discrete-time system equations: We consider the general discrete-time system

equations:

xt+1 = f(xt,ut,ωt), (2.1a)

zt = h(xt,νt), (2.1b)

where the nx- and nz-dimensional random sequences {ωt, t ≥ 0} and {νt, t ≥ 0} are

mutually independent zero-mean i.i.d. (independent, identically distributed), and

x0 ∼ p0(·).

Data history: Let us define the data history of observations and actions for 1 ≤

17

t ≤ K as Dt := {z0:t,u0:t−1}, where u0:t−1 and z0:t denote the actions and observations

from beginning to time step t. Note there is no observation at time 0, and z0 is only

defined artificially to model the initial distribution. This will be useful later in the

definition of the control policy.

The conditional distribution: The conditional distribution of θt := xt|Dt, 1 ≤

t ≤ K, denoted by pt, is the conditional distribution of the original system. It

is a sufficient statistic for the estimation and control of the original system. The

evolution of pt is based on the Bayesian update equation, which can be summarized

as a function τt :R× I×U×Z→ I [2, 12, 15], where pt+1 = τt(pt,ut, zt+1), p0 is given,

and I denotes the space of conditional distributions. Also we define θ0 := x0. We

will denote pt(xt = x,Dt = D) by pt(x,D) throughout the text.

Next, we revisit some of the concepts related to the conditional distribution and

derive τt.

2.1.1 Features of the Conditional Distribution

Sufficient statistic: A statistic is a function of the observations z0:t. A statistic

g(z0:t) is said to be “sufficient” for the parameter set � if the conditional density of

z0:t given g(z0:t), does not depend on θ. That is, p(z0:t|g(z0:t,θ)) does not depend

on θ. It is proved in [2] that g(z0:t) is a sufficient statistic for � if and only if there

are functions q1, q2 such that:

p(z0:t|θ) = q1(g(z0:t),θ)q2(z0:t),θ ∈ �

That is, if p(z0:t|θ) depends on θ only through g(z0:t).

Conditional distribution as a sufficient statistic: In a system where the state is

only partially observed, the controller needs to keep track of its knowledge about the

current state of the system given the data history. The conditional distribution of

18

the state given the data history is a sufficient statistic for the given history. That

means that it contains all the necessary information for decision making at time t.

Here, g(z0:t) = pXt|Z0:t;U0:t−1(x|z0:t; u0:t−1; p0). Therefore,

pZ0:t|U0:t−1Xt(z0:t|u0:t−1,x) = pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1)pZ0:t|U0:t−1(z0:t|u0:t−1)
pXt|U0:t−1(x|u0:t−1)

= pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1)pZ0:t|U0:t−1(z0:t|u0:t−1)
pXt|U0:t−1(x|u0:t−1)

= q1(pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1),x)q2(z0:t),

where

q1(pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1),x) = pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1)/pXt|U0:t−1(x|u0:t−1),

and q2(z0:t) = pZ0:t|U0:t−1(z0:t|u0:t−1). Therefore, the conditional distribution over the

augmented state is indeed a sufficient statistic for the parameter.

Transition function: Tt : X × U × X → R is the transition function describing

the probability of transitioning from state x′ to state x after taking action u at time

step t, where Tt(x,u,x′) := pXt+1|Ut,Xt(x|u,x′). Note that this function, which is

an equivalent representation of the process model xt+1 = f(xt,ut,ωt), describes the

uncertainty in the effect of the action or process uncertainty.

Likelihood function: Ωt : Z×X→ R is the likelihood function describing the prob-

ability of observing z at state x at time step t, where Ωt(z,x) := pZt|Xt(z|x). Simi-

larly, this function, which equivalently describes the observation model zt = h(xt,νt),

is needed to describe the uncertainty in perception or measurement uncertainty.

Bayesian update: Since the system is only partially observable, there is a need for

the estimation module to update the conditional distribution after taking an action

and perceiving an observation. The well-known Bayesian update equation [12, 2, 14]

19

gives us the general mechanism to update the conditional distribution over the state

after taking an action and perceiving an observation:

pt+1(x,D) = ηΩt+1(z,x)
∫

x′∈X
Tt(x,u,x′)pt(x′,D)dx′, (2.2)

where η is a normalizing constant. This equation is summarized as pt+1 = τt(pt,ut, zt+1).

Information state: Υt is an information state for the stochastic system (3.1) if it is

both a function of Dt, and Υt+1 can be determined from Υt, zt+1 and ut [2]. We show

that the conditional distribution over the state is a information state. Moreover, it

is a sufficient statistic for the stochastic control problem.

Conditional distribution is an information state: We now derive the Bayesian

recursion formula for the conditional distribution:

pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1) = pZt|Xt(zt|x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)
pZ0:t,U0:t−1(z0:t,u0:t−1) .

We have:

pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)

=
∫

x′∈X
pXt|Xt−1,Z0:t−1,U0:t−1(x|x′, z0:t−1,u0:t−1)pXt−1|Z0:t−1,U0:t−1(x′|z0:t−1,u0:t−1)dx′

=
∫

x′∈X
pXt|Ut−1,Xt−1(x|ut−1,x′)pXt−1|Z0:t−1,U0:t−2(x′|z0:t−1,u0:t−2)dx′

=
∫

x′∈X
Tt−1(x,u,x′)pt−1(x′, z0:t−1,u0:t−2, p0)dx′

:= Ψt(pXt−1|Z0:t−1,U0:t−2(·|z0:t−1,u0:t−2),ut−1)(x)

= Ψt(pt−1(·, z0:t−1,u0:t−2, p0),ut−1)(x), (2.3)

20

where pt−1(x′, z0:t−1,u0:t−2, p0) = pXt−1|Z0:t−1,U0:t−2(x′|z0:t−1,u0:t−2). Moreover,

pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1) = pZt|Xt(zt|x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)
pZ0:t,U0:t−1(z0:t,u0:t−1)

= pZt|Xt(zt|x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)∫
x∈X pZt|Xt(zt|x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)dx

= Ωt(z,x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)∫
x∈X Ωt(z,x)pXt|Z0:t−1,U0:t−1(x|z0:t−1,u0:t−1)dx

:= Φt(pXt|Z0:t−1,U0:t−1(·|z0:t−1,u0:t−1), zt)(x). (2.4)

Hence, we have:

pXt|Z0:t,U0:t−1(x|z0:t,u0:t−1) = Φt[Ψt(pXt−1|Z0:t−1,U0:t−2(·|z0:t−1,u0:t−2),ut−1), zt]

:= τt(pXt−1|Z0:t−1,U0:t−2(·|z0:t−1,u0:t−2),ut−1, zt), (2.5)

which is the same formula obtained in (2.2). Therefore, we can compute the condi-

tional distribution at time t through the conditional distribution at time t− 1, using

zt and ut−1. This also proves that conditional distribution over state is an infor-

mation state. Note that in order to solve the above recursion, we need the initial

condition:

pX0|Z0,U−1(·|z0,u−1) := pX0(·). (2.6)

2.2 Elements of the Stochastic Control Problem

Incremental cost function: Assuming that the time horizon is finite, K < ∞,

ct(xt,u) : X×U→ R denotes the one-step or immediate cost incurred by executing

action u at state xt. Moreover, cK(xK) denotes the terminal cost.

Policy function: The feedback policy (planner or the feedback control law), is a

21

sequence of functions π = {π0,π1, · · · } where πt : Zt+1 → U specifies the action

given the output (i.e., the observations). In a problem with perfect state measure-

ments, the output of the system is a direct function of the state and therefore, the

policy is state-dependent. Thus, ut = πt(z0:t), where π = {π0, · · · ,πt} is a policy

denoted by a finite sequence (since K <∞). A policy is feasible if ut = πt(z0:t) ∈ U.

We denote the space of feasible policies by �.

Cost associated with the policy: Let π ∈ �, and {xπt }, {uπt } and {zπt } be the

random processes associated with (and dependent on) that policy. We can define the

cost function Jπ : XK+1 × UK → R associated with π as:

Jπ :=
K−1∑
t=0

ct(xπt ,uπt) + cK(xπK).

For notational simplicity, we denote the cost associated with the policy π by
K−1∑
t=0

cπt (xt,ut)+

cπK(xK). A proper choice of this cost function is an important aspect of the overall

modeling of the problem.

Cost-to-go function: Due to the randomness of the processes {xπt } and {uπt },

Jπ is a random variable. Therefore, we define the cost-to-go as the expected cost

E[Jπ] which is deterministic, with the expectation taken over all randomness. This

expectation can be written as:

E[Jπ(x0:K ,u0:K−1)] = E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

= E[
K−1∑
t=0

E[cπt (xt,ut)|Dt] + E[cπK(xK)|DK]]

= E[
K−1∑
t=0

∫
X
[cπt (xt,ut)pt(xt|z0:t,u0,t−1)dxt]

+
∫
X
[cπK(xK)pK(xK |z0:K ,u0,K−1)dxK]]

22

=: E[
K−1∑
t=0

cπ,pt (pt,ut) + cπ,pK (pK)]

=: E[J ′π(p0:K ,u0:K−1)]

where cπ,pt , cπ,pK , and J ′ are defined using the above equations with respect to the

conditional distribution, and the last expectation is taken over all possible conditional

distributions.

Problem ingredients: The stochastic control problem can be represented by an

n−tuple: {X,U,Z, p0, Tt,Ωt, ct, K}.

Problem 1 General stochastic control problem The objective in our stochastic

control problem is to find an optimal policy which minimizes the cost-to-go function.

Therefore, the problem can be formulated as follows:

min
π∈�

E[Jπ] (2.7)

and the optimal policy π∗ is defined as:

π∗ := arg min
π∈�

E[Jπ]

Note that since the state is not directly observed, the optimal policy is not a Marko-

vian policy (it can become Markov if the entire trajectory of observations is defined

as a variable). However, as we showed in equation (2.5), the information state does

not depend on π. Therefore, the optimal policy is only a function of the information

state. We show in the next section that the optimal policy is separated. We call a

policy separated if πt depends on the output z0:t only through the information state,

that is, ut = πt(pt(·|z0:t)), and �S denotes the space of all separated policies.

23

2.3 Theoretical Solution of the General Problem

In this section, we provide the solution of the POMDP problem. It is proven

in [2, 12] that the optimal policy for problem (1) can be found using the dynamic

programming equations. We provide the result without further elaboration and refer

the reader to the book [2] for its proof and further details.

Theorem 1 Define recursively the functions Vt(p), 0 ≤ t ≤ K, p ∈ I, by

VK(p) := E{cK(xK)|pK = p}, (2.8)

Vt(p) := inf
u∈U

E{ct(xt,u) + Vt+1(τt(p,u, zt+1))|pt = p} (2.9)

(i) Let π ∈ �, then

Vt(pt(Dt)) ≤ Jπt (2.10)

(i) Let π ∈ �S, such that for all p ∈ I, πt(p) achieves the minimum in (2.9); then π

is optimal and Vt(pt(Dt)) = Jπt w.p.1.

The optimal policy is only a function of the information state and is a separated

policy. This solution involves solving an optimization problem in the space of actions,

for all information states. However, the information-state space over a continuous

finite-dimensional state space is an infinite-dimensional function space, which makes

finding the optimal policy of the problem (1) through the solution of Theorem 1

an intractable task. The computational complexity of such an effort is PSPACE-

complete, which is higher in the hierarchy than the NP-complete problems [160].

However, this problem is significant for many applications, such as many robotics

problems. This has motivated research into suboptimal or near-optimal solutions of

24

the problem using techniques in optimization, control and algorithms theory. In the

next section, we provide our proposed method for tackling this problem in order to

find near-optimal solutions under a small-noise assumption, which can be found in

polynomial time.

25

3. DECOUPLING PRINCIPLE: FOUR PROBLEMS, FOUR RESULTS

In this chapter, we define the four specific closely-related stochastic optimal con-

trol problems that we tackle in this research. First, we consider the single-agent

and multi-agent problems with perfect state information, and then we proceed to

the problems with imperfect state information. Then, we state the main results

for each of these problems. In the next chapters, we lay down our theoretical

approach for each of these problems and prove the decoupling principle for each

one. Multiple results and related aspects of this dissertation have been presented in

[161, 162, 163, 164, 62, 165, 166, 167, 168, 169, 170].

3.1 Single-Agent Model

Probability space (notation): Let {
,F , P} be a probability space with the ran-

dom variables on some measurable space (X,B), where X is generally a Euclidean

space with dimension of nx or a smooth manifold in this space, and B is the corre-

sponding σ-algebra of Borel sets.

Notations: Let x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , and z ∈ Z ⊂ Rnz denote the state,

control and observation vectors, respectively, and f : X × U → X and σf : R →

Rnx×nx denote the drift and diffusion terms of the motion model, h : X → Z and

σh : R → Rnz×nz denote the drift and diffusion terms of the observation model,

respectively.

Discrete-time system equations: We consider the general discrete-time system

equations with additive noise as:

xt+1 = f(xt,ut) + εσf (t)wt, wt ∼ N (0,Σw), (3.1a)

zt = h(xt) + εσh(t)vt, vt ∼ N (0,Σv), (3.1b)

26

where the nx- and nz-dimensional Gaussian random sequences {wt, t ≥ 0} and

{vt, t ≥ 0} are mutually independent zero-mean i.i.d. (independent, identically

distributed), ε > 0, and x0 ∼ N (x̄0, ε
2Σx0). Define a : R → Rnx×nx , a := σ(σ)T =

(aj,k)0≤j,k≤nx , and let f = (fj)0≤j≤nx . We assume the drift and diffusion coefficients,

fj, aj,k, are twice continuously differentiable, bounded and uniformly Lipschitz con-

tinuous functions, and that the diffusion matrix is uniformly positive-definite (hence,

non-degenerate). We also assume similar smoothness conditions for h and σh as f

and σf , respectively. Note that, at times for simplicity, we will denote the process

and observation models by xt+1 = f(xt,ut,wt) and zt = h(xt,vt), but we only mean

it as a short form for the above equations, particularly the dependence on the noise,

unless otherwise stated.

Data history: Let us define the data history of observations and actions for 1 ≤

t ≤ K as Dt := {z1:t,u0:t−1}, where u0:t−1 and z0:t denote the actions and observations

from beginning to time step t.

The conditional distribution: The conditional distribution of θt := xt|Dt, 1 ≤

t ≤ K, denoted by pt, is the conditional distribution of the original system. It

is a sufficient statistic for the estimation and control of the original system. The

evolution of pt is based on the Bayesian update equation, summarized as a function

τt :R× I×U×Z→ I [2, 12, 15], where pt+1 = τt(pt,ut, zt+1), p0 is given, and I denotes

the space of conditional distributions. For our system, p0 = N (x̄0, ε
2Σx0). Also we

define θ0 := x0. We will denote pt(xt = x,Dt = D) by pt(x,D) throughout the text.

3.2 Multi-Agent Model

Agent index set: We assume there are m agents with the index set of i ∈ I :=

{1, · · · ,m}.

Notations: For agent i, let xi ∈ Xi ⊂ Rnix , ui ∈ Ui ⊂ Rniu , and zi ∈ Zi ⊂ Rniz

27

denote its state, control and observation vectors, respectively, and f i : Xi ×Ui → Xi

and σfi : R → Rnix×nix denote the drift and diffusion terms of the motion model,

hi : Xi → Zi and σhi : R → Rniz×niz denote the drift and diffusion terms of the

observation model, respectively. We assume independent process and observation

dynamics for different agents.

Discrete-time system equations: We consider the general discrete-time system

equations with additive noise as:

xit+1 = f i(xit,uit) + εσfi(t)wi
t, wi

t ∼ N (0,Σwi), (3.2a)

zit = hi(xit) + εσhi(t)vit, vit ∼ N (0,Σvi), (3.2b)

where the nix- and niz-dimensional random sequences {wi
t, t ≥ 0} and {vit, t ≥ 0} are

mutually independent zero-mean i.i.d. (independent, identically distributed), ε > 0,

and xi0 ∼ N (x̄i0, ε2Σxi0). Define ai : R → Rnix×nix , ai := σi(σi)T = (aj,k)0≤j,k≤nix ,

and let f i = (f ij)0≤j≤nix . We assume the drift and diffusion coefficients, f ij , aj,k,

are twice continuously differentiable, bounded and uniformly Lipschitz continuous

functions. and that the diffusion matrix is uniformly positive-definite (hence, non-

degenerate). We also assume similar smoothness conditions for hi and σhi as f i and

σfi , respectively.

Data history: Let us define the data history of observations and actions of agent

i for 1 ≤ t ≤ K as Di
t := {zi1:t,ui0:t−1}.

The conditional distribution: The conditional distribution of θit := xit|Di
t, 1 ≤ t ≤

K, denoted by pit, is the conditional distribution of the system. It is proven to be a

sufficient statistic for the estimation and control of the systems. The evolution of pit

is based on the Bayesian update equation summarized as pit+1 = τt(pit,uit, zit+1) and

pi0 is given. For our system, p0 = N (x̄i0, ε2Σxi0). Also we define θi0 := xi0.

28

Joint agent spaces: Let us define the Cartesian products of the individual agent

spaces as the joint agent spaces denoted by XI ,UI ,ZI , and II . Similarly, de-

note by superscript I the appropriate collection of joint agent variables, e.g., uIt =

[(u1
t)T , · · · , (umt)T]T . Similarly, for the states xIt , observations zIt , etc. The dynamics

of this concatenated set of all agent states can be described by an appropriate block

matrix concatenation of the joint dynamics Jacobians and just a simple set collection

of feedback policies that are defined precisely later.

Now we proceed to the specific problem definitions.

3.3 Problem Definitions

We consider all the problems in discrete-time. Later, we dedicate one section for

each of these problems.

Problem 2 Single-Agent Stochastic Optimal Control with Perfect State

Information Given an initial state x0, solve to determine an optimal or near-

optimal policy for

min
π

E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

s.t. xt+1 = f(xt,ut) + εσf (t)wt, (3.3)

where the optimization is over continuously differentiable Markov, i.e., time-varying

state-feedback policies, with

• Jπ : �→ R is the cost function, and Jπ := ∑K−1
t=0 cπt (xt,ut) + cπK(xK);

• π ∈ � defines the policy, where π :={π0, · · · ,πt};

• πt : X→ U specifies the optimal action: ut = πt(xt);

• K > 0 is the planning horizon;

• cπt : X× U→ R is the incremental cost; and,

29

• cπK : X→ R is the terminal cost.

Problem 3 Centralized Multi-Agent Stochastic Optimal Control with Per-

fect State Information Given an initial joint state xI0 , solve to determine an op-

timal or near-optimal policy for

min
πI

E[
KI−1∑
t=0

cπ
I

t (xIt ,uIt) + cπ
I

KI
(xIKI)]

s.t. xit+1 = f i(xit,uit) + εσfi(t)wi
t, ∀i ∈ I, (3.4)

where the optimization is over continuously differentiable Markov, i.e., time-varying

state-feedback policies, with

• JπI : �I → R is the cost function, and JπI := ∑KI−1
t=0 cπ

I
t (xIt ,uIt) + cπ

I
KI

(xIKI);

• πI ∈ �I defines the policy, where πI :={π1, · · · ,πm}, and πi :={πi0, · · · ,πit};

• πit : XI → Ui specifies the optimal action for agent i: uit = πit(xIt);

• KI:=maxi∈IKi, and Ki > 0 is agent i’s planning horizon;

• cπIt : XI × UI → R is the incremental cost; and,

• cπIKI : XI → R is the terminal cost.

Problem 4 Single-Agent Stochastic Optimal Control with Imperfect State

Information Given an initial distribution p0, solve for an optimal or near-optimal

policy:

min
π

E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

s.t. xt+1 = f(xt,ut) + εσf (t)wt, (3.5a)

zt = h(xt) + εσh(t)vt, (3.5b)

30

where the optimization is over continuously differentiable time-varying observation-

trajectory-feedback policies, and:

• Jπ : �→ R is the cost function, and Jπ := ∑K−1
t=0 cπt (xt,ut) + cπK(xK);

• π ∈ � defines the policy, where π :={π0, · · · ,πt};

• πt : Zt → U specifies the optimal action: ut = πt(z1:t);

• K > 0 is the planning horizon;

• cπt : X× U→ R is the incremental cost; and,

• cπK : X→ R is the terminal cost.

Problem 5 Centralized Multi-Agent Stochastic Optimal Control with Im-

perfect State Information Given an initial joint distribution pI0 , solve for an

optimal or near-optimal policy:

min
πI

E[
KI−1∑
t=0

cπ
I

t (xIt ,uIt) + cπ
I

KI
(xIKI)]

s.t. xit+1 = f i(xit,uit) + εσfi(t)wi
t, ∀i ∈ I, (3.6a)

zit = hi(xit) + εσhi(t)vit, ∀i ∈ I, (3.6b)

where the optimization is over continuously differentiable time-varying joint observation-

trajectory-feedback policies, and:

• JπI : �I → R is the cost function, and JπI := ∑KI−1
t=0 cπ

I
t (xIt ,uIt) + cπ

I
KI

(xIKI);

• πI ∈ �I defines the policy, where πI :={π1, · · · ,πm}, and πi :={πi0, · · · ,πit};

• πit : (ZI)t → Ui specifies the optimal action for agent i: uit = πit(zI1:t);

• KI:=maxi∈IKi, and Ki > 0 is agent i’s planning horizon;

• cπIt : XI × UI → R is the incremental cost; and,

• cπIKI : XI → R is the terminal cost.

31

3.4 Main Results of Part I

The main results which lead up to a tractable, near-optimal decoupled solution

of Problem (5) are the following. These results are each devoted a chapter in this

part of the thesis.

Result 1 Consider a system with just a single agent which observes its state per-

fectly. Then a two step design approach, where first, the nominal trajectory of the

system is designed and optimized taking into account the nonlinearities of the sys-

tem but without any noise, and, second, the system equations are linearized around

the nominal trajectory and a linear feedback policy is designed to track that nominal

trajectory, is O(ε2−γ)-optimal for 0 < γ � 1.

Result 2 Consider a system of m agents, where each observes its state perfectly.

Then a two-step design approach, where, first, the nominal trajectories of all the

agents in the system are designed and optimized taking into account the nonlinearities

of the system but without any noises, and, second, the system equation of each agent

is linearized around its nominal trajectory and each agent applies an LQG-optimal

feedback policy to track its own nominal trajectory, is O(ε2−γ)-optimal for 0 < γ � 1.

The import of this result is that in the first step, the optimal nominal trajectory

of the entire system is designed jointly incorporating the joint costs of the system,

such as collision avoidance, etc.. Subsequently, the feedback policy of each agent is

designed separately to track its own nominal trajectory using LQG optimal control.

Thus, the centralized multi-agent problem can be tractably reduced near-optimally to

a decentralized factored MDP, and then solved in a decoupled manner.

Result 3 Consider a system with just one agent which imperfectly observes its own

state. Then a two-step design approach, where, first, the nominal trajectory of the

32

agent is designed and optimized taking into account the nonlinearity of its system

but without any noise, and, second, its system equation is linearized around this

nominal trajectory and the agent applies an LQG-optimal policy to track the nominal

trajectory, is O(ε2−γ)-optimal for 0 < γ � 1. The second step is particularly simple

since it is a simple LQG design.

Result 4 Consider a system of m agents, where each observes its state imperfectly

in the presence of noise in the observations. Then a two-step design approach, where,

first, the nominal trajectories of all the agents in the system are designed and op-

timized taking into account the nonlinearities of the system but without any noises,

and, second, the system equation of each agent is linearized around its nominal tra-

jectory and each agent applies an LQG-optimal policy to track its own nominal trajec-

tory, is O(ε2−γ)-optimal for 0 < γ � 1. Thus, each agent can optimally implement

a decentralized estimator without utilizing the belief-state information of the other

agents. The resulting algorithm’s computation is of a polynomial order in the state-

dimension, number of agents and time-horizon. Thereby we have obtained a solution

which is tractable, where linear feedbacks of the agents do not require knowledge of

other agents’ states, and which is nearly-optimal. The centralized multi-agent system

with imperfect observations can so be reduced near-optimally to a decentralized LQG,

and thereby solved near-optimally.

33

4. FULLY-OBSERVED SINGLE-AGENT SYSTEM

In this chapter, we consider the single-agent fully-observed stochastic control

problem. After a brief introduction, we first attempt to prove the near-first-order

optimality of the considered policies. Then, in the last two sections we prove the

near-second-order optimality of the proposed policies.

4.1 Introduction

Many robotic systems, in particular, mobile aerial and ground robots, are equipped

with noisy actuators that require feedback compensation or planning ahead in a

policy that accounts for the random perturbations. Simply ignoring the noise and

planning for the unperturbed equivalent of the stochastic system can result in crucial

errors leading to failure in reaching the end-goal, or result in the system falling into

unsafe states. Moreover, the solution should not require a fully centralized control

since that would require pervasive constant communication among all robots.

In a stochastic setting, the general problem of sequential decision-making can be

formulated as a Markov Decision Problem (MDP) [2, 7]. The optimal solution of the

stochastic control problem can be obtained iteratively by value or policy iteration

methods to solve the Hamilton-Jacobi-Bellman equation [7]. Except in special cases,

such as in a linear Gaussian environment, this involves discretization of the under-

lying spaces [8]; an approach whose scalability faces the curse of dimensionality [9].

As a result, the solutions require a computation time that is provably exponential

in the state dimension, in a real number based model of complexity, without any

assumption that P 6= NP [10].

Many approaches have been proposed based on their tractability. Model Predic-

tive Control (MPC)-based methods [27, 28], robust formulations [29, 30], and other

34

designs that relate to the Pontryagin’s Maximum Principle [31] are some of the

methods that have been successfully used as surrogate design approaches. Another

popular approach utilizes Differential Dynamic Programing (DDP) [32] and DDP-

based variations such as the Stochastic DDP [33], iLQR and iLQG [34]–Stochastic

DDP relies on second order approximation of the dynamics and cost, whereas iLQR

and iLQG use second order approximation of the cost but first order linearization

of the dynamics. These methods propose iterative methods that attempt to find

“locally-optimal” solutions in a tube around a nominal trajectory [34] by coupling

the design of feedback policy and the nominal trajectory of the system.

In this chapter, we address the nonlinear stochastic control problem and propose

an architecture under which the decoupled design of an optimal open-loop control

sequence and a decentralized feedback policy is both tractable and near-optimal. In

particular, we show that under a small noise assumption, a decoupling into globally-

optimal trajectory design and a decentralized feedback control law holds for fully-

observed nonlinear stochastic systems of the type of interest in mobile robotic sys-

tems.

The design can be broken into two parts: i) an open-loop optimal control prob-

lem that designs the nominal trajectory of the LQR controller, which respects the

nonlinearities as well as state and control constraints; ii) the design of a decentralized

LQR policy around the optimized nominal trajectory. The quality of the design is

rigorously provided by the main results of the chapter. We quantify the first and

second order stochastic error for small-noise levels based on large deviations the-

ory. We thereby arrive at what we call a Trajectory-optimized decoupled Linear

Quadratic Regulator (T-LQR) design for fully-observed nonlinear stochastic systems

under Gaussian small-noise perturbations.

The organization of the chapter is as follows. Section 4.2 states a simple large

35

deviations result for linear Gaussian systems. Section 4.3 defines a general stochastic

control problem for a fully-observed system. Section 6.1 analyzes the near-first-

order optimality of the deterministic policy applied to the stochastic system under

the assumption that the function are in C1. Section 4.5 proves the near-first-order

optimality of the T-LQR policy under the assumption that the function are in C1.

Section 4.6 analyzes a design based on T-LQR for a non-holonomic car-like robot

and provides numerical results illustrating the proposed approach to design. Section

6.3 analyzes the near-second-order optimality of the deterministic policy applied to

the stochastic system under the assumption that the function are in C2. Section 4.8

analyzes the near-first-order optimality of the T-LQR policy under the assumption

that the function are in C2.

4.2 Small Random Perturbations of a Linear System

In this section, we consider the small noise perturbations of a linear Gaussian

system. We state a simple Large Deviations probability for a linear Gaussian system.

A general discussion regarding large deviations of the trajectories of a perturbed

system from that of its unperturbed counterparts and related theories can be found

in [6, 171, 172, 64, 173, 174, 175, 176, 177].

Lemma 1 Large Deviations for Linear Gaussian System: Let

xt+1 = Atxt + εσtwt, wt ∼ N (0,Σw), (4.1)

where xt ∈ X ⊂ Rnx, xt = 0, ε > 0, and Σw,σt � 0. Then, for each δ > 0, and for

some β̄ > 0 and γ̄ > 0,

P (max
1≤t≤K

||xt|| > δ) ≤ Knxβ̄
ε

δ
exp(−γ̄ δ

2

ε2
). (4.2)

36

Proof 1 First note that,

xt = ε
t−1∑
s=0

(Πt−1
r=s+1Ar)σsws =: ε

t−1∑
s=0

Φs,tws,

where Φs,t := (Πt−1
r=s+1Ar)σs, 0 ≤ s ≤ t − 1, 2 ≤ t ≤ K, and Φ0,1 = σ0. Now, if

xt = (xit),wt = (wit), 1 ≤ i ≤ nx and Φs,t = (Φij
s,t), 1 ≤ i, j ≤ nx, then

xit = ε
t−1∑
s=0

nx∑
j=1

Φij
s,tw

i
s ∼ N (0, ε2αi,t),

where αi,t := ∑t−1
s=0

∑nx
j=1(Φij

s,t)2, 1 ≤ i ≤ nx, 1 ≤ t ≤ K, whence αi,t > 0. Now, let

z ∼ N (0, 1) be a standard normal random variable. Then, for 0 < δ ≤ u, we have

1 ≤ u/δ, and the tail probability of z is [178]:

P (z > δ) = 1√
2π

∫ ∞
δ

exp(−u
2

2)du

≤ 1√
2π

∫ ∞
δ

u

δ
exp(−u

2

2)du ≤ 1
δ
√

2π
exp(−δ

2

2).

Hence, we have

P (z2 > δ2) = P (z > δ) + P (z < −δ) ≤ 2
δ
√

2π
exp(−δ

2

2).

So,

P ((xit)2 > δ2) = P ((xit
εαi,t

)2 >
δ2

ε2α2
i,t

)

≤ εαi,t
δ

√
2
π

exp(− δ2

2ε2α2
i,t

).

37

Now, let β̄ :=
√

2
π
(max1≤i≤nx,1≤t≤K αi,t) and γ̄ := 1/(β̄2π), whence β̄, γ̄ > 0. Then,

P ((xit)2 > δ2) ≤ β̄
ε

δ
exp(−γ̄ δ

2

ε2
),

Hence,

P (max
1≤t≤K

||xt|| > δ) ≤
K∑
t=1

P (||xt|| > δ)

=
K∑
t=1

P (||xt||2 > δ2) =
K∑
t=1

P (
nx∑
i=1

(xit)2 > δ2)

≤
K∑
t=1

nx∑
i=1

P ((xit)2 > δ2) ≤
K∑
t=1

nx∑
i=1

β̄
ε

δ
exp(−γ̄ δ

2

ε2
)

= Knxβ̄
ε

δ
exp(−γ̄ δ

2

ε2
).

Remark: Note that using the above lemma, for a fixed δ > 0 we have:

P (max
1≤t≤K

||xt|| > δ) = o(exp(− 1
ε2

)), (4.3)

which tends to zero much faster than o(ε), as ε ↓ 0. Thus, for a fixed δ, the probability

that the trajectory of x ever exits the tube of radius δ around the nominal zero

trajectory in the time interval [0, t] goes to zero exponentially.

Remark: Note that in the above lemma, β̄ = 1/
√
γ̄π, and the lemma can be

rewritten with only one constant, where

β̄ =
√

2
π

(max
1≤i≤nx,1≤t≤K

t−1∑
s=0

nx∑
j=1

(Φij
s,t)2)

where Φs,t = (Πt−1
r=s+1Ar)σs, 0 ≤ s ≤ t − 1, 2 ≤ t ≤ K, and Φ0,1 = σ0. This means

that β̄ is proportional to the aggregated effect of the noise (or the variance of the

38

trajectory’s perturbation) in a direction which it is highest. In fact, using the large

deviations theory one can find the first exit probability, as well as the most probable

exit path.

Remark: This probability also linearly increases with the time horizon, K, and

the dimension of the state nx.

Remark: Let us provide a simple example and compute the above probability.

Let x ∈ Rnx , x0 = 0, and

xt+1 = xt + εwt, wt ∼ N (0, I).

Then, Φs,t = I, 0 ≤ s ≤ t− 1, 1 ≤ t ≤ K and

β̄ =
√

2
π

(max
1≤i≤nx,1≤t≤K

t−1∑
s=0

1) =
√

2
π

(max
1≤t≤K

t) =
√

2
π
K.

Therefore,

P (max
1≤t≤K

||xt|| > δ) ≤
√

2
π
K2nx

ε

δ
exp(− 1

2K2
δ2

ε2
).

Now, let us fix δ = 1, nx = 2, and K = 10. Then, the right hand side probability

becomes
√

2
π
200ε exp(− 1

200ε2), which equals 0.28 for ε = 0.04. Therefore, the proba-

bility of staying in the 1-meter tube around zero after 10 steps is at least 0.72. For

any higher ε, this probability will be out of a reasonable tolerance range. In the

next sections, for a car-like robot model we numerically show that this probability

improves significantly using feedback, and show that higher levels of noise also can

be tolerated with high probability.

Remark: Note that although we provided an example for a fixed δ, in fact for our

proofs we will use an ε-dependent definition of δ such that as ε ↓ 0, δ ↓ 0, as well.

39

This is mainly because, we will prove that the errors of our proposed policies are

dependent on δ. Hence, a fixed δ (independent from ε) does not provide our desired

characteristics. We also will show that for such a choice of δ, the above probability

is not anymore exponential in ε, rather it is polynomial.

We will use the analysis of this section to analyze the optimality of our design in

the next section.

4.3 The Fully-Observed System

The general stochastic control problem of interest for a fully-observed system can

be formulated as an optimization problem in the space of feedback policies. Without

loss of generality, we consider discrete-time systems.

Process model: We denote the state and control by x ∈ X ⊂ Rnx and u ∈ U ⊂

Rnu , respectively. Given x0 ∈ X, the process model with f : X × U → X is defined

as:

xt+1 = f(xt,ut) + εσtwt, wt ∼ N (0,Σwt) (4.4)

where {wt} is independent, identically distributed (i.i.d.).

Now, we pose the general stochastic control problem [2, 12]. We restrict attention

to continuously differentiable policies throughout this section. We will also need to

assume that there exists an optimal policy in this class.

Problem 6 Stochastic Control Problem for Fully-Observed System: Given

an initial state x0, we wish to determine an optimal or near-optimal policy for

min
π

E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

s.t. xt+1 = f(xt,ut) + εσtwt, (4.5)

40

where the optimization is over continuously differentiable Markov, i.e., time-varying

state-feedback policies, π ∈ �, and

• π := {π0, · · · ,πt}, πt : X → U, and ut = πt(xt) specifies the action taken

given the state;

• cπt (·, ·) : X× U→ R is the one-step cost function;

• cπK(·) : X→ R denotes the terminal cost;

• K > 0 is the time horizon; and

• We also assume that the cost function is continuously differentiable and bounded.

That is |ct| ≤M and |cK | ≤M for some M > 0.

Assumption: For the analysis of Sections 4.7 and 4.8, we will add the assumption that

all the functions are in C2, where Cr, r ≥ 1 denotes the space of continuous functions

that are differentiable to the r-th order and their derivatives are also continuous up

to the r-th order. However, for the analysis of Sections 4.4 and 4.5 we only assume

that the functions are in C1.

4.4 Case I: The Deterministic Optimal Policy

In this section, we analyze the performance of the deterministic optimal control

policy used in the stochastic problem.

Problem 7 Deterministic Closed-Loop Problem: Given an initial state x0, we

begin by determining a continuously differentiable optimal feedback policy for

min
π

K−1∑
t=0

ct(xt,ut) + cK(xK)

s.t. xt+1 = f(xt,ut). (4.6)

41

Nominal trajectories: For 0 ≤ t ≤ K−1, let πd be the optimal feedback law of

the deterministic problem above, and let xpt be the corresponding state, where

upt := πdt (x
p
t), xpt+1 := f(xpt ,upt), (4.7)

where xp0 := x0. We refer to this as the nominal trajectories.

Linearization of the system equations: We consider the application of a control

ut = πdt (xt) to the stochastic system. Then the resulting trajectory is:

xt+1 = f(xt,πdt (xt)) + εσtwt. (4.8)

Let x̃t := xt − xpt denote the state error. Then we linearize the drift of the process

model around the nominal trajectory. Hence, for 0 ≤ t ≤ K − 1:

x̃t+1 = f(xt,πdt (xt))− f(xpt ,upt) + εσtwt (4.9a)

= Atx̃t −BtLtx̃t + εσtwt + o(||x̃t||) (4.9b)

=: Dtx̃t + Gtwt + o(||x̃||∞), (4.9c)

as (||x̃||∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Lt :=−∇xπ
d
t (x)|xpt , Gt :=εσt;

• Dt := At −BtLt, 1 ≤ t ≤ K − 1, D0 = G0; and

• x̃0 = x0 − xp0 = 0.

The exactly linear l-system: From the above system of (4.25), we remove the o(·)

terms, and define an exactly linear system:

x̃lt+1 := Dtx̃lt + Gtwt, (4.10)

42

where x̃l0 := x̃0 = 0.

The difference d-system: We denote the difference between the two systems of

(4.9c) and (4.10) by a superscript d, and define for 0 ≤ t ≤ K−1, x̃dt+1 := x̃t+1−x̃lt+1,

where x̃d0 = x̃0 − x̃l0 = 0. Therefore,

x̃dt+1 = Dtx̃dt +o(||x̃||∞) = D̃0:tx̃d0 + o(||x̃||∞) = o(||x̃||∞) (4.11)

where D̃t1:t2 = Πt2
t=t1Dt, t2 ≥ t1 ≥ 0, otherwise, it is the identity matrix. This leads

to o(||x̃d||∞) = o(||x̃||∞). Hence,

O(||x̃l||∞) = O(||x̃||∞) + o(||x̃||∞) = O(||x̃||∞). (4.12)

This means that all the errors in the original system, the l-system, and the d-system

are of the order of O(||x̃||∞). Moreover, O(||x̃||∞) is itself O(||x̃l||∞), which we calculate

next.

Large deviations: The l-system is a linear Gaussian system with additive noise,

for which we use the large deviations result of Lemma 1 modifying the definition of

Φs,t for 0 ≤ s ≤ t− 1, 2 ≤ t ≤ K as Φs,t := (Πt−1
r=s+1Dr)σs, 0 ≤ s ≤ t− 1, 2 ≤ t ≤ K.

Thus, for each finite δ ≥ 0, we have P{max0≤t≤K ||x̃lt|| ≥ δ} = o(ε).

Let Ω(δ) be the set where max0≤t≤K ||x̃lt|| ≤ δ. Then, P (Ω(δ)) ≥ 1 − o(ε) and

for ω ∈ Ω(δ), ||x̃l||∞ = O(δ). Therefore, from the calculations above, we have that

O(||x̃||∞) = O(δ), and hence all the other errors are also O(δ) for ω ∈ Ω(δ).

Then for ω ∈ Ω(δ) and for all 0 ≤ t ≤ K − 1,

xt+1 = xpt+1 + x̃lt+1 +O(δ), (4.13)

43

which means that the linear Gaussian stochastic (̃·)l-system along with the deter-

ministic p-system can be used to control the original system given the O(δ) approx-

imations hold (with probability of at least 1 − o(ε)). In another interpretation, the

original system can be approximated for all 0≤ t≤K − 1 as:

xt+1 = xlt+1 +O(δ). (4.14)

Remark: Note that choosing different open-loop policies other than the optimal,

results in a different feedback gain Lt, and therefore, a different transfer function

for the system. Particularly, the Φ function defined in Lemma 1 changes and the

pre-constant and the exponent’s constant in the large deviations probability changes,

as well.

Linear iterative equation: Before proceeding to the next lemma, let us first solve

a general linear iterative formula. Let

xt+1 = Dtxt + ft, (4.15)

for some given fs, 0 ≤ s ≤ t and x0. Then,

xt+1 =Dtxt + ft = Dt(Dt−1xt−1 + ft−1) + ft = DtDt−1xt−1 + Dtft−1 + ft

=DtDt−1 × · · · ×Dt−txt−t +
t∑

s=0
(DtDt−1 × · · · ×Dt−s+1)ft−s

=D̃0:tx0 +
t∑

s=0
D̃t−s+1:tft−s

=D̃0:tx0 +
t∑

r=0
D̃r+1:tfr,

44

where we used r = t − s in the last equation. Note that this formula can be easily

verified using mathematical induction.

Lemma 2 State Error Propagation: For the l-system of (4.10), the state error

x̃lt+1 can be written as:

x̃lt+1 =
t∑

s=0
D̃w
s,tws, 0 ≤ t ≤ K − 1, (4.16)

where we have:

• D̃w
s,t := D̃s+1:tGs, 0 ≤ s ≤ t− 1, t ≥ 1; and

• D̃w
t,t := D̃t+1:tGt = Gt, t ≥ 0.

Proof 2 Given x̃l0 = 0, we have:

x̃lt+1 =Dtx̃lt+Gtwt =D̃0:tx̃l0+
t∑

r=0
D̃r+1:tGrwr =:

t∑
s=0

D̃w
s,tws.

Next, we linearize the cost function and provide the near-first-order optimality

of this design.

Linearization of the cost function: We similarly linearize the cost function around

the nominal trajectories of state and control actions:

J = Jp + J̃1 + o(
K∑
t=1
||x̃t||) (4.17a)

= Jp + J̃1 + o(||x̃||∞), (4.17b)

where we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t−Cu
t Ltx̃t)+Cx

Kx̃K is the first order cost error;

45

• J1 := Jp + J̃1 is the first order approximation of the cost;

• and Cx
t = ∇xct(x,u)|xpt ,upt , Cu

t = ∇uct(x,u)|xpt ,upt , Cx
K = ∇xcK(x)|xpK .

Therefore, for ω ∈ Ω(δ), and

J = Jp +
K−1∑
t=0

(Cx
t −Cu

t Lt)x̃t + Cx
Kx̃K +O(δ) (4.18a)

= Jp +
K−1∑
t=0

(Cx
t −Cu

t Lt)x̃lt + Cx
Kx̃lK +O(δ). (4.18b)

Hence, J − J1 = O(δ) for ω ∈ Ω(δ).

Next, we provide the main result regarding the expected first order error of the

cost function.

Theorem 2 First-Order Cost Function Error for a Fully-Observed Sys-

tem Using a Deterministic Policy: Given that process noises are zero mean

i.i.d. Gaussian, under a first-order approximation for the small noise paradigm, the

stochastic cost function is dominated by the nominal part of the cost function, and

the expected first-order error is O(δ). That is,

E[J̃1] = O(δ), and E[J] = Jp +O(δ).

Moreover, by choosing δ =
√

log(1
ε
)ε, we have

E[J̃1] = O(ε1−γ), and E[J] = Jp +O(ε1−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 3 Let J̃ l1:=∑K−1
t=0 (Cx

t −Cu
t Lt)x̃lt+Cx

Kx̃lK. Also note x̃0 = 0, and E[wt] = 0

46

for all t. Then, we use Lemmas 3 and 4:

E[J̃ l1]=
K−1∑
t=0

((Cx
t −Cu

t Lt)E[x̃lt])+Cx
KE[x̃lK]

=
K−1∑
t=0

((Cx
t −Cu

t Lt)E[
t−1∑
s=0

D̃w
s,t−1ws])+Cx

KE[
K−1∑
s=0

D̃w
s,K−1ws]

=
K−1∑
t=0

((Cx
t −Cu

t Lt)
t−1∑
s=0

D̃w
s,t−1E[ws])+Cx

K

K−1∑
s=0

D̃w
s,K−1E[ws] =0.

The probabilistic argument and choosing the proper δ: Now, we take expec-

tation from both sides of (4.38b). Since, for ω /∈ Ω(δ), J ≤M , then

E[J − Jp] = P (Ω(δ))(E[J̃ l1] +O(δ)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (4.19)

As mentioned before, P (Ω(δ)) ≥ 1−Knxβ̄ εδ exp(−γ̄ δ2

ε2
). Since, we are only interested

in the order of the above expectation, then, we will calculate the O(P (Ω(δ))O(δ) +

M(1− P (Ω(δ)))). Therefore, for the purpose of calculations, we ignore the inequal-

ity and also the O(·) notation. As it is noticed, the above expectation depends on

both delta and epsilon. Therefore, a proper choice of δ is required in order to make

the expression in terms of one of the parameters (particularly, ε). Without loss of

generality let δ := k(ε)ε, where k : R+ → [1,∞) is a function of ε. Therefore,

P (Ω(δ))δ+M(1−P (Ω(δ)))=(1−Knxβ̄
ε

δ
exp(−γ̄ δ

2

ε2
))δ +MKnxβ̄

ε

δ
exp(−γ̄ δ

2

ε2
)

=k(ε)ε−Knxβ̄ε exp(−γ̄k2(ε)) +MKnxβ̄
exp(−γ̄k2(ε))

k(ε) .

(4.20)

Now, since in this section we are only interested in proving the near-first-order op-

47

timality of the provided policy, let us choose the value of exp(−γ̄k2(ε))
k(ε) = O(ε). As a

result, the second term in (4.19) becomes O(ε), and after determining the function

k(·), we test if the order of the first term is also O(ε). Now, since in 1
k(ε) exp(γ̄k2(ε)) ,

the exponential term finally dominates, we choose exp(−γ̄k2(ε)) = ε or by ignoring

the constant term, k(ε) =
√
− log(ε), where the log denotes the natural logarithm.

Therefore, we choose δ :=
√
− log(ε)ε. Now, let us verify that all the three terms in

(4.20) are O(ε1−γ). The calculations for the first term are:

lim
ε↓0

δ

ε1−γ
= lim

ε↓0

k(ε)ε
ε1−γ

=lim
ε↓0

√
− log(ε)ε
ε1−γ

=lim
ε↓0

√
− log(ε)
ε−γ

= lim
ε↓0

(− log(ε))−0.5(−0.5)ε−1

−γε−γ−1

= lim
ε↓0

0.5(− log(ε))−0.5

γε−γ
= lim

ε↓0

0.5εγ
γ(− log(ε))0.5 = 0,

where we used the L’Hospital’s rule. Hence, δ = o(ε1−γ). However, for the sake of

this proof, since we want O(δ), we will use O(δ) = O(ε1−γ). The calculations for

the third term are as follows (we ignore the constants in front of the fraction and

exponent):

lim
ε↓0

exp(−k2(ε))
k(ε)ε1−γ = lim

ε↓0

exp(log(ε))√
− log(ε)ε1−γ

= lim
ε↓0

ε√
− log(ε)ε1−γ

= lim
ε↓0

εγ√
− log(ε)

= 0.

Therefore, the third term is also at least O(ε1−γ). In fact, this term is o(ε) (verified

by setting γ to zero); however, since, the bottle neck is the first term, we can just

replace it with O(ε1−γ). The second term consists of the third term times the first

term (ignoring the constants). Therefore, this term also is at least O(ε1−γ). As a

result, we have E[J] = Jp +O(ε1−γ) and the other statements hold, as well.

48

Remark: Note that using this choice of δ, the probability 1− P (Ω(δ)) is

1− P (Ω(δ)) ≤ Knxβ̄
exp(−γ̄k2(ε))

k(ε) = Knxβ̄ exp(−γ̄)ε(− log(ε))− 1
2 , (4.21)

which we proved that it decreases to zero with at least o(ε) rate as ε ↓ 0. However,

since we have taken the expectation in (4.19), this probability does not have an

independent meaning. That is, although the linearizations are valid only with prob-

ability P (Ω(δ)), the expectation in (4.19) incorporates that and uses the fact that

the cost is bounded to calculate the overall cost performance of the design. In the

next Corollary, we address the relations between this design and an optimal policy.

Remark: The chosen value for δ guaranteers that δ > ε. Since δ = o(ε1−γ) as

ε ↓ 0. In fact, δ/ε = k(ε) =
√
− log(ε) > 1 for 0 < ε < e−1 ' 0.368 where e ' 2.71828

is Euler’s number (aka Napier’s constant). In a word, the tube size is bigger than

the value of ε for ε less than 36 percent which is a very large noise. As an example,

for ε = 0.1, δ = 0.1517, whereas for ε = 0.01, δ = 0.0215.

Remark: Note that using (4.20) with any fixed choice of δ > 0 and letting ε be

small enough, the error in the cost becomes O(δ), and even if we decrease ε further,

the error will not decrease much from O(δ). However, using the proper choice of δ

such as δ =
√
− log(ε)ε means that the error will always decrease (to zero) as ε ↓ 0.

Remark: Note that designing an optimized feedback changes the constants β̄

and γ̄, hence optimizes the probability (4.21)’s pre-constants (rather than order) as

well as the cost error’s pre-constants in (4.19). This in fact is valuable and helps

the proposed algorithms to tolerate moderate levels of noise as well with a proper

optimized feedback. The T-LQR framework that is proposed in the next section

provides an example such an optimized policy, for which we will show that the order

of errors are the same as the design of this section.

49

Remark: Using this result, we can prove that under small noise for a fully-

observed system, the deterministic policy is near-first-order optimal when the func-

tions are in C1, which is summarized next. However, later in Section 4.7 we add the

assumption that the functions are in C2 and expand the equations to the second-

order. As a result we improve this result and prove that for the same design ap-

proach the cost function error is in fact near-second-order in ε, i.e., we will show that

E[J] = Jp+O(ε2−γ). Therefore, we will prove that the policy is also near-second-order

optimal. Nevertheless, the calculations of this section provides a valuable insight on

the probabilistic arguments, which we use in that section, as well.

Corollary 1 Near-First-Order Optimality of the Deterministic Optimal

Policy for a Stochastic Fully-Observed System Under Small Noise. Based

on Theorem 2, for a fully-observed system where the function are in C1 under

the small noise paradigm, as ε ↓ 0, the deterministic optimal control law becomes

O(ε1−γ)-optimal with 0 < γ � 1 for the stochastic problem.

Proof 4 Using Theorem 2, for ω ∈ Ω(δ) we have E[J] = Jp +O(ε1−γ), which is the

cost of applying policy πd to the stochastic system. Now, suppose π∗ is the optimal

stochastic policy. By assumption π∗ is continuously differentiable. Therefore, by

modifying the definition of Lt as Lt = −∇xπ
∗
t (x)|x∗pt , defining u∗pt = π∗t (x

∗p
t) and

replacing p with ∗p in (4.7), we have π∗t (xt) = u∗pt −Lt(xt−x∗pt)+o(||x̃t||). Similarly,

by using appropriate modifications, the entire calculations of this section hold for this

policy, as well. Hence, using Theorem 2 for this system, the cost function of policy

π∗ can be written as E[Jπ∗] = J∗p +O(ε1−γ), where J∗p is defined similarly as Jp as

well. Now, by construction Jp ≤ J∗p, and

E[Jπ∗] = J∗p +O(ε1−γ) ≥ Jp +O(ε1−γ) = E[Jπd] +O(ε1−γ)

50

As a result, policy πd is within O(ε1−γ) of the optimal stochastic policy.

4.5 Case II: Trajectory-optimized LQR (T-LQR)

In this section, we provide the theoretical basis for our proposed T-LQR design

approach. The analysis employs a Taylor series expansion of the process model and

large deviations theory. We also prove its near-first-order optimality in this section.

4.5.1 Preliminaries

Problem 8 Deterministic Open-Loop Problem: Given an initial state x0, we

begin by determining an optimal open-loop sequence for

min
u0:K−1

K−1∑
t=0

ct(xt,ut) + cK(xK)

s.t. xt+1 = f(xt,ut). (4.22)

Nominal trajectories: For 0 ≤ t ≤ K−1, let upt be the optimal open-loop solution

of the deterministic problem above, and let xpt be the corresponding state, where

xpt+1 := f(xpt ,upt), (4.23)

where xp0 := x0. We refer to this as the nominal trajectories.

Linearization of the system equations: We consider the application of a control

ut = upt +ũt to the stochastic system. Denote the resulting trajectory by xt = xpt +x̃t,

where x̃t := xt − xpt denotes the state error. Then,

xpt+1 + x̃t+1 = f(xpt + x̃t,upt + ũt) + εσtwt. (4.24)

51

Next, we linearize the drift of the process model around its nominal counterparts.

Then for 0 ≤ t ≤ K − 1:

x̃t+1 = Atx̃t + Btũt + Gtwt + o(||x̃t||+ ||ũt||) (4.25a)

= Atx̃t + Btũt + Gtwt + o(||x̃||∞ + ||ũ||∞), (4.25b)

as (||x̃||∞ + ||ũ||∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Gt :=εσt;

• ũ0 = u0 − up0 = 0, and x̃0 = x0 − xp0 = 0.

The exactly linear l-system: From the above system of (4.25), we remove the o(·)

terms, and define an exactly linear system:

x̃lt+1 := Atx̃lt + Btũlt + Gtwt, (4.26a)

where x̃l0 := x̃0 = 0.

LQR policy: Now we consider the design of an LQR policy for the l-system with

the cost:

min
π

E[
K−1∑
t=0

(x̃lt)TWx
t x̃lt + (ũlt)TWu

t ũlt], (4.27)

where Wu
t ,Wx

t � 0 are positive-definite matrices. This problem results in a policy

ũlt = −Ltx̃lt, where the linear feedback gain Lt for K − 1 ≥ t ≥ 0 can be obtained

by:

Lt = (Wu
t + BT

t Pf
t+1Bt)−1BT

t Pf
t+1At,

52

and the matrix Pf
t is the result of backward iteration of the dynamic Riccati equation

Pf
t = (At)TPf

t+1At −(At)TPf
t+1BtLt + Wx

t ,

which is solvable with a terminal condition Pf
K = Wx

t .

Now, since x̃lt is fictitious, we use ũt = −Ltx̃t in the original system. Then (4.25)

can be rewritten as:

x̃t+1 =Atx̃t −BtLtx̃t + Gtwt + o(||x̃||∞+||ũ||∞), (4.28a)

=Atx̃t −BtLtx̃t + Gtwt + o(||x̃||∞), (4.28b)

and the l-system becomes:

x̃lt+1 = Atx̃lt −BtLtx̃lt + Gtwt. (4.29)

The difference d-system: We denote the difference between the two systems of

(4.28) and (4.29) by a superscript d, and define for 0 ≤ t ≤ K − 1:

ũdt := ũt−ũlt, ũdt =−Lt(x̃t−x̃lt), (4.30a)

x̃dt+1 := x̃t+1−x̃lt+1, x̃dt+1 =Atx̃dt +Btũdt +o(||x̃||∞), (4.30b)

where ũd0 = ũ0 − ũl0 = 0, and x̃d0 = x̃0 − x̃l0 = 0. Thus,

ũdt = −Ltx̃dt ,

x̃dt+1 = (At −BtLt)x̃dt + o(||x̃||∞) = Dtx̃dt + o(||x̃||∞)

= D̃0:tx̃d0 + o(||x̃||∞) = o(||x̃||∞),

53

where Dt := At−BtLt, 1 ≤ t ≤ K − 1, D0 := A0, and D̃t1:t2 = Πt2
t=t1Dt, t2 ≥ t1 ≥ 0,

otherwise, it is the identity matrix. This leads to ũdt = o(||x̃||∞). Hence,

O(||x̃l||∞) = O(||x̃||∞) + o(||x̃||∞) = O(||x̃||∞), (4.31)

O(||ũl||∞) = O(||x̃l||∞) = O(||x̃||∞), (4.32)

O(||ũ||∞) = O(||x̃||∞). (4.33)

This means that all the errors in the original system, the l-system, and the d-system

are of the order of O(||x̃||∞). Moreover, O(||x̃||∞) is itself O(||x̃l||∞), which we calculate

next.

Large deviations: The l-system is a linear Gaussian system with additive noise,

for which we use the large deviations result of Lemma 1 modifying the definition of

Φs,t for 0 ≤ s ≤ t − 1, 2 ≤ t ≤ K as Φs,t := (Πt−1
r=s+1Dr)σs. Thus, for each finite

δ ≥ 0, we have P{max0≤t≤K ||x̃lt|| ≥ δ} = o(ε).

Let Ω(δ) be the set where max0≤t≤K ||x̃lt|| ≤ δ. Then, P (Ω(δ)) ≥ 1 − o(ε) and

for ω ∈ Ω(δ), ||x̃l||∞ = O(δ). Therefore, from the calculations above, we have that

O(||x̃||∞) = O(δ), and hence all the other errors are also O(δ) for ω ∈ Ω(δ).

Then for ω ∈ Ω(δ) and for all 0 ≤ t ≤ K − 1,

ut = upt + ũlt +O(δ), (4.34a)

xt+1 = xpt+1 + x̃lt+1 +O(δ), (4.34b)

which means that the linear Gaussian stochastic (̃·)l-system with the T-LQR control

law along with the deterministic p-system can be used to control the original system

given the O(δ) approximations hold (with probability of at least 1−o(ε)). In another

54

interpretation, the original system can be approximated for all 0≤ t≤K − 1 as:

ut = ult +O(δ), (4.35a)

xt+1 = xlt+1 +O(δ). (4.35b)

4.5.2 First-Order Analysis

In this section, we quantify the performance obtained from the above design.

Lemma 3 State Error Propagation: For the l-system of (4.29), the state error

x̃lt+1 can be written as:

x̃lt+1 =
t∑

s=0
D̃w
s,tws, 0 ≤ t ≤ K − 1, (4.36)

where we have:

• D̃w
s,t := D̃s+1:tGs, 0 ≤ s ≤ t− 1, t ≥ 1; and

• D̃w
t,t := D̃t+1:tGt = Gt, t ≥ 0.

Proof 5 Given x̃l0 = 0, we have:

x̃lt+1 = Atx̃lt + Btũlt + Gtwt = (At −BtLt)x̃lt + Gtwt

=: Dtx̃lt+Gtwt =:D̃0:tx̃l0+
t∑

r=0
D̃r+1:tGrwr =:

t∑
s=0

D̃w
s,tws.

The following lemma follows directly by using the feedback law and the result of

Lemma 3.

Lemma 4 Control Error Propagation: For the l-system of (4.29), the control

55

error ũlt can be written as

ũlt = −
t−1∑
s=0

Lw
s,tws, 1 ≤ t ≤ K − 1,

where Lw
s,t := LtD̃w

s,t−1, t ≥ 1, t− 1 ≥ s ≥ 0.

Proof 6 Note that ũl0 = 0. Now, using Lemma 3, we have:

ũlt=−Ltx̃lt=−Lt

t−1∑
s=0

D̃w
s,t−1ws=:−

t−1∑
s=0

Lw
s,tws.

Next, we linearize of the cost function and provide the decoupling principle for a

fully-observed system.

Linearization of the cost function: We similarly linearize the cost function around

the nominal trajectories of state and control actions:

J = Jp + J̃1 + o(
K−1∑
t=1

(||x̃t||+ ||ũt||) + ||x̃K ||) (4.37a)

= Jp + J̃1 + o(||x̃||∞), (4.37b)

where we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t+Cu
t ũt)+Cx

Kx̃K is the first order cost error;

• J1 := Jp + J̃1 is the first order approximation of the cost;

• and Cx
t = ∇xct(x,u)|xpt ,upt , Cu

t = ∇uct(x,u)|xpt ,upt , Cx
K = ∇xcK(x)|xpK .

Therefore, for ω ∈ Ω(δ), and

J = Jp +
K−1∑
t=0

(Cx
t x̃t + Cu

t ũt) + Cx
Kx̃K +O(δ) (4.38a)

56

= Jp +
K−1∑
t=0

(Cx
t x̃lt + Cu

t ũlt) + Cx
Kx̃lK +O(δ). (4.38b)

Hence, J − J1 = O(δ) for ω ∈ Ω(δ).

Next, we provide the main result regarding the expected first order error of the

cost function.

Theorem 3 First-Order Cost Function Error for a Fully-Observed System

with T-LQR Policy: Given that process noises are zero mean i.i.d. Gaussian and

all the functions are in C1, under a first-order approximation for the small noise

paradigm, the stochastic cost function is dominated by the nominal part of the cost

function, and the expected first-order error is O(δ). That is,

E[J̃1] = O(δ), and E[J] = Jp +O(δ).

Moreover, by choosing δ =
√

log(1
ε
)ε, we have

E[J̃1] = O(ε1−γ), and E[J] = Jp +O(ε1−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 7 Let J̃ l1:=
∑K−1
t=0 (Cx

t x̃lt+Cu
t ũlt)+Cx

Kx̃lK. Also note x̃0 = 0, and E[wt] = 0 for

all t. Then, we use Lemmas 3 and 4:

E[J̃ l1]=
K−1∑
t=0

(Cx
t E[x̃lt] + Cu

t E[ũlt])+Cx
KE[x̃lK]

=
K∑
t=0

Cx
t E[

t−1∑
s=0

D̃w
s,t−1ws]+

K−1∑
t=0

Cu
t E[−

t−1∑
s=0

Lw
s,tws]

=
K∑
t=0

t−1∑
s=0

Cx
t D̃w

s,t−1E[ws]−
K−1∑
t=0

t−1∑
s=0

Cu
t Lw

s,tE[ws]=0.

57

Now, we take expectation from both sides of (4.38b). Since, for ω /∈ Ω(δ), J ≤ M ,

then

E[J − Jp] = P (Ω(δ))(E[J̃ l1] +O(δ)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (4.39)

Now, the last expression is the same as (4.19). Although Ω(δ) is not the same as in

Theorem 2, P (Ω(δ)) is still the same. In the proof of Theorem 2 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
− log(ε)ε, the E[J − Jp] = O(ε1−γ). The same argument follows through and

this theorem is proved.

Remark: This result shows that the T-LQR algorithm provides the same order of

error as the deterministic policy. However, the T-LQR feedback gain is obtained once

utilizing the dynamic Riccati equation, whereas to obtain the optimal deterministic

policy the dynamic programming equation has to be solved which imposes a much

higher computational burden. This result leads to the decoupled design of the feed-

back law from the open-loop control sequence, summarized next as the Decoupling

Principle. Therefore, when the functions are in C1, the expected stochastic cost is

equal to the nominal cost with a higher probability as ε ↓ 0 and the design approach

is near-first-order optimal. However, in Section 4.8, we add the C2 assumption for all

functions and prove that the Decoupling Principle (and the T-LQR design approach)

is near-second-order optimal.

Corollary 2 Decoupling Principle: Decoupling of the Open-Loop and Closed-

Loop Designs Under Small Noise. Based on Theorem 3, for a fully-observed

system under the small noise paradigm, as ε ↓ 0, the design of the feedback law can

58

be decoupled from the design of the open-loop optimized trajectory. If the functions

are in C1, this result is O(ε1−γ)-optimal for 0 < γ � 1 as ε ↓ 0.

Proof 8 Using Theorem 3, for ω ∈ Ω(δ) we have E[J] = Jp + O(ε1−γ), which

is the cost of applying policy πt(xt) = upt − Lt(xt − xpt) to the stochastic system.

Now, suppose π∗ is the optimal stochastic policy. By assumption π∗ is continuously

differentiable. Therefore, by modifying the definition of Lt as Lt = −∇xπ
∗
t (x)|x∗pt ,

defining u∗pt = π∗t (x
∗p
t) and replacing p with ∗p in (4.23), we have π∗t (xt) = u∗pt −

Lt(xt−x∗pt)+o(||x̃t||). Similarly, we modify ũdt = −Ltx̃dt +o(||x̃t||) and use appropriate

modifications, whence the entire calculations of the previous sections hold for this

policy. Hence, using Theorem 3 for this system, the cost function of policy π∗ can

be written as E[Jπ∗] = J∗p +O(ε1−γ). Now, by construction Jp ≤ J∗p, and

E[Jπ∗] = J∗p +O(ε1−γ) ≥ Jp +O(ε1−γ) = E[Jπ] +O(ε1−γ)

As a result, policy π is within O(ε1−γ) of the optimal stochastic policy.

4.5.3 Discussion

Remark: This result means that under a small noise assumption, an open-loop

nominal trajectory of the system can be designed by replacing the stochastic equa-

tions with their nominal counterparts. Then, a decentralized feedback control law

can be designed using the LQG theory. This design is near-optimal as the intensity

of noise tends to zero. We show in the example below that this design procedure can

be used even for moderate levels of noise.

Remark: In Ref. [64], for a special case of nonlinear systems where the process

model is linear in the control variable, i.e., f(xt,ut) = f1(xt) + f2(xt)ut, and the

process model is perturbed by additive noise with ε-variance, three results are proven.

59

The first result, concerns the ε-optimality of the optimal deterministic law under

convexity of J in the control (i.e., vT (∇u,uJ)v � 0 ,∀v), and additional smoothness

and regularity conditions. The second result concerns the O(ε2)-optimality of the

optimal deterministic law under a stronger convexity condition of J in the control

(i.e., vT (∇u,uJ)v � c(||u||)||v||2 ,∀v, c(·) : R → R is a monotonically non-increasing

positive function), and some smoothness and regularity conditions. The third result

concerns the ε-optimality of the optimal deterministic sequence under the latter

condition. Our result, on the other hand, provides O(ε)-optimality of the proposed

design approach for a broader class of processes f(xt,ut) with nonlinear dependence

in the control variable and more general cost functions. Most importantly, it does

not assume the linear dependence on the control sequence. In fact, our simulations

are performed for a car-like robot with nonlinear dependence on the control variables.

One can find more details on these and similar results in the literature review chapter

of the Dissertation.

Feedback control: The proposed approach aims at designing an LQR controller

with an optimal nominal underlying trajectory based on the decoupling principle of

Corollary 2 and Theorem 3. As a result, we term this method as the Trajectory-

optimized LQR (T-LQR). Although we utilize an LQR controller, it is important

to note that the decoupling result only assumes a linear form of feedback and other

types of designs [159] can be used as well.

Remark: The computation involved in problem (8) is of the order of O(Kn2
x) for

typically smooth dynamics for one iteration. Let us assume O(`) is the order of the

number of iterations in the optimizer until convergence. The LQR policy calculation

is of order of O(Kn3
x). Therefore, T-LQR’s computations are O(`Kn2

x + Kn3
x) for

a typical process model (such as our example in the next section). The low compu-

tational complexity of this approach results in fast replanning in case of deviations

60

(a) Optimized trajectory of problem (8). (b) A typical ground truth trajectory with noise
standard deviation equal to 10% of the maximum
control signal.

Figure 4.1: Optimized vs. a typical execution trajectory for a car-like robot.

during execution. This renders the T-LQR scheme eminently implementable for use

in on-line applications.

Remark: For the specific class of problems considered in [64] the design approach

of [64] requires calculation of the optimal control law through intractable dynamic

programming. In contrast, the proposed design approach utilizes the more tractable

solution via Maximum Principle, followed by an LQR design. Even implementing the

result of [64] through a model predictive approach would require more computations

of at least an order of the planning horizon (from O(K) to O(K2)). In such an

implementation, the online computation of the approach of [64] is O(`Kn2
x) compared

to only O(n2
x) in our algorithm.

61

4.6 Example

Let us consider a car-like four-wheel robot with process model [179]:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = v

L
tan(φ), (4.40)

where (x, y, θ) is the state, and (v, φ) is the control input. We suppose that, |φ| <

φmax = π/2, |v| ≤ vmax = 0.6, x0 = (−1.5, 0.5, 0),K = 20, and the time discretization

period is 0.7. We incorporate the control constraints and the terminal goal, xg =

(−0.5, 1, 0), in the cost function. Last, the initial control sequence used for the

optimization is just a sequence of zero inputs. The process noise is additive mean

zero Gaussian noise with a standard deviation equal to εmaxt{||ut||2}. Figure 4.1a

shows the result of the optimization problem (8) whereas Fig. 4.1b shows a typical

ground truth trajectory with ε = 0.1. We have used MATLAB 2016b and its fmincon

solver for simulations.

(a) Feedback-compensated system. (b) Open-loop system.

Figure 4.2: Evolution of average NMSE as ε ↓ 0 for feedback compensated and
open-loop systems with the same nominal trajectories.

62

In the next experiment, we increase ε from 0.001 to 0.1501, in step sizes of 0.001.

For each value of ε, we execute the resulting policy 100 times and compute the

average Normalized Mean Squared Error (NMSE) as:

Average NMSE (%) = 1
100

100∑
j=1

||xp − xj||22
||xp||22

× 100, (4.41)

where xp indicates the planned trajectory and xj indicates the ground truth tra-

jectory at jth experiment. The results of this experiment are shown in Fig. 4.2a,

where the evolution of the average NMSE is depicted for various values of noise

level ε. As indicated in this figure, as ε ↓ 0, the average NMSE tends to zero at a

near-exponential rate, which is consistent with the theory developed in Section 4.2.

Moreover, this figure indicates that through the feedback compensation, moderate

noise levels can be tolerated, rather than just small levels.

Last, Fig. 4.2b depicts the evolution of the average NMSE for an experiment with

the same setting as in Fig. 4.2a, except that only the open-loop planned control

sequence is applied during execution. As predicted by the theory, the error still

decreases exponentially as the noise level decreases. However, the rate of convergence

is about one-fifth of the previous rate. The results of Fig. 4.2 show that our design

can be used for relatively moderate levels of noise, using the power of feedback.

Remark: In practice, if at any point in the execution the calculated error ex-

ceeds a threshold, very rapid replanning can be triggered very fast due to the low

computational burden of the optimization problem.

4.7 Second-Order Optimality of The Deterministic Law

In this section, we provide a second-order analysis of the deterministic feedback

law and show that applying the optimal feedback law of the deterministic problem

63

to the stochastic problem results in a second-order optimality as well. Therefore, we

improve the results of Section 4.4.

Assumptions: Other than the assumptions of Section 4.4, we assume for the

analysis of this section that all the functions (including the dynamics, feedback law,

and the cost functions) are in C2, i.e., they are continuously differentiable to the

second order.

Second-order expansion of the control law: Here, we will use the same policy ut =

πdt (xt) defined in Section 4.4. However, as opposed to that section, for the analysis

of this section we expand this law to the second-order. Let us define upt := πdt (x
p
t),

ũt := ut − upt and x̃t as before. Then,

ũt = πdt (xt)− πdt (x
p
t) = −Ltx̃t +

x̃Tt Hπ1

t x̃t
...

x̃Tt Hπnx
t x̃t

+ o(||x̃t||2) (4.42a)

= −Ltx̃t +
nu∑
k=1

(x̃Tt Hπk

t x̃t)enuk + o(||x̃||2∞), (4.42b)

• Lt :=−∇xπ
d
t (x)|xpt ;

• πdt (x) = (πdk(x)), 1 ≤ k ≤ nu;

• Hπk

t := 1
2∇

2
xxπ

dk
t (x)|xpt , where ∇

2
·,· denotes the second order derivative (Hessian)

operator with respect to two variables in the written order;

• enuk is the nu-dimensional unit vector with all the elements being zero except for

the k-th element which equals one; and

• ũ0 = u0 − up0 = 0, and x̃0 = x0 − xp0 = 0.

Second-order expansion of the dynamics: Let us first obtain the second-order

expansion of the process model around the nominal trajectory. Then for 0 ≤ t ≤

64

K − 1:

x̃t+1 = f(xt,ut)− f(xpt ,upt) + εσtwt (4.43a)

= Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃t||2 + ||ũt||2)

(4.43b)

= Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞),

(4.43c)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Gt :=εσt;

• f(x,u) = (f j(x,u)), 1 ≤ j ≤ nx;

• Ft,j
xx := 1

2∇
2
xxf

j(x,u)|xpt ,upt ,F
t,j
xu := 1

2∇
2
xuf

j(x,u)|xpt ,upt ,F
t,j
ux := 1

2∇
2
uxf

j(x,u)|xpt ,upt ,

and Ft,j
uu := 1

2∇
2
uuf

j(x,u)|xpt ,upt ;

• ũ0 = u0 − up0 = 0, and x̃0 = x0 − xp0 = 0.

Feedback compensation: Next, we replace the feedback law of (4.42b) into the last

equation. Note that after the feedback compensation, the first-order terms of (4.43c)

which are linear in ũt, result in both first-order and second-order expressions in x̃t.

65

On the other hand, replacing the second order terms of the feedback law into the

second order terms of the dynamics in (4.43c) results in second-, third- and fourth-

order expressions in x̃t. However, since the error term in (4.43c) includes o(||x̃||2∞),

the third- and fourth-order terms can be ignored. As a result, we replace those terms

with o(||x̃||2∞), and write the following:

x̃t+1 =Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞)

(4.44a)

=Atx̃t + Bt(−Ltx̃t +
nu∑
k=1

(x̃Tt Hπk

t x̃t)enuk) + Gtwt

+

 x̃t

−Ltx̃t

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

 x̃t

−Ltx̃t

... x̃t

−Ltx̃t

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

 x̃t

−Ltx̃t

+ o(||x̃||2∞) (4.44b)

=Atx̃t −BtLtx̃t +
nu∑
k=1

(x̃Tt Hπk

t x̃t)Btenuk + Gtwt +

x̃Tt Hf1

t x̃t
...

x̃Tt Hfnx
t x̃t

+ o(||x̃||2∞)

(4.44c)

=Dtx̃t +
nu∑
k=1

(x̃Tt Hπk

t x̃t)Btenuk +
nx∑
j=1

(x̃Tt Hfj

t x̃t)enxj + Gtwt + o(||x̃||2∞) (4.44d)

=D̃0:tx̃0 +
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

D̃r+1:t

nu∑
k=1

(x̃Tr Hπk

r x̃r)Btenuk

66

+
t∑

r=0
D̃r+1:t

nx∑
j=1

(x̃Tr Hfj

r x̃r)enxj +o(||x̃||2∞) (4.44e)

=
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

nu∑
k=1

(x̃Tr Hπk

r x̃r)D̃r+1:tBtenuk

+
t∑

r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)D̃r+1:tenxj +o(||x̃||2∞), (4.44f)

where we have used the fact that for 1 ≤ j ≤ nx, we can evaluate the following scalar

value, and define Hfj

t := (Ft,j
xx − Ft,j

xuLt − LT
t Ft,j

ux + LT
t Ft,j

uuLt), such that

 x̃t

−Ltx̃t

T Ft,j

xx Ft,j
xu

Ft,j
ux Ft,j

uu

 x̃t

−Ltx̃t

= x̃Tt Ft,j

xxx̃t − x̃Tt Ft,j
xuLtx̃t − x̃Tt LT

t Ft,j
uxx̃t + x̃Tt LT

t Ft,j
uuLtx̃t

= x̃Tt (Ft,j
xx − Ft,j

xuLt − LT
t Ft,j

ux + LT
t Ft,j

uuLt)x̃t

= x̃Tt Hfj

t x̃t.

Note, D̃r+1:tenxj evaluates to the j-th column of the D̃r+1:t matrix (which is multiplied

by the scalar value of (x̃Tr Hfj

r x̃r) in (4.44f)). Similarly, D̃r+1:tBtenuk evaluates to

the k-th column of D̃r+1:tBt. Note since we assume the continuity and second-order

differentiability of the functions and continuity of the second-order partial derivatives,

the Hessian (by Schwarz’s integrability condition [180]) are also symmetric. Hence,

Ft,j
xu = (Ft,j

ux)T .

Validity region: Note that the definition of x̃t := xt−xpt . Therefore, the properties

of O(||x̃t||∞) that we have proven in Section 4.4 for a deterministic feedback design

still hold for the above linearization, as well. Particularly, we proved that for the πd

design, O(||x̃t||∞) = O(δ) in a set Ω(δ) properly defined as before with probability

1− o(ε). Hence, for ω ∈ Ω(δ), O(||x̃t||2∞) = O(δ2). Thus, for ω ∈ Ω(δ) (the same set

67

and with the same probability), we have:

x̃t+1 =
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)D̃r+1:tej

+
t∑

r=0

nu∑
k=1

(x̃Tr Hπk

r x̃r)D̃r+1:tBtenuk +O(δ2). (4.45)

Second-order expansion of the cost function: Similarly, we obtain the second-order

Taylor series expansion of the cost function around the nominal trajectory:

J =Jp + J̃1 + J̃2 + o(
K−1∑
t=1

(||x̃t||2 + ||ũt||2) + ||x̃K ||2) (4.46a)

=Jp + J̃1 + J̃2 + o(||x̃||2∞ + ||ũ||2∞), (4.46b)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0. Moreover, we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t+Cu
t ũt)+Cx

Kx̃K is the first order cost error;

• J̃2 := ∑K−1
t=0 (1

2 x̃Tt Cxx
t x̃t+ 1

2 ũTt Cuu
t ũt+x̃Tt Cxu

t ũt)+ 1
2 x̃TKCxx

K x̃K is the second order

cost error.

• J2 := Jp + J̃1 + J̃2 is the second order approximation of the cost function;

• Cxx
t = ∇2

xxct(x,u)|xpt ,upt , Cuu
t = ∇2

uuct(x,u)|xpt ,upt , Cxu
t = ∇2

xuct(x,u)|xpt ,upt , and

Cxx
K = ∇2

xxcK(x)|xpK , where we have used the fact that ct ∈ C2.

Next, we provide the main result regarding the expected second order error of

the cost function.

Theorem 4 Second-Order Cost Function Error for a Fully-Observed Sys-

tem Using a Deterministic Policy: Given that process noises are zero mean i.i.d.

Gaussian and all the functions are in C2, under a first-order approximation for the

68

small noise paradigm, the stochastic cost function is dominated by the nominal part

of the cost function, and the expected first-order error is O(δ2). That is,

E[J̃1] = O(δ2), and E[J] = Jp +O(δ2).

Moreover, by choosing δ =
√

2 log(1
ε
)ε, we have

E[J̃1] = O(ε2−γ), and E[J] = Jp +O(ε2−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 9 First, let us simply the first order cost error:

J̃1 =
K−1∑
t=0

(Cx
t x̃t+Cu

t ũt)+Cx
Kx̃K

=
K−1∑
t=0

(Cx
t x̃t −Cu

t Ltx̃t + Cu
t

nu∑
k=1

(x̃Tt Hπk

t x̃t)enuk + o(||x̃||2∞))+Cx
Kx̃K

=
K∑
t=0

CL
t x̃t +

K−1∑
t=0

nu∑
k=1

(x̃Tt Hπk

t x̃t)Cu
t enuk + o(||x̃||2∞)

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +

K∑
t=0

t−1∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)CL
t D̃r+1:t−1enxj

+
K−1∑
t=0

nu∑
k=1

(x̃Tt Hπk

t x̃t)Cu
t enuk + o(||x̃||2∞),

where CL
t := Cx

t −Cu
t Lt, 0 ≤ t ≤ K − 1, and CL

K = Cx
K. Note that all the terms in

the above equation evaluate to scalar values. For instance, Cu
t enuk is a scalar value.

Next, we simplify the second order cost error. Once again, we ignore the second

69

order feedback terms and replace them with o(||x̃||2∞)

J̃2 =
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 ũTt Cuu

t ũt + x̃Tt Cxu
t ũt) + 1

2 x̃TKCxx
K x̃K

=
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 x̃Tt LT

t Cuu
t Ltx̃t + x̃Tt Cxu

t Ltx̃t) + 1
2 x̃TKCxx

K x̃K + o(||x̃||2∞)

=
K∑
t=0

x̃Tt CLL
t x̃t + o(||x̃||2∞),

where CLL
t := 1

2Cxx
t + 1

2LT
t Cuu

t Lt+Cxu
t Lt, 0 ≤ t ≤ K−1, and CLL

K := 1
2Cxx

K . Hence,

we have:

J̃1 + J̃2 =
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +

K∑
t=0

t−1∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)CL
t D̃r+1:t−1enxj

+
K−1∑
t=0

nu∑
k=1

(x̃Tt Hπk

t x̃t)Cu
t enuk +

K∑
t=0

x̃Tt CLL
t x̃t+o(||x̃||2∞)

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(||x̃||2∞) + o(||x̃||2∞)

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(||x̃||2∞).

Hence, for ω ∈ Ω(δ),

J̃1 + J̃2 =
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(δ2).

As a result, using (4.52b), for ω ∈ Ω(δ), we have:

J = Jp +
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(δ2).

70

Next, note that E[wt] = 0 for all t, and

E[
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr] =

K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrE[wr] = 0.

The probabilistic argument and choosing the proper δ: Now, we take

expectation from both sides of (4.38b). In order to choose δ we will follow a similar

line of argument as that used in proving Theorem 2. First, note that since for ω /∈

Ω(δ), J ≤M , then

E[J − Jp] = P (Ω(δ))(E[
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr] +O(δ2)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ2) +M(1− P (Ω(δ))) (4.47)

where Ω(δ) is also the same as in Theorem 2. As mentioned before, P (Ω(δ)) ≥

1 −Knxβ̄ εδ exp(−γ̄ δ2

ε2
). Once again, since we are only interested in the order of the

above expectation, we will calculate the O(P (Ω(δ))O(δ)+M(1−P (Ω(δ)))). Therefore,

for the purpose of calculations, we ignore the inequalities and also the O(·) notation.

Without loss of generality let δ := k(ε)ε, where k : R+ → [1,∞) is a function of ε.

Therefore,

P (Ω(δ))δ+M(1−P (Ω(δ)))=(1−Knxβ̄
ε

δ
exp(−γ̄ δ

2

ε2
))δ2 +MKnxβ̄

ε

δ
exp(−γ̄ δ

2

ε2
)

=k2(ε)ε2−Knxβ̄ε2k(ε) exp(−γ̄k2(ε))

+MKnxβ̄
exp(−γ̄k2(ε))

k(ε) . (4.48)

Now, since in this section we are interested in proving the near-second-order opti-

mality of the provided policy, let us choose the value of exp(−γ̄k2(ε))
k(ε) = O(ε2). As a

result, the second term in (4.19) becomes O(ε2), and after determining the function

71

k(·), we test if the order the first term is also O(ε). Now, since in 1
k(ε) exp(γ̄k2(ε)) , the

exponential term finally dominates, we choose exp(−γ̄k2(ε)) = ε2 or by ignoring the

γ̄ constant, k(ε) =
√
−2 log(ε). Therefore, we choose δ :=

√
−2 log(ε)ε. Now, let us

verify that all the three terms in (4.20) are O(ε2−γ). The calculations for the first

term are:

lim
ε↓0

δ2

ε2−γ
=lim

ε↓0

k(ε)2ε2

ε2−γ
=lim

ε↓0

−2 log(ε)ε2
ε2−γ

=lim
ε↓0

−2 log(ε)
ε−γ

=lim
ε↓0

−2ε−1

−γε−γ−1 = 2
γ

lim
ε↓0

εγ =0,

where we used the L’Hospital’s rule. Hence, δ2 = o(ε2−γ). However, for the sake

of this proof, since we want O(δ2), we will use the O(·) and O(δ2) = O(ε2−γ). The

calculations for the third term are as follows (we ignore the constants in front of the

fraction and exponent):

lim
ε↓0

exp(−k2(ε))
k(ε)ε2−γ = lim

ε↓0

exp(2 log(ε))
− log(ε)ε2−γ = lim

ε↓0

ε2

− log(ε)ε2−γ = lim
ε↓0

εγ

− log(ε) = 0.

Therefore, the third term is also at least O(ε2−γ). In fact, this term is o(ε2) (verified

by setting γ to zero); however, since, the bottle neck is the first term, we can just

replace it with O(ε2−γ). The second term consists of the third term times the first

term (ignoring the constants). Therefore, this term also is at least O(ε2−γ). As a

result, we have E[J] = Jp +O(ε2−γ) and the other statements hold, as well.

Remark: Note that choosing k(ε) =
√
−r log(ε) for r ≥ 2 still leads to the O(ε2−γ)-

optimality. This is due to the fact that the calculations for the first term become

lim
ε↓0

k(ε)2ε2

ε2−γ
=lim

ε↓0

−r log(ε)ε2
ε2−γ

=lim
ε↓0

−r log(ε)
ε−γ

=lim
ε↓0

−rε−1

−γε−γ−1 = r

γ
lim
ε↓0

εγ =0,

72

and the calculations of the third term become:

lim
ε↓0

exp(−k2(ε))
k(ε)ε2−γ = lim

ε↓0

exp(r log(ε))
− log(ε)ε2−γ = lim

ε↓0

εr

− log(ε)ε2−γ = lim
ε↓0

εr−2−γ

− log(ε) = 0,

where r − 2 − γ > 0. However, it means that the tube gets larger which is less

desirable due to the fact that smaller tube translates to more accuracy. On the other

hand, choosing 1 < r < 2 results in O(ε1−γ)-optimality due to the fact that the third

term’s calculations become:

lim
ε↓0

exp(r log(ε))
− log(ε)ε2−γ = lim

ε↓0

εr

− log(ε)ε2−γ = lim
ε↓0

εγ+r−2

− log(ε) = lim
ε↓0

(γ + r − 2)εγ+r−3

−(ε)−1

= lim
ε↓0

(γ + r − 2)
−ε3−γ−r

=∞.

where γ + r − 2 < 0 since 0 < γ � 1.

Remark: Note that the third term of (4.48) is in fact the probability 1−P (Ω(δ)).

As we mentioned, choosing k(ε) =
√
−r log(ε) with r > 2 still works for the purpose

of our proof, and in fact by doing so, 1 − P (Ω(δ)) becomes even larger, which is

also intuitive due to the fact that a larger tube yields a lower probability of exiting

that tube, as well. Similar to above, we can how that choosing r > 2 yields the

second term become o(εr) as ε ↓ 0. However, as mentioned in the previous remark,

the smallest value of r that works for second-order optimality (for this form of δ)

is r = 2, and in fact this smallest value is more desirable. Last, note that similar

arguments can be made for the near-first-order optimality case of Section 4.4 (i.e.,

in that situation r > 1 would work but result in a larger tube).

Therefore, when the functions are in C2, the expected stochastic cost is equal to

the nominal cost with a higher probability as ε ↓ 0. Therefore, it follows that the

decoupling principle holds with a higher probability, summarized below:

73

Corollary 3 Near-Second-Order Optimality of the Deterministic Optimal

Policy for the Stochastic Fully-Observed System Under Small Noise. Based

on Theorem 4, for a fully-observed system under the small noise paradigm, as ε ↓ 0,

the deterministic optimal control law becomes O(ε2−γ)-optimal with some 0 < γ � 1

for the stochastic problem.

Proof 10 Using Theorem 4, for ω ∈ Ω(δ) we have E[J] = Jp + O(ε2−γ), which

is the cost of applying policy πd to the stochastic system. Now, suppose π∗ is the

optimal stochastic policy. By assumption π∗ is in C2. Therefore, by modifying the

definition of Lt as Lt = −∇xπ
∗
t (x)|x∗pt and modifying Hπk

t as Hπk

t := 1
2∇

2
xxπ

∗k
t (x)|xpt ,

defining u∗pt = π∗t (x
∗p
t) and replacing p with ∗p in (4.23), we have π∗t (xt) = u∗pt −

Ltx̃t +∑nu
k=1(x̃Tt Hπk

t x̃t)enuk + o(||x̃||2∞) (where x̃ is also modified to denote (xt−x∗pt)).

Similarly, by using appropriate modifications the entire calculations of this section

hold for this policy. Hence, using Theorem 2 for this system, the cost function of

policy π∗ can be written as E[Jπ∗] = J∗p +O(ε2−γ). Now, by construction Jp ≤ J∗p,

and

E[Jπ∗] = J∗p +O(ε2−γ) ≥ Jp +O(ε2−γ) = E[Jπd] +O(ε2−γ)

As a result, policy πd is within O(ε2−γ) of the optimal stochastic policy.

4.8 Near-Second-Order Optimality of T-LQR

In this section, we provide a near-second-order analysis and show that the results

of the previous sections are also second-order optimal.

Assumptions: Other than the assumptions of previous sections, we assume for

the analysis of this section that all the functions are in C2, i.e., they are continuously

differentiable to the second order.

74

Second-order expansion of the dynamics: Let us first obtain the second-order

expansion of the process model around the nominal trajectory. Then for 0 ≤ t ≤

K − 1:

x̃t+1 = Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃t||2 + ||ũt||2)

(4.49a)

= Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞),

(4.49b)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Gt :=εσt;

• f(x,u) = (f j(x,u)), 1 ≤ j ≤ nx;

• Ft,j
xx := 1

2∇
2
xxf

j(x,u)|xpt ,upt ,F
t,j
xu := 1

2∇
2
xuf

j(x,u)|xpt ,upt ,F
t,j
ux := 1

2∇
2
uxf

j(x,u)|xpt ,upt ,

and Ft,j
uu := 1

2∇
2
uuf

j(x,u)|xpt ,upt ;

• ũ0 = u0 − up0 = 0, and x̃0 = x0 − xp0 = 0.

75

Now, we apply the T-LQR feedback law ũt = −Ltx̃t to the above equations:

x̃t+1 = Atx̃t −BtLtx̃t + Gtwt +

 x̃t

−Ltx̃t

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

 x̃t

−Ltx̃t

... x̃t

−Ltx̃t

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

 x̃t

−Ltx̃t

+o(||x̃||2∞)

(4.50a)

= Dtx̃t + Gtwt +

x̃Tt Hf1

t x̃t
...

x̃Tt Hfnx
t x̃t

+o(||x̃||2∞) (4.50b)

= Dtx̃t + Gtwt +
nx∑
j=1

(x̃Tt Hfj

t x̃t)enxj +o(||x̃||2∞) (4.50c)

= D̃0:tx̃0 +
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

D̃r+1:t

nx∑
j=1

(x̃Tr Hfj

r x̃r)enxj +o(||x̃||2∞) (4.50d)

=
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)D̃r+1:tenxj +o(||x̃||2∞), (4.50e)

where Hfj

t := (Ft,j
xx − Ft,j

xuLt − LT
t Ft,j

ux + LT
t Ft,j

uuLt), for 1 ≤ j ≤ nx. Note, based on

the C2 assumption for the dynamics, Ft,j
xu = Ft,j

ux.

Validity region: Note that the definition of x̃t := xt−xpt . Therefore, the properties

of O(||x̃t||∞) that we have proven in Section 4.5 for the T-LQR feedback design still

hold for the above linearization, as well. Particularly, we proved that for a T-LQR

design, O(||x̃t||∞) = O(δ) in a set Ω(δ) properly defined as before with probability

1− o(ε). Hence, for ω ∈ Ω(δ), O(||x̃t||2∞) = O(δ2). Thus, for ω ∈ Ω(δ), we have:

x̃t+1 =
t∑

r=0
D̃r+1:tGrwr +

t∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)D̃r+1:tej+O(δ2). (4.51)

76

Second-order expansion of the cost function: Similarly, we obtain the second-order

Taylor series expansion of the cost function around the nominal trajectory:

J =Jp + J̃1 + J̃2 + o(
K−1∑
t=1

(||x̃t||2 + ||ũt||2) + ||x̃K ||2) (4.52a)

=Jp + J̃1 + J̃2 + o(||x̃||2∞ + ||ũ||2∞), (4.52b)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0. Moreover, we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t+Cu
t ũt)+Cx

Kx̃K is the first order cost error;

• J̃2 := ∑K−1
t=0 (1

2 x̃Tt Cxx
t x̃t+ 1

2 ũTt Cuu
t ũt+x̃Tt Cxu

t ũt)+ 1
2 x̃TKCxx

K x̃K is the second order

cost error.

• J2 := Jp + J̃1 + J̃2 is the second order approximation of the cost function;

• Cxx
t = ∇2

xxct(x,u)|xpt ,upt , Cuu
t = ∇2

uuct(x,u)|xpt ,upt , Cxu
t = ∇2

xuct(x,u)|xpt ,upt , and

Cxx
K = ∇2

xxcK(x)|xpK , where we have used the fact that ct ∈ C2.

Next, we provide the main result regarding the expected second order error of

the cost function.

Theorem 5 Second-Order Cost Function Error for a Fully-Observed Sys-

tem with T-LQR Policy: Given that process noises are zero mean i.i.d. Gaussian

and all the functions are in C2, under a first-order approximation for the small noise

paradigm, the stochastic cost function is dominated by the nominal part of the cost

function, and the expected first-order error is O(δ2). That is,

E[J̃1] = O(δ2), and E[J] = Jp +O(δ2).

77

Moreover, by choosing δ =
√

2 log(1
ε
)ε, we have

E[J̃1] = O(ε2−γ), and E[J] = Jp +O(ε2−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 11 First, let us simply the first order cost error:

J̃1 =
K−1∑
t=0

(Cx
t x̃t+Cu

t ũt)+Cx
Kx̃K =

K−1∑
t=0

(Cx
t x̃t −Cu

t Ltx̃t)+Cx
Kx̃K

=
K∑
t=0

CL
t x̃t

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +

K∑
t=0

t−1∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)CL
t D̃r+1:t−1enxj +o(||x̃||2∞),

where CL
t := Cx

t −Cu
t Lt, 0 ≤ t ≤ K − 1, and CL

K = Cx
K.

Next, we simplify the second order cost error:

J̃2 =
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 ũTt Cuu

t ũt + x̃Tt Cxu
t ũt) + 1

2 x̃TKCxx
K x̃K

=
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 x̃Tt LT

t Cuu
t Ltx̃t + x̃Tt Cxu

t Ltx̃t) + 1
2 x̃TKCxx

K x̃K

=
K∑
t=0

x̃Tt CLL
t x̃t,

where CLL
t := 1

2Cxx
t + 1

2LT
t Cuu

t Lt+Cxu
t Lt, 0 ≤ t ≤ K−1, and CLL

K := 1
2Cxx

K . Hence,

we have:

J̃1 + J̃2 =
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +

K∑
t=0

t−1∑
r=0

nx∑
j=1

(x̃Tr Hfj

r x̃r)CL
t D̃r+1:t−1enxj

+
K∑
t=0

x̃Tt CLL
t x̃t+o(||x̃||2∞)

78

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(||x̃||2∞) + o(||x̃||2∞)

=
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(||x̃||2∞).

Hence, for ω ∈ Ω(δ),

J̃1 + J̃2 =
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(δ2).

As a result, using (4.52b), for ω ∈ Ω(δ), we have:

J = Jp +
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr +O(δ2).

Next, note that E[wt] = 0 for all t, and

E[
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr] =

K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrE[wr] = 0.

Now, since for ω /∈ Ω(δ), J ≤M , then

E[J − Jp] = P (Ω(δ))(E[
K∑
t=0

t−1∑
r=0

CL
t D̃r+1:tGrwr] +O(δ2)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (4.53)

Note the last expression is the same as (4.47). Although Ω(δ) is not the same as in

Theorem 4, P (Ω(δ)) is still the same. In the proof of Theorem 4 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
−2 log(ε)ε, the E[J − Jp] = O(ε2−γ). The same argument follows through and

this theorem is proved.

Hence, when the functions are in C2, the expected stochastic cost is equal to the

79

nominal cost with a higher probability as ε ↓ 0. Therefore, it follows that the

decoupling principle holds with a higher probability, summarized below:

Corollary 4 Decoupling Principle: Near-Second-Order Optimality for a

Fully-Observed System. Based on Theorem 5, for a fully-observed system where

the function are in C2 under the small noise paradigm, as ε ↓ 0, the decoupling prin-

ciple holds with O(ε2−γ)-optimality for 0 < γ � 1. Moreover, the T-LQR approach

is O(ε2−γ)-optimal.

Proof 12 In the proof of Corollary 3 we showed that E[Jπ∗] = J∗p +O(ε2−γ). Now,

by construction Jp ≤ J∗p, where Jp is the nominal cost for the T-LQR policy (or in

fact any other smooth linear feedback law). Hence, using Theorem 5 for this system,

E[Jπ∗] = J∗p +O(ε2−γ) ≥ Jp +O(ε2−γ) = E[Jπ] +O(ε2−γ)

As a result, policy π is within O(ε2−γ) of the optimal stochastic policy.

80

5. FULLY-OBSERVED MULTI-AGENT SYSTEM

In this chapter, we extend the results of Chapter 4 to a multi-agent scenario.

For multi-agent robotic systems the solution should not require a fully centralized

control since that would require pervasive constant communication among all robots.

We establish the decoupling of feedback for different agents, which leads us to a

decentralized solution with no communication requirements during the execution,

for small noise levels.

5.1 Multi-Agent Decoupling of Open-Loop and Closed-Loop Designs

In this section, we generalize the single-agent results of Result 2 for a multi-agent

fully-observed system. The generalization is straightforward by noting the fact that a

centralized multi-agent can be considered as one big single-agent system by defining

appropriate concatenations of the variables.

One joint system: First, we concatenate the equations of control and state evo-

lutions for all agents and consider the entire multi-agent system as one system. The

vectors with index I are formed by just concatenating them in one column, whereas

all the matrices are formed by concatenating them in a block matrix, unless otherwise

stated. For instance, wIt , fI , and BIt are as follows:

wIt :=

w1
t

...

wm
t

 , f
I(xIt ,uIt) :=

f1(x1

t ,u1
t)

...

fm(xmt ,umt)

 ,B
I
t :=

B1
t

. . .

Bm
t

 . (5.1)

Note that some of these matrices are diagonal, e.g., AIt , and the others may or may

not be, depending on the state, control and observation, or other dimensions. Now,

81

if functions are in C1, we can simply utilize the single-agent form of Corollary 2

for the joint single agent system with index I, which generalizes the result for the

multi-agent system. Moreover, if functions are in C2, we utilize Corollary 4 to obtain

the near-second-order optimality of the design scheme. Therefore,

xIt+1 = fI(xIt ,uIt) + εσfI(t)wIt . (5.2)

Remark 1 Corollary 2 states that for the multi-agent system of (5.2) with index

I, if functions are in C1 the first order approximation of the cost function does not

depend on the linear feedback gain; rather, it is completely determined by the nominal

trajectory. Moreover, if functions are in C2, based on Corollary 4 the second-order

approximation of the cost function is also dominated by the nominal cost. This

leads to the extension of the decoupling of open-loop/closed-loop designs for a multi-

agent fully-observed system. That is, under small noise, the multi-agent version of

problem (2) can be optimally separated into two problems: i) an open-loop optimal

control problem to design the nominal trajectories of the system, and ii) a design of

the optimal feedback law to track the nominal trajectories of the system.

Problem 9 (Nominal Trajectory Design Problem) Given an initial joint state

xI0 , solve:

min
uI0:KI−1

KI−1∑
t=0

ct(xIt ,uIt) + cKI(xIKI)]

s.t. xIt+1 = fI(xIt ,uIt).

Nominal trajectories: Given the initial state xI0 , and using the optimized nominal

controls of the above problem, upIt , the nominal trajectory of the multi-agent system

82

is defined as:

xpIt+1 = fI(xpIt ,upIt), (5.3)

where xpI0 := xI0 , and xpit+1 = f i(xpit ,upit) for i ∈ I.

Linearized system: Using the result of the previous chapter and using a feedback

policy for each agent that depends on the entire system’s state, we can write the

linearized system for each agent as:

xIt+1 =xpIt+1+AIt (xIt −xpIt)+BIt (uIt −upIt)+GIt wIt +O(δ),

Jπ =Jp + J̃1 +O(δ),

J̃1 :=
KI−1∑
t=0

[CxI
t (xIt−xpIt) + CuI

t (uIt − upIt)] + CxI
KI

(xIKI−xpIKI),

Jp :=
KI−1∑
t=0

ct(xpIt ,upIt) + cKI(x
pI
KI

).

The Jacobians are:

AIt :=∇xfI(x,u)|xpIt ,upIt
,BIt :=∇ufI(x,u)|xpIt ,upIt

,GIt :=εσfI(t),

CxI
t := ∇xc

πI

t (x,u)|xpIt ,upIt
,CxI

KI
:= ∇xc

πI

KI
(x)|xpIt ,C

uI
t := ∇uc

πI

t (x,u)|xpIt ,upIt
,

and uIt is obtained by deigning a optimal LQR feedback policy to track the joint

nominal trajectory xpIt as:

uIt = upIt − LIt (xIt −xpIt), (5.4)

LIt = (WuI
t + (BIt)TSIt BIt)−1(BIt)TSIt AIt . (5.5)

83

SIt is obtained using the backward dynamic Riccati equation with SIKI = WxI
KI

:

SIt−1 = (AIt)TSIt AIt − (AIt)TSIt BIt LIt+WxI
t , (5.6)

where WxI
t � 0 and WuI

t � 0 are two block-diagonal positive semi-definite weight

matrices (with blocks of Wxi
t � 0 of dimension nix × nix and Wui

t � 0 of dimension

niu × niu, respectively).

Structure of feedback: As shown above, LIt that is designed using the single-agent

decoupling principle depends on the entire state. Next, we will analyze the structure

of feedback and prove the multi-agent decoupling principle.

Remark: Although, we have shown the first-order linearizations above, it should

be noted that the second-order linearizations also follows similarly with proper index-

ing of the single-agent variables. Therefore, we avoid repeating them. Nevertheless,

for the rest of the proof only first-order variables suffice.

5.2 Decoupling of Feedback Designs

Proof 13 (proof of Result 2 for a multi-agent system) Note AIt ,BIt ,W
xI
t ,WuI

t

and SIKI are block matrices, which goes back to the independent dynamics assump-

tion in (3.2), and (WuI
t +(BIt)TSIt BIt) is a block-diagonal square matrix. Since the

operations of matrix summation, multiplication of block matrices and inverse of

square block-diagonal matrices preserve the block structure, SIt , t ≥ 0 is a block-

diagonal square matrix with blocks of nix × nix dimensions, and can be written as

SIt := blockdiag(S1
t , · · · ,Smt). Importantly, no element of agent j’s variable is in-

volved in the calculation of the Sit block for j 6= i. Thus, the mniu×mnix-dimensional

matrix LIt is a block diagonal matrix, as well. Also, the ith block of the LIt (denoted

by Li
t which is an niu ×mnix-dimensional matrix) consists of non-zero elements only

in its niu × nix-th block. Further, no element of agent j’s variable is involved in the

84

calculation of these non-zero elements for i 6= j.

Remark 2 Result 2 proves that under the conditions of Result 1 and the indepen-

dence of the dynamics, the feedback gain of the agent i can be optimally calculated

decoupled from the agent j, and states that the Riccati equation of (5.6) breaks up

into m separate Riccati equations. As a result, the dimension of the optimal linear

feedback gain for agent i reduces to niu × nix, which is the same as an LQR design

to track the fully-observed nominal state of agent i. This design leads to a decen-

tralized multi-agent planning approach of Multi-agent T-LQR (MT-LQR), which is

near-second-order optimal as ε ↓ 0, and is elaborated next.

Remark 3 Note that in a multi-agent scenario, the cost functions may have a shared

cost such as inter-agent collision. In that situation, with a careful design of the

nominal trajectory, the shared cost is taken into account in the nominal trajectory

design stage with sufficient safety margins such that within the δ tubes of the agents,

the shared cost vanishes to zero. Therefore, the feedback design for each agent becomes

the LQG tracking problem within a tube without considering the shared cost. This is

addressed in more details for the general partially-observed situation in Chapter 9.

5.3 MT-LQR: Multi-agent Trajectory-optimized LQR

The design approach resulting from Result 2 for a multi-agent system with full

state information consists of two steps. The first step is to solve the joint nominal

trajectory design problem. The second step is to design m LQR trackers one for each

of the agents, separately.

Problem 10 (MT-LQR Nominal Trajectory Design Problem) Given an ini-

85

tial joint state xI0 =: xpI0 , solve:

min
upI0:KI−1

E[
KI−1∑
t=0

ct(xpIt ,upIt) + cKI(x
pI
KI

)]

s.t. xpit+1 = f i(xpit ,upit), i ∈ I.

Control policy: After solving Problem (10), the control policy for agent i is de-

signed as an LQR policy to track the nominal trajectory of agent i, xpit as:

uit = upit − Li
t(xit−xpit), (5.7)

Li
t = (Wui

t + (Bi
t)TSitBi

t)−1(Bi
t)TSitAi

t, (5.8)

where the Jacobians are

Ai
t :=∇xf i(x,u)|xpit ,upit ,B

i
t :=∇uf i(x,u)|xpit ,upit ,G

i
t :=εσfi(t),

and Sit is obtained using a single-agent backward dynamic Riccati equation with

SiKi = Wxi
Ki
:

Sit−1 = (Ai
t)TSitAi

t − (Ai
t)TSitBi

tLi
t+Wxi

t . (5.9)

86

6. PARTIALY-OBSERVED SINGLE-AGENT SYSTEM

In this chapter, we extend the results of Chapter 4 to the situations with imperfect

measurements of the state to prove the main Result 3. In this case, we assume that

the initial state is only known up to a distribution, and that it is subsequently

partially observed through a noisy observation process. The outline of this section

is parallel to the outline of Chapter 4. Moreover, where necessary we will refer to

the previous equations pointing out the minimal changes necessary without restating

them.

6.1 Case I: The Deterministic Optimal Policy

In this section, we analyze the performance of the deterministic optimal control

policy used in the stochastic problem.

Problem 11 Deterministic Closed-Loop Problem: Given an initial state x̄0,

we begin by determining a continuously differentiable optimal observation-trajectory-

feedback policy for

min
π

K−1∑
t=0

ct(xt,ut) + cK(xK)

s.t. xt+1 = f(xt,ut) (6.1)

zt = h(xt). (6.2)

Nominal trajectories: For 0 ≤ t ≤ K−1, let πd be the optimal feedback law

of the deterministic problem above, let xpt and zpt be the corresponding state and

87

observations, whose evolutions are governed by:

upt := πd(zp0:t), xpt+1 := f(xpt ,upt), zpt+1 := h(xpt+1), (6.3)

where xp0 := x̄0. We refer to these as the nominal trajectories.

Linearization of the system equations: We consider the application of a control

ut = πd(z0:t) to the stochastic system. Then the resulting trajectory is:

xt+1 = f(xt,πd(z0:t)) + εσf
twt, (6.4)

zt+1 = h(xt+1) + εσh
t+1vt+1. (6.5)

Let x̃t := xt − xpt , and z̃t := zt − zpt denote the state and observation errors, respec-

tively. Then we linearize the drift of the process and observation models around the

nominal trajectory. Hence, for 0 ≤ t ≤ K − 1:

x̃t+1 = f(xt,πd(z0:t))− f(xpt ,πd(zp0:t)) + εσf
twt (6.6a)

= Atx̃t −
t∑

s=0
BtLs,tz̃s + εσf

twt + o(||x̃t||+
t∑

s=0
||z̃s||) (6.6b)

= Atx̃t −
t∑

s=0
BtLs,tz̃s + Gtwt + o(||x̃||∞ + ||z̃||∞), (6.6c)

z̃t+1 = h(xt+1)− h(xpt+1) + εσh
t+1vt+1 (6.6d)

= Ht+1x̃t+1 + εσh
t+1vt+1 + o(||x̃t+1||) (6.6e)

= Ht+1x̃t+1 + Mt+1vt+1 + o(||x̃||∞) (6.6f)

as (||x̃||∞ + (||z̃||∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Ls,t :=−∇zsπ
d(z0:s)|zp0:t

, Gt :=εσf
t ;

• Ht :=∇xh(x)|xpt , Mt :=εσh
t ;

88

• x̃0 = x0 − xp0, and z̃0 = z0 − zp0.

Therefore, we have:

x̃t+1 = Atx̃t −
t∑

s=0
BtLs,t(Hsx̃s + Msvs) + Gtwt + o(||x̃||∞ + ||z̃||∞) (6.7a)

=
t∑

s=0
(Us,tx̃s + Vs,tvs) + Gtwt + o(||x̃||∞ + ||z̃||∞), (6.7b)

where Us,t := As − BtLs,tHs, s = t, Us,t := −BtLs,tHs, 0 ≤ s ≤ t − 1, and Vs,t :=

−BtLs,tMs, 0 ≤ s ≤ t. The above linear recursive equation can be solved. In

particular, there exists matrices Ux0
t , 0 ≤ t ≤ K − 1, Vv

s,t, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1,

and Ww
s,t, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1 such that

x̃t+1 = Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,twt) + o(||x̃||∞ + ||z̃||∞), (6.8a)

z̃t+1 = Ht+1(Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,twt)) + Mt+1vt+1 + o(||x̃||∞ + ||z̃||∞)

= Uz,x0
t x̃0 +

t+1∑
s=0

Vz,v
s,t vs +

t∑
s=0

Wz,w
s,t wt + o(||x̃||∞ + ||z̃||∞), (6.8b)

where for 0 ≤ t ≤ K − 1, we have Uz,x0
t := Ht+1Ux0

t , Vz,v
s,t := Ht+1Vv

s,t, 0 ≤ s ≤ t,

Vz,v
s,t := Mt+1, s = t+ 1 and Wz,w

s,t := Ht+1Ww
s,t, 0 ≤ s ≤ t.

The exactly linear l-system: From the above system of (6.8), we remove the o(·)

terms, and define an exactly linear system:

x̃lt+1 := Ux0
t x̃l0 +

t∑
s=0

(Vv
s,tvs + Ww

s,twt), (6.9a)

z̃lt+1 := Uz,x0
t x̃l0 +

t+1∑
s=0

Vz,v
s,t vs +

t∑
s=0

Wz,w
s,t wt, (6.9b)

where x̃l0 := x̃0, and z̃l0 := H0x̃l0 + M0v0.

89

The difference d-system: We denote the difference between the two systems of

(6.8) and (6.9) by a superscript d, and define for 0 ≤ t ≤ K − 1, x̃dt+1 := x̃t+1−x̃lt+1,

and z̃dt+1 := z̃t+1−z̃lt+1, where x̃d0 = x̃0 − x̃l0 = 0, and z̃d0 = z̃0 − z̃l0 = 0. Therefore,

x̃dt+1 = o(||x̃||∞ + ||z̃||∞), (6.10)

z̃dt+1 = o(||x̃||∞ + ||z̃||∞), (6.11)

Hence,

O(||x̃l||∞) = O(||x̃||∞) + o(||x̃||∞ + ||z̃||∞) = O(||x̃||∞ + ||z̃||∞), (6.12)

O(||z̃l||∞) = O(||z̃||∞) + o(||x̃||∞ + ||z̃||∞) = O(||x̃||∞ + ||z̃||∞), (6.13)

This means that all the errors in the original system, the l-system, and the d-system

are of the order of O(||x̃||∞ + ||z̃||∞). Moreover, O(||x̃||∞ + ||z̃||∞) is itself O(||x̃l||∞),

which we calculate next.

Large deviations: The l-system is a linear Gaussian system and in fact x̃lt is a

linear combination of independent Gaussian random variables. Hence, x̃lt is also a

Gaussian variable, for which we use the large deviations result of Lemma 1 with some

modifications. In particular, for the sake of simplicity, let us replace wt with w̃t =

εwt, and replace vt with ṽt = εvt. Then, w̃t ∼ N (0, ε2Σw) and ṽt ∼ N (0, ε2Σv).

Also redefine, Gt :=σf
t and Mt :=σh

t . Then, by redefining αi,t in Lemma 1 as

αi,t :=
nx∑
j=1

[((Ux0
t Σx0)ij)2 +

t∑
s=0

((Vv
s,tΣv)i,j)2 +

t∑
s=0

((Ww
s,tΣw)ij)2], (6.14)

where (·)ij shows the ij-th element of the corresponding matrices. Hence, we get the

probability P{max0≤t≤K ||x̃lt|| ≥ δ} = o(ε) for each finite δ ≥ 0.

90

Let Ω(δ) be the set where max0≤t≤K ||x̃lt|| ≤ δ. Then, P (Ω(δ)) ≥ 1 − o(ε) and

for ω ∈ Ω(δ), ||x̃l||∞ = O(δ). Therefore, from the calculations above, we have that

O(||x̃||∞) = O(δ), and hence all the other errors are also O(δ) for ω ∈ Ω(δ).

Then for ω ∈ Ω(δ) and for all 0 ≤ t ≤ K − 1,

xt+1 = xpt+1 + x̃lt+1 +O(δ), (6.15a)

zt+1 = zpt+1 + z̃lt+1 +O(δ), (6.15b)

which means that the linear Gaussian stochastic (̃·)l-system along with the determin-

istic p-system can be used to control and estimate the original system given the O(δ)

approximations hold (with probability of at least 1−o(ε)). In another interpretation,

the original system can be approximated for all 0≤ t≤K − 1 as:

xt+1 = xlt+1 +O(δ), (6.16a)

zt+1 = zlt+1 +O(δ). (6.16b)

6.1.1 Analysis of the Cost

Next, we use the more general definition of the cost function directly in terms of

the state, and try to approximate the cost function of the original system in terms

of the cost of the l-system.

Linearization of the cost function: We consider the general cost function:

Jπ :=
K−1∑
t=0

cπt (xt,ut) + cπK(xK), (6.17)

91

and linearize it around the nominal system:

J = Jp + J̃1 + o(
K∑
t=1

(||x̃t||+ ||z̃t||)) (6.18a)

= Jp + J̃1 + o(||x̃||∞ + ||z̃||∞), (6.18b)

from the assumption that the cost function is continuously differentiable and bounded.

That is |ct| ≤M and |cK | ≤M for some M > 0. Moreover,

• Cx
t = ∇xct(x,u)|xpt ,upt , Cu

t = ∇uct(x,u)|xpt ,upt , Cx
K = ∇xcK(x)|xpK ;

• Jp := ∑K−1
t=0 ct(xpt ,upt) + cK(xpK) denotes the nominal cost;

• J̃1 := ∑K−1
t=0 (Cx

t x̃t −
∑t
s=0 Cu

t Lsz̃s) + Cx
Kx̃K is the first order error in the cost;

and

• J1 := Jp + J̃1 is the first order approximation of the cost function.

Therefore, for ω ∈ Ω(δ), and

J = Jp +
K−1∑
t=0

(Cx
t x̃t −

t∑
s=0

Cu
t Ls,tz̃s) + Cx

Kx̃K +O(δ) (6.19a)

= Jp +
K−1∑
t=0

(Cx
t x̃lt −

t∑
s=0

Cu
t Ls,tz̃ls) + Cx

Kx̃lK +O(δ). (6.19b)

The above calculations show that the cost of the original system is close to the cost

of the l-system. Moreover, J − J1 = O(δ) for ω ∈ Ω(δ).

Next, we provide the main result regarding the expected first order error of the

cost function.

Theorem 6 First-Order Cost Function Error for a Partially-Observed Sys-

tem with a Deterministic Policy: Given that process noises are zero mean i.i.d.

Gaussian, the initial error is zero mean Gaussian, and all the functions are in C1,

under a first-order approximation for the small noise paradigm, the stochastic cost

92

function is dominated by the nominal part of the cost function, and the expected

first-order error is O(δ). That is,

E[J̃1] = O(δ), and E[J] = Jp +O(δ).

Moreover, by choosing δ =
√

log(1
ε
)ε, we have

E[J̃1] = O(ε1−γ), and E[J] = Jp +O(ε1−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 14 Let J̃ l1:=
∑K−1
t=0 (Cx

t x̃lt−
∑t
s=0 Cu

t Ls,tz̃ls)+Cx
Kx̃lK. Also note E[x̃l0] = E[x̃0] =

E[x0− x̂0] = 0, E[z̃l0] = E[H0x̃l0 +M0v0] = 0, and E[wt] = E[vt] = 0 for all t. Then,

we use (6.9). First, we calculate E[x̃lt+1] and E[z̃lt+1] for 0 ≤ t ≤ K − 1:

E[x̃lt+1] = Ux0
t E[x̃l0] +

t∑
s=0

(Vv
s,tE[vs] + Ww

s,tE[wt]) = 0,

E[z̃lt+1] = Uz,x0
t E[x̃l0] +

t+1∑
s=0

Vz,v
s,t E[vs] +

t∑
s=0

Wz,w
s,t E[wt] = 0.

Therefore, we have:

E[J̃ l1]=
K−1∑
t=0

(Cx
t E[x̃lt]−

t∑
s=0

Cu
t Ls,tE[z̃ls])+Cx

KE[x̃lK] = 0.

Now, we take expectation on both sides of (6.19b). Since, for ω /∈ Ω(δ), J ≤ M ,

then

E[J − Jp] = P (Ω(δ))(E[J̃ l1] +O(δ)) +M(1− P (Ω(δ)))

93

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (6.20)

Now, the last expression is the same as (4.19). Although Ω(δ) is not the same as in

Theorem 2, P (Ω(δ)) is still the same. In the proof of Theorem 2 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
− log(ε)ε, the E[J − Jp] = O(ε1−γ). The same argument follows through and

this theorem is proved.

Hence, the expected stochastic cost is equal to the nominal cost with a very high

probability as ε ↓ 0. The result is summarized below:

Corollary 5 Near-First-Order Optimality of the Deterministic Optimal

Policy for the Stochastic Partially-Observed System Under Small Noise.

Based on Theorem 6, for a partially-observed system where the function are in C1 un-

der the small noise paradigm, as ε ↓ 0, the deterministic optimal control law becomes

O(ε1−γ)-optimal with 0 < γ � 1 for the stochastic problem.

Proof 15 Using Theorem 8, for ω ∈ Ω(δ) we have E[J] = Jp + O(ε1−γ), which

is the cost of applying policy πd to the stochastic system. Now suppose π∗ is the

optimal stochastic policy. By assumption it is continuously differentiable. Therefore,

by modifying the definition of Ls,t as Ls,t = −∇zsπ
∗
t (z0:s)|z∗p0:t

, defining u∗pt = π∗t (z
∗p
0:t)

and replacing p with ∗p in (4.23), we have π∗t (z0:t) = u∗pt −
∑t
s=0 Ls,t(zs − z∗ps) +

o(||z̃||∞). Similarly, by using appropriate modifications, the entire calculations of this

section hold for this policy. Hence, using Theorem 8 for this system, the cost function

of policy π∗ can be written as E[Jπ∗] = J∗p+O(ε1−γ). Now, by construction Jp ≤ J∗p,

and

E[Jπ∗] = J∗p +O(ε1−γ) ≥ Jp +O(ε1−γ) = E[Jπd] +O(ε1−γ)

94

As a result, policy πd is within O(ε1−γ) of the optimal stochastic policy.

6.2 Case II: T-LQG

Stochastic system: Given x0 ∼ N (x̄0, ε
2Σx0), consider the following problem:

min
π

E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

s.t. xt+1 = f(xt,ut) + εσf
twt, (6.21a)

zt = h(xt) + εσh
t vt, (6.21b)

Deterministic System: Given x̄0, consider the following deterministic problem:

min
u0:K−1

K−1∑
t=0

ct(xt,ut) + cK(xK)

s.t. xt+1 = f(xt,ut), (6.22a)

zt = h(xt). (6.22b)

Nominal trajectories: For 0 ≤ t ≤ K−1, let upt be the optimal open-loop solution

of the deterministic problem above, and let xpt and zpt be the corresponding state and

observations, whose evolutions are governed by:

xpt+1 := f(xpt ,upt), zpt+1 := h(xpt+1), (6.23)

where xp0 := x̄0. We refer to the p-system as the nominal trajectories

Linearization of the system equations: We apply the control ut = upt + ũt to the

stochastic system. Then, the resulting trajectory is xt = xpt + x̃t and zt = zpt + z̃t,

where x̃t := xt − xpt , and z̃t := zt − zpt denote the state and observation errors,

95

respectively. Then,

xpt+1 + x̃t+1 = f(xpt + x̃t,upt + ũt) + εσf
twt, (6.24)

zpt+1 + z̃t+1 = h(xpt+1 + x̃t+1) + εσh
t+1vt+1, (6.25)

Then we linearize the drifts of the processes around their nominal counterparts. Then

for 0 ≤ t ≤ K − 1:

x̃t+1 = Atx̃t + Btũt + Gtwt + o(||x̃t||+ ||ũt||) (6.26a)

= Atx̃t + Btũt + Gtwt + o(||x̃||∞ + ||ũ||∞), (6.26b)

z̃t+1 = Ht+1x̃t+1 + Mt+1vt+1 + o(||x̃t+1||) (6.26c)

= Ht+1x̃t+1 + Mt+1vt+1 + o(||x̃||∞), (6.26d)

as ε ↓ 0, where we have:

• At := ∇xf(x,u)|xpt ,upt , Bt := ∇uf(x,u)|xpt ,upt , Gt := εσf
t ;

• Ht := ∇xh(x)|xpt , Mt := εσh(t); and

• ũ0 = u0 − up0 = 0, and x̃0 = x0 − xp0.

The exactly linear l-system: Based on the linearized system of (10.2), and remov-

ing the o(·) terms, we define a set of exactly linear systems:

x̃lt+1 := Atx̃lt + Btũlt + Gtwt, (6.27a)

z̃lt+1 := Ht+1x̃lt+1 + Mt+1vt+1, (6.27b)

where, x̃l0 := x̃0.

96

Theorem 7 (Separation of Estimation and Control) The design of a stochas-

tic controller for a partially observed linear system can be formulated as two separate

designs of an estimator and a controller with perfect state information.

Proof of this theorem can be found in [2]. As a result of Theorem 7, the control

law for the linear Gaussian system (l-system) can be designed to track the nominal

trajectory of the system with perfect measurement of estimate’s trajectory. Moreover,

the estimation effort can be performed separately using a KF, which is brought next.

Kalman Filter: The estimates of the l-system can be obtained using the KF

equations:

ˆ̃xlt+1 :=At
ˆ̃xlt+Btũlt+Kt+1(z̃lt+1−Ht+1(At

ˆ̃xlt+Btũlt)), (6.28a)

P̄t+1 :=AtPl
tAT

t + GtΣwGT
t , (6.28b)

Σν
t+1 :=Ht+1P̄t+1(Ht+1)T+Mt+1Σv(Mt+1)T , (6.28c)

Kt+1 :=P̄t+1HT
t+1(Σν

t+1)−1, (6.28d)

Pl
t+1 =(I−Kt+1Ht+1)P̄t+1. (6.28e)

where Pl
0:=ε2Σx0 and ˆ̃xl0 := 0.

LQG policy: Let us design the LQG policy for the l-system with the cost:

min
π

E[
K−1∑
t=0

(x̃lt)TWx
t x̃lt + (ũlt)TWu

t ũlt]. (6.29)

This problem is solved using the control theory’s separation principle and the re-

sulting policy is ũlt = −Lt
ˆ̃xlt. Now, since z̃lt+1 is unobserved, we modify the mean

equation by replacing it with z̃t+1:

ˆ̃xt+1 :=At
ˆ̃xt+Btũt+Kt+1(z̃t+1−Ht+1(At

ˆ̃xt+Btũt)), (6.30)

97

where ˆ̃x0 := 0, and use ũt = −Lt
ˆ̃xt in the original system. Hence, (10.2) is rewritten

as:

x̃t+1 = Atx̃t −BtLt
ˆ̃xt + Gtwt + o(||x̃||∞ + ||ũ||∞), (6.31a)

= Atx̃t −BtLt
ˆ̃xt + Gtwt + o(||x̃||∞ + ||ˆ̃x||∞), (6.31b)

z̃t+1 = Ht+1x̃t+1 + Mt+1vt+1 + o(||x̃||∞). (6.31c)

Also, the l-system becomes as follows:

x̃lt+1 = Atx̃lt −BtLt
ˆ̃xlt + Gtwt, (6.32a)

z̃lt+1 = Ht+1x̃lt+1 + Mt+1vt+1. (6.32b)

The difference d-system: We denote the difference between the two systems of

(6.31) and (6.32) by d superscript, and define for 0 ≤ t ≤ K − 1:

ũdt := ũt−ũlt, ũdt = −Lt(ˆ̃xt − ˆ̃xlt), (6.33a)

x̃dt+1 := x̃t+1−x̃lt+1, x̃dt+1 = Atx̃dt + Btũdt + o(||x̃||∞ + ||ˆ̃x||∞), (6.33b)

z̃dt+1 := z̃t+1−z̃lt+1, z̃dt+1 = Ht+1x̃dt+1 + o(||x̃||∞), (6.33c)

ˆ̃xdt+1 := ˆ̃xt+1− ˆ̃xlt+1, ˆ̃xdt+1 = At
ˆ̃xdt +Btũdt +Kt+1(z̃dt+1−Ht+1(At

ˆ̃xdt +Btũdt)), (6.33d)

where ũd0 = ũ0 − ũl0 = 0, x̃d0 = x̃0 − x̃l0 = 0, and ˆ̃xd0 := ˆ̃x0− ˆ̃xl0 = 0. Let us simplify

the above equations:

ũdt = −Lt
ˆ̃xdt , (6.34a)

x̃dt+1 = Atx̃dt −BtLt
ˆ̃xdt + o(||x̃||∞ + ||ˆ̃x||∞), (6.34b)

z̃dt+1 = Ht+1x̃dt+1 + o(||x̃||∞), (6.34c)

98

ˆ̃xdt+1 = (I−Kt+1Ht+1)(At −BtLt)ˆ̃xdt +Kt+1z̃dt+1 (6.34d)

= (I−Kt+1Ht+1)(At −BtLt)ˆ̃xdt +Kt+1Ht+1x̃dt+1 + o(||x̃||∞) (6.34e)

= (At −BtLt −Kt+1Ht+1At)ˆ̃xdt +Kt+1Ht+1Atx̃dt + o(||x̃||∞ + ||ˆ̃x||∞). (6.34f)

Next, we can regroup the above equations as follows:

Ad
t :=

 At, −BtLt

Kt+1Ht+1At, At −BtLt −Kt+1Ht+1At

 , (6.35)

x̃dt+1

ˆ̃xdt+1

 = Ad
t

x̃dt
ˆ̃xdt

+

o(||x̃||∞ + ||ˆ̃x||∞)

o(||x̃||∞ + ||ˆ̃x||∞)

 . (6.36)

Define Ãd
t1:t2 := Πt2

t=t1Ad
t , t2 ≥ t1 ≥ 0, otherwise, it is the identity matrix. Then,

x̃dt+1

ˆ̃xdt+1

 = Ãd
0:t

x̃d0
ˆ̃xd0

+

o(||x̃||∞ + ||ˆ̃x||∞)

o(||x̃||∞ + ||ˆ̃x||∞)

 =

o(||x̃||∞ + ||ˆ̃x||∞)

o(||x̃||∞ + ||ˆ̃x||∞)

 (6.37)

where we used the fact that ((x̃dt)T , (ˆ̃xdt)T)T = 0. This leads to ||x̃d||∞ = o(||x̃||∞ +

||ˆ̃x||∞) and ||ˆ̃xd||∞ = o(||x̃||∞ + ||ˆ̃x||∞). Hence,

O(||x̃l||∞) = O(||x̃||∞) + o(||x̃||∞ + ||ˆ̃x||∞) = O(||x̃||∞ + ||ˆ̃x||∞), (6.38)

O(||ˆ̃xl||∞) = O(||ˆ̃x||∞) + o(||x̃||∞ + ||ˆ̃x||∞) = O(||x̃||∞ + ||ˆ̃x||∞). (6.39)

Also using (6.34a), (6.34c), and the definition of ũt we have:

O(||ũd||∞) = O(||ˆ̃xd||∞) = O(||x̃||∞ + ||ˆ̃x||∞), (6.40)

O(||z̃d||∞) = O(||x̃d||∞) + o(||x̃||∞) = O(||x̃||∞ + ||ˆ̃x||∞) (6.41)

O(||ũ||∞) = O(||ˆ̃x||∞) = O(||x̃||∞ + ||ˆ̃x||∞), (6.42)

99

Also, using (6.28a),the definition of ũlt and (6.41), we have:

O(||z̃||∞) = O(||z̃d||∞) +O(||z̃l||∞) (6.43)

= O(||x̃||∞ + ||ˆ̃x||∞) +O(||x̃l||∞) = O(||x̃||∞ + ||ˆ̃x||∞). (6.44)

This means that all the errors in the original system, the l-system, and the d-system

are in the order of O(||x̃||∞ + ||ˆ̃x||∞). That is, all these errors are in the same order.

Moreover, O(||x̃||∞+ ||ˆ̃x||∞) is itself written in terms of O(||x̃l||∞) and O(||ˆ̃xl||∞), which

we calculate next.

Innovation process: It is established that the innovation process of a least square

estimation for a linear Gaussian system, defined as νt+1 := z̃lt+1−Ht+1(At(x̂lt−xpt)+

Btũlt) for the l-system, is a Gaussian white noise [2], i.e., E[νtνTs] = 0, s 6= t, and

E[νtνTt] = Σν
t , 1 ≤ t ≤ K, which is proportional to ε2 (proven next). This is also

referred to as the whitening property of the KF. Therefore, (6.28a) can be written

as:

ˆ̃xlt+1 = (At −BtLt)ˆ̃xlt + Kt+1(Σν
t+1(ε)) 1

2νt+1. (6.45)

Lemma 5 ε2-Dependence of Innovation Process’s Variance Using the KF, the

innovation process’s variance is proportional to ε2.

Proof 16 We prove that Σν
t , P̄t, and Pt are all proportional to ε2. This is done by

mathematical induction and using the covariance equation of (6.28b)-(6.28e). First,

note Pl
0 = ε2Σx0, then,

P̄1 =A0Pl
0AT

0 + G0ΣwGT
0 = ε2(A0Σx0AT

0 + σf
0Σw(σf

0)T),

Σν
1 =H1P̄1HT

1+M1ΣvMT
1

100

=ε2(H1(A0Σx0AT
0 + σf

0Σw(σf
0)T)HT

1+σh
1 Σv(σh

1)T),

K1 =P̄1HT
1 (Σν

1)−1

=(ε2(A0Σx0AT
0 + σf

0Σw(σf
0)T))HT

1

× (ε2(H1(A0Σx0AT
0 + σf

0Σw(σf
0)T)HT

1+σh
1 Σv(σh

1)T))−1

=(A0Σx0AT
0 + σf

0Σw(σf
0)T)HT

1

× ((H1(A0Σx0AT
0 + σf

0Σw(σf
0)T)HT

1+σh
1 Σv(σh

1)T))−1.

Therefore, K1 does not have ε-dependence, and we will not replace for its expanded

equation. Now,

Pl
1 =(I−K1H1)P̄1 = ε2(I−K1H1)(A0Σx0AT

0 + σf
0Σw(σf

0)T),

which shows that since Pl
0, G0 is proportional to ε2, and M0 are proportional to ε,

Σν
1 , P̄1, and P1 are also proportional to ε2. Similarly, we can show that P̄2 and Σν

2

are also proportional to ε2. Therefore, the first step of the mathematical induction is

proven this way. The k-th step is also similarly proven by changing the index of 0

to k and 1 to k + 1 in the above equations, which is provided next. For this purpose,

we only need to assume that Pk (for some 0 ≤ k ≤ K − 1) is proportional to ε2

(i.e., assume that Pk = ε2Σxk where we have Σxk := (I−KkHk)(Ak−1Σxk−1AT
k−1 +

σf
k−1Σw(σf

k−1)T) for 1 ≤ k ≤ K), then we show that Σν
k+1, P̄k+1, and Pk+1 are also

proportional to ε2:

P̄k+1 =AkPl
kAT

k + GkΣwGT
k = ε2(AkΣxkAT

k + σf
kΣw(σf

k)T),

Σν
k+1 =Hk+1P̄k+1HT

k+1+Mk+1ΣvMT
k+1

=ε2(Hk+1(AkΣxkAT
k + σf

kΣw(σf
k)T)HT

k+1+σh
k+1Σv(σh

k+1)T),

101

Kk+1 =P̄k+1HT
k+1(Σν

k+1)−1

=(ε2(AkΣxkAT
k + σf

kΣw(σf
k)T))HT

k+1

× (ε2(Hk+1(AkΣxkAT
k + σf

kΣw(σf
k)T)HT

k+1+σh
k+1Σv(σh

k+1)T))−1

=(AkΣxkAT
k + σf

kΣw(σf
k)T)HT

k+1

× ((Hk+1(AkΣxkAT
k + σf

kΣw(σf
k)T)HT

k+1+σh
k+1Σv(σh

k+1)T))−1.

Therefore, Kk+1 does not have ε-dependence, and we will not replace for its expanded

equation. Now,

Pl
k+1 =(I−Kk+1Hk+1)P̄k+1 = ε2(I−Kk+1Hk+1)(AkΣxkAT

k + σf
kΣw(σf

k)T)

=ε2Σxk+1 .

This shows that Σν
t , P̄t, and Pt for 1 ≤ t ≤ K are always proportional to ε2.

Moreover, we can observe that the Kalman gain is independent from the choice of ε

for our system.

Now, we can regroup the above equation and (6.32a) as:

x̃lt+1

ˆ̃xlt+1

 =

At, −BtLt

0, At −BtLt

x̃lt

ˆ̃xlt

+

Gt, 0

0, Kt+1(Σν
t+1(ε)) 1

2

 wt

νt+1

 , (6.46)

which is a linear Gaussian system with additive noise. Now, using large deviations for

the above system, for each finite δ ≥ 0, we have P{max0≤t≤K ||x̃lt + ˆ̃xlt|| ≥ δ} = o(ε).

Let Ω(δ) be the set where max0≤t≤K ||x̃lt + ˆ̃xlt|| ≤ δ. Then, P (Ω(δ)) ≥ 1 − o(ε)

and for ω ∈ Ω(δ), ||x̃l + ˆ̃xl||∞ = O(δ). Therefore, from the calculations above, we

have that O(||x̃||∞ + ||ˆ̃x||∞) = O(δ), and hence all the other errors are also O(δ) for

for ω ∈ Ω(δ).

102

Then for ω ∈ Ω(δ) and for all 0 ≤ t ≤ K − 1,

ut = upt + ũlt +O(δ), (6.47a)

xt+1 = xpt+1 + x̃lt+1 +O(δ), (6.47b)

zt+1 = zpt+1 + z̃lt+1 +O(δ), (6.47c)

which means that the linear Gaussian stochastic (̃·)l-system along with the deter-

ministic p-system can be used to control and estimate the original system given the

O(δ) approximations hold. In another interpretation, the original system can be

approximated for all 0≤ t≤K − 1 as:

ut = ult +O(δ), (6.48a)

xt+1 = xlt+1 +O(δ), (6.48b)

zt+1 = zlt+1 +O(δ). (6.48c)

Revisiting the mean update: For simplicity of notations, let us define ẽlt := x̂lt−xpt

for 0 ≤ t ≤ K as the mean of the l-system’s belief error, where ẽl0 := x̂l0 − xp0 = 0.

Then, we can rewrite the KF mean update of (6.28) as the following linear system

for 0 ≤ t ≤ K − 1:

ẽlt+1 =Te
t ẽlt+Tu

t ũlt+Tz
t z̃lt+1, (6.49)

where Te
t := At−Kt+1Ht+1At, Tu

t := Bt−Kt+1Ht+1Bt, and Tz
t := Kt+1.

Lemma 6 State Error Propagation For the l-system of (6.27) and (6.49), the

103

state error x̃lt = xlt − xpt for t ≥ 1 can be written as follows:

x̃lt+1 = Ãx0
t x̃0 +

t∑
s=0

Ãw
s,tws +

t∑
s=0

Ãb̃
s,tẽls, (6.50)

where we have:

• Ãt1:t2 := Πt2
t=t1At, t2 ≥ t1 ≥ 0, otherwise, it is the identity matrix;

• Ãx0
t := Ã0:t, t ≥ 0;

• Ãw
s,t := Ãs+1:tGs, t ≥ 0, t ≥ s ≥ 0; and

• Ãb̃
s,t := −Ãs+1:tBsLs, t ≥ 0, t ≥ s ≥ 0.

Proof 17 For simplicity of notation and for the sake of the proof only, we omit the

l-superscript. The reader should note that these calculations are for the l-system and

not for the original system. Using the fact that ũt = −Ltẽt, the calculations of x̃t+1

for t ≥ 0 are as follows:

x̃t+1= Atx̃t + Btũt + Gtwt = Atx̃t −BtLtẽt + Gtwt

=:Ã0:tx̃0 −
t∑

r=0
Ãr+1:t[BrLrẽr −Grwr] =: Ãx0

t x̃0 +
t∑

s=0
Ãw
s,tws +

t∑
s=0

Ãb̃
s,tẽs.

Lemma 7 Observation Error Propagation For the l-system of (6.27) and (6.49),

the observation error z̃lt = zlt − zpt for t ≥ 1 can be written as follows:

z̃lt+1 = H̃x0
t+1x̃0 +

t∑
s=0

H̃w
s,t+1ws +

t∑
s=0

H̃b̃
s,t+1ẽls + Mt+1vt+1, (6.51)

where we have:

• H̃x0
t+1 := Ht+1Ãx0

t , t ≥ 0;

• H̃w
s,t+1 := Ht+1Ãw

s,t, t ≥ 0, t ≥ s ≥ 0; and

104

• H̃b̃
s,t+1 := Ht+1Ãb̃

s,t, t ≥ 0, t ≥ s ≥ 0.

Proof 18 For simplicity of notation and for the sake of the proof only, we omit the

l-superscript. The reader should note that these calculations are for the l-system and

not for the original system.

z̃t+1=Ht+1x̃t+1 + Mt+1vt+1 =Ht+1(Ãx0
t x̃0 +

t∑
s=0

Ãw
s,tws +

t∑
s=0

Ãb̃
s,tẽs) + Mt+1vt+1

=: H̃x0
t+1x̃0 +

t∑
s=0

H̃w
s,t+1ws +

t∑
s=0

H̃b̃
s,t+1ẽs + Mt+1vt+1.

Solving a recursion: In order to prove the next lemma, we first need to solve a

similar linear recursion that will be used here and later in the chapter. Let us define

the recursion equation as:

xt+1 =
t∑

s=0
Us,txs + ft, (6.52)

for some given fs, 0 ≤ s ≤ t and x0. We first write a few iterations to obtain the

general formula:

xt+1 =
t∑

s=0
Us,txs + ft = Ut,txt +

t−1∑
s=0

Us,txs + ft

=Ut,t(
t−1∑
s=0

Us,t−1xs + ft−1) +
t−1∑
s=0

Us,txs + ft

=
t−1∑
s=0

(Us,t + Ut,tUs,t−1)xs + Ut,tft−1 + ft

=(Ut−1,t + Ut,tUt−1,t−1)xt−1 +
t−2∑
s=0

(Us,t + Ut,tUs,t−1)xs + Ut,tft−1 + ft

=(Ut−1,t + Ut,tUt−1,t−1)(
t−2∑
s=0

Us,t−2xs + ft−2)

+
t−2∑
s=0

(Us,t + Ut,tUs,t−1)xs + Ut,tft−1 + ft

105

=
t−2∑
s=0

(Ut−1,t + Ut,tUt−1,t−1)Us,t−2xs + (Ut−1,t + Ut,tUt−1,t−1)ft−2

+
t−2∑
s=0

(Us,t + Ut,tUs,t−1)xs + Ut,tft−1 + ft

=
t−2∑
s=0

((Ut−1,t + Ut,tUt−1,t−1)Us,t−2 + (Us,t + Ut,tUs,t−1))xs

+ (Ut−1,t + Ut,tUt−1,t−1)ft−2 + Ut,tft−1 + ft.

From these few iterations, we can define the following polynomial for 1 ≤ s ≤ t:

Qs :=
s−1∑
r=0

QrUt−s+1,t−r, (6.53)

where Q0 := 1. Then, (6.52) can be written as:

xt+1 = (
t∑

s=0
QsU0,t−s)x0 +

t∑
r=0

Qrft−r

= (
t∑

s=0
QsU0,t−s)x0 +

t∑
s=0

Qt−sfs, (6.54)

where we used s = t − r in the last equation. This can easily be proven with the

mathematical induction. Instead, we provide the intuitive process that led to the

formula. First, note that the last there terms in the last iteration written above hint

at the construction of the polynomial Qs as:

Q0 :=1,

Q1 :=Q0Ut,t,

Q2 :=Q0Ut−1,t + Q1Ut−1,t−1,

Q3 :=Q0Ut−2,t + Q1Ut−2,t−1 + Q2Ut−2,t−2,

106

from which the formula for Qs can be derived as

Qs =Q0Ut−s+1,t + Q1Ut−s+1,t−1 + · · ·+ Qs−1Ut−s+1,t−s+1,

Also the wighted summation of the ft−s can be derived, as stated above. Next, to

derive the weighted summation formula for the xs in the last iterative equation, we

note that the weight of xs can be written as:

Q0Us,t + Q1Us,t−1 + Q2Us,t−2.

Hence, that summation can be rewritten as

t−2∑
s=0

(Q0Us,t + Q1Us,t−1 + Q2Us,t−2)xs,

where the goal is to eliminate the summation to only the term s = 0. Therefore,

from the pattern above we reach to the following formula:

(Q0Us,t + Q1Us,t−1 + Q2Us,t−2 + · · ·+ QtUs,t−t)x0,

where we set s = 0 and reach to the formula stated above.

A summation exchange formula: We also need the following summation exchange

formula for the next lemma:

t∑
s=0

s∑
r=0

fs,rxr =
t∑

r=0

t∑
s=r

fs,rxr =
t∑

r=0
(
t∑

s=r
fs,r)xr =

t∑
s=0

(
t∑

r=s
fr,s)xs.

Lemma 8 Mean Error Propagation For the l-system of (6.27) and (6.49), the

mean error ẽlt = x̂lt − xpt for t ≥ 0 in terms of the independent variables, including

107

process and measurement noises and the initial state error x̃0 can be written as

follows:

ẽlt+1 = T̃x0
t x̃0 +

t∑
s=0

T̃w
s,tws +

t∑
s=0

T̃v
s,tvs+1, (6.55)

where we have:

• TL
s,t := Tz

t H̃b̃
s,t+1, 0 ≤ s ≤ t− 1, 0 ≤ t ≤ K − 1;

• TL
s,t := Te

t −Tu
t Lt + Tz

t H̃b̃
t,t+1, s = t, 0 ≤ t ≤ K − 1;

• Qs := ∑s−1
r=0 QrTL

t−s+1,t−r, 1 ≤ s ≤ t, 0 ≤ t ≤ K − 1, and Q0 = 1;

• T̃x0
t := ∑t

s=0 Qt−sTz
sH̃

x0
s+1, 0 ≤ t ≤ K − 1;

• T̃w
s,t := ∑t

r=s Qt−rTz
rH̃w

s,r+1, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1; and

• T̃v
s,t := Qt−sTz

sMs+1, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1.

Proof 19 For simplicity of notation and for the sake of the proof only, we omit the

l-superscript. The reader should note that these calculations are for the l-system and

not for the original system. First note ẽ0 = 0. Now, we can rewrite the mean error

for t ≥ 0 as:

ẽt+1 =Te
t ẽt + Tu

t ũt + Tz
t z̃t+1

=(Te
t −Tu

t Lt)ẽt + Tz
t (H̃x0

t+1x̃0 +
t∑

s=0
H̃w
s,t+1ws +

t∑
s=0

H̃b̃
s,t+1ẽs + Mt+1vt+1)

=(Te
t −Tu

t Lt)ẽt + Tz
t H̃b̃

t,t+1ẽt

+ Tz
t H̃x0

t+1x̃0 +
t∑

s=0
Tz
t H̃w

s,t+1ws +
t−1∑
s=0

Tz
t H̃b̃

s,t+1ẽs + Tz
tMt+1vt+1

= :
t∑

s=0
TL
s,tẽs + Tz

t H̃x0
t+1x̃0 +

t∑
s=0

Tz
t H̃w

s,t+1ws + Tz
tMt+1vt+1

=(
t∑

s=0
QsTL

0,t−s)ẽ0 + (
t∑

s=0
Qt−sTz

sH̃x0
s+1)x̃0

108

+
t∑

s=0

s∑
r=0

Qt−sTz
sH̃w

r,s+1wr +
t∑

s=0
Qt−sTz

sMs+1vs+1

=(
t∑

s=0
Qt−sTz

sH̃x0
s+1)x̃0 +

t∑
s=0

t∑
r=s

(Qt−rTz
rH̃w

s,r+1)ws +
t∑

s=0
Qt−sTz

sMs+1vs+1

= : T̃x0
t x̃0 +

t∑
s=0

T̃w
s,tws +

t∑
s=0

T̃v
s,tvs+1.

6.2.1 Analysis of the Cost

In this section, we use the more general definition of the cost function directly in

terms of the state, and try to approximate the cost function of the original system

in terms of the cost of the l-system.

Cost function: We consider the most general cost function:

Jπ :=
K−1∑
t=0

cπt (xt,ut) + cπK(xK), (6.56)

which we linearize around the nominal system:

J = Jp + J̃1 + o(
K−1∑
t=1

(||x̃t||+ ||ũt||) + ||x̃K ||) (6.57a)

= Jp + J̃1 + o(||x̃||∞). (6.57b)

We assume that the cost function is continuously differentiable and bounded. Let

|ct| ≤M and |cK | ≤M for some M > 0. Moreover,

• Cx
t = ∇xct(x,u)|xpt ,upt , Cu

t = ∇uct(x,u)|xpt ,upt , Cx
K = ∇xcK(x)|xpK ;

• Jp := ∑K−1
t=0 ct(xpt ,upt) + cK(xpK) denotes the nominal cost;

• J̃1 := ∑K−1
t=0 (Cx

t x̃t + Cu
t ũt) + Cx

Kx̃K is the first order error in the cost; and

• J1 := Jp + J̃1 is the first order approximation of the cost function.

109

Therefore, for ω ∈ Ω(δ), and

J = Jp +
K−1∑
t=0

(Cx
t x̃t + Cu

t ũt) + Cx
Kx̃K +O(δ) (6.58a)

= Jp +
K−1∑
t=0

(Cx
t x̃lt + Cu

t ũlt) + Cx
Kx̃lK +O(δ). (6.58b)

The above calculations show that the cost of the original system is close to the cost

of the l-system. Moreover, J − J1 = O(δ) for ω ∈ Ω(δ).

Next, we provide the main result regarding the expected first order error of the

cost function.

Theorem 8 First-Order Cost Function Error for a Partially-observed Sys-

tem with T-LQG Policy: Given that process and observation noises are zero mean

i.i.d. Gaussian, the initial error is zero mean Gaussian, and all the functions are in

C1, under a first-order approximation for the small noise paradigm, the stochastic

cost function is dominated by the nominal part of the cost function, and the expected

first-order error is O(δ). That is,

E[J̃1] = O(δ), and E[J] = Jp +O(δ).

Moreover, by choosing δ =
√

log(1
ε
)ε, we have

E[J̃1] = O(ε1−γ), and E[J] = Jp +O(ε1−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

110

Proof 20 Let J̃ l1:=
∑K−1
t=0 (Cx

t x̃lt+Cu
t ũlt)+Cx

Kx̃lK. Then,

J̃ l1 :=
K−1∑
t=0

(Cx
t x̃lt+Cu

t ũlt)+Cx
Kx̃lK =

K−1∑
t=0

(Cx
t x̃lt−Cu

t Ltẽlt)+Cx
Kx̃lK .

Also note E[x̃l0] = E[x̃0] = E[x0 − x̂0] = 0, ẽl0 = 0, and E[wt] = E[vt] = 0 for all t.

Then, we use Lemmas 6, 7, and 8. First, we calculate E[ẽlt], 1 ≤ t ≤ K:

E[ẽlt] = T̃x0
t E[x̃0] +

t∑
s=0

T̃w
s,tE[ws] +

t∑
s=0

T̃v
s,tE[vs+1] = 0.

Then, we calculate E[x̃lt+1], 0 ≤ t ≤ K − 1:

E[x̃lt+1] = Ãx0
t E[x̃0] +

t∑
s=0

Ãw
s,tE[ws] +

t∑
s=0

Ãb̃
s,tE[ẽs] = 0.

Therefore, we have:

E[J̃ l1]=
K−1∑
t=0

(Cx
t E[x̃lt]−Cu

t LtE[ẽlt])+Cx
KE[x̃lK] = 0.

Now, we take expectation of both sides of (6.58b). Since, for ω /∈ Ω(δ), J ≤M , then

E[J − Jp] = P (Ω(δ))(E[J̃ l1] +O(δ)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (6.59)

Now, the last expression is the same as (4.19). Although Ω(δ) is not the same as in

Theorem 2, P (Ω(δ)) is still the same. In the proof of Theorem 2 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
− log(ε)ε, the E[J − Jp] = O(ε1−γ). The same argument follows through and

this theorem is proved.

111

Hence, the expected stochastic cost is equal to the nominal cost with a high proba-

bility as ε ↓ 0. Therefore, it follows that the open-loop nominal design can be done

decoupled from the closed-loop design, summarized below:

Corollary 6 Decoupling Principle: Decoupling of the Open-Loop and Closed-

Loop Designs Under Small Noise. Based on Theorem 8, for a partially-observed

system where the function are in C1 under the small noise paradigm, as ε ↓ 0, the

design of the feedback law can be decoupled from the design of the open-loop optimized

trajectory.If the functions are in C1, this result is O(ε1−γ)-optimal for 0 < γ � 1 as

ε ↓ 0.

Proof 21 Using Theorem 8, for ω ∈ Ω(δ) we have E[J] = Jp+O(ε1−γ), which is the

cost of applying policy πt(z0:t) = upt −Lt(x̂t−xpt) to the stochastic system (note that

x̂t is a function of z0:t). Now, suppose π∗ is the optimal stochastic policy. We showed

in the proof of Corollary 5 that for this policy, we have E[Jπ∗] = J∗p+O(ε1−γ). Now,

by construction Jp ≤ J∗p, and

E[Jπ∗] = J∗p +O(ε1−γ) ≥ Jp +O(ε1−γ) = E[Jπ] +O(ε1−γ)

As a result, policy π is within O(ε1−γ) of the optimal stochastic policy.

6.3 Near-Second-Order Optimality of The Deterministic Law

In this section, we provide a second-order analysis of the deterministic feedback

law and show that applying the optimal feedback law of the deterministic problem to

the stochastic problem results in a near-second-order optimality as well. Therefore,

we improve the results of Section 6.1.

Assumptions: Other than the assumptions of Section 6.1, we assume for the

analysis of this section that all the functions (including the dynamics and observation

112

models, feedback law, and the cost functions) are in C2, i.e., they are continuously

differentiable to the second-order.

Second-order expansion of the control law: Here, we will use the same policy ut =

πdt (z0:t) defined in Section 4.4. However, as opposed to that section, for the analysis

of this section we expand this law to the second-order. Let us define upt := πdt (z
p
0:t),

ũt := ut − upt and x̃t and z̃t as before. Then,

ũt = πdt (z0:t)− πdt (z
p
0:t) (6.60a)

= −
t∑

s=0
Ls,tz̃s +

nu∑
k=1

t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃jenuk + o(||x̃t||2 +
t∑

s=0
||z̃s||2) (6.60b)

= −
t∑

s=0
Ls,tz̃s +

nu∑
k=1

t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃jenuk + o(||x̃||2∞ + ||z̃||2∞), (6.60c)

as (||x̃||2∞ + ||z̃||2∞) ↓ 0, where we have:

• Ls,t :=−∇zsπ
d
t (z0:t)|zp0:t

;

• πdt (z0:t) = (πdk(z0:t)), 1 ≤ k ≤ nu;

• Hπkij

t := 1
2∇

2
zizjπ

dk
t (z0:t)|zp0:t

;

• x̃0 = x0 − xp0, and z̃0 = z0 − zp0.

Also note the simplified from of the second-order terms comes from the fact that we

can simplify the following expression:

z̃0

...

z̃t

T
Hπk00
t ,Hπk01

t , · · · ,Hπk0t
t

...

Hπkt0
t ,Hπkt1

t , · · · ,Hπktt

t

z̃0

...

z̃t

=

z̃0

...

z̃t

T
∑t
j=0 Hπk0j

t z̃j
...∑t

j=0 Hπktj

t z̃j

=
t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃j.

113

Therefore, the second-order term is indeed the following:

∑t
i=0

∑t
j=0 z̃iHπ00j

t z̃j
...∑t

i=0
∑t
j=0 z̃iHπnutj

t z̃j

 =
nu∑
k=1

t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃jenuk .

Second-order expansion of the system equations: We obtain the second-order

expansion of the process model around the nominal trajectory, for 0 ≤ t ≤ K − 1:

x̃t+1 = f(xt,ut)− f(xpt ,upt) + εσf
twt (6.61a)

= Atx̃t + Btũt + εσf
twt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃t||2 + ||ũt||2)

(6.61b)

= Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞),

(6.61c)

z̃t+1 = h(xt+1)− h(xpt+1) + εσh
t+1vt+1 (6.61d)

= Ht+1x̃t+1 + εσh
t+1vt+1 +

nz∑
j=1

(x̃Tt+1Hhj

t+1x̃t+1)enzj + o(||x̃t+1||2) (6.61e)

= Ht+1x̃t+1 + Mt+1vt+1 +
nz∑
j=1

(x̃Tt+1Hhj

t+1x̃t+1)enzj + o(||x̃||2∞), (6.61f)

114

as (||x̃||∞ + (||ũ||∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Gt :=εσf
t ;

• Ht :=∇xh(x)|xpt , Mt :=εσh
t .

• f(x,u) = (f j(x,u)), 1 ≤ j ≤ nx;

• Ft,j
xx := 1

2∇
2
xxf

j(x,u)|xpt ,upt ,F
t,j
xu := 1

2∇
2
xuf

j(x,u)|xpt ,upt ,F
t,j
ux := 1

2∇
2
uxf

j(x,u)|xpt ,upt ,

and Ft,j
uu := 1

2∇
2
uuf

j(x,u)|xpt ,upt ;

• h(x) = (hj(x)), 1 ≤ j ≤ nz;

• Hhj

t := 1
2∇

2
xxh

j(x)|xpt .

Feedback compensation: Next, we replace the feedback law of (6.60c) into (6.61c).

Note that after th feedback compensation, the first-order terms of (6.61c) which are

linear in ũt, result in both first-order and second-order expressions in x̃t. That is

because, according to (6.61f), the observations can be written in terms of x̃t. On the

other hand, replacing the second-order terms of the feedback law into the second-

order terms of the dynamics in (4.43c) results in second-, third- and fourth-order

expressions in x̃t. However, since the error term in (6.61c) includes o(||x̃||2∞), the

third- and fourth-order terms can be ignored. As a result, just like the fully-observed

case of (4.44), we replace those terms with o(||x̃||2∞).

Next, we simplify the second-order expansion of the control error:

ũt =−
t∑

s=0
Ls,tz̃s +

nu∑
k=1

t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃jenuk + o(||x̃||2∞ + ||z̃||2∞)

=−
t∑

s=0
Ls,t(Hsx̃s + Msvs +

nz∑
j=1

(x̃Ts Hhj

s x̃s)enzj)

+
nu∑
k=1

t∑
i=0

t∑
j=0

(z̃Ti Hπkij

t z̃j)enuk + o(||x̃||2∞ + ||z̃||2∞)

=−
t∑

s=0
Ls,tHsx̃s −

t∑
s=0

Ls,tMsvs −
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Ls,tenzj

115

+
nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j + 2x̃Ti HT
i Hπkij

t Mjvj

+ vTi MT
i Hπkij

t Mjvj)enuk + o(||x̃||2∞), (6.62)

where we have used the fact that for 1 ≤ k ≤ nu and 0 ≤ i, j ≤ t, we can evaluate

the following scalar value

z̃Ti Hπkij

t z̃j =(Hix̃i + Mivi)THπkij

t (Hjx̃j + Mjvj) + o(||x̃||2∞)

=x̃Ti HT
i Hπkij

t Hjx̃j + x̃Ti HT
i Hπkij

t Mjvj + vTi MT
i Hπkij

t Hjx̃j

+ vTi MT
i Hπkij

t Mjvj + o(||x̃||2∞)

=x̃Ti HT
i Hπkij

t Hjx̃j + 2x̃Ti HT
i Hπkij

t Mjvj + vTi MT
i Hπkij

t Mjvj + o(||x̃||2∞).

Note that the error in the above expression is in fact O(||x̃||4∞). Similar terms in the

next equations also will be treated the same as long as there is an o(||x̃||2∞) error in

the overall expression.

Now, we can simplify the second-order expansion of the dynamics:

x̃t+1 =Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞)

(6.63a)

=Atx̃t + Bt(−
t∑

s=0
Ls,tz̃s +

nu∑
k=1

t∑
i=0

t∑
j=0

z̃Ti Hπkij

t z̃jenuk) + Gtwt

116

+

 x̃t

−
t∑

s=0
Ls,tz̃s

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

 x̃t

−
t∑

s=0
Ls,tz̃s

... x̃t

−
t∑

s=0
Ls,tz̃s

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

 x̃t

−
t∑

s=0
Ls,tz̃s

+ o(||x̃||2∞ + ||z̃||2∞)

(6.63b)

=Atx̃t −
t∑

s=0
BtLs,tHsx̃s −

t∑
s=0

BtLs,tMsvs −
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj

+
nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Btenuk

+
nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,h)kij
t x̃jenxk +

nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,v)kij
t vjenxk

+
nx∑
k=1

t∑
i=0

t∑
j=0

vTi H(v,f,v)kij
t vjenxk + Gtwt + o(||x̃||2∞) (6.63c)

=
t∑

s=0
Us,tx̃s +

t∑
s=0

Vs,tvs + Gtwt −
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj

+
nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Btenuk

+
nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,h)kij
t x̃jenxk +

nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,v)kij
t vjenxk

+
nx∑
k=1

t∑
i=0

t∑
j=0

vTi H(v,f,v)kij
t vjenxk + o(||x̃||2∞), (6.63d)

where Us,t := As − BtLs,tHs, s = t, Us,t := −BtLs,tHs, 0 ≤ s ≤ t − 1, and Vs,t :=

−BtLs,tMs, 0 ≤ s ≤ t defined as before. Also, in (6.63c) we have used the fact that

for 1 ≤ k ≤ nx, we can evaluate the following scalar value, and define the related

117

matrices, such that

 x̃t

−
t∑

s=0
Ls,tz̃s

T Ft,k

xx Ft,k
xu

Ft,k
ux Ft,k

uu

 x̃t

−
t∑

s=0
Ls,tz̃s

= x̃Tt Ft,k

xxx̃t − x̃Tt Ft,k
xx(

t∑
s=0

Ls,tz̃s)− (
t∑

s=0
z̃Ts LT

s,t)Ft,k
uxx̃t + (

t∑
s=0

z̃Ts LT
s,t)Ft,k

uu(
t∑

s=0
Ls,tz̃s)

= x̃Tt Ft,k
xxx̃t −

t∑
s=0

x̃Tt Ft,k
xxLs,tz̃s −

t∑
s=0

z̃Ts LT
s,tFt,k

uxx̃t + (
t∑

s=0
z̃Ts LT

s,t)Ft,k
uu(

t∑
i=0

Li,tz̃i)

= x̃Tt Ft,k
xxx̃t −

t∑
s=0

x̃Tt Ft,k
xxLs,tz̃s −

t∑
s=0

z̃Ts LT
s,tFt,k

uxx̃t +
t∑

s=0

t∑
i=0

z̃Ts LT
s,tFt,k

uuLi,tz̃i

= x̃Tt Ft,k
xxx̃t −

t∑
s=0

x̃Tt Ft,k
xxLs,t(Hsx̃s + Msvs)−

t∑
s=0

(Hsx̃s + Msvs)TLT
s,tFt,k

uxx̃t

+
t∑

s=0

t∑
i=0

(Hsx̃s + Msvs)TLT
s,tFt,k

uuLi,t(Hix̃i + Mivi) + o(||x̃||2∞)

= x̃Tt Ft,k
xxx̃t −

t∑
s=0

x̃Tt Ft,k
xxLs,tHsx̃s −

t∑
s=0

x̃Tt Ft,k
xxLs,tMsvs

−
t∑

s=0
x̃Ts HT

s LT
s,tFt,k

uxx̃t −
t∑

s=0
vTs MT

s LT
s,tFt,k

uxx̃t

+
t∑

s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tHix̃i +

t∑
s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tMivi

+
t∑

s=0

t∑
i=0

vTs MT
s LT

s,tFt,k
uuLi,tHix̃i +

t∑
s=0

t∑
i=0

vTs MT
s LT

s,tFt,k
uuLi,tMivi + o(||x̃||2∞)

= x̃Tt Ft,k
xxx̃t − 2

t∑
s=0

x̃Tt Ft,k
xxLs,tHsx̃s − 2

t∑
s=0

x̃Tt Ft,k
xxLs,tMsvs

+
t∑

s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tHix̃i +

t∑
s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tMivi

+
t∑

s=0

t∑
i=0

x̃Ts HT
s LT

s,t(Ft,k
uu)TLi,tMivi +

t∑
s=0

t∑
i=0

vTs MT
s LT

s,tFt,k
uuLi,tMivi + o(||x̃||2∞)

= x̃Tt Ft,k
xxx̃t − 2x̃Tt Ft,k

xxLt,tHtx̃t − 2
t−1∑
s=0

x̃Tt Ft,k
xxLs,tHsx̃s

+
t−1∑
s=0

t−1∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tHix̃i +

t−1∑
i=0

x̃Tt HT
t LT

t,tFt,k
uuLi,tHix̃i

118

+
t−1∑
s=0

x̃Ts HT
s LT

s,tFt,k
uuLt,tHtx̃t + x̃Tt HT

t LT
t,tFt,k

uuLt,tHtx̃t

+ 2
t∑

s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tMivi − 2

t∑
s=0

x̃Tt Ft,k
xxLs,tMsvs

+
t∑

s=0

t∑
i=0

vTs MT
s LT

s,tFt,k
uuLi,tMivi + o(||x̃||2∞)

= x̃Tt (Ft,k
xx − 2Ft,k

xxLt,tHt + HT
t LT

t,tFt,k
uuLt,tHt)x̃t

+
t−1∑
s=0

x̃Tt (−2Ft,k
xxLs,tHs + 2HT

t LT
t,tFt,k

uuLs,tHs)x̃s +
t−1∑
s=0

t−1∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tHix̃i

+ 2
t−1∑
s=0

t∑
i=0

x̃Ts HT
s LT

s,tFt,k
uuLi,tMivi + 2

t∑
s=0

x̃Tt HT
t LT

t,tFt,k
uuLs,tMsvs

− 2
t∑

s=0
x̃Tt Ft,k

xxLs,tMsvs +
t∑

s=0

t∑
i=0

vTs MT
s LT

s,tFt,k
uuLi,tMivi + o(||x̃||2∞)

= x̃Tt (Ft,k
xx − 2Ft,k

xxLt,tHt + HT
t LT

t,tFt,k
uuLt,tHt)x̃t

+
t−1∑
j=0

x̃Tt (−2Ft,k
xxLj,tHj + 2HT

t LT
t,tFt,k

uuLj,tHj)x̃j +
t−1∑
i=0

t−1∑
j=0

x̃Ti HT
i LT

i,tFt,k
uuLj,tHjx̃j

+ 2
t−1∑
i=0

t∑
j=0

x̃Ti HT
i LT

i,tFt,k
uuLj,tMjvj +

t∑
j=0

x̃Tt (2HT
t LT

t,tFt,k
uuLj,tMj − 2Ft,k

xxLj,tMj)vj

+
t∑
i=0

t∑
j=0

vTi MT
i LT

i,tFt,k
uuLj,tMjvj + o(||x̃||2∞)

=:
t∑
i=0

t∑
j=0

x̃Ti H(h,f,h)kij
t x̃j +

t∑
i=0

t∑
j=0

x̃Ti H(h,f,v)kij
t vj +

t∑
i=0

t∑
j=0

vTi H(v,f,v)kij
t vj + o(||x̃||2∞),

where

• H(h,f,h)kij
t := HT

i LT
i,tFt,k

uuLj,tHj, 0 ≤ i ≤ t− 1, 0 ≤ j ≤ t− 1;

• H(h,f,h)kij
t := (−2Ft,k

xxLj,tHj + 2HT
t LT

t,tFt,k
uuLj,tHj), i = t, 0 ≤ j ≤ t− 1;

• H(h,f,h)kij
t := (Ft,k

xx − 2Ft,k
xxLt,tHt + HT

t LT
t,tFt,k

uuLt,tHt), i = j = t;

• H(h,f,v)kij
t := 2HT

i LT
i,tFt,k

uuLj,tMj, 0 ≤ i ≤ t− 1, 0 ≤ j ≤ t;

• H(h,f,v)kij
t := (2HT

t LT
t,tFt,k

uuLj,tMj − 2Ft,k
xxLj,tMj), i = t, 0 ≤ j ≤ t; and

• H(v,f,v)kij
t := MT

i LT
i,tFt,k

uuLj,tMj, 0 ≤ i ≤ t, 0 ≤ j ≤ t.

119

Now, in (6.63d), the linear recursion in x̃ can be solved by defining the Q poly-

nomial the same as in (6.53) and using (6.54). In particular, there exists matrices

Ux0
t , 0 ≤ t ≤ K−1, Vv

s,t, 0 ≤ s ≤ t, 0 ≤ t ≤ K−1, and Ww
s,t, 0 ≤ s ≤ t, 0 ≤ t ≤ K−1

such that

x̃t+1 =
t∑

s=0
Us,tx̃s +

t∑
s=0

Vs,tvs + Gtwt −
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj

+
nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Btenuk

+
nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,h)kij
t x̃jenxk +

nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,v)kij
t vjenxk

+
nx∑
k=1

t∑
i=0

t∑
j=0

vTi H(v,f,v)kij
t vjenxk + o(||x̃||2∞) (6.64a)

=(
t∑

s=0
QsU0,t−s)x0 +

t∑
s=0

t−s∑
r=0

QsVr,t−svr +
t∑

s=0
QsGt−swt−s

+
t∑

s=0

nu∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti HT

i Hπkij

t−s Hjx̃j + 2x̃Ti HT
i Hπkij

t−s Mjvj

+ vTi MT
i Hπkij

t−s Mjvj
)
QsBt−senuk

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j + x̃Ti H(h,f,v)kij
t−s vj + vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj + o(||x̃||2∞) (6.64b)

=Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,tws)

+
t∑

s=0

nu∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti HT

i Hπkij

t−s Hjx̃j + 2x̃Ti HT
i Hπkij

t−s Mjvj

+ vTi MT
i Hπkij

t−s Mjvj
)
QsBt−senuk

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j + x̃Ti H(h,f,v)kij
t−s vj + vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj + o(||x̃||2∞), (6.64c)

120

where Ux0
t := (∑t

s=0 QsU0,t−s), Vv
s,t :=

t−s∑
r=0

QrVs,t−r, 0 ≤ s ≤ t, and Ww
s,t :=

Qs−tGs, 0 ≤ s ≤ t. Note in the last equation, we used the following summation

exchange formula (which can be easily proven by writing expanding and collecting

the terms)

t∑
s=0

t−s∑
r=0

fs,rxr =
t∑

r=0

t−r∑
s=0

fs,rxr =
t∑

r=0
(
t−r∑
s=0

fs,r)xr,

for some xr and fs,r. Therefore, we wrote the following

t∑
s=0

t−s∑
r=0

QsVr,t−svr =
t∑

r=0
(
t−r∑
s=0

QsVr,t−s)vr =
t∑

s=0
(
t−s∑
r=0

QrVs,t−r)vs =
t∑

s=0
Vv
s,tvs.

Finally, note that we simplified the following expression (by redefining y = t− s and

the relabeling):

t∑
s=0

QsGt−swt−s =
0∑
y=t

Qy−tGywy =
t∑

s=0
Qs−tGsws.

Validity region: Similar to the fully-observed situation, the definition of x̃t :=

xt − xpt . Therefore, the properties of O(||x̃t||∞) that we have proven in Section 6.1

for a deterministic feedback design still hold for the above Taylor expansion, as well.

Particularly, we proved that for πd design, O(||x̃t||∞) = O(δ) in a set Ω(δ) properly

defined as before with probability 1− o(ε). Hence, for ω ∈ Ω(δ), O(||x̃t||2∞) = O(δ2).

Thus, for ω ∈ Ω(δ) (the same set and with the same probability), we have:

x̃t+1 =Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,tws) +
t∑

s=0

nu∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti HT

i Hπkij

t−s Hjx̃j

+ 2x̃Ti HT
i Hπkij

t−s Mjvj+vTi MT
i Hπkij

t−s Mjvj
)
QsBt−senuk

121

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j+x̃Ti H(h,f,v)kij
t−s vj+vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj +O(δ2). (6.65)

Second-order expansion of the cost function: Similarly, we obtain the second-order

Taylor series expansion of the cost function around the nominal trajectory:

J =Jp + J̃1 + J̃2 + o(
K−1∑
t=1

(||x̃t||2 + ||ũt||2) + ||x̃K ||2) (6.66a)

=Jp + J̃1 + J̃2 + o(||x̃||2∞ + ||ũ||2∞), (6.66b)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0. Moreover, we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t+Cu
t ũt)+Cx

Kx̃K is the first order cost error;

• J̃2 := ∑K−1
t=0 (1

2 x̃Tt Cxx
t x̃t+ 1

2 ũTt Cuu
t ũt+x̃Tt Cxu

t ũt)+ 1
2 x̃TKCxx

K x̃K is the second order

cost error.

• J2 := Jp + J̃1 + J̃2 is the second order approximation of the cost function;

• Cxx
t = ∇2

xxct(x,u)|xpt ,upt , Cuu
t = ∇2

uuct(x,u)|xpt ,upt , Cxu
t = ∇2

xuct(x,u)|xpt ,upt , and

Cxx
K = ∇2

xxcK(x)|xpK , where we have used the fact that ct ∈ C2.

Next, we provide the main result regarding the expected second order error of

the cost function.

Theorem 9 Second-Order Cost Function Error for a Partially-Observed

System with a Deterministic Policy: Given that process noises are zero mean

i.i.d. Gaussian, the initial error is zero mean Gaussian, and all the functions are in

C2, under a first-order approximation for the small noise paradigm, the stochastic

cost function is dominated by the nominal part of the cost function, and the expected

122

first-order error is O(δ2). That is,

E[J̃1] = O(δ2), and E[J] = Jp +O(δ2).

Moreover, by choosing δ =
√

2 log(1
ε
)ε, we have

E[J̃1] = O(ε2−γ), and E[J] = Jp +O(ε2−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 22 First, let us simply the first order cost error:

J̃1 =
K−1∑
t=0

(Cx
t x̃t+Cu

t ũt)+Cx
Kx̃K

=
K−1∑
t=0

(
Cx
t x̃t −

t∑
s=0

Cu
t Ls,tHsx̃s −

t∑
s=0

Cu
t Ls,tMsvs −

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

+
nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Cu
t enuk

)

+ Cx
Kx̃K + o(||x̃||2∞)

=
K∑
t=0

CL
t x̃t −

K−1∑
t=0

t∑
s=0

Cu
t Ls,tMsvs −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

+
K−1∑
t=0

nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j + 2x̃Ti HT
i Hπkij

t Mjvj

+ vTi MT
i Hπkij

t Mjvj)Cu
t enuk + o(||x̃||2∞)

=
K∑
t=0

CL
t

(
Ux0
t−1x̃0+

t−1∑
s=0

(Vv
s,t−1vs+Ww

s,t−1ws)+
t−1∑
s=0

nu∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti HT
i Hπkij

t−s−1Hjx̃j

+ 2x̃Ti HT
i Hπkij

t−s−1Mjvj+vTi MT
i Hπkij

t−s−1Mjvj)QsBt−s−1enuk

+
t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)Qsenxk

123

−
t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−s−1Lr,t−s−1enzj
)

−
K−1∑
t=0

t∑
s=0

Cu
t Ls,tMsvs −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

+
K−1∑
t=0

nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j + 2x̃Ti HT
i Hπkij

t Mjvj

+ vTi MT
i Hπkij

t Mjvj)Cu
t enuk + o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1)vt+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nu∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti HT
i Hπkij

t−s−1Hjx̃j

+ 2x̃Ti HT
i Hπkij

t−s−1Mjvj+vTi MT
i Hπkij

t−s−1Mjvj)CL
t QsBt−s−1enuk

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

(
K−1∑
s=t

Cu
sLt,sMt)vt −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

+
K−1∑
t=0

nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j + 2x̃Ti HT
i Hπkij

t Mjvj

+ vTi MT
i Hπkij

t Mjvj)Cu
t enuk + o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

+
K∑
t=0

t−1∑
s=0

nu∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti HT
i Hπkij

t−s−1Hjx̃j

+ 2x̃Ti HT
i Hπkij

t−s−1Mjvj+vTi MT
i Hπkij

t−s−1Mjvj)CL
t QsBt−s−1enuk

+
K−1∑
t=0

nu∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Cu
t enuk

124

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj + o(||x̃||2∞),

where CL
t := Cx

t −
K−1∑
s=t

Cu
sLt,sHt, 0 ≤ t ≤ K − 1, and CL

K = Cx
K. Note that in

evaluating the above expression, we used the following summation exchange formula

K−1∑
t=0

t∑
s=0

ft,sxs =
K−1∑
s=0

K−1∑
t=s

ft,sxs =
K−1∑
s=0

(
K−1∑
t=s

ft,s)xs =
K−1∑
t=0

(
K−1∑
s=t

fs,t)xt.

For instance, we simplified the following expression:

K−1∑
t=0

t∑
s=0

Cu
t Ls,tHsx̃s =

K−1∑
t=0

(
K−1∑
s=t

Cu
sLt,sHt)x̃t.

Next, we simplify the second order cost error. Once again, we ignore the second

order feedback terms and replace them with o(||x̃||2∞)

J̃2 =
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 ũTt Cuu

t ũt + x̃Tt Cxu
t ũt) + 1

2 x̃TKCxx
K x̃K

=
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 x̃Tt LT

t Cuu
t Ltx̃t + x̃Tt Cxu

t Ltx̃t) + 1
2 x̃TKCxx

K x̃K + o(||x̃||2∞)

=
K∑
t=0

x̃Tt CLL
t x̃t + o(||x̃||2∞),

where CLL
t := 1

2Cxx
t + 1

2LT
t Cuu

t Lt+Cxu
t Lt, 0 ≤ t ≤ K−1, and CLL

K := 1
2Cxx

K . Hence,

we have:

J̃1+J̃2=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

125

+
K∑
t=0

t−1∑
s=0

nu∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti HT
i Hπkij

t−s−1Hjx̃j

+ 2x̃Ti HT
i Hπkij

t−s−1Mjvj+vTi MT
i Hπkij

t−s−1Mjvj)CL
t QsBt−s−1enuk

+
K−1∑
t=0

nu∑
k=1

t∑
i=0

t∑
j=0

(̃xTi HT
i Hπkij

t Hjx̃j+2x̃Ti HT
i Hπkij

t Mjvj+vTi MT
i Hπkij

t Mjvj)Cu
t enuk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj +

K∑
t=0

x̃Tt CLL
t x̃t+o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+O(||x̃||2∞) + o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+O(||x̃||2∞)

Hence, for ω ∈ Ω(δ),

J̃1 + J̃2 =(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt +O(δ2).

As a result, using (6.75b), for ω ∈ Ω(δ), we have:

J =Jp + (
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt +O(δ2).

126

Next, note E[x̃0] = E[x0 − x̂0] = 0, and E[wt] = E[vt] = 0 for all t. Therefore,

E[(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt]

= (
K∑
t=0

CL
t Ux0

t−1)E[x̃0]+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)E[vt]

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)E[wt] = 0.

Noting that for ω /∈ Ω(δ), J ≤M , the expected value of J is Now, since for ω /∈ Ω(δ),

J ≤M , then

E[J − Jp] = P (Ω(δ))(0 +O(δ2)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (6.67)

Note the last expression is the same as (4.47). Although Ω(δ) is not the same as in

Theorem 4, P (Ω(δ)) is still the same. In the proof of Theorem 4 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
−2 log(ε)ε, the E[J − Jp] = O(ε2−γ). Thus, E[J] = Jp + O(ε2−γ). Similarly,

E[J̃1+J̃2] = O(ε2−γ). The same argument follows through and this theorem is proved.

Hence, when the functions are in C2, the expected stochastic cost is equal to the

nominal cost with a higher probability as ε ↓ 0. Therefore, it follows that the

deterministic policy is near-second-order optimal, summarized below:

Corollary 7 Near-Second-Order Optimality of the Deterministic Optimal

Policy for the Stochastic Partially-Observed System Under Small Noise.

Based on Theorem 9, for a partially-observed system where the function are in C2

under the small noise paradigm, as ε ↓ 0, the deterministic optimal control law

becomes O(ε2−γ)-optimal with some 0 < γ � 1 for the stochastic problem.

127

Proof 23 Using Theorem 9, for ω ∈ Ω(δ) we have E[J] = Jp + O(ε2−γ), which

is the cost of applying policy πd to the stochastic system. Now, suppose π∗ is

the optimal stochastic policy. By assumption π∗ is in C2. Therefore, by modify-

ing the definition of Ls,t as Ls,t :=−∇zsπ
∗
t (z0:t)|z∗p0:t

and modifying Hπk

t as Hπkij

t :=
1
2∇

2
zizjπ

∗k
t (z0:t)|z∗p0:t

, defining u∗pt = π∗t (z
∗p
0:t) and replacing p with ∗p in (4.23), we have

π∗t (z0:t) = u∗pt −
t∑

s=0
Ls,tz̃s +∑nu

k=1
∑t
i=0

∑t
j=0 z̃Ti Hπkij

t z̃jenuk + o(||x̃||2∞+ ||z̃||2∞) (where x̃

and z̃ are also modified to denote (xt − x∗pt) and (zt − z∗pt), respectively). Similarly,

by using appropriate modifications the entire calculations of this section hold for this

policy. Hence, using Theorem 9 for this system, the cost function of policy π∗ can

be written as E[Jπ∗] = J∗p +O(ε2−γ). Now, by construction Jp ≤ J∗p, and

E[Jπ∗] = J∗p +O(ε2−γ) ≥ Jp +O(ε2−γ) = E[Jπd] +O(ε2−γ).

As a result, policy πd is within O(ε2−γ) of the optimal stochastic policy.

Similarly, using the results of Theorem 9, we can write

E[Jπ∗] = J∗p +O(ε2−γ) ≥ Jp +O(ε2−γ) = E[Jπd] +O(ε2−γ).

As a result, policy πd is within O(ε2−γ) of the optimal stochastic policy.

6.4 Near-Second-Order Optimality of T-LQG

In this section, we provide a second-order analysis of the deterministic feedback

law and show that applying the optimal feedback law of the deterministic problem to

the stochastic problem results in a near-second-order optimality as well. Therefore,

we improve the results of Section 6.2.

Assumptions: Similar to the previous section,other than the assumptions of Sec-

tion 6.2, we assume for the analysis of this section that all the functions (including

128

the dynamics and observation models, feedback law, and the cost functions) are in

C2.

Second-order expansion of the system equations: We obtain the second-order

expansion of the process model around the nominal trajectory, for 0 ≤ t ≤ K − 1:

x̃t+1 = f(xt,ut)− f(xpt ,upt) + εσf
twt (6.68a)

= Atx̃t + Btũt + εσf
twt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃t||2 + ||ũt||2)

(6.68b)

= Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞),

(6.68c)

z̃t+1 = h(xt+1)− h(xpt+1) + εσh
t+1vt+1 (6.68d)

= Ht+1x̃t+1 + εσh
t+1vt+1 +

nz∑
j=1

(x̃Tt+1Hhj

t+1x̃t+1)enzj + o(||x̃t+1||2) (6.68e)

= Ht+1x̃t+1 + Mt+1vt+1 +
nz∑
j=1

(x̃Tt+1Hhj

t+1x̃t+1)enzj + o(||x̃||2∞), (6.68f)

as (||x̃||∞ + (||ũ||∞) ↓ 0, where we have:

• At :=∇xf(x,u)|xpt ,upt , Bt :=∇uf(x,u)|xpt ,upt , Gt :=εσf
t ;

129

• Ht :=∇xh(x)|xpt , Mt :=εσh
t .

• f(x,u) = (f j(x,u)), 1 ≤ j ≤ nx;

• Ft,j
xx := 1

2∇
2
xxf

j(x,u)|xpt ,upt ,F
t,j
xu := 1

2∇
2
xuf

j(x,u)|xpt ,upt ,F
t,j
ux := 1

2∇
2
uxf

j(x,u)|xpt ,upt ,

and Ft,j
uu := 1

2∇
2
uuf

j(x,u)|xpt ,upt ;

• h(x) = (hj(x)), 1 ≤ j ≤ nz;

• Hhj

t := 1
2∇

2
xxh

j(x)|xpt .

The T-LQG feedback law: For the analysis of this section, we apply the T-LQG

feedback law ũt = −Lt
ˆ̃xt in the original system, where ˆ̃x0 := 0 and the state esti-

mation mean error evolution is given as

ˆ̃xt+1 =At
ˆ̃xt+Btũt+Kt+1(z̃t+1−Ht+1(At

ˆ̃xt+Btũt)), (6.69)

which is the same as (6.30). Next, we simplify the above equation as:

ˆ̃xt+1 =At
ˆ̃xt−BtLt

ˆ̃xt+Kt+1(z̃t+1−Ht+1(At
ˆ̃xt−BtLt

ˆ̃xt)) (6.70a)

=(I−Kt+1Ht+1)(At−BtLt)ˆ̃xt+Kt+1z̃t+1 (6.70b)

=KL
t+1

ˆ̃xt+Kt+1z̃t+1 (6.70c)

=: K̃L
1:t+1

ˆ̃x0+
t+1∑
s=1

K̃L
s+1:t+1Ksz̃s (6.70d)

=
t+1∑
s=1

K̃L
s+1:t+1Ksz̃s, (6.70e)

where KL
t+1 := (I −Kt+1Ht+1)(At−BtLt), 0 ≤ t ≤ K − 1, K̃L

t1:t2 = Πt2
t=t1KL

t , t2 ≥

t1 ≥ 1, otherwise, it is the identity matrix. Also we solved the following recursion

equation:

ˆ̃xt+1 =KL
t+1

ˆ̃xt+Kt+1z̃t+1

130

=KL
t+1(KL

t
ˆ̃xt−1+Ktz̃t)+Kt+1z̃t+1

=KL
t+1KL

t
ˆ̃xt−1+KL

t+1Ktz̃t+Kt+1z̃t+1

=KL
t+1KL

t+1−1 × · · · ×KL
t+1−t

ˆ̃xt−t+
t∑

r=0
(KL

t+1 × · · · ×KL
t+1−r+1)Kt+1−rz̃t+1−r

=K̃L
1:t+1

ˆ̃x0+
t∑

r=0
K̃L
t+2−r:t+1Kt+1−rz̃t+1−r

=K̃L
1:t+1

ˆ̃x0+
t+1∑
s=1

K̃L
s+1:t+1Ksz̃s,

where in the last equation, we relabeled s = t+ 1− r.

Rewriting the feedback law: Using the above equation, we can rewrite the T-LQR

feedback law as:

ũt = −Lt
ˆ̃xt = −Lt

t∑
s=1

K̃L
s+1:tKsz̃s = −

t∑
s=1

LtK̃L
s+1:tKsz̃s (6.71a)

= −
t∑

s=0
Ls,tz̃s, (6.71b)

where Ls,t := LtK̃L
s+1:tKs, 1 ≤ s ≤ t, 0 ≤ t ≤ K − 1 and Ls,t := 0, s = 0, 0 ≤ t ≤

K − 1. Note that this feedback law is similar to the law in the previous section,

except that the law does not include second-order terms in z̃. However, the process

and observation models include second-order terms. Also, we will use the following

form of the control law in the proofs:

ũt = −
t∑

s=0
Ls,t(Hsx̃s + Msvs +

nz∑
j=1

(x̃Ts Hhj

s x̃s)enzj) + o(||x̃||2∞)

= −
t∑

s=0
Ls,tHsx̃s −

t∑
s=0

Ls,tMsvs −
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Ls,tenzj + o(||x̃||2∞).

131

Now, we can simplify the second-order expansion of the dynamics:

x̃t+1 =Atx̃t + Btũt + Gtwt +

x̃t

ũt

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

x̃t

ũt

...x̃t

ũt

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

x̃t

ũt

+ o(||x̃||2∞ + ||ũ||2∞)

(6.72a)

=Atx̃t + Bt(−
t∑

s=0
Ls,tz̃s) + Gtwt

+

 x̃t

−
t∑

s=0
Ls,tz̃s

T Ft,1

xx Ft,1
xu

Ft,1
ux Ft,1

uu

 x̃t

−
t∑

s=0
Ls,tz̃s

... x̃t

−
t∑

s=0
Ls,tz̃s

T Ft,nx

xx Ft,nx
xu

Ft,nx
ux Ft,nx

uu

 x̃t

−
t∑

s=0
Ls,tz̃s

+ o(||x̃||2∞ + ||z̃||2∞)

(6.72b)

=Atx̃t −
t∑

s=0
BtLs,t(Hsx̃s + Msvs +

nz∑
j=1

(x̃Ts Hhj

s x̃s)enzj) + Gtwt

+
nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,h)kij
t x̃jenxk +

nx∑
k=1

t∑
i=0

t∑
j=0

x̃Ti H(h,f,v)kij
t vjenxk

+
nx∑
k=1

t∑
i=0

t∑
j=0

vTi H(v,f,v)kij
t vjenxk + o(||x̃||2∞) (6.72c)

=Atx̃t −
t∑

s=0
BtLs,tHsx̃s −

t∑
s=0

BtLs,tMsvs + Gtwt

+
nx∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti H(h,f,h)kij
t x̃jenxk + x̃Ti H(h,f,v)kij

t vjenxk + vTi H(v,f,v)kij
t vj)enxk

−
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj + o(||x̃||2∞) (6.72d)

132

=
t∑

s=0
Us,tx̃s +

t∑
s=0

Vs,tvs + Gtwt

+
nx∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti H(h,f,h)kij
t x̃jenxk + x̃Ti H(h,f,v)kij

t vjenxk + vTi H(v,f,v)kij
t vj)enxk

−
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj + o(||x̃||2∞), (6.72e)

where

• Us,t := −BtLs,tHs, 0 ≤ s ≤ t− 1;

• Us,t := As −BtLs,tHs, s = t;

• Vs,t := −BtLs,tMs, 0 ≤ s ≤ t;

• H(h,f,h)kij
t := HT

i LT
i,tFt,k

uuLj,tHj, 0 ≤ i ≤ t− 1, 0 ≤ j ≤ t− 1;

• H(h,f,h)kij
t := (−2Ft,k

xxLj,tHj + 2HT
t LT

t,tFt,k
uuLj,tHj), i = t, 0 ≤ j ≤ t− 1;

• H(h,f,h)kij
t := (Ft,k

xx − 2Ft,k
xxLt,tHt + HT

t LT
t,tFt,k

uuLt,tHt), i = j = t;

• H(h,f,v)kij
t := 2HT

i LT
i,tFt,k

uuLj,tMj, 0 ≤ i ≤ t− 1, 0 ≤ j ≤ t;

• H(h,f,v)kij
t := (2HT

t LT
t,tFt,k

uuLj,tMj − 2Ft,k
xxLj,tMj), i = t, 0 ≤ j ≤ t; and

• H(v,f,v)kij
t := MT

i LT
i,tFt,k

uuLj,tMj, 0 ≤ i ≤ t, 0 ≤ j ≤ t.

are as defined before in Section 6.3.

Next, similar to (6.63d), for (6.72e) we solve the linear recursion in x̃:

x̃t+1 =
t∑

s=0
Us,tx̃s +

t∑
s=0

Vs,tvs + Gtwt

+
nx∑
k=1

t∑
i=0

t∑
j=0

(x̃Ti H(h,f,h)kij
t x̃jenxk + x̃Ti H(h,f,v)kij

t vjenxk + vTi H(v,f,v)kij
t vj)enxk

−
t∑

s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)BtLs,tenzj + o(||x̃||2∞) (6.73a)

=(
t∑

s=0
QsU0,t−s)x0 +

t∑
s=0

t−s∑
r=0

QsVr,t−svr +
t∑

s=0
QsGt−swt−s

133

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j + x̃Ti H(h,f,v)kij
t−s vj + vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj + o(||x̃||2∞) (6.73b)

= Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,tws)

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j + x̃Ti H(h,f,v)kij
t−s vj + vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj + o(||x̃||2∞), (6.73c)

where

• Qs := ∑s−1
r=0 QrUt−s+1,t−r, 1 ≤ s ≤ t, 0 ≤ t ≤ K − 1 and Q0 := 1;

• Ux0
t := (∑t

s=0 QsU0,t−s), 0 ≤ t ≤ K − 1;

• Vv
s,t :=

t−s∑
r=0

QrVs,t−r, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1; and

• Ww
s,t := Qs−tGs, 0 ≤ s ≤ t, 0 ≤ t ≤ K − 1.

Validity region: Similar to the analysis of Section 6.3, we have defined the state

error as x̃t := xt − xpt . Moreover, we have proven the properties of O(||x̃||∞) for a

system compensated with the T-LQG law in Section 6.2. Particularly, we proved

that for the T-LQG design, O(||x̃||∞) = O(δ) in a set Ω(δ) properly defined as before

with probability 1 − o(ε). Hence, for ω ∈ Ω(δ), O(||x̃t||2∞) = O(δ2). Therefore, for

ω ∈ Ω(δ) (the same set and with the same probability), we have:

x̃t+1 =Ux0
t x̃0 +

t∑
s=0

(Vv
s,tvs + Ww

s,tws)

+
t∑

s=0

nx∑
k=1

t−s∑
i=0

t−s∑
j=0

(
x̃Ti H(h,f,h)kij

t−s x̃j + x̃Ti H(h,f,v)kij
t−s vj + vTi H(v,f,v)kij

t−s vj
)
Qsenxk

−
t∑

s=0

t−s∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−sLr,t−senzj +O(δ2). (6.74)

134

Second-order expansion of the cost function: Similarly, we obtain the second-order

Taylor series expansion of the cost function around the nominal trajectory:

J =Jp + J̃1 + J̃2 + o(
K−1∑
t=1

(||x̃t||2 + ||ũt||2) + ||x̃K ||2) (6.75a)

=Jp + J̃1 + J̃2 + o(||x̃||2∞ + ||ũ||2∞), (6.75b)

as (||x̃||2∞ + ||ũ||2∞) ↓ 0. Moreover, we have:

• Jp:=∑K−1
t=0 ct(x

p
t ,upt)+ cK(xpK) denotes the nominal cost;

• J̃1:=
∑K−1
t=0 (Cx

t x̃t+Cu
t ũt)+Cx

Kx̃K is the first order cost error;

• J̃2 := ∑K−1
t=0 (1

2 x̃Tt Cxx
t x̃t+ 1

2 ũTt Cuu
t ũt+x̃Tt Cxu

t ũt)+ 1
2 x̃TKCxx

K x̃K is the second order

cost error.

• J2 := Jp + J̃1 + J̃2 is the second order approximation of the cost function;

• Cxx
t = ∇2

xxct(x,u)|xpt ,upt , Cuu
t = ∇2

uuct(x,u)|xpt ,upt , Cxu
t = ∇2

xuct(x,u)|xpt ,upt , and

Cxx
K = ∇2

xxcK(x)|xpK , where we have used the fact that ct ∈ C2.

Next, we provide the main result regarding the expected second order error of

the cost function.

Theorem 10 Second-Order Cost Function Error for a Partially-Observed

System with T-LQG Policy: Given that process noises are zero mean i.i.d. Gaus-

sian, the initial error is zero mean Gaussian, and all the functions are in C2, under

a first-order approximation for the small noise paradigm, the stochastic cost function

is dominated by the nominal part of the cost function, and the expected first-order

error is O(δ2). That is,

E[J̃1] = O(δ2), and E[J] = Jp +O(δ2).

135

Moreover, by choosing δ =
√

2 log(1
ε
)ε, we have

E[J̃1] = O(ε2−γ), and E[J] = Jp +O(ε2−γ),

for some 0 < γ � 1, which shows that this error tends to zero with a near-first-order

rate as ε ↓ 0.

Proof 24 First, let us simply the first order cost error:

J̃1 =
K−1∑
t=0

(Cx
t x̃t+Cu

t ũt)+Cx
Kx̃K

=
K−1∑
t=0

(
Cx
t x̃t −

t∑
s=0

Cu
t Ls,tHsx̃s −

t∑
s=0

Cu
t Ls,tMsvs −

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

)

+ Cx
Kx̃K + o(||x̃||2∞)

=
K∑
t=0

CL
t x̃t −

K−1∑
t=0

t∑
s=0

Cu
t Ls,tMsvs −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj + o(||x̃||2∞)

=
K∑
t=0

CL
t

(
Ux0
t−1x̃0+

t−1∑
s=0

(Vv
s,t−1vs+Ww

s,t−1ws)

+
t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)Qsenxk

−
t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)QsBt−s−1Lr,t−s−1enzj
)

−
K−1∑
t=0

t∑
s=0

Cu
t Ls,tMsvs −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj + o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1)vt+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

(
K−1∑
s=t

Cu
sLt,sMt)vt −

K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj + o(||x̃||2∞)

136

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj + o(||x̃||2∞),

where CL
t := Cx

t −
K−1∑
s=t

Cu
sLt,sHt, 0 ≤ t ≤ K − 1, and CL

K = Cx
K. Note that in

evaluating the above expression, we used the following summation exchange formula

K−1∑
t=0

t∑
s=0

ft,sxs =
K−1∑
s=0

K−1∑
t=s

ft,sxs =
K−1∑
s=0

(
K−1∑
t=s

ft,s)xs =
K−1∑
t=0

(
K−1∑
s=t

fs,t)xt.

For instance, we simplified the following expression:

K−1∑
t=0

t∑
s=0

Cu
t Ls,tHsx̃s =

K−1∑
t=0

(
K−1∑
s=t

Cu
sLt,sHt)x̃t.

Next, we simplify the second order cost error. Once again, we ignore the second

order feedback terms and replace them with o(||x̃||2∞)

J̃2 =
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 ũTt Cuu

t ũt + x̃Tt Cxu
t ũt) + 1

2 x̃TKCxx
K x̃K

=
K−1∑
t=0

(1
2 x̃Tt Cxx

t x̃t + 1
2 x̃Tt LT

t Cuu
t Ltx̃t + x̃Tt Cxu

t Ltx̃t) + 1
2 x̃TKCxx

K x̃K + o(||x̃||2∞)

=
K∑
t=0

x̃Tt CLL
t x̃t + o(||x̃||2∞),

where CLL
t := 1

2Cxx
t + 1

2LT
t Cuu

t Lt+Cxu
t Lt, 0 ≤ t ≤ K−1, and CLL

K := 1
2Cxx

K . Hence,

137

we have:

J̃1+J̃2=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj +

K∑
t=0

x̃Tt CLL
t x̃t+o(||x̃||2∞) (6.76)

Therefore, we can simplify the above expression as follows:

J̃1+J̃2=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+O(||x̃||2∞) + o(||x̃||2∞)

=(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+O(||x̃||2∞)

Hence, for ω ∈ Ω(δ),

J̃1 + J̃2 =(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt +O(δ2).

As a result, using (6.75b), for ω ∈ Ω(δ), we have:

J =Jp + (
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt +O(δ2).

138

Next, note E[x̃0] = E[x0 − x̂0] = 0, and E[wt] = E[vt] = 0 for all t. Therefore,

E[(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt]

= (
K∑
t=0

CL
t Ux0

t−1)E[x̃0]+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)E[vt]

+
K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)E[wt] = 0.

Now, since for ω /∈ Ω(δ), J ≤M , then

E[J − Jp] = P (Ω(δ))(0 +O(δ2)) +M(1− P (Ω(δ)))

= P (Ω(δ))O(δ) +M(1− P (Ω(δ))) (6.77)

Note the last expression is the same as (4.47). Although Ω(δ) is not the same as in

Theorem 4, P (Ω(δ)) is still the same. In the proof of Theorem 4 while we discussed

on the probabilistic argument and choosing the proper δ, we showed that by choosing

δ :=
√
−2 log(ε)ε, the E[J − Jp] = O(ε2−γ). Thus, E[J] = Jp + O(ε2−γ). Similarly,

E[J̃1+J̃2] = O(ε2−γ). The same argument follows through and this theorem is proved.

Hence, when the functions are in C2, the expected stochastic cost is equal to the

nominal cost with a higher probability as ε ↓ 0. Therefore, it follows that the

deterministic policy is near-second-order optimal, summarized below:

Corollary 8 Decoupling Principle: Near-Second-Order Optimality for a

Partially-Observed System. Based on Theorem 10, for a partially-observed sys-

tem under the small noise paradigm, as ε ↓ 0, the decoupling principle holds with

O(ε2−γ)-optimality for 0 < γ � 1. Moreover, the T-LQG approach (s linear policy

designed based on this result) is O(ε2−γ)-optimal.

Proof 25 Using Theorem 10, for ω ∈ Ω(δ) we have E[J] = Jp + O(ε2−γ), which is

139

the cost of applying policy πt(z0:t) = upt −Lt(x̂t−xpt) to the stochastic system. Now,

suppose π∗ is the optimal stochastic policy. We showed in the proof of Corollary 7

that for this policy, we have E[Jπ∗] = J∗p +O(ε2−γ). Now, by construction Jp ≤ J∗p,

and

E[Jπ∗] = J∗p +O(ε2−γ) ≥ Jp +O(ε2−γ) = E[Jπ] +O(ε2−γ)

As a result, policy π is within O(ε2−γ) of the optimal stochastic policy.

140

7. PARTIALY-OBSERVED MULTI-AGENT SYSTEM

In this chapter, we generalize the single-agent results of Result 3 to a multi-

agent partially-observed system. The generalization is done in a manner similar to

the fully-observed case where we create a centralized multi-agent system through

appropriate concatenations of the variables.

7.1 Multi-Agent Decoupling of Open-Loop and Closed-Loop Designs

In this section, we generalize the single-agent results of Result 3 for a multi-agent

partially-observed system. The generalization is straightforward by observing the

fact that a centralized multi-agent can be considered as one big single-agent system

by defining appropriate concatenations of the variables.

One joint system: First, we concatenate the equations of control and state evolu-

tions for all agents and consider the entire multi-agent system as one system similar

to the fully-observed case. Hence, we have:

xIt+1 = fI(xIt ,uIt) + εσfI
t wIt , (7.1)

zIt = hI(xIt) + εσhI
t vIt . (7.2)

Remark 4 Corollary 6 states that for the multi-agent system of (7.1) with index

I, if functions are in C1, the first order approximation of the cost function does not

depend on the linear feedback gain, rather, it is completely determined by the nominal

trajectory. Moreover, if functions are in C2, based on Corollary 8 the second-order

approximation of the cost function is also dominated by the nominal cost. This

leads to the extension of the decoupling of open-loop/closed-loop deigns for a multi-

agent partially-observed system. That is, under small noise, the multi-agent version

141

of Problem (5) can be near-optimally separated into two problems: i) an open-loop

optimal control problem to design the nominal trajectories of the system, and ii) a

design of the optimal feedback law to track the nominal trajectories of the system.

This is elaborated next.

Problem 12 (Nominal Trajectory Design Problem) Given an initial joint state

x̄I0 , solve:

min
uI0:KI−1

KI−1∑
t=0

ct(xIt ,uIt) + cKI(xIKI)]

s.t. xIt+1 = fI(xIt ,uIt)

zIt = hI(xIt).

Nominal trajectories: Given the initial state x̄I0 , and using the optimized nominal

controls of the above problem, upIt , the nominal trajectory of the multi-agent system

is defined as:

xpIt+1 = fI(xpIt ,upIt), zpIt+1 = hI(xpIt), (7.3)

where xpI0 := xI0 , and xpit+1 = f i(xpit ,upit), and hpit = hi(xpit) for i ∈ I.

Linearized system: Using the result of the previous chapter and using a feedback

policy for each agent that depends on the entire system’s mean of estimate, we can

write the linearized system for each agent as:

xIt+1 =xpIt+1+AIt (xIt −xpIt)+BIt (uIt −upIt)+GIt wIt +O(δ),

zIt =zpIt +HIt (xIt −xpIt)+MI
t vIt +O(δ),

Jπ =Jp + J̃1 +O(δ),

142

J̃1 :=
KI−1∑
t=0

[CxI
t (xIt−xpIt) + CuI

t (uIt − upIt)] + CxI
KI

(xIKI−xpIKI),

Jp :=
KI−1∑
t=0

ct(xpIt ,upIt) + cKI(x
pI
KI

).

The Jacobians are:

AIt :=∇xfI(x,u)|xpIt ,upIt
,BIt :=∇ufI(x,u)|xpIt ,upIt

,GIt :=εσfI(t),

HIt := ∇uh(xI)|xpIt ,M
I
t := εσhI(t),

CxI
t := ∇xc

πI

t (x,u)|xpIt ,upIt
,CxI

KI
:= ∇xc

πI

KI
(x)|xpIt ,C

uI
t := ∇uc

πI

t (x,u)|xpIt ,upIt
.

uIt is obtained by deigning a optimal LQR feedback policy for the mean of the joint

estimate to track the joint nominal trajectory xpIt as:

uIt = upIt − LIt (x̂It −xpIt), (7.4)

LIt = (WuI
t + (BIt)TSIt BIt)−1(BIt)TSIt AIt . (7.5)

SIt is obtained using the backward dynamic Riccati equation with SIKI = WxI
KI

:

SIt−1 = (AIt)TSIt AIt − (AIt)TSIt BIt LIt+WxI
t , (7.6)

where WxI
t � 0 and WuI

t � 0 are two block-diagonal positive semi-definite weight

matrices (with blocks of Wxi
t � 0 of dimension nix × nix and Wui

t � 0 of dimension

niu×niu, respectively). Moreover, the mean of the estimate is obtained using the KF

equations, whose error evolution defined as eIt := x̂It −xpIt is:

eIt+1 =TeI
t (eIt)+TuI

t (uIt −upIt)+TzI
t (zIt+1−zpIt+1). (7.7)

143

Structure of feedback: As shown above, LIt that is designed using the single-agent

decoupling principle depends on the entire mean of the state estimation. Next, we

will analyze the structure of feedback and prove the multi-agent decoupling principle

for the partially-observed case.

Remark: Once again, we have only shown the first-order linearizations above,

it should be noted that the second-order linearizations also follows similarly with

proper indexing of the single-agent variables. Therefore, we avoid repeating them.

Nevertheless, for the rest of the proof only first-order variables suffice.

7.2 Decoupling of Feedback and Estimator Designs

Proof 26 (proof of Result 4) This result has two parts. The first part is the de-

coupling of feedback gain designs, and the second part is the decoupling of the estima-

tor designs. Both of the results are proven similarly to the proof of Result 2. Because

of the separation of controller and estimator designs, the controller equations are the

same as in (7.4) and (7.6), except that the controller is designed to compensate for

the estimator error rather than the state error. Therefore, the rest of the proof for

controller design is the same as for Result 2. The second part is the decoupling of

estimator implementations which once again follows from the independence of the

dynamics and the fact that the estimation equation follows a similar algebraic equa-

tions. In particular, the mean update is given by (7.7) where the Kalman gain is

obtained using the joint covariance update given by the following forward dynamic

Riccati equation with PI0 = ε2ΣxI0 and:

P̄It := AIt−1PIt−1(AIt−1)T + GIt−1Σw(GIt−1)T

KIt := P̄It(HIt)T(HIt P̄It (HIt)T+MI
t Σv(Mi

t)T)−1

PIt = (I−KIt HIt)P̄It , (7.8)

144

which deterministically depends on the nominal trajectory. Both the mean and co-

variance equations separate into m non-interacting equations following the same rea-

soning as stated for the controller feedback gain. Hence, the estimator of each agent

can be implemented separately from the other agents without the need to have the

knowledge of their current estimation information. Therefore, the feedback policy for

each agent (which depends on the state estimate of that agent) can also be fully de-

coupled into m non-interacting feedback policies, as long as the conditions of Result

3 are met.

Remark 5 Result 4 proves that under the conditions of Result 3 and Theorem 7,

and the independence of the dynamics, the feedback gain designs and estimator imple-

mentation of the agent i can be optimally calculated separately from the agent j 6= i.

It states that the joint forward Riccati equation of covariance updates (with index I)

breaks up into m separate Riccati equations. As a result, the dimension of the optimal

linear feedback gain for agent i reduces to niu × nix, which is the same as an LQR

design to track the fully-observed nominal state of agent i. Moreover, the Riccati

equations for estimation can also be factored out, which leads to a separate marginal

belief evolution implementation of the Kalman filters for different agents. This de-

sign leads to a decentralized multi-agent planning approach of MT-LQG, which is

near-second-order optimal as ε ↓ 0.

Remark 6 Note that once again, the shared cost such as inter-agent collision is

taken into account in the nominal trajectory design stage with sufficient safety mar-

gins such that within the δ tubes of the agents, the shared cost vanishes to zero.

Therefore, the feedback design for each agent becomes the LQG tracking problem

within a tube without considering the shared cost. This is addressed in more details

in Chapter 9.

145

7.3 MT-LQG: Multi-agent Trajectory-optimized LQG

The design approach resulting from the combination of Results 3 and 4 for a

multi-agent system with imperfect state information consists of two steps. The first

step is to solve the joint nominal trajectory design problem. The second step is to

design m LQG trackers one for each of the agents, separately.

Problem 13 (MT-LQG Nominal Trajectory Design Problem) Given an ini-

tial joint mean x̄I0 =: xpI0 , solve:

min
upI0:KI−1

E[
KI−1∑
t=0

ct(xpIt ,upIt) + cKI(x
pI
KI

)]

s.t. xpit+1 = f i(xpit ,upit), i ∈ I (7.9a)

zpit+1 = hi(xpit+1), i ∈ I. (7.9b)

Control policy: After solving Problem (13), the control policy is an LQG policy

designed for agent i applied on the estimation error (x̂it−xpit) as:

uit = upit − Li
t(x̂it−xpit), (7.10)

Li
t = (Wui

t + (Bi
t)TSitBi

t)−1(Bi
t)TSitAi

t, (7.11)

where the Jacobians are

Ai
t :=∇xf i(x,u)|xpit ,upit ,B

i
t :=∇uf i(x,u)|xpit ,upit ,G

i
t :=εσfi(t),

Hi
t := ∇uh(xi)|xpit ,M

i
t := εσhi(t),

146

and Sit is obtained using a single-agent backward dynamic Riccati equation with

SiKi = Wxi
Ki
:

Sit−1 = (Ai
t)TSitAi

t − (Ai
t)TSitBi

tLi
t+Wxi

t . (7.12)

Moreover, the mean of the estimate is obtained using the KF equations, whose error

evolution defined as ẽit := x̂it−xpit is:

ẽit+1 =Tei
t (ẽit)+Tui

t (uit−upit)+Tzi
t (zit+1−zpit+1). (7.13)

147

II. BELIEF SPACE PLANNING

148

8. BELIEF-SPACE PLANNING FOR SINGLE-AGENT SYSTEM

In this chapter, we use the theory of the previous sections, particularly, the

T-LQG approach, to solve robotic trajectory planning problems. We consider single-

agent planning under process and measurement uncertainties. As mentioned before,

this requires the solution of a stochastic control problem in the space of feedback

policies. Also formulated as a POMDP problem, this problem is referred to as the

belief space planning problem in the literature [14], as well. In this Dissertation, we

reserve the “belief” keyword to refer to the conditional distribution of the system (or

its approximation) when the distribution is Gaussian. For more general situations,

we will refer to the conditional distribution as the information state.

In this chapter, we define a special cost function that is suited for belief space

planning and utilize the T-LQG algorithm and the Decoupling Principle of the past

chapters to tackle the belief space planning problem. Using the T-LQG method,

by restricting the policy class to the linear feedback polices, we reduce the general

(n2 + n)-dimensional belief space planning problem to an n-dimensional problem.

As opposed to the previous literature that searches in the space of open-loop op-

timal control policies, we obtain this reduction in the space of closed-loop policies

by obtaining a Linear Quadratic Gaussian (LQG) design with the best nominal per-

formance. Then, by taking the entire underlying trajectory of the LQG controller

as the decision variable, we pose a coupled design of the trajectory and estimator

(while keeping the design of the controller separate) as a NonLinear Program (NLP)

that can be solved by a general NLP solver. Our algorithm’s validity is based on the

theory proven in the previous chapters. We provide an analysis on the existing major

belief space planning methods and show that our algorithm maintains a low compu-

149

tational burden while searching in the policy space. Finally, we extend our solution

to contain general state and control constraints. Our simulation results support our

design.

8.1 Introduction

The Linear Quadratic Gaussian (LQG) methodology provides the optimal esti-

mator and controller for linear systems with Gaussian noises [159]. However, an LQG

planner requires a nominal trajectory to begin with. Therefore, the problem consists

of three elements including the nominal trajectory, the estimator, and the control law.

One approach separately designs the trajectory from the LQG policy (estimator plus

controller) by providing finite number of different a priori (RRT-based) trajectories

and comparing the LQG performance over each one [59]. Another approach performs

an alternating iterative process of designing the policy and the trajectory with the

other fixed [35, 181], reaching to a high-dimensional belief controllers. An approach

to a coupled design of trajectory and the policy in nonlinear systems utilizing the

Extended Kalman Filter (EKF) is based on the heuristic assumption of Most-Likely

Observations (MLO) during planning [57, 58]. Another class of POMDP solvers [11]

utilize a Monte-Carlo representation of beliefs [61, 62]. The state-of-the-art POMDP

solvers are posed on decision trees, reducing the search space to a finite set of reach-

able belief nodes given an initial belief. However, this approach to solve POMDPs for

continuous action and observation spaces requires continuous (uncountable) branch-

ing in the decision tree of beliefs, which leads to intractable computations.

We overcome this hurdle by utilizing the decoupling principle using which we

near-optimally decouple the design of the nominal trajectory and feedback policy.

As mentioned in Chapter 6, there exists an exactly linear system (l-system) which

provides a linear Gaussian surrogate representation of the original nonlinear non-

150

Gaussian system and is always within some O(ε2−γ) of the original system for 0 <

γ � 1 for small noise. We refer to the conditional distribution of the l-system

as the belief of the system, which is always Gaussian. Then, we utilize the T-

LQG approach and define a special cost function that aims for the best estimation

performance and utilize the properties of the l-system to design a best nominal

trajectory for the original system. In particular, we utilize the estimation covariance

of the l-system provided by the Kalman filter as an approximation to the original

system’s estimation performance and use the fact that for a linear Gaussian system,

the covariance evolution is deterministic once the underlying trajectory of the system

is fixed. The trace of this covariance evolution becomes part of the nominal trajectory

design in the T-LQG approach.

Therefore, we provide a coupled design of trajectory and estimator aiming for the

best estimation performance using the underlying trajectory of the LQG controller

as the optimization variable, while keeping the design of controller separate from the

design of the trajectory and the estimator. This simplifies the belief space planning

to an optimization problem that can be solved by a general NonLinear Programming

(NLP) solver aimed at the design of the nominal trajectory with the best nominal

estimation performance meanwhile incorporating the cost of the control effort. One

can intuitively interpret this as that, we use the decoupling principle for nonlinear

systems and the control theory separation principle for linear systems in addition to

the structure of the LQG method to pose an optimization problem on sequence of

control actions parameterizing LQG polices to reach a quantifiably near-optimal pol-

icy, rather than optimizing over the general policy space using the DP equation. This

method reduces the dimension of the underlying state in the belief space planning

optimization problem from n+n2 (Gaussian belief dimension) to n (state dimension),

reducing the computational burden significantly. The computational complexity of

151

our method is O(Kn3), whereK is the planning horizon and n is the state dimension,

which is lower than any other Gaussian belief space planning method in the space of

feedback policies. It is worth mentioning that performing a feedback design in the

(n+n2)-dimensional belief space, results in the computational burden of O(Kn6) as

in [35].

As mentioned before, over a given nominal trajectory, the nominal performance of

the estimator (using the l-system) is deterministically given by the dynamic Riccati

equations independent from the actual observations and the controller form. There-

fore, the trajectory planning problem is reformulated and reduced to a deterministic

problem over the state space by choosing the underlying nominal trajectory as the

optimization variable, aiming for the best estimation performance over that trajec-

(a) RHC-based results after K = 16
steps

(b) T-LQG results after one plan and
execution

Figure 8.1: Comparison of T-LQG and an MLO plus RHC-based method [58]. In
each figure, the dashed line shows the ground truth trajectory, and the solid line
shows the state estimate trajectory. A purple circle denotes the target, and the
white region shows the landmark for a range and bearing observation model. a)
In the RHC-based method, re-planning is triggered at every step. However, these
methods for stochastic systems fail to reach the goal after K steps, and require
heuristic adjustments to work; b) however, in T-LQG, for this example, planning only
happens once, and the resulting feedback policy is executed for the entire horizon,
reaching the goal state after K steps.

152

tory. The key observation on the belief space planning problem from the decoupling

principle is the following: fixing the feedback policy as a linear policy and designing

an LQG policy for a linearized system around a given nominal trajectory provides

a solution of a near-optimal estimation and control performance along that specific

trajectory.

For a fixed linearization around a trajectory, LQG gives the best estimator and

controller to track that nominal trajectory. Our method uses the nominal trajec-

tory itself as an optimization variable in order to obtain the best trajectory, and,

subsequently, a near-optimal estimator and controller to follow that trajectory. This

method provides a theoretically coherent planning approach while providing a low

computational burden. Other methods such as the MLO method of [57, 58] while

also solving trajectory optimization problems on covariance performance, provide no

guarantees for their design and most importantly provide control policies that are

either high-dimensional (such as Belief-LQR) or computationally expensive (such as

Receding Horizon Control (RHC)). Although [57] also provides simple LQG policy

as one of the controllers, the paper also suggests utilizing Belief-LQR similar to [35].

The decoupling principle proves that the decoupled design of policy and the

trajectory is only possible when there is an assumed existence of the control law

in the loop from the beginning to keep the state around the nominal trajectory.

Otherwise, the state deviation from the nominal trajectory keeps growing and the

validity region of the nominal (linearization) trajectory (of control and subsequent

state and observations) collapse, reducing the approach to a heuristic design that

requires replanning at every time step as in [58, 182] (see Fig. 8.1) or requiring

high-dimensional belief planners as in [57]. In contrast, in our approach, the low-

dimensional controller keeps the state around the nominal trajectory, and therefore,

the nominal estimation performance remains valid, thereby obviating the need for

153

constant replanning. Also, using a high-dimensional controller such as a belief-LQR

over an (n + n2)-dimensional space as in [57] or [35] and [181] entails disregarding

the separation principle by coupling the controller design with the design of the

estimator. Using the decoupling and separation principles also enables us to pose

the problem as a standard NLP in n-dimensional space, rather than using a dynamic

programming mechanism in a local linearization region (which involves calculations in

an (n+n2)-dimensional space to solve the coupled equations of the belief estimation

and the controller design, as in [35, 181]). Moreover, since the DP is only solved

locally it lacks the optimality properties of the global DP which is performed using

the original nonlinear equations of the system over the entire domain of the problem,

reducing the mentioned approaches to second-order optimization problems in a local

region of the problem.

Finally, when the accumulated linearization error (or other errors) increases above

a tolerable threshold during the execution, replanning can be triggered. This is also

a merit of posing the planning problem as a standard NLP with low dimension:

replanning for a long horizon becomes possible in online applications. Moreover, it

enables the use of of-the-shelf state-of-the-art optimization software and tools.

Unlike point-based POMDP solvers [96, 95, 26], in T-LQG the time-horizon is

a linear factor in the computational complexity, rather than a factor in the expo-

nent, viz. the curse of history. This means that T-LQG is capable of solving belief

space problems on a considerably larger scale. Indeed, current point-based solvers

cannot scale to the continuous state, action and observation space problems that are

considered here.

154

8.2 General Problem

The general belief space planning problem is formulated as a stochastic control

problem in the space of feedback policies. In this section, we define the basic ele-

ments of the problem, including system equations and belief dynamics. The problem

definition is the same as in Chapter 6, and we avoid repeating it.

Belief: The conditional distribution of xt given the data history up to time t, is

called the information state. While for a nonlinear system with additive Gaussian

perturbations, the informations state is non-Gaussian, we have shown in the previous

chapters that under small noise assumption, a carefully constructed linear Gaussian

system can be used a surrogate system for control and estimation of the original

non-Gaussian system, in a near-optimal fashion. For this linear Gaussian system,

the conditional distribution is also Gaussian. We refer to this Gaussian distribution

as the belief, and will denote it by bt := ((x̂t)T , vec(Pt)T), a vector comprised of the

mean and covariance of the conditional distribution of the linear Gaussian surrogate

system, l-system. The update equation for the belief follows a Kalman filter. Then,

we will define the entire problem in terms of the belief, and refer to it as the belief

space planning.

Assumptions: We assume that the underlying system is a mechanical system.

Hence, the actuators have saturation constraints and this causes the control effort at

each time step to be bounded. We also assume that the covariance of the estimation

is finite, therefore, the expected state deviation also becomes bounded. Last, we

assume that problem is also finite horizon.

8.3 Belief Space Planning Method: T-LQG

We provide details of our design for the planning problem.

Definition of the cost: We consider a quadratic cost in terms of the deviation of

155

the state rather than the state as well as the control effort:

E[J] :=E[
K−1∑
t=0

ct(xt,ut) + cK(xK)], (8.1)

where

ct(xt,ut) :=x̃Tt Wx
t x̃t + uTt Wu

t ut, (8.2a)

cK(xK) :=x̃TKWx
Kx̃K , (8.2b)

where Wx
t ,Wu

t�0 are two positive-definite weight matrices, and Wx
t is symmetric,

thereby, it has a square root. Moreover, we choose the weight matrices such that

|Wu
t | � |Wx

t |, i.e., the magnitude of the weight matrices for the control effort is cho-

sen smaller than that of the weight matrix for the state deviation. The reason behind

this is that the second term in (8.2a) is the control effort itself and its magnitude

is in the same order of the state cost. That is, because the controller that we use

is LQG, then ũt = −Ltx̃t and therefore, O(|ũt|) = O(|x̃t|) which was also shown in

Chapter 6. On the other hand, O(|ut|) = O(|xt|) and O(|x̃t|) � O(|xt|) = O(|ut|).

Therefore, choosing the magnitude of the weight matrices in the same order would

cause the first term to be completely dominated by the second term. As a result

of our choice of the weight matrices, O(|uTt−1Wu
t ut−1|) = O(|x̃Tt Wx

t x̃t|). Therefore,

O(|ũTt−1Wu
t ũt−1|)� O(|x̃Tt Wx

t x̃t|). Note that one might even want to choose weights

such that |uTt−1Wu
t ut−1| < |x̃Tt Wx

t x̃t| to emphasize the cost of deviation rather than

effort. That can be the design choice of the engineer as long as |Wu
t | � |Wx

t | for

the above cost function to be meaningful. One might also ask the reason behind the

choosing the cost of deviation of the state rather than the state. This is mainly due

to the fact that the deviation of the state is related to the estimation covariance and

156

we address this next.

First, note that the first term of the cost function is quadratic in x̃t. Therefore,

the second-order expansion of this term around the nominal trajectory is itself. This

means that the nominal and the first order terms of this function are zero. Hence,

the expansion of the cost function to the second order is as follows:

J =Jp + J̃1 + J̃2, (8.3)

where we have:

• Jp:=∑K−1
t=0 (upt)TWu

t u
p
t denotes the nominal cost;

• J̃1:=
∑K−1
t=0 2Wu

t ũt is the first order cost error;

• J̃2 := ∑K−1
t=0 (x̃Tt Wx

t x̃t + ũTt Wu
t ũt) + x̃TKWx

Kx̃K is the second order cost error,

where we have used the fact that ct ∈ C2;

• J2 := Jp + J̃1 + J̃2 is the second order approximation of the cost function.

Note that since the cost function is quadratic, there is no o(·) terms in (8.3) and the

expansion is exact. Therefore, the cost function can be written as

J =
K−1∑
t=0

(upt)TWu
t u

p
t +

K−1∑
t=0

2Wu
t ũt +

K−1∑
t=0

(x̃Tt Wx
t x̃t + ũTt Wu

t ũt) + x̃TKWx
Kx̃K . (8.4)

We next show that after taking expectation in the above formula, the only terms

that are dominating are the following terms:

K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[x̃Tt Wx
t x̃t].

First, note that in Chapter 6, we proved that for the T-LQG policy using (6.76), the

157

cost function can be written as follows (with probability P (Ω(ε2−γ))):

J =Jp +(
K∑
t=0

CL
t Ux0

t−1)x̃0+
K∑
t=0

(
K−1∑
s=t

CL
s Vv

t,s−1 −Cu
sLt,sMt)vt+

K∑
t=0

(
K−1∑
s=t

CL
s Ww

t,s−1)wt

+
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj +

K∑
t=0

x̃Tt CLL
t x̃t +O(ε2−γ), (8.5)

where Cu
t = Wu

t , CL
t = −

K−1∑
s=t

2Wu
sLt,sHt, 0 ≤ t ≤ K − 1, CL

K = 0, CLL
t = Wx

t +

LT
t Wu

t Lt, 0 ≤ t ≤ K − 1, and CLL
K = Wx

K . Now, based on the assumptions, the

cost function is bounded. Therefore, after taking the expectation and using the

calculations of the proof of Theorem 10, we have:

E[J] =Jp + 0+

E[
K∑
t=0

t−1∑
s=0

nx∑
k=1

t−s−1∑
i=0

t−s−1∑
j=0

(x̃Ti H(h,f,h)kij
t−s−1 x̃j+x̃Ti H(h,f,v)kij

t−s−1 vj+vTi H(v,f,v)kij
t−s−1 vj)CL

t Qsenxk

−
K∑
t=0

t−1∑
s=0

t−s−1∑
r=0

nz∑
j=1

(x̃Tr Hhj

r x̃r)CL
t QsBt−s−1Lr,t−s−1enzj

−
K−1∑
t=0

t∑
s=0

nz∑
j=1

(x̃Ts Hhj

s x̃s)Cu
t Ls,tenzj

+
K−1∑
t=0

x̃Tt LT
t Wu

t Ltx̃t +
K∑
t=0

x̃Tt Wx
t x̃t] +O(ε2−γ), (8.6)

Now, note that except for Jp, the rest of the terms are all quadratic in terms of x̃.

Moreover, except for the last term, all the other terms are weighted in Wu
t . Now,

158

using the assumption that |Wu
t | � |Wx

t |, we approximate the above expression as:

E[J] =Jp +
K∑
t=0

E[x̃Tt Wx
t x̃t] +O(ε2−γ), (8.7a)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[x̃Tt Wx
t x̃t] +O(ε2−γ), (8.7b)

where we still have kept the equality since the terms that we have ignored are in the

order of O(ε2−γ). They only change the pre-constant; however, due to the fact that

|Wu
t | � |Wx

t |, the only dominant term in the pre-constant of the error is the one

associated with Wx
t .

Approximating the cost function: Next, we use the fact that with probability

P (Ω(ε2−γ)), we have (based on (6.48b)):

xt+1 = xlt+1 +O(ε2−γ).

Therefore with the same probability, we have

x̃t+1 = x̃lt+1 +O(ε2−γ).

Replacing the above expression in (8.7b), and once again using the fact that with

probability 1− P (Ω(ε2−γ)), the cost is bounded, we have

E[J] =
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[(x̃lt)TWx
t x̃lt] +O(ε2−γ) (8.8a)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[(x̃lt)TWT
t Wtx̃lt] +O(ε2−γ) (8.8b)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[(Wtx̃lt)TWtx̃lt] +O(ε2−γ) (8.8c)

159

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[tr[(Wtx̃lt)(Wtx̃lt)T]] +O(ε2−γ) (8.8d)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

E[tr[Wtx̃lt(x̃lt)TWT
t]] +O(ε2−γ) (8.8e)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

tr[WtE[x̃lt(x̃lt)T]WT
t] +O(ε2−γ) (8.8f)

=
K−1∑
t=0

(upt)TWu
t u

p
t +

K∑
t=0

tr[WtPl
tWT

t] +O(ε2−γ), (8.8g)

where Pl
t was defined in (6.28) as is repeated below:

ˆ̃xlt+1 =At
ˆ̃xlt+Btũlt+Kt+1(z̃lt+1−Ht+1(At

ˆ̃xlt+Btũlt)), (8.9a)

P̄t+1 =AtPl
tAT

t + GtΣwGT
t , (8.9b)

Σv
t+1 =Ht+1P̄t+1(Ht+1)T+Mt+1Σv(Mt+1)T , (8.9c)

Kt+1 =P̄t+1HT
t+1(Σv

t+1)−1, (8.9d)

Pl
t+1 =(I−Kt+1Ht+1)P̄t+1. (8.9e)

where Pl
0 :=ε2Σx0 and ˆ̃xl0 := 0. Also Wx

t = WT
t Wt is the (non-unique) Cholesky

decomposition of Wx
t , where the diagonal entries of the real upper triangular matrix

Wt can be zero [183]. This factorization exists because of the assumption that Wx
t

is symmetric and positive semidefinite. Note, the Cholesky decomposition is unique,

if and only if the Wx
t is symmetric and positive definite. In such a case, the diagonal

entries of Wt are only positive.

Note that the evolution of Pl
t is deterministically dependent on the underlying

nominal trajectory and is independent of the observations. Therefore, unlike the

MLO method, there is no assumption on the observations in here.

Problem 14 Belief Space Planning Problem Using T-LQG Given an initial

belief b0 ∈ B, a goal region represented as an `2-norm ball, Brg(xg), of radius rg

160

around a goal state xg ∈ X, and a planning horizon of K > 0, we define the following

problem:

min
up0:K−1

K∑
t=1

[tr[WtPl
tWT

t] + (upt−1)TWu
t u

p
t−1]

s.t. P̄t =At−1Pl
t−1AT

t−1+Gt−1ΣwGT
t−1 (8.10a)

Σv
t = HtP̄tHT

t + MtΣvMT
t (8.10b)

Pl
t = (I− P̄tHT

t (Σv
t)−1Ht)P̄t (8.10c)

Pl
0 = Σx0 (8.10d)

xp0 = x̄0 (8.10e)

xpt+1 = f(xpt ,upt) 0≤ t≤K−1 (8.10f)

||xpK − xg||2 < rg (8.10g)

||upt ||2 ≤ ru, 1≤ t≤K. (8.10h)

Equations (10.20a)-(10.20c) are regarded as one constraint at each time step, and

are used to calculate the first term of the objective at that time step, equations

(10.20d) and (9.5b) represent the initial conditions, equation (10.20e) defines the

state propagation (and relates the optimization variables to the state trajectory), equa-

tion (10.20f) constrains the terminal state to Brg(xg), equation (10.20g) accounts for

the saturation constraints for ru > 0. Moreover, the first term of the objective tends

to minimize the estimation uncertainty, whereas the second term penalizes the control

effort. This problem is an optimization in the space of control actions with all other

variable, such as the covariances, a function of those controls. Note that (10.20f)

is not necessary as a constraint and can be incorporated in the terminal cost, e.g.,

using Wx
K.

161

Feedback control: We denote the resulting optimized trajectory of problem (14)

with {xot}Kt=0, {uot}K−1
t=0 . The rest of the algorithm is the same as Chapter 6 and the

LQG policy is defined to track the optimized trajectory as prescribed by the T-LQG

algorithm. Therefore, ut = −Lt(x̂t−xot)+uot , where the feedback gain Lt is obtained

using the backward Riccati recursions. The evolution of x̂t is obtained from the KF

equations using the actual observations during the execution. The details of these

equations are in Chapter 6.

8.3.1 Discussion

Differences between this algorithm and Chapter 6’s algorithm: Note that the

algorithm presented in here is in fact a result of the algorithm presented in Chapter

6, and has the same theoretical guarantees as the T-LQG presented in there. The

only difference is that, the T-LQG presented in Chapter 6 has a slightly simpler

nominal trajectory design problem which only considers Jp. However, for the cost

function that is defined in this chapter, if we only consider Jp, there will be no cost

associated with the state along the trajectory. That cost would also be blind to

the estimation performance and would not include any properties of the observation

model or that of the noise. However, the design of this chapter in fact is slightly

more accurate for the particularly defined cost function in that, it achieves a better

pre-constant by optimizing the major component of the second order terms of the

cost as well. Nevertheless, it still has the same order of optimality. However, for the

problem considered in this chapter, optimizing the pre-constant also is meaningful

due to the fact that the cost function does not include the cost of state itself, rather

it includes the cost of deviation or the estimation performance.

Remark: Note that in an RHC implementation as in [58], ut would only consist

of uot , and, to get the corrections from the output, the planning problem is solved

162

again at each time step from the current belief, Thereby multiplying the whole effort

of the algorithm (optimization problem plus convergence to an optimized trajectory)

by a factor of K.

Replanning during execution: In a stochastic system, even with a closed-loop

control strategy, after a finite number of execution steps, the state estimate may

deviate from the planned trajectory. This happens due to the accumulation of errors

resulting from the unmodeled dynamics or forces, noise, and nonlinearities. This

we have proven that happens with at most probability of 1− P (Ω(ε2−γ)), the exact

details of which are provided in Chapter 6. In such a situation, the planned policy

becomes irrelevant and a new policy is needed to drive the agent toward the prede-

fined goals. One can detect the deviation by several methods. For instance, testing

the whiteness of the innovation in KF, checking the magnitude of innovation during

the execution, and checking the magnitude of the deviation of the state estimate from

the planned state are some of the methods to detect the deviation. Also calculating

the offline probabilities of 1 − P (Ω(ε2−γ)) for each time step (e.g., by changing the

value of horizon K and evaluating the probabilities) can also help to predict when

such a deviation is highly likely. Another method is to utilize Kullback-Leibler (KL)

divergence concept, which we explain next.

Kullback-Leibler (KL) divergence: The KL divergence itself is not a symmetric

distance function, however, a symmetric distance can be easily derived from that.

If DKL(Q1 ‖ Q2) denotes the KL divergence of Q1 and Q2, where the latter are

two probability distributions, then d(Q1, Q2) := (DKL(Q1 ‖ Q2) +DKL(Q2 ‖ Q1))/2

denotes a distance between Q1 and Q2, where

DKL(Q1 ‖ Q2) =
∫ ∞
−∞

q1(x) log(q1(x)
q2(x))dx,

163

with q1(x) and q2(x) denoting the densities of Q1 and Q2. Note that our approximate

planned belief is N (xpt ,Pl
t), whereas during the execution the conditional distribu-

tion is non-Gaussian. One can use a more accurate estimator during the execution

and obtain the DKL between the two mentioned distributions in order to detect de-

viation. A simpler method is just to utilize a Kalman filter and approximate the

conditional distribution with KF. In that situation, the DKL also reduces to the

distance between the estimate and the planned trajectories. This is because, let

pb
t := N (x̂t,Pl

t), and pbp
t := N (xpt ,Pl

t) be the Gaussian approximation of the dis-

tribution during the execution and the nominal Gaussian belief, respectively. Then,

using the KL divergence formula for multivariate Gaussian distributions [184], the

distance between pb
t and pbp

t is:

d(pb
t , p

bp
t) =1

4[log |P
l
t|

|Pl
t|
− nx + tr((Pl

t)−1Pl
t) + (xot − x̂t)T (Pl

t)−1(xot − x̂t)]

+ 1
4[log |P

l
t|

|Pl
t|
− nx + tr((Pl

t)−1Pl
t) + (x̂t − xot)T (Pl

t)−1(x̂t − xot)]

=1
2[nx(nx−1)+(x̂t−xot)T (Pl

t)−1(x̂t−xot)], (8.11)

where |P| denotes the determinant of the matrix P. therefore, the only relevant

information is x̂t−xot . Once ||x̂t−xot || > dth a deviation is detected, the planning module

is initialized with the current belief, and all planning procedures are performed again.

Later in the next chapter we will discuss about the frequency of such replanning

triggers. For now, it is seen that the replanning in fact occurs much less frequent

than that of an RHC policy. In fact for small noise, no replanning is required.

8.4 Non-Convex State Constraints

Barrier functions are used for non-convex state constraints.

Polygonal obstacles approximated by ellipsoids: Given a set of vertices that consti-

164

tute a polygonal obstacle, we find the Minimum Volume Enclosing Ellipsoid (MVEE)

and obtain its parameters [185]. Particularly, for an obstacle i, its barrier function in-

cludes a Gaussian-like function, where the argument of the exponential is the MVEE,

which can be disambiguated with its center ci and a positive definite matrix Ei that

determines the rotation and axes of the ellipsoid. We further add several inverse

functions that tend to infinity along the major and minor axes of the ellipsoid. So,

the overall function acts as a barrier to prevent the trajectory from entering the

region enclosed by the ellipsoid. Note that for non-polygonal obstacles, one can find

the MVEE, and the algorithm works independently of this fact. Thus, given the el-

lipsoid parameters C := (c1, c2, · · · , cnb) ∈ Rnx×nb and E := (E1, · · · ,Enb) ∈ Rn2
x×nb ,

the Obstacle Barrier Function (OBF) can constructed as:

Φ(E,C)(x):=
nb∑
i=1

[
M1 exp(−[(x− ci)TEi(x− ci)]q)

+M2
∑

θ=0:εm:1
(||x−(θζ i,1+(1−θ)ζ i,2)||−2

2 +||x−(θξi,1+(1−θ)ξi,2)||−2
2)
]
,

where εm = 1/m,m ∈ Z+, M1,M2 ≥ 0, q ∈ Z+, and ζ i,1, ζ i,2 and ξi,1, ξi,2 are

the endpoints of the major and minor axes of the ellipsoid, respectively. Therefore,

the second term in the sum places inverse functions whose values tend to infinity

along the axes of the ellipsoid at points formed by a convex combination of the two

endpoints of each axis. As εm tends to zero, the entire axes of the ellipsoid become

infinite, and, therefore, act as a barrier to any continuous trajectory of states. We

define the cost of avoiding obstacles as:

costobst(xt1,xt2) :=
∫ xt2

xt1
Φ(E,C)(x′)dx′, (8.12)

which is the line integral of the OBF between two given points of the trajectory xt1

165

and xt2. Therefore, the addition of this cost to the optimization objective ensures the

solver minimizes this cost and keeps the trajectory out of banned regions. However,

for implementation purposes, the integral in equation (8.12) is approximated by a

finite Riemann sum consisting of fewer points between xt1 and xt2. Hence, defining

εm′ = 1/m′,m′ ∈ Z+ the modified obstacle cost is as follows:

costobst(xt1,xt2) :=
∑

θ=0:εm′ :1
Φ(P,C)(θxt1 + (1− θ)xt2)

Using this equation, we add the running obstacle cost of costobst(xt−1,xt) to the

optimization objective, and use the modified optimization problem to obtain locally

optimal solutions in the inter-obstacle feasible space using gradient descent methods

[186].

8.4.1 Homotopy Classes

Homotopy classes: Homotopy classes of trajectories are defined as sets of tra-

jectories that can be transformed into each other by a continuous function without

colliding with obstacles [187, 188]. As shown in Fig. 8.2 the two solid trajectories

are in one homotopy class, while the dashed trajectory is in a different class.

Non-continuous policy: When the domain of the problem is non-convex, e.g., it

has banned areas as shown in Fig. 8.2, the optimal policy might not be continuous.

Consider a situation where the execution trajectory arrives near a symmetrical obsta-

cle along its line of symmetry. At that point, the random noise can push the sample

path to either side of the line of symmetry. Thereafter, the optimal policy can be de-

termined based on the last (estimated) location of the robot. That is, the policy loses

its continuity because of change in the homotopy class. In that situation, in order

to obtain the optimal policy, the optimal trajectories in multiple homotopy classes

166

Figure 8.2: Homotopy classes. The solid trajectories are in a different homotopy
class from the dashed trajectory.

need to be planned and then during the execution, the feedback policy based on the

homotopy class of the robot’s path can be determined. Within a single homotopy

class, the policy is still continuous. Note our T-LQG analysis requires the continuity

of the policy in order to provide the near-optimality guarantees. Therefore, within

one homotopy class, the T-LQG will still provide the near-optimal solution. In order

to provide the ner-optimal solution in the entire domain of the problem, one can

obtain optimized nominal trajectories in the relevant (or if needed all non-looped)

homotopy classes and then compare the solutions and choose the policy to track the

trajectory. The hybrid solution of the planning in homotopy classes with the T-LQG

approach will provide a near-optimal policy for the entire domain of the problem. In

the next chapters we discuss more the homotopy classes and how to find them.

8.5 Comparison of Methods

In this section, we provide a comparison between T-LQG and other state-of-

the-art belief space planning approaches from a methodological and computational

complexity perspective. We make occasional references to the following methods: a)

167

LQG-MP [59], b) iLQG-based method [35], c) SELQR [181] d) the method utilizing

MLO [57], e) the non-Gaussian Receding Horizon Control (RHC)-based method [61],

f) the non-Gaussian observation covariance reduction method [62], g) the covariance-

free open-loop optimization problem coupled with RHC implementation [58], and h)

the point-based POMDP solvers [11, 96, 95, 26]. Table 11.1 summarizes the key

differences between the methods. Regarding the Table, we note that:

• We assume the size of vectors x,u and z are all O(n), and K is planning

horizon.

• nr is the number of RRT paths generated in [59].

• For the method of [57], ntr is the number of transcription steps in the direct

transcription; k is the number of unit vectors pointing in the desired directions

to minimize the covariance in; for the complexity row of this method, the

second provided computational complexity is valid if the B-LQR is also used,

otherwise, the first provided complexity is more accurate.

• N is the number of samples, ε is the convergence error

• Convergence Rate is the number of calls needed to the oracle to converge using

the optimization method.

• DP is Dynamic Programming

• Second order is the general rate of Newton-like methods.

• Method of [58] defines an optimization problem with dimension of O(nx +

nu) whereas T-LQG’s problem dimension is O(nu). Moreover, [58] utilizes an

approach similar to [57] with MLO assumption and EKF design; however, [58]

utilizes RHC as the final implementation.

• The computational complexity only reflects the calculations of the core prob-

lems for belief space planning in each method. For obstacle-avoidance, each

168

Ta
bl
e
8.
1:

C
om

pa
ris

on
of

be
lie
fs

pa
ce

pl
an

ni
ng

m
et
ho

ds
on

im
po

rt
an

t
iss

ue
s.

Pl
an

ni
ng

as
an

O
pt
im

iz
at
io
n

Li
ne
ar
iz
at
io
n
Tr

aj
ec
to
ry

(E
xp

lo
ita

bl
e
fo
r

O
pt
im

iz
at
io
n)

Pl
an

ni
ng

O
bs
er
va
tio

ns
C
om

pu
ta
tio

na
l

C
om

pl
ex
ity

C
on

ve
rg
en
ce

R
at
e

LQ
G
-M

P
[5
9]

N
on

e
R
RT

tr
aj
ec
to
rie

s
(N

o)
—

O
(n

r
K
n

3)
—

iL
Q
G
-b
as
ed

[3
5]

D
P

Fi
xe
d
at

ea
ch

ite
ra
tio

n
(N

o)
St
oc
ha

st
ic

ob
se
rv
at
io
ns

O
(K

n
6)

Se
co
nd

or
de
r

(li
ne
-s
ea
rc
h

tu
ni
ng

)

SE
LQ

R
[1
81
]

D
P

Fi
xe
d
at

ea
ch

ite
ra
tio

n
(N

o)
M
LO

O
(K

n
6)

Se
co
nd

or
de
r

M
LO

[5
7]

N
LP

Pr
ed
ic
te
d
m
ea
n
up

da
te

(Y
es
)

M
LO

O
(n

tr
(K

n
3 +
k
n

2)
)

or
O

(n
tr

(K
n

3 +
k
n

2)
+
K
n

6)
SQ

P
ra
te

N
on

-G
au

ss
ia
n

R
H
C
-B

as
ed

[6
1]

C
on

ve
x

Li
ne
ar

pr
op

ag
at
io
n
of

in
iti
al

es
tim

at
e
(Y

es
)

M
LO

O
(N
K

(K
n

3 +
N
n

2)
)

Ω
((
N

+
K
n

)l
og

(1 ε
))

N
on

-G
au

ss
ia
n

O
bs
.
C
ov

.
R
ed
uc
tio

n
[6
2]

C
on

ve
x

Li
ne
ar

pr
op

ag
at
io
n
of

in
iti
al

es
tim

at
e
(Y

es
)

Pr
ed
ic
te
d
en
se
m
bl
e

of
ob

se
rv
at
io
n

pa
rt
ic
le
s

O
(K

n
3 +
N
n

2)
Ω

(K
n

lo
g(

1 ε
))

C
ov

.-F
re
e

R
H
C
[5
8]

N
LP

Pr
ed
ic
te
d
m
ea
n
up

da
te

(Y
es
)

M
LO

O
(K

n
3)

Se
co
nd

or
de
r

T
-L
Q
G

N
LP

N
on

lin
ea
r
pr
op

ag
at
io
n

of
in
iti
al

es
tim

at
e
(Y

es
)

—
O

(K
n

3)
Se
co
nd

or
de
r

169

method has a different approach, which is out of the scope of this discussion and

can be further detailed in a pure motion-planning perspective. The information

in table 11.1 and the calculations regarding the computational complexity are

estimated to the best of our knowledge.

As reflected in the table, a central difference between these methods is the way

the system and observation equations are linearized. After linearization of the equa-

tions, the corresponding Jacobians become coupled with the trajectory. Therefore, if

the underlying linearization trajectory is a sequence of fixed points, the Jacobians be-

come constant matrices for the entire optimization, and the structure of the system

models (on which depends many other properties of the system, such as sensitiv-

ity of the observations, controllability, reachability, etc.) essentially become fixed,

untouchable, and, more importantly, un-exploitable for the optimization purposes.

Table 11.1 summarizes the capability of methods on using this feature. As noted,

our method fully exploits this property and finds the best linearization trajectory

among the methods. Moreover, no assumptions on observations in our method are

made. Importantly, the computational complexity of T-LQG is the lowest among all

of the above, while still providing a near-optimal feedback policy, a claim that none

of the other methods can make.

Note: the computational complexity only reflects the calculations of the core

problems for belief space planning in each method. For obstacle-avoidance, each

method has a different approach, which is out of this discussion and can be further

detailed in a pure motion-planning scope. The information in table 11.1 and the

calculations regarding the computational complexity are estimated to the best of

our knowledge.

170

Next, we provide a brief summary of the methods and afterwards, we elaborate

more on the key methodological aspects and differences.

8.5.1 An Overall Summary of the Methods

a) LQG-MP [189] In this method, several paths generated by RRT planner are

taken as initial nominal trajectories, and the system equations are linearized around

those trajectories. An LQG tracker is designed along each trajectory and the control

sequences are compared based on an obstacle-avoidance performance measure. The

trajectory with the best performance is selected as the nominal trajectory to track

and the LQG tracker corresponding to that trajectory is chosen as the policy to

implement.

b) iLQG-based method [35] In this method, the iteration begins with an

initial guess trajectory that is obtained using a method such as RRT, around which

the system equations, belief dynamics and value function are linearized. Then, the

value function is evaluated by backward run along the nominal trajectory. Next,

the noiseless belief dynamics is used to forward propagate the belief using the policy

that was found in the backward propagation. This gives a new nominal trajectory

for the next iteration of the algorithm. The iterations are coupled with an adaptive

line search method and continue until convergence to a locally optimal policy.

c) SELQR [181] In these methods, the iteration idea of the iLQG-based methods

is extended by a better choice of the underlying linearization trajectory. Starting

with an initial guess, the forward and backward iterations are both done over that

trajectory, then sum of the costs of forward and backward iterations at every time

step is obtained. This defines a minimization problem whose result provides the

nominal trajectory for linearization in the next iteration.

d) MLO [57] This method is also based on the LQG methodology. The mean

171

update equation in the (extended) Kalman filtering equation requires an observation

(or an assumption over the observations) to calculate the innovation term, whereas

the covariance update equation only depends on an underlying trajectory (this tra-

jectory can either come from the true mean update during the estimation, or can be

a fixed nominal trajectory). Moreover, the mean update equations are tied to the

covariance update, as well. In this method, in order to perform the mean update,

the future observations are assumed to be the most-likely observations (which corre-

spond to the noiseless observations predicted by the observation model). The system

equations are linearized around such mean updates at each step. An optimization

problem with a quadratic cost is defined to obtain the desired trajectory, and an

LQR controller is used to reject the disturbances.

e) Non-Gaussian RHC-Based [61] In this method, the most-likely observation

method is adapted for a linear system and observation models with Gaussian noises,

where the observation noise covariance is state-dependent. The representation of

the belief is replaced with that of a particle filter, and the noise models are utilized

to obtain the dynamics of the particle weights. An optimization problem is defined

and convexified to obtain the optimal nominal trajectory. The policy is implemented

with an RHC strategy closing the feedback loop in the execution.

f) Non-Gaussian Observation Covariance Reduction [62] In this method,

system equations are linearized around an initial nominal trajectory, however, the ob-

servation model is linearized around the noiseless propagation of the initial estimate.

The main contribution of this work is to exploit the observation uncertainty and de-

fine an optimization problem which is easy to solve, avoids performing the filtering

equations and yields similar trajectories as the other belief space planning methods.

Moreover, the belief has a particle filter representation where no assumptions on the

noise distributions are assumed.

172

g) FIRM [15] Feedback Information RoadMap is an offline POMDP planner

that solves an MDP over a graph with finite number of nodes in the belief space.

Therefore, the solution over the graph is provided based on the dynamic program-

ming. As mentioned before, in the point-based POMDP solvers where the probability

of reaching to a belief node is zero and whence the solution is only valid for the ini-

tial belief. Unlike the point-based solvers, the key point in FIRM is stabilizing the

belief over a belief node in the graph with high probability utilizing an stabilizer

controller. This, also breaks the curse of history. Currently the abstracted algorithm

of FIRM has been implemented utilizing the LQG methodology and is called the

SLQG-FIRM.

h) Point-Based POMDP Solvers [11, 96, 95, 26] The POMDP problem was

introduced in 1971 in [11], with an algorithm to obtain the exact optimal solution

using the alpha-vectors. The algorithm then evolved into an anytime algorithm in

2003 in [96], which introduced the point-based POMDP solvers. This method has

been the foundation for the majority of research in the POMDP field [95]. There have

been many successes in solving POMDP benchmark problems with low CPU-times.

Even the latest advances in the field, such as [26], suffer from multiple limitations.

For instance, the scalability with time-horizon, in particular exponential dependency,

seems to be a fundamental limitation that might be difficult to overcome. Ad-hoc

solutions to reduce the planning time horizon to local planning (which are much

lower than enough for reaching the goal region) and replanning every few steps, may

not be a feasible solution for practical problems.

An issue of POMDP solvers is that the search over the belief space is reduced to a

discrete set of belief nodes (either through a discretization of the underlying spaces or

through random sampling of continuous spaces and building a decision tree over belief

samples). In these methods, the probability of re-visiting any particular discrete

173

belief node in the tree (other than the root) is equal to zero. Thus, the solution is

only optimal for the initial belief. A way of overcoming this limitation is to perform a

continuous branching or an exact Monte-Carlo, where for every infinitesimal change

in a higher level of the tree, there is an exponentially increased number of belief nodes

in the next level, which brings back the original highly computational theoretical

solution of POMDPs. It is only in such a case where the solution is comparable

to a solution obtain by the decoupling principle, where the search occurs over a

continuous set of beliefs; thus, the replanning does not need to happen every single

step. For this reason, our solution is valid for a much longer horizon and for a belief

space region far more considerable than results from point-based POMDP solvers.

Moreover, in T-LQG, by tracking the nominal and true belief, during online

implementation, whenever the deviation is more than a tolerable threshold, replan-

ning is done, which may be impractical in long-horizon point-based POMDP solvers.

FIRM [15] on the other hand, provides an offline approach to tackle the original

POMDP problem by solving the dynamic programming over a graph in the belief

space and breaking the curse of history; but, to get closer to optimality, more FIRM

nodes need to be sampled offline.

8.5.2 Comparison on Important Issues

In this section we discuss more on the key differences between methods (a-f).

Since, POMDPs were already discussed before, we avoid further discussions in here.

Moreover, since FIRM is an offline planner, we do not compare with FIRM either.

We explain how the linearization trajectory is different in these methods and how

that leads to major differences in the algorithms. Moreover, we explain that a critical

difference is the assumptions on the observation process during the planning stage.

Note that, likewise methods (a-d), our current paper deals with Gaussian beliefs.

174

Optimization problem: In (a), the least-cost trajectory is chosen among a finitely

generated initial trajectories, hence the underlying trajectory is not optimized or

morphed. In (b), the underlying trajectory is morphed through an iteration men-

tioned as above coupled with tuning of a line-search method. Thus, the algorithm

does not involve an explicit optimization problem that can be solved via an NLP

solver. Rather, the whole method involves the inner mechanisms of an optimiza-

tion problem. The method is essentially a dynamic-programming-based algorithm.

Therefore, the merits of an explicit NLP problem cannot be exploited. In (c), the

approach is similar to (b), with a difference that there is also an intermediary opti-

mization problem in each back and fourth iteration to find a better nominal trajectory

for the next iteration. However, the whole algorithm is essentially similar in content

to the method of (b) and the problem lacks a standard optimization problem. In (d)

the trajectory optimization problem is posed as an optimization problem that can be

solved using SQP. In (e) and (f), the problem is convexified and can be solved using

any convex optimizer. Our method also presents the planning problem as an NLP

program that can be solved by a generic NLP solver. Presenting the problem as an

standard optimization problem has the advantage that it can be solved using various

tools and softwares in the optimization and control theory, increasing the efficiency

of implementation and availing the usage of advanced techniques developed in those

fields to obtain smoother solutions. Moreover, it does not require delving into the

details of optimization problem solving.

Linearization of the system equations: As pointed above, this is a central differ-

ence between the methods. Essentially, an LQG planner with a form of Kalman fil-

tering for estimation requires a nominal trajectory to linearize the system equations.

As mentioned before, after linearization of the equations, the Jacobians correspond

to the specific trajectory. Therefore, if the underlying linearization trajectory is not

175

a variable of optimization, the Jacobians become constant matrices for the entire op-

timization and un-exploitable for the optimization purposes. This is what happens

in methods (a), (b), and (c). In these methods, although, the underlying lineariza-

tion changes during the whole algorithm; however, the linearization of the equations

is decoupled from the manipulations and deformations of the underlying trajectory,

and they happen sequentially with respect to each other. In (e), the model is linear

to begin with. On the other hand, in (d) and (f), the linearization is coupled with

the manipulation of the trajectory. However, methods are different; in (e), the lin-

earization is done over the predicted mean of the belief (whose updates are possible

based on most-likely observations assumption), but in (f), the underlying trajectory

for the observation model is the parametrized possible trajectories obtained from the

noiseless propagation of the initial estimate, and the trajectory for system equations

is based on an initial guess. In this paper, the underlying linearization trajectory is

the optimization variable.

Assumptions on the observation during planning: The observation distributions

are calculated in the methods (a) and (b) based on the LQG methodology; however,

in (a), the observations do not contribute to the designed trajectory. In (b), the

stochasticity of the observations (distributed with a Gaussian density) is exploited

in the dynamic programming equations. In (c), (d) and (e), the observations are

most-likely observations. In (f), an ensemble of observation particles for the entire

path is generated and their predicted covariance is reduced as an objective in the

optimization problem. In the current work, any assumption on the observations is

inconsequential and the planning is performed only utilizing the trajectory-dependent

Jacobian of the observation model.

Optimization problem time-complexity for obstacle-free case: As mentioned, we

provide the time complexity for methods (a), (c), (d) and (e) to the best of our knowl-

176

edge. Let us assume for simplicity that the size of x, u, and z vectors are all O(n).

The computation time in method a is on finding as many RRT plans as possible,

therefore, since this method is not constructing a path the quality of solution can be

significantly poorer than the other methods. If nr number of RRT paths are taken,

then it would take O(nrKn3), however, there is no issue of convergence in here. In

(b) and (c), the computation complexity is O(Kn6) with a second-order convergence

rate of Newton-like methods to a locally optimal solution. However, method (c),

converges faster than (b), as stated in (c). Method (d), takes O(ntr(Kn3 + kn2)),

where ntr is the number of transcription steps in the direct transcription, and k is the

number of unit vectors pointing in k directions to minimize the covariance in their

algorithm. In method (e), utilizing a common method, such as center of gravity for

convex optimization [190] to obtain a globally optimal solution with ε confidence and

N number of samples, the algorithm requires O(NK(Kn3 + Nn2)) computations

and the convergence needs Ω((N + Kn)log(1/ε)) calls to the oracle. In method (f),

the convex problem requires O(Kn3 +Nn2) computations and Ω(Knlog(1/ε)) calls

to the oracle [191]. Our current method requires O(Kn3) computations and the

convergence rate is the rate for the particular gradient-descent method utilized. For

instance, a Newton-like method converges at a second-order rate.

8.5.3 Comparison on Other Issues

In this section, we point out some other differences between the methods that are

of less importance than the previous points.

Parametrization of the belief: In a Gaussian model, it is assumed belief is fully

parametrized by two parameters. In a non-Gaussian method this assumption is lifted

and typically replaced by a number of samples taken from the belief. Methods (a-d)

assume Gaussian beliefs and methods (e) and (f) assume a non-Gaussian represen-

177

tation of the belief. In (e), the particle weights become part of the optimization

variables, whereas in (f), the samples or their weights are not variables and the

optimization shows more scalability. The Gaussianity assumption can be a valid

assumption in the vicinity of a nominal trajectory. Our current paper, deals with

Gaussian beliefs. The Gaussianity assumption can be a valid assumption in the vicin-

ity of a nominal trajectory. Therefore, a method that can better stabilize around a

nominal trajectory can better exploit this feature. In particular, our method with a

better promised path and coupled with feedback controller fully exploits this feature,

making the Gaussianity assumption more valid.

Form of the system equations: In all methods except (e), the system and obser-

vation models are non-linear. In (e), both equations are linear. Moreover, in (d), the

process noise is not included.

Replanning policy: In (a), (b), and (c), replanning is not discussed. In (d) it is

based on the mean deviation from a predicted mean. In (e), a combination of KL

divergence and RHC strategy is assumed, and in (f), ar every stage replanning is

performed. In our current method, a symmetric distance based on KL divergence is

utilized.

Initialization of the optimization problem: The initial guess in (a), (b) and (c)

is based on an RRT or a similar planner. However, in (a), essentially there is no

construction of the path, whereas in the other methods, a path is constructed. In (b),

it requires an adaptive line-search and a feasible initial path to ensure convergence.

In (d), the optimization yields a locally optimal solution. In (e) and (f) the convex

planning problems require no initialization and the planning results are global in

the sense of the defined optimization problem. In the current paper, the non-linear

optimization requires initialization based on an RRT or a similar planner, and the

result of the optimization is a locally optimal path.

178

Non-convex constraints: In (a), a performance measure based on obstacle avoid-

ance is defined to compare the safety of the resulting policies. In (b), (c) and (f),

a cost function is added to the optimization problem. In (d), obstacles are not

considered. In (e), mixed integer programming and chance constraints are used to

avoid constraints. In terms of the computation complexity, among methods (b-f),

the methods (b), (c) and (f) have lower computation complexities. In the current

paper, an extended version of the method in (f) is introduced, which provides safety

based on the barrier functions.

Algorithm 1: T-LQG
Input: Initial belief b0, Goal region Brg(xg), Planning horizon K, Obstacle

parameters (E , C)
1 t← 0;
2 while P(bt, rg,xg) ≤ pg do
3 if ||x̂t−xot || > dth or t == 0 or t == K then
4 Optimal Trajectory: {uo0:K−1,xo0:K} ← planner(b0, E , C, K,xg);
5 t← 0;
6 end
7 else
8 Policy Function: x̂t ← E[bt], ut ← −Lt(x̂t − xot) + uot ;
9 Execution: xt+1 ← f(xt,ut) + Gtwt;

10 Perception: zt+1 ← h(xt+1) + Mt+1vt+1;
11 Estimation: bt+1 ← τ t(bt,ut, zt+1);
12 t← t+ 1;
13 end
14 end

8.6 Simulation Results

In this section, we provide simulation results to show the performance of T-LQG.

Our simulations are performed in MATLAB 2016a with a 2.90 GHz CORE i7 machine

179

with dual core technology and 8 GB of RAM. We use MATLAB’s fmincon solver

to solve the NLP problem. First, we provide the overall algorithm and the overall

control loop. Then, we investigate several situations in which the environment is

obstacle-free. We perform six simulations for a KUKA youBot base model, with six

different observation models including models adapted from the literature. In the

second scenario, we perform a comparison between the performance of T-LQG and

an RHC-based method [58]. Then, we present a simulation in a complex environment

with many obstacles. We conduct this scenario for two different initial trajectories

and compare the results. In each scenario, we show the initial trajectory used to

initialize the optimization problem along with the optimized output trajectory.

Implementation: The overall control loop is shown in Fig. 8.3, and the overall

T-LQG algorithm is reflected in Algorithm 4. As is seen in Fig. 8.3 and Alg. 4,

the planning problem starts with the supply of an initial belief and ends whenever

the probability of reaching the goal region is greater than a predefined threshold

pg > 0. The planner function (which is the optimization Problem (14)) is fed the

initial belief b0, the obstacle parameters (E , C), planning horizon K, a goal region

Figure 8.3: The overall feedback control loop.

180

(a) Range and bearing (b) Bearing-only (c) Range-only

(d) Range-squared (e) Light-dark [57] (f) Light-dark [61]

Figure 8.4: Simulation results for an obstacle-free situation with different observa-
tion models. The information is color-coded. A lighter shade denotes less noisy
observations. The dashed green line represents the initial trajectory; the solid yellow
line shows the optimized trajectory. In all cases, x̂0 = (0, 0, 0), xg = (2, 2, 2), and
rg = 0.1.

181

(a) (b)

Figure 8.5: Simulation results for two different initializations with obstacles. The
obstacles are the red solid polygons; the ellipses show the inflated regions around
them, avoided by the configuration of points that represent the robot (they are also
the argument of the Gaussian function in the obstacle cost). In all cases, x̂0 =
(0.25, 0.25, 0), xg = (0.5, 2.7, 2), and rg = 0.1. The optimized trajectory in case (b)
has a lower overall cost.

Brg(xg), and other parameters, such as system equations. The resultant planned

trajectory is provided to the controller, whose output is the policy function. The

policy is executed, a new observation is made and a new belief is obtained. If the

distance between the updated belief and the nominal belief ||x̂t−xot || > dth is greater

than a threshold, or the policy execution is finished but the criteria is not met, the

planning algorithm restarts.

Obstacle-free environment: We use the kinematics equations of the KUKA youBot

base as described in [192]. Particularly, the state vector can be denoted by a 3D vec-

tor, x = [xx,xy,xθ]T , which describes the position and heading of the robot base,

and x ∈ SO(2). The control consists of the velocities of the four wheels. It can be

182

Table 8.2: Comparison T-LQG with method of [58].

Final Distance from
Goal (after 16

steps)

Total Time
(MATLAB)

RHC-based
[58] 4.09 (m) 352 (seconds)

T-LQG 0.45 (m) 20 (seconds)

shown that the discrete motion model can be written as xt+1 = f(xt,ut) + Gtwt =

xt + Butdt + Gwt

√
dt, where B and G are appropriate constant matrices, and dt

is the time-discretization period. The results depicted in Fig. 8.4 are for different

observation models; including range and bearing; bearing-only, and range-only ob-

servations from landmarks in cases (a)-(c). In case (d), the observation function is

changed to the square of the range function. Finally, in cases (e), and (f), the light-

dark models of the chapters [57] and [61] are adopted. In both cases, the observation

functions are linear, and the covariance of the observation noise is state dependent.

It is a quadratic function with a minimum at 3 in case (e) and a hyperbolic func-

tion with a minimum at +∞ in (f). Finally as noted in all cases, the optimization

is initialized with the trivial straight-line, which is reflected in the figures with the

dashed green line, whereas the optimal trajectories are depicted with solid lines.

Comparison: Depicted in Fig. 8.1, are the results of T-LQG and our implemen-

tation of an RHC-based method which uses the MLO assumption [58], for a youbot

in a landmark-based observation model with range and bearing information. Table

10.3 compares of the costs after K = 16 steps of execution. In our method, the

optimization problem is solved only once and the resulting feedback policy is exe-

cuted without the need to re-plan. In contrast, in the method of [58], replanning

is triggered at every time step in order to close the feedback loop. However, this

means the optimization problem is solved 16 times, and yet the agent does not reach

183

the goal after 16 steps. It is worth mentioning that although both methods have

the same order of complexity for the optimization problem, the fact that in [58] the

optimization is solved for convergence 16 times more (and possibly much more in

order to reach the goal), in T-LQG it is only solved once (for this example). Thus,

the overall execution time of T-LQG is O(K) times lower, with more reliable plans.

Complex environment: Next, we perform a simulation in an environment full of

obstacles for the youBot, with range and bearing observations from several land-

marks. Inspired by [193], we model the robot with a configuration of a set of points

that represent the balls’ centers that cover the body of the robot. As it is seen

in Fig. 8.5. we have initialized the optimization problem with two different initial

trajectories obtained using a modified viability graph algorithm (shown with the

green dashed lines). It should be noted that there is nothing particular about the

initialization algorithm and methods—a planner such as RRT can be used as well, as

long as the initialization trajectory is semi-feasible in that it does not pass through

the infeasible local minima of the barrier functions. As is seen in this figure, the

planning horizon is large (26 steps in case (a) and 25 steps in case (b)), which shows

the scalability of T-LQG. The results show that the optimized trajectory (reflected

with solid lines) avoids entering the banned regions bordered by the ellipsoids, so

that the robot itself avoids colliding with the obstacles. Moreover, the locally opti-

mal trajectory gets closer to the information sources and thereby obtains the best

predicted estimation performance. In this scenario, by comparing the cost of the two

optimized trajectories, the better of the two (trajectory in Fig. 8.5b) is chosen as

the plan for execution.

184

8.7 Conclusion

In this chapter, we have simplified the solution of the belief space planning prob-

lem by proposing a scalable method that is backed by theoretical analysis supported

by the control literature. Particularly, we proposed a deterministic optimal control

problem that can be solved by an NLP solver with O(Kn3) computational com-

plexity. The goal of Trajectory-optimized LQG is to find an LQG policy with the

best nominal performance. T-LQG achieves this by finding the best underlying tra-

jectory for a nonlinear system with a nonlinear observation model around which

to linearize, utilizing the trajectory-dependent covariance evolution of the Kalman

filter given by the dynamic Riccati equations. We could do this by the proper us-

age of the separation principle and the decoupling principle that provides us with

an LQR controller for a linearized system along that nominal trajectory. We have

proved that the accumulated error that results is deterministic under a first-order

approximation, and only depends on the linearization error. This can be overcome

by either increasing the linearization points or by replanning whenever the deviation

from the planned trajectory is higher than a predefined tolerance. We have also

extended the method to non-convex environments by adding a cost function to avoid

collision with the obstacles. Finally, we have performed simulations for a common

robotic system with several observation functions in obstacle-free environments, and

complex narrow passages with obstacles.

In conclusion, while T-LQG and the MLO method of [57] address a similar opti-

mization problem, their theoretical approaches are vastly different:

• MLO uses a heuristic approach, T-LQG uses the separation principle;

• MLO does not have a controller in the design, whereas T-LQG does;

• MLO uses assumptions on the observations to derive the optimization problem,

185

while in T-LQG, assumptions on observations are inconsequential;

• MLO designs a belief-LQR, but T-LQG only requires an LQR on the state;

• MLO starts with an EKF design and linearizes the system equations around the

mean update, while T-LQG starts with linearizing around a nominal trajectory

and uses the KF and separation principle to obtain the nominal performance

around that trajectory;

• MLO assumes from the beginning that process noise does not exist, and, ulti-

mately, assumes observation noise does not exist either, but in T-LQG, neither

of these assumptions are made;

• While the computational complexity for MLO is O(ntr(Kn3 + kn2)) or O(ntr(

Kn3 + kn2) +Kn6), T-LQG reduces the complexity to O(Kn3).

186

9. BELIEF-SPACE PLANNING FOR MULTI-AGENT SYSTEMS

In this chapter, we extend the belief space planning method of the previous

chapter to a multi-agent situation. Particularly, we tune the MT-LQG approach

to solve robotic trajectory planning problems using the concepts developed in the

previous chapter. Likewise Chapter 7, we consider multi-agent planning under pro-

cess and measurement uncertainties. Formulated as a stochastic control problem,

the solution of a general Decentralized Partially Observed Markov Decision Process

(Dec-POMDP) is a collection of feedback policies, one for each agent, maximizing

a joint value function. In this chapter, we design m LQG policies for m number

of agents maximizing the joint performance of the team. Casting the problem as a

NonLinear Program (NLP), we propose a framework that reduces the optimization

dimension from (mn)2 + mn to mn with n referring to the dimension of each indi-

vidual agent’s state space. As a result, the proposed method reduces the formidable

generic Dec-POMDP to a computationally tractable multi-agent planning under un-

certainty. Our results in 2D and 3D environments demonstrate the performance of

the algorithm and its ability to predict and avoid inter-agent collisions.

9.1 Introduction

Finding the optimal solution for the single-agent version of this problem is PSPACE-

complete [194]. The problem is exacerbated when controlling multiple agents, m ≥ 2.

The general Decentralized POMDP (Dec-POMDP) problem is proven to be in the

NEXP class of problems [46].

In Dec-POMDPs, each agent obtains local observations and performs an action

in response; however, the state transition probability and the incurred reward de-

pends on the joint actions of agents. This chapter is concerned with the multi-agent

187

navigation problem with three main objectives: (i) each agent needs to reach its in-

dividual goal point in the environment, while minimizing its localization uncertainty,

(ii) the team as whole needs to avoid inter-agent collisions, (iii) the solution is de-

sired to be decentralized (to reduce the communication burden), which follows from

the MT-LQG algorithm’s properties and the multi-agent extension of the Decoupling

Principle proven in Chapter 7.

A simple extension of continuous POMDP solvers in a centralized fashion for

multi-agent situations can behave poorly due to the fundamental limitations of

POMDPs in dealing with high-dimensional spaces and long horizons. However, there

has been significant success in finding algorithms that approximate Dec-POMDPs.

Recent methods such as [56] utilize macro-actions, plan centrally for those macro-

actions, and implement a local plan for each agent in a decentralized fashion. These

methods are more successful than the original POMDP (or Dec-POMDP) solvers in

a continuous state, as well as in action and observation spaces.

Due to the challenges in searching for a closed-loop policy, many methods aim

for computing an approximate open-loop solution for the problem of planning under

uncertainty. In these methods, planning under the Gaussianity assumption of the

conditional distributions can significantly reduce the dimension of the problems.

Particularly, whenever the policy is designed to track a reference trajectory for a

system with Gaussian additive perturbations, this assumption is locally valid in many

applications. We have rigorously proven this fact in the part I of this dissertation.

Only in situations where there is ambiguity, such as in a kidnapped robot case do,

there exist true multi-modal non-Gaussian approaches that can perform particularly

better. Note that in such a situation, the perturbation may not be Gaussian either.

Similarly, the small noise assumption is not valid, either.

LQG-based approaches fall into this category. As mentioned before, LQG-MP [59]

188

compares the performance of the LQG controller on a set of trajectories constructed

using RRT. However, with increasing dimensions of the system (such as in multi-

agent systems), the performance of sampling-based methods can be far from optimal

due to the high dispersion of sampled points. Methods such as [35] and [36] define

the single-agent belief space planing problem in an (n2 +n)-dimensional space whose

extension into a multi-agent scenario results in an ((mn)2 +mn)-dimensional space.

We have discussed the other belief space planning methods in Chapter 6.

As discussed previously, in a departure from the literature, the T-LQG [195, 196]

designs an n-dimensional problem which provides a solution that involves a search

over closed-loop feedback policies, and achieves the requirement for low-computation

in the policy space. As a result, T-LQG provides provably better results and guar-

antees on the solution. The MT-LQG approach which was extended in Chapter 7

provides a theoretical design to tackle the multi-agent problem when the agents are

coupled through the cost function but decoupled though the dynamics and obser-

vations. It is in fact the low-dimension of the core optimization in MT-LQG that

enables an extension to higher dimensional problems.

This chapter’s method differs from the existing related methods in a few aspects:

(i) compared to open-loop methods (e.g., [57, 58]), it performs the search in the

closed-loop policy space, (ii) there is no need for high-dimensional belief feedback

as in [57, 35, 36], (iii) there is no need to re-plan at every step as opposed to many

RHC-based Gaussian and non-Gaussian methods [61, 182], (iv) there is no need for

an MLO assumption, (v) compared to point-based POMDP solvers, the underlying

domain of the problem remains continuous, (vi) the MT-LQG method is based on

the proven decoupling principle and provides near-optimality guarantees, (vii) the

computational burden is a polynomial or low order while the approach is decen-

tralized in execution, hence, the communication burden is also low. We provide an

189

analysis of the method, and exhibit the performance and scalability of the method in

several challenging scenarios, including multi-agent navigation in 2D and 3D environ-

ments with dynamic obstacles. We test the method with different observation models

including range and bearing measurement with possibly state-dependent noise inten-

sities. Finally, the proposed method can extend methods like [197] to multi-agent

problems with long horizons.

9.2 MT-LQG

We follow the same notation as Chapter 7 and show the individual agents with

index i. We also show the joint variables and spaces with index I. The general prob-

lem and the system equations are as defined in that chapter. We use the belief space

planning concepts developed in Chapter 8 and extend it to multi-agent situation in

this chapter. We assume the environment’s map is fully known and the only source

of uncertainty is because of the uncertainty in each agents’ actions and perception.

Belief: Similar to the earlier chapter, the conditional distribution of xit given

the data history up to time t, is called the information state. We refer to the

information state of the linear Gaussian surrogate system as the “belief”, and denote

it by bit := ((x̂it)T , vec(Pi
t)T), a vector comprised of the mean and covariance of the

conditional distribution of the linear Gaussian surrogate system for agent i. The

update equation for the belief follows a Kalman filter.

Linear surrogate system: Similar to the single-agent situation, in this chapter, we

use the exactly linear Gaussian system (the li-system) for agent i as a surrogate to

obtain the control law and estimator via the KF. The covariance of the li-system is

defined as Pli
t := E[(xlit − xpit)(xlit − xpit)T], with the initial condition Pli

0 = Σxi0 , and

190

its evolution given by the forward recursions of the Riccati equation as follows:

P̄li
t = Ai

t−1P
li
t−1(Ai

t−1)T + Gi
t−1Σw(Gi

t−1)T

Kli
t = P̄li

t(Hi
t)T(Hi

tP̄li
t (Hi

t)T+Mi
tΣv(Mi

t)T)−1

Pli
t = (I−Kli

t Hi
t)P̄li

t . (9.1)

Planning strategy: We plan centrally for a number of robots that want to start

their execution; then, the robots execute the plans in a decentralized manner based

on the MT-LQG approach of Part I, Chapter 7. However, during the execution,

whenever a robot needs replanning (because of a large deviation from its planned

trajectory), it preemptively requests replanning from the central planner. In the

period of time between the request and the reassessment, the robot either continues

to execute its original path or, if it predicts unsafe movements, stops. The replanning

strategy is discussed later in the chapter. Next, we discuss the details of the cost

function.

Estimation cost: Similar to the single-agent belief space planning problem of

Chapter 8, we just use the approximation of the cost function obtained as in (8.8g)

for agent i. We choose Wxi
t � 0 and symmetric such that Wi

t := (Wxi
t)1/2, and

rewrite the estimation cost as cest
t :

cest
t (xpit) :=

m∑
i=1

tr(Wi
tPli

t (Wi
t)T). (9.2)

Effort cost: Similarly, the cost of effort for agent i is also replaced by upit Wui
t upit

where Wui
t � 0. Hence, the total cost of effort, ceff

t , is defined as:

ceff
t (upit) :=

m∑
i=1

(upit)TWui
t upit . (9.3)

191

Also note that similar to the previous section, |Wui
t | � |Wxi

t | so that the theoretical

approach of the previous section extends here, as well.

Obstacle Penalty Function (OPF): We extend our previous method of incorpo-

rating obstacle-avoidance cost into the cost function, presented in Chapter 8, to a

case where obstacles are moving. Later in the chapter, we utilize this method for

re-planning individual robots when other agents are moving (modeled as dynamic

obstacles). Inspired by [193], first we cover each robot with the minimum number of

spheres capable of encasing the robot’s entire shape. Most importantly, the spheres

are all identical in size with respect to the individual robot (note, the sphere size for

each robot varies depending on the size of the robot). Once the spheres are applied,

the radius for one of the spheres is taken (per robot). Then each obstacle is inflated

by that value, which increases the size of the obstacle-avoidance zone. Next, we

find the Minimum Volume Enclosing Ellipsoid (MVEE) [185] for each newly-inflated

obstacle. Lastly, we then deflate the robot’s dimensions and reduce it to a set of

points—namely, the centers of the spheres encompassing robot i at time t, which is

then represented by a finite (ni) number of 3D location points (or 2D if need be).

These points are defined by matrix Li
t(x

pi
t) := [`1i

t (xpit), · · · , `nit (xpit)] ∈ R3×ni where

{`kit (xpit)}niki=1i is calculated based on the orientation of the robot or from the robot’s

state xpit .

Therefore, `kit : Xi → R3 is a function of xpit ; however, for simplicity of the nota-

tion we use `kit and Li
t in the rest of the chapter. Ellipsoid j’s estimated parameters

at time t are a center ôjt and a positive-definite matrix Êj
t . Defined next is

• Êt := [Ê1
t , · · · , Êno

t] ∈ R3×3×nb ; and

• Ôt := [ô1
t , · · · , ônot] ∈ R3×nb

where no is the number of obstacle ellipsoids. Moreover, we define J to be the set

192

of obstacle indices j, which are in the neighborhood of the robot; i.e., ∑ni
ki=1i(`

ki
t −

ôjt)TEi(`kit − ôjt) < rth, rth > 1. The OPF for agent i, Φ(Êt,Ôt) : Xi → R is the sum of

Gaussian-like functions defined as follows:

Φ(Êt,Ôt)(xpit):=M
∑
j∈J

ni∑
ki=1i

exp(−[(`kit −ôjt)TEi(`kit −ôjt)]q),

where M > 0 and q ≥ 1. Even if the dimension of state nx > 3, still `kit is at

most 3D. If the obstacles are static, then the subscript t of (Êt, Ôt) can be ignored.

Furthermore, if those static obstacles are known a priori, then there is no need to

estimate them either.

Obstacle-avoidance cost: Assuming a linear interpolation (i.e., fitting a curve

using linear polynomials), we calculate the obstacle cost along the whole trajectory.

If we have obstacle j’s parameters at time steps t1 and t2 > t1, then the parameters

between these two times are interpolated or estimated as well. For instance, if

obstacle j has translational and rotational movements, then at time t > t1, ôjt =

ôjt1 + v̂j(t− t1) (assuming a constant estimated velocity vector v̂j), then Êj
t = Rj

α̂Ê
j
t1

where Rj
α̂ is the estimated rotation matrix by α̂ degrees.

However, if the obstacle changes its shape or new obstacles appear, the MVEE

algorithm is used to find the new parameters. As mentioned before, the agents

themselves are treated as moving obstacles.

On the other hand, for non-agent obstacles, we assume there is a separate estima-

tor that tracks and estimates those obstacles’ parameters and that our planner only

uses the results obtained by that tracker to find the optimized trajectory. Otherwise,

we either utilize linear interpolation or, based on the information on the state vector,

the parameters are estimated. Hence, we define the cost of obstacle-avoidance for

193

robot i between t1 and t2, cobst
t1:t2 , as:

cobst
t1:t2(xpit1 ,x

pi
t2):=

m∑
i=1

∑
θ=0:ε:1

Φ(Êτ ,Ôτ)(θxpit1 +(1− θ)xpit2), (9.4)

where τ = θt1 + (1− θ)t2, ceil(1/ε) is the number of interpolation steps and ceil(·) is

the ceiling function.

Collision Penalty Function (CPF): In order to penalize (i.e., avoid) the collision

between agents, we utilize a similar approach to obtain the obstacle-avoidance. As

mentioned in OPF, Li
t denotes the set of points originating from robot i at time

t’s spherical centers. Define J ′ := {i+ 1 ≤ j ≤ m : ||(Li
t−Lj

t)||F < r′th, r
′
th >

min ri, rj}, where ri and rj represent the radius value of robots i and j respectively,

and || · ||F defines the Frobenius (Euclidean) norm of a matrix. Moreover, let Ki∧j :=

min{Ki, Kj}; so, when computing the collision cost between agents i and j, we only

need to concerned when both are moving. When one agent has stopped, it can be

considered a static obstacle. Then, we define the CPF for collision between agents

(i, j), j ∈ J ′ at time 0 ≤ t ≤ Ki∧j, as a function Ψ(i,j) : Xi × Xj → R; such that:

Ψ(i,j)(xpit ,x
pj
t):=M ′ exp(−||(Li

t−Lj
t)||qF).

In this formula, we assume (for simplicity) that the size of ni is the same for all robots

(∀i ∈ I)—i.e., all robots are represented by the same number of spheres/points. If

ni’s are not the same for all robots, then when computing Ψi, there are two possible

solutions:

• i) at each time step, the difference between all components of `kit and `kjt are

compared; or

• ii) the robot with the lower number of spheres is given the same number of

194

spheres as the other robot and the formula above is utilized.

Note also in the above formula, M ′ > 0 should be chosen with large enough values

in order to make the trajectories distinct so the sizes of the spheres are taken into

account.

Inter-agent collision-avoidance cost: Once again assuming a linear interpolation

of the trajectories, we can define the cost of inter-agent collision-avoidance, ccoll
i∧J ′ , for

agent i as follows:

ccoll
i∧J ′(x

pi
0:Ki∧J ′ ,x

pJ ′
0:Ki∧J ′) :=

∑
j∈J ′

Ki∧j∑
t=1

∑
θ=0:ε:1

Ψ(i,j)(θxpit−1+(1−θ)xpit , θx
pj
t−1+(1−θ)xpjt),

where:

• xpi0:Ki∧j := {xpit }
Ki∧j
t=0

• xpi0:Ki∧J ′ := {xpi0:Ki∧j}j∈J ′

• xpJ ′t is defined in a similar way to xIt

The total number of collision checks between robots ism(m−1)/2. This cost indicates

the cooperative cost in our problem.

Optimization problem: Problem (15) defines the optimization problem whose

solution provides the underlying reference trajectory of the LQG policy for the team

that has the best nominal performance among all other LQG policies. In other words,

the LQG policy defined around that trajectory performs the best in terms of the

estimation and tracking performance. Moreover, along with the tracking controller

it is also near-optimal as proven by the decoupling principle.

Problem 15 Multi-Agent Planning Problem Given an initial joint belief bI0 ∈

BI; goal regions for each agent Brig
(xig) (defining an `2-norm ball of radius rig around

a goal state xig ∈ XI); and planning horizons of Ki > 0 for each robot; the planning

195

problem is defined as follows:

min
{upi0:Ki−1,i∈I}

m∑
i=1

[Ki∑
t=1

[cest
t (xpit) + ceff

t (upit) + cobst
t−1:t(x

pi
t−1,x

pi
t)] + ccoll

i∧J ′(x
pi
0:Ki∧J ′ ,x

pJ ′
0:Ki∧J ′)

]

s.t. P̄li
t =Ai

t−1P
li
t−1(Ai

t−1)T + Gi
t−1Σw(Gi

t−1)T

Kli
t =P̄li

t (Hi
t)T (Hi

tP̄li
t (Hi

t)T + Mi
tΣv(Mi

t)T)−1

Pli
t =(I−Kli

t Hi
t)P̄li

t , i ∈ I (9.5a)

Pli
0 =Σxi0 , i ∈ I (9.5b)

xpi0 =x̄it, i ∈ I (9.5c)

xpit+1 =f(xpit ,upit), 0 ≤ t ≤ Ki − 1, i ∈ I (9.5d)

||xpiK − xig||2 <rig, i ∈ I (9.5e)

||upit ||2 ≤riu, 1 ≤ t ≤ Ki, i ∈ I, (9.5f)

Optimized trajectory of agents: The resulting trajectory of problem (15) is the tra-

jectory that is used as the underlying linearization trajectory of the system equations

for each agent, and the reference trajectory of the LQG policy, or the nominal trajec-

tory on which the nominal performance of the KF (the nominal trajectory of belief)

is built upon. We denote this trajectory for agent i with a superscript oi.

The LQG policy: The LQR controller for agent i is obtained by minimizing

the original quadratic cost to follow the optimized trajectory. Therefore, the system

equations for agent i are linearized around the oi similar to equations (10.2) to obtain

Aoi
t ,Boi

t , and Hoi
t , where the oi index shows that the Jacobians are obtained around

that trajectory. Then, the following quadratic cost is minimized:

Ki∑
t=1

[(x̂it − xoit)TWxi
t (x̂it − xoit) + (ũoit−1)TWui

t ũoit−1],

196

(a) No collision occurs (b) Only the trajectories

Figure 9.1: Four youBots moving diagonally in a circle. The initial paths (the
yellow, dashed lines) are straight lines and highly conflicting. The optimized paths
(solid lines) are optimized, collision-free, and utilize the information with respect
to the limited resources of effort, horizon, and collision-avoidance obstacles. The
observations consists of range and bearing from landmarks, shown in lighter areas.
In a) both the trajectories and robot snapshots are depicted, whereas in b) only
trajectories are depicted.

where ũoit := uit − uoit ; which provides the feedback policy as ũoit = −Foi
t (x̂it − xoit)

with the linear feedback gain Foi
t given as:

Foi
t = (Wui

t + (Boi
t)TSitBoi

t)−1(Boi
t)TSitAoi

t .

The terminal condition SiKi = Wxi
t , the matrix Sit is obtained through the backward

iterations of the dynamic Riccati equation:

Sit−1 = (Aoi
t)TSitAoi

t − (Aoi
t)TSitBoi

t (Wui
t +(Boi

t)TSitBoi
t)−1(Boi

t)TSitAoi
t +Wxi

t .

Lastly, the evolution of the mean estimate is provided using a Kalman filter and

197

Algorithm 2: MT-LQG
Input: Initial joint belief bI0 , Goal regions BIrIg (xIg), Lookahead horizons KI ,

Estimates of dynamic obstacle parameters {(Êt, Ôt)}maxKI
t=1

1 t← 0;
2 while P(bIt , rIg ,xIg) ≤ pg do
3 if ||x̂it − xpit || > dth or t == 0 or t == K then
4 if t == 0 then
5 Plan for all agents:
6 {uoI0:(KI−1),x

oI
0:KI} ← planner(bI0 , Ê0:(maxKI), Ô0:(maxKI), KI ,xIg , rIg);

7 end
8 Re-plan for agent i:
9 {uoi0:Ki−1,x

oi
0:Ki} ← planner(bi0, Ê0:Ki , Ô0:Ki , Ki,xig, rig);

10 end
11 else
12 for i = 1 : m do
13 Policy Function: x̂it ← x̄it, uit ← −Fi

t(x̂it − xoit) + uoit ;
14 Execution: xit+1 ← f(xit,uit) + Gi

twi
t;

15 Perception: zit+1 ← h(xit+1) + Mi
tvit+1);

16 Estimation: bit+1 ← τ (bit,uit, zit+1);
17 t← t+ 1;
18 end
19 end
20 end

198

(a) Higher altitudes mean less noise (b) Another view point

Figure 9.2: Two agents in a 3D environment, with GPS observations. Higher alti-
tudes offer less building clutter and represent less observation noise. The dashed and
solid lines provide the initial and optimized trajectories of each agent. The time-
stamped trajectories (marked with markers) indicate that the optimized trajectories
are collision-free.

x̂i0 = E(xi0) by:

x̂it+1 =(I−Koi
t+1Hoi

t+1)f oit −Koi
t+1hoit+1 + Aoi

t x̂it + Boi
t uit

+ Koi
t+1(zit+1 −Hoi

t+1(Aoi
t x̂it + Boi

t uit)),

where:

• f oit := f(xoit ,uoit)−Aoi
t xoit −Boi

t uoit ; and

• hoit := h(xoit)−Hoi
t xoit

Furthermore, the evolution of the covariance during execution is provided by the

equation (9.1) using the Jacobians linearized around the optimized trajectory.

Replanning strategy: As mentioned before, planning is performed centrally for a

set of robots. Each robot begins the execution of the plan in a decentralized fashion.

In essence, agent i keeps track of its nominal plan. Whenever, its estimate deviates

from its plan greater than a threshold of dth > 0, a replanning request occurs. At

this point, the central planner assumes all moving agents are dynamic obstacles with

their predicted covariances. The planner can then estimate the agents’ MVEEs using

199

that. A single-agent version of the problem (5) is solved with m = 1, while ignoring

the ccoll terms.

The decentralized aspect: In the earlier chapter, we showed that the stochastic

cost function of joint problem is dominated by the nominal part of the cost function

by using the decoupling principle. In our design, first the nominal joint trajectory

design problem (15) is solved taking into account all the nonlinearities, the cost of

obstacles, the collision cost and the estimation performance. The nominal trajectory

is constructed such that it accounts for enough safety margins with regards to the

obstacles and the inter-agent collisions. That is we tune the parameters of the ob-

stacle and collision penalty functions such that the safety margin of the collision is

larger than the tube size (δ). Then, with high probability, the agents’ trajectories

will remain within their tubes. As a result, the feedback law, does not need to in-

corporate the shared inter-agent collision-avoidance or even the obstacle cost. That

is the nominal cost of collision-avoidance or obstacle-avoidance dominates their cor-

responding stochastic costs and they vanish quickly within the tubes of the agents.

Hence the control law for each agent is only a tracking LQR controller for an agent

whose trajectory lies within its planned tube with high probability. This is also

the reason behind choosing the weight matrices of the effort and state deviations

block-diagonal from the beginning. Since if other wise was chosen, then a block-

diagonal approximation is made by the above method. Therefore, after designing

the joint nominal trajectory of the system, the resulting policy and estimation is a

decentralized policy in the execution phase with low communication burden.

Overall time complexity: Algorithm 4 summarizes the details of the algorithm.

Assuming that the dimension of state, action and observation vectors are O(n), for

m number of agents with O(K) lookahead horizon, the overall complexity of the

MT-LQG algorithm is O(mKn(n2 + mn)). This is much lower than the general

200

Dec-POMDPs in which the number of joint policies is O((|U|
|Z|K−1
|Z|−1)m) [198], where

|U| = maxi∈I Ui and |Z| = maxi∈I Zi are finite (while in our method all underlying

spaces are continuous). Note the exponential factor of both horizon and number

robots in Dec-POMDP, whereas in our method, horizon is linear factor and number

of agents is a squared factor. This shows the scalability of our method for multi-agent

belief space planning.

9.3 Simulation Results

In this section, we provide our simulation results for 2D and 3D scenarios. We

use MATLAB 2016a on a 2.90 GHz CORE i7 machine with dual core technology

and 8 GB of RAM. In order to solve the optimization problem, we use MATLAB

fmincon solver. In the first scenario, we consider four agents with highly conflicting

paths in an obstacle-free environment, with landmark-based information sources. In

the second scenario, two agents plan to reach their destinations in a highly cluttered

environment. In the third situation, two agents with linear models begin their tra-

jectory from two ground locations and, after flying in a 3D environment, reach their

destinations on the ground. In the fourth situation, two agents fly in an obstacle-free

space with 3D range-based observation model to obtain measurements from three an-

tennas. In the last simulation, which is in another 3D environment, two agents have

plans similar to the previous scenario, except that in this case, other than static 3D

obstacles, there is also a dynamic 3D obstacle the agents must avoid.

Robots with highly conflicting paths: Figure 9.1 shows a scenario in which four

robots with KUKA youBot base models navigate diagonally along a 2D circle. Each

robot’s starting position is located on a circle with equal consecutive distances. The

objective is to move diagonally towards the other side of the circle in an environment

without obstacles. Each robot obtained range and bearing measurements from a

201

number of landmarks that fall in the visibility range of that robot. Therefore, the

motion model for agent i ∈ {1, 2, 3} can be written as xit+1 = f(xit,uit,wi
t) = xit +

Buitdt + Gwi
t

√
dt, such that xit represents the xx, xy coordinates and xθ (heading

orientation) of the robot base, and uit represents the velocities of the four wheels.

Moreover, B and G are appropriate constant matrices as indicated in [199], and dt

is the time-sampling interval. As reflected in Fig. 9.1, the robots safely navigate

to their destinations while utilizing the information from the landmarks, taking into

account the limitations on their lookahead horizon, control saturation constraints,

and the relatively small space provided for maneuvering.

Two robots in a 3D environment: Depicted in Fig. 9.2 are two agents with

single-integrator dynamics (A = B = G = I) and equipped with GPS for observing

their state (representing the three spacial coordinates, xx,xy, and xz). Although the

system and observation equations are linear in this case, the covariance of the obser-

vation noise has spatial dependence. Therefore, the noise process is a spatio-temporal

stochastic process approximated by a Gaussian noise process with space-dependent

covariance. The covariances are constant in time and the Gaussian approximations

are valid. The specific form of covariance is diag[σ1, σ1, σ2(xz−20)−1], for σ1, σ2 > 0.

This is similar to a three dimensional version of the light-dark environment [61].

Moreover, we have added a constraint on the elevation which is relaxed in the be-

ginning and the last steps of the flight. As a result, the observation covariance also

remains positive-definite.

Two youBots in a cluttered environment: In this scenario, two youBots move in

an environment with many obstacles. As shown in Fig. 9.3, the initial paths of

the robots have collisions. Moreover, the initial trajectory for the robot shown on

the right hand side collides with obstacles. However, the optimized trajectories are

collision-free, and, as shown in the figure, they navigate closer to the information

202

sources utilizing the range and bearing information.

3D environment with range information: Figure 9.4 represents a case where two

robots in a similar situation to Fig. 9.2, and with similar dynamics, utilize range

information from three antennas with spherical broadcast. Therefore, the robots

observe their range from the antennas and navigate to get closer to the information

resources while approaching their destinations. The initial trajectories as depicted

by the dashed lines are highly infeasible, but the optimizer is able to convert them

to fully optimized feasible paths.

3D dynamic environment with a flying obstacle: Figure 9.5 represents a situa-

tion where two robots with similar observation models as Fig. 9.4 fly over a 3D

environment with static obstacles. However, the environment is augmented with

a flying obstacle that moves with a constant speed (representing a bird, another

agent or similar object) that the agents must also avoid. Therefore, the robots ob-

serve their range from the antennas and navigate to get closer to the information

resources while approaching their destinations. The initial trajectories as depicted

by the dashed lines are highly infeasible and the optimizer is again able to convert

them to fully optimized feasible paths.

9.3.1 Heterogeneous Robots

In this section, we simulate the algorithm for a heterogeneous robot model situ-

ation. For the simulations of this section, we use MATLAB 2016b’s fmincon solver

to solve the optimization problem.

Motion models: We use the (non-holonomic) car-like robot’s model [179] for two

robots:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = v

L
tan(φ), (9.6)

203

Figure 9.3: Two youBots in a cluttered environment. The initial trajectories (dashed
lines) show collisions between robots (and with obstacles for the robot shown on
the right side). The optimized solid trajectories are fully safe, and optimized with
respect to the information sources. The purple circles on the upper side of the plot
show the targets.

where x = (x, y, θ), u = (v, φ), |φ| < π/2, |v| ≤ 0.6, |ut − ut−1| ≤ (0.01, π/45), x1
0 =

(3.5,−1, 0), x2
0 = (1,−1.1, π/3), x1

g = (3, 1, 5π/6), x2
g = (1.3, 1, π/2), r1

g = r2
g = 0.05,

204

Figure 9.4: Two flying robots with information sources available as antennas, provid-
ing the range information. The initial and optimized paths are shown with dashed
and solid paths, respectively. In the optimized paths, no collision occurs, and the
robots fly close to the antennas. The robots are considered to be spherical, but for
the clarity of the picture, only their centers are depicted. The targets are shown with
purple circles, and the markers on the paths indicate the trajectory points.

and K1 = K2 = 20. We also use the (holonomic) youBot base model [199]:

xt+1 = xt + But (9.7)

where x = (x, y, θ)T , u = [v1, v2, v3, v4]T includes the velocity of four wheels, B

depends on the robot sizes (which we have scaled down in our simulations), |vi| ≤ 0.8,

x3
0 = (1.7, 0.3, π/4), x3

g = (4.1, 0.7, π/4), r3
g = 0.05, and K3 = 25. We perturb these

motions models by additive zero-mean Gaussian noise with Σw = ε2 maxt{||ut||2}I

(i.e., 7% of the control). We assume Σx0 = ε2I.

Observation model: We use range and bearing from the features (shown with

light areas in the figures) perturbed by additive Gaussian noise with Σv = (ε/5)2I.

While in the theory and planning we utilized KF, in execution phase for estimation

purpose, we use EKF due to its better practical performance.

Figures 9.6 and 9.7 show the simulation results for initial planning and a typical

execution trajectory for ε = 5%. In these figures, the two car-like robots navigate

205

through the main obstacle to follow their individual destinations in the corridors.

The third youBot in the middle is navigating through a narrow passage. While this

robot expects a potential conflict with the other robot due to the narrowness of the

passage, it waits enough until the passage is safe to pass it and reach the destination.

Next, for the same setup, we perform a Monte Carlo analysis on the frequency

of replanning vs. ε. For each ε between 1% and 10% with an step size of 1%, we

conduct the entire simulation 10 times and obtain the average and standard deviation

of the replanning frequency. We set the replanning criteria to be ||x̂it − xpit || > 0.3,

or ||zit − zpit || > 1, where the second criteria is the observation innovation. Figure

9.8 show that the noise level can be categorized into three levels. For small noise

level, replanning is either not needed, or is required every (order of) 10 steps. For

moderate levels of noise, replanning is required every (order of) 5 steps. Last, in the

high noise levels, replanning is often required and the optimal method tends to an

MPC strategy.

Note that in MATLAB, we stopped the optimizations (of replanning problems)

on 3000 iterations, while for a typical problem of this size, higher iterations can

potentially yield better results and less number of replannings. Moreover, we noted

that parameters such as the stopping criteria, density of observation features, den-

sity of obstacles, (non-)holonomicity of dynamics, etc., all affect the frequency of

replanning, which can be analyzed in a future work.

Replanning and tube size: As mentioned before, replanning becomes necessary

when a large deviation occurs. This is happens when the execution trajectory of a

robots exits its δ-tube. In Chapter 6 we calculated the probability of such exit over

the horizon of K. We noted that if the tube size is chosen to be δ =
√
−r log(ε)ε

for r ≥ 2, then, the exist happen with a probability whose change rate is o(εr).

The pre-constants of this probability are what determines the difference between the

206

particular feedback policies. In fact, we also noted that with an optimized feedback,

such as T-LQG (or MT-LQG), the constants β̄ and γ̄ change and therefore the re-

planning rate also changes. Therefore, although the rate of the exit probability with

respect to ε is the same for different feedback policies, it is the feedback that can sig-

nificantly increase the tolerance of the system to higher levels of noise. Particularly,

our simulations showed that our design approach can be used for moderate levels of

noise with infrequent replanning, as well. Whereas for small noise levels with high

probability no replanning is required. On the other hand, for a high level of noise,

even constant replanning may lead to undesirable results, although it is a heuristic

resort. Lastly, note that the dimension of the problem and the time-horizon are

the other factors that can change the exit probability and therefore the replanning

frequency.

9.4 Conclusion

Focusing on multi-robot navigation and collision avoidance applications, in this

chapter, we have presented a method to reduce decentralized POMDPs to a tractable

planning problem. The solution is in the form of a collection of decentralized Linear

Quadratic Gaussian (LQG) controllers for agents maximizing the joint performance

of the team. The proposed solution has several desirable features: (i) It performs

optimization over closed-loop policies, (ii) eliminates the need for high-dimensional

belief feedback, (iii) does not require re-planning at every step, (iv) is not limited to

most likely observations, and (v) can handle continuous domain problems. We have

analyzed the method, and discussed its performance and scalability. The method’s

performance is demonstrated in several challenging scenarios, including multi-agent

navigation in 2D and 3D environments with dynamic obstacles, in the presence of

state-dependent motion and sensing uncertainties.

207

Fi
gu

re
9.
5:

Tw
o
ag
en
ts

(s
ph

er
ic
al
)
in

a
3D

dy
na

m
ic

en
vi
ro
nm

en
t,

w
ith

ra
ng

e
se
ns
or
s
w
ith

re
sp
ec
t
to

th
re
e
gr
ou

nd
an

te
nn

as
.
Tw

o
ta
ll
bu

ild
in
gs

ar
e
th
e
la
rg
e
st
at
ic

ob
st
ac
le
s.

T
he

sn
ap

sh
ot

of
a
fly

in
g
ob

je
ct

is
de
pi
ct
ed
.
T
hi
s
ob

je
ct

ca
n

re
pr
es
en
ta

pr
ev
io
us
ly

fly
in
g
ag
en
t,
a
bi
rd
,o

ra
ny

sim
ila

ro
bj
ec
t.

N
o
co
lli
sio

ns
oc
cu
rb

et
we

en
an

y
ob

je
ct
s.

Fo
rs

im
pl
ic
ity

on
ly

2D
el
lip

tic
al

pr
oj
ec
tio

ns
of

th
e
3D

sa
fe
ty

el
lip

so
id
s
ar
ou

nd
th
e
ob

st
ac
le
s
ar
e
de
pi
ct
ed
.
T
he

in
iti
al

an
d
op

tim
iz
ed

pa
th
s
ar
e
sh
ow

n
w
ith

th
e
da

sh
ed

an
d
so
lid

lin
es

re
sp
ec
tiv

el
y.

T
he

ta
rg
et
s
of

th
e
dr
on

es
ar
e
sh
ow

n
w
ith

pu
rp
le

ci
rc
le
s.

208

Figure 9.6: Simulation results for two car-like agents (left and right) and one youBot
base (middle) in a cluttered environment with narrow passages and some features to
obtain range and bearing information. The targets are depicted with purple circles.
The ellipses show the regions designed to be avoided by the trajectories of the centers
of the robots. Optimal planned trajectories for initial step are shown with solid lines.

209

Figure 9.7: Simulation results for two car-like agents (left and right) and one youBot
base (middle) in a cluttered environment with narrow passages and some features to
obtain range and bearing information. The targets are depicted with purple circles.
The ellipses show the regions designed to be avoided by the trajectories of the centers
of the robots. Typical execution trajectories for ε = 5% are shown with solid lines.

210

Figure 9.8: For the simulation scenario with two car-like agents and one youBot base,
a Monte Carlo analysis is performed to depict the average number of replannings and
their standard deviations for different noise levels.

211

III. OBSERVABILITY GRAMIAN

212

10. ON THE USE OF OBSERVABILITY GRAMIAN IN ROBOTIC PATH

PLANNING AND CONTROL

In this chapter, we use the theory of the previous sections, particularly, the T-

LQG theory to analyze a well-known heuristic in robotic path planning and control

that employs the observability Gramian of the system for planning under observation

uncertainty. We consider planning under process and measurement uncertainties. We

show that optimizing measures of the observability Gramian as a surrogate for the

estimation performance may provide irrelevant or misleading trajectories for planning

under observation uncertainty.

10.1 Introduction

The Observability Gramian (OG) is used to determine the observability of a

deterministic linear time-varying system [200, 201, 202]. For such systems, the prop-

erties of the OG have been well-studied [200, 203, 204]. When sensors provide noisy

stochastic measurements, the state is only partially observed. The general problem

of planning under process and observation uncertainties has been formulated as such

a stochastic control problem with noisy observations. However, the computational

hurdle for finding a solution to HJB equations has necessitated the study of a va-

riety of methods to approximate the solution [62, 61, 108, 59]. One approach has

been to maximize the estimation performance by planning for trajectories that can

exploit the properties of observation, process and a priori models. We examine the

appropriateness or lack thereof of methods based on the OG, and show that they

can provide misleading trajectories.

Borrowed from deterministic control theory, the OG has been exploited in order

to provide more observable trajectories, particularly in trajectory planing problems

213

[205, 206, 207, 208, 209, 210, 211]. In the special case of a diagonal observation

covariance with the same uncertainty level in each direction [200], the Standard

Fisher Information Matrix (SFIM) does reduce to the OG. Indeed the usage of the

OG in filtering problems has been justified through its connections to the SFIM and

its relations to the parameter estimation problem [212, 206]. In fact, tailored to the

parameter estimation problem, the SFIM only addresses the amount of information

in the measurements alone [200], and neglects both the prior information and process

uncertainty. Closely-related approaches are the methods that base their planning on

the observation model or the likelihood function [62, 213], and the analysis of this

chapter can be helpful in providing a better understanding of those problems.

In contrast, the Posterior FIM (PFIM), whose inverse coincides with the Posterior

Cramér-Rao Lower Bound for the estimation uncertainty in a general stochastic

problem [214], can capture the history of evolution of uncertainty in the problem.

In particular, for a linear system, it has been shown that the Riccati equations for

the covariance evolution of the state estimation resulting from the Kalman Filter

(KF) coincide with evolution of the PFIM in the form of the inverse covariance

or the information filter [214, 215, 216]. Indeed, it is only this measure that can

capture the entire information required to calculate the optimal policy along with

the nominal trajectory of a stochastic system. It is therefore no surprise that these

equations provide the evolution of the information state (the posterior or conditional

distribution of the state given the entire history of actions and observations) as the

sufficient statistic for decision-making through the Bayesian filtering equations.

In this chapter, through a series of analytic and numerical examples, we show

that the observability Gramian does not generally provide an appropriate solution

for the problem of planning under uncertain observations. We provide examples for

two commonly used nonlinear observation models including the range and squared-

214

range observation models that provide noisy information regarding the state of the

system with respect to a set of information sources or landmarks. The examples

show that the OG is insensitive to the uncertainty parameters of the problem, with

none of the three main covariances, i.e., process, observation or initial, appearing

quantitatively. Similarly, we show that the SFIM also suffers the same problems as

the OG.

The numerical examples illustrate the performance of simple planning problems

when a measure of the OG (or SFIM in special case) is utilized as the optimization

objective. In these examples, the trace of the error covariance, which represents

the sum of mean squared errors along the trajectory, is used as the measure of

performance of trajectory. In each example, the OG-based trajectory’s performance

is evaluated against both an initial trivial path and the optimized path with respect

to the trace of the covariance. The results indicate that for all three models there

are situations where the OG-based trajectory can perform significantly poorly with

respect to these two trajectories, including even the initial trivial path. In some

situations the trajectories produced are qualitatively similar, while their estimation

performances are very different.

On the other hand, due to some very special circumstances OG-based planning

may sometimes be close to the optimal outcome, and we provide such an example

too. The above examples shows that OG-based planning is not reliable. One of

the main reasons for usage of the OG-based method has been its relatively simpler

computation, in comparison to the Riccati equation. However, we show that while

there is a constant-factor computational difference in terms of the matrix calcula-

tions, a careful formulation of the original problem can lead to the same “order" of

computation as the OG-based problem.

We introduce the preliminary notations and definitions of the Gramian and some

215

OG-based measures in the next section. Then, we proceed to the analytic examples

in Section 10.3. In Section 10.4, we provide several formulations of planning problems

and describe the numerical simulation results.

10.2 Preliminaries

We begin with some preliminary definitions.

Process and observation models: Let x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu and z ∈ Z ⊂ Rnz

denote the state, control and observation vectors, respectively. We use boldface

variables to denote the vectors in lower case and matrices in upper case, respectively.

Let f : X×U×Rnu → X and h : X→ Z denote the general process and observation

models:

xt+1 = f(xt,ut,wt), wt ∼ N (0,Σw), (10.1a)

zt = h(xt,vt), vt ∼ N (0,Σv), (10.1b)

where {wt} and {vt} are zero mean independent, identically distributed (i.i.d.) mu-

tually independent random sequences, with N (m,Σ) denoting a normal distribution

with mean m and covariance Σ.

Parameterized Trajectories: Starting with an initial estimate, xp0 := x̂0, and

using a set of unknown control inputs {upt}K−1
t=0 , we parametrize the possible feasible

nominal trajectories of the system:

xpt+1 := f(xpt ,upt ,0), 0 ≤ t ≤ K−1,

zpt := h(xpt ,0), 1 ≤ t ≤ K.

Linearization of the system equations: We linearize the nonlinear motion and

216

observation models of equation (10.1) about the parametrized trajectory:

x̃t+1 = Atx̃t + Btũt + Gtwt, (10.2a)

z̃t = Htx̃t + Mtvt, (10.2b)

where x̃t := xt−xpt , ũt := ut−upt , and z̃t := zt−zpt denote the state, control and

observation errors, respectively, and

At := ∇xf(x,u,w)|xpt ,upt ,0,Bt := ∇uf(x,u,w)|xpt ,upt ,0,

Gt := ∇wf(x,u,w)|xpt ,upt ,0,Ht(xpt) := ∇xh(x,v)|xpt ,0,

Mt(xpt) := ∇vh(x,v)|xpt ,0.

Note that {xpt }Kt=0, {z
p
t}Kt=0, and the Jacobian matrices change upon change of the

underlying control inputs {upt}K−1
t=0 .

10.2.1 Observability Gramian

Observability Gramian: Let Ãt := Πt
τ=0Aτ denote the transition matrix of the

linearized system of (10.2) starting from time 0. Then, the (K+1)-step observability

Gramian corresponding to the nominal trajectory is defined as:

Qp
K+1 :=

K∑
t=0

ÃT
t HT

t HtÃt. (10.3)

The noise-less system of exactly linear equations is observable if and only if rank(Qp
nx−1) =

nx [200].

Note that as the control inputs upt change, Qp
K+1 changes, as well. This has

led to a variety of approaches to utilize the OG or some function of the OG as

a measure to optimize in the trajectory optimization problems. One motivating

217

factor, as mentioned above, is the low computational burden of computing the OG.

Another motivating factor for using the OG is its proven role in determining the

initial state, xp0, i.e., observability property of a deterministic system. However, in

the stochastic case, given (partial) information around the initial state, the goal is

to find trajectories where the state becomes more observable along the trajectory

(including, in particular, the final state, which may be important to goal-oriented

problems, as opposed to the initial state).

Measures of the Gramian: In several chapters, e.g., [212, 206], the following

scalar measures of the OG have been used with various interpretations related to the

uncertainty in the systems:

• Determinant of the inverse OG, det((Qp
K+1)−1) = det−1(Qp

K+1) (and sometimes

logarithm of it);

• Trace of the inverse OG, tr((Qp
K+1)−1);

• Negative trace of the OG, −tr(Qp
K+1);

• Inverse of the OG’s minimum eigenvalue, λ−1
min(Qp

K+1);

• Inverse of the OG’s maximum eigenvalue, λ−1
max(Qp

K+1);

• The condition number of the OG, κ(Qp
K+1).

10.2.2 Standard Fisher Information Matrix

A metric closely related to the Gramian is the SFIM the inverse of which is a lower

bound on the minimum attainable estimation covariance for a parameter estimation

problem as given by the Cramér-Rao lower bound [217]. The SFIM, FK , for the

218

system of equations (10.2) is calculated as [200]:

FK =
K∑
t=0

ÃT
t HT

t Σ−1
v HtÃK . (10.4)

Note that in the special case Σv = σInz with σ > 0, the SFIM reduces to a weighted

OG:

FK = 1
σ

K∑
t=0

ÃT
t HT

t HtÃK = 1
σ

Qp
K+1. (10.5)

10.2.3 Covariance Evolution

Information state: The posterior distribution of xt given the history of actions

and observations up to time-step t, pXt|Z0:t;U0:t−1,X0(x|z0:t; u0:t−1,x0), is referred to

as the information state. It is a sufficient statistic for the stochastic control problem

[2, 12]. In the linear Gaussian case, the covariance evolution of the information state

is specified by the Kalman filtering equations. The covariance evolution of the KF

becomes deterministic once the underlying nominal linearization trajectory of the

system equations is fixed:

P−t = At−1P+
t−1AT

t−1 + Gt−1ΣwGT
t−1, (10.6a)

St = HtP−t HT
t + MtΣvMT

t , (10.6b)

P+
t = (I−P−t HT

t S−1
t Ht)P−t , P+

0 = Σx0 . (10.6c)

10.3 Analytic Evaluation of OG-Based Designs

In this section, we provide two examples based on commonly used range and

range-squared observation models in order to compare the amount of information

and the different aspects of the models, such as stochasticity captured by the OG,

219

the SFIM, and the PFIM equations.

System equations: In the examples of this section, we have x ∈ R2, u ∈ R2,

z ∈ R, and K > 1. Moreover, the process and observation models are:

xt+1 = xt + ut + wt, wt ∼ N (0,Σw), (10.7a)

zt = h(xt) + vt, vt ∼ N (0,Σv), (10.7b)

where {wt} and {νt} are zero mean i.i.d. random sequences that are mutually inde-

pendent of each other, xt = [xt, yt]T , Σw = diag(σwx , σwy), Σv = σν , and the initial

state is distributed as x0 ∼ N (x̂0,Σx0), where Σx0 = diag(σx0 , σy0). Later in the

simulations, we will consider a non-diagonal initial covariance, as well. Note that

except for Ht, the other Jacobians of the above system are common to all examples,

and are At = I2,Bt = I2,Gt = I2, and Mt = I1. As a result, Ãt = I2, t ≥ 0.

10.3.1 Range-Only Example

Our first example involves an observation that acquires the range information rel-

ative to an information source located at the origin; i.e., h(xt) = rt =:
√

(xt)2 + (yt)2.

The Jacobian of the observation model is Ht = (xt
rt
, yt
rt

).

The OG calculations: The OG for this system model is

Qp
K+1 =

K∑
t=0

x2
t

r2
t

xtyt
r2
t

xtyt
r2
t

y2
t

r2
t

 .

Note that the determinant of the OG is

det(Qp
K+1) = (

K∑
t=0

x2
t

r2
t

)(
K∑
t=0

y2
t

r2
t

)− (
K∑
t=0

xtyt
r2
t

)2 > 0, (10.8)

which is positive using the Cauchy-Schwarz inequality, excluding situations where the

220

trajectories of the two coordinates are linearly dependent (which includes a situation

in which either coordinate’s trajectory is entirely zero, or a situation that the state

trajectory is a straight line whose extension can pass the origin). Therefore, except

for these degenerate situations this system is observable. The trace of the OG is

tr(Qp
K+1) = K + 1, (10.9)

which is a constant, insensitive to the underlying trajectory.

Eigenvalues and condition number: The eigenvalues of the OG are:

K + 1
2 ±

√√√√(K + 1
2)2 − ((

K∑
t=0

x2
t

r2
t

)(
K∑
t=0

y2
t

r2
t

)− (
K∑
t=0

xtyt
r2
t

)2).

Once again, just like the other quantities related to the OG, this quantity lacks the

ability to capture the uncertainty-related aspects of the problem.

SFIM calculations: Since the covariance of the observations is a constant, the

SFIM reduces to the form represented in equation (10.5), and tr(Fp) = σ−1
ν tr(Qp

K+1) =

σ−1
ν (K + 1), which is a constant, insensitive to the underlying trajectory, just like

the trace of the OG. In fact, the SFIM is just a constant multiplier of the OG both

in this and all subsequent examples.

Covariance of the estimation calculations: The Riccati equations of (10.6) for the

evolution of the estimation covariance, in contrast, provide a different perspective

than the OG and the SFIM. Starting from the initial covariance P+
0 = Σx0 , the

covariance is:

P+
1 =

(σx0 + σxw)− (σx0 +σxw)2

S1

x2
t

r2
t

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt
r2
t

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt
r2
t

(σy0 + σyw)− (σy0 +σyw)2

S1

y2
t

r2
t

 , (10.10)

221

which shows that the covariance ceases to be a diagonal after just one time step.

Finally, the trace of the updated covariance at time-step one is:

tr(P+
1) =(σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν

(σx0 + σxw)x
2
t

r2
t

+ (σy0 + σyw)y
2
t

r2
t

+ σν
. (10.11)

Unlike in the case of the OG and the SFIM, minimization based on the covariance

information is indeed sensitive to the underlying trajectory. In fact, this dependence

is revealed after just one step of the Riccati equation’s update.

10.3.2 Bearing-Only Example

We consider the same system model as in equation (10.7), except that instead of

a range-only observation model, we assume an absolute bearing-only model where

h(xt) = atan2(yt, xt). Therefore, Ht = (− yt
r2
t
, xt
r2
t
).

The OG calculations: The OG for this system model is

Qp
K+1 =

K∑
t=0

y2
t

r4
t

−xtyt
r4
t

−xtyt
r4
t

x2
t

r4
t

 .

Once again, the determinant of the OG is

det(Qp
K+1) = (

K∑
t=0

x2
t

r4
t

)(
K∑
t=0

y2
t

r4
t

)− (
K∑
t=0

xtyt
r4
t

)2 > 0,

which is again positive except in degenerate situations.

Therefore, the trace of the OG is

tr(Qp
K+1) =

K∑
t=0

1
r2
t

, (10.12)

maximizing which leads to trajectories that are closer to the origin, where the infor-

222

mation source is indeed located. Just as in the previous example, for this system too

the SFIM measure also produces similar results.

Estimation covariance: Similar to the range-only example, given P+
0 = Σx0 , P+

1

is

P+
1 =

(σx0 + σxw)− (σx0 +σxw)2

S1

y2
t

r4
t

(σx0 +σxw)(σy0 +σyw)
S1

xtyt
r4
t

(σx0 +σxw)(σy0 +σyw)
S1

xtyt
r4
t

(σy0 + σyw)− (σy0 +σyw)2

S1

x2
t

r4
t

 . (10.13)

Lastly, the trace of the updated covariance at time-step one is

tr(P+
1) =(σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν

(σx0 + σxw)y
2
t

r4
t

+ (σy0 + σyw)x
2
t

r4
t

+ σν
. (10.14)

It is notable that even after just one step, the result of filtering equation differs

dramatically from that of the OG or SFIM-based measures. Unlike equation (10.12),

this result does not suggest a uniform radial movement towards the origin. Rather,

it suggests paths that are dependent and sensitive to the direction of movement with

regards to the uncertainty reduction in those directions.

10.3.3 Range-Squared-Only Example

Last, we consider a model that is often used in place of the range-only model

and show that the behavior of the OG changes even by a simple squaring of the

observation model. We have h(xt) = 1
2r

2, with Jacobian given by Ht = (xt, yt).

The OG calculations: The OG is

Qp
K+1 =

K∑
t=0

 x2
t xtyt

xtyt y2
t

 .

223

Its determinant is

det(Qp
K+1) = (

K∑
t=0

x2
t)(

K∑
t=0

y2
t)− (

K∑
t=0

xtyt)2 > 0, (10.15)

which is again taken to positive, assuming non-degenerateness.

The trace of the OG is

tr(Qp
K+1) =

K∑
t=0

r2
t ,

maximizing which suggests trajectories that are further from the origin. We note

that a simple squaring of the range produces exactly the opposite result, showing the

inappropriateness of an OG-based design and requirement of a careful investigation

with the covariance-based design. As in the previous examples the SFIM measure

also produces similar results.

Estimation covariance: Similar to the previous two examples, given P+
0 = Σx0 ,

the updated covariance is

P+
1 =

(σx0 + σxw)− (σx0 +σxw)2

S1
x2
t − (σx0 +σxw)(σy0 +σyw)

S1
xtyt

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt (σy0 + σyw)− (σy0 +σyw)2

S1
y2
t

 . (10.16)

Last, the trace of the updated covariance at time-step one is

tr(P+
1)=(σx0 + σxw)(σy0 + σyw)r2

t +(σx0 + σxw + σy0 + σyw)σν
(σx0 + σxw)x2

t + (σy0 + σyw)y2
t + σν

. (10.17)

Once again, this result shows that, even after just one time step, the filtering equation

provides very different and reasonable solutions than the OG or SFIM measures.

Unlike equation (10.16), this result does not suggest a uniform radial movement

224

away from the origin; rather, it suggests paths that are dependent and sensitive to

the direction of movement taking into account the uncertainty reductions in those

directions.

10.3.4 Observations

Equations (10.11) and (10.17), which represent the trace of the PFIM in each

case, provide far more valuable information than the any measure of the OG:

• The trace of the updated PFIM depends on the underlying trajectory. In con-

trast, the trace of OG can become a constant regardless of the noise covariances,

e.g., (10.9);

• PFIM, takes into account the uncertainties in each direction. In contrast, the

OG-based design can be insensitive to the directions involved;

• The trace of the updated covariance is dependent on the previous covariance

of the state estimation;

• The trace of covariance depends on both the observation and process noise

covariances; and

• PFIM’s dependence on the process, observation and previous (history of un-

certainty and prior) covariances is not uniform in each direction. However,

measures of the OG are insensitive to such covariances.

10.4 Comparison of Trajectory Planning Approaches

In this section, we consider an optimal control problem that is common in path

planning and control problems, particularly in robotic systems. We introduce the

general problem and describe a commonly used surrogate open-loop optimal control

problem whose cost function is a measure of the OG. Finally, we compare the above

approaches with belief space variant of T-LQG [218, 196], which optimizes the un-

225

derlying trajectory of an LQG system aiming for the best estimation performance.

This problem utilizes the trace of the covariance as the optimization objective and is

accompanied by a separate feedback design implemented in the execution of the pol-

icy. In the previous chapters, we have proven the near-optimality of this framework

under a small-noise assumption [196, 161].

Problem 16 General Stochastic Control Problem Given x0 ∼ p(x0), solve for

the optimal policy:

min
π

E[
K−1∑
t=0

cπt (xt,ut) + cπK(xK)]

s.t. xt+1 = f(xt,ut,wt) (10.18a)

zt = h(xt,vt), (10.18b)

where the optimization is over feasible policies, �, and:

• π ∈ �, π := {π0, · · · , πt}, πt : Zt+1 → U ;

• ut = πt(z0:t) specifies an action given the entire output of the system from the

beginning up to time-step t, z0:t;

• cπt (·, ·) : X× U→ R is the one-step cost function;

• cπK(·) : X→ R denotes the terminal cost; and K > 0.

Problem 17 OG-Based Trajectory Optimization Problem Solve for the op-

timal trajectory:

min
up0:K−1

g(Qp
K+1) +

K∑
t=1

(upt−1)TWu
t u

p
t−1

s.t. xpt+1 = f(xpt ,upt , 0), 0≤ t≤K−1 (10.19a)

xp0 = Ex[p(x0)] (10.19b)

226

||xpK − xg||2 < rg (10.19c)

||upt ||2 ≤ ru, 1≤ t≤K, (10.19d)

where the optimization is over feasible controls, g : Rnx×nx → R represents a specific

operation on the OG, such as trace, determinant, etc., Wu
t � 0, ru > 0, and rg > 0

and xg ∈ X specify the goal region.

Problem 18 T-LQG Planning Problem [196] Solve for the optimal linearization

trajectory of the LQG policy:

min
up0:K−1

K∑
t=1

[tr(P+
bpt

) + (upt−1)TWu
t u

p
t−1]

s.t. P−t = At−1P+
t−1AT

t−1 + Gt−1Σwt−1GT
t−1 (10.20a)

St = HtP−t HT
t + MtΣvtMT

t (10.20b)

P+
t = (I−P−t HT

t S−1
t Ht)P−t , P+

0 = Σx0 (10.20c)

xp0 = Ex[p(x0)] (10.20d)

xpt+1 = f(xpt ,upt , 0), 0≤ t≤K−1 (10.20e)

||xpK − xg||2 < rg (10.20f)

||upt ||2 ≤ ru, 1≤ t≤K, (10.20g)

where the optimization is over feasible controls, and equations (10.20a)-(10.20c) rep-

resent one iteration of the Riccati equation to calculate the first term of the objective.

We now describe the performance of the above approaches. We perform several

numerical simulations for various initial, process and observation uncertainties for

both of the problems (17) and (18) and all three observation models.

227

First, we provide an example for the range-squared observation model, where

we show that the trajectory provided by the OG-based problem of (17) can signifi-

cantly under-perform in terms of reducing the estimation uncertainty. We show that

planning based on the OG can result in undesirable trajectories for these partially

observed problems, which stems from the fact that the OG is insensitive to the un-

certainty parameters of the problem and provides the same result regardless of the

changes in the three covariances.

Next, we provide an example for the other model where qualitatively the output

trajectories of the two problems resemble each other, but the covariance evolution

results in the slight differences in the state trajectory contributing to a significant

difference in the qualities of the trajectories in terms of the filters’ performances.

Lastly, we provide an example showing that when the intensity of noises tends to

zero (particularly, if the sensor noise is very low), the performances of the OG-based

and covariance-based trajectories tend to be close to each other. All our simulations

are performed in MATLAB 2016b using the fmincon solver.

For all the figures that depict the state trajectories:

• x ∈ R2, u ∈ R2, z ∈ R, and K = 7;

• Wu
t = 0I2, ru = 0.8, rg = 0.1 and xg = (−1, 2.25)T , which is indicated by a

purple circle in the figures;

• The units of the axes are in meters;

• The initial estimate is x̂ = (−1.5,−0.5)T , which is indicated by a green dia-

mond in the figures;

• The information sources are located at the centers of the light areas in the

figures;

228

• The initial trajectory for the solver, indicated with a dashed orange line, con-

sists of three straight segments passing through (−1.5,−0.5)T , (−1.4, 0.21)T ,

(−1.1, 1.369)T , and (−1, 2.25)T . Hence, the deterministic system is observable

for all three models; and

• The optimized trajectory is shown by a solid cyan line.

10.4.1 Range-Squared-Only Observations

Figures 10.1a and 10.1b show the results of the simulations for the range-squared-

only observation model using the condition number of the OG and the trace of the

covariance along the trajectory as the cost function, respectively. Information sources

are at (0.2, 0)T , (0.5, 0.3)T , and (2, 1)T , and

Σx0 =

0.025 0.002

0.002 0.025

 ,Σw =

0.3 0.0

0.0 0.1

 ,Σv = 0.1.

Figure 10.2a shows the evolution of the trace of covariance along the trajectories.

While it is expected that the trajectory deigned based on the covariance evolution

performs better than the other ones, it is surprising to observe that the OG-based

trajectory actually under-performs the initial trajectory as well. Even though we

have only shown the results of the simulation for the condition number of OG, the

interested reader can find a more detailed set of experiments with other measures

of the Gramian in in the next sections, which parallel the results provided here.

The quantitative result of Fig. 10.2a, along with the qualitative difference in the

trajectories as indicated in Fig. 10.1, indicate that a measure of the OG is not

a reliable measure to optimize in a problem with initial, process and observation

uncertainties.

229

(a) Range-squared, OG-Based (b) Range-squared, Cov-Based

(c) Range, OG-Based (d) Range, Cov-Based

Figure 10.1: Simulation results for the planning problem (17) based on the condition
number of the OG for range-squared and range observation models in (a) and (c),
and the planning problem (18) using the trace of the covariance for range-squared
and range observation models in (b) and (d), respectively. The information sources
are located at the centers of the light areas. The dashed orange line represents the
initial trajectory, while the solid cyan line shows the optimized trajectory.

10.4.2 Range-Only Observations

Figures 10.1c and 10.1d show the results of the similar simulations for the range-

only observation model with the condition number of the OG and the trace of the

230

(a) Range-squared (b) Range

Figure 10.2: Evolution of the trace of the covariance along the trajectory for the
initial trajectory, with optimization based on the OG measure, and optimization
based on the covariance measure of the trajectories in Fig. 10.1.

covariance as the cost function, respectively. Information sources are at (0.2, 0)T ,

and (0.6, 0.3)T , and

Σx0 =

0.25 0

0 0.25

 ,Σw =

0.1 0

0 1

 ,Σv = 0.015.

Figure 10.2b shows the covariance evolution for the trajectories of this simulation,

which resembles the results of Fig. 10.2a.

10.4.3 Bearing-Only Observations

Figure 10.5 shows the results of simulations for the bearing-only observation

model, where in Fig. 10.5a the condition number of the observability Gramian is

utilized as the cost function, whereas in Fig. 10.5b, optimization problem (18) is

solved using the trace of the covariance along the trajectory as the cost function.

231

(a) OG-Based Trajectory (b) Cov-Based Trajectory

Figure 10.3: Range-only observation model: a) The optimized state trajectory of the
planning problem (17) using the condition number of the OG as the cost function,
b) The optimized state trajectory of the planning problem (18) using the trace of the
covariance as the cost function. The information sources are located at the centers
of the light areas. The dashed orange line represents the initial trajectory, while the
solid cyan line shows the optimized trajectory.

For the simulations of this figure, we have

Σx0 =

0.25 0.2

0.2 0.25

 ,Σwt =

0.1 0

0 0.1

 ,Σvt = 0.02.

Similar to the previous case, for this experiment, two information sources are located

at (0.1, 0.8)T , and (0.1, 1.4)T .

Figures 10.2b and 10.6 show the trace of the covariance evolution for the range and

bearing models. As indicated in the figures, qualitative resemblance of the trajecto-

ries for covariance based optimization and OG-based optimization does not translate

directly to the same quality in estimation performance. Indeed, the OG-based tra-

jectories under-perform their covariance-based optimized counterparts significantly.

232

Figure 10.4: Range observation model. Evolution of the trace of the covariance along
the trajectory for the initial trajectory, with optimization based on the OG measure,
and optimization based on the covariance measure of the trajectories in Fig. 10.3.

10.4.4 Another Range-Only Scenario

Last, Figs. 10.3a and 10.3b show the results of another set of simulations for the

range-only observation model using condition number of the OG and the trace of the

covariance, respectively. Information sources are located at (0, 1)T , (0.5, 0.5)T , and

(0.1, 1.4)T , and

Σx0 =

0.02 0

0 0.02

 ,Σw =

0.1 0

0 0.1

 ,Σv = 0.0001.

In this experiment, the reduced noise covariances, particularly the observation

covariance, lead to the high quality of measurements from a broad class of trajecto-

ries. As a result, the trace of covariance evolution of Fig. 10.3 indicates only a slight

233

(a) OG-Based Trajectory (b) Cov-Based Trajectory

Figure 10.5: Bearing-only observation model: a) The optimized state trajectory of
the planning problem (17) using the condition number of the OG as the cost function,
b) The optimized state trajectory of the planning problem (18) using the trace of the
covariance as the cost function. The information sources are located at the centers
of the light areas. The dashed orange line represents the initial trajectory, while the
solid cyan line shows the optimized trajectory.

difference between the three trajectories.

Remark: It should be noted that in all the figures, since the state trajectories

are softly constrained to reach to the same goal region at the end of the navigation,

the covariance evolutions converge to each other towards the end of the trajectories.

Table 10.1: Simulation results of cost, constraint satisfaction, and time to optimize
in the optimization problems of Figs. 10.1, 10.5, and 10.3.

Fig. 10.1a Fig. 10.1b Fig. 10.1c Fig. 10.1d Fig. 10.5a Fig. 10.5b Fig. 10.3a Fig. 10.3b

Initial Cost 5.24946 0.23473 5.74254 2.62537 4.07897 1.88394 3.27267 0.00798
Final Cost 1 0.12019 1 0.65005 1 0.37949 1 0.00357

Initial
Constraint -0.09972 -0.09972 -0.09972 -0.09972 -0.09972 -0.09972 -0.09972 -0.09972

Final
Constraint -0.00301 1.89e-09 -0.05709 3.37e-11 -0.06375 2.91e-11 -0.00739 1.15e-10

Simulation
Time (s) 3.6230 2.6583 2.6180 3.3281 1.1509 1.7805 2.3298 3.3330

234

Figure 10.6: Bearing observation model. Evolution of the trace of the covariance
along the trajectory for the initial trajectory, with optimization based on the OG
measure, and optimization based on the covariance measure of the trajectories in
Fig. 10.5.

235

This is due to the fact that in the Bayesian filtering, the latest observations (which

arise from the same region in the state space) carry a higher weight than the prior

history. As a result, in comparing the covariance evolutions, the variations in the

behavior along the entire trajectory is of concern since a highly certain trajectory

can lead to safer navigation, particularly, in a complex environment with obstacles,

banned areas or multiple agents.

Remark: Table 10.1 summarizes some of the results regarding the optimization

problems solved for Figs. 10.1, 10.5, and 10.3, such as the initial and final values

(after reaching a local minimum) of the cost and constraint satisfaction, and the

simulation time to solve the optimization problem. As shown in this table, the

optimization significantly reduces the cost in each scenario.

Remark: Finally, note that the simulation times to solve the optimization problem

for all cases are of the same order, which stems from the fact that the computation

complexity of both the problems (17) and (18) is O(Kn3
x) [196].

10.5 Detailed Analysis Using Various Measures and Parameters

In this section, first, we provide results of our simulations for planning problem of

(17) using different measures of the OG as the cost function, and show that different

measures of the OG can provide inconsistent results for a single observation model.

Then, we perform some simulations to show the sensitivity of the covariance-based

trajectories on the initial uncertainty, process and observation noise uncertainties. In

particular, we simulate the problem of (18) which utilizes the covariance evolution

and by depicting the resulting trajectories, we show qualitatively that by chang-

ing any of the noise parameters, the optimal trajectories can change significantly.

This is particularity important, because, as we showed in Section 10.4, any quali-

tative change of the trajectory can result in a dramatic change in the quantitative

236

performance of the covariance evolution. We also showed in Section 10.4 that two

trajectories that resemble to each other qualitatively, can be very different in terms

of their quantitative covariance evolution performance. As a result, the OG-based

trajectories, which are insensitive to any noise parameters of the problem, can often

show poor performance. Other application areas to the stochastic analysis can be in

[219, 220].

Figures 10.7, 10.8, and 10.9 show the results of optimization problem (17) for all

the measures of the OG that are indicated in Section 10.2.1 for range-only, bearing-

only, and range-squared-only observation models, respectively. As it is shown in these

figures, different measures of the observation Gramian can result in very different

trajectories. For instance, Figs. 10.7a, 10.7b, 10.7d, and 10.7f suggest maneuvering

towards the observation source in this situation, whereas Fig. 10.7c is indifferent to

the observation source and Fig. 10.7e suggests a more complicated maneuver. Sim-

ulations for other observation models also indicate similar conjecture. Nevertheless,

it is very important to note that depending on the noise parameters of the problem,

any of these results can become misleading, undesirable, or even contradicting with

the optimal maneuvers according to the covariance measure’s development along the

trajectory.

Figure 10.10 shows the simulation results of problem (18) for all three models

and two different observation noise covariances. Moreover, in this figure, the initial

noise is correlated in different directions. As it is seen in this figure, the optimal

trajectory can change significantly based on the observation noise intensity. This

is more obvious for the range-squared observation model, where the observation

covariance decreases from 0.01 in Fig. 10.10c to 0.00001 in Fig. 10.10f.

Similarly, Fig. 10.11 shows the results of simulations of problem (18) for all

observation models, however, in this case, the observation covariance is fixed and the

237

intensity of the initial and process noise covariances in different directions is changed

to show the effect of different levels of noise in different directions. In particular, for

the set of figures in the first row, the process and initial noise are more intense in x

direction; for the second row, the intensity of the process noise is more in y direction,

while the intensity of initial noise is more in x direction; and, for the third raw, the

noise intensities are the same in both directions. Once again, unlike these figures,

the OG-based optimization would be insensitive to any of these changes, which can

lead to poor performances.

Last, Tables 10.2, 10.3, 10.4, 10.6, and 10.5 show the optimization problems’

results of Figs. 10.7, 10.8, 10.9, 10.10, and 10.11.

Remark: Note that we used very simple models and scenarios to focus specifically

on the effect of changing the measure and avoid complications caused by complex

models, environments, or even higher dimensionality. Nevertheless, our results show

that even in very simple situations the quantitative performance of the system can

change dramatically based on the qualitative changes of the trajectory, and only the

theoretically sound and proven method of planning based on problem (18) should be

utilized in these problems for optimal, desirable and safe performance of the system.

Table 10.2: The OG-based planning (range-only): Initial and final costs and con-
straint satisfaction for simulations of Fig. 10.7.

Fig. 10.7a Fig. 10.7b Fig. 10.7c Fig. 10.7d Fig. 10.7e Fig. 10.7f

Initial
Cost 0.14553 1.01874 -7 0.84689 0.17184 4.9282
Final
Cost 0.08163 0.57142 -7 0.28571 0.14792 1

Initial
Con-

straint
-0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997

Final
Con-

straint
1.8e-07 4.3e-11 -0.0997 -0.0022 4.8e-12 -0.0230

238

Table 10.3: The OG-based planning (bearing-only): Initial and final costs and con-
straint satisfaction for simulations of Fig. 10.8.

Fig. 10.8a Fig. 10.8b Fig. 10.8c Fig. 10.8d Fig. 10.8e Fig. 10.8f

Initial
Cost 1.15314 2.98925 -2.5922 2.53422 0.45502 5.5693
Final
Cost 2.6e-10 1.2e-10 -4e+10 1.7e-10 7.1e-13 1

Initial
Con-

straint
-0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997

Final
Con-

straint
-4.6e-05 -0.0282 -0.0008 -0.0073 9.5e-11 -0.0085

Table 10.4: The OG-based planning (range-squared-only): Initial and final costs and
constraint satisfaction for simulations of Fig. 10.9.

Fig. 10.9a Fig. 10.9b Fig. 10.9c Fig. 10.9d Fig. 10.9e Fig. 10.9f

Initial
Cost 0.00099 0.08823 -88.39 0.07490 0.01332 5.6216
Final
Cost 7.1e-05 0.02040 -374.24 0.01315 0.00289 1

Initial
Con-

straint
-0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997

Final
Con-

straint
1.3e-06 4.3e-08 2.9e-10 2.1e-08 2.8e-07 -0.0006

10.6 Calculations of the Observability Gramian

First let us provide some calculations related to 2× 2 matrices which are used to

calculate the specific formulas provided in the chapter. Let us assume matrix A is

given as follows:

A =

a b

c d

 .

239

Table 10.5: The covariance-based planning: Initial and final costs and constraint
satisfaction for simulations of Fig. 10.10.

Fig. 10.10a Fig. 10.10b Fig. 10.10c Fig. 10.10d Fig. 10.10b Fig. 10.10c

Initial
Cost 0.07543 0.08893 0.04441 0.03409 0.03516 0.03395
Final
Cost 0.06088 0.02678 0.02622 0.01230 0.01268 0.01231

Initial
Con-

straint
-0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997

Final
Con-

straint
2.6e-06 -2.0e-14 8.2e-10 3.0e-09 1.2e-09 6.5e-08

(a) Det. of Inverse (b) Trace of Inverse (c) Negated Trace

(d) Inverse of Min E.V. (e) Inverse of Max E.V. (f) Condition Number

Figure 10.7: The OG-based planning (range-only): Simulation results for range-only
observation model, where the caption indicates the measure of Gramian used in the
planning problem (17). The information sources are located at the centers of the
light areas. The dashed orange line represents the initial trajectory, while the solid
cyan line shows the optimized trajectory.

240

(a) Det. of Inverse (b) Trace of Inverse (c) Negated Trace

(d) Inverse of Min E.V. (e) Inverse of Max E.V. (f) Condition Number

Figure 10.8: The OG-based planning (bearing-only): Simulation results for bearing-
only observation model, where the caption indicates the measure of Gramian used in
the planning problem (17).The information sources are located at the centers of the
light areas. The dashed orange line represents the initial trajectory, while the solid
cyan line shows the optimized trajectory.

Table 10.6: The covariance-based planning: Initial and final costs and constraint
satisfaction for simulations of Fig. 10.11.

Fig. 10.11a Fig. 10.11b Fig. 10.11c Fig. 10.11d Fig. 10.11e Fig. 10.11f Fig. 10.11g Fig. 10.11h Fig. 10.11i

Initial
Cost 0.08307 0.11604 0.05603 0.08279 0.11366 0.04595 0.07431 0.09116 0.04479
Final
Cost 0.07040 0.03591 0.03410 0.06840 0.03937 0.02927 0.06145 0.02694 0.02746

Initial
Con-

straint
-0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997 -0.0997

Final
Con-

straint
1.6e-05 4.5e-07 4.1e-09 2.6e-05 1.4e-09 3.8e-09 4.3e-08 1.5e-10 1.3e-08

241

(a) Det. of Inverse (b) Trace of Inverse (c) Negated Trace

(d) Inverse of Min E.V. (e) Inverse of Max E.V. (f) Condition Number

Figure 10.9: The OG-based planning (range-squared-only): Simulation results for
range-squared-only observation model, where the caption indicates the measure of
Gramian used in the planning problem (17). The information sources are located at
the centers of the light areas. The dashed orange line represents the initial trajectory,
while the solid cyan line shows the optimized trajectory.

Then, the determinant of A is det(A) = ad− bc, and its trace equals tr(A) = a+ d.

Moreover, the eigenvalues of A, denoted by λ1 and λ2 can be calculated using the

equations Ax = λix, for i = 1, 2. As a result, it can be easily proven that the

eigenvalues of A are the roots of the characteristic equation of λ2−(a+d)λ+ad−bc =

0, and therefore are:

λ1 = 1
2(a+ d) + 1

2
√

(a+ d)2 − 4(ad− bc),

λ2 = 1
2(a+ d)− 1

2
√

(a+ d)2 − 4(ad− bc),

242

(a) Range (b) Bearing (c) Range-Squared

(d) Range (e) Bearing (f) Range-Squared

Figure 10.10: Covariance-based planning (correlated initial noise, effect of observa-
tion noise covariance): Simulation results for all three observation models and two
different observation noise covariances, and a correlated initial covariance, where the
caption indicates the observation model used in the planning problem (18). For both
rows, Σx0 = (0.005, 0.001; 0.001, 0.005), and Σwt = diag(0.001, 0.001). For the first
row, Σvt = 0.01 and for the second row, Σvt = 0.00001. The information sources are
located in the centers of the light areas. The dashed orange line represents the initial
trajectory, while the solid cyan line shows the optimized trajectory.

where λ1 > λ2. Therefore, the condition number of A, is given as follows:

κ(A) = λmax

λmin

=
(a+ d) +

√
(a+ d)2 − 4(ad− bc)

(a+ d)−
√

(a+ d)2 − 4(ad− bc)
,

243

(a) Range (b) Bearing (c) Range-Squared

(d) Range (e) Bearing (f) Range-Squared

(g) Range (h) Bearing (i) Range-Squared

Figure 10.11: Covariance-based planning (effect of initial and process noise covari-
ances): Simulation results for all three observation models and various different initial
and process noise covariances, where the caption indicates the observation model
used in the planning problem (18). For the first row, Σx0 = diag(0.005, 0.002),
Σwt = diag(0.003, 0.001). For the second row, Σx0 = diag(0.005, 0.001),
Σwt = diag(0.001, 0.003). For the third row, Σx0 = diag(0.005, 0.005), Σwt =
diag(0.005, 0.005). For the entire simulation, Σvt = 0.01. The information sources
are located in the centers of the light areas. The dashed orange line represents the
initial trajectory, while the solid cyan line shows the optimized trajectory.

244

where κ(A) ≥ 1. Therefore, in order to make κ(A) = 1, we must have (a + d)2 =

4(ad−bc) or for 2 by 2 matrix, (tr(A)/2)2 = det(A). On the other hand, if det(A) > 0

the inverse of A is given as follows:

A−1 = 1
ad− bc

 d −b

−c a

 .

Therefore, for a 2 by 2 matrix, det(A−1) = 1/ det(A) = 1/(ad− bc) and tr(A−1) =

(a+ d)/(ad− bc) = tr(A)/ det(A). Next, we provide the calculations related to the

specific formulas provided in the chapter.

10.6.1 Range-Only Model

The OG calculations: Let us use the definition of the OG in equation (10.3) to

calculate the OG for this system model as:

Qp
K+1 =

K∑
t=0

ÃT
t HT

t HtÃt

=
K∑
t=0

(xt
rt
,
yt
rt

)T (xt
rt
,
yt
rt

)

=
K∑
t=0

x2
t

r2
t

xtyt
r2
t

xtyt
r2
t

y2
t

r2
t

 .

Calculations of the trace:

tr(Qp
K+1) = tr(

K∑
t=0

x2
t

r2
t

xtyt
r2
t

xtyt
r2
t

y2
t

r2
t

)

=
K∑
t=0

tr(

x2
t

r2
t

xtyt
r2
t

xtyt
r2
t

y2
t

r2
t

)

245

=
K∑
t=0

(x
2
t

r2
t

+ y2
t

r2
t

)

= K + 1.

10.6.2 Bearing-Only Model

The OG calculations: Let us use the definition of the OG in equation (10.3) to

calculate the OG for this system model as:

Qp
K+1 =

K∑
t=0

ÃT
t HT

t HtÃt

=
K∑
t=0

(− yt
r2
t

,
xt
r2
t

)T (− yt
r2
t

,
xt
r2
t

)

=
K∑
t=0

y2
t

r4
t

−xtyt
r4
t

−xtyt
r4
t

x2
t

r4
t

 .

Therefore, the trace of the OG can be calculated as:

tr(Qp
K+1) = tr(

K∑
t=0

y2
t

r4
t

−xtyt
r4
t

−xtyt
r4
t

x2
t

r4
t

)

=
K∑
t=0

tr(

y2
t

r4
t

−xtyt
r4
t

−xtyt
r4
t

x2
t

r4
t

)

=
K∑
t=0

(x
2
t

r4
t

+ y2
t

r4
t

)

=
K∑
t=0

1
r2
t

,

246

10.6.3 Range-Squared-Only

The OG calculations: Let us calculate the OG for this system as follows:

Qp
K+1 =

K∑
t=0

ÃT
t HT

t HtÃt

=
K∑
t=0

(xt, yt)T (xt, yt)

=
K∑
t=0

 x2
t xtyt

xtyt y2
t

 .

Therefore, the trace of the OG can be calculated as:

tr(Qp
K+1) = tr(

K∑
t=0

 x2
t xtyt

xtyt y2
t

)

=
K∑
t=0

tr(

 x2
t xtyt

xtyt y2
t

)

=
K∑
t=0

(x2
t + y2

t)

=
K∑
t=0

r2
t .

10.7 Calculations of the Covariance Evolution

10.7.1 Range-Only Model

First, we calculate P−1 , which will be used for the other examples, as well:

P−1 = A0P+
0 (A0)T + G0Σw0(G0)T

= Σx0 + Σw0

= diag(σx0 + σxw, σ
y
0 + σyw). (10.21)

247

Then, we have:

S1 = H1P−1 (H1)T + M1Σv1(M1)T

= (xt
rt
,
yt
rt

)

σx0 + σxw 0

0 σy0 + σyw

 (xt
rt
,
yt
rt

)T + σν

=
(

(σx0 + σxw)xt
rt
, (σy0 + σyw)yt

rt

)
(xt
rt
,
yt
rt

)T + σν

= (σx0 + σxw)x
2
t

r2
t

+ (σy0 + σyw)y
2
t

r2
t

+ σν ,

and

K1 = P−1 (H1)TS−1
1

= S−1
1

σx0 + σxw 0

0 σy0 + σyw

 (xt
rt
,
yt
rt

)T

= S−1
1

(
(σx0 + σxw)xt

rt
, (σy0 + σyw)yt

rt

)T
,

and

P+
1 = (I2 −K1H1)P−1

= [I2 − S−1
1

(σx0 + σxw)xt
rt

(σy0 + σyw)yt
rt

 (xt
rt
,
yt
rt

)]P−1

= (I2 − S−1
1

 (σx0 + σxw)x
2
t

r2
t

(σx0 + σxw)xtyt
r2
t

(σy0 + σyw)xtyt
r2
t

(σy0 + σyw)y
2
t

r2
t

)P−1

=

1− (σx0 +σxw)
S1

x2
t

r2
t
− (σx0 +σxw)

S1

xtyt
r2
t

− (σy0 +σyw)
S1

xtyt
r2
t

1− (σy0 +σyw)
S1

y2
t

r2
t

248

×

σx0 + σxw 0

0 σy0 + σyw

=

(σx0 + σxw)− (σx0 +σxw)2

S1

x2
t

r2
t

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt
r2
t

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt
r2
t

(σy0 + σyw)− (σy0 +σyw)2

S1

y2
t

r2
t

 .

Therefore, the trace of the updated covariance at time-step one is:

tr(P+
1) = (σx0 + σxw)− (σx0 + σxw)2

S1

x2
t

r2
t

+ (σy0 + σyw)− (σy0 + σyw)2

S1

y2
t

r2
t

= (σx0 + σxw)− (σx0 + σxw)2x2
t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σνr2
t

+ (σy0 + σyw)− (σy0 + σyw)2y2
t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σνr2
t

= (σx0 + σxw)(σy0 + σyw)y2
t + (σx0 + σxw)σνr2

t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σνr2
t

+ (σy0 + σyw)(σx0 + σxw)x2
t + (σy0 + σyw)σνr2

t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σνr2
t

= [(σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν]r2
t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σνr2
t

= (σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν
(σx0 + σxw)x

2
t

r2
t

+ (σy0 + σyw)y
2
t

r2
t

+ σν
.

10.7.2 Bearing-Only Model

Similar to the range-only example, the P−1 is given as equation (10.21). The

calculation of S1 is:

S1 = H1P−1 (H1)T + M1Σv1(M1)T

= (−yt
r2
t

,
xt
r2
t

)

σx0 + σxw 0

0 σy0 + σyw

 (−yt
r2
t

,
xt
r2
t

)T + σν

249

=
(

(σx0 + σxw)−yt
r2
t
, (σy0 + σyw)xt

r2
t

)
(−yt
r2
t

,
xt
r2
t

)T + σν

= (σx0 + σxw)y
2
t

r4
t

+ (σy0 + σyw)x
2
t

r4
t

+ σν .

The Kalman gain is calculated as:

K1 = P−1 (H1)TS−1
1

= S−1
1

σx0 + σxw 0

0 σy0 + σyw

 (−yt
r2
t

,
xt
r2
t

)T

= S−1
1

(
(σx0 + σxw)−yt

r2
t
, (σy0 + σyw)xt

r2
t

)T
.

The updated covariance is:

P+
1 = (I2 −K1H1)P−1

= [I2 − S−1
1

(σx0 + σxw)−yt
r2
t

(σy0 + σyw)xt
r2
t

 (−yt
r2
t

,
xt
r2
t

)]P−1

= (I2 − S−1
1

 (σx0 + σxw)y
2
t

r4
t

(σx0 + σxw)−xtyt
r4
t

(σy0 + σyw)−xtyt
r4
t

(σy0 + σyw)x
2
t

r4
t

)P−1

=

1− (σx0 +σxw)
S1

y2
t

r4
t

(σx0 +σxw)
S1

xtyt
r4
t

(σy0 +σyw)
S1

xtyt
r4
t

1− (σy0 +σyw)
S1

x2
t

r4
t

×

σx0 + σxw 0

0 σy0 + σyw

=

(σx0 + σxw)− (σx0 +σxw)2

S1

y2
t

r4
t

(σx0 +σxw)(σy0 +σyw)
S1

xtyt
r4
t

(σx0 +σxw)(σy0 +σyw)
S1

xtyt
r4
t

(σy0 + σyw)− (σy0 +σyw)2

S1

x2
t

r4
t

 .

250

Lastly, the trace of the updated covariance at time-step one is:

tr(P+
1) = (σx0 + σxw)− (σx0 + σxw)2

S1

y2
t

r4
t

+ (σy0 + σyw)− (σy0 + σyw)2

S1

x2
t

r4
t

= (σx0 + σxw)− (σx0 + σxw)2y2
t

(σx0 + σxw)y2
t + (σy0 + σyw)x2

t + σνr4
t

+ (σy0 + σyw)− (σy0 + σyw)2x2
t

(σx0 + σxw)y2
t + (σy0 + σyw)x2

t + σνr4
t

= (σx0 + σxw)(σy0 + σyw)x2
t + (σx0 + σxw)σνr4

t

(σx0 + σxw)y2
t + (σy0 + σyw)x2

t + σνr4
t

+ (σy0 + σyw)(σx0 + σxw)y2
t + (σy0 + σyw)σνr4

t

(σx0 + σxw)y2
t + (σy0 + σyw)x2

t + σνr4
t

= [(σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν]r4
t

(σx0 + σxw)y2
t + (σy0 + σyw)x2

t + σνr4
t

= (σx0 + σxw)(σy0 + σyw) + (σx0 + σxw + σy0 + σyw)σν
(σx0 + σxw)y

2
t

r4
t

+ (σy0 + σyw)x
2
t

r4
t

+ σν
.

10.7.3 Range-Squared-Only

Similar to the range-only example, the P−1 is given as equation (10.21). The

calculation of S1 is given as:

S1 = H1P−1 (H1)T + M1Σv1(M1)T

= (xt, yt)

σx0 + σxw 0

0 σy0 + σyw

 (xt, yt)T + σν

=
(

(σx0 + σxw)xt, (σy0 + σyw)yt
)

(xt, yt)T + σν

= (σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν .

251

The Kalman gain is calculated as follows:

K1 = P−1 (H1)TS−1
1

= S−1
1

σx0 + σxw 0

0 σy0 + σyw

 (xt, yt)T

= S−1
1

(
(σx0 + σxw)xt, (σy0 + σyw)yt

)T
.

The updated covariance is:

P+
1 = (I2 −K1H1)P−1

= [I2 − S−1
1

(σx0 + σxw)xt

(σy0 + σyw)yt

 (xt, yt)]P−1

= (I2 − S−1
1

 (σx0 + σxw)x2
t (σx0 + σxw)xtyt

(σy0 + σyw)xtyt (σy0 + σyw)y2
t

)P−1

=

1− (σx0 +σxw)
S1

x2
t −

(σx0 +σxw)
S1

xtyt

− (σy0 +σyw)
S1

xtyt 1− (σy0 +σyw)
S1

y2
t

×

σx0 + σxw 0

0 σy0 + σyw

=

(σx0 + σxw)− (σx0 +σxw)2

S1
x2
t − (σx0 +σxw)(σy0 +σyw)

S1
xtyt

− (σx0 +σxw)(σy0 +σyw)
S1

xtyt (σy0 + σyw)− (σy0 +σyw)2

S1
y2
t

 .

Last, the trace of the updated covariance at time-step one is:

tr(P+
1) = (σx0 + σxw)− (σx0 + σxw)2

S1
x2
t

+ (σy0 + σyw)− (σy0 + σyw)2

S1
y2
t

252

= (σx0 + σxw)− (σx0 + σxw)2x2
t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν

+ (σy0 + σyw)− (σy0 + σyw)2y2
t

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν

= (σx0 + σxw)(σy0 + σyw)y2
t + (σx0 + σxw)σν

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν

+ (σy0 + σyw)(σx0 + σxw)x2
t + (σy0 + σyw)σν

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν

= (σx0 + σxw)(σy0 + σyw)r2
t + (σx0 + σxw + σy0 + σyw)σν

(σx0 + σxw)x2
t + (σy0 + σyw)y2

t + σν
.

10.8 Conclusion

In this chapter, we have investigated a well-known heuristic employing the ob-

servability Gramian in planning under observation uncertainty. We have utilized two

common observation models and shown that, in general, the observability Gramian

(and the closely-related standard Fisher information matrix) fail to capture many

aspects of the models including the initial, process, and observation uncertainties. As

a result, based on changes in those models, we showed using analytic and numerical

examples that planning based on the observability Gramian can provide trajectories

that are very different in terms of the estimation performance from the optimal plans

based on the estimation covariance of the problem.

253

11. CONVEX BELIEF SPACE PLANNING UNDER NON-GAUSSIAN

UNCERTAINTY

In this chapter, we provide an alternative belief space planning method than the

previous chapters, based on our prior work.

Part (I) of this Dissertation provides a rigorous method of analyzing a stochastic

optimal control problem for nonlinear systems with additive Gaussian perturbations.

In practice, there are situations that the added noise itself is not Gaussian. Note that

in general for a nonlinear system, regardless of the Gaussianity or non-Gaussianity

of the added noise, the conditional distribution is non-Gaussian. Our analysis of

Part (I) obtains the situations where a linear Gaussian system can be good enough

to approximate a near-optimal control policy for a nonlinear system with additive

Gaussian noise.

In a situation where the additive noise is non-Gaussian, the analysis of Part (I)

can be extended as well, utilizing the Wentzell-Freidlin large deviations theory [171].

In this case, the linear surrogate system will not be Gaussian either. However, still

the best linear filter to use is Kalman filter. Our future research will explore the

extensions of Part (I)’s analysis to these types of problems.

In this chapter, we consider a partially-observed system with additive non-Gaussian

noise. Note that even for a linear system with additive non-Gaussian noise, nonlinear

filters, such as particle filters, which are Monte-Carlo sampling-based approximations

of the Bayesian filtering, can provide better results, particularly in situations where

multi-modality of the distribution with distant modes can arise. However, as op-

posed to the Kalman filter, a closed-form evolution of the estimation covariance does

not exits in general for non-Gaussian filters. One method is to try to construct a

254

nominal non-Gaussian system as that of the belief space variant of the T-LQG. Yet

even this is not possible in general. Therefore, heuristic approaches emerge in this

class of problems.

In this chapter, we explore the problem of planning under non-Gaussian uncer-

tainty from a heuristic point of view that can provide insights regarding the issues

existent in the non-Gaussian problems. Particularly, we present an alternative belief

space planning method that utilizes particle filters to predict the covariance of possi-

ble observations of the system, and plans for trajectories that optimizes the predicted

covariance of observations. Note that as opposed to the rigorously proven T-LQG

approach, this methods relies on practical heuristics for computationally faster path

planning with more general forms of uncertainties. We reduce the problem to a con-

vex program implemented using MPC strategy. Because of convexity of this problem,

and the small size of the optimization problem, with features such as independence

of the optimization problem’s dimension from the number of particles, this method

is computationally much efficient than similar state-of-the-art approaches.

In some situations, due to the fact that the T-LQG approach requires the com-

putation of the Riccati recursions (as its bottle-neck), the heuristic method of this

chapter can provide faster re-planning, as well. Nevertheless, the analysis of the

previous chapter showed that, heuristic methods based on optimizing measures of

the Observability Gramian (OG) are not reliable measures for planning under uncer-

tainty. Moreover, although the cost function of this chapter is not directly a measure

of the OG, one might find similarities. In retrospect, the difference are the usage of

particles to predict the covariance of possible observations, incorporating the initial

uncertainty, and usage of a weighting matrix to tune the cost function to more desir-

able situations and to convexify the problem. We test the accuracy of this method by

comparing it to the state-of-the-art methods, and our results show the correctness of

255

the plans. Regardless, the T-LQG-based analysis for similar problems (with Gaus-

sian uncertainty) should be the benchmark for reliability the planned trajectories.

That is, untested heuristics can lead to failure. Therefore, in this chapter we provide

situations and models where the results are close to T-LQG results in comparable

situations, but with better computations.

We propose a trajectory-optimization method in here which also considers opti-

mizing nominal performance; however, unlike the T-LQG which considers the nom-

inal performance of estimation and the control effort, this method only considers

the nominal performance of the observation covariance and the control effort. In

essence, we have shown in the previous chapters that in order to optimize the nomi-

nal estimation performance, as in T-LQG, the Riccati equations should be solved. In

fact, even with non-Gaussian additive uncertainty, Riccati equations or covariance

evolution provides the linear approximate of the original covariance evolution, and

thus, it is the least that should be optimized. Therefore, the method of this chapter

does not make such claims. Indeed, the analysis of Chapter 10 also experimentally

confirmed that using surrogates are not reliable. Instead, this chapter optimizes the

nominal observation covariance evolution.

For a convex environment, we propose an optimization-based open-loop optimal

control problem coupled with receding horizon control strategy to plan for high qual-

ity trajectories along which the uncertainty of the state localization is reduced while

the system reaches a goal state with minimum control effort. In a static environment

with non-convex state constraints, the optimization is modified by defining barrier

functions to obtain collision-free paths while maintaining the previous goals. By

initializing the optimization with trajectories in different homotopy classes and com-

paring the resultant costs, we improve the quality of the solution in the presence of

action and measurement uncertainties. In dynamic environments with time-varying

256

constraints such as moving obstacles or changing banned areas, the approach is ex-

tended to find collision-free trajectories. In this chapter, the underlying spaces are

continuous, and distributions are non-Gaussian. Without obstacles, the optimization

is a globally convex problem, while in the presence of obstacles it becomes locally

convex. We demonstrate the performance of the method on different scenarios.

The method of this chapter utilizes,a stochastic MPC for planning in the belief

space. Samples of an initial non-Gaussian belief are mapped into observation samples

by applying the observation model to them. Then a cost function is designed with

the objective of obtaining a more compressed ensemble of the predicted observation

trajectories. Therefore, the Riccati equation is avoided during the planning stage.

Hence, the goal of planning is also not estimation, rather, it is high quality observa-

tions. Our experiments show the usefulness of this method in practice. Additionally,

the MLO assumption is not used. The core problem in a convex environment is

convexified for common nonlinear observation models. Moreover, non-convex con-

straints are incorporated using the OPF method of the earlier chapters. In a static

environment, we apply the proposed optimization over trajectories in different homo-

topy classes to find a collision-free trajectory with the lowest cost in the homotopy

classes. Moreover, the simulations show the OPF method’s quality where the opti-

mization can be initialized with some tolerance of infeasibility (i.e., passing through

obstacles but not through the local minima of the OPFs).

Dynamic environments are also considered with time-varying OPFs. As a result,

in neither the static nor dynamic situations does the optimization vector size change

and the decision variables remain solely as the control variables. This approach,

can be used as an on-line planner due to its relatively low computational burden.

The flexibility of the MPC also allows incorporating dynamic environments, which

makes the algorithm suitable for on-line planning. Moreover, the low computation

257

allows to consider different homotopy classes, thereby moving from locally-optimal

solutions towards a better approximation of a globally-optimal approach by applying

the algorithm over multiple homotopy classes.

11.1 Particle-Filter-Based Belief Space Planning

In this chapter, since we are not using the conditional distribution of the sys-

tem for estimation, and we are just utilizing a finite-vector representation of it by

means of particles, we will use the term belief to refer to the approximations of

the conditional distribution. Kalman filters maintain a mean and covariance evolu-

tion of the estimates of the system. Whereas, particle filters utilize a Monte-Carlo

sampling representation of the conditional distribution and propagate the samples

utilizing sampling-based approximations of the Bayesian update equation. The most

well-known type of these filters is the bootstrap or Sampling Importance Resampling

(SIR) filter [14], which will be described here.

Particle representation of belief: We use a non-Gaussian particle filter repre-

sentation of belief state bt at time step t by taking a number N of state samples

{xit}Ni=1 with importance weights {wit}Ni=1 [14, 221]. Here, each particle xit is an

nx−dimensional vector, whereas its corresponding weight, wit, is a scalar number.

Therefore bt(x) ≈ ∑N
i=1w

i
tδ(x− xit), where δ(·) denotes the Dirac delta mass.

Bootstrap filter: In order to obtain the belief updates, we use a standard particle

filter known as the SIR filter [14]. It can be proven that as the number of particles

increases to infinity, the distribution of the particles tends to the true filtering dis-

tribution [221, 222]. An overall description of the SIR filter is in Algorithm 3. In

steps 2 to 6 of this algorithm, new state samples are obtained using the previous

set of samples and the prediction pdf, such that every previous particle generates a

new particle and its corresponding weight is assigned using the likelihood function.

258

In steps 7 to 9, weights are normalized to make a probability distribution. Steps

10 to 13, describe the resampling part of the algorithm in which replicas of higher

probability samples take place of some of the lowest weight particles. Overall, steps

1 to 9 correspond to the prediction step of the filtering process, whereas steps 10 to

13, correspond to the update procedure.

Algorithm 3: Particle Filtering Algorithm SIR approach
Input : Set of particles at t−1, Xt−1, Observation at t, zt, Transition

function, pXt+1|Ut,Xt(·|·, ·), Likelihood function, pZt|Xt(·|·)
Output: Set of particles at t, Xt

1 X̄t = Xt ← φ;
2 for i = 1 : N do
3 sample xit ∼ pXt+1|Ut,Xt(·|u,xit−1);
4 w̃it ← pZt|Xt(zt|xit);
5 X̄t ← X̄t ∪ 〈xit, w̃it〉;
6 end
7 for i = 1 : N do

8 wit = wit/
N∑
j=1

w̃jt ;

9 end
10 for i = 1 : N do
11 draw i with probability ∝ wit;
12 Xt ← Xt ∪ xit;
13 end
14 return Xt

System equations and linearizations: We provide the linearizations of the process

and observation models around the nominal trajectory of the system similar to the

previous chapters. The equations are:

xt+1 = f(xt,ut) + Gtwt, (11.1a)

zt = h(xt) + Mtvt, (11.1b)

259

xpt+1 = f(xpt ,upt), (11.1c)

zpt = h(xpt), (11.1d)

x̃t+1 = Atx̃t + Btũt + Gtwt, (11.1e)

z̃t = Htx̃t + Mtvt, (11.1f)

where xp0 := E[x0], At := ∇xf(x,u)|xpt ,upt , Bt := ∇uf(x,u)|xpt ,upt , Gt is time-dependent

constant matrix, Ht = ∇xh(x)|xpt , and x̃t := xt−xpt , ũt := ut−upt , and z̃t := zt−zpt

denote the state, control and observation errors, respectively. For holonomic systems

and under saturation constraints, a linear model suffices for planning purposes. This

is because, these systems can track a given trajectory without insignificant morphing.

Cost function: Using the incremental cost c(·, ·) : X×U→ R, we define the cost

function as:

E[
K∑
t=1

c(xt,ut)] =
K∑
t=1

E[z̃Tt Rtz̃t + uTt−1Vu
t ut−1], (11.2)

where Vu
t � 0 is positive definite matrices, and Rt(xpt) : R×X→ Rnz×nz is a proper

weighting matrix, to be defined later. This cost seeks to reduce the dispersion in the

ensemble of the observation trajectories in terms of the weighted covariance. In other

words, the minimization seeks to reduce the uncertainty in the predicted observation,

which translates itself to shrinking the support of belief distribution. In addition, it

considers reducing the control effort, as well.

Connections of the cost to the observation covariance: Note that we have:

E[z̃Tt Rtz̃t] = tr(E[R1/2
t z̃tz̃Tt (R1/2

t)T]) = tr(R1/2
t E[z̃tz̃Tt](R1/2

t)T) (11.3a)

= E[(Htx̃t)TRtHtx̃t] + E[(Mtvt)TRtMtvt] (11.3b)

260

= E[x̃Tt HT
t RtHtx̃t] + E[vTt MT

t RtMtvt] (11.3c)

= E[x̃Tt Wtx̃t] + E[vTt MT
t RtMtvt] (11.3d)

= E[x̃Tt Wtx̃t] + tr(R1/2
t MtE[vtvTt]MT

t (R1/2
t)T) (11.3e)

= tr(W1/2
t E[x̃tx̃Tt](W1/2

t)T) + tr(R1/2
t MtΣvtMT

t (R1/2
t)T), (11.3f)

where Σvt := E[vtvTt] is the covariance of the observation noise. Note that, if R = Inz

where Inz is the nz-dimensional identity matrix, this term becomes tr(Cov[(zt−zpt)]).

Otherwise it is a weighted observation variance. where (zt − zpt) is the predicted

error of the observation from its nominal observation at time-step t. Therefore,

conceptually, the minimum of this cost occurs over the state trajectories along where

the covariance dispersion in the ensemble of the observation trajectories is reduced.

This means that the minimization seeks to reduce the uncertainty in the observations,

which can potentially lead to better trajectories.

11.2 Approximation of the Cost

In this subsection, we use the particle filter representation of the belief to obtain

more tractable approximations of the cost function.

Utilizing the T-LQG concepts: First, note that using the belief space variant of

the T-LQG method, assuming the application of a linear feedback law, and using

the interpretation given in (11.3f) for the equivalence of the first term of the cost

function with a quadratic cost in the state error, we expect that the cost function

can be approximated by its nominal counter part. That us we assume heuristically

that even for this case (the non-Gaussian perturbations), the first order expected

error of the cost function is zero. Note that this we have not proven this, and this

is heuristic. Also note that in Chapter 6, we showed that the results hold even if

Lt = 0. However, due to the change in the transfer function, the linearization’s

261

validity probability changes dramatically, requiring a much smaller noise intensity.

For now, we will assume that the feedback gain that we are gonna use is Lt = 0. We

also heuristically use this result for the current analysis. Therefore,

x̃t ≈ Ã0:t−1x̃0+
t−1∑
r=0

Ãr+1:t−1Grwr, (11.4)

where where Ãt1:t2 := ∏t2
τ=t1 Aτ = At2At2−1 · · ·At1 , t1 ≤ t2, otherwise it is identity

matrix. Now, we approximate E[x̃tx̃Tt] as follows:

E[x̃tx̃Tt] ≈ Ã0:t−1E[x̃0x̃T0]ÃT
0:t−1+

t−1∑
r=0

Ãr+1:t−1GrE[wrwT
r]GT

r ÃT
r+1:t−1 (11.5a)

= Ã0:t−1Σx0ÃT
0:t−1+

t−1∑
r=0

Ãr+1:t−1GrΣwrGT
r ÃT

r+1:t−1, (11.5b)

where Σx0 := E[x̃0x̃T0] is the initial covariance, and Σwt := E[wtwT
t] is the process

noise covariance. Moreover, since we have used the feedback gain as zero, we replace

the control effort with its nominal counterpart. Therefore, the nominal cost is defined

as follows:

Jp :=
K∑
t=1

[
tr(W1/2

t Ã0:t−1Σx0ÃT
0:t−1(W1/2

t)T)

+
t−1∑
r=0

tr(W1/2
t Ãr+1:t−1GrΣwrGT

r ÃT
r+1:t−1(W1/2

t)T)

+ tr(R1/2
t MtΣvtMT

t (R1/2
t)T) + (upt−1)TVu

t u
p
t−1

]
, (11.6)

Initial covariance: Given a set of particles {xi0}ki=1 at time-step 0, we approximate

the initial covariance as follows:

Σx0 = 1
N

N∑
i=1

(xi0 − xp0)(xi0 − xp0)T , (11.7)

262

As a result, the first term in the nominal cost can be written as follows:

1
N

N∑
i=1

[(xi0 − xp0)T ÃT
0:t−1WtÃ0:t−1(xi0 − xp0)]. (11.8)

Next, we define the optimization problem, resulting from this approximation.

Note that since we have ignored the feedback’s correction but assumed its existence,

we use an MPC strategy to obtain feedback.

Problem 19 Deterministic Open-Loop Problem: Given an initial state x̄0, we

begin by determining an optimal open-loop sequence for

min
u0:K−1

K∑
t=1

[
tr(W1/2

t Ã0:t−1Σx0ÃT
0:t−1(W1/2

t)T)

+
t−1∑
r=0

tr(W1/2
t Ãr+1:t−1GrΣwrGT

r ÃT
r+1:t−1(W1/2

t)T)

+ tr(R1/2
t MtΣvtMT

t (R1/2
t)T) + (upt−1)TVu

t u
p
t−1

]
(11.9)

s.t. xpt+1 = f(xpt ,upt). (11.10)

11.3 Special Case: Linear Process Model

Let us assume that the process model is linear. Moreover, for simplification of the

cost function, let us ignore the effects of Σwt and Σvt . That is, we ignore the second

order effects of the perturbations. This way, we loose accuracy, instead we gain

computational efficiency. Next, we provide the simplified form of the cost function.

Simplified cost function: Let us define a vector et := (e1T
t , e2T

t , · · · , eN
T

t)T ∈ RNnx ,

where eit := 1√
N

Ã0:t−1(xi0 − xp0) ∈ Rnx for 1 ≤ i ≤ N , and a matrix W̄(xpt) :=

BlockDiag(W(xpt)) with N equal diagonal blocks of W(xpt). The cost function sim-

263

plifies to:

K∑
t=1

[
N∑
i=1

[eiTt W(xpt)eit] + uTt−1Vu
t ut−1] =

K∑
t=1

[eTt W̄(xpt)et + uTt−1Vu
t ut−1],

where et is a constant vector at each time-step t. Moreover, let fpt := f(xpt ,upt) −

Ap
txpt −Bp

tupt , then xpt = Ã0:t−1xp0 +∑t−1
s=0 Ãs+1:t−1(Bsus + fps) which is the noiseless

prediction of the initial mean of the estimate.

Next, we discuss how to convexify this cost function.

11.3.1 Convexifying the Cost Function

In this subsection, we convexify the cost function through the proper design of

the R matrix. First, we consider a situation with one scalar observation, then we

extend it for a general case.

Lemma 9 (Scalar observation) Suppose d = (d1, · · · , dnx)T ∈ Rnx and h(x) :

X → R is differentiable. If l : X → R defined as l(x) :=
√
R(x)H(x)d, is convex

or concave in x, then g : X→ R≥0, where g(x) := dTH(x)TR(x)H(x)d is a convex

function of x, where H(x) := ∇h(x)|x is the Jacobian of h.

Proof 27 The Jacobian of h is H(x) =
[
H1(x), · · · , Hnx(x)

]
, where Hi(x) :=

∂h(x)
∂xi

, for 1 ≤ i ≤ nx. Thus, H(x)TH(x) =
[
HTH(x)ij

]
, which is a symmetric ma-

trix and HTH(x)ij := Hi(x)Hj(x) , for 1 ≤ i, j ≤ nx. Next, we can express B(x) :=

dTH(x)TH(x) as B(x) =
[
B1(x), · · · , Bnx(x)

]
, where Bj(x) =

[nx∑
i=1

ciH
TH(x)ij

]
,

for 1 ≤ j ≤ nx. Therefore, dTH(x)TH(x)d can be written as:

dTH(x)TH(x)d =
nx∑
j=1

Bj(x)dj =
nx∑
j=1

nx∑
i=1

diH
TH(x)ijdj =

nx∑
j=1

nx∑
i=1

diHi(x)Hj(x)dj

= (
nx∑
i=1

diHi(x))2 = (d ·H(x)T)2 = (H(x)d)2

264

Thus, g(x) is nothing but g(x) = (l(x))2. Therefore, if l(x) is a convex or concave

function of x, g(x) will be a convex function of x, and g(x) ≥ 0.

Multiple observations: We extend the results derived for the scalar observation

to the case where there are multiple vector observations. Particularly, we show that

the convexity and all the desired features remain unchanged, as long as the design

feature of the Lemma 9 are followed. For an observation vector z = [z1, · · · , znz]T

in z = h(x) + Mtv, and given the differentiable function h(x) = [hj(x)], and its

Jacobian H(x) = [Hj(x)], where Hj(x) =
[
∂hj(x)
∂x1

, · · · , ∂hj(x)
∂xnx

]
for 1 ≤ j ≤ nz, if

R(x) = diag(Rj(x)) is the diagonal matrix ofRi(x)’s corresponding to (uncorrelated)

observations, extending the definition of g to include matrix R we have:

dTH(x)TR(x)H(x)d =
nz∑
j=1

dTHj(x)TRj(x)Hj(x)d

=
nz∑
j=1

Rj(x)
nx∑
k=1

(dkHjk(x))2

=
nz∑
j=1

Rj(x)(Hj(x)d)2,

which is a sum of positive convex functions as determined in Lemma 9. Therefore,

in the case of multiple observations, the same results still hold.

Another representation of the cost function: In our cost function, vector d repre-

sents any of the vectors eit for 1 ≤ i ≤ N and any t. Therefore, we can re-write the

cost function as:

K∑
t=1

[(
N∑
i=1

nz∑
j=1

Rj(xpt)(Hj(xpt)eit)2) + uTt−1Vu
t ut−1]. (11.11)

Designing the desired convex cost: Design of R(x) is heuristic, but we in fact tailor

it such that the cost function becomes convex. A common heuristic is to consider the

265

design of R(x) to be a function of some distance measure from known states that are

informative. This is specially desirable when the observation covariance reduces at a

closer range to the information source. This is the case in e.g., a light-dark, GPS, or

beacon models. Although, this is not generalizable. In fact, we devoted the previous

chapter to this issue. Another class of problems in which this can be beneficial is

where it is desirable to design trajectories along which the state gets closer to some

known regions (or even sink states), in addition to achieving other goals.

Therefore, the physical conditions of the problem can be utilized to design the

R(x) matrix that makes the problem more tractable and give desired features to the

problem. For our purposes, we design R to have the desired features of Lemma 9.

Examples of such designs are provided in Section 11.3.2.

11.3.2 Examples of Observation Models

In this subsection, we provide some of the most common observation models in

the literature and show that we can obtain the goals described in the previous section.

Particularly, we will design the R matrices that convexify each cost function based

on those observation models.

Example 1 (The range-based measurements) In a range based measurement

from known landmarks, h(x) = ||x − L||2, where, || · ||2 denotes the Euclidean norm,

and L ∈ R is a known state (landmark). Therefore, the Jacobian’s ith component

is Hi(x) = [(xi − Li)/||x − L||2] for 1 ≤ i ≤ nx. Moreover, R(x) = ||x − L||22 has

the desired properties discussed above. Thus, we have g(x) = (
nx∑
i=1

di(xi − Li))2 =

(d · (x− L))2 = ((x− L)Td)2, which is convex in x.

Example 2 (The bearing-based measurements) Given a state vector x = [x, y, θ]T ,

and L = [Lx, Ly]T , in a bearing measurement from this landmark, we have h(x) =

atan2(y−Ly, x−Lx)−θ. Hence, the Jacobian is formed as H(x) = [−(y−Ly)
r2 , (x−Lx)

r2 ,−1],

266

where r =
√

(x− Lx)2 + (y − Ly)2 is the range from the landmark. Thus, using

R(x) = ((x− Lx)2 + (y − Ly)2)2 we have g(x) = (d1(x− Lx) + d2(y − Ly)− d3((x−

Lx)2 + (y − Ly)2))2, which is a convex function in x.

Example 3 (Measurements with exponential decay of covariance) Let the ob-

servation model be linear h(x) = D(x − L), where D = [DT
1 , · · · ,DT

nz]T is a con-

stant nz × nx matrix. With R(x) = exp((ηL||x − L||2 + σb))Inz , where ηL, and

σb are positive constants and Inz is the nz-dimensional identity matrix, g(x) =

exp(ηL||x− L||2+σb)
nz∑
j=1

(d ·Dj)2 is a convex function in x.

Example 4 (Light-dark environment in literature [109]) In a light-dark en-

vironment with an observation model of h(x) = D(x−L) and R(x) =
√

(ηxi +σb)Inz

for some 1 ≤ i ≤ nx, where η and σb are positive constants and D is defined

as before, we have, g(x) = (
nz∑
j=1

(d · Dj)2)(ηxi +σb) > 0 which is a convex func-

tion in x. Another instance is where R(x) = (ηxi +σb)Inz , (ηxi +σb) > 0, then

g(x) = (
nz∑
j=1

(d ·Dj)2)(ηxi+σb)2 which is convex in x (in the defined domain), as well.

Example 5 (Single Beam model in literature [109]) In a similar observation

model where h(x) = D(x − L), and R(x) =
√
η′L/(dM − ηL||x− L||2+σb)Inz , where

ηL, η
′
L, dM , and σb are positive constants and D is defined as before, we have g(x) =

(
nz∑
j=1

(d ·Dj)2)η′L/(dM −ηL||x−L||2+σb) > 0 which is a convex function in x. Another

instance is where R(x) = η′L/(dM − ηL||x−L||2+σb)Inz , (dM − ηL||x−L||2+σb) > 0,

where η, then g(x) = (
nz∑
j=1

(d ·Dj)2)(η′L)2/(dM − ηL||x− L||2+σb)2 which is convex in

x (in the defined domain), as well.

The following examples are more trivial yet common in the field.

Example 6 (Signed distance with range-proportional covariance) Let the ob-

servation model be linear h(x) = D(x− L) with R(x) = (ηL||x− L||2+σb)Inz , where

267

ηL, and σb are positive constants, and D is defined as before. Note that this is usually

coupled with dM−||x−L||2 > 0 which provides a maximum field of view for the sensor

through dM > 0, However, mathematically this might be omitted as well in this case.

Then, g(x) = (
nz∑
j=1

(d ·Dj)2)η2
L(||x− L||2+σb)2 is a convex function in x.

Example 7 (Absolute bearing) Similar to the previous example on bearing mea-

surement, given a state vector x = [x, y, θ]T , and L = [Lx, Ly]T , in a bearing mea-

surement from this landmark, if we make observations like h(x) = arctan((y −

Ly)/(x − Lx)), then, H(x) = [−(y−Ly)
r2 , (x−Lx)

r2], where r =
√

(x− Lx)2 + (y − Ly)2

is the range from the landmark. Thus, using R(x) = ((x − Lx)2 + (y − Ly)2)2 we

have g(x) = (d1(x− Lx) + d2(y − Ly))2, which is a convex function in x.

Example 8 (GPS-like observations) Finally, we mention the more trivial exam-

ple of GPS-like observations where the state is directly observed with some background

noise. We model this noise to have a constant covariance. Thus, let the observation

model be linear h(x) = Dx, where D is defined as before. With R(x) = σbInz , σb > 0.

Then, g(x) = σ2
b

nz∑
j=1

(d ·Dj)2 is a convex function in x. Note that, since in this case

the observation model is completely indifferent to the specific state that the observa-

tion is made from, it will not matter for the controller to move to any specific state

to make ‘better’ or ‘more accurate’ observations from. This is correctly reflected in

the g(x) which is trivially a constant independent of the state the observation is being

obtained in. However, if a GPS is used in a covered area with poor connectivity, then

the objective can be designed in a similar fashion to previous examples such that the

agent seeks proximity to states with better coverage, such as near the windows.

Last, as a design objective, note that unless we make the two terms of the cost

function within the same order of magnitude, one term will be dominant. It is

usually desirable to make one term slightly dominant, say by one order of magnitude.

268

However, in order to have a numerically sound optimization, particularly with time-

(or state-)dependent weight matrices, the tuning of the weights is very important

especially for practical implementation purposes.

11.3.3 Convex Optimization Problem

Finally, we define the open-loop optimization problem of this section for a convex

environment. Define the cost of information as costinfo(xpt) := eTt W̄(xpt)et and cost

of control effort as costeff (ut) := uTt Vu
t+1ut. Hence, the core convex problem is given

below.

Problem 20 (Core convex problem in convex feasible space) Under the as-

sumptions of linear (holonomic) system and convex environment and given the initial

re-sampled set of particles at time step 0, {xi0}ki=1, and a goal state xg, the core convex

problem is:

min
u0:K−1

K∑
t=1

[costinfo(xpt) + costeff (ut−1)]

s.t. xpK = xg,

where xpt = Ã0:t−1xp0 +∑t−1
s=0 Ãs+1:t−1(Bsus + fps).

Note that for some of the observation models that are considered in the previous

section, the above problem reduces to a quadratic program, which even has a closed-

form solution.

11.3.4 Static Environment with Non-Convex Constraints

In this subsection, we extend the solution of the previous subsection to include

non-convex constraints on the state, such as obstacles and banned areas in static

environment with a known map of the environment. For this purpose, we use the

269

obstacle barrier function method of previous chapters. The optimization in such a

case reduces to a locally convex optimization. Similar to any nonlinear program,

we need to initialize the optimization with a trajectory. Note that if we use the

OPF method, starting from a feasible trajectory is more desirable. Moreover, in

that situation, the optimization avoids entering non-feasible states. However, if we

use the OPF method, this trajectory does not need to be feasible, and cans sightly

violate some constraints. In this situation, the penalty function needs to be tuned.

In fact, the OPF method has lower computation and in practice is more desirable.

Furthermore, by initialing the optimization with trajectories in different homotopy

classes, we find the locally optimal trajectories in different homotopy classes. We

discuss the benefit of doing this towards the end of this subsection.

Problem 21 (Locally convex problem in a static environment) Given {xi0}ki=1,

xg and obstacle parameters (P , C), the static environment problem for a holonomic

system is:

min
u0:0+K−1

0+K∑
t=0+1

[costinfo(xpt)+costeff (ut−1)+costobst(xpt−1,x
p
t)]

s.t. xpK = xg. (11.12)

where the cost of obstacles is defined in the previous chapters.

Moreover, we add convex saturation constraints of the type ||ut|| ≤ maxu based on

the specific robot model.

Next, we proceed to optimize towards a better approximation among different

homotopy classes while reaching predefined goals, such as uncertainty reduction,

collision avoidance, and reaching the final destination with minimal energy effort.

270

Homotopy classes and optimal trajectory: There are several methods to find the

trajectories in homotopy classes [187, 188]. For instance, in low dimensions one can

construct the visibility graph considering the pure motion planning problem and

find trajectories in different homotopy classes that connect the start state to the goal

state by pruning the non-unique paths. These methods provide such paths for dif-

ferent purposes such as finding the shortest path. However, usually the uncertainty

or dynamics of the system are not considered. We initialize our optimization with

non-looped trajectories in different homotopy classes [188]. The optimizer consid-

ers the cost of uncertainty, effort, and collision-avoidance along with the linearized

dynamics of the (holonomic) system and morphs the initial trajectory towards a lo-

cally optimal trajectory. Our barrier function model of the obstacles prevents the

trajectory from entering the banned regions. These barrier functions, along with a

optimization tuned through the saturation constraints, a long enough optimization

horizon (determined by the time-discretization step of the initial trajectory), and a

limited step size of the line-search in optimization [223, 35], keep the trajectory in

its initial homotopy class. Moreover, since the optimization is locally convex, it finds

the local optimal trajectory of that homotopy class under the imposed constraints

and conditions starting from a trajectory in that class. Therefore, by comparing the

total costs obtained in different cases, we obtain the lowest cost smooth trajectory

considering all the predefined costs, and most significant of all, uncertainty reduc-

tion. This is the closest output trajectory of our algorithm to the globally optimal

trajectory in the existence of uncertainties.

11.3.5 Problem: Dynamic Environment with Time-Varying Constraints

Now that we have specified all the machinery needed to find the optimal path

in terms of the defined cost in a static environment, we extend our method to an

271

environment that is not fully static.

Incorporating dynamic obstacles: If some of the obstacles are moving, the state

constraints become time-varying. In such a case, we modify the optimization problem

by altering the obstacle cost so it includes the dynamic obstacles as follows:

Φ(P̂t,Ĉt)
t (x):=M

nb∑
i=1

[exp(−[(x− ĉit)T P̂i
t(x− ĉit)]p)

+
∑

θ=0:εm:1
(||x−(θζ̂ i,1t +(1−θ)ζ̂ i,2t)||−2

2 +||x−(θξ̂i,1t +(1−θ)ξ̂i,2t)||−2
2)],

where ĉit, P̂i
t, ζ̂

i,1
t , ζ̂ i,2t , ξ̂i,1t and ξ̂i,2t are the estimated parameters of the ith obstacle at

time step t given by a separate estimator that tracks the obstacles. Note that if the ith

obstacle is moving but not changing shape, then at time 0 > t, ĉi0 = ĉit+ v̂i(0−t) and

P̂i
0 = Ri

α̂P̂i
t where v̂i is a constant estimated velocity vector, and Ri

α̂ is an estimated

rotation matrix by α̂ degrees. However, if there is also a change of shape in the

obstacle or appearance of new obstacles, we run the MVEE algorithm to find the

parameters of that obstacle. For our planning purposes, we assume there is a separate

estimator that tracks and estimates the obstacles’ parameters, and our planner only

uses the results obtained by that tracker to find the optimized trajectory. Moreover,

since the algorithm is implemented in an RHC fashion, if there is a change in the

estimates of the obstacles, for the next step the optimization uses the new estimates

of the obstacle parameters. Moreover, the obstacle cost is modified as follows:

costobst(xt1,xt2, t):=
∫ xt2

xt1
Φ(P̂t,Ĉt)
t (x′)dx′.

Problem 22 (Dynamic environment) For a linear system, given {xi0}ki=1, xg

and estimates of the obstacle parameters for the entire lookahead horizon {(P̂t, Ĉt)}K+1
t=0 ,

272

the dynamic environment problem is defined as:

min
u0:K−1

K∑
t=1

[costinfo(xpt) + costeff (ut−1) + costobst(xpt−1,x
p
t , t− 1)]

s.t. xpK = xg. (11.13)

If there is a sudden appearance of a new obstacle in part of the trajectory, only that

part of the trajectory is changed provided there is still a feasible path between the

two points immediately outside and on the other side of that obstacle. Otherwise,

the entire algorithm runs again from the current state to the goal state. It should

be added that, unlike a static environment, in a stochastic problem with dynamic

environment, unless the planning horizon is very small, there is not much that can

be said regarding the homotopy paths discussed in Section 11.3.4. This is an ongoing

research.

Now that we have provided our solution for all the three cases, we proceed to

discuss the implementation strategy.

11.3.6 Receding Horizon Control (RHC) Implementation

The overall feedback control loop is shown in Fig. 11.1. The system initiates

from a non-Gaussian distribution in the feasible state space that constitutes the

initial belief. In the case of a dynamic environment, the most complicated case of

our problems, given the current belief, bt, estimates of the obstacles’ parameters,

{(P̂t, Ĉt)}0+K+1
t=0 , lookahead time horizon, K, and the goal state, xg, the RHC policy

function π : B × Rnx×nb×(K+1) × Rn2
x×nb×(K+1) × R × X → U generates an optimal

action ut = π(bt, P̂t:t+K+1, Ĉt:t+K+1, K,xg), which is the first element of the open-

loop optimal sequence of actions generated in different variants of problem (1). The

agent executes ut transitioning the state of the system from xt in xt+1 where a new

273

observation zt+1 is obtained by the sensors. The estimator updates the belief as bt+1=

τ(bt,ut, zt+1) and the policy is fed the updated belief to close the loop. Meanwhile, on

another separate loop, the obstacle trackers measure the current state of the obstacles

and the obstacle parameter estimators obtain the estimates of the obstacles. As

mentioned above, the estimates are fed into the policy function immediately before

the controller plans its next action. In the case of the static environment, the policy

function is fed the parameters of the obstacles that remain the same for the entire

horizon. Similarly, in the case of a convex environment, the general boundaries and

convex constraints take the place of the obstacle parameters in the planning problem.

Stopping execution: The algorithm stops when the probability of reaching the

goal, calculated as the area under the belief density over the goal region, exceeds a

Figure 11.1: The overall feedback control loop.

274

predefined value [61].

The planning algorithm is in Algorithm 4.

Algorithm 4: Planning Algorithm
Input: Initial belief state b0, Goal state xg, Planning horizon K, Belief

dynamics τ , Obstacle parameters {(P̂t, Ĉt)}K+1
t=0

1 while P(bt, r,xg) ≤ w̆th do
2 ut ← π(bt, P̂t:t+K+1, Ĉt:t+K+1, K,xg);
3 execute ut, perceive zt;
4 bt+1(x)← τ t(bt(x),ut, zt);
5 end

11.3.7 A Discussion and Comparison on Complexity

Comparison of our method with traditional approaches: Figure 11.2 graphically

compares our method with traditional methods in the literature that tackle the open-

loop problem. In order to perform the filtering equation, a previous belief and action,

and a current observation are required. In the planning stage, where the controller

obtains the best sequence of future actions, a current belief is given; however, all

that is known about the future observation is a likelihood distribution. As shown

in this figure, in classic methods, the initial belief is propagated using finitely many

samples of the observation obtained from the likelihood distribution. Therefore, a

decision tree on the future predicted beliefs is constructed so that the optimizer can

obtain the best action for each height of the tree. Overall, the first method is com-

putationally intensive. In the second popular class of methods, only the most likely

observation is utilized to perform the filtering equations and propagate the belief.

This method can be less accurate than the latter, and although it provides a less

expensive optimization, the filtering equation is part of the optimization constraints

275

Figure 11.2: Comparison of method of this chapter with traditional belief propaga-
tion methods.

276

which makes it computationally intense. However, in the proposed method of this

chapter, once the samples of the initial belief are propagated via the predicted model

of the system, they are converted into observation particles by a proper usage of

the observation model. Thus, a rope-like bundle of propagated observation particle

strands is constructed using the initial belief samples and with the advantage of a

particular defined cost function, the dispersion in the strands is minimized. Hence,

the optimization not only morphs the rope towards regions that provide observations,

but also seeks to compress the bundle towards the end of the horizon. As a result

of reduced uncertainty in observation bundle, the belief itself shrinks and the same

results are obtained without performing the filtering equation. Therefore, using this

idea, the main computational burden of the problem is broken and the much cheaper

optimization yields the desired results. We provide more details in the sequel.

Computational complexity: The core optimization problem in a convex environ-

ment as defined in problem (20) is a convex program that does not necessarily require

an initial solution. The number of decision variables is Knu, and there is one linear

equality constraint, plus, the robots saturation inequality constraints, which can be

Knu at most. Therefore, the optimization involves the minimum number of decision

variables. Let us assume for simplicity that the sizes of x, u, and z vectors are all

O(n). Thus, utilizing a common method, such as center of gravity for convex opti-

mization [190] to obtain a globally optimal solution with ε confidence, the algorithm

requires Ω(Knlog(1/ε)) calls to the oracle [191]. On the other hand, in equation

(11.8), ÃT
0:t−1W(xpt)Ã0:t−1 requires a multiplication of O(n) × O(n) matrices O(K)

times, which takes O(Kn3). However, the multiplication of the vectors (xi0 − xp0) to

a Rn×n matrix involves O(Nn2) time. The outer sum also takes K time. All the

other operations, such as calculation of xpt and constraints, take less time. Hence,

the time complexity of the computations is O(Kn3 + Nn2). In LQG-based belief

277

space methods that construct a trajectory, the method described in [128] involves

a non-convex optimization, which takes O(Kn6) computations with a second-order

convergence rate to a locally optimal solution. Another RHC-based method par-

ticle filter-based method is described in [61], where the core problem is a convex

problem in Knu + N number of decision variables with N(K − 1) + 1 number of

inequality constraints. The algorithm assumes a linear process model with Gaussian

noise and a linear measurement model with a Gaussian noise whose covariance is

state-dependent. The solution is categorized in the second class of methods in Fig.

11.2. Moreover, to include more than one observation source, the algorithm requires

a modification with integer programming, such that at each time step, there could

only be one observation. Although the analysis of time complexity is not given, to

the best of our knowledge we assess it to be O(NK(Kn3 + Nn2)) without integer

programming. Moreover, the near-convergence needs Ω((N +Kn)log(1/ε)) calls.

In the presence of obstacles, the size of our optimization does not change; however,

the rate of convergence reduces to the rate of gradient descent methods. Further-

more, the solution becomes locally optimal starting with an infeasible solution whose

immediate gradient is not towards the local minima of the obstacles. Theoretically,

if the εm of OBF tends to zero, there is no local minima of the barriers; nevertheless,

practically, starting from a semi-feasible trajectory, a tuned optimization results in

convergence to a locally optimal feasible solution. In [128], in the presence of obsta-

cles, the convergence rate and computational cost do not change, but the (tuned)

optimization must start with a feasible path. In [61], obstacles are modeled with

a chance-constrained method that involves the introduction of additional variables

and integer programming with iterative applications of the algorithm. This limits

the scalability of that method in complex environments.

278

11.4 Simulation Results

In this section, we show some applications for the method of this section. We

perform all our simulations in MATLAB 2015b in a 2.90 GHz CORE i7 machine with

dual core technology and 8 GB of RAM. First, we perform a comparison test on an

example from the literature and analyze the solutions of two algorithms with various

parameters. Then, we introduce a scenario that consists of guiding a robot between

two walls. Our last experiment is a simulation where a robot is in a complex scenario

in a house with several features to localize with respect to and reach a goal. Next, we

perform a comparative simulation between trajectories in different homotopy classes

in which we compare the results of our algorithm for an static environment with and

without information sources. Then, we perform an experiment for a KUKA youBot in

static environment. Finally, we perform two simulations for dynamic environments.

In the first one, obstacles only move in simple translational movements, and in the

second, an object moves in a helix that makes the robot escape from its trajectory

in a more complex scenario.

11.4.1 Comparison Test in a Convex Scenario

In this experiment, we consider the light-dark example introduced in [109]. We

compare our results with the algorithm presented in [109]. Since we did not have

access to the author’s code, we implemented the method of [109] in MATLAB to the

best of our ability. Note that in this scenario, we assume that there is no obstacle

in the environment. It is important to note that essentially the two methods are

different from each other, but we solve the same problem for the same systems and

same initial and final states. Therefore, the optimization tuning parameters are

different and have different meanings. The state, observation and action spaces are

two-dimensional continuous spaces. The process model is linear with A = B = I2,

279

and the observation model is linear with nonlinear observation covariance, modeled

as R(x) = diag(1/(2x1 + 1), 1/(2x1 + 1)), where x1 > 0 is the first element of state.

Therefore, as the robot gets further to bigger values of x1 it can localize better with

less noisy observations. This is shown in Fig. 11.3 with lighter background on th

right side. One can verify that the problem is convex in both methods (with different

shapes of cost functions). Figure 11.3 shows the results of the optimized trajectory

for time 0 with 1000 particles and a time horizon of 20. Moreover, to avoid the control

saturation, we add a constraint to bound the control inpu0s magnitude at each step

to 3.16. The initial distribution is a mixture of two Gaussians with equal variances

of 0.0625 and means at (1.75, 0) and (2, 0.5). The solid line shows the results for our

problem with Vu
t = 0.065. It should be noted that, in our simulation, changes Vu

t

does not impose unexpected behavior in the trajectory. Rather, by increasing the

values of Vu
t , the agent acts more conservatively in terms of the consumed energy

effort.

Sensitivity of solution to number of particles: We increase the number of parti-

cles from 50 to 1000, 10000, and 100000 particles and analyze the optimization size

and required time for the optimization. In our method, by increasing the number

of particles, the optimization vector size does not increase. Neither are additional

constraints introduced by increasing the number of particles. Therefore, as shown in

Table 11.1 the required time for optimization does not increase significantly. How-

ever, in [109], the optimization vector size is dependent on the number of particles,

particularly, it is equal to (Knu + N), while in our method, it is only Knu. More-

over, in their method, upon addition of one particle, K new inequality constraints

are added to the optimization problem, whereas in our method, there is no such

constraint and the number of optimization constraints is independent from the num-

ber of samples. The results of Table 11.1 show that our method is scalable in the

280

number of particles. As stated in the Table, for N = 10000 and N = 100000, we

could not perform the optimization for the method in [109] because of large memory

requirement.

Sensitivity of solution to time horizon: Lastly, we perform the optimization

for lookahead time horizon K = 10, 20, 50 and 100 and report the required time in

table. Once again, since the number of optimization variables is Knu which is 2K,

and there is no added constraint for addition of time horizon, the optimization time

does not explode in our method. Whereas, in [109], increasing the time horizon,

increases the solution time significantly. The results reflected in table 11.1 show that

our method is scalable with long time horizon as well. However, for K = 50 and

K = 100, we could not perform the optimization for method of [109] because of large

memory requirement.

11.4.2 Robot Within Two Walls

In this section, we simulate a case where there are non-convex constraints in

the state space. Figure 11.4 depicts the results in a case where the system starts

with a distribution about its initial state and wants to reach the goal state while

minimizing the localization error and spending low energy. The green and red lines

show the solution of the convex problem where there is no walls, and the problem

with added walls, respectively. As it is seen, there are three information sources in

that are shown with lighter spots in Fig. 11.4. The observation model is range based

as described in example 1. To obtain the green trajectory, the convex optimization

problem (which is initialized with an arbitrary solution) is solved. Then, the green

trajectory (which is not feasible for the case with walls) is used as the initial trajectory

for the optimization with OPF to obtain the red trajectory which avoids the walls,

as well.

281

Ta
bl
e
11
.1
:T

he
re
su
lts

of
co
m
pa

ra
tiv

e
sim

ul
at
io
ns

fo
rs

ev
er
al

tim
e
ho

riz
on

sa
nd

pa
rt
ic
le

nu
m
be

rs
in

a
co
nv

ex
lig

ht
-d
ar
k

sc
en
ar
io
.

T
im

e
ho

riz
on

(K
)

20
10

20
50

10
0

N
um

be
r
of

Pa
rt
ic
le
s
(N

)
10
0

10
00

10
00
0

10
00
00

10
00

T
im

e
(s
)

0.
24

0.
33

1.
11

10
.3
7

0.
16

0.
33

2.
30

9.
22

#
of

It
er
at
io
ns

28
8

28
8

28
8

28
8

17
0

28
8

10
13

22
15

O
ur

Fu
nc
tio

n
To

le
ra
nc
e

2e
-0
3

2e
-0
3

2e
-0
3

2e
-0
3

2e
-0
3

2e
-0
3

2e
-0
3

2e
-0
3

M
et
ho

d
C
on

st
ra
in
t
To

le
ra
nc
e

5.
55
1e
-1
6
8.
88
2e
-1
6
5.
55
1e
-1
6
2.
33
1e
-1
5
1.
11
0e
-1
5
8.
88
2e
-1
6
3.
83
9e
-1
1
1.
88
3e
-1
1

#
of

O
pt
.
Va

rs
.†
(K

n
u
)

40
40

40
40

20
40

10
0

20
0

#
of

C
on

st
rs
.†
(1
)

1
1

1
1

1
1

1
1

T
im

e
(s
)

49
.0

31
1.
32

*
*

80
.2
2

31
1.
32

*
*

#
of

It
er
at
io
ns

40
00
0

40
00
0

40
00
0

40
00
0

M
et
ho

d
Fu

nc
tio

n
To

le
ra
nc
e

2e
-0
2

2e
-0
2

2e
-0
2

2e
-0
2

of
C
on

st
ra
in
t
To

le
ra
nc
e

3.
50
9e
-0
4
5.
85
3e
-0
4

5.
67
1e
-0
4
5.
85
3e
-0
4

[1
09
]

R
eq
ui
re
d
M
em

or
y
(G

B)
15
.0

14
90
.7

37
.6

76
.0

#
of

O
pt
.
Va

rs
.†
(K

n
u
+N

)
14
0

10
40

10
,0
40

10
0,
04
0

10
20

10
40

11
00

12
00

#
of

C
on

st
rs
.†
(N

(K
−1

)+
1)

19
01

19
,0
01

19
0,
00
1

1,
90
0,
00
1

90
01

19
,0
01

49
,0
01

99
,0
01

*:
U
na

bl
e
to

al
lo
ca
te

en
ou

gh
m
em

or
y
to

so
lv
e
th
e
pr
ob

le
m
.

† :
‘#

of
O
pt
.
Va

rs
.’
sp
ec
ifi
es

th
e
nu

m
be

r
of

op
tim

iz
at
io
n
va
ria

bl
es
,a

nd
‘#

of
C
on

st
rs
.’
sp
ec
ifi
es

th
e
nu

m
be

r
of

op
tim

iz
at
io
n
pr
ob

le
m
’s

co
ns
tr
ai
nt
s.

282

Figure 11.3: Light-dark example. Lighter states on the right signify lesser observation
noise. The solid blue and red dotted lines show the results of our method and the
implementation of [109], respectively. The axes’ units are in meters.

11.4.3 Complex Scenario in a Room

Robot in a house: Figure 11.5 depicts the results in two cases where the objective

is similar to the previous example. In the first case, the robot is put in a room and

wants to reach a room in the other side of the house. Given an initial trajectory,

shown by red dots, the optimization provides the optimized trajectory that seeks for

the information sources in every house, and the penalty functions perform the task of

keeping the robot away from the obstacles. In this case, the lookahead time horizon

is set to K = 100. In the second case, the start and final goal of the robot is in

one room, and therefore, the optimization can solve the problem with any arbitrary

trajectory in that room like the straight line.

283

Figure 11.4: Robot within two walls. The OPF is visualized within the walls. The
green and red lines show the results for optimization with and without considering
the walls. The axes’ units are in meters.

11.4.4 Comparison Test Between Homotopy Classes

Figure 11.6 shows an environment with three obstacles forming a connected ob-

stacle. The banned areas are enclosed with three MVEEs. In this experiment, we use

the visibility graph to find initial trajectories in different homotopy classes. More-

over, instead of using the polygons, we use the ellipsoids that enclose them. Since

our optimization utilizes a gradient descent method, we only consider the straight

lines between the nodes and ignore the collision of the straight line with the ellipsoid

that the node is lying on. This increases the speed of finding the visibility graph and

coupled with optimization over the output paths, the minor collisions do not hurt

the algorithm.

Next, each of the two paths is discretized to satisfy the tuning properties described

in Section 11.3.4. They are then fed into the optimization function π to produce the

284

Figure 11.5: A holonomic system in a complex scenario. Solid lines show the optimal
trajectories, dotted lines show the initial trajectory, for two different scenarios. The
longer trajectory includes obstacles, and the other, no obstacles. The dots around the
start points show the initial particles. Landmarks are marked as stars and informa-
tion is coded with color (lighter means more information). Lookahead time horizon
for the longer and shorter trajectories is 100 seconds and 30 seconds, respectively.
The axes’ units are in meters.

optimized smooth collision-free paths. We have produced two sets of results; in the

first set, we do not consider the cost of information (as if we are considering the

285

motion planning problem to generate smooth collision-free paths); in the second,

we add a landmark as the information source, and consider the optimization with

cost of information, to compare the results. As seen in Fig. 11.7d, existence of the

landmarks changes the paths of the robot, such that the robot visits them to reduce

its uncertainty and then continues its path towards the goal state.

11.4.5 KUKA YouBot

In this section, we use the kinematics equations of KUKA youBot base as de-

scribed in [192]. Particularly, the state vector can be described by a 3D vector, x =

[xx,xy,xθ]T , describing the position and heading of the robot base, and x ∈ SO(3).

The control consists of the velocities of the four wheels. It can be shown that the

discrete motion model can be written as xt+1 = f(xt,ut,wt) = xt+Butdt+Gwt

√
dt,

where B and G are appropriate constant matrices whose elements depend on the

dimensions of the robot as indicated in [199], and dt is the time-discretization period.

Inspired by [193], we model the robot with a configuration of a set of points which

Figure 11.6: Modified visibility graph. There are two homotopy classes between the
start and goal points that are found using the visibility graph and are indicated as
the red dotted and blue dashed paths. The axes’ units are in meters.

286

(a) (b)

(c) (d)

Figure 11.7: Comparison of paths in different homotopy classes. Cases (a) and (b)
show the resulting paths generated by optimizing without considering the information
sources, whereas cases (c) and (d) consider information sources. The axes’ units are
in meters.

287

represent the centers of the balls that cover the body of the robot. In our method, we

cover the robot with two balls whose radii are proportional to the width of the robot.

We find the MVEE of the polygons that are inflated from each vertex to the size of

the radius and modify the cost of obstacles to keep the centers of the balls out of the

new barriers. The observation model is a range and bearing based model where the

corresponding elements of the R matrix are chosen to be ||(xx−Lx,xy−Ly)||22 for all

observations so as to have the desired features described in Lemma 9. (Lx, Ly) rep-

resents the coordinates of a landmark. The results depicted in Fig. 11.8, show that

the planned trajectory avoids entering the banned regions bordered by the ellipsoids,

so that the robot itself avoids colliding with the three obstacles.

11.4.6 Dynamic Environment

In this scenario, we simulate a case where there are four objects, starting from

a common position and moving in different directions downwards and towards the

right of the map. The robots starts from a distribution whose mean is at (0,0), and

wishes to reach the goal state (2,2) with high probability. As seen in Fig. 11.9,

at the beginning of its trajectory, the robot head towards the landmark at (1, 0.5),

and as the moving obstacles get closer, it changes its direction to bypass the objects

in the opposite direction. In this scenario, the initial trajectory is just the straight

line between the most probable initial location of the robot and the final destination

shown in the figure with green dashed line, with the planned trajectory of the robot

shown as a solid yellow line.

In another scenario shown in Fig. 11.10, an object is moving in a spiral path

shown in Fig. 11.10h with the robot trying to avoid colliding with the obstacle,

spending most of its time near the information source and reaching the goal in a

safe, short and smooth path.

288

Figure 11.8: Controlling a youBo0s base. There are three obstacles and two land-
marks. The robot base is shown by a rectangle with a line at the heading. Initial
and planned trajectories are depicted by dashed and solid lines, respectively. The
axes’ units are in meters.

289

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.9: Dynamic environment. The robot heads towards the landmark to reduce
its uncertainty, and avoids the moving objects by changing its path to point in a
direction opposite to the objects. The axes’ units are in meters.

290

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.10: Moving object. The robot spends most of its time near the information
source and avoids the object, which is moving in a spiral path, and heads towards
the goal region safely. The axes’ units are in meters.

291

12. CONCLUDING REMARKS

In this chapter, we review the major contributions of this work and discuss its

future directions and extensions.

12.1 Contributions

The decoupling principle: Perhaps the main contribution is this Dissertation is

the introduction and proof of the decoupling principle. Since the introduction of

the HJB equation for solving the stochastic control problem, there have been many

works on providing tractable solutions to obtain policies that are both tractable and

have theoretical guarantees. There are very sparse number of results with such prop-

erties, and where they exist, they do often consider very limiting assumptions that

generally may not be satisfied in practical systems. Except for the linear Gaussian

systems where the theory is sound and perfect, for nonlinear systems the general

methodology and importantly, the popular methods have been heuristic strategies.

This Dissertation has tried its best to avoid unnecessary heuristics. Particularly, the

theoretical part of the Dissertation, i.e., Part (I), is mathematically rigorous. Yet,

the solutions that are resulted from the four variations of the decoupling principle are

all computationally tractable, while retaining the theoretical guarantees. In this ret-

rospect, this is yet the most generic result of this type that has both the tractability

feature, similar to the heuristic method, as well as the rigor, similar to the theoretical

solution.

The decoupling principle in a word: The decoupling principle provides the con-

ditions under which the design of the nominal trajectory of the system and a de-

centralized feedback policy can be near-optimally decoupled from each other. This

result considers the fully- and partially-observed single- and multi-agent situations

292

for nonlinear stochastic systems with additive Gaussian perturbations.

Linear Gaussian approximation: For nonlinear systems, linearization has always

been “the” practical way to go. However, there has not been a result that has

quantified the correctness of this approach. This Dissertations provides an answer

to this problem through the decoupling principle for various situations.

Decentralized solution: Theoretically sound solution for multi-agent systems re-

sults in the application of the HJB equation in a centralized manner. The decoupling

principle, provides a theoretically sound, while also tractable, decentralized solution

for a multi-agent system.

Belief space planning: One of the most important robotic problems is tackled with

rigorous tractable algorithms. The T-LQG, and MT-LQG are the partially-observed

variants of the T-LQR and MT-LQR algorithms for fully-observed situations. These

algorithms are the resultant methods of the decoupling principle.

Non-convex constraints: Our methods consider non-convex time-varying dynamic

environments and show tractable and reliable solutions or various complex situations.

The obstacle penalty function method provides an easy-to-handle method of incor-

porating the non-convex constraints into the optimization problems.

The observability Gramian: While heuristic solutions are helpful, many of them

have pitfalls. We found and analyzed the observability Gramian’s shortcomings

for robotic path planning and estimation. We showed that optimizing measures of

the observability Gramian as a surrogate for estimation performance may provide

irrelevant or misleading trajectories for planning under observation uncertainty.

Non-Gaussian particle-filter-based planning: Finally, we utilize the insights pro-

vided from the results of the decoupling principle for Gaussian perturbations to

obtain heuristic solutions for non-Gaussian additive perturbations utilizing particle

filters. We also provide a convexified belief space planning method using an MPC

293

strategy for robotic systems with nonlinear measurement models.

12.2 Future Extensions

This Dissertation provides various possible directions to continue the advance-

ment of the approach to much advanced situations, such as continuous-time models

and models with non-Gaussian perturbations. It also provides a theoretically sound,

and yet implementable, benchmark solution where other the performance and cor-

rectness of other heuristic methods can be tested and analyzed. Moreover, the solu-

tions of this research can be utilized in other application areas, such as the solution

of systems with black-box unknown dynamics models and reinforcement learning

techniques for fully- and partially-observed systems with partial differential equation

process models, where the solution space is of high degrees of freedom. This line

of research has started to blossom its initial results. Last, it is possible to provide

further enhancement of the algorithms by considering higher order expansions. Our

future work will address some of these issues.

294

REFERENCES

[1] M. Rafieisakhaei, A. Tamjidi, S. Chakravorty, and P. Kumar, “Feedback

motion planning under non-gaussian uncertainty and non-convex state con-

straints,” arXiv preprint arXiv:1511.05186, 2015.

[2] P. R. Kumar and P. P. Varaiya, Stochastic Systems: Estimation, Identifica-

tion, and Adaptive Control. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[3] K. Astrom, “Optimal control of markov decision processes with incomplete

state estimation,” Journal of Mathematical Analysis and Applications, vol. 10,

pp. 174–205, 1965.

[4] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observ-

able markov processes over a finite horizon,” Operations Research, vol. 21,

no. 5, pp. 1071–1088, 1973.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting

in partially observable stochastic domains,” Artificial Intelligence, vol. 101,

pp. 99–134, 1998.

[6] M. I. Freidlin and A. D. Wentzell, Random Perturbations, pp. 15–43. New

York, NY: Springer US, 1984.

[7] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dy-

namic programming and optimal control, vol. 1. Athena Scientific Belmont,

MA, 1995.

[8] H. Kushner and P. G. Dupuis, Numerical methods for stochastic control prob-

lems in continuous time, vol. 24. Springer Science & Business Media, 2013.

295

[9] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univer-

sity Press, 1 ed., 1957.

[10] C.-S. Chow and J. N. Tsitsiklis, “The complexity of dynamic programming,”

Journal of complexity, vol. 5, no. 4, pp. 466–488, 1989.

[11] E. J. Sondik, “The optimal control of partially observable markov processes,”

PhD thesis, Stanford University, 1971.

[12] D. Bertsekas, Dynamic Programming and Optimal Control: 3rd Ed. Athena

Scientific, 2007.

[13] D. Bertsekas, Dynamic Programming and Stochastic Control. Academic Press,

1976.

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.

[15] A. Agha-mohammadi, S. Chakravorty, and N. Amato, “Firm: Sampling-based

feedback motion planning under motion uncertainty and imperfect measure-

ments,” International Journal of Robotics Research, no. 2, 2014.

[16] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An

anytime algorithm for pomdps,” in IJCAI, vol. 3, pp. 1025–1032, 2003.

[17] G. Shani, R. I. Brafman, and S. E. Shimony, “Forward search value iteration

for pomdps.,” in IJCAI, pp. 2619–2624, 2007.

[18] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in

Proceedings of the 20th conference on Uncertainty in artificial intelligence,

pp. 520–527, AUAI Press, 2004.

296

[19] M. T. Spaan and N. Vlassis, “Perseus: Randomized point-based value itera-

tion for pomdps,” Journal of artificial intelligence research, vol. 24, pp. 195–

220, 2005.

[20] T. Smith and R. Simmons, “Point-based pomdp algorithms: improved anal-

ysis and implementation,” in Proceedings of the Twenty-First Conference on

Uncertainty in Artificial Intelligence, pp. 542–549, AUAI Press, 2005.

[21] A. R. Cassandra and L. P. Kaelbling, “Learning policies for partially ob-

servable environments: Scaling up,” in Machine Learning Proceedings 1995:

Proceedings of the Twelfth International Conference on Machine Learning,

Tahoe City, California, July 9-12 1995, p. 362, Morgan Kaufmann, 2016.

[22] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning al-

gorithms for pomdps,” Journal of Artificial Intelligence Research, vol. 32,

pp. 663–704, 2008.

[23] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp solvers,”

Autonomous Agents and Multi-Agent Systems, pp. 1–51, 2013.

[24] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp planning

with regularization,” in Advances in neural information processing systems,

pp. 1772–1780, 2013.

[25] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in Advances

in neural information processing systems, pp. 2164–2172, 2010.

[26] K. M. Seiler, H. Kurniawati, and S. P. Singh, “An online and approximate

solver for pomdps with continuous action space,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), pp. 2290–2297, IEEE, 2015.

297

[27] D. Mayne, “Robust and stochastic mpc: Are we going in the right direction?,”

IFAC-PapersOnLine, vol. 48, no. 23, pp. 1–8, 2015.

[28] D. Q. Mayne, “Model predictive control: Recent developments and future

promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[29] J. N. Tsitsiklis, “Computational complexity in markov decision theory,”

HERMIS-An International Journal of Computer Mathematics and its Appli-

cations, vol. 9, pp. 45–54, 2007.

[30] Y. Le Tallec, Robust, risk-sensitive, and data-driven control of Markov deci-

sion processes. PhD thesis, Massachusetts Institute of Technology, 2007.

[31] R. E. Kopp, “Pontryagin maximum principle,” Mathematics in Science and

Engineering, vol. 5, pp. 255–279, 1962.

[32] D. H. Jacobson and D. Q. Mayne, “Differential dynamic programming,” 1970.

[33] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic

programming,” in American Control Conference (ACC), 2010, pp. 1125–1132,

IEEE, 2010.

[34] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal

feedback control of constrained nonlinear stochastic systems,” in American

Control Conference, 2005. Proceedings of the 2005, pp. 300–306, IEEE, 2005.

[35] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncer-

tainty using iterative local optimization in belief space,” The International

Journal of Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.

298

[36] J. van den Berg, “Extended lqr: locally-optimal feedback control for sys-

tems with non-linear dynamics and non-quadratic cost,” in Robotics Research,

pp. 39–56, Springer, 2016.

[37] P. Benigno and M. Woodford, “Linear-quadratic approximation of optimal

policy problems,” Journal of Economic Theory, vol. 147, no. 1, pp. 1–42,

2012.

[38] F. A. Oliehoek and C. Amato, A concise introduction to decentralized

POMDPs. Springer, 2016.

[39] D. V. Pynadath and M. Tambe, “The communicative multiagent team deci-

sion problem: Analyzing teamwork theories and models,” Journal of Artificial

Intelligence Research, vol. 16, pp. 389–423, 2002.

[40] S. Seuken and S. Zilberstein, “Formal models and algorithms for decentral-

ized decision making under uncertainty,” Autonomous Agents and Multi-Agent

Systems, vol. 17, no. 2, pp. 190–250, 2008.

[41] C. Boutilier, “Planning, learning and coordination in multiagent decision pro-

cesses,” in Proceedings of the 6th conference on Theoretical aspects of ratio-

nality and knowledge, pp. 195–210, Morgan Kaufmann Publishers Inc., 1996.

[42] C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J. Kochender-

fer, “Decentralized control of partially observable markov decision processes,”

in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,

pp. 2398–2405, IEEE, 2013.

[43] F. A. Oliehoek, “Decentralized pomdps,” Reinforcement Learning, pp. 471–

503, 2012.

299

[44] C. V. Goldman and S. Zilberstein, “Decentralized control of cooperative sys-

tems: Categorization and complexity analysis,” 2004.

[45] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein, “Policy iteration

for decentralized control of markov decision processes,” Journal of Artificial

Intelligence Research, vol. 34, no. 1, p. 89, 2009.

[46] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complex-

ity of decentralized control of markov decision processes,” Mathematics of

operations research, vol. 27, no. 4, pp. 819–840, 2002.

[47] M. Mundhenk, J. Goldsmith, and E. Allender, “The complexity of policy

evaluation for finite-horizon partially-observable markov decision processes,”

Mathematical Foundations of Computer Science 1997, pp. 129–138, 1997.

[48] C. H. Papadimitriou and J. Tsitsiklis, “Intractable problems in control the-

ory,” SIAM journal on control and optimization, vol. 24, no. 4, pp. 639–654,

1986.

[49] C. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision

processes,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450,

1987.

[50] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, “Taming de-

centralized pomdps: Towards efficient policy computation for multiagent set-

tings,” in IJCAI, vol. 3, pp. 705–711, 2003.

[51] C. Amato, F. A. Oliehoek, et al., “Scalable planning and learning for multia-

gent pomdps.,” in AAAI, pp. 1995–2002, 2015.

300

[52] J. V. Messias, M. T. Spaan, and P. U. Lima, “Multiagent pomdps with asyn-

chronous execution,” in Proceedings of the 2013 international conference on

Autonomous agents and multi-agent systems, pp. 1273–1274, International

Foundation for Autonomous Agents and Multiagent Systems, 2013.

[53] J. V. Messias, M. Spaan, and P. U. Lima, “Efficient offline communication

policies for factored multiagent pomdps,” in Advances in Neural Information

Processing Systems, pp. 1917–1925, 2011.

[54] C. Boutilier and D. Poole, “Computing optimal policies for partially observ-

able decision processes using compact representations,” in Proceedings of the

National Conference on Artificial Intelligence, pp. 1168–1175, 1996.

[55] E. A. Hansen and Z. Feng, “Dynamic programming for pomdps using a fac-

tored state representation.,” in AIPS, pp. 130–139, 2000.

[56] S. Omidshafiei, A. a. Agha-mohammadi, C. Amato, and J. P. How, “Decen-

tralized control of partially observable markov decision processes using belief

space macro-actions,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA), pp. 5962–5969, May 2015.

[57] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space plan-

ning assuming maximum likelihood observatoins,” in Proceedings of Robotics:

Science and Systems (RSS), June 2010.

[58] S. Patil, G. Kahn, M. Laskey, J. Schulman, K. Goldberg, and P. Abbeel,

“Scaling up gaussian belief space planning through covariance-free trajectory

optimization and automatic differentiation,” in Algorithmic Foundations of

Robotics XI, pp. 515–533, Springer, 2015.

301

[59] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path

planning for robots with motion uncertainty and imperfect state information,”

The International Journal of Robotics Research, vol. 30, no. 7, pp. 895–913,

2011.

[60] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncer-

tainty using differential dynamic programming in belief space,” in Robotics

Research, pp. 473–490, Springer, 2017.

[61] R. Platt, “Convex receding horizon control in non-gaussian belief space,” in

Algorithmic Foundations of Robotics X, pp. 443–458, Springer, 2013.

[62] M. Rafieisakhaei, A. Tamjidi, S. Chakravorty, and P. Kumar, “Feedback

motion planning under non-gaussian uncertainty and non-convex state con-

straints,” International Conference on Robotics and Automation (ICRA),

2016.

[63] H. J. Kushner, “Near optimal control in the presence of small stochastic per-

turbations,” Journal of Basic Engineering, vol. 87, no. 1, pp. 103–108, 1965.

[64] W. H. Fleming, “Stochastic control for small noise intensities,” SIAM Journal

on Control, vol. 9, no. 3, pp. 473–517, 1971.

[65] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “A near-optimal separation

principle for nonlinear stochastic systems arising in robotic path planning and

control,” arXiv preprint arXiv:1705.08566, 2017.

[66] C.-P. Tsai, “Perturbed stochastic linear regulator problems,” SIAM Journal

on Control and Optimization, vol. 16, no. 3, pp. 396–410, 1978.

302

[67] C. J. Holland, “Small noise open loop control,” SIAM Journal on Control,

vol. 12, no. 3, pp. 380–388, 1974.

[68] H. Cruz-Suárez and R. Ilhuicatzi-Roldán, “Stochastic optimal control for

small noise intensities: the discrete-time case,” WSEAS Transactions on

Mathematics, vol. 9, no. 2, pp. 120–129, 2010.

[69] Y. Kifer, “A discrete-time version of the wentzell-friedlin theory,” The Annals

of Probability, pp. 1676–1692, 1990.

[70] D. Grass, T. Kiseleva, and F. Wagener, “Small-noise asymptotics of hamilton–

jacobi–bellman equations and bifurcations of stochastic optimal control prob-

lems,” Communications in Nonlinear Science and Numerical Simulation,

vol. 22, no. 1, pp. 38–54, 2015.

[71] W. Fleming and P. Souganidis, “Asymptotic series for solutions to the dy-

namic programming equation for diffusions with small noise,” in Decision

and Control, 1985 24th IEEE Conference on, vol. 24, pp. 1343–1344, IEEE,

1985.

[72] R. S. Liptser, W. Runggaldier, and M. Taksar, “Deterministic approximation

for stochastic control problems,” SIAM journal on control and optimization,

vol. 34, no. 1, pp. 161–178, 1996.

[73] W. Wonham, “On the separation theorem of stochastic control,” SIAM Jour-

nal on Control, vol. 6, no. 2, pp. 312–326, 1968.

[74] H. J. Kushner, Introduction to stochastic control. Holt, Rinehart and Winston

New York, 1971.

303

[75] H. S. Witsenhausen, “Separation of estimation and control for discrete time

systems,” Proceedings of the IEEE, vol. 59, no. 11, pp. 1557–1566, 1971.

[76] A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization

of a class of nonlinear systems,” IEEE Transactions on Automatic Control,

vol. 44, no. 9, pp. 1672–1687, 1999.

[77] J. E. Potter, A guidance-navigation separation theorem. Massachusetts Insti-

tute of Technology, Experimental Astronomy Laboratory, 1964.

[78] A. E. Lim, J. B. Moore, and L. Faybusovich, “Separation theorem for linearly

constrained lqg optimal control,” Systems & control letters, vol. 28, no. 4,

pp. 227–235, 1996.

[79] R. Curry, “Separation theorem for nonlinear measurements,” IEEE Transac-

tions on Automatic Control, vol. 14, no. 5, pp. 561–564, 1969.

[80] M. Arcak, “A global separation theorem for a new class of nonlinear ob-

servers,” in Decision and Control, 2002, Proceedings of the 41st IEEE Con-

ference on, vol. 1, pp. 676–681, IEEE, 2002.

[81] A. E. Lim and J. B. Moore, “A quasi-separation theorem for lqg optimal

control with iq constraints,” Systems & control letters, vol. 32, no. 1, pp. 21–

33, 1997.

[82] W. H. Fleming and É. Pardoux, “Optimal control for partially observed dif-

fusions,” SIAM Journal on Control and Optimization, vol. 20, no. 2, pp. 261–

285, 1982.

[83] J.-M. Bismut, “Partially observed diffusions and their control,” SIAM Journal

on Control and Optimization, vol. 20, no. 2, pp. 302–309, 1982.

304

[84] A. Bensoussan, Stochastic control of partially observable systems. Cambridge

University Press, 2004.

[85] C. Charalmbous and F. Rezaei, “Optimization of stochastic uncertain sys-

tems: Large deviations and robustness for partially observable diffusions,” in

American Control Conference, 2004. Proceedings of the 2004, vol. 4, pp. 3152–

3157, IEEE, 2004.

[86] W. H. Fleming and E. Pardoux, “Piecewise monotone filtering with small

observation noise,” SIAM journal on control and optimization, vol. 27, no. 5,

pp. 1156–1181, 1989.

[87] W. H. Fleming and Q. Zhang, “Piecewise monotone filtering with small obser-

vation noise: Numerical simulations,” in Applied Stochastic Analysis, pp. 108–

120, Springer, 1992.

[88] S. Peng, “A general stochastic maximum principle for optimal control prob-

lems,” SIAM Journal on control and optimization, vol. 28, no. 4, pp. 966–979,

1990.

[89] H. Kushner, “Necessary conditions for continuous parameter stochastic opti-

mization problems,” SIAM Journal on Control, vol. 10, no. 3, pp. 550–565,

1972.

[90] F. Chighoub, B. Djehiche, and B. Mezerdi, “The stochastic maximum princi-

ple in optimal control of degenerate diffusions with non-smooth coefficients,”

Random Operators and Stochastic Equations, vol. 17, no. 1, pp. 37–54, 2009.

[91] U. G. Haussmann, A stochastic maximum principle for optimal control of

diffusions. John Wiley & Sons, Inc., 1986.

305

[92] U. Haussmann, “Some examples of optimal stochastic controls or: the stochas-

tic maximum principle at work,” SIAM Review, vol. 23, no. 3, pp. 292–307,

1981.

[93] U. Haussmann, “The maximum principle for optimal control of diffusions with

partial information,” SIAM journal on control and optimization, vol. 25, no. 2,

pp. 341–361, 1987.

[94] C. D. Charalambous and J. L. Hibey, “Necessary conditions of optimization

for partially observed controlled diffusions,” SIAM Journal on Control and

Optimization, vol. 37, no. 6, pp. 1676–1700, 1999.

[95] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp solvers,”

Autonomous Agents and Multi-Agent Systems, vol. 27, pp. 1–51, 2013.

[96] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An any-

time algorithm for POMDPs,” in International Joint Conference on Artificial

Intelligence, pp. 1025–1032, 2003.

[97] T. Smith and R. Simmons, “Point-based pomdp algorithms: Improved anal-

ysis and implementation,” in Proceedings of Uncertainty in Artificial Intelli-

gence, 2005.

[98] M. Spaan and N. Vlassis, “Perseus: Randomized point-based vallue iteration

for pomdps,” Journal of Artificial Intelligence Research, vol. 24, pp. 195–220,

2005.

[99] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-based pomdp

planning by approximating optimally reachable belief spaces,” in Proceedings

of Robotics: Science and Systems, 2008.

306

[100] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, “Point-based value

iteration for continuous POMDPs,” Journal of Machine Learning Research,

vol. 7, pp. 2329–2367, Nov. 2006.

[101] H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo, “Monte carlo value iteration for

continuous-state pomdps.,” in WAFR, vol. 68 of Springer Tracts in Advanced

Robotics, pp. 175–191, Springer, 2010.

[102] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under uncertainty

for robotic tasks with mixed observability.,” International Journal of Robotics

Research, vol. 29, no. 8, pp. 1053–1068, 2010.

[103] H. Bai, D. Hsu, W. Lee, and V. Ngo, “Monte carlo value iteration for

continuous-state pomdps,” Algorithmic foundations of robotics IX, pp. 175–

191.

[104] Z. Lim, W. Lee, and D. Hsu, “Monte carlo value iteration with macro-actions,”

Advances in Neural Information Processing Systems, pp. 1287–1295.

[105] R. Zhou and E. A. Hansent, “An improved grid-based approximation algo-

rithm for pomdps,” IJCAI, 2001.

[106] O. Madani, S. Hanks, and A. Condon, “On the undecidability of probabilistic

planning and infinite-horizon partially observable markov decision problems,”

in Proceedings of the Sixteen Conference on Artificial Intelligence (AAAI),

pp. 541–548, 1999.

[107] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Efficient planning

in non-gaussian belief spaces and its application to robot grasping,” IntâĂŹl

Symposium on Robotics Research, 2011.

307

[108] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space plan-

ning assuming maximum likelihood observations,” in Robotics: Science and

Systems (RSS), 2010.

[109] R. Platt, “Convex receding horizon control in non-gaussian belief space,” in

International Workshop on Algorithmic Foundations of Robotics, 2012.

[110] A. Agha-mohammadi, S. Chakravorty, and N. Amato, “FIRM: Feedback

controller-based Information-state RoadMap -a framework for motion plan-

ning under uncertainty-,” in International Conference on Intelligent Robots

and Systems (IROS), 2011.

[111] S. Prentice and N. Roy., “The belief roadmap: Efficient planning in linear

pomdps by factoring the covariance,” 2008.

[112] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion plan-

ning under uncertainty,” in IEEE IntâĂŹl Conf. on Robotics and Automation,

2011.

[113] A. Censi, D. Calisi, A. D. Luca, and G. Oriolo, “A Bayesian framework for

optimal motion planning with uncertainty,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), (Pasadena, CA),

May 2008.

[114] R. Platt, L. Kaelbling, T. Lozano-Perez, , and R. Tedrake, “Efficient planning

in non-gaussian belief spaces and its application to robot grasping,” in Proc.

of International Symposium of Robotics Research, (ISRR), 2011.

[115] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief

308

space by factoring the covariance,” International Journal of Robotics Re-

search, vol. 28, October 2009.

[116] V. Huynh and N. Roy, “icLQG: combining local and global optimization for

control in information space,” in IEEE International Conference on Robotics

and Automation (ICRA), 2009.

[117] L. Kavraki, P. Švestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[118] L. Kavraki, M. Kolountzakis, and J. Latombe, “Analysis of probabilistic

roadmaps for path planning,” IEEE Transactions on Robotics and Automa-

tion, vol. 14, pp. 166–171, February 1998.

[119] A. Ladd and L. Kavraki, “Measure theoretic analysis of probabilistic path

planning,” IEEE Transactions on Robotics and Automation, vol. 20, pp. 229–

242, April 2004.

[120] L. Kavraki, J. Latombe, R. Motwani, and P. Raghavan, “Randomized query

processing in robot motion planning,” in Proc. ACM Symp. Theory of Com-

puting, pp. 353–362, 1995.

[121] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun, Principles of robot motion: theory, algorithms, and

implementations. MIT Press, 2005.

[122] N. D. Toit and J. W. Burdick, “Robotic motion planning in dynamic, clut-

tered, uncertain environments,” in ICRA, May 2010.

309

[123] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion plan-

ning under uncertainty.,” in ICRA, pp. 723–730, 2011.

[124] S. Lavalle and J. Kuffner, “Randomized kinodynamic planning,” International

Journal of Robotics Research, vol. 20, no. 378-400, 2001.

[125] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” International Journal of Robotics Research, vol. 30, pp. 846–894,

June 2011.

[126] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning for linear,

Gaussian systems.,” in ICRA, pp. 2152–2159, 2011.

[127] W. Li and E. Todorov, “Iterative linearization methods for approximately

optimal control and estimation of non-linear stochastic system,” International

Journal of Control, vol. 80, no. 9, pp. 1439–1453, 2007.

[128] J. Van den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncer-

tainty using differential dynamic programming in belief space,” in Proc. of

International Symposium of Robotics Research, (ISRR), 2011.

[129] A.-A. Agha-Mohammadi, Feedback-based Information Roadmap (FIRM):

Graph-based Estimation and Control of Robotic Systems Under Uncertainty.

PhD thesis, Texas A&M University, 2014.

[130] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory

and practiceâĂŤa survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[131] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained

model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,

pp. 789–814, 2000.

310

[132] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear sys-

tems,” Automatic Control, IEEE Transactions on, vol. 35, no. 7, pp. 814–824,

1990.

[133] H. Michalska and D. Q. Mayne, “Robust receding horizon control of con-

strained nonlinear systems,” Automatic Control, IEEE Transactions on,

vol. 38, no. 11, pp. 1623–1633, 1993.

[134] S. a. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for

a general class of constrained discrete-time systems: Stability and moving-

horizon approximations,” Journal of optimization theory and applications,

vol. 57, no. 2, pp. 265–293, 1988.

[135] E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Receding

horizon control and discontinuous state feedback stabilization,” International

Journal of Control, vol. 62, no. 5, pp. 1217–1229, 1995.

[136] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive

control technology,” in AIChE Symposium Series, vol. 93, pp. 232–256, New

York, NY: American Institute of Chemical Engineers, 1971-c2002., 1997.

[137] G. Zames, “Feedback and optimal sensitivity: Model reference transforma-

tions, multiplicative seminorms, and approximate inverses,” Automatic Con-

trol, IEEE Transactions on, vol. 26, no. 2, pp. 301–320, 1981.

[138] J. C. Doyle, K. Glover, P. P. Khargonekar, B. Francis, et al., “State-space

solutions to standard h 2 and hâĹđ control problems,” Automatic Control,

IEEE Transactions on, vol. 34, no. 8, pp. 831–847, 1989.

311

[139] G. Zames, B. Francis, et al., “Feedback, minimax sensitivity, and optimal ro-

bustness,” Automatic Control, IEEE Transactions on, vol. 28, no. 5, pp. 585–

601, 1983.

[140] D. Mayne, “Optimization in model predictive control,” in Methods of Model

Based Process Control, pp. 367–396, Springer, 1995.

[141] E. Polak, Optimization: algorithms and consistent approximations, vol. 124.

Springer Science & Business Media, 2012.

[142] R. Bellman, “A markovian decision process,” tech. rep., DTIC Document,

1957.

[143] E. B. Lee and L. Markus, “Foundations of optimal control theory,” tech. rep.,

DTIC Document, 1967.

[144] K. J. Åström, “Theory and applications of adaptive controlâĂŤa survey,”

Automatica, vol. 19, no. 5, pp. 471–486, 1983.

[145] D. Mayne and J. Rawlings, “Model predictive control: theory and design,”

Madison, WI: Nob Hill Publishing, LCC, 2009.

[146] S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent robustness properties

of quasi-infinite horizon mpc,” in 18th IFAC World Congress, Milano, 2011.

[147] D. L. Marruedo, T. Alamo, and E. Camacho, “Input-to-state stable mpc for

constrained discrete-time nonlinear systems with bounded additive uncertain-

ties,” in Decision and Control, 2002, Proceedings of the 41st IEEE Conference

on, vol. 4, pp. 4619–4624, IEEE, 2002.

[148] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear

systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

312

[149] D. Limon, T. Alamo, D. Raimondo, D. M. de la Pena, J. Bravo, A. Fer-

ramosca, and E. Camacho, “Input-to-state stability: a unifying framework

for robust model predictive control,” in Nonlinear model predictive control,

pp. 1–26, Springer, 2009.

[150] M. Lazar, W. Heemels, and A. Teel, “Further input-to-state stability sub-

tleties for discrete-time systems,” Automatic Control, IEEE Transactions on,

vol. 58, pp. 1609–1613, June 2013.

[151] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state sta-

bility property,” Systems & Control Letters, vol. 24, no. 5, pp. 351–359, 1995.

[152] G. Pin, D. M. Raimondo, L. Magni, and T. Parisini, “Robust model predic-

tive control of nonlinear systems with bounded and state-dependent uncer-

tainties,” Automatic Control, IEEE Transactions on, vol. 54, no. 7, pp. 1681–

1687, 2009.

[153] D. P. Bertsekas and I. B. Rhodes, “Recursive state estimation for a set-

membership description of uncertainty,” Automatic Control, IEEE Transac-

tions on, vol. 16, no. 2, pp. 117–128, 1971.

[154] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target sets

and target tubes,” Automatica, vol. 7, no. 2, pp. 233–247, 1971.

[155] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent distur-

bances: predictive control with restricted constraints,” Automatica, vol. 37,

no. 7, pp. 1019–1028, 2001.

[156] D. Bernardini and A. Bemporad, “Scenario-based model predictive control

of stochastic constrained linear systems,” in Decision and Control, 2009 held

313

jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Pro-

ceedings of the 48th IEEE Conference on, pp. 6333–6338, IEEE, 2009.

[157] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini, “Sequential monte carlo

for model predictive control,” in Nonlinear Model Predictive Control, pp. 263–

273, Springer, 2009.

[158] G. C. Calafiore and M. C. Campi, “The scenario approach to robust control

design,” Automatic Control, IEEE Transactions on, vol. 51, no. 5, pp. 742–

753, 2006.

[159] P. Kumar et al., “Control: a perspective,” Automatica, vol. 50, no. 1, pp. 3–43,

2014.

[160] V. D. Blondel and J. N. Tsitsiklis, “A survey of computational complexity

results in systems and control,” Automatica, vol. 36, no. 9, pp. 1249–1274,

2000.

[161] M. Rafieisakhaei, S. Chakravorty, and P. R. Kumar, “A Near-Optimal De-

coupling Principle for Nonlinear Stochastic Systems Arising in Robotic Path

Planning and Control,” in 56th IEEE Conference on Decision and Control

(CDC), IEEE, 2017.

[162] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “On the use of the observ-

ability gramian for partially observed robotic path planning problems,” in

56th IEEE Conference on Decision and Control (CDC), IEEE, 2017.

[163] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Mt-lqg: Multi-agent plan-

ning in belief space via trajectory-optimized lqg,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 5583–5590, IEEE, 2017.

314

[164] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “T-lqg: Closed-loop be-

lief space planning via trajectory-optimized lqg,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 649–656, IEEE, 2017.

[165] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Non-gaussian slap: Simul-

taneous localization and planning under non-gaussian uncertainty in static

and dynamic environments,” arXiv preprint arXiv:1605.01776, 2016.

[166] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Belief space planning sim-

plified: Trajectory-optimized lqg (t-lqg),” arXiv preprint arXiv:1608.03013,

2016.

[167] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Near-optimal belief space

planning via t-lqg,” arXiv preprint arXiv:1705.09415, 2017.

[168] D. Yu, M. Rafieisakhaei, and S. Chakravorty, “Stochastic feedback

control of systems with unknown nonlinear dynamics,” arXiv preprint

arXiv:1705.09761, 2017.

[169] M. Rafieisakhaei, A. Tamjidi, and S. Chakravorty, “On-line mpc-based

stochastic planning in the non-gaussian belief space with non-convex con-

straints,” 2015.

[170] D. Yu, M. Rafieisakhaei, and S. Chakravorty, “A separation-based design to

data-driven control for large-scale partially observed systems,” 2017.

[171] A. D. Wentzell, Limit theorems on large deviations for Markov stochastic

processes, vol. 38. Springer Science & Business Media, 2012.

[172] A. Dembo and O. Zeitouni, Large deviations techniques and applications,

vol. 38. Springer Science & Business Media, 2009.

315

[173] H. Cruz-Suárez and R. Ilhuicatzi-Roldán, “Stochastic optimal control for

small noise intensities: The discrete-time case,” WSEAS Trans. Math., vol. 9,

pp. 120–129, Feb. 2010.

[174] J. D. Perkins and R. W. H. Sargent, Nonlinear optimal stochastic control —

some approximations when the noise is small, pp. 820–830. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1976.

[175] J. Perkins and R. Sargent, “Nonlinear optimal stochastic controlâĂŤsome

approximations when the noise is small,” in IFIP Technical Conference on

Optimization Techniques, pp. 820–830, Springer, 1975.

[176] C. J. Holland, “An approximation technique for small noise open-loop control

problems,” Optimal Control Applications and Methods, vol. 2, no. 1.

[177] S. S. Varadhan and S. S. Varadhan, Large deviations and applications, vol. 46.

SIAM, 1984.

[178] cardinal (https://math.stackexchange.com/users/7003/cardinal), “Proof of

upper-tail inequality for standard normal distribution.” Mathematics Stack

Exchange. URL:https://math.stackexchange.com/q/28754 (version: 2011-03-

24).

[179] S. Lavalle, Planning algorithms. Cambridge University Press, 2006.

[180] R. C. James, Advanced calculus. Wadsworth Pub. Co., 1966.

[181] W. Sun, J. van den Berg, and R. Alterovitz, “Stochastic extended lqr for

optimization-based motion planning under uncertainty,” IEEE Transactions

on Automation Science and Engineering, vol. 13, no. 2, pp. 437–447, 2016.

316

[182] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under un-

certainty using parallel sampling-based motion planning,” IEEE Transactions

on Robotics, vol. 31, no. 1, pp. 104–116, 2015.

[183] D. S. Watkins, Fundamentals of matrix computations, vol. 64. John Wiley &

Sons, 2004.

[184] J. Duchi, “Derivations for linear algebra and optimization,” Berkeley, Cali-

fornia, 2007.

[185] N. Moshtagh, “Minimum volume enclosing ellipsoid,” Convex Optimization,

vol. 111, p. 112, 2005.

[186] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004.

[187] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path planning

with homotopy class constraints,” in Third Annual Symposium on Combina-

torial Search, 2010.

[188] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints

in search-based robot path planning,” Autonomous Robots, vol. 33, no. 3,

pp. 273–290, 2012.

[189] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path

planning for robots with motion uncertainty and imperfect state information,”

IJRR, vol. 30, no. 7, pp. 895–913, 2011.

[190] S. Bubeck, “Theory of convex optimization for machine learning,” arXiv

preprint arXiv:1405.4980, 2014.

317

[191] A. Nemirovsky, “Problem complexity and method efficiency in optimization.,”

[192] zakharov, “zakharov youbot model,” 2011.

[193] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.

Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant hamiltonian

optimization for motion planning,” The International Journal of Robotics Re-

search, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[194] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Dover

Publications, Inc. NY, 1998.

[195] M. Rafieisakhaei, S. Chakravorty, and P. R. Kumar, “Belief space planning

simplified: Trajectory-optimized lqg (t-lqg),” 2016 (Submitted).

[196] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Belief space planning sim-

plified: Trajectory-optimized lqg (t-lqg),” arXiv preprint arXiv:1608.03013,

2016.

[197] A. Agha-mohammadi, S. Agarwal, S. Chakravorty, and N. M. Amato, “Si-

multaneous localization and planning for physical mobile robots via enabling

dynamic replanning in belief space,” CoRR, vol. abs/1510.07380, 2015.

[198] S. Omidshafiei, A.-a. Agha-mohammadi, C. Amato, S.-Y. Liu, J. P. How, and

J. Vian, “Graph-based cross entropy method for solving multi-robot decen-

tralized pomdps,” in 2016 IEEE International Conference on Robotics and

Automation (ICRA), pp. 5395–5402, IEEE, 2016.

[199] Youbot-store.com, “Youbot 3d model - youbot wiki,” 2016.

[200] P. S. Maybeck, Stochastic models, estimation, and control, vol. 3, pp. 45–48,

238–241. Academic press, 1982.

318

[201] K. Yasuda and R. E. Skelton, “Assigning controllability and observability

gramians in feedback control,” Journal of Guidance, Control, and Dynamics,

vol. 14, no. 5, pp. 878–885, 1991.

[202] U. Vaidya, “Observability gramian for nonlinear systems,” in Decision and

Control, 2007 46th IEEE Conference on, pp. 3357–3362, IEEE, 2007.

[203] B. Southall, B. F. Buxton, and J. A. Marchant, “Controllability and observ-

ability: Tools for kalman filter design.,” in BMVC, pp. 1–10, 1998.

[204] A. J. Krener and K. Ide, “Measures of unobservability,” in Decision and

Control, 2009 held jointly with the 2009 28th Chinese Control Conference.

CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pp. 6401–

6406, IEEE, 2009.

[205] D. Georges, “Energy minimization and observability maximization in multi-

hop wireless sensor networks,” IFAC Proceedings Volumes, vol. 44, no. 1,

pp. 13918–13923, 2011.

[206] B. T. Hinson, Observability-based guidance and sensor placement. PhD thesis,

University of Washington, 2014.

[207] B. T. Hinson, M. K. Binder, and K. A. Morgansen, “Path planning to optimize

observability in a planar uniform flow field,” in American Control Conference

(ACC), 2013, pp. 1392–1399, IEEE, 2013.

[208] J. D. Quenzer and K. A. Morgansen, “Observability based control in

range-only underwater vehicle localization,” in American Control Conference

(ACC), 2014, pp. 4702–4707, IEEE, 2014.

319

[209] M. Travers and H. Choset, “Use of the nonlinear observability rank condition

for improved parametric estimation,” in Robotics and Automation (ICRA),

2015 IEEE International Conference on, pp. 1029–1035, IEEE, 2015.

[210] L. DeVries and D. A. Paley, “Wake sensing and estimation for control of

autonomous aircraft in formation flight,” Journal of Guidance, Control, and

Dynamics, vol. 39, no. 1, pp. 32–41, 2015.

[211] L. DeVries, S. J. Majumdar, and D. A. Paley, “Observability-based optimiza-

tion of coordinated sampling trajectories for recursive estimation of a strong,

spatially varying flowfield,” Journal of Intelligent & Robotic Systems, vol. 70,

no. 1-4, pp. 527–544, 2013.

[212] A. K. Singh and J. Hahn, “Determining optimal sensor locations for state and

parameter estimation for stable nonlinear systems,” Industrial & engineering

chemistry research, vol. 44, no. 15, pp. 5645–5659, 2005.

[213] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Non-gaussian belief

space planning: Correctness and complexity,” in Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pp. 4711–4717, IEEE, 2012.

[214] P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posterior cramér-rao bounds

for discrete-time nonlinear filtering,” IEEE Transactions on signal processing,

vol. 46, no. 5, pp. 1386–1396, 1998.

[215] N. Thacker and A. Lacey, “Tutorial: The likelihood interpretation of the

kalman filter,” TINA Memos: Advanced Applied Statistics, vol. 2, no. 1, pp. 1–

11, 1996.

320

[216] M. Lei, C. Baehr, and P. Del Moral, “Fisher information matrix-based non-

linear system conversion for state estimation,” in Control and Automation

(ICCA), 2010 8th IEEE International Conference on, pp. 837–841, IEEE,

2010.

[217] G. Casella and R. L. Berger, Statistical inference, vol. 2. Duxbury Pacific

Grove, CA, 2002.

[218] M. Rafieisakhaei, S. Chakravorty, and P. R. Kumar, “T-LQG: Closed-Loop

Belief Space Planning via Trajectory-Optimized LQG,” in 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 649–656, IEEE,

2017.

[219] B. Barazandeh, K. Bastani, M. Rafieisakhaei, S. Kim, Z. Kong, and M. A.

Nussbaum, “Robust sparse representation-based classification using online

sensor data for monitoring manual material handling tasks,” IEEE Trans-

actions on Automation Science and Engineering, 2017.

[220] M. Boloursaz, R. Kazemi, B. Barazandeh, and F. Behnia, “Bounds on com-

pressed voice channel capacity,” in Communication and Information Theory

(IWCIT), 2014 Iran Workshop on, pp. 1–6, IEEE, 2014.

[221] D. Crisan and A. Doucet, “A survey of convergence results on particle filter-

ing methods for practitioners,” IEEE TRANSACTIONS ON SIGNAL PRO-

CESSING, vol. 50, no. 3, 2002.

[222] A. Doucet, J. de Freitas, and N. Gordon, Sequential Monte Carlo methods in

practice. New York: Springer, 2001.

321

[223] S. Yakowitz, “Algorithms and computational techniques in differential dy-

namic programming,” Control and Dynamical Systems: Advances in Theory

and Applications, vol. 31, pp. 75–91, 2012.

322

