
RAMAN SPECTROSCOPY APPLICATIONS IN AGRICULTURE: FROM

EARLY PLANT STRESS DIAGNOSTICS TO ANIMAL DIET PREDICTIONS

A Dissertation

by

NARANGEREL ALTANGEREL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Marlan O. Scully
Committee Members, William Bassichis

Joshua Yuan
Aleksei M. Zheltikov

Head of Department, Peter McIntyre

December 2017

Major Subject: Applied Physics

Copyright 2017 Narangerel Altangerel



ABSTRACT

This work is mainly devoted to development of Raman spectroscopic techniques

for in vivo detection of abiotic plant stress and animal diet prediction by Raman

spectra of their feces. The ability to measure plant stress in vivo responses is

becoming increasingly vital as we consider human population growth and climate

change reports. In the first study, Raman spectroscopy was utilized to nondestruc-

tively detect abiotic stress responses during 48 hours of plant response to multiple

stresses. Coleus Solenostemon scutellarioides plants were subjected to four common

abiotic stress conditions, individually: high soil salinity, drought, chilling exposure,

and light saturation and examined post stress induction by Raman microscopic and

spectroscopic systems, and chemical analytical methods. While anthocyanin levels

increased, carotenoid levels decreased under exposure to these stress conditions by

in vivo Raman measurements and the chemical analysis. This unique negative cor-

related relationship shows that plant stress response is fine-tuned to protect against

stress-induced damage. In the next study, we utilized a Raman spectroscopy as de-

tection tool to predict cow diets by their feces. The objective of this study was to

compare near infrared reflectance spectroscopy (NIRS) to Raman spectroscopy of

fecal samples for predicting the percentage of Honey mesquite Prosopis glandulosa

Torr. in the diet of ruminally fistulated cattle fed three different base hay diets and

to compare them for their ability to discriminate among the three base diets. Spectra

were collected from fecal materials from a feeding trial with mesquite fed at 0, 1, 3

and 5% of the diet and base hay diets of timothy hay Phleum pratense L., Sudan

hay Sorghum sudanense (Piper) Stapf, or a 50 : 50 combination of Bermudagrass

hay Cynodon dactylon (L.) Pers. and beardless wheat hay Triticum aestivum L..
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NIRS and Raman spectra were used for partial least squares regression calibrations

with the timothy and Sudan hays and validated with the Bermudagrass beardless

wheat hay diets. NIRS spectra provided useful calibrations (R2=0.88, slope=1.03,

intercept=1.88, root mean square error=2.09, bias=1.95, ratio of performance to de-

viation=2.6), but Raman spectra did not. Stepwise discriminant analysis was used

to select wavenumbers for discriminant among the three hays. Fifteen of 350 possi-

ble wavenumbers for NIRS spectra and 29 of 300 possible wavenumbers for Raman

spectra met the P ≤ 0.05 entry and staying criteria. Canonical discriminant analysis

using these wavenumbers resulted in 100% correct classification for all three base diets

and the Raman spectra provided greater separation than NIRS spectra. Discrimi-

nation using Raman spectra was primarily associated with wavenumbers associated

with undigestible constituents of the diet, i.e., lignin. In contrast, discrimination

using NIRS spectra was primarily associated with wavenumbers associated with di-

gestible constituents in the diet, i.e., protein, starch and lipid. At last, coherent

Raman scattering spectroscopy is studied specifically, with the Gaussian ultrashort

pulses as a hands-on elucidatory extraction tool of the clean coherent Raman res-

onant spectra from the overall measured data contaminated with the non-resonant

four wave mixing background. The integral formulae for both the coherent anti-

Stokes and Stokes Raman scattering are given in the semiclassical picture, and the

closed-form solutions in terms of a complex error function are obtained. An ana-

lytic form of maximum enhancement of pure coherent Raman spectra at threshold

time delay depending on bandwidth of probe pulse is also obtained. The observed

experimental data for pyridine in liquid-phase are quantitatively elucidated and the

inferred time-resolved coherent Raman resonant results are reconstructed with a new

insight.
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NOMENCLATURE

CCD Charge-Coupled array Detector

2D Two Dimension

3D Three Dimension

NIRS Near Infrared Spectroscopy

f.NIRS Fecal Infrared Spectroscopy

CARS Coherent Anti-Stokes Raman Spectroscopy

CSRS Coherent Stokes Raman Spectroscopy

ROS Reactive Oxygen Species

DM Dry Matter

NDF Neutral Detergent Fiber

ADF Acid Detergent Fiber

BW Bermudagrass hay and beardless Wheat hay

WN Wavenumber
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INTRODUCTION

Motivation and Research Objective

The Green Revolution has given us the ability to feed our hungry world. But

with the ever increasing world population and decreasing arable land we will not be

able to feed ourselves in the near future. We clearly need agricultural innovation(s)

to forestall this disaster. Early detection of plant stress is one such tool for opti-

mizing crop yields. Current in vivo sensing technologies are limited by the time it

takes to detect a stress response, the types of stress factors that can be examined,

and the level of the stress or the physiological changes that are detectable. Here

Raman spectroscopy is shown for the first time to detect abiotic stress responses

within 48 hours for multiple stress factors. Anthocyanin, a known reactive oxygen

scavenging (ROS) molecule was shown to increase within 36 hours of exposure to

cold, excess light, saline and drought stress conditions. Conversely, carotenoid levels

were shown to decrease. The two pigments were anti-correlated across all four abi-

otic stress factors. This unique anti-correlation, which has never been demonstrated

before, indicates that the stress response is fine tuned to protect against stress in-

duced damage. In principle, early detection of the anthocyanin/carotenoid stress

response would allow for intervention to improve crop yields and avoid seasonal crop

failures. Non-destructive stress detection using Raman Spectroscopy holds promise

for increasing agricultural production and will speed up the development of selective

breeding programs for stress resistant strains of commercially important food crops.
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Background

Raman Effect

There are two types of light scattering due to interaction of light with matter:

elastic (Rayleigh scattering) or inelastic (Raman scattering). Though inelastic scat-

tering of light by matter was predicted by Smekal in 1923, it was first observed in

experimentation by Raman and his collaborator K.S.Krishnan in 1928 [1]. For the

discovery of the effect, which was named after him, Raman won a Nobel Prize in

1930. The Raman effect (or scattering) is caused by the interaction between vi-

brational/rotational motions of molecules with electromagnetic radiation. Rayleigh

scattering (Figure 1.1) is elastic scattering that takes place with no loss of energy

or frequency change - it is most of the scattering that occurs when light shines on a

sample. Raman scattering, on the other hand, is spurred by inelastic scattering of

Figure 1.1: A) The energy level diagram of Rayleigh and Raman processes, B) Raman
and Rayleigh scatterings of excitation at a frequency ν0 and molecular vibration in
the sample of frequency νv
.

2



the incident photons, since energy transferred to or received from the sample due to

changes in the vibrational/rotational modes of sample molecules cause changes in the

frequency of the scattered light. Incident photons that give up energy to the sample

are scattered with a red shifted frequency and called a stokes shift (Figure 1.1A).

If an already excited molecule gives energy to a scattered photon, the output has a

blue-shifted frequency, and is referred to as anti-Stokes shift (Figure 1.1A). However,

because the probability of a molecule being in an excited state is much lower than

being in the ground state, the anti-Stokes shift happens less often than the Stokes-

shift. The Raman scattering photons usually analyzed are Stokes photons, or Stokes

lines. Though the lack of anti-stokes photons causes weak anti-stokes lines, the ab-

sence of fluorescence interference (an issue for stokes photons) drive them to at times

be favored in analysis. Fluorescence is very different from Raman scattering. The

excitation light is completely absorbed by the molecule during fluorescence process

and it results an electronic energy state change (Figure 1.2). Raman scattered light is

released instantaneously, while fluorescent light is later released during the molecule

relaxes back to a lower energy state [2]. Raman scattering is determined by electrical

polarizibility changes during the vibration, whereas another vibrational technique of

infrared (IR) detects vibrations when the electrical dipole moment changes [3]. IR

process requires the frequency of excitation light has to match the energy differences

between ground and excited vibrational states (Figure 1.2). Both processes provides

essentially the same type of information such as the energies of molecular vibrational

modes since they detects molecular vibrations. However, they differ by their selec-

tion rules and fundamental mechanisms. For example, an electrically unsymmetric

bond may be IR active and Raman inactive or both IR and Raman active [4]. An

important withdraw of IR method is that aqueous system such as live plants cannot

be use IR method because water is very strong absorbent of IR, whereas Raman

3



Figure 1.2: The energy level diagram of Infrared, Fluorescence, Rayleigh, and Raman
processes

process doesn’t affect much with water. Overall, both methods have advantages

and limitations, but can be used as complimentary methods for example studies on

bond angles, bond lengths, and other structural information require Raman data in

addition to IR analysis [5].

Raman Spectroscopy: Its Instruments and Applications

Raman spectroscopy is a technique specialized to measure frequency shift of in-

elastic scattered light (Raman process) from a sample when incident light hits a

molecule of the sample and produces scattered light [2]. It should be obvious from

Figure 1.1B that Raman frequencies will appear±νv (a molecular vibration frequency

of sample)relative to that excitation frequency at ν0. Generally, a vibrational fre-

quency has value of the order of 1012s−1. A Raman shift expressed by a wavenumber

4



in units of cm−1, which is defined by

νv = νv
c

= 1
λv

(1.1)

where λv is a the corresponding wavelength and c is the velocity of light. This fre-

quency shift depends upon the chemical composition of the sample (molecules) which

are responsible for the Raman scattering. Therefore, Raman measurements provide

important information of molecular characterization of sample [9]. The intensity of

Raman scattering linearly depends on the total amount of sample’s molecular po-

larization changes. Raman technique doesn’t need any sample preparation and non

invasive method, but it is a very weak process. The intensity of the Rayleigh scat-

tering three orders (10−3)and the intensity of the Raman scattering 6 orders (10−6)

weaker than the incident light intensity. Until the last decade, Raman spectroscopy

has not been as widely applied because of low efficiency of Raman scattering and

detection instruments were expensive and bulky. However, many of these problems

have been overcome and even portable field instruments are now available. In the

section 3, we used a handheld Raman equipment for collecting Raman spectra from

cow feces and forages. The figure 1.3 shows a typical setup of Raman spectrometer.

Excitation light from a laser reflected from a sample and the Rayleigh scattered light

(from sample) will be rejected by a notch filter (Raman filter) which allows only

Raman scattered light to pass. Raman scattered light from sample will collected

by collection optics and send to a spectrograph which consists of a grating and

a charge-coupled array detector(CCD)(see Figure 1.3). Many advances in Raman

instrument design implemented such as highly sensitive detectors, spectrometers,

Rayleigh rejection filters (Raman filters), sources (excitation lasers) and collection

optics (better lenses, objective etc). These advances have shortened analysis time
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Figure 1.3: A simple setup of a Raman spectrometer.

which used to collect Raman signal from a sample and increased Raman signal-to

noise ratios(much clean Raman spectra). One of the advances was a development of

Raman microscopy [6]. It uses a microscope objective instead a lens which allows

excitation light to focus more on a sample and collects Raman light in a wider angle

than a lens. Further advances such as a confocal Raman microscopy developed in

early 1970s [7] . The Figure 1.4 shows a simple schematic of a confocal microscope.

Unlike a Raman microscope, where Raman signal collected from an entire field of

excitation, the confocal system measures at any one time the intensity of Raman

signal from a very small area of sample. It yields significant improvements in both

the contrast and spatial resolution of Raman signal of sample and allows to do a

depth profiling of a sample. In other words, it allows an optical sectioning of sample

without cutting or physical dissection. Many researches have used confocal Raman

6



Figure 1.4: Schematic diagram of a confocal Raman microscope.

microscope to study two (2D) and/or three dimension (3D) molecular composition

of layered systems such as biological tissues, plant cells, polymer etc [8, 9, 10, 11].

In the section 2, we studied plant abiotic stress responses via a confocal Raman

microscope.
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IN VIVO DIAGNOSTICS OF EARLY ABIOTIC PLANT STRESS RESPONSE

VIA RAMAN SPECTROSCOPY∗

In this section, Raman spectroscopy was utilized to nondestructively detect abi-

otic stress responses of plants. Development of a phenotyping platform capable of

non-invasive biochemical sensing could offer researchers, breeders, and producers a

tool for precise response detection. In particular, the ability to measure plant stress

in vivo responses is becoming increasingly important. In this work, a Raman spec-

troscopic technique is developed for high-throughput stress phenotyping of plants.

We demonstrate for the first time, the early (within 48 hours) in vivo detection of

plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected

to four common abiotic stress conditions, individually: high soil salinity, drought,

chilling exposure, and light saturation. Plants were examined post stress induction

in vivo where changes in the concentration levels of the reactive oxygen scavenging

pigments were observed by Raman microscopic and remote spectroscopic systems.

The molecular concentration changes were further validated by commonly accepted

chemical extraction (destructive) methods. Raman spectroscopy also allows simul-

taneous interrogation of various pigments in plants. For example we found a unique

negative correlation in concentration levels of anthocyanins and carotenoids which

clearly indicates that plant stress response is fine-tuned to protect against stress-

induced damages.This precision spectroscopic technique holds promise for the future

development of high throughput screening for plant phenotyping and for the quan-

tification of biologically or commercially relevant molecules such as antioxidants and

∗Reprinted with permission from "In vivo diagnostics of early abiotic plant stress response via
Raman spectroscopy" by Narangerel Altangerel, Gombojav O. Ariunbold, Connor Gorman, Masfer
H. Alkahtan, Eli Borrego, Dwight Bohlmeyer, Philip Hemmer, Michael Kolomiets, Joshua Yuan
and Marlan O. Scully, Copyright [2017] by PNAS, Proc Natl Acad Sci USA, 114:3393-3396, 2017.
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pigments.

Introduction

With the global population projected to exceed 9 billion by the year 2050 the

task of producing enough food and energy for the world is of utmost importance

[12]. In anticipation of rising food demand[13], the ability to measure plant stress

in vivo is becoming increasingly vital for increasing agricultural production and re-

search. For example, such technologies would allow a farmer to intervene upon stress

detection and also makes practical the development of crop varieties with increased

tolerance to abiotic stress. The field environment requires a comprehensive and

rapid screening technology for plant physiological, biochemical and morphological

characteristics [14]. Such characteristics can be integrated to predict plant growth

potential, biomass processibility, and abiotic stress responses before any visible signs

occur in a plant. Plant growth is impacted by unseasonable droughts, cold, increased

UV radiation and high-energy blue light associated with atmospheric changes in

ozone levels, and fertilizer/irrigation application associated with increased soil salin-

ity [15, 16]. Most existing methods for evaluating biochemical characteristics use

destructive chemical analysis which require time and intensive labor. In addition,

these methods use strong chemicals which require special handling and disposal.

Currently in vivo sensing technologies are limited by the time required for detecting

a stress response, types of stress factors which can be detected, the level of stress,

and/or physiological changes. For example, reflectance spectroscopy [17], chlorophyll

fluorescence spectroscopy [18],infrared thermal imaging [19], terahertz time domain

spectroscopy [20], and hyperspectral imaging [21] techniques have all been used to

measure stress indirectly by focusing either on changes in chlorophyll ratios/contents

[17, 18], physical changes [20] or water status of plants [19, 21]. Surprisingly, Raman
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spectroscopy has not been very widely used. Raman spectroscopy has been used

for nondestructive and biochemically specific detection of trace molecules for appli-

cations such as cancer and pathogen detection, agriculture applications and other

plant studies such as imaging of the plant cell wall [22, 23, 24, 25, 11]. Near infrared

spectroscopy provides a complementary methodology to Raman spectroscopy, how-

ever it has water absorption limitations. The Raman spectroscopic technique, on the

other hand, is a valuable in vivo tool which deals with highly complex samples in

their environment and is relatively insensitive to water. An important advantage of

Raman spectroscopy is the ability to interrogate multiple molecular species simul-

taneously. For the purposes of identifying abiotic stress response in vivo in plants,

we address, for the first time, a novel comparison between molecule biosynthesis and

degradation associated with elicited general abiotic stress through utilization of Ra-

man spectroscopy. In this study, two molecules anthocyanins and carotenoids were

observed across all four abiotic stress factors (see, Figure 2.1). When plants are

exposed to abiotic stresses, they undergo highly complex physiological, biochemical,

and molecular changes [15, 16, 26]. In particular, reactive oxygen species (ROS)

accumulate in plants during abiotic stresses which are highly reactive and toxic and

the plant tries to eliminate them by producing volatile derivatives and antioxidants

[27]. Carotenoids which are one of the target molecules in this study are considered

to be the first line of defense against ROS, serving as the main 1O2 quencher in

chloroplasts [28, 29, 30, 31]. The oxidative degradation of accessory photosynthetic

pigments like β-carotene and other carotenoids leads to the accumulation of different

volatile derivatives such as β-cyclocitral that has been shown to serve as a molec-

ular signal responsible for induction of 1O2 responsive genes [28, 29]. Therefore,

rapid conversion of β-carotene to β-cyclocitral during oxidative stress is suggested

to be one of the major defense mechanisms against ROS [28, 29]. The second tar-
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In vivo Raman spectroscopy

Figure 2.1: A simultaneous and in vivo detection of anthocyanins and carotenoids
which are reactive oxygen scavenging pigments by the Raman technique.

get molecule, anthocyanin, a water-soluble pigment derived from flavonoids has long

been associated with plant stress response [26, 32, 33]. Anthocyanin protection is

two-fold: first as an osmotic regulator, and second as a light filtering and free radical

scavenging protective pigment [26]. Anthocyanins, which exist almost exclusively

as glycosides, can be transported via a plant’s vasculature along with other solutes,

and eventually accumulate in the cell’s vacuoles. This osmotic regulation through

solute concentration protects plants from the damaging effects of various abiotic

stresses [26, 32, 33, 34, 35]. As photo filters, anthocyanins block damaging intense

blue, UVA, and possibly UVB light for the leaf, lowering the light absorption burden

for the photosynthetic molecules. In this work, Raman spectroscopy is utilized for

high-throughput stress phenotyping and early stress detection in vivo with improved

sensitivity and the ability to interrogate individual molecules such as carotenoids
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and anthocyanins simultaneously.

Materials and Methods

Plant Preparation and Treatment

Coleus lime (Plectranthus scutellarioides) plants were used as an experimen-

tal model [33, 36]. The seeds were obtained from a commercial source (Outside-

pride.com). The experiments were carried out in the lab with automatic environ-

mental controls (Institute for Quantum Science and Engineering, Texas A & M

University). The seeds were initially grown under T5 grow lights on a 16/8 hour

light-dark cycle for 11 weeks. Next, cuttings were taken from a single fully grown

plant to further multiply into cloned plants as it provided that the plant responses

to stress were not due to genetic discriminations or mutations. These cloned plants

were grown under the same conditions mentioned above for 71 days. The experimen-

tal model plants were subjected to one of the four environmental stresses: salinity,

drought, chilling temperature, or excess light. All plants received a nutrient solution

every two weeks. For saline stress, the plants were irrigated with 200 mM NaCl solu-

tion (pH=7) at day 1 and day 3 , alternately with distilled water (pH=7), whereas,

for drought stress, normal watering was withheld. For cold stress, the plants were

kept at chilling temperatures (40C) for 8 hours during their dark period on day 1

and day 2. Finally, for light stress, the plants were exposed to an intense light source

(flood light with 100 W high pressure sodium light bulb) for 3-4 hours (in addition

to the T5 grow light) day 1 and day 3. The temperature and humidity levels were

fairly stable (72F, and 47% of humidity). Soil pH levels of the plants were con-

stantly monitored. Each treatment had 10 replicate plants, eight were harvested for

chemical analysis and two were used for spectroscopic measurements. Plants used

for chemical analysis were harvested at 12 hour intervals. Spectroscopic measure-
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ments via Raman allow us to use a single plant without destroying it, so we used two

plants for statistical purposes. Pure chemicals including beta carotenoid, lycopen,

xanthophyll, anthocyanins (pelargonin chloride, peonidin 3-o-glucoside chloride, cal-

listephin chloride, delphinidin chloride, malividin chloride, keracyanin chloride) were

obtained from Sigma-Aldrich.

Spectroscopic Measurements and Data Processing

A Raman confocal microscopic system equipped with a 532 nm CW laser was

used for the microscopic measurements (Horiba, LabRam HR Revolution). Its sim-

plified setup is in Figure 2.2A. The remote Raman spectroscopic measurements were

performed using a custom built spectroscopic system that is easy to transport to a

field. It is considered to be a remote sensing system because it detects a signal at a

10 cm distance (see Figure 2.2B). The laser source at range system was a 532 nm CW

laser and the sampling spot size was 200 µm. Plant leaves were placed directly on the

sample holder without physical detachment from the plant. Therefore it is considered

as in vivo, non-destructive detection. The laser induced scattered radiation (signal)

were efficiently detected by air cooled CCD cameras. The laser powers were adjusted

for the plant tissues without affecting the live cells. (0.5 mW with 1 second acqui-

sition time and 10 mW with 10 second acquisition time respectively for microscopic

and spectroscopic measurements). 20 Raman spectra were collected from four leaves

of each plant. These four leaves were selected from different locations of the canopy

of the plant. The Raman spectral data of the plants (leaves) were obtained every 12

hours during the on-set and development of stress until 72 hours. Since the leaves

are a complex system, we used the mean spectra for further analysis. The greater

contributor of the noise to Raman spectra are the intrinsic fluorescence of molecules

in plant tissues. Therefore, in order to extract Raman signal from the raw spectrum
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Figure 2.2: The Raman system setups A) Confocal Raman microscopic system, B)
The remote Raman spectroscopic system.

acquired, it is necessary to remove the fluorescence background. The baselines of

Raman raw spectral data were corrected by fitting the high order polynomials with

multiple iterations [37]. The spectra were further smoothed by the Savitzky-Golay

algorithm with 15 adjacent points. All data processing programs were written in

MATLAB R2013a (The Mathworks, Natick, MA, USA).

Chemical Extraction and Analysis

Immediately following spectral data collections, leaves from the replicate plants

were sampled for chemical destructive analysis. Square cut leaf parts from each plant

were immediately stored in liquid nitrogen, then in a minus 80oC-freezer. From those

frozen samples, eight were used for total carotenoids and five were used for total an-
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thocyanins extraction for each plant. The plant tissues were extracted by the method

of Lightenthaler et al. [38] with 100% acetone. The extracted solution’s absorbance

was read at 470, 645, 662, and 750 nm with a Thermo Scientific GENYSIS 10S

UV-VIS spectrophotometer. Total carotenoids were calculated using the equations

given in [39]. Anthocyanins were extracted by using an acidified methanol. One µl

of a 50% methanol, 3% formic acid and 47% distilled water solution were added to

each 50 µg of the plant tissues and used the protocol of [32] The extracted solutions

were passed through 0.4 µm filter and the absorbance read at 532 nm by the above

spectrophotometer as in [32].

Main Results and Discussions

Raman Spectroscopic Detection

Photosynthetic pigments - anthocyanins and carotenoids, are found naturally

in plant tissues. Moreover, anthocyanin biosynthesis is often induced in the leaf’s

upper epidermis by excess light irradiation, cold, drought and saline stresses. Un-

derstanding their biosynthesis is, in fact, at the heart of the plant stress tolerance

mechanism justification [26, 34, 35]. By targeting anthocyanins and carotenoids for

the purposes of identifying abiotic stress responses in plants, we utilized a Raman

spectroscopic technique. To implement Raman spectroscopy a laser light is used

to excite molecules. The molecules emit light with a new optical frequency that is

downshifted from the incident laser frequency by the amount equal to their vibra-

tional frequencies. This new color (referred to as Stokes radiation) is further detected

with a spectrometer. The Raman spectra of the plants were recorded for 48 hours

post induction for all four types of stresses (saline, excess light, drought and cold)

including spectra of the unstressed control plants by using both a commercial Ra-

man confocal microscope and a lab-built (portable) remote Raman system (see Fig.
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2). The Raman microscopic spectra at 48 hours post-stress are compared to the un-

stressed control plants in Figure 2.3. Carotenoids were distinguished in the spectra

Figure 2.3: The Raman spectra of unstressed plants (green curves) and stressed
plants at 48 hours post-stresses (red curves) of a) saline, b) light, c) drought, and d)
cold. Inset: Photos of coleus leaves for unstressed (left) and stressed (right) plants.

for the control plants with distinct narrow peaks at 1007 and 1157 cm−1 [40, 41].

After abiotic stress exposure, the Raman peaks at 539, 623 and 733 cm−1 for an-

thocyanins [42, 43, 44] clearly stood out. The set of Raman spectra of the plants

16



were recorded initially (0 hour) and every 12 hours for up to 72 hours induction for

all four types of stresses. The explicit height of the Raman peaks changes indicat-

ing the concentration of two pigments varies over time. Quantitative estimations of

relative concentration variations of the pigments in plant tissues under stress can

be derived from the recorded Raman spectra by using our newly developed least

squares regression fitting method. For the sake of simplicity, although without los-

ing most valuable information, we constructed a fitting as a linear combination of

the recorded Raman spectra of only two pure chemicals: pelargonin chloride [32, 44]

and β-carotene [40, 41]. A similar least squares method has been developed [22, 45]

for successful diagnostics of breast cancer. The obtained fit coefficients represent

relative change in the concentration of the base pigments with certain offset. In fact,

these fit coefficients are functions of both the concentration of particular chemicals

and their Raman scattering cross-sections. Moreover, due to the fact that the plant

tissue is heterogeneous, the fitting coefficients are separately normalized. This allows

the relative change to be quantified. We obtained the relative changes in carotenoids

(brown bars) and anthocyanin (violet bars) as functions of duration of stress (see

Figure 2.4). The carotenoids decreased while anthocyanins increased the longer the

plants were stressed. In the control plants carotenoids and anthocyanins levels were

not altered. We note that the Raman spectra of carotenoids [40, 41] and antho-

cyanins molecules [42] in live plants have been previously studied one at a time. In

this work, to our knowledge for the first time, we directly measured the changes

in molecule concentrations of anthocyanin and carotenoid molecules simultaneously.

From the plant physiological view point, negative correlation between anthocyanins

and carotenoids can be understood as follows. Considering that both of the pig-

ments are involved in response to reactive oxygen species, this negative correlation

highlights the effectiveness of the intracellular regulation. Under stress conditions,
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Figure 2.4: (A) The bar distributions for the fit coefficients for carotenoids (brown),
chemically extracted value for carotenoids (mg/g dry weight)(grey) as functions of
durations of the abiotic stresses; (B) The bar distributions for the fit coefficients
for anthocyanins (violet), chemically extracted value for anthocyanins (µg/µl dry
weight)(black) as functions of durations of the abiotic stresses.

the strong induction of ROS [28, 29, 30, 31] and the down-regulation of photosyn-

thetic activity leads to the degradation of carotenoids. Recent research has shown

that β-carotene is rapidly converted to a novel volatile molecular signal β-cyclocitral,

which regulates expression of a set of 1O2 responsive genes in plants. Therefore, it

is plausible that the observed reduction of β-carotene in this study can be explained

by its rapid conversion to β-cyclocitral. While carotenoids degrade, anthocyanins

accumulate as a stress responding ROS scavenger[26, 32, 33, 34, 35]. The strong

negative correlation between the two pigments indicated that signal transduction

has fine-tuned the transcriptomic, proteomic and metabolic process to allow the cell

to properly adjust to stress conditions.
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A Remote Raman Spectroscopic Detection of Carotenoids in Plant

We built a portable at range Raman spectroscopic system. The recorded Raman

spectral relative changes in carotenoids via a portable Raman spectroscopic platform

were consistent with the Raman microscopic data thereby demonstrating the capacity

of Raman spectroscopy for real life in vivo monitoring of stress responses of crops

in the field (Figure 2.5). However, it must be noted that our remote system was
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Figure 2.5: The bar distributions for carotenoid relative changes measured by the
remote system as functions of durations of the abiotic stresses.

not sensitive enough to measure anthocyanins. Further improvements for our system

will be to increase the collection efficiency, to reduce background fluorescence, and

to implement high sensitivity detectors.
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Comparison of the Raman Technique with Existing in Vivo Plant Stress Sensing

Techniques

The Raman technique demonstrates distinct advantages over established in vivo

plant stress sensing techniques such as reflectance spectroscopy [17], chlorophyll flu-

orescence spectroscopy [18],infrared thermal imaging [19], terahertz time domain

spectroscopy [20],and hyperspectral imaging [21]. It offers earlier detection, bio-

chemical selectivity, the ability to detect multiple stress conditions, and the detection

of initial defense responses. The Raman technique is capable of detecting changes

in carotenoids and anthocyanins which are one of the first line defense responses

of plants during abiotic stress. The existing sensing techniques detect changes in

chlorophyll, water status, or physical appearance which are consequences of abiotic

stress. Raman directly detects plant stress responses within 2 days for four differ-

ent stress conditions. The terahertz time domain spectroscopy [20] which had been

considered the fastest existing technique has indirect detection, is only capable of

detecting drought stress and takes 3 days.

Validations via Chemical Analytical Extractions

Finally, we performed the traditional chemical analytical extractions. This is

however, a destructive method, only one pigment’s concentration can be extracted

at a time. We collected plant tissues after each Raman spectroscopic measurement.

We used the chemical extraction protocols of anthocyanins as in [32] and carotenoids

as in [38]. Fig. 4 shows the absolute values of the total carotenoids (grey bars)

and anthocyanins (black bars) over time for all treatments. The changes in total

carotenoids and anthocyanins from the chemical analysis show strong agreement with

the Raman spectroscopic data for all applied stress conditions. It, thus, validates

the Raman technique as an appropriate sensor for these pigments.
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Conclusions

We demonstrated, for the first time, early detection of plant stress responses using

in vivo Raman spectroscopic methods with improved sensitivity and the ability to

interrogate individual stress-indicator pigment molecules simultaneously. The varia-

tions in the concentration levels of anthocyanins and photosynthetic carotenoids in

coleus plants were observed across abiotic stresses including high salinity, drought,

cold, and excess light. These changes over time post-stress induction provides Ra-

man spectroscopy as a method of accurate measurement of these molecules, while

indicative of the functional relationship of these pigments in response to excessive

ROS during abiotic stress. This work furthers our understanding of plant physi-

ology by detecting a novel negative correlation in the levels of anthocyanins and

carotenoids during the stress response. The short term response across multiple

abiotic stresses holds promise for a near ubiquitous method of abiotic stress detec-

tion. Finally, our proposed portable system has the capability to become mobile

and automated to allow for increased utility in precision agricultural applications

both for breeders and commercial producers. The traditional chemical analytical

extraction also validated the existence of the concentration changes either, in total

anthocyanins or carotenoids. In general, the Raman technique could be a cheap,

rapid, non-destructive, and alternative to chemical analysis. Since it is in vivo, it

detects changes of these molecules over time from one plant which is impossible in

destructive chemical analysis.
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COMPARISON OF NIRS AND RAMAN SPECTROSCOPY FOR PREDICTING

BOTANICAL COMPOSITION OF CATTLE DIETS∗

In this section, we utilized Raman spectroscopy to predict cow diets by their fe-

ces. Diet selection is an important driver or ecosystem structure and function that is

difficult to measure. Because of advances in spectroscopy new instruments are avail-

able for evaluating their applicability to ecological field studies. The objective of this

study was to compare near infrared spectroscopy (NIRS) to Raman spectroscopy of

fecal samples for predicting the percentage of Honey mesquite Prosopis glandulosa

Torr. in the diet of ruminally fistulated cattle fed three different base hay diets and

to compare them for their ability to discriminate among the three base diets. Spectra

were collected from fecal materials from a feeding trial with mesquite fed at 0, 1, 3

and 5% of the diet and base hay diets of timothy hay Phleum pratense L., Sudan

hay Sorghum sudanense (Piper) Stapf, or a 50 : 50 combination of Bermuda grass

hay Cynodon dactylon (L.) Pers. and beardless wheat hay Triticum aestivum L.

NIRS and Raman spectra were used for partial least squares regression calibrations

with the timothy and Sudan hays and validated with the Bermuda grass beardless

wheat hay diets. NIRS spectra provided useful calibrations (R2=0.88, slope=1.03,

intercept=1.88, root mean square error=2.09, bias=1.95, ratio of performance to de-

viation=2.6), but Raman spectra did not. Stepwise discriminant analysis was used

to select wavenumbers for discriminant among the three hays. Fifteen of 350 possi-

ble wavenumbers for NIRS spectra and 29 of 300 possible wavenumbers for Raman

spectra met the P ≤ 0.05 entry and staying criteria. Canonical discriminant analysis

∗" Comparison of NIRS and Raman Spectroscopy for Predicting Botanical Composition of Cattle
Diets" by Narangerel Altangerel, John Walker, Piedad Mayagoitia, Derek W. Bailey, Rick E.Estell
and and Marlan O. Scully, Copyright [2017], 70, 781-786, Rangeland Ecology and Management.
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using these wavenumber resulted in 100% correct classification for all three base diets

and the Raman spectra provided greater separation than NIRS spectra. Discrimi-

nation using Raman spectra was primarily associated with wavenumbers associated

with undigestible constituents of the diet, i.e., lignin. In contrast, discrimination

using f.NIRS spectra was primarily associated with wavenumbers associated with

digestible constituents in the diet, i.e., protein, starch and lipid. We believe that

Raman spectroscopy deserves further investigation as a quantitative technique in

ecological field studies.

Introduction

Honey mesquite Prosopis glandulosa Torr. is an invasive shrub that is common

in the southwestern US and northern Mexico. The leaves of honey mesquite have

forage quality characteristics similar to moderate quality hay, with crude protein

levels of 12 to 20% and neutral detergent fiber levels of 35 to 40% [49, 58] Mesquite

leaves are available during late spring and early summer before monsoon rains when

grasses are typically dormant and low quality. However, mesquite leaves contain sec-

ondary compounds, including alkaloids and phenolic compounds [46, 72] which limit

intake by livestock. Animals that can consume small amounts of mesquite may be

more adapted to southwestern rangelands than animals that avoid mesquite. Devel-

opment of a method to cost effectively determine the amount of mesquite in cattle

diets would facilitate selection of animals more adapted for rangelands in the south-

western US. Near infrared reflectance (NIRS) spectroscopy has a long history as a

spectroscopic technique with useful applications in agriculture [71] and ecology [53].

In contrast, Raman spectroscopy has not been as widely applied because of early

difficulties with sample degradation and fluorescence; however, many of these prob-

lems have been overcome [25] and portable field instruments are now available. NIR
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spectra originate from absorption of light by vibrating and rotating molecules and

Raman spectra originate from scattering of light by vibrating and rotating molecules.

NIRS detects vibrations when the electrical dipole moment changes, while Raman

spectroscopy identifies vibrations caused by electrical polarizability changes. NIR

spectra are characterized by broad, often overlapping peaks that are matrix depen-

dent and affected by moisture content. In contrast, Raman spectra have narrow,

highly resolved peaks that are not affected by matrix or moisture. Another advan-

tage is that mononuclear diatomic molecules (O2, N2 etc.) are Raman active, but do

not absorb in the NIR Range. However, an electrically unsymmetric bond may be

NIR active and Raman inactive or both IR and Raman active [47, 51]. Disadvantages

of Raman are weak signal to noise ratio, sample heating, and sample fluorescence.

Because Raman is a weak process, it requires high power and high sample purity.

Consequently Raman is most commonly used for homogenous samples and NIRS

is often used for heterogeneous samples. Both methods have advantages and lim-

itations, but can be used as complimentary methods for example studies on bond

angles, bond lengths, and other structural information require Raman data in addi-

tion to NIR analysis[5]. Previous studies using diet fecal pairs and NIRS (f.NIRS) to

predict diet composition have used dried and ground feces [67, 68]. Because Raman

spectroscopy has the potential to be effective without processing of feces and potable

instruments are available, the objective of this study was to compare f.NIRS to Ra-

man for predicting the percentage of mesquite in cow feces and the discrimination of

base diets by the two techniques.
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Methods

Feeding Trial

This research was conducted at New Mexico State University Campus Livestock,

Education, and Research Center (Las Cruces, NM) during November and December

2013. Fecal material was obtained from a feeding trial where known amounts of

honey mesquite leaves were introduced intraruminally into six ruminally fistulated

cows. Cows were mature Hereford x Angus crosses with an average weight of 568

kg. Honey mesquite leaves were harvested from the Chihuahuan Desert Rangeland

Research Center located 35 km north of Las Cruces, NM during July 2013. Leaves

were harvested by hand and allowed to air dry. During a 14 d pretrial period, animals

were fed beardless wheat hay Triticum aestivum L. ad libitum. Following the pretrial,

2 animals were randomly assigned to one of three base diets, namely: timothy hay

Phleum pratense L. a C3 perennial, Sudan hay Sorghum sudanense (Piper) Stapf a

C4 annual, or a 50 : 50 combination of Bermudagrass hay Cynodon dactylon (L.)

Pers. a C4 perennial and beardless wheat hay a C3 annual (BW). Base rations

(hay) were fed, and refusals were collected and weighted daily. The base hay rations

were fed for four periods of increasing levels of mesquite. The initial period was 9

day when no mesquite was fed and base ration was fed at 2% of body weight. The

subsequent periods were 7 day each. For the second period, the base ration was fed

at 1.9% of body weight and 1% of the diet was mesquite leaves. For the third period,

the base ration was fed at 1.7% of body weight and 3% of the diet was mesquite

leaves. For the fourth period, the base ration was fed at 1.5% of body weight and 5%

of the diet was mesquite leaves. Each morning at approximately 800 hr during the

final 3 periods, air dried mesquite leaves that were ground to an approximate length

of 1 cm were introduced through a rumen cannula. Fecal samples were collected at
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the same time on the final 2 days of each period. Previous research (Walker et al.

2010) showed that NIR determined percentage juniper in the diet of goats did not

change after the third day when percentage juniper in the goat diet increased from 0

to 10%. Mesquite leaves and the base rations were analyzed for DM, ADF, NDF and

crude protein by SDK Laboratories (Hutchison, KS). Dry Matter was determined by

oven drying for 3 hr at 105Â◦C ADF (NFTA Method 2.1.4). Acid detergent fiber

(ADF) and neutral detergent fiber (NDF) analysis was completed using the filter-bag

technique (ANKOM filter bag technique; ANKOM Technology Corp, Fairport, NY).

Crude protein was determined by Kjeldahl N (AOAC Method 976.06) multiplied by

6.25.

Spectra Acquisition

All samples were dried at 600C and ground in a Wiley mill to pass a 1 mm screen,

and then ground a second time in a Wiley mill to pass a 0.5 mm screen., For f.NIRS

analysis, daily fecal samples for each animal were packed into sample cells with a

near-infrared transparent quartz cover glass, and scanned 32 times using a NIR Sys-

tems, Inc. (Silver Spring, Md.) model 6500, scanning reflectance monochromator.

Reflected energy (log 1
R
) was measured, averaged over the 32 scans and recorded at

2- nm intervals from 400 to 2,500 nm (wavenumbers 4000-25000 cm−1). A personal

computer, interfaced to the monochromator, used ISI NIRS2 version 3 software (In-

frasoft International, Port Matilda, Penn.) to collect spectra. Raman spectra of the

ground samples were acquired with a Rikagu handheld Raman analyzer with 1064

nm continuous wave laser. The spectra were collected in the wavenumber range of

200-2000 cm−1. Feces were placed in a sample vial supplied with the instrument and

each sample was scanned 8 times by rotating the vial 450 between each scan. Each

scan consisted of the average of 5 spectra collected during a 2 second acquisition
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time. Data from the eight scans were averaged for analysis.

Data Analysis

Daily hay intake (g/kg BW) was analyzed for the fixed effect of hay with per-

centage mesquite and day as repeated measures using PROC GLM (SAS, 2004).

The Unscrambler 9.7 (Camo SoftwareAS, Oslo, Norway) was used to perform pre-

treatment and partial least squares (PLS) regression [54]. For the f.NIRS analysis,

number of spectra were reduced by averaging 3 adjacent wavelengths, smoothed with

a three segment moving average, and finally a second derivative was calculated using

the Savitzky-Golay method [60] using a second order polynomial and a five segment

gap. The transformed data was mean centered and PLS regression was conducted

with cross validation using a random leave out of 12% of the observations. The Ra-

man spectra was transformed by applying a baseline correction using detrend with

a third order polynomial, standard normal deviate, and a Savitzky-Golay first order

polynomial 31 point smooth. The transformed data were not mean centered and par-

tial least squares regression was conducted with cross validation described previously.

Validation of was performed for f.NIRS and Raman spectra using spectra from the

Sudan and Timothy based diets for calibration and predicting the Bermuda bearded

beardless wheat hay diets for validation. Discriminant analysis (SAS 2004) was used

to determine if the untransformed spectra could be used to classify the three hays

used in the base diets. To avoid singular matrices that were caused by high multi-

collinearity of the spectra, stepwise discriminant analysis (PROC STEPDISC) with

probability of entry and staying set at P ≤ 0.05 was used to select the wavenumbers

for canonical discriminant analysis. Data were divided into calibration and test sets

and canonical discriminant analysis (PROC DISCRIM) was used to determine if the

hays could be correctly classified. Four test set classifications were performed using
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a leave out one level of mesquite whereby all samples at 3 levels of mesquite were

used for development of the discriminant function to classify the samples in the left

out levels. Thus, four test and calibration sets were evaluated.

Results

Honey mesquite leaves had a higher crude protein concentration than the hays

(Table 3.1). Mesquite leaves also contained less neutral detergent fiber (NDF)

Table 3.1: Dry matter (DM), crude protein, neutral detergent fiber (NDF) and acid
detergent fiber (ADF) of the honey mesquite leaves, beardless wheat hay, Bermuda
grass hay, Sudan grass hay and timothy hay expressed on a DM basis.

Diet Item DM, % Crude protein,% NDF,% ADF, %
Honey mesquite leaves 96.27 16.39 40.10 33.21

Bermuda grass Beardless wheat hay 95.93 7.75 62.66 42.53
Sudan grass hay 95.23 5.19 58.86 41.29
Timothy hay 95.31 12.02 57.18 36.46

and acid detergent fiber (ADF). The dry matter content of the mesquite leaves was

slightly higher than the hay rations. Timothy was the highest quality hay followed

by BW. Sudan was the lowest quality hay and the CP level of this hay was below the

maintenance requirement of beef cattle (2000 NRC) and the requirement of ruminant

bacteria [65]. ). Intake did not differ between hays (P>0.47), day (P>0.11), or their

interaction (P>0.78). There was an effect of percentage mesquite (P<0.01) and the

mesquite by day interaction (P<0.02) Figure 3.1. Calibration, cross validation

and validation results are shown for predicting percentage mesquite in the diets

in Table 3.2 . f.NIRS spectra provided useful calibrations but Raman spectra did

not. f.NIRS cross validation indicated the optimal number of factors in the model
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Figure 3.1: Hay intake (g/kg BW) averaged across three different hays as affected
by juniper as a percentage of total intake placed in the rumen.

was three. However, validation results showed that a five factor model gave the

best results. Precision improved for validation compared to cross validation (R2

= 0.70 and 0.88, respectively). Increasing factors in the cross validation model to

more than three decreased the simple coefficient of determination (R2). The slope

of the validation data (1.03) was also improved compared to the cross validation

data (0.73). Statistics that measure accuracy, RMSE and bias, were greater for the

validation data (2.09 and 1.95, respectively) than for the cross validation data (1.11

and 0.01, respectively). The ratio of performance to deviation (RPD) was 1.8 and

2.6 for cross validation and validation, respectively. Raman and f.NIRS spectra on

which the stepwise discriminant analysis was performed are shown in Figure 3.2.

Fifteen of 350 possible wavenumbers for f.NIRS spectra and 29 of 300 possible
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Figure 3.2: Average NIRS (A) and Raman (B) spectra from feces of animals fed
BW −·, Sudan −, and Timothy −− hays with no mesquite. Vertical lines show the
location of wave numbers selected for canonical discriminant analysis.

wavenumbers for Raman spectra met the P ≤ 0.05 entry and staying criteria for the

stepwise discriminant procedure (Table 3.3).
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Canonical discriminant analysis of the wavenumbers selected in the stepwise pro-

cedure showed that Raman and f.NIRS spectra could classify all observations with

100% accuracy and that separation of diets was greater for Raman spectra compared

to f.NIRS spectra (Figure 3.3). All test data sets were also classified with 100% ac-

curacy (data not shown). Coefficients of the canonical discriminant functions of

Raman spectra showed that lignin and hemicellulose were the most important vari-

ables for both the first and second discriminant functions (Table 3.3). The first

canonical discriminant function equally separated BW, Sudan and Timothy and the

second discriminant function further separated Sudan from BW and Timothy (Figure

3.2B). Coefficients of the canonical discriminant function of f.NIRS spectra showed

that starch, protein and oil were the most important variables for the first canonical

discriminant function (75% of variation), which primarily separated BW and Sudan

from Timothy. The most important canonical coefficients on the second function

(25% of variation) for f.NIRS spectra were associated with lipid and cellulose and

separated BW from Sudan on this axis. Linear discriminant functions for Raman

spectra indicated that classification of BW and Sudan diets was based on lignin peaks

but at different wavenumbers. Classification of Timothy was also based on lignin but

hemicellulose and carotenoids were also important. Linear discriminant functions for

f.NIF spectra showed that classification of BW and Sudan diets was based on protein

and lipid peaks but at different wavenumbers. Classification of timothy was based

on lignin, starch and water peaks.

Discussion

The improvement in validation statistics for the f.NIRS spectra obtained by

adding two additional factors was presumably because the additional factors ac-

counted for matrix effects caused by different base diets on the spectra. This sug-
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Figure 3.3: Plot of canonical discriminant scores from discriminant analysis of f.NIRS
(A) and Raman (B) spectra to discriminate among hay diets:× BW; • Sudan; + Tim-
othy. Axes show percent of variation in spectra accounted for by each Eigenvector.
Double headed lines show the squared Mahalanobis distance between the center of
each group.
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gests that when predicting independent samples whose base diets differ from the

calibration diets, the usual case for fecal diet calibrations, increasing the number of

factors above the optimal number indicated by cross validation may be useful. This

may be particularly applicable when the number of factors in the calibration model

is small as was the case in this study. The RPD values for cross validation (1.8) and

validation (2.6) indicate that the former would be useful for distinguishing between

high and low values, and the latter for approximate quantitative predictions [59].

These results indicate that f.NIRS is a viable method for estimating consumption of

mesquite in the diets of cattle, and are considered quite good because previous stud-

ies [69] that used f.NIRS of diet fecal pairs had much wider ranges in the percentage

of the plant species in the diet used for calibration. In that study, four different

species were investigated and range of percentages of the species in the diets was

a minimum of 24 percentage units and a maximum of 100 percentage units, com-

pared to this study that had a range of only 5 percentage units for mesquite. Cross

validation R2 were all above 0.90 and RMSE ranged from 1.9-5.6 percentage units

in the previous study [69] compared to R2 = 0.70 and RMSE = 1.11 percentage

units for this study. The cause of the poor performance of Raman spectra did not

spectroscopy for predicting percentage mesquite in the diets because there was no

pattern in intensity of spectra at different levels of mesquite either within a hay or

between hays. The cause of this is not clear. In contrast to the poor performance

of Raman relative to f.NIRS for predicting percentage mesquite in the diet, Raman

spectra were better able to discriminate among the base hay diets, which was not

expected. The better discrimination by Raman was because there was a large differ-

ences in intensity for feces from the three hays (Fig 1B), while f.NIRS spectra often

overlapped and crossed. Feeding mesquite at the 5% level resulted in a reduction of

intake and diarrhea for some animals after the second day at this level. Baptista and
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Launchbaugh [49] and also reported decreased intakes in diets above 5% mesquite.

This indicates that feeding low levels of mesquite could affect rumen function and

animal physiology resulting in a reduction of even at subclinical levels of intake. The

metabolic effects of consuming mesquite could cause matrix differences in feces that

were detected by f.NIRS but not Raman. Near infrared spectroscopy is sensitive

to physical differences in scanned materials [71] while Raman spectroscopy is not,

which may explain why useful calibrations for percentage of mesquite in the diet

could be developed for f.NIRS spectra but not Raman spectra. Differences in the

canonical discriminant analysis of Raman and f.NIRS spectra provide insight into the

differences between these two spectroscopic techniques. Discrimination using Raman

spectra was primarily associated with wavenumbers associated with undigestible con-

stituents of the diet (i.e., lignin). In contrast, discrimination using f.NIRS spectra

was primarily associated with wavenumbers associated with digestible constituents

in the diet (i.e., protein, starch and lipid). Raman spectroscopy is most commonly

used to identify specific chemical compounds based on well-defined spectral bands;

however, in this study, similar to f.NIR, the differentiation of different hay diets by

Raman spectra was the result of differences of spectral intensity between feces from

animals consuming different hays. This study was originally designed to produce fe-

cal diet pairs for collecting f.NIRS spectra. The availability of a Raman spectrometer

for comparison was discovered after the feces had been prepared for f.NIRS analyses.

Implications

This study showed that f.NIRS has the potential to, at a minimum, predict high

and low consumers of chemically defended plants such as mesquite that are only con-

sumed in small amounts. This information can be used to help select animals that

have a higher intake of these plants and thus have a greater potential to more effec-
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tively utilize the vegetation in areas where species such as mesquite are abundant.

This is the first study to demonstrate that Raman spectroscopy has the potential

for discriminating among animals that are consuming different diets. Because in

contrast to NIR, water does not affect Raman and because field friendly, hand held

Raman spectrometers, such as the one used in this study, are readily available, this

technology has a great potential for ecological field studies. NIRS spectroscopy has

shown great potential in ecological studies [53, 66]. We believe that Raman spec-

troscopy has a similar potential and deserves further investigation as a quantitative

technique in ecological field studies.
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COHERENT ANTI-STOKES RAMAN SPECTROSCOPY: UNDERSTANDING

THE ESSENTIALS ∗

This section is a brief overview to coherent anti-Stokes Raman spectroscopic

technique and introduces the strengths and barriers to its use all based on the inter-

pretation of simple theoretical formulae. The application of the Gaussian ultrashort

pulses as a practical elucidatory reconstruction tool in the extraction of coherent Ra-

man resonant spectra from the overall data contaminated with the non-resonant four

wave mixing background is highlighted. The section presents the integral formulae

for coherent anti-Stokes and Stokes Raman scattering, and discusses the closed-form

solutions, its complex error function, and the formula for maximum enhancement

of the inferred pure coherent Raman spectra. As an example, the time-resolved

coherent Stokes Raman scattering experimental observations are quantitatively elu-

cidated. Understanding the essentials of coherent Raman spectroscopy, therefore,

promotes the importance of a number of experiments including the ones utilizing a

broadband excitation with a narrowband delayed probing for successful background

suppression.

Introduction

A spectroscopic technique based on coherent anti-Stokes Raman scattering (CARS)

was first demonstrated by Maker and Terhune in [74]. CARS spectroscopy is a pow-

erful technique which has been widely applied essentially in interdisciplinary research

fields on the borders of biology, chemistry, physics, healthcare, defense, remote sens-

ing, forensics, material science and so on. The recent breakthrough achievements

∗Reprinted with permission from “Coherent anti-Stokes Raman spectroscopy: Understanding
the essentials” by G. O Ariunbold and N. Altangerel, 3, 6-17, 2016. Coherent Opt. Phenom.,
Copyright [2016] by De Gryuter Open.
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such as detection of bacterial spores [23, 24], implementation of coherent Raman

microscopy [75, 76], gas-phase thermometry of reacting and non-reacting flows [77]

and many others have been its state-of-art successes. There many reviews on CARS

have been published [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93].

Particularly, a CARS bioimaging capability has been briefly reviewed most recently

by Camp Jr and Cicerone in [88], and an extended overview of the the cutting-edge

technologies of the practical CARS microscopy has been edited by Chen and Xie

in [87]. Its chemical imaging applications in biology and medicine and specially for

cancer, have been systematically evaluated in [81, 89, 90]. Moreover, Ellis and others

have thoroughly discussed both the Raman and CARS spectroscopy as a diagnostic

tool in biomedicine [85]. CARS applications in homeland security have been men-

tioned in the Raman spectroscopy review [84]. CARS spectroscopic diagnostics of

nonequilibrium plasmas and flows have been given in a topical review [86], in ad-

dition to the review by Roy, Gord and Patnaik in [77]. Considering the amount

of good reviews widely accessible it is not our intention to list all developments

on CARS spectroscopy. Rather, this section focuses on the common CARS tech-

niques which apparently bear many different names referred to as background-free

CARS, FAST CARS, hybrid CARS, broadband CARS, multiplex and time-resolved

CARS. In spite of the diversity in naming, all of these have one unique feature—

they all use a broadband excitation together with a narrowband delayed probe

pulse [23, 24, 94, 95, 96, 97, 98, 99, 100, 101, 102]. As mentioned by Scully and others

in [103] implementation of ultrafast laser pulses is most crucial here. Generally two

pulses (called as pump and Stokes) excite molecular Raman vibrations and a third

pulse (called as probe) then scatters off from these coherently vibrating molecules.

The scattered photon energy increased or decreased by an amount of Raman fre-

quency. In coherent anti-Stokes Raman scattering, the scattered light wavelength is
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Figure 4.1: A schematic diagram of CARS and CSRS processes. (a) CARS. The
scattered light in CARS is blue-shifted. (d) The scattered light in CSRS is red-
shifted. (b,e) FWM. It is the third order nonlinear non-resonant process nothing
to do with molecular Raman vibrations. (c,f) The overall measured data can not
distinguish CARS/CSRS from FMW.

shifted into blue. A schematic diagram of CARS process is shown in Figure 4.1(a).

The scattered light in coherent Stokes Raman scattering (CSRS) is red-shifted, see

Figure 4.1(d). To distinguish the two processes, CARS and CSRS are referred explic-

itly, in the rest of the section. The pump and Stokes pulses simultaneously excite and

prepare molecules in coherent state. With or without delay, the probe pulse comes in,

and as a result anti-Stokes/Stokes signal is generated. Unfortunately, four wave mix-
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ing (FWM) contamination is unavoidable. FWM is the third order nonlinear process

that does not depend on molecular Raman vibrations, see Figure 4.1(b,e). FWM is

added and mixed as a non-resonant background noise in the overall measured spec-

tral data, see Figure 4.1(c,f). Therefore, it is extremely important to extract pure

resonant (CARS/CSRS) information from the overall data contaminated with FWM.

This issue will be studied in detail later. Even though there have been a number

of methods suggested to suppress FWM non-resonant background, the aforemen-

tioned few specifically selected experiments with broadband (fs) pump and Stokes

excitation pulses with a narrowband (ps) shaped and delayed probe pulse have been

successfully demonstrated [23, 24, 94, 95, 96, 101, 102, 98, 99, 100, 97]. First of

all, broadband pump and Stokes pulses excite multiple Raman vibrations at once,

providing fingerprint signature recorded at a single laser shot level. A rapid bacterial

spores detection, in this sense, is the key advantage as demonstrated in [24]. Second,

narrowband probe utilization provides sufficient spectral resolution for Raman spec-

tra of the target material. Most Raman linewidths are less than tens of wave num-

bers. Third, delayed probing with respect to the excitation ensures highly suppressed

FWM. Last, but, perhaps, the most important (seemingly "hidden") advantage of

enhancement will be discussed later. Specific probe shapes in time- and frequency-

domain have been adapted including sinc-square [23, 94, 24, 96, 101, 102], square-

sinc [98], exponential-Lorentzian [100, 101, 102, 99] and Gaussian-Gaussian [104, 97]

forms. However, while all these experiments demonstrated adequate suppression of

unwanted FWM to the extent of a certain degree (only at fixed time delay), an ex-

traction of pure CARS/CSRS contribution in the entire spectrogram for arbitrary

probe delay turns out to be quite cumbersome. This requires the "blind" numerical

simulations usually with far less physical insight of actual ongoing processes. To over-

come this challenge, the approximate closed-form solutions with all above-mentioned
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pulse shapes have been obtained in [105, 106]. These approximate solutions are more

appropriate for particularly impulsive CARS. The impulsive CARS experiments in

which a common broadband excitation pulse (that contains both pump and Stokes

portions with degenerate center frequencies) accompanied with a delayed narrowband

probe pulse, have been reported in [98, 107, 97]. This demands a simple deductive

extraction tool for the time-resolved CARS/CSRS. This challenge has been tackled

(at least, in part) by the authors [104]. All Gaussian pulse shapes are the simplest,

thus, the exact solutions both for CARS and CSRS have been easily obtained.

The Gaussian formalism is indeed the best tool for the present section’s purpose

as well. This section is an extension of our early work [104] and comprehensive

illustrations towards the essential features of time-resolved coherent Raman spec-

troscopy are given here. The section consists of three more sections. First section

is the main one where a simple theory for CARS and CSRS is introduced with elu-

cidative approach. We hope that after getting well-armed with this theory, one can

easily interpret typical experimental observations and understand their importance

in Raman spectroscopy focused scientific community. Thus, several relevant exper-

imental observations and realizations of long probe pulse will be discussed in the

following section. Finally, we will summarize.

Theoretical Background

A simple comprehensive theory for CARS and CSRS is introduced in this sec-

tion. It begins with CARS formulation and, based on obtained solutions, a newly

recognized (somewhat neglected in the past) effect such as enhancement in coherent

Raman spectroscopy at positive probe delay is introduced in detail. At the end of this

section, the experimental observations are elucidated with the CSRS formulation.
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Coherent Anti-Stokes Raman Scattering

Integral Formula

Let us start with a theoretical description of the third-order nonlinear process.

The overall time-resolved signal amplitude – P (3)(ωaS, τ) is expressed as a sum of the

FWM – P (3)
FWM and CARS – P (3)

CARS(ωaS, τ) amplitudes. The explicit integral forms

are obtained in [104] expressed as

P
(3)
CARS(ωaS, τ) =

∫ ∞
−∞

dω

 N∑
j

αjE3(δaS − ω, τ)
∆j − ω − iΓj/2

 ∫ ∞
−∞

dω′E1(ω′)E∗2(ω′ − ω)

P
(3)
FWM(ωaS, τ) = α0

∫ ∞
−∞

dωE3(δaS − ω, τ)
∫ ∞
−∞

dω′E1(ω′)E∗2(ω′ − ω)

P (3)(ωaS, τ) = P
(3)
FWM(ωaS, τ) + P

(3)
CARS(ωaS, τ) (4.1)

Here α0 and α are constant complex coefficients. E1,2,3 are electric fields for pump,

Stokes and probe ultrashort pulses with the corresponding center frequencies ω0
1,2,3,

whereas ωaS and τ are the frequencies of the anti-Stokes signal and probe delay,

respectively. The other parameters are Raman vibrational frequency – ΩR, Raman

detuning – ∆ = ΩR − (ω0
1 − ω0

2), center frequency of anti-Stokes signal – ω0
aS = ω0

3 −

∆ω0 and CARS detuning – δaS = ωaS −ω0
aS. Although, a rigorous CARS theory has

been developed in many textbooks, reviews and research papers (for some, see [108,

110, 87, 111, 79, 112, 113]), the simplest possible CARS formulation is currently

our intention. For the sake of simplicity, it is assumed that the phase matching

condition is satisfied and any other explicit propagation contributions are discarded in

derivation of Eq.(4.1). Later, by comparing the theoretical and experimental results

it is shown that this simplification is accurate to elucidate the essential ingredients of

coherent Raman spectroscopy. The complete version of the CARS integral formula

was first derived in [104], which is a generalization of the ones given for impulsive
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CARS in [105, 106].

Exact Closed-Form Solutions

As stated in [104], Eq.(4.1) is in its best form due to appropriate choice of in-

tegration variables. For instance, the variables weighing around zero and varying

from negative to positive infinities do help in obtaining the closed-form solutions

that include Gaussian integrals. That is convenient, especially if all input pulses are

Gaussian. For all Gaussian pump, Stokes, and probe pulses, the exact closed-form

solutions of Eq.(4.1) are found in [104] as to be

P
(3)
CARS(ωaS, τ) = −iW12e

− τ2
2t2
FWM e

−2ln2
δ2
aS

∆ω2
FWM e

iδaS
∆ω2

3
∆ω2

FWM

τ N∑
j=1

α′jw(ζj)

P
(3)
FWM(ωaS, τ) = α′0W12W123e

− τ2
2t2
FWM e

−2ln2
δ2
aS

∆ω2
FWM e

iδaS
∆ω2

3
∆ω2

FWM

τ

P (3)(ωaS, τ) = P
(3)
FWM(ωaS, τ)

1− i

α′0W123

N∑
j=1

α′jw(ζj)
 (4.2)

A1,2,3 are the amplitudes of the input Gaussian pulses. The other parameters here

include slightly modified coefficients – α′0 = πα0A1A
∗
2A3/4ln2 and α′j = π3/2αj

A1A
∗
2A3/

√
8ln2, spectral full widths at half maxima (FWHMs) – ∆ω1,2,3 and the oth-

ers – W 2
12 = ∆ω2

1∆ω2
2/(∆ω2

1 + ∆ω2
2), W 2

123 = (∆ω2
1 + ∆ω2

2)∆ω2
3/∆ω2

FWM , ∆ω2
FWM =

∆ω2
1 + ∆ω2

2 + ∆ω2
3, and tFWM =

√
4ln2/W123.

Interpretation of the Solutions

The solution for the transient FWM P
(3)
FWM is understood as follows. As seen

from Eq.(4.1), it is a product of two Gaussian functions: one with a temporal width

tFWM and depends on probe delay τ , centered at zero delay; the other one with

a spectral width ∆ωFWM and that depends on the CARS detuning δaS. In the

case of broadband pump or Stokes and narrowband probe pulses the width of the

44



P
um

p 

Fr
eq

ue
nc

y 

Probe Delay 

Pump x Stokes x Probe => Gaussian 
(FWM) 

P
um

p 

Fr
eq

ue
nc

y 

Probe Delay 

Fr
eq

ue
nc

y 

Probe Delay 

Gaussian x Complex error function = CARS 

=> 

Fr
eq

ue
nc

y 

Time 

P
um

p 

S
to

ke
s 

S
tokes 

P
um

p 
P

um
p P

ro
be

 

P
ro

be
 

S
tokes 

S
ignal 

S
ignal 

Probe 
Gau

ss
ian

 

Complex error function 
Gau

ss
ian

 

Fr
eq

ue
nc

y 

Time 

Fr
eq

ue
nc

y 

Time 

Broadband  
pump pulse 

Narrowband  
delayed probe pulse 

Fr
eq

ue
nc

y 

Time 

Broadband  
Stokes pulse 

x x 

x 

Figure 4.2: Interpretation of the solutions. The broadband pump or Stokes pulse
defines the spectral width of Gaussian solution for FWM. A narrowband probe pulse
time duration defines temporal width of Gaussian solution for FWM (top and mid-
dle). FWM solution is a product of two Gaussian functions (middle). CARS solution
is a product of FWM and the Faddeeva function depending on Raman line width.
This suggests an efficient FWM suppression at probe delay comparable to its time
duration.

pump/Stokes pulse mainly determines ∆ωFWM and probe pulse duration determines

tFWM , see Figure 4.2. Assuming ∆ω1 ≈ ∆ω2 � ∆ω3 we obtain ∆ωFWM ∼ ∆ω1 (i.e.,

pump/Stokes spectral width). ThusW123 ∼ ∆ω3 we also obtain tFWM ∼ 1/∆ω3 (i.e.,
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probe temporal width). This means that if probe pulse is delayed for a period of time

at least comparable to its temporal width, then FWM is efficiently suppressed in a

simple way as for Gaussian function. However a question arises if CARS signal would

still be present at this delay. This will be explained later. The solution for CARS is

a product of the same Gaussian functions in the FWM solutions and the Faddeeva

function [114, 115, 116] w(ζ) with complex argument ζ. The Faddeeva function is an

error function with a complex argument. In our case, the argument of the Faddeeva

function is given by ζj = [(δaSW 2
123/∆ω2

3 −∆j + iΓj/2)tFWM − iτ/tFWM ]/
√

2 where

Γj are FWHM of thejth Raman line. For the impulsively excited CARS, in the

limit W123 → ∆ω3, this expression reduces to the one found earlier in [105, 106].

Depending on material, Raman line widths Γj are different. Those Raman lines,

narrower than the probe width, dephase much slower and still survive at much long

delay (e.g., for molecules in gas-phase). The Faddeeva function for a chosen narrow

Raman line is sketched in Figure 4.2, in the bottom. Once again, the CARS signal

can be interpreted as a product of FWM and the Faddeeva function. There is a

common delay dependent phase δaSτ∆ω2
3/∆ω2

FWM in both the FMW and CARS

solutions. This will not affect the measured sum spectra which is expressed with the

modulus square of amplitudes as |P (3)(ωaS, τ)|2 = |P (3)
FWM(ωaS, τ) + P

(3)
CARS(ωaS, τ)|2.

The spectrogram data is a collection of spectra at each probe delay. As for example,

the normalized spectrogram for FWM, CARS and their sum with a single Raman line

are shown in Figure 4.3 for three different probe pulse widths: the two are 4 and 20

times broader than the remaining one. As mentioned previously, the FWM temporal

width increases as probe pulse gets longer. On one hand, the FWM spectrograms

are in the form of Gaussian functions. On the other hand, pure CARS spectrograms

are governed mainly by the Faddeeva function defined by a Raman line width and

becomes narrower as probe width further decreases. The spectrograms for sum of

46



Probe delay (ps) 

Fr
eq

ue
nc

y 
(c

m
-1

) 
FWM CARS FWM + CARS 

Probe  
width:  

x20 

x4 

x1 

Figure 4.3: Normalized spectrograms for FWM, CARS and their sum. The narrow-
band probe is increased 4 and 20 times. The results are obtained from Eq.(4.2) for
a single Raman line.

FWM and CARS are shown on the right side of Figure 4.3. Around zero delay relative

phase between FWM and CARS signal amplitudes comes into play. The extraction

method of Raman spectrum from the sum spectrum at zero delay is possible. The

method based on Kramers-Kronig relation has been developed and implemented, for

instance, in [117, 118]. At this point, the present theory can also be understood

as a CARS "extraction" tool in the entire positive delay region. The procedure

can be listed as follows: (i) compare the normalized theoretical sum spectrogram
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to the normalized experimental data (ii) obtain all physical parameters including

the ones for input pulses and material; and lastly (iii) deduce CARS signal alone

with these parameters. This will be shown later for pyridine data. Because the

normalized data are considered, the input pulse energies are less important than

the pulse widths, time durations, and center frequencies. The molecular parameters

include the Raman line width, polarizability, third order nonlinear susceptibility, and

Raman cross section. Therefore, we have no doubt that this tool will be considerably

used in future, because of its simple yet informative nature. Moreover, it is important

to note that one still cannot get rid of FWM if the probe width is too narrow, even

narrower than Raman line. For example, in some material, Raman line is a sum

of many lines and it can be quite broad. At the same time, too broad probe pulse

is also a problem for discrimination a Raman peak against FWM background. An

optimization of probe pulse for the best background-suppressed signal is discussed

next.

Enhancement

It was mentioned in our earlier works [104, 24] that CARS signal is maximized

at some positive delay, but not at zero delay. This effect is more pronounced for

relatively long probe pulse. From physical point of view, this can be understood

as follows. The pump and Stokes pulses prepare molecules in the coherent state.

After excitation this molecular coherence eventually fades away within decoherence

time. At zero delay, only fraction of photons (in the probe tale part) are scattered

off the induced refractive index grating. The number of scattered probe photons,

however, increases as the probe is delayed. As a result even more probe photons are

overlapped and able to be scattered off. The threshold delay at which CARS signal

maximized, thus, depends on the probe pulse duration and molecular decoherence
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time. From mathematical point of view, the threshold delay time is determined

as stationary point of the Faddeeva function. This effect is shown in Figure 4.4.

Figure 4.4: CARS enhancement at non-zero probe delay. Series of the normalized
CARS and FWM signals using Eq.(4.1) depending on probe width and delay. This
phenomenon is more obvious for narrower probe.

By varying probe pulse width, both CARS and FWM signals using Eq.(4.1) are

plotted in series. Positions of FWM maxima do not alter, and remain at zero delay.

However, as we expected, CARS maxima are shifted away from zero delay as probe

width decreases. In principle, the threshold could be analytically determined from

the stationary condition for the Faddeeva function. An accurate simple formula

for the threshold time delay as a function of probe width and Raman line width is
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Figure 4.5: The threshold delay times are obtained from Eq.(4.3) as a function of
probe widths. The analytic result (black dots) is compared to delays for maximum
CARS (red solid curve) and FWM (blue straight line) signals.

obtained in [104] as

T thresholdj (∆ω3,Γj) = tFWM

[
1

ε(∆ω3,Γj)
+ ΓjtFWM

2

]
(4.3)

where ε is a linear function of inverse of the probe pulse width in the form of

ε = aΓj/∆ω3 + b with constant coefficients a = 1.8 and b = 0.38. The thresh-

old time formula Eq.(4.3) is plotted (dots) as a function of probe pulse width in

Figure 4.5. Solid curve is constructed from positions of CARS maxima from Figure
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4.4. It is worth noting that although CARS enhancement at positive probe delay

was previously mentioned briefly in [24, 105, 119, 120], an explicit formula Eq.(4.3)

was obtained for the first time in [104].

Coherent Stokes Raman Scattering

The previous subsection is devoted to all about CARS where CARS process is for-

mulated and its solution is obtained. The solution is explained in great detail with

different aspects. For instance, a "legitimate" recognition of important CARS en-

hancement must be added to the current understanding of the successful demonstra-

tions of those selected experiments [23, 24, 94, 95, 96, 101, 102, 98, 99, 100, 97]. The

advantages of utilizing the broadband pump and Stokes excitation pulses with a nar-

rowband shaped and delayed probe pulse must be updated as follows: (i) broadband

pump and Stokes pulses excite multiple Raman vibrations simultaneously providing

fingerprint signature achievable at single laser shot level; (ii) narrowband probe pro-

vides spectral discrimination of Raman spectra of the target material against FWM

broadband background; (iii) delayed probing with respect to the excitation ensures

highly suppressed FWM; and (iv) maximum CARS enhancement occurs at threshold

probe delay, in most cases at a delay where FWM is highly suppressed. All above

statements are also valid for CSRS, even though it is slightly different process that

will be discussed here. In CSRS, the scattered light is red-shifted, see Figure 4.1(d).

FWM contamination is again unavoidable in the overall measured data, see Figure

4.1(f).

Integral Formula and Its Solution

A convenient integral formula for CSRS has been derived (for the first time) by

the authors. Following [104], the time-resolved total signal – P (3)(ωS, τ) is a sum of
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FWM – P (3)
FWM and CSRS – P (3)

CSRS(ωaS, τ) contributions which are written as

P
(3)
CSRS(ωS, τ) =

∫ ∞
−∞

dω

 N∑
j

βjE3(δS + ω, τ)
∆j − ω + iΓj/2

 ∫ ∞
−∞

dω′E1(ω′ + ω)E∗2(ω′)

P
(3)
FWM(ωS, τ) = β0

∫ ∞
−∞

dωE3(δS + ω, τ)
∫ ∞
−∞

dω′E1(ω′ + ω)E∗2(ω′)

P (3)(ωS, τ) = P
(3)
FWM(ωS, τ) + P

(3)
CSRS(ωS, τ) (4.4)

Here the frequency of the Stokes signal – ωS, complex constant coefficients – β0

and βj, center frequencies of Stokes signal – ω0
S = ω0

3 + ∆ω0 and detunings for

CSRS process – δS = ωS − ω0
S are used. A rigorous CSRS theory can be found, for

instance, in [109, 121, 122], although, our approach (Eq.(4.4) and Eq.(4.1)) is simple,

at the same time, the solutions are rich and informative. Once again, in derivation of

Eq.(4.4), the phase matching condition is satisfied and any other explicit propagation

contributions are discarded. In doing so, the solutions for Gaussian pulses are also

found in [104] as

P
(3)
CSRS(ωS, τ) = iW12e

− τ2
2t2
FWM e

−2ln2
δ2
S

∆ω2
FWM e

iδS
∆ω2

3
∆ω2

FWM

τ N∑
j=1

β′jw(ζ ′j)

P
(3)
FWM(ωS, τ) = β′0W12W123e

− τ2
2t2
FWM e

−2ln2
δ2
S

∆ω2
FWM e

iδS
∆ω2

3
∆ω2

FWM

τ

P (3)(ωS, τ) = P
(3)
FWM(ωS, τ)

1 + i

β′0W123

N∑
j=1

β′jw(ζ ′j)
 (4.5)

The parameters are β′0 = πβ0A1A
∗
2A3/4ln2 and β′j = π3/2βjA1A

∗
2A3/

√
8ln2 and the

Faddeeva function’s argument is given by ζ ′j = [(δSW 2
123/∆ω2

3 + ∆j + iΓj/2)tFWM −

iτ/tFWM ]/
√

2. One important difference between CARS and CSRS is that the Ra-

man detuning comes with different signs inside the Faddeeva function’s argument as

ζj, ζ
′
j = [(δaS,SW 2

123/∆ω2
3∓∆j + iΓj/2)tFWM − iτ/tFWM ]/

√
2. Moreover, an opposite

sign in Eq.(4.5) and Eq.(4.2) suggests that the CSRS and CARS signal amplitudes
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are out of phase. The CARS and CSRS comparative theory has been developed,

for instance, in [122, 121] and the experimental observations of deviation between

the two have been reported in [97]. Nevertheless these differences are not crucial

for small Raman detuning, particularly if one investigates the two processes one at

a time. In the experiment performed by Peng et al., in [97], the spectrograms for

both CARS and CSRS signals are shown, see their reproduced results in Figure 4.6.

In this experiment, a KML (85MHz rep. rate) mode-locked Ti:sapphire laser oscil-

lator with the spectral FWHM > 100 nm and the center wavelength of 810 nm was

used for impulsive excitation of molecular vibrational modes. The oscillator out-

put was focused onto a 5-mm-thick LBO crystal to produce the narrowband second

harmonic generated light at a center wavelength of 405nm with < 1 nm due to the

phase-matching constraint. Note that the pulse shapes are considered to be Gaus-

sian. This probes the induced coherent oscillations of the molecular ensemble. In

Figure 4.6, the data correspond to neat solutions of benzene in (a,b) and pyridine in

(c,d) and the CARS-CSRS spectrograms are shown in (a,c). For benzene CARS and

CSRS are slightly different. The difference is clearly seen in the cross-sections of the

spectrogram along the probe pulse delay at the peaks of CARS (blue solid curves)

and CSRS (green dotted curves) in Figure 4.6 (b) and (c). For the excited benzene

Raman mode 991 cm−1, the CSRS data is suppressed compared to the CARS one

whereas for pyridine, a mirror reflection symmetry is visible as expected previously in

the theory. The beating pattern for pyridine data is a result of interference between

two excited Raman modes, 991 and 1030 cm−1, which will be discussed in the next

subsection again.
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Figure 4.6: The data are reproduced from [97]. The CARS-CSRS spectrograms
obtained on benzene and pyridine: (a,c) Spectra of the anti-Stokes and Stokes scat-
tered light as functions of the probe pulse delay. The main part of the probe spectra
were filtered by the notch filter; (b,d) Cross-sections of the spectrograms along the
probe pulse delay at the peaks of CARS (blue solid curves) and CSRS (green dotted
curves).

Reconstructing CSRS from the Observed Experimental Data

The theoretical results are presented here to compare to the experimental data.

A one-to-one correspondence between them evidently supports our idea of infer-

ring pure CSRS from real measured spectrogram data. However, we note that this

approach is semi-empirical one. A true extraction based on only experimental obser-

vations is, however, even more demanding and far more important as it will be the
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next step in the future. At the moment, by CARS/CSRS reconstruction, we mean

the procedure that includes: (i) comparing theoretical results to the experimental

data (ii) obtaining all physical parameters used in the theory; (iii) reconstructing

pure CARS/CSRS signal alone with these parameters. For that matter, the one-

to-one comparison between the normalized experimental and theoretical data are

illustrated in Figure 4.7. The experiment performed for pyridine in liquid-phase.

The Coherent Inc., Ti-sapphire amplified kilohertz laser system including the optical

parametric amplifiers were used to generate broadband pump and Stokes pulses at

designed wavelengths. The excitation was centered in the middle of molecular vibra-

tional modes of pyridine. These Raman lines correspond to in-plane ring-bend 1030

cm−1 and ring-breathing 991 cm−1. A separation of 39 cm−1 leads to a beating with

a period of 0.855 ps if the probe pulse is broader compared to this separation. The

widths of these lines are ∼ 2.2 cm−1. The dephasing lifetimes are about 2.55 ps for

the one and slightly different (∼ 20%) for the other, and Raman cross-sections are

close [123, 124]. Width of the probe pulse was altered by a home-made 4f - pulse

shaper with a closing slit placed on its Fourier plane. The data shown in Figure 4.7,

were taken for three probe pulse widths: 300 cm−1, 60 cm−1 and 15 cm−1. For the

300 cm−1 broad probe, the Raman lines were not resolved which leads to a beating

signal seen in the spectrogram (top left) as opposite to the narrowband 15 cm−1

probe that these lines are well resolved (bottom left). However, the probe width in

between makes it difficult to access quantified information about period or separation

(middle left). A theoretical comparison is depicted in the middle column of Figure

4.7. In the next column, the reconstructed CSRS is shown. Theoretical results are

obtained from Eq.(4.4). The ratio of probe widths is consistent with the experimen-

tal choices. The other physical parameters including Raman line widths and their

separation are chosen in the same way as for pyridine’s real parameters. Particularly,
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Figure 4.7: Reproduced from [104] with permission. Reconstruction of CSRS from
experimental data. The experimental data (left column), theoretical results (center
column), and reconstructed CSRS (right column). The experimental data were taken
with probe pulse widths 300 cm−1, 60 cm−1 and 15 cm−1. A separation of Raman
lines of pyridine molecules is 39 cm−1 with a beating period of 0.855 ps. Theoretical
results for probe widths with ratio of 1, 4 and 20 obtained from Eq.(4.4). All physical
parameters are equivalent to those for pyridine. Both theoretical and experimental
data are normalized.

the two Raman line-widths differ by 20 % and a ratio between the Raman line-width

and separation is equal to the ratio of 2.2 and 39 cm−1. From the reconstructed

CSRS with the narrowband probe (bottom right), two maximal enhancements at

two slightly different threshold delays are found (around 1.5 ps). This is actually

an important piece of information. For instance, position of the threshold delay al-

ters depending on Raman line width for a given probe width according to formula
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Eq.(4.3). In this sense, one can estimate Raman line-width more accurately: finding

maximum position is much easier than fitting data with exponential decay and then

deducing the line width. It is worth to bear in mind that for ps probe and molecules

in gas-phase (for the isolated Raman lines), threshold delay is nevertheless far away

from FWM; thus, formula Eq.(4.3) is still valid and accurate for the experimental

data without even bothering to reconstruct CARS/CSRS. The situation becomes

immediately complicated, if the Raman lines are not resolved. By the way, the more

likely sinc-square (not exactly Gaussian) probe pulse shape was used in the actual

experiment due to the home-made 4f-pulse shaper’s nature. The normalized data

analysis here ensures only main feature to be seen in coded colors. The normalized

theoretical results with the Gaussian probe pulse, indeed, nicely fit the normalized

experimental data, justifying that the dominant central lobe of the sinc-function (in

time domain) is sufficiently approximated by a Gaussian function.

Experimental Realizations of Narrowband Probe Pulse in Background-Suppressed

Coherent Raman Spectroscopy

In this section we discuss the experiments that utilize broadband excitations and

narrowband delayed probe. This specific choice has the following advantages: (i)

simultaneous excitation of multiple Raman modes; (ii) discrimination the Raman

resonant CARS signals from non-resonant background FWM; (iii) suppression of

FWM via probe timing; and (iv) enhancement of CARS signal via probe timing

(from now on, by CARS we refer to both CARS and CSRS). Let us explain all

these points separately in more detail. First, the pump and Stokes need to be

broadband and thus, ultrashort in time domain (see, Figure 4.8). The broadband

pump and Stokes allow access to excite multiple Raman modes at once, without a

need of laser frequency tuning. A multichannel acquisition for multiplex CARS is
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schematically shown in Figure 4.8, on the right column. The collimated scattered
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Figure 4.8: Input laser pulse shapes in time- and frequency domain. The excita-
tion broadband pulses are Gaussian-Gaussian. Narrowband probe pulses including
Gaussian-Gaussian, square-sinc, exponential-Lorentzian, and sinc-square and their
delayed overlapping with an excited molecular coherence. Multiplex CARS spectra
recording via multichannel acquisition with a grating and CCD camera.

CARS signal is dispersed by the grating. A lens images into CCD camera at the

Fourier plane. The CCD image is further processed (recorded image is summed up

vertically), calibrated with Raman shift in a unit of wavenumber, and displayed on

the computer screen as Raman spectral data with several modes. The broader the

excitation, the more Raman modes are covered, and the more information is gained

for molecular analysis. This is essential for the specificity of the technique at single

laser shot measurement [24]. Matter of fact, the excitation can be a single very broad
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pulse span over pump and Stokes frequencies in the impulsive CARS.

Second, a narrowband probe resolves Raman peaks on the top of featureless

FWM broadband background. In time-domain, probe must be long pulse. There are

several realizations of narrowband probe starting with broadband pulse, see Figure

4.9. These include the following filters: (a) second harmonic generation (SHG) crys-

Gaussian Gaussian SHG crystal 

Gaussian Exponential Fabry-Perot etalon 

Square Gaussian 
PPLN crystal 

(a) 

(b) 

(c) 

(d) 

Gaussian 
Sinc 

Gra
tin

g 

Figure 4.9: Realizations of narrowband probe pulses. The filters include (a) SHG
crystal; (b) PPLN crystal; (c) etalon; and (d) grating for Gaussian-Gaussian, square-
sinc, exponential-Lorentzian, and sinc-square shapes, respectively.
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tal; (b) periodically poled lithium niobate (PPLN) crystal; (c) Fabry-Perot etalon;

and (d) 4-f pulse shaper with a grating. All these methods convert fs broadband

input pulses into ps – scale narrowband pulses. The generated pulse shapes typically

have minor distortions except for the SHG crystal filter, which only narrows the

input pulse width and, thus, prolongates its duration, see Figure 4.9(a). However,

this prolongation is generally not sufficient for resolving Raman lines. The PPLN

crystal is, in contrary, an efficient generator compared to the SHG all alone because

phase matching condition is satisfied constructively. The output pulse shape in time-

domain becomes square (or, top-hat), and in spectral domain, it is in the sinc function

form. The central lobe of the sinc function spectrum is narrow and dominant, see

Figure 4.8. A simple and straightforward method is to use a Lorentzian filter. That is

essentially a Fabry-Perot etalon, i.e., just two parallel closely spaced partially trans-

mitting (reflecting) mirrors. After multiple reflections, the output pulse is distorted

in the exponential form. In frequency domain, the output pulse is, according to the

fast Fourier transform (FFT), a Lorentzian which has a narrow central peak with

long "mountain bottom", see Figure 4.8. The last filter involves a grating, Figure

4.9(d). In this case, input beam is initially dispersed in its color by the grating, then

focused by a collimating lens. At the Fourier plane (at the focal plane) adjustable

slit allows only portion of rainbow which is back reflected from the end mirror back

to the grating. The portion determines a narrow (less than 1 nm) spectral character-

istics of the output pulse. This is called a folded 4-f pulse shaper. The output pulse

is in sinc function form in time domain and narrowband square in frequency domain,

see Figure 4.8. The realizations and utilizations of the probe pulses in sinc (in time

domain) and square (in frequency domain) [23, 94, 24, 96, 101, 102], square-sinc [98],

exponential-Lorentzian [100, 101, 102, 99] and Gaussian-Gaussian [97] forms were

demonstrated.
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Third, pump and probe instantaneously excite and prepare molecules in the co-

herence state. This molecular coherence dephases eventually. The dephasing can

be illustrated as exponential tale (usually in ps time scale) with a steep rise edge

(usually in fs time scale), see dashed curves in Figure 4.8, on left column. The key

idea is to catch, i.e., probe this coherence before it is too late. Thus, the probe can-

not be delayed too much. Overlapping with the excitation pulses unfortunately also

leads to overwhelming FWM background. The optimal probe delays are sketched

in Figure 4.8, left column for different probe pulse shapes in time-domain. Among

them, the most appropriate and shape-preserved one is the exponential-Lorentzian

pulse, although its sharp spectral nature is sometimes suffered by its broadband tale-

artifact. As seen from Figure 4.8, the square-sinc pulse, the same as for expontential-

Lorentzian pulse, has a steep rise, and the sinc-square pulse has a first left node - all

these features are conveniently optimize probe delay in such a way that the FWM

contribution is minimized.

Fourth, the CARS enhancement at non-zero delay is obvious for the molecules

with narrow band Raman lines in the case of, for example, substances in gas or liquid

phase. However, as seen from Eq.(4.3) that for broader Raman lines, this effect is

negligible. The examples are tissue, powder, and other soft matters. For heteroge-

nous samples due to multiple scattering, fluorescence, and other additional processes

the present technique can be suffered at certain degree. However, a tendency of

improving signal-to-noise ratio is governed by the very same idea present here. For

example, the single shot data of spores powder can still be discriminated from the

heterogeneous background which were somewhat suppressed at the right probe de-

lay and, perhaps, signal can also be enhanced simultaneously. Anyway, these points

need further detailed experimental analysis. Enhancement is a more significant effect

for substances in liquid or gas phase. For N2 at room temperature, an observation
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of the CARS enhancement at positive probe delay was reported in [120]. This is a

high spectral resolution experiment using a 1-m spectrometer with a dispersion of

0.29 cm−1 per pixel of the CCD camera. The laser pulses are in picosecond time

scale. The pump and Stokes pulses were approximately 100 ps generated by a re-

generatively amplified mode-locked Nd:YAG laser in combination with a broadband

dye laser centered at 633 nm. A precisely synchronized second regeneratively am-

plified Nd:YAG laser produced a narrowband probe beam at 532 nm. The results

reproduced from [120] are shown in Figure 4.10 where CARS signal were recorded at

each probe delay for three different peaks. The peaks correspond to the rotational

quantum number J-specific Raman modes (J=8, 16, and 22). The decay of these

coherence were measured in N2 at room temperature. The J-specific exponential

decay constants (τ8,16,22) were accurately found from the exponential fits in the tale

parts of the observed data. The expected deviations between the threshold delay

times for those peaks from the present theory were, however, measured inaccurately

as in Figure 4.10. Note that enhancement is due to molecular coherence in unison

as a result of collective phenomenon (below 200 ps) which is the case for decay of

Raman modes in long delay (above 200 ps). The collective phenomenon in this case,

thus, depend mostly on the excitation of pump and probe pulses.

Finally, let us discuss an impulsive CARS experiment representing the group that

utilizes a narrowband probe and broadband excitations. Selm et al., in [98], used a

mode-locked Er-fiber laser oscillator (40 MHz rep. rate) and the two parallel Er:fiber

amplifiers at 1550 nm. The one branch delivered the broadband pulse (short as 11 fs

in duration) that can excite the molecules in the sample substance impulsively. The

other branch generates a probe pulse with a duration of 3 ps with a use of PPLN at

775 nm (second harmonic of the fundamental 1550 nm). This had a 200 fs fast rise

time of the top-hat shape in time domain as in Figure 4.9 (b). The leading sharp

62



Figure 4.10: The results are reproduced from [120]. The CARS signals as functions
of probe delay for three excited closely-spaced rotational Raman modes with J = 8,
16, and 22 of N2 in gas-phase at room temperature. The maximum enhancements for
these modes are at threshold delay time of approximately 50 ps. The exponential fits
in the tale parts provides Raman modes’ decay constants (or inverse of linewidths)
to be τ8,16,22 = 61, 86, and 132 ps.

edge of the (delayed) probe pulse can be aligned with respect to the excitation pulse

for removal of non-resonant background. The main experimental result from [98] is

reproduced in Figure 4.11 (a). As seen from figure, in the zero delay region, the

CARS signal overwhelmed by the featureless non-resonant background. At the delay

longer, the time-resolved excited Raman bands of a benonitrile liquid film. The

11 fs pulse allowed excitation of multiplex Raman peaks in the entire range from
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Figure 4.11: (a) The experimental data reproduced from [98]. (b) Simulations re-
produced from [105]. Time-resolved impulsive CARS spectrograms for a liquid film
of benzonitile.

500 to 3500 cm−1. The theoretical comparison to this data was given in [105], see

Figure 4.11(b). The theory for the impulsive CARS is developed in [105, 106], and

its generalization is presented here.

Summary

This section presented a brief overview to the basics of coherent anti-Stokes Ra-

man spectroscopy. First we introduced the CARS technique and its strengths and

barriers. In particular, the experiments using combination of broadband and nar-

rowband pulses were highlighted. Next, the application of the Gaussian ultrashort

pulses as a practical elucidatory reconstruction tool to be used in the extraction of

uncontaminated CARS signal from FWM background was analyzed in great detail.

Namely, we presented the integral formulae for coherent anti-Stokes and Stokes Ra-
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man scattering, and discussed the closed-form solutions, its complex error function,

and the formula for maximum enhancement of the inferred pure coherent Raman

spectra. The time-resolved coherent Stokes Raman scattering experimental observa-

tions were also quantitatively elucidated as an example. Moreover, various experi-

mental realizations of narrowband probe pulses were illustratively explained. Finally,

several experimental data were presented and discussed based on all Gaussian ap-

proach presented in this section. Understanding the essentials of coherent Raman

spectroscopy promotes importance of a number of experiments including the ones

utilizing a broadband excitation with a narrowband delayed probing for successful

background suppression emphasized in this section.
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COHERENT STOKES RAMAN SPECTROSCOPY OF PYRIDINE IN

GAS-PHASE AT LOW TEMPERATURE ∗

In this section, coherent Stokes Raman spectroscopic data of pyridine in gas-

phase are presented. Both time and frequency resolved (femtosecond and picosecond

adaptive) coherent Raman spectroscopic technique demonstrates a measurement sen-

sitivity reaching below 30 ppm pyridine molecules.

Introduction

Coherent anti-Stokes/Stokes Raman spectroscopy is a powerful tool, for exam-

ple, in chemical sensing, molecular dynamics observations, and ro-vibrational spec-

troscopy. Since its first demonstration [74], it has been successfully applied in fields

of study as diverse as remote sensing, combustion diagnostics, cell biology and plasma

physics. Due to molecular coherence, Raman scattering efficiency can be enhanced

by many orders of magnitude [94]. In coherent Stokes Raman scattering (CSRS)

spectroscopy employed in this work. The molecules are put into coherent oscillations

by a pair of preparation pulses, pump and Stokes. These macroscopic polarization

oscillations of molecules lead to enhanced scattering of the probe photons. We stud-

ied the two excited Raman modes of ν8 at 1030 cm−1 for the ring bend and ν9 at

990 cm−1 for the ring breathing.

Experimental Setup

We employ a Coherent Inc., Ti-Sapphire-based regenerative amplifier system with

1 kHz repetition rate at 800 nm wavelength (maximum pulse energy 1 mJ/pulse,

∗Reprinted with permission from “Coherent Stokes Raman Spectroscopy of Pyridine in Gas-
Phase at Low Temperature ” by Narangerel Altangerel, Gombojav O. Ariunbold, Zhenhuan Yi,
Tuguldur Begzjav, Esther Ocola, Jaan Laane, and Marlan O. Scully 2016, OSA , Digest Copyright
[2016] by OSA.
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pulse duration 40-50 fs). The generated CSRS signal, in transmission mode in the

sample, is collected by a diffraction-grating spectrometer (Chromix-250is, Bruker op-

tics) with a liquid nitrogen cooled CCD (Spec-10, Princeton Instruments)(see Figure

5.1).

Figure 5.1: The experimental setup of a CARS system

The femtosecond system produces the three linearly polarized laser beams at

preselected wavelengths. These are utilized as pump, Stokes, and probe. The probe

pulse is guided through a home-made 4-f pulse shaper. An adjustable slit in the

Fourier plane of spectrally-dispersed beam provides a narrowband probe. The probe

and Stokes pulses are sent directly through designated delay lines and then all three

colinear beams are focused on the sample. The delay stages are motorized, con-

trolled by a PC and operated with 1 µm precision (Newport). We ran a couple of

measurements for finding an optimal probe bandwidth which resolves the two excited

Raman modes (39 cm−1 apart from each other) and the same time provides good

signal to noise ratio. The dependence between the slit width of the pulse shaper
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and the probe bandwidth was measured to be linear. Next, we investigated exper-

imentally the CSRS concentration dependence. CSRS signal measured as pyridine

concentration is changed by heating and cooling the cell (Figure 5.2). As expected,

Figure 5.2: CSRS signal concentration dependence below 0.1% by varying tempera-
ture of the pyridine in gas-phase.

the nonlinear (quadratic) relationship was observed, particularly, in a region of con-

centration reached below 0.1%. During the experiment, the powers of the pump,

Stokes, and probe were kept the same at 1.8 mW, 3.1 mW, and 1.5 mW, respec-

tively. The employed femtosecond and picosecond adaptive CSRS technique can be

best understood through its comparison with time-resolved CSRS. An illustrative

transition from the conventional time-resolved CSRS measurement in pyridine to

the frequency resolved (multiplex) CSRS by narrowing the bandwidth of the probe

pulse from 300 cm−1 to 15 cm−1 is shown in Figure 5.3. A beating pattern between

the two excited Raman modes of interest, 990 and 1030 cm−1, transforms gradually

into two spectrally resolved lines. A cross section of the spectrograms at the fixed

positive delay gives a CSRS spectrum.
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Figure 5.3: A transition from the traditional time-resolved CSRS to frequency re-
solved CSRS left to right the probe width changed from 300 to 15 cm−1. A separation
of the two Raman lines for pyridine is 39cm−1 and a corresponding beating period
is 0.8 ps.

Results and Discussion

For lower concentration measurements, the cell needed to be cooled. The lowest

stable cooling achieved in this experiment was about 4 Celsius. At this temperature,

the pyridine concentration is estimated to be 28 ppm. In Figure 5.4, a single laser shot

measurement is shown. It is worth to noting that the non-resonant background four-

wave-mixing profile due to multiple off-resonant vibrational modes and instantaneous

electric response is highly suppressed [23], due to the delayed probe. The sharp

resolution of the Raman lines were obtained due to narrowband feature of the probe.

The maximum enhancement of CSRS at the threshold probe delay is used [104]. In

this experiment, overall 2000 counts were recorded, which suggested that we are able

to push to sub-ppm sensitivity.
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Figure 5.4: A single shot CSRS spectrum for 28 parts per million pyridine molecules.
The powers of pump, Stokes and probe are 1.8 mW, 3.1 mW, and 2 mW, respectively,
the acquisition time is 200 ms.

70



CONCLUSION

This work is mainly devoted to development of Raman spectroscopic techniques

for in vivo detection of abiotic plant stress and animal diet prediction by their fe-

ces’ Raman spectra. We demonstrated, for the first time, early detection of plant

stress responses using in vivo Raman spectroscopic methods with improved sen-

sitivity and the ability to interrogate individual stress-indicator pigment molecules

simultaneously. The variations in the concentration levels of anthocyanins and photo-

synthetic carotenoids in coleus plants were observed across abiotic stresses including

high salinity, drought, cold, and excess light. These changes over time post-stress

induction provides Raman spectroscopy as a method of accurate measurement of

these molecules, while indicative of the functional relationship of these pigments in

response to excessive ROS during abiotic stress. This work furthers our understand-

ing of plant physiology by detecting a novel negative correlation in the levels of

anthocyanins and carotenoids during the stress response. The short term response

across multiple abiotic stresses holds promise for a near ubiquitous method of abi-

otic stress detection. Finally, our proposed portable system has the capability to

become mobile and automated to allow for increased utility in precision agricultural

applications both for breeders and commercial producers. The traditional chemical

analytical extraction also validated the existence of the concentration changes either,

in total anthocyanins or carotenoids. In general, the Raman technique could be a

cheap, rapid, non-destructive, and alternative to chemical analysis. Since it is in

vivo, it detects changes of these molecules over time from one plant which is im-

possible in destructive chemical analysis. In the next study, we showed that f.NIRS

has the potential to, at a minimum, predict high and low consumers of chemically
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defended plants such as mesquite that are only consumed in small amounts. This

information can be used to help select animals that have a higher intake of these

plants and thus have a greater potential to more effectively utilize the forage re-

source in areas where species such as mesquite are abundant. This is the first study

to demonstrate that Raman spectroscopy has the potential for discriminating among

animals that are consuming different diets. Because in contrast to NIR, water does

not affect Raman and because field friendly, hand held Raman spectrometers, such

as the one used in this study, are readily available, this technology has a great po-

tential for ecological field studies. NIRS spectroscopy has shown great potential in

ecological studies [53, 66]. We believe that Raman spectroscopy has a similar poten-

tial and deserves further investigation as a quantitative technique in ecological field

studies. In the section 4, we presented a brief overview to the basics of coherent

anti-Stokes Raman spectroscopy. First we introduced the CARS technique and its

strengths and barriers. In particular, the experiments using combination of broad-

band and narrowband pulses were highlighted. Next, the application of the Gaussian

ultrashort pulses as a practical elucidatory reconstruction tool to be used in the ex-

traction of uncontaminated CARS signal from FWM background was analyzed in

great detail. Namely, we presented the integral formulae for coherent anti-Stokes and

Stokes Raman scattering, and discussed the closed-form solutions, its complex error

function, and the formula for maximum enhancement of the inferred pure coherent

Raman spectra. The time-resolved coherent Stokes Raman scattering experimental

observations were also quantitatively elucidated as an example. Moreover, various

experimental realizations of narrowband probe pulses were illustratively explained.

Finally, several experimental data were presented and discussed based on all Gaussian

approach presented in this section. Understanding the essentials of coherent Raman

spectroscopy promotes importance of a number of experiments including the ones
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utilizing a broadband excitation with a narrowband delayed probing for successful

background suppression emphasized in this section.
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