
DEVELOPING GENERALIZED CROSS HATCHING SHADER APPROACH FOR

NON-PHOTOREALISTIC RENDERING

A Thesis

by

YUXIAO DU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ergun Akleman
Committee Members, Richard R. Davison

Rodney Hill
Head of Department, Tim McLaughlin

August 2017

Major Subject: Visualization

Copyright 2017 Yuxiao Du

ABSTRACT

In this research, I present a method for rendering a geometric scene that has the look

and feel of artistic hand drawings, particularly using a medium such as charcoal or cross-

hatching. While there have been many approaches to non-photorealistic (NPR) renderings

in the past two decades, there seems to be very little research done on how to obtain such

charcoal or cross-hatching effects, especially with attention to reflections and specularity,

which often at times seems to break the illusion of the drawing effect.

I developed a new class of techniques, using a Barycentric shading method, that allows

the non-photorealistic rendering of a variety of artistic drawing styles. My approach can

be summarized as follows: (1) a Barycentric shader that can provide generalized cross-

hatching with opaque multi-textures, (2) a Barycentric shader using transparent multi-

textures, and (3) a texture synthesis method that can automatically produce crosshatching

textures from any given image.

ii

DEDICATION

To my mother, my father, and my grandmother.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Ergun Akleman

and Professor Richard Davison of the Department of Visualization and Professor Rodney

Hill of the Department of Architecture.

The methodology and results in chapter 3 were conducted by the student and Professor

Ergun Akleman and published as a poster in 2016 in ACM SIGGRAPH conference

titled "Charcoal Rendering and Shading With Reflections”.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study has been partially supported by the Dreamworks Animation Scholar-

ship and the Pixar Aggies scholarsip.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

CONTRIBUTORS AND FUNDING SOURCES iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

1. INTRODUCTION . 1

1.1 Motivation and Inspiration . 1
1.2 Introduction . 1

2. BACKGROUND AND LITERATURE REVIEW 4

2.1 Shading Trees and Shading Language 4
2.2 Understanding Drawing Principles for Non-Photorealistic Rendering . . . 6
2.3 Related Works . 7

3. BARYCENTRIC SHADING WITH OPAQUE MULTI-TEXTURES 11

3.1 Shader Development . 11
3.1.1 0 Degree B-spline . 12
3.1.2 Artist Hierarchy . 13

3.2 Texture Mapping . 16
3.3 Shader Implementation . 19
3.4 Results . 22

4. BARYCENTRIC SHADING WITH TRANSPARENT MULTI-TEXTURES . . 24

4.1 Shader Development . 25
4.2 Texture Creation . 27
4.3 Shader Implementation . 28
4.4 Results . 30

5. TEXTURE SYNTHESIS . 32

v

5.1 Deficiencies Without Texture Synthesis32
5.2 Methodology . 33
5.3 Implementation . 34
5.4 Results . 35

6. CONCLUSIONS AND FUTURE WORK .38

6.1 Conclusion . 38
6.2 Further Study . 38

REFERENCES . 41

vi

LIST OF FIGURES

FIGURE Page

1.1 Artistic examples including technical illustrations to emphasize a subset
of the assembly elements and charcoal drawing where non-photorealistic
rendering could be applied. 2

2.1 Conceptual examples of shade trees for grass [1]. 4

2.2 Procedural texture on coroded teapot using Hanrahan’s shading language,
now known to be the industry standard Renderman shading language [2]. . 5

2.3 General Drawing Process, where an artist draws an apple freehand from
beginning to finish [3] . 7

2.4 Artist makes free-hand drawings from a prompt page (left)[4]. 8

2.5 Using control and weight images to satisfy partition of unity, where the
final image (right) created by taking the weighted average of the control
images (left) [5]. 8

2.6 Chinese Painted 3D scene using the Barycentric shading method [6] . . . 9

3.1 Set of hand-drawn opaque charcoal textures used as control images for
Barycentric shader . 13

3.2 Hand-drawn charcoal gradient ramp . 14

3.3 Artist Hierarchy, the general drawing process and work-flow of an artist.
The steps can be see as follows: outline + base + shadow + ambient occlu-
sion + outline + reflection + specular. 14

3.4 Charcoal style rendered image by combining shading parameters in the
same order as the artist hierarchy. 15

3.5 Texture Mapping methods: (a) UV Mapping, (b) Camera Projection, (c)
Tri-Planar Projection . 16

vii

3.6 Two frames of animation using camera projection: As the model rotates,
the texture can be seen as not following the rotation, causing a swimming
texture effect . 18

3.7 Pros and Cons for UV Mapping, Camera Projection, and Tri-Planar Pro-
jection . 18

3.8 Creating the Barycentric shader using visual programming language . . . 19

3.9 Vase scene creation in Autodesk Maya 20

3.10 Visually mapping parameters onto the model using the ramp node. (a)Using
a rainbow ramp to visually see the contours. (b)Ramp node with each color
substituting a control image. (c)Visually see which control image is used
on which areas of the model . 21

3.11 Figure Drawing Charcoal Rendering . 22

3.12 Vase Charcoal Rendering . 23

3.13 Teapot Charcoal Rendering . 23

4.1 Woman Portrait by Igor Lukyanov . 24

4.2 Drawings of hands. 25

4.3 Transparent control images: Only one transparent texture is needed. It can
be layered on top of itself with translation and rotation to create new and
darker images . 26

4.4 Transparent control images can be any style (right). When layered over
each other and flipped, rotated, or translated, they can form darker patterns
(left). 27

4.5 Creating Barycentric shader with transparent control images using ramp
function from node network . 28

4.6 Test render in Maya of a boy model using transparent control images (left).
Node network setup with a green constant set as a substitute for one of the
control images (right). 29

4.7 Render of a skull model using transparent control images. The artist can
choose to render the model in any given parameter of the shader by layer-
ing transparent control image(s). 30

viii

4.8 Final render of a skull using the transparent control texture method 31

5.1 Control Image creation using the texture synthesis algorithm 33

5.2 Original Image (left) and rendered image from the algorithm based on the
goal values chosen by the user: 58 and 127 (right) 35

5.3 Boy Render using textures created by the image synthesis algorithm (top)
and the textures used from the algorithm (bottom) 36

5.4 Vase Render using textures created by the image synthesis algorithm . . . 36

5.5 Vase Render using textures created by the image synthesis algorithm . . . 37

6.1 Barycentric Shader following the artist’s hierarchy while using colored
control images . 39

6.2 Rendered example of Barycentric shader in color 40

ix

1. INTRODUCTION

1.1 Motivation and Inspiration

With the current and innovative techniques in computer graphics, where motion pic-

tures are able to produce ever more realistic renders of fantastic worlds, it is hard to imag-

ine that producing non photorealistic images is still an ongoing challenge for professionals

in the field of computer graphics. During the last two decades many non-photorealistic

(NPR) rendering methods are developed to simulate charcoal drawing [7] [8]. However,

shader development is still a very active area of research, and professionals within the in-

dustry is constantly trying to find new ways for control of the tools to create the desired

artistic style. No work has been done to create global illumination effects such as reflection

into charcoal styled renderings. This is most likely due to the fact that traditional charcoal

drawings do not commonly include reflections. Furthermore, with current approaches to

non-photoreaslitc rendering, artists do not yet have the ability to create a completely new

cross-hatching style. All current works rely on methods that have only been seen using

traditional graphite techniques. However, my approach will show that it is possible to an-

alyze such examples to include global illumination effects into charcoal drawing as well

as create new and exciting cross-hatching styles for the artists’ own choosing.[9]

1.2 Introduction

After decades of advancement in computer graphics, where a primary goal is to let

viewers not realize that computer generated graphics is even being used, why are artist

and professionals looking for ways to revert back to producing non-photorealistic images?

Grabli and Yan addresses this by noting that it is for the most part a matter of artistic

style. [10][11] Yan even describes NPR as artistic rendering, and one of the natural ways

to generate artistic rendering would be to imitate the painting style of an artist. However,

1

this proves to be challenging and continues to be a problem, as artists stroke patterns and

colors can vary greatly to convey their emotion [11].

In addition to artistic style, NPR can be applied in technical areas such as the medi-

cal field [12] and technical manuals, where contour lines and clear edges are desired for

more descriptive purposes, allowing for an educational environment. One of the primary

applications for a programmable NPR system is technical illustrations, where occlusion

property is used to focus on individual elements of a drawing of an engine [10].

Figure 1.1: Artistic examples including technical illustrations to emphasize a subset of
the assembly elements and charcoal drawing where non-photorealistic rendering could be
applied.

My goal for this research is to create an approach that can easily be applied to standard

pipelines, which will achieve and mimic the effects of artistic styles such as charcoal

and cross-hatching. While past approaches to reach this desired result has been time-

consuming and difficult for artists to understand, I am developing a Barycentric shader

that requires minimal amount of work for the desired result. The render should have the

artistic quality of hand-drawn artworks as well as give the believability to the viewer that

they are seeing a drawing instead of a rendering of 3D objects. Creation of this generalized

2

cross-hatching shader is driven by the following goals:

• Create 3D models that traditional artists would draw. The models would be still life

or detailed human figures often seen in traditional drawings.

• Create multiple opaque textures of variant shades using charcoal on paper. Each tex-

ture would need to be fairly consistent in texture, stroke width, and value throughout

paper on which it is drawn. I would be using this texture as part of my method in

shader development.

• Create multiple transparent textures using Adobe Photoshop. Each transparent tex-

ture would show very simple line strokes that could easily overlap each other with

simple rotations of the texture.

• Create an algorithm for image synthesis. The algorithm would greatly help with the

consistency of the textures, where the gaps of white or dark areas would as a whole

look more uniform throughout the texture image.

3

2. BACKGROUND AND LITERATURE REVIEW

Many works have been done in the past to attempt the effect hand-drawn styles in

rendering. In this chapter, I will examine the works of my predecessors related to my

research of non-photorealistic rendering.

2.1 Shading Trees and Shading Language

From developing games to animated films, the development of the shaders and shad-

ing frameworks has always been a very important task. Shade Trees architecture (See

Figure 2.1) and shading languages laid the foundations of the procedural shader concept

to create a desired look-and-feel [1, 2]. Cook’s conceptual development of the shade tree

allowed artists immense control of the shader, manipulating light source specifications,

reflections, and atmospheric effects independently [1]. The artist was able to selectively

control every aspect of the shading process, allowing for more flexibility.

(a) normal (b) final color

Figure 2.1: Conceptual examples of shade trees for grass [1].

The Shade Tree concept was then utilized and adapted by Perlin’s image synthesizer

and Hanrahan’s Renderman shading language, where both introduced full shader lan-

4

guages for programming shading computations for rendering systems [13, 2]. Carrying

Cook’s Shade Tree further, Perlin developed a programming language with a full set of

arithmetic and logical operators [13]. However, Cook’s distinction of the shading process

was not utilized by Perlin. He instead created a "pixel stream" model, where the shading

was done in post-processing. Utilizing the methods proposed by both Cook and Perlin,

Hanrahan created a "high-level language" (See Figure 2.2), which he describes as very

"easy to use", allowing "shading calculations to be expressed naturally and succinctly"

that included a well defined user interface between the shading modules and rendering

program[2]. Despite the success of the shader and shader development, however, obtain-

ing a desired style continues to be a challenge.

Figure 2.2: Procedural texture on coroded teapot using Hanrahan’s shading language, now
known to be the industry standard Renderman shading language [2].

5

2.2 Understanding Drawing Principles for Non-Photorealistic Rendering

While developers are making progress in finding better ways to produce desired ren-

derings of 3D models, the challenges of non-photorealistic rendering (NPR) are great and

many. Producing rendering that give the desired look and feel of something hand-drawn

is extremely difficult. Highly qualified lighting and technical directors are still wondering

how to make artistically stylized shaders without it looking and feeling like the result has

been artificially generated through a rendering system.

To start off, "where do people draw lines"? This question has been asked by most if

not all researchers prior to their approach of non-photorealistic rendering, specifically in

contouring [12, 10, 4]. We can see an artist’s process in making a pencil drawing on paper

(See Figure 2.3), but how and why does he make the decision to place the marks there?

It is usually assumed that style attributes (i.e. stroke thickness or line omission) are not

randomly chosen by artists. Grabli believes that the nature of a line is dependent on the

distance to the viewer, but includes that this assumption was never explicitly exploited nor

articulated [10].

Cole presents a study (See Figure 2.3) where twenty nine people consisting of art

students and professional artists were asked to produce line drawings based from twelve

given images of 3D shapes in a controlled environment [4]. The study was designed in such

a way where the drawings would be analyzed using computer line definition to show how

the locations of each artist′s line compares to that of another artist, finding relationships

between line location of artists′ drawings and surface geometry, lighting, and viewing

conditions [4]. The participant were given specific instructions such as to refrain from

drawing lines that may represent shadows as their purpose was to convey the shape of the

3D objects. To add precision without the trade off of artistic decision, participants were

asked to first make a free- hand drawing, and then to trace over a light version of the 3D

6

Figure 2.3: General Drawing Process, where an artist draws an apple freehand from be-
ginning to finish [3]

image repeating the same lines they drew from their free-hand drawing. The results shows

that 75 percent of overlapping lines from one artist to another are from occluding contours

of the geometric object, while most of other lines seemed to represent large gradients [4].

However, Cole′s result only covers one drawing style, and he admits that his study pool is

small. A more extensive study with a larger pool of participants is desired.

2.3 Related Works

Barycentric shader is a new approach introduced by Akleman for simplifying shader

development in an intuitive and streamlined process. Barycentric shaders can be under-

stood with the following equation:

C(u, v) =
M∑
i=0

Bi(t)Ti(u, v)

where C(u, v) is rendered color of the point (u, v), Ti(u, v)’s are control images and t is

one of the shading parameters such as diffuse parameter, specular parameter, ambient oc-

7

Figure 2.4: Artist makes free-hand drawings from a prompt page (left)[4].

clusion or shadow and Bi(t)’s are basis functions that satisfy partition of the unity property

[5]. The consistency of the results can be enforced regardless of the number of shading

parameters computed during rendering by using basis functions that satisfy the partition

of unity [5]. Desired styles are obtained from key decisions regarding utilizing control

images and basis functions (See Figure 2.5).

Figure 2.5: Using control and weight images to satisfy partition of unity, where the final
image (right) created by taking the weighted average of the control images (left) [5].

Using the Barycentric shading method, any standard rendering pipeline along with

8

global illumination can incorporate these shaders into a streamlined process. Recently, the

method has been used to successfully emulate existing artists’ styles[6].

Figure 2.6: Chinese Painted 3D scene using the Barycentric shading method [6]

Liu is able to create a Chinese Painted 3D scene with reflections on based on a paint-

ing by Yang Ming-Yi, a contemporary Chinese painter(See Figure 2.6). By studying the

paintings of the artist, Liu has identified crucial elements for the paintings: (1) Value and

Tone, (2) Shape and Form, (3) Water Reflection, and (4) Layout and Composition [6].

Liu addresses that the reflection of the water in the rendered scene resulted from using

weighted images [5], a combination of light and dark tone reflection images using a re-

flection mask and fade-out parameter [6]. The final image is created as a result of several

rendered layers, each with a slighting different camera position and then later composited

in post-process.

While the the Barycentric method proves to be extremely promising with successful

results, very little work has been done to showcase the method without post-processing.

9

Liu’s Chinese painting rendering is the result of multiple layers of renderings that has been

composited together, which can be a tedious task in itself. Furthermore, the capabilities

of Barycentric shaders can be expanded to create more styles, even non-existing ones. In

the following chapters, I will propose a method to create generalized crosshatching effects

to expand on the Barycentric shader. In addition, I will introduce an image-synthesis

algorithm, which generates control images for non-existing styles.

10

3. BARYCENTRIC SHADING WITH OPAQUE MULTI-TEXTURES

In this chapter, I will present a way to create a charcoal shader using Akleman’s

Barycentric shading concepts [5] using hand-made charcoal textures as control images.

As an extension to Barycentric shader, I will explain the relevance of using a degree 0

b-spline1 for creating a charcoal drawing effect.

Finally, I will introduce the artist drawing process, which I call the artist hierarchy, and

how following the same process within the shader will generate the desired charcoal style

in the final render.

3.1 Shader Development

As addressed in the previous chapter, a Barycentric shader is a shading framework

using Barycentric algebra. Using a basis function, the shader allows for very intuitive art-

directed control [5]. It utilizes a series of control images as weight images, and it can be

summarized using the equation

C(u, v) =
M∑
i=0

Bi(t)Ti(u, v)

where C(u, v) is the rendered color of the point (u, v), T (u, v) is the texture image, M

indicates the number of parameters used, and t denotes illumination, such that t=1 means

fully illuminated and t=0 means not illuminated.

M∑
i=0

Bi(t) = 1 and Bi(t) >= 0

B(t) is the basis function that satisfy partition of the unity property. The summation

1Y. Du and E. Akleman, ”Charcoal rendering and shading with reflections,” in ACMSIGGRAPH 2016
Posters, p. 32, ACM, 2016.

11

of the weighting coefficients B(i) must be equal to 1, where B(t) is equal or greater than

0.

3.1.1 0 Degree B-spline

For my charcoal shader, I am using a zero-degree b-spline function [9] for the weights

Bi(t). It is a simple function that is equal to one when parameter t is within an interval.

Otherwise, it is equal to 0. This guarantees that a clean texture that provides approximately

the desired color value is obtained. Note the following degree zero B-spline

Ni,0(t) =


1 if ti ≤ t < ti+1

0 otherwise

where N(t) is the zero degree B-spline basis function that is equal to 1 when parameter

t is within an interval, and 0 otherwise. Using my choice of control images, I can mix them

along the 0 degree B-spline.

To control style, the most important component is the choice of control images. All

control images are brought into shader development. The control images used in this

method are nine hand-drawn charcoal textures using the charcoal on newsprint paper (See

Figure 3.4). Each texture substitutes as a tonal value of the charcoal drawing, which will

be then applied to the 3D geometric mesh. The textures are scanned and imported into

an image-editing software to make the textures repeatable. Finally, the control images

have been adjusted in brightness so that average brightness difference between textures

are consistent. The idea is to create a consistent brightness ramp often seen in drawing

practices (See Figure 3.4).

12

Figure 3.1: Set of hand-drawn opaque charcoal textures used as control images for
Barycentric shader

3.1.2 Artist Hierarchy

Consider the artistic process of drawing an apple mentioned in the previous chapter

(See Figure 3.3). Breaking down the process into steps, the artist starts with an outline.

The artist then starts adding shade to the apple with some basic shading to give the form

volume. Shadows are inserted before the artist goes back in to the crevices to add some

more darkness. Those dark regions in crevices is often rendering as ambient occlusion in

the computer graphics world. The artist then redefines the edges and outlines the apple

in areas once again. Reflection is then added to the apple before the artist finally uses an

eraser to give the apple specularity. The work-flow can be viewed as an artist’s hierarchy,

layering steps on top of each other.

With all of the steps in the artist’s hierarchy, it would be extremely difficult to incor-

13

Figure 3.2: Hand-drawn charcoal gradient ramp

Figure 3.3: Artist Hierarchy, the general drawing process and work-flow of an artist. The
steps can be see as follows: outline + base + shadow + ambient occlusion + outline +
reflection + specular.

porate all of the parameters and keep track at the same time using a generic parametric

function. As a solution, the shader can be simplified by creating a hierarchical system that

emulates the artist’s hierarchy. By making each step of the process as a shading parameter,

the proposed Barycentric shader uses the following artist’s drawing order:

Outline+Base+ Shadow+AmbientOcclusion+Outline+Reflection+ Specular

Compare that with the hierarchical structure used by the charcoal style Barycentric

14

shader:

Diffuse+ Shadow + AmbientOcclusion+Outline+Reflection+ Specular

Using the initial B-spline formula C(u, v) =
∑M

i=0Bi(t)Ti(u, v), the shader regards

diffuse as t0, shadow as t1, ambient occlusion as t2, outline as t3, reflection as t4, and

specular highlight as t5. Combining these parameters results in the final rendered image

(See Figure 3.4).

Figure 3.4: Charcoal style rendered image by combining shading parameters in the same
order as the artist hierarchy.

This method reduces the complexity of shading by using a hierarchy similar to the

15

drawing order of an artist as shading parameters. For specular highlights, a simple paper

texture or white chalk texture can be used.

3.2 Texture Mapping

Three primary types of texture mapping methods are considered for the charcoal Barycen-

tric shader: UV mapping, camera projection, and tri-planar projections. Let us review the

three projection methods (See Figure 3.5).

Figure 3.5: Texture Mapping methods: (a) UV Mapping, (b) Camera Projection, (c) Tri-
Planar Projection

A model have different sets of UV coordinates, which are referred to as UV sets or Map

channels. The UV mapping method uses the model’s UV coordinates that are assigned to

the model’s vertices. The model can be unwrapped like the wrapping paper to an object,

laying the paper flat for texturing. This is a very common practice for texture artists to

locate the surfaces of the model for texture placement. One of the advantages of the UV

mapping method is that it is seamless (e.g. no seams when the texture is wrapped around

an object). Moreover, there is very little distortion of texture around the edges of a 3D

model being textured. In addition, UV mapping follows the curvature of the form of the

3D model being textured. This feature is desirable for the purposes of the charcoal shader,

because the strokes of the charcoal lines should follow the curvature of the form that is

16

being drawn. However, mapped textures must be specific to the 3D model being textured

due to the nature of the texture being placed on the specific model that had been UV-

unwrapped. This dramatically limits the utility of the UV-mapping method. Furthermore,

because the textures must be specifically generated for a shape, the UV mapping method

is also very time-consuming.

Now let us take a look at Camera Projection Mapping. This method projects an image

onto the 3D model from the camera. It creates an illusion of detail for the object, when

in reality the textures are not actually set on the model itself. This method is commonly

used by matte painters in the film and television industries. Similar to the UV mapping

method, the camera projection method can also produce a seamless texture for a 3D model.

Unlike the UV mapping method however, the model does not need to be UV unwrapped,

so there is no need for extensive human labor to produce the texture. This means that

the textures are not model-specific, allowing the textures to fit on any model that the artist

deems appropriate. Unfortunately, as promising as this method seems initially, this method

has only been able to be successful for still images. When tested for animation, due to

the texture positions reliant on the camera position, such a limitation would generates a

swimming texture effect during animation. As the model moves and rotates, the textures

do not follow the model, causing the textures to appear separated from the geometry and

gives a very bizarre look and feel when rendered (See Figure 3.6).

Due to the uv mapping method being model specific and time consuming and the

camera projection method giving swimming texture effects, another method is necessary

to combat the disadvantages. The final texture mapping method to be considered is the

tri-planar projection method. In this method, a texture is mapped three times with planar

maps along the X, Y, and Z axes. These maps are then blended based on the angle of the

face. Like UV mapping, there is very little distortion near edges of a texture. Similarly like

the camera projection method, there is no need for human labor. Moreover, the tri-planar

17

Figure 3.6: Two frames of animation using camera projection: As the model rotates, the
texture can be seen as not following the rotation, causing a swimming texture effect

projection method will create textures that can follow the curvature of a 3D model, which

is often an artistic decision in crosshatching lines.

Figure 3.7: Pros and Cons for UV Mapping, Camera Projection, and Tri-Planar Projection

After reviewing the advantages and disadvantages of the three methods, tri-planar pro-

jection proved to be the most appropriate texture mapping method for this project (See

18

Figure 3.7).

3.3 Shader Implementation

Implementation of the charcoal Barycentric shader is used using a visual programming

language. The 3D software used is Autodesk Maya for its sheer power and versatility. Its

node editor system allows the connecting components of any given data without having to

go through walls of code. I have chosen to use Mental Ray as my renderer of choice, where

surface luminance is given as a node in the node editor within Maya (See Figure 3.8),

providing light information for users to have full control over the effect of light on the

diffuse surface.

Figure 3.8: Creating the Barycentric shader using visual programming language

To start off, I have imported objects into the scene. The models used in my examples

are nude bodies, apples and teapot, and vases. I have chosen these models specifically,

because such objects are common content for actual charcoal drawings. However, any

model could potentially be used for the scene, as the shader can be universally on any

19

mesh .

Within the scene, there are three components: a background plane, the mesh model,

and an area light. The background plane’s purpose is to give a constant texture, which is

the paper texture. It will give the illusion that the final rendered model a drawing of an

object on paper (See Figure 3.11). However, if user plans to incorporate shadows cast by

the model, the shader will be applied to the background plane as well (See Figure 3.12).

Similar to setting up a still-life scene for drawing, the area light is placed to illuminate the

scene with the 3D model in however the user sees fit (See Figure 3.9).

Figure 3.9: Vase scene creation in Autodesk Maya

The key factor to making the shader Barycentric is the ramp node, which allows the

interpolation of the control images using Barycentric functions. Using the ramp node, I am

20

able to take the out-color of the control images and visually insert them along a horizontal

slider (See Figure 3.10) from the darkest control image to the brightest. This ramp can be

used for all parameters (i.e. diffuse, outline, shadows, ambient occlusion, reflection, and

specularity) of the shader, following the artist’s hierarchical structure. A surface luminance

node is used, where the out-color of the the surface luminance is plugged into the ramp’s

UV coordinates to ensure the texture used by the ramp is based on the light value. This

will allow the shader to use brighter textures in areas with more light and darker textures

in areas with less light within the chosen set parameters of the ramp. The interpolation

function of the ramp (in this case the zero-degree b-spline) is also set within the ramp

node. In other words, depending on the brightness of the surface of the model from the

light within the scene, the shader will change the texture from the selection of control

images within the shader.

Figure 3.10: Visually mapping parameters onto the model using the ramp node. (a)Using
a rainbow ramp to visually see the contours. (b)Ramp node with each color substituting a
control image. (c)Visually see which control image is used on which areas of the model

21

Projection and place-3D-texture nodes are used for tri-planar projection. The projec-

tion node allows the user to choose the type of projection method, while place-3D-texture

allows the user to visually see the projection planes on the interface. A projection node is

attached to each of the nine control images for the user to have full control of each control

image’s mapping method. In the charcoal shader’s case, only tri-planar projection is used.

3.4 Results

The following are the rendered results using the opaque control images for the Barycen-

tric charcoal shader.

Figure 3.11: Figure Drawing Charcoal Rendering

22

Figure 3.12: Vase Charcoal Rendering

Figure 3.13: Teapot Charcoal Rendering

23

4. BARYCENTRIC SHADING WITH TRANSPARENT MULTI-TEXTURES

Let us review the drawing process of an artist (See figures 3.3) once again in the previ-

ous chapters. Drawings are made with markings that build up next to each other or on top

of each other resulting in a finished artwork. During styles such as crosshatching, marks

are made in one direction and then more are made on top of the previous markings in the

opposite direction (See figures 4.1).

Figure 4.1: Woman Portrait by Igor Lukyanov

To create this effect using the method introduced in the previous chapter, there must

be control images that already has a cross-hatching texture. If the texture needs more

or less markings, a new texture must be created that has the desired texture, resulting in

potentially large quantities of similar textures. To replicate the layering process of the

human hand, the original shading method can be refined by replacing the opaque textures

with transparent textures. In this chapter, I will introduce a method using transparent

24

control images to relieve the effort of creating multiple textures for each shade of darkness

in the Barycentric shader.

4.1 Shader Development

While the Barycentric charcoal shader using opaque control images work quite well,

the creation of the textures can be time-consuming. In order to create believable charcoal

textures, the artist has to create each control image independently. Crosshatching or any

other type of drawing style needs to have its own image and then have the image be ma-

nipulated for brightness correction. Such a process could take hours just to have a full

library of control images for the shader to use. Furthermore, drawings can have multiple

styles. Cross-hatching textures do not necessarily have to be straight lines, and they can

run in all directions (See figures 4.2). If we consider all the different type of styles and

lines, there needs to be a way to mix the control images so that different type of lines can

be incorporated based on the illumination.

(a) Academia Study (b) "The Artist’s Hands" by Henry Moore

Figure 4.2: Drawings of hands.

25

A further advantage of the transparent method is that, unlike shading with the opaque

textures, shading with transparent textures can make use of a single control image instead

of requiring multiple control images. By rotating or translating a single control image,

multiple shapes and shades can be generated (See figures 4.3). Furthermore, the transpar-

ent control images can be layered over each other, which is very similar to the drawing

process and how markings are made on paper.

Figure 4.3: Transparent control images: Only one transparent texture is needed. It can be
layered on top of itself with translation and rotation to create new and darker images

Development of this refined method is simple and is in a large part the same method

as the Barycentric shader mentioned in the previous chapter with minor adjustments.

Barycentric algebra utilizing the B-spline function C(u, v) =
∑M

i=0Bi(t)Ti(u, v) is is

still used. However, the texture image T (u, v) will no longer be a simple switch between

one image to the next. Instead, it will layer control images or not layer them. When t is

fully illuminated (t=1), a default paper texture will be used. Otherwise, a build-up of i

transparent images will be used, on the point C(u, v) depending on the illumination t.

26

Tri-planar projection is still the projection of choice for this method, as the only

changes here are the way control images are handled.

4.2 Texture Creation

Only one texture is needed for the transparent texture method. However, this is only

on a minimal level. If varying styles are desired, then more textures could be created (See

figures 4.4). For this method, the textures are created using an image editing software

Adobe Photoshop. This is just to ensure very clean markings, where any areas without

markings (white paper areas) can be interpreted to be transparent areas.

Figure 4.4: Transparent control images can be any style (right). When layered over each
other and flipped, rotated, or translated, they can form darker patterns (left).

27

The markings and strokes have been placed in such a way that they have relative uni-

formity in density of lines. We do not want certain areas to be too dark or too bright

confuse the viewer upon shader application, so uniformity and even distribution of lines

are important (a topic that I will talk about this further in the next chapter).

Similar to the opaque texture creation, the transparent textures are also made repeatable

on all edges so that no seams will be present on the rendered model. However, only one

transparent texture needs to be used, so there is no need to create a control image for each

value of brightness.

4.3 Shader Implementation

Like the previous opaque texture method, implementation using the transparent con-

trol images is done through the visual node network in Maya as well. However unlike

the previous method, only one texture needs to be brought into the shader, which can be

visually seen to be more straight-forward with less clutter (See figures 4.5).

Figure 4.5: Creating Barycentric shader with transparent control images using ramp func-
tion from node network

The ramp node continues to be used for the Barycentric approach. However, a new

node called "layeredtexture" is now used with the transparent texture shader so that I can

28

now layer my control image on top of itself within the ramp (See figures 4.5). Using

this node, I am multiplying the transparent images with each other, which gives me a

considerably darker texture with each new layer. The "place2DTexture" node is attached

to each layer to allow a change in translation and rotation to occur so that the markings on

the control image is not perfectly aligned with each other. This will give a crosshatching

effect as the illumination of the model surface changes.

Figure 4.6: Test render in Maya of a boy model using transparent control images (left).
Node network setup with a green constant set as a substitute for one of the control images
(right).

The user can use this shader with multiple control images as well as a base image to

create different styles of crosshatching. This method has great potential and can be used

on a number of different drawing styles and mediums. Color can also be manipulated

within the shader within each layer for any desired artistic direction (See figures 4.6).

29

4.4 Results

The Barycentric shader using transparent control images is even more promising than

the previous method. Not only does the final render look believable, the process is much

simpler. By having the user only needing one control image instead of an entire set, much

time is saved in the process. Furthermore, the shader allows greater flexibility for the

user, allowing multiple layers to be created within the shader itself. It is a much more

stream-lined approach that follows the artist’s hierarchy, which therefore gives a much

more realistic image that mimics the drawing of an artist.

Figure 4.7: Render of a skull model using transparent control images. The artist can
choose to render the model in any given parameter of the shader by layering transparent
control image(s).

30

Figure 4.8: Final render of a skull using the transparent control texture method

31

5. TEXTURE SYNTHESIS

In addition to the Barycentric methods proposed in the previous chapters, I will also

introduce a filter method that creates control images for the user in crosshatching styles by

using an image synthesis algorithm. This algorithm will generate new images based off of

an input image that is within the goal brightness chosen by the user without losing texture

detail.

5.1 Deficiencies Without Texture Synthesis

The main problems when choosing control images for the charcoal Barycentric shader

is that the image must meet certain conditions for it be be usable, which may take consid-

erable time for the user to find or to create. The conditions are as follows:

1. Markings need to be evenly dispersed in density throughout the image, so that there

are no striking bright or dark areas

2. Image needs to be within a user-chosen brightness value

3. Image should be a repeatable image that tessellates in all directions without seams

With such conditions in mind, not any image can be suitable to be a control image for

the shader. The user may find themselves using considerable time just creating a control

image that satisfies all conditions. Using just the naked eye, users may not be able to

successfully create an image that meets the first condition, where the image has uniform

strokes across the image.

Furthermore, with the current methods, users are confined to just existing styles. With

the texture synthesis algorithm, non-existing styles can be created.

32

5.2 Methodology

In addition to the theoretical considerations discussed in previous sections, the prac-

tical issue of inconsistencies in texture brightness must be considered. To deal with this

issue, a texture synthesis algorithm is implemented to construct on average constant color

crosshatching textures based on a single crosshatching image (See Figure 5.1). While any

image can be used, a tessellating or tiling image is recommended. The first step to this

method is to perform a brightness averaging algorithm on the image. In the texture syn-

thesis algorithm, the brightness values of a pixel of the original image changes so that the

brighter areas become darker and the darker areas become brighter, as shown in Figure 5.1.

After performing the texture synthesis algorithm, these modified textures can be mapped

to objects using the tri-planar projection method.

Figure 5.1: Control Image creation using the texture synthesis algorithm

33

The texture synthesis algorithm consist of two stages. In the first stage, a region is

assigned around every pixel. The shape of the region and computational weights are con-

trolled by a user-defined kernel. Based on the shape and weights of these regions, an

average color in that region is computed around the pixel. In the second stage, a simple

decision point is made based on a goal color assigned by the user: if the average color of

the region is darker than the goal color, the color of the pixel is set to a lighter color. If the

average color of the region is not darker than the goal color, the color of the pixel is set to

a lighter color.

5.3 Implementation

To implement the texture synthesis algorithm, the scripting language "Processing" was

used. In "Processing," a dilation or an erosion filter is applied to an input image. The

user sets a kernel used to define a region size. Within the region, the program will choose

dilation or erosion based on the brightness of the region.

The specific algorithm used for every pixel is shown in the equation below, where C

is the pixel brightness, u and v are the coordinates of a specific pixel, Cregion−avg is the

calculated average pixel brightness of the corresponding region to the pixel, Cgoal−avg is

the goal average brightness, max(C) is the brightest value in the region, and min(C) is the

dimmest value in the region:

C ′(u, v) =


C(u, v) + Cregion−avg −max(C) Cregion−avg ≥ Cgoal−avg

C(u, v) + Cregion−avg −min(C) Cregion−avg < Cgoal−avg

In a single iteration of the texture synthesis algorithm, the above algorithm is repeated

for every pixel of the texture. The user can repeat this process over any desired number of

iterations. However, on a practical level, a sufficiently high number of iterations will even-

tually lead to a completely gray and aesthetically-bland texture. It is therefore completely

34

up to the user to choose the number of iterations, the goal brightness, and the kernel size

for a desired texture (See Figure 5.1).

Figure 5.2: Original Image (left) and rendered image from the algorithm based on the goal
values chosen by the user: 58 and 127 (right)

5.4 Results

The texture synthesis algorithm produces promising hand-drawn effects from any given

image. It provides not only tremendous artistic control and save time for the user, but it

also produces artistic styles that have never been done before. The utilization of texture

synthesis with Barycentric shader proves to be a powerful unison.

The following are the rendered results using the texture synthesis approach and then

applied to the Barycentric shader.

35

Figure 5.3: Boy Render using textures created by the image synthesis algorithm (top) and
the textures used from the algorithm (bottom)

Figure 5.4: Vase Render using textures created by the image synthesis algorithm

36

Figure 5.5: Vase Render using textures created by the image synthesis algorithm

37

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The Barycentric shader method allows for easy implementation. It is the closest

method to allowing artist to “draw” their shader, giving artists the freedom to produce

any artistic style on a 3D geometry. This methodology also makes the shader highly con-

trollable as the artist has complete authority over diffuse, contours, shadow, reflection, and

specular areas. Additionally, the method is versatile as it can be used for cross hatching,

smudging, and even painting depending on the desired style given by the control images.

6.2 Further Study

While the current stage of the research gives very promising results, more research

needs to be conducted on how these methods apply to color. The Barycentric shading

with transparent multi-textures approach currently shows that the layering of transparent

textures on top of each other produces a nice mixture of colors, but they may not be entirely

accurate colors that the artists wants. It is a trial and error process to produce the perfect

end-result (See Figure 6.2).

The image synthesis algorithm can also be improved so that other artistic styles can

be incorporated. Currently, it uses dilation and erosion to mimic the artist hand of cross-

hatching. It would be extremely interesting to see if styles such as painting, water-color,

and other mediums can also be incorporated.

Furthermore, more research is needed to improve the image synthesis program, where

the textures produced can look more rough and textured. Hopefully, the algorithm can be

improved so that the result may look as natural as the product of an artistic hand-drawn

texture.

38

Figure 6.1: Barycentric Shader following the artist’s hierarchy while using colored control
images

39

Figure 6.2: Details of textures that are obtained using the image synthesis algorithm that
produced lighter or darker textures that resemble original image. Algorithm works not
only for black and white images, but also gray-scale and color images.

40

REFERENCES

[1] R. L. Cook, “Shade trees,” ACM Siggraph Computer Graphics, vol. 18, no. 3,

pp. 223–231, 1984.

[2] P. Hanrahan and J. Lawson, “A language for shading and lighting calculations,” in

ACM SIGGRAPH Computer Graphics, vol. 24, pp. 289–298, ACM, 1990.

[3] W. Kemp, “How to shade a drawing (light and shadow : Part 2),” Jan 2016.

[4] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein, T. Funkhouser,

and S. Rusinkiewicz, “Where do people draw lines?,” Communications of the ACM,

vol. 55, no. 1, pp. 107–115, 2012.

[5] E. Akleman, S. Liu, and D. House, “Barycentric shaders: Art directed shading using

control images,” 2016.

[6] S. Liu and E. Akleman, “Chinese ink and brush painting with reflections,” in SIG-

GRAPH 2015: Studio, p. 8, ACM, 2015.

[7] A. Majumder and M. Gopi, “Hardware accelerated real time charcoal rendering,”

in Proceedings of the 2nd international symposium on Non-photorealistic animation

and rendering, pp. 59–66, ACM, 2002.

[8] M. C. Sousa and J. W. Buchanan, “Computer-generated graphite pencil rendering of

3d polygonal models,” in Computer Graphics Forum, vol. 18, pp. 195–208, Wiley

Online Library, 1999.

[9] Y. Du and E. Akleman, “Charcoal rendering and shading with reflections,” in ACM

SIGGRAPH 2016 Posters, p. 32, ACM, 2016.

41

[10] S. Grabli, E. Turquin, F. Durand, and F. X. Sillion, “Programmable rendering of line

drawing from 3d scenes,” ACM Transactions on Graphics (TOG), vol. 29, no. 2,

p. 18, 2010.

[11] C.-R. Yen, M.-T. Chi, T.-Y. Lee, and W.-C. Lin, “Stylized rendering using samples

of a painted image,” IEEE Transactions on Visualization and Computer Graphics,

vol. 14, no. 2, pp. 468–480, 2008.

[12] C. Tietjen, T. Isenberg, and B. Preim, “Combining silhouettes, surface, and volume

rendering for surgery education and planning.,” in EuroVis, pp. 303–310, 2005.

[13] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics, vol. 19, no. 3,

pp. 287–296, 1985.

42

