
FAULT-TOLERANT DISTRIBUTED SERVICES IN MESSAGE-PASSING SYSTEMS

A Dissertation

by

SAPTAPARNI KUMAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jennifer L. Welch
Committee Members, Anxiao (Andrew) Jiang
 Serap Savari
 Tiffani Williams

August 2019

Major Subject: Computer Science

Copyright 2019 Saptaparni Kumar

Head of Department, Dilma Da Silva

ABSTRACT

Distributed systems ranging from small local area networks to large wide area networks

like the Internet composed of static and/or mobile users have become increasingly popular.

A desirable property for any distributed service is fault-tolerance, which means the service re-

mains uninterrupted even if some components in the network fail. This dissertation considers

weak distributed models to find either algorithms to solve certain problems or impossibility

proofs to show that a problem is unsolvable.

These are the main contributions of this dissertation.

• Failure detectors are used as a service to solve consensus (agreement among nodes)

which is otherwise impossible in failure-prone asynchronous systems. We find an al-

gorithm for crash-failure detection that uses bounded size messages in an arbitrary,

partitionable network composed of badly behaved channels that can lose and reorder

messages.

• Registers are a fundamental building block for shared memory emulations on top of

message passing systems. The problem has been extensively studied in static systems.

However, register emulation in dynamic systems with faulty nodes is still quite hard

and there are impossibility proofs that point out scenarios where change in the system

composition due to nodes entering and leaving (also called churn) makes the problem

unsolvable.

We propose the first emulation of a crash-fault tolerant register in a system with

continuous churn where consensus is unsolvable, the size of the system can grow without

bound and at most a constant fraction of the number of nodes in the system can fail by

crashing. We prove a lower bound that states that fault-tolerance for dynamic systems

with churn is inherently lower than in static systems.

ii

• We then extend the results in the crash-fault tolerant case to a dynamic system with

continuous churn and nodes that can be Byzantine faulty. It is the first emulation

of an atomic register in a system that can withstand nodes continually entering and

leaving, imposes no upper bound on the system size and can tolerate Byzantine nodes.

However, the number of Byzantine faulty nodes that can be tolerated is upper bounded

by a constant number. Although the algorithm requires that there be a constant known

upper bound on the number of Byzantine nodes, this restriction is unavoidable, as we

show that it is impossible to emulate an atomic register if the system size and maximum

number of servers that can be Byzantine in the system is unknown.

iii

DEDICATION

To ma.

iv

ACKNOWLEDGMENTS

I arrived in College Station on August 26, 2013. I was in a state of shock after the

first impression of this town. It didn’t quite live up to my “expectations". The America I

knew was New York, Boston and Los Angeles; all the cities that are portrayed in Hollywood

movies, and College Station was nowhere close to that image. I swallowed sadness and knew

I had to move on. Then I met my hero: Dr. Jennifer Welch.

I don’t think an “acknowledgements" section does justice to my feelings for all the people

who helped me go through the numerous discussions (many of them heated), sleepless nights,

frustration, tears, and of course satisfaction, smiles and laughter. My deepest indebtedness

to my advisor, Dr. Jennifer Welch for her time, patience, support and belief in me. This

dissertation would never have been possible without her guidance and friendship. She made

my PhD. journey extremely satisfying and I will dearly miss our brainstorming sessions.

Of course she taught me how to be a researcher and develop critical thinking, but she also

showed me how to be a beautiful human with compassion, ethics and humility. Thank you.

My deepest thanks to Dr. Hagit Attiya, Dr. Faith Ellen and Dr. Hyun Chul Chung for

all the wonderful discussions we had over the past years. I also thank Dr. Andrew Jiang, Dr.

Serap Savari and Dr. Tiffani Williams for serving on my committee and for their insightful

comments and questions. My research was financially supported by the National Science

Foundation grants 1526725 and 1816922.

Most importantly, I would like to thank my family for their undying support. Thank

you ma for believing in me. Thank you Payel for always making me feel better even during

days when I lost hope. Thanks baba for keeping me close to reality. Finally, I would like to

thanks my friends in College Station and back in India. Without your love and support this

dissertation would have been impossible.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Jennifer L.

Welch [advisor], Professor Anxiao Jiang and Professor TIffani Williams of the Department

of Computer Science and Engineering and Professor Serap Savari of the Department of

Electrical and Computer Engineering.

Funding Sources

Graduate study was supported by Research Assistantship from Dr. Jennifer Welch from

NSF grants 1526725 and 1816922. It was also supported by Teaching Assistant fellowships

and a Graduating Teaching Fellowship (GTF) from Texas A&M University.

vi

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION.. iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . viii

1. INTRODUCTION .. 1

1.1 Introduction and Related Work. 1
1.1.1 Failure Detection in Partitionable Networks Composed of Ill-Behaved

Channels . 3
1.1.2 Fault-Tolerant Register Implementation in Systems with Churn. 4

1.1.2.1 Crash-Tolerant Registers . 5
1.1.2.2 Byzantine-Tolerant Registers . 6

1.1.3 Roadmap . 7

2. FAILURE DETECTION.. 8

2.1 Failure Detection in an Arbitrary, Partitionable Network Composed of ADD
Channels. 8
2.1.1 Introduction and Related Work . 8
2.1.2 Contributions . 10
2.1.3 Model and Definitions . 11
2.1.4 Algorithm for Failure Detection . 13
2.1.5 Proof of Correctness . 16

2.1.5.1 Proof of Eventual Strong Accuracy . 17
2.1.5.2 Proof of Strong Completeness . 22
2.1.5.3 Proof of Bounded Message Size . 23

3. CRASH-TOLERANT REGISTER IMPLEMENTATION.. 24

3.1 Crash-Tolerant Register Implementation in Systems with Churn 24
3.1.1 Introduction. 25
3.1.2 Related Work . 27

vii

3.1.3 Research Goals . 31
3.1.4 System Model and Problem Statement . 31

3.1.4.1 Impossibility of Consensus . 36
3.1.5 Lower Bound on Crash-Resilience . 37
3.1.6 The CCReg Algorithm . 41
3.1.7 Correctness Proof . 48

3.1.7.1 Proof that Join Protocol Terminates . 48
3.1.7.2 Proof that Reads and Writes Terminate. 56
3.1.7.3 Proof of Atomicity of CCReg . 59
3.1.7.4 Proof that CCReg Violates Atomicity if Churn Assumption

is Violated. 68
3.2 Byzantine-Tolerant Register Implementation in Systems with Churn 69

3.2.1 Introduction. 69
3.2.2 Model . 72
3.2.3 Impossibility of a Uniform Algorithm with Byzantine Servers 73
3.2.4 The BCCReg Algorithm . 77
3.2.5 Correctness Proof of BCCReg . 85

3.2.5.1 Proof that Join Protocol Terminates . 87
3.2.5.2 Proof that Reads and Writes by Clients Terminate 93
3.2.5.3 Proof of Atomicity of BCCReg . 95

4. CONCLUSION .. 102

4.1 Conclusion and Future Work . 102

REFERENCES . 105

viii

LIST OF TABLES

TABLE Page

3.1 Summary of our algorithm and related algorithms. 30

3.2 Values for the CCReg parameters that satisfy constraints (3.1) to (3.7). 47

3.3 Values for the BCCReg parameters that satisfy constraints (3.14) to (3.20) . . . 86

ix

1. INTRODUCTION

1.1 Introduction and Related Work

A distributed system is a collection of computers (or nodes) that communicate amongst

themselves via wired or wireless communication channels, to perform a given task. Dis-

tributed computing refers to the use of distributed systems to solve computational problems.

There are several reasons for using distributed systems and distributed computing: (1) there

might be a need for communication network in an application (for example, if data produced

at one geographical location is required as an input at a different geographical location), (2)

it is more cost efficient to build several low-end computers than a single high-end one, (3)

distributed systems are more reliable than sequential systems as there isn’t just one point of

failure, and (4) it is easier to expand a distributed system than a single node.

There are two main models of computation considered in distributed systems: shared-

memory model and message-passing model. In the shared memory model, memory is shared

by the nodes in the system, which can exchange information by reading and writing data.

In the message-passing model, communication takes place by means of messages exchanged

between the nodes.

Distributed systems can be broadly categorized as synchronous or asynchronous based on

the timing guarantees the system provides. More specifically, a synchronous message-passing

system comes with strong guarantees: nodes have globally synchronized clocks and the upper

Parts of the material in this chapter are reprinted with permission from the following papers:
“Emulating a shared register in a system that never stops changing" by Hagit Attiya, Hyun Chul Chung,

Faith Ellen, Saptaparni Kumar and Jennifer L. Welch, 2019. IEEE Transactions on Parallel and Distributed
Systems, vol. 30, pp. 544-559, copyright [2019] by IEEE

“Simulating a shared register in an asynchronous system that never stops changing" by Hagit Attiya,
Hyun Chul Chung, Faith Ellen, Saptaparni Kumar and Jennifer L. Welch, 2015. in Proceedings of 29th
International Symposium on Distributed Computing, pp. 75-91, copyright [2015] by Springer

“Implementing ♢P with Bounded Messages on a Network of ADD Channels" by Saptaparni Kumar and
Jennifer L. Welch, 2019. Parallel Processing Letters, Volume 29, No 1, 1950002, copyright [2019] by World
Scientific Publishing Company

1

bound on the message delivery time is a known value D. Examples of synchronous systems

are certain large centralized multiprocessing computers and VLSI chips containing many

separate parallel processing elements. An asynchronous message-passing system comes with

the weakest guarantees: nodes have no notion of real time as they do not possess synchronized

clocks and there is no upper bound on the message delivery time.

Distributed message-passing systems can be either static or dynamic depending on the

topology of the system. In static systems the system composition is fixed, i.e., the nodes in

the system do not change over time. There has been a lot of research on static systems and

most problems in distributed computing like leader election [1], mutual exclusion [2], etc.

have been formulated with static systems in mind. In dynamic systems, nodes may enter,

leave or move in the system with time, resulting in changes in the system composition. With

the advent of smartphones, intelligent cars, unmanned aerial vehicles, weather bots, etc.,

dynamic systems have become very realistic models of computation.

In distributed message-passing systems, the possibility of channel and node failures makes

problem solving challenging. A fault-tolerant algorithm is one that solves the problem cor-

rectly even in the presence of failure of some of its components (nodes or channels). It is

important to tolerate faults as it provides robust systems that have high availability. There

are several types of faults that need to be tolerated. A crash failure occurs when a node

halts, but was working correctly until it halts. An omission failure occurs when a node fails

to receive incoming messages or send outgoing messages. A timing failure occurs when a

node’s message delivery lies outside the specified delivery time interval (if any). A Byzantine

failure [3] is considered to be the worst kind of failure that can happen in any distributed

system. Malicious attacks, operator mistakes, software errors and conventional crash faults

are all encompassed by the term Byzantine failures.

In this dissertation, we describe our work to provide fault-tolerant distributed services in

distributed systems. A service can be thought of as a building block, used to solve important

and interesting problems for other applications. The services we provide are introduced next.

2

1.1.1 Failure Detection in Partitionable Networks Composed of Ill-Behaved

Channels

Failure detectors were proposed by Chandra and Toueg [4] as oracles to be used to

identify failed nodes in an asynchronous message-passing system with crash failures. They

are an important distributed service in the network topology layer of a distributed system,

as they help circumvent the FLP [5] impossibility result which states that it is impossible to

solve the agreement problem (also known as consensus [6, 7]) in a crash-prone asynchronous

message-passing system.

Consensus is a very fundamental yet universal problem. In distributed computing and

multi-agent systems, it is often necessary to achieve overall system reliability in the presence

of a number of crash-faulty processes. This often requires processes to agree on some data

value that is needed during computation. Examples of applications of consensus include

whether to commit a transaction to a database, agreeing on the identity of a leader, state

machine replication, and atomic broadcasts. Real world applications include clock synchro-

nization, PageRank, opinion formation, smart power grids, state estimation, control of UAVs,

load balancing and others.

Failure detector implementation in practice requires some degree of partial or even full

synchrony. There are two main lines of research in the area of failure detectors. The first one

involves implementing failure detectors on increasingly weaker system models that represent

practical applications and the second one involves finding the weakest failure detector for

solving a given problem. We contribute to the first line of research and implement a failure

detector as a service to solve other important problems like consensus, leader election and

clock synchronization (in the middleware layer of a distributed system), on a failure-prone,

distributed message-passing system composed of channels that are ill-behaved (they may

lose and reorder messages). Our failure detection algorithm uses bounded sized heartbeat

messages, timeouts and path information to determine if there is a reliable path between

two nodes.

3

1.1.2 Fault-Tolerant Register Implementation in Systems with Churn

A distributed data structure is an important service in the middleware layer of a dis-

tributed system that provides data storage and organization for access by multiple nodes

in the system. The shared-memory model is considered to be a more convenient program-

ming model than message-passing and distributed data structures provide the illusion of

shared-memory on top of message-passing models.

However, implementing a data structure in a message-passing system is not a trivial

task to accomplish mainly due to the presence of concurrency. Take a distributed register

data structure for example. If two nodes invoke a write operation on a distributed register

concurrently, the question remains, in which order should the write operations be executed?

To tackle this issue, correctness for a distributed data structure is defined by the sequential

specification of the data structure and a consistency condition. Each data structure has

a sequential specification which specifies its behavior in the absence of concurrency. A

consistency condition is a set of rules that tie together the sequential specification with what

happens in the presence of concurrency. One of the most widely used consistency conditions

is linearizability, introduced by Herlihy and Wing [8] in 1990. A data structure is said to be

linearizable if it guarantees that every operation appears to happen at a single point in time

between the invocation and response of the operation.

Now we move our attention to the implementation of registers. A shared register is a

fundamental service used by middleware in a distributed system, that stores a value and has

two operations: read, which returns the value stored in the register, and write, which updates

the value stored. Implementing a shared register on top of an asynchronous message-passing

system is an important task in distributed systems as registers serve as building blocks for

more powerful data structures like queues, stack, etc.

Shared register implementations can be complicated by the possibility of faulty nodes

in the system. A fault can range from being benign (crash faults) to extremely adversarial

(Byzantine faults). To tackle the possibility of faults and for load balancing, many shared

4

register implementations replicate the value of the register in multiple servers and require

readers and writers to communicate with a certain fraction of servers. A lot of research in

this area has focused on implementing linearizable (also called atomic) shared registers. In

this dissertation, we deal with register implementation that tolerates two types of faults:

crash faults and Byzantine faults. We weaken the system model by making it dynamic.

Along with fault tolerance, we tolerate churn: change in system composition due to nodes

entering and leaving, thus making the system guarantees extremely weak.

We now briefly describe the main results we have for fault-tolerant atomic register emu-

lations.

1.1.2.1 Crash-Tolerant Registers

Most of the work in the area of crash fault tolerant registers has focused on emulating

atomic shared registers. For example, the ABD emulation [9] replicates the value of the

register in server nodes. It assumes that a majority of the server nodes do not fail. Consider

the simplified case of a single writer and a single reader. To write the value v, the writer

sends v, tagged with a sequence number, to all servers and waits for acknowledgments from

a majority of them. Similarly, to read, the reader contacts all servers, waits to receive values

from a majority of them, and then returns the value with the highest sequence number. This

approach can be extended to the case of multiple writers and multiple readers by having each

operation consist of a read phase, used by a writer to determine its sequence number and

used by a reader to obtain the return value, followed by a write phase, used by a writer to

disseminate the value (and sequence number) and used by a reader to announce the sequence

number of the value it is about to return [10]. We know from the ABD emulation [9] and

Attiya and Welch [6] that a crash-fault-tolerant atomic register in the static setting can be

implemented if and only if a majority of the nodes are non-faulty.

The success of this approach for static systems, where the set of nodes (readers, writers,

and servers) is fixed, has motivated several similar emulations for dynamic systems, where

nodes may enter and leave. Existing simulations of atomic registers rely either on the as-

5

sumption that churn eventually stops for a long enough period (e.g., DynaStore [11] and

RAMBO [12]) or on the assumption that the system size is bounded (e.g., [13]). In our

atomic register implementation, we want to take a different approach: We want to allow

churn to continue forever, while still ensuring that read and write operations complete and

nodes can enter and leave the system thus allowing changes in the system size.

Our work in Section 3.1 presents the first emulation of a register supporting any number

of readers and writers in a crash-prone system that can withstand nodes continually entering

and leaving and imposes no upper bound on the system size. The algorithm works as long as

the number of nodes entering and leaving during a fixed time interval is at most a constant

fraction of the system size at the beginning of the interval, and as long as the number of

crashed nodes in the system is at most a constant fraction of the current system size.

In addition to that, we prove a lower bound on the fraction of correct nodes that is

strictly larger than the fraction sufficient to solve the problem in the static case.

1.1.2.2 Byzantine-Tolerant Registers

Byzantine faults are considered to be the worst kind of faults that can happen in any

distributed system. Emulating a Byzantine-tolerant register requires replicating the register

value on to more than two-thirds of the servers. Emulating a register in a dynamic system

where servers and clients can enter and leave the system and be faulty is harder than in

static systems.

Our work in Section 3.2 presents the first emulation of a multi-reader multi-writer atomic

register in a system that can withstand nodes continually entering and leaving, imposes no

upper bound on the system size and can tolerate Byzantine servers. The algorithm works

as long as the number of servers entering and leaving during a fixed time interval is at most

a constant fraction of the system size at the beginning of the interval, and as long as the

number of Byzantine servers in the system is at most f . Although the algorithm requires that

there be a constant known upper bound on the number of Byzantine servers, this restriction

is unavoidable, as we show that it is impossible to emulate an atomic register if the system

6

size and maximum number of servers that can be Byzantine in the system is unknown to

the nodes.

1.1.3 Roadmap

Section 2.1 describes our work [14, 15] in implementing a failure detector in an arbitrary

partitionable network composed of ill-behaved channels. Paper [15] has been accepted to

Parallel Processing Letters, 2019. Our work on crash-tolerant atomic register implementation

in systems with continuous churn is described in Section 3.1. The preliminary version of

this work [16] appeared in International Symposium on Distributed Computing (DISC),

2015. The extended version of this work [17] appears on IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2018. Section 3.2. describes our work on Byzantine-

tolerant atomic register implementation in systems with continuous churn. This work will

be submitted soon. Finally in Section 4.1, we conclude this dissertation.

7

2. FAILURE DETECTION

2.1 Failure Detection in an Arbitrary, Partitionable Network Composed of

ADD Channels

In this section, we present an implementation of the eventually perfect failure detector

(♢P) from the original hierarchy of the Chandra-Toueg [18] oracles on an arbitrary parti-

tionable network composed of unreliable channels that can lose and reorder messages. Prior

implementations of ♢P have assumed different partially synchronous models ranging from

bounded point-to-point message delay and reliable communication to unbounded message

size and known network topologies. We implement ♢P under very weak assumptions on an

arbitrary, partitionable network composed of Average Delayed/Dropped (ADD) channels [19]

to model unreliable communication. Unlike older implementations, our failure detection al-

gorithm uses bounded-sized messages to eventually detect all nodes that are unreachable

(crashed or disconnected) from it.

2.1.1 Introduction and Related Work

The consensus [6, 7, 20, 21, 22] problem in distributed systems requires agreement among

a number of nodes for a single data value. It is an important problem because if we can solve

consensus in a distributed system, we can use it solve numerous other problems like leader

election [1], atomic broadcast [23], transaction commit [24] and clock synchronization [25].

However, the FLP [5] impossibility result states that it is impossible to solve consensus in an

asynchronous message-passing system even if there is just one crash failure. In 1996, Chandra

and Toueg [4] proposed a hierarchy of oracles (failure detectors) to be used to identify failed

nodes, by differentiating them from slow ones, in a crash-prone asynchronous message-passing

Parts of the material in this chapter are reprinted with permission from:
“Implementing ♢P with Bounded Messages on a Network of ADD Channels" by Saptaparni Kumar and

Jennifer L. Welch, 2019. Parallel Processing Letters, Volume 29, No 1, 1950002, copyright [2019] by World
Scientific Publishing Company

8

system. These failure detectors are unreliable and can give wrong information by incorrectly

suspecting correct nodes, and/or not suspecting crashed nodes. In spite of that, many oracles

are powerful enough to solve consensus. However, their implementation in practice requires

some degree of partial synchrony. Freiling et al. [26] provide an informative survey on the

failure detector abstraction both as building blocks for the design of reliable distributed

algorithms and as computability benchmarks.

Failure detectors can be described by their accuracy and completeness properties in a

non-partitionable system. For example, an eventually-perfect failure detector (♢P) satisfies

strong completeness and eventual strong accuracy. Intuitively, ♢P can give incorrect infor-

mation about the nodes in the system for an unknown finite amount of time, after which

it provides perfect information about all nodes in the system. Strong completeness is sat-

isfied if the failure detector of each node eventually suspects all nodes that are crashed.

Eventual strong accuracy is satisfied if the failure detector of every node eventually stops

suspecting all nodes that are correct. These definitions were originally for systems that do

not partition. In [27], these definitions of accuracy and completeness for failure detectors

were extended to partitionable networks. The paper by Chen et al. [28] studies accuracy

and completeness properties (quality of service) of failure detectors and quantifies how fast

different implementations of oracles detect failures and how well they avoid false suspicions.

Ill-behaved channels make the problem of implementing failure detectors harder. Sastry

and Pike [29] introduced the framework of ADD (Average Delayed/Dropped) channels as a

way to model realistic systems. An ADD channel can arbitrarily lose and reorder messages

but offers some weak guarantees on the delivery of “privileged" messages. Privileged messages

are never lost and there is an upper bound on their delivery time. However, nodes cannot

differentiate between privileged and unprivileged messages as they are distinguished solely

by the channel. The authors exploit the channel properties to implement ♢P on a fully

connected network. We use these ADD channels as building blocks in our system model.

Papers [30] and [31] have discussed algorithms to perform failure detection on arbitrary

9

networks composed of ill-behaved channels using counters as heartbeats for the nodes in

the system. Unlike our approach, the message sizes in their algorithms are unbounded.

Papers [32] and [33] do failure detection using bounded sized messages, but unlike our work,

they assume that the underlying communication channels are reliable.

2.1.2 Contributions

There are two main lines of research in the area of failure detectors. The first one

involves implementing failure detectors as a service in the network topology layer of a dis-

tributed system, on increasingly weaker system models that represent practical applications

and the second one involves finding weaker failure detectors for solving a given problem. We

contribute to the first line of research by presenting a novel implementation of an eventually-

perfect failure detector (♢P) from the original Chandra-Toueg hierarchy. Previous works in

this area either perform failure detection using bounded sized messages with the assump-

tion that the underlying communication channels are reliable or the algorithms that perform

failure detection on ill-behaved channels use unbounded counters in their messages.

The motivation for this work is to extend the failure detector for a fully connected network

of ADD channels [19] to a failure detector that uses bounded size messages and works in any

arbitrary network composed of ADD channels in which crashes can partition the network.

We present a novel algorithm that implements ♢P in an arbitrary (partitionable) network

composed of ADD channels that provide very weak guarantees (unreliable channels), using

messages that are bounded in size.

The failure detection algorithm uses bounded sized heartbeats, timeouts and path infor-

mation to determine if there is a correct path (all nodes on this path are correct) between

two nodes. Periodically, every node sends out its own heartbeat to its neighbors. Every

node p has an estimated timeout value for each of its neighbors and if p does not hear from

a neighbor q within this estimated time, p suspects q to be crashed. If later p hears from

q, indicating that q was falsely suspected, then p increments its timeout value for q. For a

node q that is not a neighbor of p, p maintains a set of paths from itself to q. If none of

10

these paths consists solely of nodes that p does not currently suspect, then p suspects q.

2.1.3 Model and Definitions

The distributed system consists of a set Π of n nodes connected in an arbitrary topology

by links. We assume that every link connecting two nodes in the network is composed of

two unidirectional ADD channels [11], one in each direction. An ADD channel from node p

to node q ensures that at least one message out of every r consecutive messages sent by p is

received by q within d time; however, the parameters r and d are not known to p and q. The

other messages can either be lost or can experience unbounded delays. Nodes may fail only

by crashing. Nodes that never crash are called correct nodes and those that have not crashed

yet are called live nodes. Each node that crashes remains crashed forever. Each node knows

who its neighbors are. Nodes also know the names (ids) of all the nodes in the system. This

assumption is necessary, as Jimenez et al. [34] show that without this assumption, no failure

detector can be implemented, even in a fully synchronous system with reliable links. Each

node has a local clock which generates ticks at a constant rate. Different clocks can tick at

different rates and can be unsynchronized.

In more detail, each node is modeled as a state machine with a set of local states and a

transition function. Each node’s local state includes a constant neighbors, which holds the

ids of neighboring nodes with respect to the communication graph. An event is either the

receipt of a message by a node or the expiration of a local timer at a node or a crash of a

node; the occurrence of an event triggers a transition for the node, resulting in a new local

state and a set of messages to send to the neighbors. A state of the system consists of a

vector of n local states, one for each node in the system. An execution of the system consists

of an infinite sequence of alternating states and events, starting with a state. A real time is

associated with each event of an execution such that the real times are nondecreasing and

they increase without bound. The following must be true:

• At most one crash event occurs per node, and once a node has crashed there are no

subsequent events for that node.

11

• The first state consists of an initial local state for each node.

• Each node p has a local variable clock whose value at real time t is ap · t + bp, for

constants ap > 0 and bp.

• Each subsequent state follows from the previous state by the application of the tran-

sition function for the relevant node.

• Timer expiry events occur at each live node as specified in the node’s transition function

when its clock has the state values.

• Message receipt events occur according to the ADD channel specification: every mes-

sage sent is received at most once, every message received was previously sent, and, for

all neighbors p and q, at least every r-th consecutive message sent by p to q has delay

at most d, assuming q is live d time after the message was sent.

The network is initially a connected graph but may eventually be partitioned as nodes

start crashing. We call this network a partitionable network.

Definition 1. The network graph at time t is the subgraph of the initial graph obtained

by deleting all nodes (and their incident links) that are crashed at time t.

We denote the network graph at time t as G(t).

We address the problem of implementing, with bounded-sized messages, an Eventually

Perfect (♢P) failure detector that satisfies the following on an arbitrary partitionable network

G composed of ADD channels. For each node p, there is a function from p’s state to the set

of nodes that p suspects. In every execution there exists a time tf such that for every t > tf

and every correct node p,

• Strong Completeness: for every node q that is disconnected from p in G(t), p suspects

q at time t

• Eventual strong accuracy: for every node q that is connected to p in G(t), p does not

suspect q at time t.

12

2.1.4 Algorithm for Failure Detection

Algorithm 1 Eventually Perfect Failure Detector, Variables for node p
Constants:

1: neighbors // list of neighbors of p.
2: T // integer; time between successive heartbeats

Variables:
3: clock() // local clock
4: last_contact[.] // array of clock times for all neighbors, last time p received

// a message about that node; initially last_contact[q] = 0,
// for all q ∈ neighbors

5: suspect_local[·] // array of booleans for all nodes; initially suspect_local[q]
// = false, for all q ∈ Π. This stores the failure information
// for nodes in p’s connected component

6: paths[·] // Array of sets of paths or sequences of node ids. paths[q] is the set
// of paths taken by the heartbeat messages from q to p; Initially
// paths[p] = {p}, paths[q] = {q · p} for q ∈ neighbors and
// paths[r] = for all others

7: suspect[·] // array of booleans for all nodes; it is true for all nodes suspected
// to have failed or disconnected; initially suspect[q] = false,
// for all q ∈ Π. This stores the failure information stored in
// suspect_local[·] and also information about disconnected nodes
// derived from the paths[·] variable

8: timeout[·] // Array of time-outs for all neighbors. timeout[q] is the estimated
// maximum time between the receipt of successive messages about
// neighbor q; initially timeout[q] = T , for all q ∈ neighbors

Our failure detection algorithm (Algorithm 2) implements ♢P over the partitionable

network of ADD channels. Every node p maintains a variable suspect_local[·] which is an

array of booleans to store information about nodes in p’s connected component. Since the

network is initially a connected graph, this variable, contains an entry for every node in

the system and initially, every entry is set to false. As the algorithm progresses over time,

suspect_local[q] is set to true for node q if p stops hearing from a neighbor q or if a neighbor

(of p) informs p about q being crashed or disconnected. Node p also maintains a variable

13

Algorithm 2 Eventually Perfect Failure Detector, Code for node p
1: Event ⟨ timer_expiry_hb ⟩:
2: if clock() = n · T for n ∈ N then

send⟨suspect_local[·], paths[·], p⟩ to every neighbor of p
// Send heartbeat with a copy of the local suspect list and the path list

3: Event ⟨ recv⟨suspect_rcv[·], path_sets[·], q⟩ ⟩:
4: if suspect_local[q] = true then // Neighbor wrongfully suspected
5: timeout[q] := 2 · (clock()− last_contact[q])
6: suspect_local[q] := false // Stop suspecting this neighbor
7: last_contact[q] := clock()
8: for all r /∈ neighbors do
9: hop_from_msg := Length of the shortest path in path_sets[r] not containing

p or a node u, u ̸= r with suspect_rcv[u] = true
10: hop := Length of the shortest path in paths[r] not containing a node u, u ̸= r

with suspect_local[u] = true
11: if hop_from_msg < hop then
12: suspect_local[r] := suspect_rcv[r]
13: for each path, π ∈ path_sets[r] that does not contain p do
14: paths[r] := paths[r] ∪ {π · p} // Append new paths to the paths[r] set
15: suspect[·] := suspect_local[·]
16: Let Sus be the set of all u with suspect_local[u] = true
17: for all r /∈ neighbors do
18: if all paths in paths[r] contain a u ∈ Sus and u ̸= r then
19: suspect[r] := true

20: Event ⟨ timer_expiry(q) ⟩: // The timer for a neighbor expires
21: if timeout[q] = clock()− last_contact[q] then
22: suspect_local[q] := true

14

paths[·] which is an array of paths (sequences of node ids) between p and all other nodes

in the system. Initially, paths[q] is set to {q · p} for all neighboring nodes q and for all

other nodes in the system. As the algorithm progresses and nodes exchange messages, p

starts updating information about the simple paths to other nodes. Node p also maintains

an array of booleans suspect[·] which stores failure information from suspect_local[·] along

with extra information derived from paths[·]. Its value is set to true for nodes estimated to

have crashed (using failure information from suspect_local[·]) or nodes that are estimated to

be disconnected from p (using information from paths[·]). If p’s suspect[q] variable is true,

then we say p suspects q. Node p also maintains a timeout[q] variable for every neighbor q

which is used to detect failed neighbors. It is initially set to some integer T , which is also

the time between consecutive heartbeats sent by p on each of its neighboring ADD channels.

Every node in the system sends out a heartbeat message containing the variables

suspect_local[·] and paths[·] to its neighbors every T units of time on line number 2. The

integer T may be chosen differently by each node. The smaller the value of T , the faster

the failure detection algorithm will converge, but if T is too small, the network may be

overcrowded with heartbeat messages. The task of finding an optimum value of T is outside

the scope of this work. When p receives a heartbeat message from a neighbor q (on line

number 3), it records its current local clock time (clock()) as the last_contact value. On

line number 4, p checks if q was wrongly suspected (because the timeout[q] value estimate

was too small), p stops suspecting q by setting suspect_local[q] to false and increments

its timeout[q] value for q on line number 5. Then, p extracts information about the rest

of the network from the message from q on line numbers 8 to 14. For all nodes r that are

not neighbors of p, p calculates q’s estimated distance from r and stores it in the variable

hop_from_msg and calculates its own distance from r and stores it in the variable hop. On

line number 11, p checks if q’s estimated distance to r is shorter than p’s estimated distance

to r. If q is calculated to be nearer to r than p, then p adopts q’s information about r

on line number 12. On line number 13, node p goes through all the paths in the variable

15

path_sets[·] received in the message from q and sees if p is already included in those paths.

If p learns about any path π from r to q that does not include p, it adds the path π · p to its

paths[r] set on line number 14.

On line numbers 15 to 19, p updates its suspect[·] variables using information from the

paths[·] variable about nodes that are no more in p’s connected component. As there are

no paths from these nodes to p, information about these nodes is not received directly. On

line number 18, p checks if at least one path in the paths[r] set has all nodes that have the

suspect_local[·] variable set to false. If not, it suspects r, i.e., suspect[r] is set to true on

line number 19.

Lines 20 to 22 implement a timer to detect if neighbors have crashed.

2.1.5 Proof of Correctness

To prove correctness of Algorithm 2, we need to show that the implementation satisfies

strong completeness and eventual strong accuracy. Fix an execution of Algorithm 2.

We describe some lemmas to prove that Algorithm 2 implements an eventually perfect failure

detector for partitionable networks.

Lemma 2 shows that there is an upper bound on the inter-arrival time of heartbeats

at all correct nodes from correct neighbors. Lemma 3 shows that eventually, the time-out

estimates for neighbors stop changing. Lemmas 5 and 6 show that eventually all correct

nodes suspect crashed neighbors and never suspect correct neighbors. Lemmas 7 and 8 show

that eventually the paths[q] variable at a correct node p contains all the paths between p

and q in the final network graph. Lemma 9, along with Theorem 10, proves eventual strong

accuracy. Theorem 12 proves strong completeness. Finally, Theorem 13 shows that our

algorithm implements ♢P using Theorems 10 and 12.

We use a subscript to denote which node a variable belongs to; for example p’s

suspect_local[q] variable will be denoted as suspect_localp[q]. From here on we refer to

nodes that are neighbors with respect to the initial network graph as initial neighbors.

16

2.1.5.1 Proof of Eventual Strong Accuracy

Lemma 2. Let p be a correct node and q be a correct initial neighbor of p. Then there is an

upper bound on the time that elapses between the receipt at p of two consecutive heartbeats

from q.

Proof. ADD channels guarantee that at least one in every r consecutive messages sent on

a channel is received within d time. Thus the maximum time between the receipt of two

consecutive heartbeat messages sent on Line 2 of our algorithm at any neighbor q of p is

(r + 1) · T + d where r and d are the ADD channel parameters and T is a constant in p’s

algorithm.

Lemma 3. For every correct node p, eventually the timeout[q] variable at p for every initial

neighbor q of p stops changing.

Proof. Let q be an initial neighbor of p. If q is correct, then Lemma 2 implies that there is an

upper bound on the inter-arrival times at p of heartbeats from q. Since timeoutp[q] is only

increased, eventually it reaches this upper bound and is subsequently never changed. If q

crashes, then it sends only a finite number of messages to p; since p only changes timeoutp[q]

upon receiving a message from q, eventually it will stop changing timeoutp[q].

Observation 4. For a correct node p, the suspectp[q] variable for an initial neighbor q is

equal to suspect_localp[q] at all times.

Let t∗ be a time after which no more failures occur. We call the network graph after t∗

the final network graph and denote it by G. Let t∗∗ ≥ t∗ be a time after which no messages

from failed nodes are received.

Lemma 5. There exists some time t after which all correct initial neighbors p of a crashed

node q in G suspect q.

17

Proof. Let us assume that q crashes at time tc. From lines 6 and 20 - 22 of our algorithm

we know that the suspect_local[·] variables for initial neighbors are set only by the nodes

themselves (i.e., nodes do not update information about their initial neighbors from other

nodes). From Lemma 3, we know that by some time tf , the variable timeoutp[q] stops

changing. So, by time t = (max (tf , t∗∗) + τ), where τ is the final value of timeoutp[q], p

sets suspect_localp[q] to true permanently. By Observation 4, we know that suspectp[q] =

suspect_localp[q]. Thus after t, p suspects q.

Lemma 6. There exists some time t after which all correct initial neighbors p of a correct

node q never suspect q.

Proof. Lemma 2 states that there is an upper bound on the inter-arrival time of messages

from q to p. Lemma 3 states that timeoutp[q] eventually stops changing. Let the time at

which timeoutp[q] stops changing be t and the final value of timeoutp[q] be τ . Thus after t,

p receives a message from q within every τ time and thus, p never sets suspect_localp[q] to

true. By Observation 4, we know that suspectp[q] = suspect_localp[q], thus after t, p never

suspects q.

Lemma 7. For all p and q, pathsp[q] is a subset of the set of all paths from q to p in the

initial network graph.

Proof. We do this proof by induction on the states of the execution. We number the states

as S0, S1, · · · , where S0 is the initial state, and so on.

Base case: Initially in state S0, the pathsp[q] is set to contain only {q, p} if q is a neighbor

of p and pathsp[q] is empty if q is not a neighbor. Thus the lemma is satisfied for the initial

state.

Inductive hypothesis: For all i ≥ 0, we assume that the lemma holds for state Si.

Inductive Step: We show that the lemma holds for state Si+1. If q is a neighbor of p, then

the lemma holds as the pathsp[q] variable is never updated. Suppose q is not a neighbor of p.

18

If the pathsp[q] variable is empty then the lemma is vacuously true. If the pathsp[q] variable

is not empty but pathsp[q] is not updated in state Si+1, the lemma still holds. If p updates

variable pathsp[q] in Si+1, it is done from information sent in a message from a neighbor of

p, say r. It is clear from lines 13 and 14 in the algorithm that every node p only appends

itself onto the path information that is received from neighbor r. Let πr = q · q1 · · · · · r be an

entry in pathsr[q] variable at the node r before state Si+1. From the inductive hypothesis,

we know that πr exists in the initial network graph. When p learns about πr from neighbor

r, p updates pathsp[q] by adding the entry {πr ·p} to it, which is a path in the initial network

graph as there is an edge from r to p.

Let C be a connected component in the final network graph G. A node p is called an

initial neighbor of C if p /∈ C is the neighbor of any node in C in the initial network graph .

Lemma 8. For all p and q such that q is not an initial neighbor of p, eventually the pathsp[q]

variable contains all the simple paths in G from q to p.

Proof. Let us assume that there exists a simple path π from q to p in G that is never included

in pathsp[q] variable at p. Let the length of this path be k and the nodes in this path be

q · q1 · q2 · · · · · qk−1 · p. From Lemma 2, we know that each node in this path receives a

message from the previous node in this path infinitely often as all nodes in this path are

correct. From line number 14, we know that each of these paths is appended to the pathsp[qi]

variable of each node qi /∈ neighborsp. So, when p gets a message from qk−1 with the path

q · q1 · q2 · · · · · qk−1 in it, it adds the path q · q1 · q2 · · · · · qk−1 · p to its pathsp[q] variable. Note

that all pathsp[q] end with p. To makes sure that no cycles are included in pathsp[q], once p

hears about a new path, it checks if the entry p is in it already (on line number 13), if so, p

ignores this new path value.

A node p has perfect information about node q at time t > t∗ if any one of the following

19

hold:

• If q is in p’s connected component in G, suspectp[q] = false at t.

• If q is crashed and is an initial neighbor of p’s connected component C in G,

suspect_localp[q] = true at t Note that if suspect_localp[q] is true, then line num-

bers 15 to 19 imply that suspectp[q] is set to true as well.

• If q is not in p’s connected component in G, suspectp[q] = true at t.

In the next lemma we abuse notation and say that a crashed initial neighbor q of a

connected component C in the final network graph G is at a distance k from a correct node

p in C if q has a correct initial neighbor r at distance k − 1 from p .

Lemma 9. Let p be a correct node in a connected component C in the final network graph

G. Let q be either a correct node in C at a distance at most k from p or let q be a crashed

initial neighbor of C at a distance k from p. For all k, there exists a time tk such that, for

all t ≥ tk, p has perfect information about q.

Proof. We prove this lemma by strong induction on the distance k of node p from q in G.

Base case: k = 1. From Lemmas 5 and 6, we know that there exists a time when all correct

initial neighbors have perfect information about q.

Inductive hypothesis: Let us assume that all nodes that are at most k− 1 hops away from q

in G have perfect information about q after some time tk−1.

Inductive step: Let p be a node at a distance k from q in G. If q is correct, there exists a

path q · π · p from q to p in G (since p, q ∈ C). If q is crashed, there exists a path π · p from

an initial neighbor of q to p in G (since q is an initial neighbor of C). Let r be a node on

this path k − 1 hops away from q (note, r is an initial neighbor of p). From the inductive

hypothesis we know that r has perfect information about q after time tk−1. Before time tk−1,

r sent only a finite number of messages to p. Let t† be the time when all messages sent before

tk−1 all messages sent before tk−1 that are ever received have been received. All messages

that r sends to p after time tk−1 have perfect information about q in them.

20

From Lemma 2, we know that there is an upper bound on the time between two con-

secutive receive events from r to p. Let this upper bound be τ . By Lemma 8, after some

time ta, all paths from q to r in G are appended to pathsr[q] and sent to p in the variable

path_sets[q]. So, after time t′ = (max{tk−1, t
†, ta} + 2τ), all messages p gets from r have

perfect information about q and contain all paths between q and r in G.

When p processes a message from r after t′ we argue that the value of hop_from_msg

for q on line number 9 is k − 1. hop_from_msg cannot be greater than k − 1 because

the variable path_sets[q] contains q · π which is of length k − 1. Also, hop_from_msg

cannot be less than k − 1 because r has perfect information about all nodes at a distance

k − 1 from r, and so, the estimate for hop_from_msg will discard all paths with length

less than k − 1 as they are no more available in G. We also argue that the value of hop for

q on line number 10 is greater than k − 1. This is because, by the inductive hypothesis, p

has perfect information about nodes that are k − 1 hops away from p in G. So, all entries

in pathsp[r] with length at most k − 1 are discarded as they are correctly estimated to have

at least one crashed node in them. Thus, the value of hop for q is greater than k − 1. As a

result, the ‘if’ condition on line number 11 is satisfied and p adopts r’s information about

q. By the inductive hypothesis, this information is perfect (note that p adopts only r’s

suspect_localr[q] variable which currently contains perfect information about q).

We still have to show that p’s suspectp[q] variable does not get set to something different

(from the value set by the message from r) by a message coming from a node with wrong

information about q. Let us assume that by contradiction, p gets a message from a node s

that is at a distance i > k from q and the value of hop_from_msg for q on line number 9

is miscalculated to be at most k − 1. This scenario is possible only if there is a path π′

in pathss[q] with |π′| ≤ k − 1 that is wrongly assumed to exist in G. However, since s is

at a distance i greater than k from q in G, π′ must have a crashed node in it. Let z ∈ π′

be the crashed node that s has wrong information about. Since z is less than k hops away

from s, by the induction hypothesis, s already has perfect information about z. Thus the

21

assumption that the value of hop_from_msg for q on line number 9 is calculated to be at

most k − 1 is incorrect and p permanently possesses perfect information about q.

Theorem 10 proves eventual strong accuracy.

Theorem 10. There exists a time tf such that for every t > tf , every correct node p and

every node q that is connected to p in G, p does not suspect q at time t.

Proof. The proof is direct from Lemma 9.

2.1.5.2 Proof of Strong Completeness

Theorem 12 proves strong completeness.

Observation 11. Let C be a connected component in G. Let q be a node in Π − C. For

every path π between p ∈ C and q in the initial network graph, there exists a node r such

that r is a crashed initial neighbor of C.

Theorem 12. There exists a time tf such that for every t > tf , every correct node p and

every node q that is disconnected from p in G, p suspects q at time t.

Proof. Let C be the component of G containing p. We show that p eventually suspects every

q ∈ Π−C. Since originally the network was a connected graph, there was a path from all q

to p in the initial network graph. We separate this proof into two parts:

• q is an initial neighbor of p. In this case, the proof is direct from Lemma 5.

• q is not an initial neighbor of p. Let π be a path in pathsp[q] after pathsp[q] includes

all the simple paths from q to p in G. From Observation 11, we know that all paths

from q to p have a crashed node r that is an initial neighbor of a node in C. From

Lemma 9, we know that after some time t, p has perfect information about r. Thus,

all π ∈ pathsp[q] have a node r that has suspect_localp[r] = true. When p calculates

22

the suspect variable for q on line numbers 15 to 19, the if condition on line number 18

is satisfied and suspectp[q] is set to true on line number 19.

Now we show that this value of the suspect variable is not reversed. Since from

Lemma 8, we know that pathsp[q] includes all simple paths from q to p in G and thus

stops changing and the information about all nodes r is never reversed, we can safely

conclude that line number 18 is always satisfied henceforth and suspectp[q] always

remains true.

2.1.5.3 Proof of Bounded Message Size

Theorem 13. Our algorithm implements an eventually perfect failure detector for a parti-

tionable network of ADD channels using bounded size messages.

Proof. This proof is direct from Theorems 10 and 12 which prove eventual strong accuracy

and strong completeness respectively.

The messages sent by a node p ∈ Π have the variables suspect_local[·] and paths[·] in

them. Note that both these variables are bounded in size. The suspect_local[·] variable has

n booleans and so has size n bits. The paths[·] variable contains only simple paths between

nodes. There are O((n − 1)!) such paths, each of which can be represented by O(n log n)

bits. Thus the algorithm has messages of size at most O(n! log n) bits. Thus, the messages

used in this algorithm are bounded in size.

23

3. CRASH-TOLERANT REGISTER IMPLEMENTATION

3.1 Crash-Tolerant Register Implementation in Systems with Churn

As stated in Section 1.1, implementing concurrent data structures is an important service

in the middleware layer of a distributed system. The classical shared read/write register is

one of the most basic concurrent data structure. Many implementations [35] of concurrent

data structures (queues, stacks, fetch&inc, compare&swap, etc) use registers as building

blocks. In this section, we discuss our work on implementing a shared read/write register in

a dynamic message-passing system that never stops changing.

Emulating a shared register can mask the intricacies of designing algorithms for asyn-

chronous message-passing systems subject to crash failures, since it allows them to run algo-

rithms designed for the simpler shared-memory model. Typically such emulations replicate

the value of the register in multiple servers and require readers and writers to communicate

with a majority of servers. The success of this approach for static systems, where the set

of nodes (readers, writers, and servers) is fixed, has motivated several similar emulations

for dynamic systems, where nodes may enter and leave. However, existing emulations need

to assume that the system eventually stops changing for a long enough period or that the

system size is bounded.

The work in this section presents the first emulation of a register supporting any number

of readers and writers in a crash-prone system that can withstand nodes continually entering

and leaving and imposes no upper bound on the system size. The algorithm works as long as

the number of nodes entering and leaving during a fixed time interval is at most a constant

Parts of the material in this chapter are reprinted with permission from the following papers:
“Emulating a shared register in a system that never stops changing" by Hagit Attiya, Hyun Chul Chung,

Faith Ellen, Saptaparni Kumar and Jennifer L. Welch, 2019. IEEE Transactions on Parallel and Distributed
Systems, vol. 30, pp. 544-559, copyright [2019] by IEEE

“Simulating a shared register in an asynchronous system that never stops changing" by Hagit Attiya,
Hyun Chul Chung, Faith Ellen, Saptaparni Kumar and Jennifer L. Welch, 2015. in Proceedings of 29th
International Symposium on Distributed Computing, pp. 75-91, copyright [2015] by Springer

24

fraction of the system size at the beginning of the interval, and as long as the number of

crashed nodes in the system is at most a constant fraction of the current system size. This

work also includes a lower bound on the fraction of correct nodes that is strictly larger than

the fraction sufficient to solve the problem in the static case.

3.1.1 Introduction

Emulating a shared read/write register is a way to mask the intricacies of designing

algorithms for message-passing systems subject to crash failures, since it allows them to

run algorithms designed for the simpler shared-memory model. Typically, such emulations

replicate the value of the register in multiple servers and require readers and writers to

communicate with a majority of servers.

The success of this approach for static systems, where the set of readers, writers, and

servers is fixed, has motivated several similar emulations for dynamic systems, where nodes

may enter and leave. Change in system composition due to nodes entering and leaving is

called churn. However, existing emulations of atomic registers rely either on the assumption

that churn eventually stops for a long enough period (e.g., DynaStore [11] and RAMBO [12])

or on the assumption that the system size is bounded (e.g., [13], [36]). See Section 3.1.2 for

a detailed discussion of related work.

This work shows that it is possible to emulate a register supporting any number of readers

and writers in a system subject to ongoing churn without bounding the system size, for a

reasonable model of churn. This model assumes that, in any time interval of length D, the

number of nodes that enter or leave the system is at most a constant fraction, α, of the

number of nodes in the system at the beginning of the interval. The constant α is known to

the nodes. Our emulation sacrifices atomicity when this constraint on churn is violated.

The parameter D is an upper bound, unknown to the nodes, on the delay of any mes-

sage (between nodes that have not crashed). There is no lower bound on message delays.

Moreover, nodes do not have real time clocks. As discussed later it is impossible to solve

consensus in this model.

25

This model of churn is reasonable. If every node has a fixed probability of leaving in any

time interval of some fixed length, then the expected number of nodes that leave in such an

interval is a fixed fraction of the total number of nodes in the system at the beginning of the

interval. Moreover, as the system size grows, the allowable number of changes grows. (See

[37] for a discussion of churn behavior in practice.)

In addition to churn, our algorithm tolerates nodes that fail by crashing. In the prelimi-

nary version of this work [16], we assumed that the number of nodes that crash is bounded

above by a fixed constant, f , independent of the system size. That assumption is quite re-

strictive as the system size can grow arbitrarily large. Here, we replace this restriction with

the more flexible requirement that, at all times, the number of crashed nodes is at most a

constant fraction, ∆, of the current system size. Now as the system size grows, the number

of crashed nodes can grow as well. The constant ∆ is known to all nodes.

Our algorithm is called CCReg, for Continuous Churn Register. It is intuitive, combining

the simple static algorithm for multiple readers and multiple writers outlined above with a

joining protocol and careful estimations of the number of nodes from which replies should be

received for joining, reading, and writing. In order to join, a newly entered node announces

its entry, waits to receive sufficiently many acknowledgments, and then announces it has

joined, which marks the termination of its join operation. Once a node has joined, it can

perform reads and writes. A node leaves the system by announcing its departure. Each node

maintains a set of changes to the composition of the system, based on the announcements of

nodes entering, joining and leaving. This information is also propagated through appropriate

echo messages and by having each node append the set of changes it has seen to its messages

that echo enter announcements. Each node keeps track of the set of nodes that it believes are

present in the system (i.e., have entered but not left) and those that it believes are members

of the system (i.e., have joined but not left).

When a node p first receives an acknowledgment of its entrance announcement from a

node that has already joined, p calculates the number of acknowledgments it needs to receive

26

before joining. To guarantee that information about the system composition propagates

properly, this number must be sufficiently large to ensure that at least one acknowledgment

is from a node that has been in the system for a sufficiently long time. The number must

also be small enough to ensure that p will eventually receive enough acknowledgments to

complete the join procedure. The node p sets this number to a carefully-chosen fraction, γ,

of the number of nodes that it believes are present in the system.

As in [10] and [11], read and write operations wait for replies from a certain number of

nodes. To guarantee that information about a written value is propagated properly, this

number must be large enough to ensure that the value has been received by enough nodes.

It must also be large enough to ensure that at least one reply to a read operation is from

a node with an up-to-date value. This number must be small enough to ensure that the

operation terminates. In the static case, a majority of the nodes suffices. In our algorithm,

node p sets the number to a carefully-chosen fraction, β, of the number of nodes that p

believes to be members of the system.

The contribution of this work is a proof of existence of a crash-resilient algorithm that

tolerates ongoing churn with no upper bound on the system size. As we discuss in Sec-

tion 3.2.4, the system parameters α and ∆ and the algorithm parameters γ and β must

satisfy certain constraints in order for our algorithm to work. We show that there are values

for the parameters that satisfy the constraints. Further work is needed to find algorithms

that work under less restrictive constraints to, say, tolerate a larger churn rate or larger

failure fraction.

In all the consistent sets of parameter values that we have identified, the failure resilience,

∆, is at most 1/3, which is worse than 1/2, which can be achieved in the static case. We

prove that worse failure resilience is an unavoidable consequence of tolerating churn, by

showing the problem is unsolvable unless ∆ is at least 1/(α + 2).

27

3.1.2 Related Work

A simple emulation of a single-writer, multi-reader register in an asynchronous static

network was presented by Attiya, Bar-Noy and Dolev [9]. Their paper also shows that it is

impossible to emulate an atomic register in an asynchronous system if at least half of the

nodes in the system can be faulty. It was followed by extensions that reduce complexity [38,

39, 40, 41], support multiple writers [10], or tolerate Byzantine failures [42, 43, 44, 45].

To optimize load and resilience, the simple majority quorums used in these papers can be

replaced by other, more complicated, quorum systems (e.g., [46, 47]).

A survey of emulations of an atomic multi-writer, multi-reader register in a dynamic

system with churn appears in [48]. We compare our results with RAMBO [12], DynaStore [11]

and the results of Baldoni et al. [36]. It is important to note that the system models in all

these papers are very different from one another and are thus, in some sense, incomparable.

The first such emulation was RAMBO [12]. Here, the notion of churn is abstracted

by defining a sequence of quorum configurations. Each quorum configuration consists of a

set S of nodes (which are called members) plus sets of read-quorums and write-quorums,

each of which is a subset of S. The system supports reconfiguration, in which an older

quorum configuration is replaced by a newer one. The reconfiguration protocol handles

quorum configuration changes to install new quorum systems. Reconfiguration is done in

two parts: first, a member proposes a new quorum configuration. Second, these proposed

configurations are reconciled by running an eventually-terminating distributed consensus

algorithm (a version of the Paxos algorithm [49]) among the members of the current quorum

configuration. RAMBO requires intermittent periods of synchrony for the consensus to

terminate. Reconfigurations can occur concurrently with reads and writes. The read and

write operations are similar to those in [9, 10]. The model does not differentiate between

nodes that crash and nodes that leave the system. The algorithm guarantees atomicity of

operations for all executions, even when there are arbitrary crashes (or leaves) and message

loss. However, liveness of reconfigurations is only ensured during periods when the system is

28

sufficiently well-behaved with respect to synchrony, message loss, and churn. For liveness of

reads and writes, the authors assume that a configuration has to remain viable for 11D time

after it is installed, to allow sufficient time for a phase of an operation to complete. They also

assume that reconfigurations are installed at least 13D time apart. If reconfigurations occur

more frequently, read and write operations might be delayed each time a new configuration

is discovered. Liveness of reads and writes does not depend on synchrony.

DynaStore [11] emulates an atomic multi-writer, multi-reader register in a dynamic sys-

tem, without using consensus. The set of nodes that are in the system is called a view. The

nodes start with some default initial view. The algorithm supports read/write operations

and reconfig. Reads and writes are similar to those in [9, 10], with a read-phase followed

by a write-phase. The nodes in the current view can propose the addition and removal of

other nodes using the reconfig subroutine. Reconfig starts with a phase in which information

about the new view is sent to a majority of nodes in the old view, followed by a read phase

and a write phase, which are performed using the old view. DynaStore ensures atomicity

for all executions. To ensure liveness of read/write operations, the algorithm makes two

assumptions. First, at any point in time, the set of crashed nodes and the nodes whose

removals are pending (via reconfig) is a minority of the current view and of any pending

future views. Second, it assumes that only a finite number of reconfiguration requests occur

(i.e., churn eventually stops).

Baldoni et al. [36] study a model with upper and lower bounds on the system size,

known to the nodes. In their model, churn never stops and at most a constant fraction

of nodes enter and leave periodically. They implement a regular register in an eventually

synchronous system. A join_register module ensures nodes join with sufficient knowledge

about the system. Its read and write protocols are similar to those in [9, 10]. The emulation

can be shown to violate regularity if the churn assumption is violated, with an argument like

the one at the end of Section 3.2.5.

Table 3.1 compares the results of [12, 11, 36] with our algorithm, considering: the consis-

29

Algorithm Consistency Synchrony Tolerates Violates Consistency Failure
Condition Assumption Continuous Churn Condition If Churn Model

Assumption Violated
RAMBO [12] Atomicity Intervals with known upper No, liveness of reads No No difference between

bound on message delays; and writes needs leaves and crashes
real-time clocks periods of quiescence

DynaStore [11] Atomicity No bounds on message No, liveness of read and writes No Crash failures are
delays requires the number of different from leaves

reconfigurations to be finite
Baldoni Regularity Eventual known upper Yes Yes No difference between

et al. [36] bound on message delays leaves and crashes
CCReg Atomicity Unknown upper bound and no Yes Yes Crash failures are

(This work) lower bound on message delays; different from leaves
no real-time clocks

Table 3.1: Summary of our algorithm and related algorithms.
1

tency condition, the level of synchrony needed for the correctness of the algorithms, whether

the algorithm requires periods without churn, whether the consistency condition is violated

if the churn assumption is violated, and whether failures and leaves are modeled as different

events.

Baldoni et al. [13] prove that it is impossible to emulate a regular register when there

is no upper bound on message delay. In this case, it does not help for nodes to announce

when they are leaving, since messages containing such announcements can be delayed for

an arbitrarily long time. Thus, a node leaving is essentially the same as a crash. Their

proof works by considering scenarios in which at least half of the nodes fail. they invoke the

lower bound in [9], which shows that emulating a register is impossible unless fewer than half

the nodes are faulty. Their proof can be adapted to hold when there is an unknown upper

bound, D, on the message delay and half the nodes can be replaced during any time interval

of length D, provided that nodes are not required to announce when they leave. Thus, in

our model, there must be an upper bound on the fraction of nodes that can crash during any

time interval of length D. Also, it is necessary that either nodes announce when they leave

or there is an upper bound on the fraction of nodes that can leave during this time interval.

In [50] and [11], it is claimed that termination of operations cannot be guaranteed unless

the churn eventually stops. This claim does not contradict our result due to differences in

the churn models, since their proofs rely on many nodes entering and leaving during a short

30

time period, a behavior that is not allowed in our model. One of the contributions of this

work is to point out that by making different, yet still reasonable, assumptions on churn it

is possible to get a solution with different, yet still reasonable, properties and, in particular,

to overcome the prior constraint that churn must stop to ensure termination of operations.

That is, we are suggesting a different point in the solution space.

3.1.3 Research Goals

We have two main research goals in this area. First, we want to create an algorithm to

implement an atomic MRMW (Multi Reader Multi Writer) register in a system that never

stops changing and can change size. The second goal is to prove a lower bound that shows

that unlike static systems, majority correctness is not enough to implement a SRSW (Single

Reader Single Writer) register in systems with churn.

3.1.4 System Model and Problem Statement

We model each node p as a state machine with a set of states, containing two initial

states sip and slp. Initial state sip is used if p is initially in the system, whereas slp is used if p

enters the system later. The set of all nodes that are initially in the system is denoted by

S0. It is finite and nonempty.

State transitions are triggered by the occurrences of events. Possible triggering events

are: entering the system (Enterp), leaving the system (Leavep), receipt of a message m

(Receivep(m)), invocation of an operation (Readp or Writep(v)), and crashing (Crashp).

A step of a node p is a 5-tuple (s′, T,m,R, s) where s′ is the old state, T is the triggering

event, m is the message to be sent, R is a response (Returnp(v), Ackp, or Joinedp) or ⊥,

and s is the new state. The values of m, R and s are determined by a transition function

applied to s′ and T . Returnp is the response to Readp, Ackp is the response to Writep,

and Joinedp is the response to Enterp. If T is Crashp, then m is ⊥ and R is ⊥.

A view of a node p is a sequence of steps such that:

• the old state of the first step is an initial state;

31

• the new state of each step equals the old state of the next step;

• if the old state of the first step is sip, then no Enterp event occurs;

• if the old state of the first step is slp, then the triggering event in the first step is

Enterp and there is no other occurrence of Enterp; and

• at most one of Crashp and Leavep occurs and if so, it is in the last step.

In our model, a node that leaves the system cannot re-enter with the same id. It can,

however, re-enter with a new id. Likewise, a node that crashes does not recover. A node

that crashes and recovers, but loses its state, can re-enter with a new id. Because nodes

cannot measure time, a node that crashes and recovers, retaining its state, can be treated

as if no crash occurred.

Time is represented by nonnegative real numbers. A timed view is a view whose steps

occur at nondecreasing times. If a view is infinite, the times at which its steps occur must

increase without bound. Given a timed view of a node, if (s′, T,m,R, s) is the step with the

largest time less than or equal to t, then s is the state of that node at time t. A node p is

said to be present at time t if it entered the system (i.e., its first step has time at most t)

but has not left (i.e., Leavep does not occur at or before t). The number of nodes that are

present at time t is denoted by N(t). A crashed node (i.e., a node for which Crashp occurs

at or before t) is still considered to be present. A node is said to be active at time t if it is

present and not crashed at t. A node p is said to be a member at time t if it has joined the

system (i.e., p ∈ S0 or Joinedp occurs at or before t) but has not left (i.e., Leavep does

not occur at or before t). Note that, at any time t, the members are a subset of the present

nodes and it is possible for some members to be crashed

If a message m sent at time t is received by a node at time t′, then the delay of this

message is t′ − t. This encompasses transmission delay as well as time for for handling the

message at both the sender and receiver. Let D > 0 denote the maximum message delay

that can occur in the system. Let α > 0 and 0 < ∆ ≤ 1 be real numbers that denote the

32

churn rate and failure fraction, respectively. The parameters α and ∆ are known to the

nodes, but D is not.

An execution e is a possibly infinite set of timed views, one for each node that is ever

present in the system, that satisfies the following eight assumptions.

A1: The first step of each node p ∈ S0 occurs at time 0 and the first step of each other

node occurs after time 0.

A2: Every sent message has at most one matching receipt at each node and every message

receipt has exactly one matching message send.

A3: If a message m is sent at time t and node q is active throughout [t, t+D] (i.e., q enters

by time t and does not leave or crash by time t+D), then q receives m. The delay of

every received message is in (0, D].

A4: Messages from the same sender are received in the order they are sent (i.e., if node

p sends message m1 before sending message m2, then no node receives m2 before it

receives m1). This can be achieved by tagging each message with the id of its sender

and a sequence number.

A5: For all times t > 0, the number of Enter and Leave events in [t, t + D] is at most

α ·N(t).

A6: For all times t ≥ 0, the number of crashed nodes at time t is at most ∆ ·N(t).

A7: If Readp or Writep invocation occurs at time t, then p has already joined but has

not left or crashed.

A8: At each node p, no Readp or Writep occurs until there have been responses to all

previous Readp and Writep invocations.

Assumption A1 states that there is a nonempty finite set of nodes that are initially

members. Assumptions A2 through A4 model a reliable broadcast communication service

33

that provides nodes with a mechanism to send the same message to all nodes in the system.

Sending a message to a single recipient can be accomplished by broadcasting the message

and indicating the intended recipient so that others will ignore the message. Assumption A5

bounds the churn and Assumption A6 bounds the number of failures. Assumptions A7 and

A8 ensure that operations are only invoked by active members and, at any time, at most

one operation is pending at each node.

We consider an algorithm to be correct if every execution of the algorithm satisfies the

following conditions:

• For every node p ∈ S0, Joinedp does not occur. For every node p /∈ S0, if Enterp

occurs, then at least one of Leavep, Crashp, or Joinedp occurs (i.e., every node that

enters the system and remains active eventually joins.

• In the view of each node p, ignoring message-receipt events, each Readp or Writep is

immediately followed by either Leavep, Crashp, or a matching response (Returnp

or Ackp). Moreover, each Returnp or Ackp is immediately preceded by a matching

invocation (Readp or Writep).

• The read and write operations are atomic [51, 52, 53]: there is an ordering of all

completed reads and writes and some subset of the uncompleted writes such that

every read returns the value of the latest preceding write (or the initial value of the

register if there is no preceding write) and, if an operation op1 finishes before another

operation op2 begins, then op1 occurs before op2 in the ordering.

It is the responsibility of the algorithm to complete joins, complete read and write operations,

and choose the right values for the reads, as long as Assumptions A1–A8 are satisfied.

Although our model places an upper bound on message delays, it does not place any

lower bound on the message delays or on local computation times. Moreover, nodes cannot

access clocks to measure the passage of real time. Consequently, the well-known consensus

problem is unsolvable in our model, just as it is unsolvable in a model with no upper bound

34

on message delays [5]. In the consensus problem, every node has an input, and every

nonfaulty node must eventually decide on an output such that all outputs are the same and,

if all inputs are the same, then this common output equals the common input.

35

3.1.4.1 Impossibility of Consensus

Theorem 14. It is impossible to solve consensus in our system model, even with just one

crash and no churn.

Proof. Assume, by way of contradiction, there is an algorithm A that solves consensus in our

model, with delays in (0, D] but no churn and at most one crash. For simplicity, let D = 1.

Consider an execution e of A in the classic asynchronous model with no upper bound on

message delays, no churn, and at most one crash.

A priori, there is no guarantee that e solves consensus, as A is only guaranteed to work

correctly in our model, but the nodes exhibit some kind of behavior in e. Order the events

in e by their times, breaking ties arbitrarily. Let e′ be the result of changing the time of the

i-th event in e to 1− 2i, for all i ≥ 1. For all positive integers k, let e′k consist of the first k

steps of e′. Since algorithm A solves consensus in our model, there exists a positive integer

k such that, in e′k, all nonfaulty nodes have terminated and decided the same output. The

view of every node in e′k is the same as its view in the first k steps of e. Thus, all nonfaulty

nodes have terminated and decided the same output within the first k steps of e. In other

words, A solves consensus in the classic asynchronous model, which contradicts [5].

36

3.1.5 Lower Bound on Crash-Resilience

In this section we prove that strictly more than a majority of the nodes must be nonfaulty

in order to emulate an atomic read-write register in a system with churn. Specifically, we show

that the failure fraction ∆ must be less than 1
α+2

, where the churn rate α is a nonnegative

rational number.

Theorem 15. It is impossible to emulate an atomic read-write register in a dynamic system

with churn rate α, if the failure fraction ∆ is at least 1
α+2

.

Proof. Assume, by way of contradiction, there is an algorithm that emulates an atomic

register with ∆ ≥ 1
α+2

.

Suppose that α = u/v where u and v are positive integers. Let N(0) be an integer that

is divisible both by u+2v and v. Then N(0)
α+2

, N(0)(α+1)
α+2

, and α ·N(0) are all positive integers.

Initially, there are N(0) nodes that are initially in the system and members. We par-

tition these nodes into two disjoint sets, S1 and S2, consisting of N(0)
α+2

and N(0)(α+1)
α+2

nodes,

respectively. First, we consider two different executions, e1 and e2, starting from this initial

configuration.

Execution e1:

• No Enter or Leave events occur.

• All the nodes in S1 crash before sending any messages. No other crashes occur.

• A node p ∈ S2 invokes an operation Writep(1) on the emulated register.

• All messages other than those sent to crashed nodes have delay D.

• The write invoked by p completes by some time tw.

Since |S1| = N(0)
α+2

≤ ∆ ·N(0), crashing all the nodes in S1 is allowed.

Execution e2:

37

• At some time te, where 0 < te < tw, a set, S3, of α ·N(0) nodes enter the system.

• All nodes in S2 crash at some time tc > te, before sending any messages.

• A node q ∈ S1 invokes an operation Readq at some time after tw.

• All messages other than those sent to crashed nodes have delay D.

• The read invoked by q completes by some time tr and returns the initial value, 0, of

the register.

Note that |S3| = α ·N(0) is the maximum number of nodes that are allowed to enter at time

te. Since N(tc) = |S1| + |S2| + |S3| = (α + 1)N(0), the number of crashed nodes at time tc

is |S2| = (α+1)N(0)
α+2

= N(tc)
α+2

≤ ∆ ·N(tc), which is also allowed.

Finally, we construct a new execution e3 from e1 and e2.

Execution e3:

• Create a set of timed views by merging the timed views of nodes in S2 from e1, which

contains a write of 1, and the timed views of nodes in S1 ∪ S3 from e2, which contains

a read of 0. Note that there are no crashes in these timed views.

• Truncate each timed view so that it consists of all steps with associated time at most

tr, i.e. just after the read finishes.

• Extend the truncated views by delivering all pending messages. This includes all

messages sent by time tr in e1 from nodes in S1 to nodes in S2 and all messages sent

by time tr in e2 from nodes in S2 to nodes in S1 ∪S3. These messages are all delivered

at some time tf > tr. Note that some of these messages might have delay greater than

D. Let V3 denote the resulting set of timed views.

• Multiply the real time of every event in every sequence of V3 by min{D
tf
, 1}. This

shrinks the delays to ensures that they are all at most D.

38

• Extend the sequences by receiving and sending messages, where each message has delay

D, but without including any new occurrences of Enter, Read, Write, Crash, or Leave.

From the code, the algorithm will eventually finish.

We verify that e3 is an execution:

A1: Sets S1 and S2 are present in the system at time 0.

A2–A4: Consider any message m′ in e3 that corresponds to a message m in V3 sent before time

tf . Since m is sent at or after time 0 and is received at every node at or before time

tf , its delay in V3 is at most tf . By construction, the delay of m′ in e3 is at most

tf ·min{D/tf , 1}, which equals tf if tf ≤ D and equals D if tf > D. Thus the delay

of m′ is at most D. All other messages in e3 have delay at most D by construction.

Assumptions A2, A3, and A4 follow from this and the fact that they hold in e1 and e2.

A5: There are α ·N(0) Enter events in [0, D] and no other Enter events. There are no

Leave events.

A6: No nodes crash.

A7: The read is invoked by p after p joins and the write by q is invoked after q joins.

A8: There is only one read and only one write and they are invoked at different nodes.

In e3, the read operation by q returning 0 starts after the operation writing 1 by p

completes, which violates atomicity.

If α = 0, then our lower bound reduces to the requirement that the failure fraction be

less than 1/2, which is well-known for the static case and is achievable [9]. If α > 0, then

the failure fraction has to be even smaller than what is sufficient in the static case and it

must decrease as the churn rate increases.

Looking carefully at the proof of Theorem 15, we see that the result holds even for the

emulation of a safe register [51, 52], which satisfies a weaker consistency condition, even if

39

only one reader and one writer are supported, even if nodes never leave, and even if there is

a finite upper bound on the total number of nodes.

40

3.1.6 The CCReg Algorithm

In our algorithm, nodes run client (reader or writer) threads and server threads. Each

node runs exactly one server thread, at most one reader thread, and at most one writer

thread. We assume that the code segment that is executed in response to each event executes

without interruption.

The algorithm combines a mechanism for tracking the composition of the system, with a

simple algorithm, very similar to [10], for reading and writing the register, which associates

a unique timestamp with each value that is written. A timestamp is a pair that consists of

two values: a sequence number (num) and a node id (w_id) and these (num,w_id) pairs

are ordered lexicographically. Below, the local variables of node p are subscripted with p;

e.g., vp refers to node p’s local variable v.

In order to track the composition of the system (Algorithm 10), each node p maintains

a set of events, Changesp, concerning the nodes that have entered the system. When an

Enterq event occurs, q adds enter(q) to Changesq and broadcasts an enter message re-

questing information about prior events. When a node p finds out that q has entered the

system, either by receiving this message or by learning indirectly from another node, it

adds enter(q) to Changesp. When q has received sufficiently many messages in reply to

its request, it knows relatively accurate information about prior events and the value of the

register. The fraction γ is used to calculate the number of messages that should be received

before joining (stored in the join_bound local variable), based on the size of the Present

set. Setting γ is a key challenge in the algorithm as setting it too small might not propagate

updated information, whereas setting it too large might not guarantee termination of the

join.

When the required number of replies to the enter message sent by q are received, q adds

join(q) to Changesq, sets its is_joinedq flag to true, outputs the response Joinedp, and

broadcasts a message saying that it has joined. When p finds out that q has joined, either

by receiving this message or by learning indirectly from another node, it adds join(q) to

41

Changesp. When a Leaveq event occurs, q broadcasts a leave message and halts. When p

finds out that q has left the system, either by receiving this message or by learning indirectly

from another node, it adds leave(q) to Changesp.

When a node p receives an enter message from a node q, it responds with an enter-echo

message containing Changesp, its current estimate of the register value (together with its

timestamp), is_joinedp (indicating whether p has joined yet), and the id q. When q receives

an enter-echo in reply (i.e., that ends with q), it increments its join-counter. The first time

q receives such an enter-echo from a joined node, it computes join_bound, the number of

enter-echo messages it needs to get before it can join.

Once a node has joined, its reader and writer threads can handle read and write op-

erations. Initially, Changesp = {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0}, if p ∈ S0, and

∅ otherwise. A node p also maintains the set Presentp = {q | enter(q) ∈ Changesp ∧

leave(q) ̸∈ Changesp} of nodes that p considers as present, i.e., nodes that have entered,

but have not left, as far as p knows. The client at node p maintains the derived variable

Membersp = {q | join(q) ∈ Changesp ∧ leave(q) ̸∈ Changesp} of nodes that p considers as

members, i.e., nodes that have joined but not left.

Client threads treat read and write operations in a similar manner (Algorithm 4). Both

operations start with a read phase, which requests the current value of the register, using

a query message, followed by a write phase, using an update message. A write operation

broadcasts the new value it wishes to write, together with a timestamp, which consists of a

sequence number that is one larger than the largest sequence number it has seen and its id

that is used to break ties. A read operation just broadcasts the value it is about to return,

keeping its sequence number. As in [9], write-back is needed to ensure the atomicity of

read operations. Both the read phase and the write phase wait to receive sufficiently many

reply messages. The fraction β is used to calculate the number of messages that should be

received (stored in the rw_bound local variable) based on the size of the Members set, for

the operations to terminate. Setting β is also a key challenge in the algorithm as setting it

42

Algorithm 3 CCReg—Common code managing the churn, for node p.
Local Variables:
is_joined // Boolean to check if p has joined the system; initially false
join_bound // if non-zero, the number of enter-echo messages p should receive before joining;
initially 0
join_counter // the number of enter-echo messages received so far; initially 0
Changes // set of Enter, Leave, and Joined events known by p;

// initially {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0}, if p ∈ S0, and ∅, otherwise
val // latest register value known to p; initially ⊥
num // sequence number of latest value known to p; initially 0
w_id // id of node that wrote latest value known to p; initially ⊥

Derived Variable:
Present = {q | enter(q) ∈ Changes ∧ leave(q) ̸∈ Changes}

When Enterp occurs:
1: add enter(p) to Changes
2: bcast ⟨“enter”, p⟩

When Receivep⟨“enter”, q⟩
occurs:

3: add enter(q) to Changes
4: bcast ⟨“enter-echo”, Changes,

(val, num,w_id), is_joined, q⟩

When Receivep⟨“enter-echo”,
C, (v, s, i), j, q⟩ occurs:

5: if (s, i) > (num,w_id) then
6: (val, num,w_id) := (v, s, i)
7: Changes := Changes ∪ C
8: if ¬is_joined ∧ (p = q) then
9: if (j = true)∧(join_bound = 0) then

10: join_bound := γ · |Present|
11: join_counter++
12: if join_counter≥join_bound>0 then
13: is_joined := true
14: add join(p) to Changes

15: generate Joinedp response
16: bcast ⟨“joined”, p⟩

When Receivep⟨“joined”, q⟩ occurs:
17: add join(q) to Changes
18: add enter(q) to Changes
19: bcast ⟨“joined-echo”, q⟩

When Receivep⟨“joined-echo”, q⟩ occurs:

20: add join(q) to Changes
21: add enter(q) to Changes

When Leavep occurs:
22: bcast ⟨“leave”, p⟩
23: halt

When Receivep⟨“leave”, q⟩ occurs:
24: add leave(q) to Changes
25: bcast ⟨“leave-echo”, q⟩

When Receivep⟨“leave-echo”, q⟩ occurs:
26: add leave(q) to Changes

43

too small might not return/update correct information from/to the register, whereas setting

it too large might not guarantee termination of the reads and writes.

A client thread maintains a sequence number, tag, incremented at the beginning of the

read phase and identifying replies belonging to its current read or write operation.

The server thread is simple (Algorithm 8). Each node uses the variable val to store the

latest value of the register it knows about, and the variables num and w_id to store that

value’s associated timestamp as an ordered pair (num,w_id). When the server receives an

update message with a larger timestamp, it updates the value and the timestamp. When a

server receives a query, it responds with the value and its timestamp.

44

Algorithm 4 CCReg—Client code, for node p.
Local Variables:
temp // temporary storage for the value being read or written; initially 0
tag // used to uniquely identify read and write phases of an operation; initially 0
rw_bound // the number of replies/acks p should receive before finishing a read/write phase; initially
0
rw_counter // the number of replies/acks received so far for a read/write phase; initially 0
rp_pending // Boolean indicating whether a read phase is in progress; initially false
wp_pending // Boolean indicating whether a write phase is in progress; initially false
read_pending // Boolean indicating whether a read is in progress; initially false
write_pending // Boolean indicating whether a write is in progress; initially false
Derived Variable:
Members = {q | join(q) ∈ Changes ∧ leave(q) ̸∈ Changes}

When Readp occurs:
30: read_pending := true
31: call BeginReadPhase()

When Writep(v) occurs:
32: write_pending := true
33: temp := v
34: call BeginReadPhase()

Procedure BeginReadPhase()
35: tag++
36: bcast ⟨“query”, tag, p⟩
37: rw_bound := β · |Members|
38: rw_counter := 0
39: rp_pending := true

When Receivep⟨“reply”, (v, s, i), rt, q⟩
occurs:

40: if rp_pending ∧ (rt = tag) ∧ (q = p) then
41: if (s, i) > (num,w_id) then
42: (val, num,w_id) := (v, s, i)
43: rw_counter++
44: if rw_counter ≥ rw_bound then
45: rp_pending := false

46: call BeginWritePhase()
Procedure BeginWritePhase()

47: if write_pending then
48: val := temp
49: num++
50: w_id := p
51: if read_pending then
52: temp := val
53: bcast ⟨“update”, (temp, num,w_id),tag, p⟩
54: rw_bound := β · |Members|
55: rw_counter := 0
56: wp_pending := true

When Receivep⟨“ack”, wt, q⟩ occurs:
57: if wp_pending ∧ (wt = tag) ∧ (q = p) then
58: rw_counter++
59: if rw_counter ≥ rw_bound then
60: wp_pending := false
61: if read_pending then
62: read_pending := false
63: generate Return(temp) response
64: if write_pending then
65: write_pending := false
66: generate Ack response

45

Algorithm 5 CCReg—Server code, for node p.
When Receivep⟨ “update”, (v, s, i), wt, q⟩ occurs:

70: if (s, i) > (num,w_id) then
71: (val, num,w_id) := (v, s, i)
72: if is_joined then
73: bcast ⟨“ack”, wt, q⟩
74: bcast ⟨“update-echo”, (val, num,w_id)⟩

When Receivep⟨“query”, rt, q⟩ occurs:
75: if is_joined then
76: bcast ⟨“reply”, (val, num,w_id), rt, q⟩

When Receivep⟨“update-echo”, (v, s, i)⟩ occurs:
77: if (s, i) > (num,w_id) then
78: (val, num,w_id) := (v, s, i)

The correctness of CCReg relies on the system parameters α, ∆, and Nmin satisfying

the following constraints, for some choice of algorithm parameters β and γ:

α ≤ 1− 2−1/4 ≈ 0.159 (3.1)

1 <
(
(1− α)3 −∆(1 + α)3

)
Nmin (3.2)

γ ≥ 1

Nmin(1− α)3
+ (1 + ∆)

(1 + α)3

(1− α)3
− 1 (3.3)

γ ≤ (1− α)3

(1 + α)3
−∆ (3.4)

β ≤ (1 + α)

(
(1− α)3

(1 + α)3
−∆

)
(3.5)

β >
(1 + α)5 − 1

(1− α)4
(3.6)

β >
(1 + ∆)(1 + α)3 − (1− α)3 + 1

(2 + 2α + α2)(1− α)2(1 + α)−2
(3.7)

Constraint (3.1) is an upper bound on the churn rate and is used in Lemma 17 to ensure

that not too many nodes can leave the system in an interval of length 4D. Constraint (3.2)

is a lower bound on the minimum system size. It is used in the proof of Lemma 18 to ensure

that at least one node is in the system throughout an interval of length 3D encompassing

the time a node enters, thus ensuring that the newly entered node successfully terminates its

46

system algorithm
parameters parameters

churn failure minimum join_bound rw_bound
rate fraction system fraction fraction
(α) (∆) size (Nmin) (γ) (β)
0 0.33 N/A N/A 0.665

0.01 0.26 7 0.67 0.684
0.02 0.19 7 0.69 0.701
0.03 0.13 8 0.70 0.726
0.04 0.06 9 0.72 0.737
0.05 0 10 0.74 0.755

Table 3.2: Values for the CCReg parameters that satisfy constraints (3.1) to (3.7).

joining protocol. Constraint (3.3) ensures that the join_bound fraction, γ, is large enough

such that updated information about the system is obtained by an entered node before it joins

the system. Constraint (3.4) ensures that γ is small enough such that for all entered nodes,

a join operation terminates if the entered node does not leave or crash. Constraint (3.5)

ensures that the rw_bound fraction, β, is small enough such that termination of read and

writes is guaranteed. Constraints (3.6) and (3.7) ensure that β is large enough such that

atomicity is not violated by read and write operations. Table 3.3 gives a few sets of values

for which the above constraints are satisfied. Both α and ∆ must be small: once α is larger

than 0.04, no failures can be tolerated.

47

3.1.7 Correctness Proof

We will show that CCReg satisfies the three properties listed at the end of Section 3.1.4.

Lemmas 16 through 23 are used to prove Theorem 24, which states that every node even-

tually joins, provided it does not crash or leave. Lemmas 26 through 51 are used to prove

Theorem 52, which states that every operation invoked by a node that remains active even-

tually completes. Lemmas 55 through 35 are used to prove Theorem 37, which states that

atomicity is satisfied.

Consider any execution.

3.1.7.1 Proof that Join Protocol Terminates

We begin by bounding the number of nodes that enter during an interval of time and

the number of nodes that are present at the end of the interval, as compared to the number

present at the beginning. (The proof is in the supplementary material.)

Lemma 16. For all i ∈ N and all t ≥ 0, at most ((1 + α)i − 1)N(t) nodes enter during

(t, t+Di] and (1− α)iN(t) ≤ N(t+Di) ≤ (1 + α)iN(t).

Proof. The proof is by induction on i. For i = 0 and all t ≥ 0, (t, t + Di] is empty, and

hence, 0 = ((1 + α)i − 1)N(t) nodes enter during this interval and

N(t+ iD) = N(t) = (1 + α)iN(t) = (1− α)iN(t).

Now let i ≥ 0 and t ≥ 0. Suppose at most ((1 + α)i − 1)N(t) nodes enter during (t, t+Di]

and (1− α)iN(t) ≤ N(t+Di) ≤ (1 + α)iN(t).

Let e ≥ 0 and ℓ ≥ 0 be the number of nodes that enter and leave, respectively, during

(t + Di, t + D(i + 1)]. By Assumption A5, e + ℓ ≤ αN(t + Di), so e, ℓ ≤ αN(t + Di) ≤

48

α(1 + α)iN(t). The number of nodes that enter during (t, t+D(i+ 1)] is at most

((1 + α)i − 1)N(t) + e ≤ ((1 + α)i − 1)N(t) + α(1 + α)iN(t)

= ((1 + α)i+1 − 1)N(t).

Hence,

N(t + D(i + 1)) ≤ N(t) + ((1 + α)i+1 − 1)N(t) = (1 + α)i+1N(t).

Furthermore,

N(t+D(i+ 1)) ≥ N(t+Di)− ℓ ≥ N(t+Di)− αN(t+Di)

= (1− α)N(t+Di) ≥ (1− α)i+1N(t).

By induction, the claim is true for all i ∈ N.

We are also interested in the number of nodes that leave during an interval of time. The

calculation of the maximum number of nodes that leave during an interval is complicated

by the possibility of nodes entering during the interval, allowing additional nodes to leave.

Lemma 17. For α > 0, all nonnegative integers i ≤ −1/ log2(1− α) and every time t ≥ 0,

at most (1− (1− α)i)N(t) nodes leave during (t, t+Di].

Proof. The proof is by induction on i. When i = 0, the interval is empty, so 0 = (1 − (1 −

α)0)N(t) nodes leave during the interval. Now let i ≥ 0, let t ≥ 0, and suppose at most

(1− (1− α)i)N(t+D) nodes leave during (t+D, t+D(i+ 1)].

Let e ≥ 0 and ℓ ≥ 0 be the number of nodes that enter and leave, respectively, during

(t, t+D]. By Assumption A5, e+ ℓ ≤ αN(t), so ℓ ≤ αN(t) and N(t+D) = N(t) + e− ℓ =

N(t)+(ℓ+e)−2ℓ ≤ (1+α)N(t)−2ℓ. The number of nodes that leave during (t, t+D(i+1)] is

the number that leave during (t, t+D] plus the number that leave during (t+D, t+D(i+1)],

49

which is at most

ℓ+ (1− (1− α)i)N(t+D)

≤ ℓ+ (1− (1− α)i)[(1 + α)N(t)− 2ℓ]

= (1− (1− α)i)(1 + α)N(t) + (2(1− α)i − 1)ℓ

≤ (1− (1− α)i)(1 + α)N(t) + (2(1− α)i − 1)αN(t)

= (1− (1− α)i+1)N(t).

Note that 2(1 − α)i − 1 ≥ 0, since i ≤ −1/ log2(1 − α). By induction, the claim is true

for all i ∈ N.

Recall that a node is active at time t if it has entered by time t, but has not left or

crashed by time t. The next lemma shows that some node remains active throughout any

interval of length 3D.

Lemma 18. For every t > 0, at least one node is active throughout [max{0, t− 2D}, t+D].

Proof. Let S be the set of nodes present at time t′ = max{0, t−2D}, so |S| = N(t′) ≥ Nmin.

By Lemma 16, at most ((1 + α)3 − 1)|S| nodes enter during (t′, t+D], so there are at most

(1 + α)3|S| nodes present at time t + D and at most ∆(1 + α)3|S| nodes have crashed by

time t + D. Constraint (3.1) implies that −1/ log2(1 − α) ≥ 4 ≥ 3. So, by Lemma 17, at

most (1− (1− α)3)|S| nodes leave during (t′, t+D] and there are at least (1− α)3|S| nodes

present at time t+D. Thus, at least

((1− α)3 −∆(1 + α)3)|S| ≥ ((1− α)3 −∆(1 + α)3)Nmin (3.8)

nodes in S are active at time t+D. By Constraint (3.2), ((1− α)3 −∆(1 + α)3)Nmin > 1,

so at least one node in S is still active at time t+D.

50

Below, a local variable name is superscripted with t to denote the value of that variable

at time t; e.g., vtp is the value of node p’s local variable v at time t.

In the analysis, we will frequently be comparing the data in nodes’ Changes sets to the

set of Enter, Joined, and Leave events that have actually occurred. To facilitate this

comparison, we define a set SysInfoI that contains perfect information for the time interval

I. For each node q, let teq, tjq, and tℓq be the times when the events Enterq, Joinedq, and

Leaveq occur, respectively. If q ∈ S0, then we set teq = tjq = 0. Then we have:

SysInfoI = {enter(q) | teq ∈ I} ∪ {join(q) | tjq ∈ I} ∪ {leave(q) | tℓq ∈ I}.

In particular,

SysInfo[0,0] = {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0}.

Since a node p that is active throughout [tep, t+D] directly receives all enter, joined, and

leave messages broadcast during [tep, t], within D time, we have:

Observation 19. For every node p and all times t ≥ tep, if p is active at time t +D, then

SysInfo[t
e
p,t] ⊆ Changest+D

p .

By assumption, for every node p ∈ S0, SysInfo[0,0] ⊆ Changes0p, and hence Observation 42

implies:

Observation 20. For every node p ∈ S0, if p is active at time t ≥ 0, then

SysInfo[0,max{0,t−D}] ⊆ Changestp.

The purpose of Lemmas 21, 22, and 23 is to show that information about nodes entering,

joining, and leaving is propagated properly, via the Changes sets.

Lemma 21. Suppose that, at time T ′′, a node p /∈ S0 receives an enter-echo message from

a node q sent at time T ′ in reply to an enter message from p. Let T be any time such that

max{0, T ′′ − 2D} ≤ T ≤ tep. Suppose p is active at time T + 2D and q is active throughout

[U, T +D], where U ≤ max{0, T ′′ − 2D}. Then SysInfo(U,T] ⊆ ChangesT+2D
p .

51

Proof. Consider any node r that enters, joins, or leaves at time t̂ ∈ (U, T]. Note that q

directly receives this event’s announcement, since q is active throughout (U, T +D], which

contains [t̂, t̂+D], the interval during which the announcement message is in transit. There

are two cases, depending on the time, v, at which q receives this message.

Case 1: v ≤ T ′. Since q receives the enter message from p at T ′, information about this change

to r is in ChangesT ′
q , in the enter-echo message that q sends to p at time T ′. Thus, this

information is in ChangesT ′′
p ⊆ ChangesT+2D

p .

Case 2: v > T ′. Messages are not received before they are sent, so T ′ ≥ tep. Since v ≤ t̂+D, it

follows that v +D ≤ t̂ + 2D ≤ T + 2D. Thus [v, v +D] is contained in [tep, T + 2D].

Immediately after receiving the announcement about r, node q broadcasts an echo

message in reply. Since p is active throughout this interval, it directly receives this

echo message.

In both cases, the information about r’s change reaches p by time T + 2D. It follows that

SysInfo(U,T] ⊆ ChangesT+2D
p .

Lemma 22. For every node p, if p is active at time t ≥ tep + 2D, then SysInfo[0,t−D] ⊆

Changestp.

Proof. The proof is by induction on the order in which nodes enter the system. If p ∈ S0,

then tep = 0, so SysInfo[0,t−D] ⊆ Changestp follows from Observation 43.

Now consider any node p ̸∈ S0 and suppose that the claim holds for all nodes that enter

earlier than p. Suppose p is active at time t ≥ tep + 2D. By Lemma 18, there is at least

one node q that is active throughout [max{0, tep − 2D}, tep + D]. Node q receives an enter

message from p at some time t′ ∈ [tep, t
e
p + D] and sends an enter-echo message back to p.

This message is received by p at some time t′′ ∈ [t′, t′ +D].

If q ∈ S0, then SysInfo[0,max{0,t′−D}] ⊆ Changest
′

q , by Observation 43. If q ̸∈ S0, then

0 < teq ≤ max{0, tep − 2D}, so teq ≤ tep − 2D. Therefore teq + 2D ≤ tep ≤ t′. Since q entered

earlier than p, it follows from the induction hypothesis that SysInfo[0,t
′−D] ⊆ Changest

′

q . Thus,

52

in both cases, SysInfo[0,max{0,t′−D}] ⊆ Changest
′

q . At time t′′ ≤ t, p receives the enter-echo

message from q, so SysInfo[0,max{0,t′−D}] ⊆ Changest
′′

p ⊆ Changestp.

Applying Lemma 21 for q, with U = max{0, tep−D}, T = tep, T ′ = t′ and T ′′ = t′′ implies

SysInfo(max{0,t′−D},tep] ⊆ Changest
e
p+2D
p .

Since t ≥ tep + 2D, Changest
e
p+2D
p is a subset of Changestp. Observation 42 implies

SysInfo[t
e
p,t−D] ⊆ Changestp. Hence, SysInfo[0,t−D] ⊆ Changestp.

Lemma 23. For every node p ̸∈ S0, if p joins at time tjp and is active at time t ≥ tjp, then

SysInfo[0,max{0,t−2D}] ⊆ Changestp.

Proof. The proof is by induction on the order in which nodes join the system. Let p ̸∈ S0 be

a node that joins at time tjp ≤ t and suppose the claim holds for all nodes that join before p.

If t ≥ tep + 2D, then the claim follows by Lemma 22. So, suppose t < tep + 2D.

Before joining, p receives an enter-echo message from a joined node in reply to its enter

message. Suppose p first receives at time t′′ an enter-echo message sent by q at time t′;

tep ≤ t′ ≤ t′′ ≤ tjp. If q ∈ S0, then by Observation 43, SysInfo[0,max{0,t′−D}] ⊆ Changest
′

q .

Otherwise, by the induction hypothesis, SysInfo[0,max{0,t′−2D}] ⊆ Changest
′

q , since q joined

prior to p and is active at time t′ ≥ tjq. Note that Changest
′

q ⊆ Changest
′′

p ⊆ Changestp. If

t ≤ 2D, then max{0, t− 2D} = 0 and the claim holds.

If t > 2D, then let S be the set of nodes present at time max{0, t′ − 2D}; |S| =

N(max{0, t′ − 2D}). By Lemma 17 and Constraint (3.1), at most (1 − (1 − α)3)|S| nodes

leave during (max{0, t′ − 2D}, t′ + D]. Since t′′ ≤ t′ + D, it follows that |Presentt
′′

p | ≥

|S| − (1− (1− α)3)|S| = (1− α)3|S|. Hence, from lines 94 and 95 of Algorithm 10, p waits

until it has received at least join_bound = γ ·|Presentt
′′

p | ≥ γ ·(1−α)3|S| enter-echo messages

before joining.

By Lemma 16, at most ((1 + α)3 − 1)|S| nodes enter during (max{0, t′ − 2D}, t′ + D].

Thus, at time t′ +D, at most (1 + α)3|S| nodes are present and at most ∆(1+ α)3|S| nodes

53

are crashed.

Hence, the number of enter-echo messages p receives before joining from nodes that were

active throughout [max{0, t′ − 2D}, t′ +D] is join_bound minus the total number of enters,

leaves and crashes, which is at least

γ · (1− α)3|S| − [((1 + α)3 − 1)|S|+ (1− (1− α)3)|S|+∆(1 + α)3|S|]

= [(1 + γ)(1− α)3 − (1 + ∆)(1 + α)3]|S|

≥ [(1 + γ)(1− α)3 − (1 + ∆)(1 + α)3]Nmin (3.9)

Rearranging Constraint (3.3), we get

[(1 + γ)(1− α)3 − (1 + ∆)(1 + α)3Nmin] ≥ 1,

so expression (3.9) is at least 1. Hence p receives an enter-echo message at some time T ′′ ≤ tjp

from a node q′ that is active throughout

[max{0, t′ − 2D}, t′ +D] ⊇ [max{0, t′ − 2D}, t−D].

Let T ′ be the time that q′ sent its enter-echo message in reply to the enter message from p.

Applying Lemma 21 for q′, with U = max{0, t′ − 2D}, and T = t− 2D gives

SysInfo(max{0,t′−2D},t−2D] ⊆ Changestp.

Thus, SysInfo[0,t−2D] = SysInfo[0,max{0,t′−2D}]∪ SysInfo(max{0,t′−2D},t−2D] ⊆ Changestp.

Next we prove that every node that remains active sufficiently long after it enters, will

succeed in joining.

Theorem 24. Every node p ̸∈ S0 that is active at time tep + 2D joins by time tep + 2D.

Proof. The proof is by induction on the order in which nodes enter the system. Let p ̸∈ S0

be a node that enters at time tep and is active at time tep + 2D. Suppose the claim holds for

54

all nodes that enter before p.

By Lemma 18, there is a node q that is active throughout [max{tep − 2D, 0}, tep +D]. If

q ∈ S0, then q joins at time 0. If not, then teq ≤ tep − 2D, so, by the induction hypothesis,

q joins by time teq + 2D ≤ tep. Since q is active at time tep +D, it receives the enter message

from p during [tep, t
e
p+D] and sends an enter-echo message in reply. Since p is active at time

tep +2D, it receives the enter-echo message from q by time tep +2D. Hence, by time tep +2D,

p receives at least one enter-echo message from a joined node in reply to its enter message.

Suppose the first enter-echo message p receives from a joined node in reply to its en-

ter message is sent by node q′ at time t′ and received by p at time t′′. By Lemma 23,

SysInfo[0,max{0,t′−2D}] ⊆ Changest
′

q′ ⊆ Changest
′′

p .

Let S be the set of nodes present at time max{0, t′ − 2D}. Since t′′ ≤ t′ +D, it follows

from Lemma 16 that at most ((1+α)3−1)|S| nodes enter during (max{0, t′−2D}, t′′]. Thus,

|Presentt
′′

p | ≤ |S|+ ((1 + α)3 − 1)|S| = (1 + α)3|S|. From line 94 in Algorithm 10, it follows

that join_bound ≤ γ · (1 + α)3|S|.

By Lemma 17 and Constraint (3.1), at most (1−(1−α)3)|S| nodes leave during (max{0, t′−

2D}, t′ + D]. Also, by Lemma 16, at most (1 + α)3|S| nodes are present at t′ + D and so

at most ∆(1 + α)3|S| nodes are crashed at t′ + D. Since tep ≤ t′ ≤ tep + D, the nodes in S

that do not leave during (max{0, t′ − 2D}, t′ +D] and are not crashed at t′ +D are active

throughout [tep, tep +D] and send enter-echo messages in reply to p’s enter message. By time

tep + 2D, p receives all these enter-echo messages. There are at least

|S| − (1 − (1 − α)3)|S| − ∆(1 + α)3|S| = (1 − α)3|S| − ∆(1 + α)3|S|

such enter-echo messages. By Constraint (3.4),

(1− α)3

(1 + α)3
−∆ ≥ γ,

55

so the value of join_bound is at most

γ · (1 + α)3|S| ≤ (
(1− α)3

(1 + α)3
− ∆) · (1 + α)3|S| = (1 − α)3|S| − ∆(1 + α)3|S|.

Thus, by time tep + 2D, the condition in line 95 of Algorithm 10 holds and node p joins.

3.1.7.2 Proof that Reads and Writes Terminate

Next, we show that all read and write operations terminate. Specifically, we show that

the number of replies for which an operation waits is at most the number that it is guaranteed

to receive.

Since enter(q) is added to Changesp whenever join(q) is, we get the following observation.

Observation 25. For every time t ≥ 0 and every node p that is active at time t, Memberstp ⊆

Presenttp.

Lemma 26 relates a node’s current estimate of the number of nodes present to the number

of nodes that were present in the system 2D time units earlier. Lemma 27 relates a node’s

current estimate of the number of nodes that are members to the number of nodes that were

present in the system 4D time units earlier. Lemma 26 is used in the proof of Lemma 51

and Lemma 27 is used in the proof of Theorem 37. The proofs of Lemmas 26 and 27 are

very similar to each other and are thus presented together.

Lemma 26. For every node p and every time t ≥ tjp at which p is active,

(1 − α)2 · N(max{0, t − 2D}) ≤ |Presenttp| ≤ (1 + α)2 · N(max{0, t − 2D}).

Proof. By Lemma 23, SysInfo[0,max{0,t−2D}] ⊆ Changestp. Thus Presenttp contains all nodes

that are present at time max{0, t − 2D}, plus any nodes that enter in (max{0, t − 2D}, t]

which p has learned about, minus any nodes that leave in (max{0, t − 2D}, t] which p has

56

learned about. Then, by Lemma 16,

|Presenttp| ≤ N(max{0, t− 2D}) + ((1 + α)2 − 1) ·N(max{0, t− 2D})

= (1 + α)2 ·N(max{0, t− 2D}).

Similarly, by Lemma 17 and Constraint (3.1),

|Presenttp| ≥ N(max{0, t− 2D})− (1− (1− α)2) ·N(max{0, t− 2D})

= (1− α)2 ·N(max{0, t− 2D}).

Lemma 27. For every node p and every time t ≥ tjp at which p is active,

(1 − α)4 · N(max{0, t − 4D}) ≤ |Memberstp| ≤ (1 + α)4 · N(max{0, t − 4D}).

Proof. By Lemma 23, SysInfo[0,max{0,t−2D}] ⊆ Changestp and, by Theorem 24, every node

that enters by time max{0, t − 4D} joins by time max{0, t − 2D} if it is still active. Thus

Memberstp contains all nodes that are present at time max{0, t−4D} plus any nodes that enter

in (max{0, t− 4D}, t] which p learns have joined, minus any nodes that leave in (max{0, t−

4D}, t] which p learns have left. Then, by Lemma 16,

|Memberstp| ≤ N(max{0, t− 4D}) + ((1 + α)4 − 1) ·N(max{0, t− 4D})

= (1 + α)4 ·N(max{0, t− 4D}).

57

Similarly, by Lemma 17 and Constraint (3.1),

|Memberstp| ≥ N(max{0, t− 2D})− (1− (1− α)4) ·N(max{0, t− 4D})

= (1− α)4 ·N(max{0, t− 4D}).

The next lemma proves a lower bound on the number of nodes that reply to an operation’s

query or update message.

Lemma 28. If node p is active at time t ≥ tjp, then the number of nodes that join by time t

and are still active at time t+D is at least
[
(1−α)3

(1+α)2
−∆(1 + α)

]
· |Presenttp|.

Proof. By Lemma 17 and Constraint (3.1), the maximum number of nodes that leave during

(max{0, t − 2D}, t + D] is at most (1 − (1 − α)3) · N(max{0, t − 2D}). By Lemma 16, at

most ((1 + α)3 − 1) ·N(max{0, t− 2D}) nodes enter during (max{0, t− 2D}, t+D]. So, at

most ∆(1 + α)3 ·N(max{0, t− 2D}) nodes are crashed by t+D. Thus, there are at least

N(max{0, t− 2D})− (1− (1− α)3) ·N(max{0, t− 2D})

−∆(1 + α)3 ·N(max{0, t− 2D})

= [(1− α)3 −∆(1 + α)3] ·N(max{0, t− 2D})

nodes that were present at time max{0, t−2D} and are still active at time t+D. This number

is bounded below by
[
(1−α)3

(1+α)2
−∆(1 + α)

]
· |Presenttp| since, by Lemma 26, N(max{0, t −

2D}) ≥ |Presenttp|/(1 + α)2. By Theorem 24, all of these nodes are joined by time t.

Theorem 29. Every read or write operation invoked by a node that remains active completes.

Proof. Each operation consists of a read phase and a write phase. We show that each phase

terminates within 2D time, provided the client does not crash or leave.

58

Consider a phase of an operation by client p that starts at time t. Every node that joins

by time t and is still active at time t +D receives p’s query or update message and replies

with a reply message or an ack message by time t + D. By Lemma 51, there are at least[
(1−α)3

(1+α)2
−∆(1 + α)

]
· |Presenttp| such nodes.

From Constraint (3.5) and Observation 48,

[
(1− α)3

(1 + α)2
−∆(1 + α)

]
· |Presenttp| ≥ β · |Presenttp|

≥ β · |Memberstp| = rw_boundtp.

Thus, by time t + 2D, p receives sufficiently many reply or ack messages to complete the

phase.

3.1.7.3 Proof of Atomicity of CCReg

Now we prove atomicity of the CCReg algorithm. Let T be the set of read operations

that complete and write operations that execute line 74 of Algorithm 4. For any node p,

let tstp = (numt
p, w_idtp) denote the timestamp of the latest register value known to node

p at time t. Note that new timestamps are created by write operations (on lines 70-71

of Algorithm 4) and are sent via enter-echo, update, and update-echo messages. Initially,

ts0p = (0,⊥) for all nodes p.

For any operation o in T by p, the timestamp of its read phase, tsrp(o), is tstp, where

t is the end of its read phase (i.e., when the condition on line 64 of Algorithm 4 evaluates

to true). The timestamp of its write phase, tswp(o), is tstp, where t is the beginning of its

write phase (i.e., when it broadcasts on line 74 of Algorithm 4). The timestamp of a read

operation in T is the timestamp of its read phase. The timestamp of a write operation in T

is the timestamp of its write phase.

Note that w_id is equal to p and num is set to one greater than the largest sequence

value observed during an operation’s read phase. This implies the next observation:

59

Observation 30. Each write operation in T has a unique timestamp.

The next observation follows by a simple induction, since every timestamp other than

(0,⊥) comes from Lines 70-71 of Algorithm 4.

Observation 31. Consider any read op1 in T . If the timestamp of a read op1 is (0,⊥),

then op1 returns ⊥. Otherwise, there is a write op2 in T such that ts(op1) = ts(op2) and the

value returned by op1 equals the value written by op2.

Lemmas 55–35 show that write phase information propagates properly through the sys-

tem. They are analogous to Observation 43 and Lemmas 21–23, regarding the propagation

of information about Enter, Joined, and Leave events.

Lemma 32. If o is an operation in T whose write phase w starts at tw, node p is active at

time t ≥ tw +D, and tep ≤ tw, then tstp ≥ tswp(o).

Proof. Since p is active throughout [tw, tw + D], it directly receives the update message

broadcast by w at time tw. Hence, from lines 38–39 of Algorithm 8, tstp ≥ tswp(o).

Lemma 33. Suppose a node p ̸∈ S0 receives an enter-echo message at time t′′ from a node q

that sends it at time t′ in reply to an enter message from p. If o is an operation whose write

phase w starts at tw, p is active at time t ≥ max{t′′, tw + 2D}, and q is active throughout

[tw, tw +D], then tstp ≥ tswp(o).

Proof. Since q is active throughout [tw, tw+D], it receives the update message from w at some

time t̂ ∈ [tw, tw + D], so tst̂q ≥ tswp(o). At time t′′ ≤ t, node p receives the enter-echo sent

by node q at time t′, so tstp ≥ tst
′′
p ≥ tst

′
q . If t′ ≥ t̂, then tst

′
q ≥ tst̂q, so tstp ≥ tswp(o). If t̂ > t′,

then q sends an update-echo at time t̂ ≤ tw +D, p receives it by time t̂+D ≤ tw + 2D ≤ t,

and, thus, tstp ≥ tst̂q ≥ tswp(o).

Lemma 34. If o is an operation in T whose write phase w starts at tw and node p is active

at time t ≥ max{tep + 2D, tw +D}, then tstp ≥ tswp(o).

60

Proof. The proof is by induction on the order in which nodes enter the system. Suppose the

claim holds for all nodes that enter before p. If tep ≤ tw, which is the case for all p ∈ S0, then

the claim follows from Lemma 55.

If tw < tep, then by Lemma 18, there is at least one node q that is active throughout

[max{0, tep − 2D}, tep +D]. It receives an enter message from p at some time t′ ∈ [tep, t
e
p +D]

and sends an enter-echo message containing tst
′
q back to p. This message is received by p at

some time t′′ ≤ t′ +D ≤ tep + 2D ≤ t, so tst
′
q ≤ tst

′′
p ≤ tstp.

The first case is when tw ≥ max{0, tep − 2D}. Since tw + D < tep + D, it follows that q

is active throughout [tw, tw + D]. Furthermore, t ≥ tep + 2D ≥ max{t′′, tw + 2D}. Hence,

Lemma 56 implies that tstp ≥ tswp(o).

The second case is when tw < max{0, tep−2D}. Since tw ≥ 0, it follows that tep−2D > 0,

teq ≤ max{0, tep − 2D} = tep − 2D, and tw < tep − 2D ≤ t′ − 2D, so t′ ≥ max{teq +2D, tw +D}.

Note that q is active at time t′ and q enters before node p, so, by the induction hypothesis,

tst
′
q ≥ tswp(o). Hence, tstp ≥ tswp(o).

Lemma 35. If o is an operation in T whose write phase starts at tw, node p ̸∈ S0 joins at

time tjp, and p is active at time t ≥ max{tjp, tw + 2D}, then tstp ≥ tswp(o).

Proof. The proof is by induction on the order in which nodes enter the system. Suppose

the claim holds for all nodes that join before p. If t ≥ tep + 2D, then the claim follows by

Lemma 57. So, suppose t < tep + 2D. If tep ≤ tw, then the claim follows by Lemma 55. So,

suppose tw < tep.

Before p joins, it receives an enter-echo message from a joined node in reply to its enter

message. Suppose p first receives such an enter-echo message at time t′′ and this enter-echo

was sent by q at time t′. Then t′′ ≤ tjp ≤ t and tst
′
q ≤ tst

′′
p ≤ tstp.

Now we prove that p receives an enter-echo message from a node q′ that is active through-

out [max{0, t′ − 2D}, t′ +D]. Let S be the set of nodes present at time max{0, t′ − 2D}, so

|S| = N(max{0, t′ − 2D}). By Lemma 17 and Constraint (3.1), at most (1 − (1 − α)3)|S|

nodes leave during (max{0, t′ − 2D}, t′ +D]. Since t′′ ≤ t′ +D, it follows that |Presentt
′′

p | ≥

61

|S| − (1− (1− α)3)|S| = (1− α)3|S|. Hence, from lines 94 and 95 of Algorithm 10, p waits

until it has received at least join_bound = γ ·|Presentt
′′

p | ≥ γ ·(1−α)3|S| enter-echo messages

before joining.

By Lemma 16, at most ((1 + α)3 − 1)|S| nodes enter during (max{0, t′ − 2D}, t′ + D].

Thus, at time t′ +D, at most (1 + α)3|S| nodes are present and at most ∆(1+ α)3|S| nodes

are crashed. The number of enter-echo messages p receives before joining from nodes that

were active throughout [max{0, t′ − 2D}, t′ + D] is join_bound minus the total number of

enters, leaves and crashes, which is at least

γ · (1− α)3|S| − [((1 + α)3 − 1)|S|+ (1− (1− α)3)|S|+∆(1 + α)3|S|]

≥ [(1 + γ)(1− α)3 − (1 + ∆)(1 + α)3]Nmin. (3.10)

Rearranging Constraint (3.3), we get [(1 + γ)(1 − α)3 − (1 + ∆)(1 + α)3Nmin] ≥ 1, so

expression (3.10) is at least 1. Hence p receives an enter-echo message at some time T ′′ ≤ tjp

from a node q′ that is active throughout [max{0, t′− 2D}, t′+D] ⊇ [max{0, t′− 2D}, t−D].

Let T ′ be the time that q′ sent its enter-echo message in reply to the enter message from p.

Then tsT
′

q′ ≤ tsT
′′

p ≤ tstp.

Note that tw < tep ≤ t′ so tw + D ≤ t′ + D. If tw ≥ max{0, t′ − 2D}, then q′ is

active throughout [tw, tw + D]. Since t ≥ max{T ′′, tw + 2D}, it follows by Lemma 56 that

tstp ≥ tswp(o). So, suppose tw < max{0, t′ − 2D}.

Since tw ≥ 0, it follows that t′ > tw + 2D. If q ∈ S0, then teq = 0 ≤ tw, so, by Lemma 55,

tst
′
q ≥ tswp(o). If q ̸∈ S0, then, by the induction hypothesis, tst′q ≥ tswp(o), since q joins at

time tjq < tjp ≤ t′. Thus, in both cases, tstp ≥ tswp(o).

Lemma 59 is the key lemma for proving atomicity of CCReg. It shows that for two

non-overlapping operations in T , the timestamp of the read phase of the latter operation is

at least as big as the timestamp of the write phase of the former. Theorem 37 uses Lemma 59

to show that the timestamps of two non-overlapping operations respect real time ordering

62

and completes the proof of atomicity.

Lemma 36. For any two operations op1 and op2 in T , if op1 finishes before op2 starts, then

tswp(op1) ≤ tsrp(op2).

Proof. Let p1 be the node that invokes op1, let w denote the write phase of op1, let tw be the

start time of w, and let τw = tswp(op1) = tstwp1 . Similarly, let p2 be the node that invokes op2,

let r denote the read phase of op2, let tr be the start time of r, and let τr = tsrp(op2) = tstrp2 .

Let Qw be the set of nodes that p1 hears from during w (i.e., that sent messages causing

p1 to increment rw_counter on line 80 of Algorithm 4) and Qr be the set of nodes that p2

hears from during r (i.e., that sent messages causing p2 to increment rw_counter on line 62

of Algorithm 4). Let Pw = |Presenttwp1 | and Mw = |Memberstwp1 | be the sizes of the Present

and Members sets belonging to p1 at time tw, and Pr = |Presenttrp2| and Mr = |Memberstrp2|

be the sizes of the Present and Members sets belonging to p2 at time tr.

Case I: tr > tw + 2D. We start by showing that there exists a node q in Qr such that tjq ≤

tr − 2D. Each node q ∈ Qr receives and responds to r’s query, so it joins by time tr +D. By

Theorem 24, the number of nodes that can join during (tr−2D, tr+D] is at most the number

of nodes that can enter in (max{0, tr − 4D}, tr + D]. By Lemma 16, the number of nodes

that can enter during (max{0, tr−4D}, tr+D] is at most ((1+α)5−1) ·N(max{0, tr−4D}).

By Lemma 27, N(max{0, tr − 4D}) ≤ Mr/(1− α)4. From the code and Constraint (3.6), it

follows that |Qr| ≥ βMr > Mr(1 + α)5 − 1)/(1− α)4 ≥ (1 + α)5 − 1) ·N(max{0, tr − 4D}),

which is at most the number of nodes that can enter in (max{0, tr − 4D}, tr +D]. Thus, a

node q ∈ Qr joins by time tr − 2D.

Suppose q receives r’s query message at time t′ ≥ tr ≥ tw+2D. If q ∈ S0, then tjq = 0 ≤ tw,

so, by Lemma 55, tst′q ≥ tswp(op1) = τw. Otherwise, q ̸∈ S0, so 0 < tjq ≤ tr − 2D < t′. Since

tw + 2D < tr ≤ t′, Lemma 35 implies that tst
′
q ≥ tswp(op1) = τw. In either case, q responds

to r’s query message with a timestamp at least as large as τw and, hence, τr ≥ τw.

Case II: tr ≤ tw+2D. Let J = {p | tjp < tr and p is active at time tr}∪{p | tr ≤ tjp ≤ tr+D},

63

which contains the set of all nodes that reply to r’s query. By Theorem 24, all nodes that

are present at time max{0, tr−2D} join by time tr if they remain active. Therefore all nodes

in J are either active at time max{0, tr − 2D} or enter during (max{0, tr − 2D}, tr +D]. By

Lemma 16, |J | ≤ (1 + α)3N(max{0, tr − 2D}).

Let K be the set of all nodes that are present at time max{0, tr − 2D} and do not leave

or crash during (max{0, tr − 2D}, tr + D]. Note that K contains all the nodes in Qw that

do not leave or crash during [tw, tr + D] ⊆ [max{0, tr − 2D}, tr + D]. By Lemma 17 and

Constraint (3.1), at most (1− (1−α)3)N(max{0, tr − 2D}) nodes leave during [max{0, tr −

2D}, tr +D]. By Lemma 16, at most ((1 + α)3 − 1)N(max{0, tr − 2D}) nodes enter during

[max{0, tr − 2D}, tr +D]. So, at most ∆(1 + α)3N(max{0, tr − 2D}) nodes are crashed at

tr +D.

From the code, |Qr| ≥ βMr and, by Lemma 27, Mr ≥ (1− α)4N(max{0, tr − 4D}). So,

|Qr| ≥ β(1− α)4N(max{0, tr − 4D}).

Similarly,

|Qw| ≥ βMw ≥ β(1− α)4N(max{0, tw − 4D}).

Therefore, the size of K is at least

|Qw| − (1− (1− α)3 +∆(1 + α)3)N(max{0, tr − 2D})

≥ (β(1− α)4N(max{0, tw − 4D}))− (1− (1− α)3

+∆(1 + α)3)N(max{0, tr − 2D}). (3.11)

Since tr − tw < 2D, it follows that max{0, tr − 4D} − max{0, tw − 4D} < 2D. By

Lemma 16, N(max{0, tr − 4D}) ≤ (1 + α)2 · N(max{0, tw − 4D}). Thus we can replace

64

N(max{0, tw − 4D}) in Formula (3.11) with (1 + α)−2 ·N(max{0, tr − 4D}) and get:

|Qr|+ |K| ≥ β(1− α)4N(max{0, tr − 4D})

+ β(1− α)4(1 + α)−2N(max{0, tr − 4D})

− (1− (1− α)3 +∆(1 + α)3)N(max{0, tr − 2D})

= β(1− α)4(1 + α)−2(2 + 2α + α2)N(max{0, tr − 4D})

− (∆(1 + α)3 − (1− α)3 + 1)N(max{0, tr − 2D}).

By Lemma 16,

N(max{0, tr − 4D}) ≥ (1− α)−2N(max{0, tr − 2D}).

Thus,

|Qr|+ |K| ≥ β(1− α)2(1 + α)−2(2 + 2α + α2)N(max{0, tr − 2D})

− (∆(1 + α)3 − (1− α)3 + 1)N(max{0, tr − 2D})

= (β(1− α)2(1 + α)−2(2 + 2α + α2)− (∆(1 + α)3

− (1− α)3 + 1))N(max{0, tr − 2D})

By Constraint (3.7),

β(1 − α)2(1 + α)−2(2 + 2α + α2) > (1 + ∆)(1 + α)3 − (1 − α)3 + 1,

65

so

|Qr|+ |K| > (((1 + ∆)(1 + α)3 − (1− α)3 + 1)

− (∆(1 + α)3 − (1− α)3 + 1)) ·N(max{0, tr − 2D})

= (1 + α)3N(max{0, tr − 2D}) ≥ |J |.

This implies that K and Qr intersect, since K,Qr ⊆ J . For each node p in the intersection,

tsp ≥ τw when p sends its reply to r and, thus, τw ≤ τr.

Theorem 37. CCReg ensures atomicity.

Proof. We show that, for every execution, there is a total order on the set of all completed

read operations and all write operations that execute Line 74 of Algorithm 4 such that

every read returns the value of the latest preceding write (or the initial value if there is no

preceding write) and, if an operation op1 finishes before another operation op2 begins, then

op1 is ordered before op2.

We first order the write operations in order of their (unique) timestamps. Then, we go

over all reads in the ordering of the start times, and place a read with timestamp (0,⊥) at the

beginning of the total order. Place every other read after the write operation it reads from,

and after all the previous reads that read from this write operation. By the Observation 54,

every read in the total order returns the value of the latest preceding write (or ⊥ if there is

no preceding write).

We show that the total order respects the real-time order of non-overlapping operations

in the execution. Let op1 and op2 be two operations in T such that op1 finishes before op2

starts. By the definition of timestamps, ts(op1) ≤ tswp(op1) and tsrp(op2) ≤ ts(op2). By

Lemma 59, tswp(op1) ≤ tsrp(op2). Therefore, if op2 is a read, then

ts(op1) ≤ ts(op2) (3.12)

66

If op2 is a write, then tswp(op2) = tsrp(op2) + 1, and

ts(op1) < ts(op2) (3.13)

We consider the following cases:

• Suppose op1 and op2 are both writes. By (3.13), ts(op1) < ts(op2) and thus the

construction orders op1 before op2.

• Suppose op1 is a write and op2 is a read. By (3.12) and the construction, op2 is placed

after the write op3 that op2 reads from. If ts(op1) = ts(op2) then op1 = op3 and op2 is

placed after op1. If ts(op1) < ts(op2) then op3 is placed after op1 as ts(op1) < ts(op3)

and thus op2 is placed after op1 in the total order.

• Suppose op1 is a read and op2 is a write. By 3.13, ts(op1) < ts(op2). Now, either op2

is the first write in the execution and op1’s timestamp is (0,⊥) or there exists another

write op3 that op1 reads from. If op1’s timestamp is (0,⊥) then the construction orders

op1 before op2. Otherwise, the construction orders op3 before op2. Since op1 is ordered

after op3 but before any subsequent write, op1 precedes op2 in the total order.

• Finally, suppose that op1 and op2 are both reads. By 3.12, ts(op1) ≤ ts(op2). If op1

and op2 have the same timestamp, then they are placed after the same write (or before

the first write) and the construction orders them based on their starting times. Since

op1 completes before op2 starts, the construction places op1 before op2. If op2 has a

timestamp greater than that of op1, then ts(op2) cannot be (0,⊥) and so there is a

write operation op3 whose timestamp is greater than that of op1 and equal to that of

op2. The construction places op1 before op3 and op2 after op3.

Thus, CCReg ensures atomicity.

67

3.1.7.4 Proof that CCReg Violates Atomicity if Churn Assumption is Violated.

CCReg violates atomicity if Assumption A5 is violated. This is demonstrated by the

following execution, in which large numbers of nodes enter and leave very quickly.

Let |S0| = n and let p be a node in S0. Suppose the following sequence of events occur

before time D. First, a set of nodes, denoted Snew, enter the system, with |Snew| = m ≫ n.

All join-related messages between S0−{p} and Snew ∪{p} take D time, while the rest of the

messages take time ≪ D. Thus, nodes in Snew hear from p before any other joined node and

they use n, p’s estimate of the system size, to calculate the number of messages they should

hear from before joining. Thus all nodes in Snew join before time D but no node in S0 other

than p knows about Snew so far.

Second, immediately after joining, some node q in Snew invokes write(1). All write-related

messages between S0 and Snew take D time, while the rest of the messages take time ≪ D.

Snew is sufficiently large that the write protocol completes for q based solely on hearing from

nodes in Snew. Thus the write completes before time D but no node in S0 knows about the

enters or the write so far.

Third, immediately after the write finishes, all the nodes in Snew leave. All leave-related

messages between S0 and Snew take D time, while the rest of the messages take time ≪ D.

Thus no node in S0 knows about the enters, the write, or the leaves so far.

Finally, immediately after the leaves, node p′ ̸= p in S0 invokes a read. All read-related

messages take time ≪ D. Node p′ uses its estimate of the system size as n to decide how

many messages to wait for and is able to complete its read before time D by hearing only

from nodes in S0−{p}. Since none of these nodes knows anything about the write, the read

returns 0, which violates atomicity.

68

3.2 Byzantine-Tolerant Register Implementation in Systems with Churn

As described in Section 3.1, a shared read/write register emulation provides the illusion of

shared-memory on top of message-passing models. Emulating a Byzantine-tolerant register

requires replicating the register value on to more than two-thirds of the servers. Emulating

a register in a dynamic system where servers and clients can enter and leave the system and

be faulty is harder than in static systems.

3.2.1 Introduction

A long standing vision in distributed systems is to build reliable systems from unreliable

components. We are increasingly dependent on services provided by distributed systems

resulting in added vulnerability when it comes to failures in computer systems. In a depend-

able computing system, the term “Byzantine" fault is used to represent the worst kind of

failures imaginable. Malicious attacks, operator mistakes, software errors and conventional

crash faults are all encompassed by the term Byzantine faults [3]. The growing reliance of

industry and government on distributed systems and increased connectivity to the Internet

exposes systems to malicious attacks. Operator mistakes are also a very common cause of

Byzantine faults [54]. The growth in the size of software in general leads to an increased

number of software errors. Naturally, over the past four decades, there has been a significant

work on consensus and replication techniques that tolerate Byzantine faults [3, 55, 56, 57]

as it promises dependable systems that can tolerate any type of bad behavior.

The shared-memory model is a more convenient programming model than message-

passing, and shared register emulations provide the illusion of shared-memory on top of

message-passing models. In this work, we emulate a Byzantine-tolerant atomic register on

top of a dynamic, message-passing system that never stops changing. Typically, crash-fault-

tolerant emulations [9, 10] of a shared read/write register replicate the value of the register

in multiple servers and require readers and writers to communicate with majority of servers.

For instance, the ABD emulation [9] replicates the value of the shared register in servers.

69

It assumes that a majority of the servers do not fail. This problem of emulating a shared

register has been extended to static systems with servers subject to Byzantine faults and

these simulations typically require that two-thirds [58] or three-fourths [59] of the servers

be non-faulty. It is shown in [60] that more than two-third correctness is necessary for a

Byzantine-tolerant register simulation. Byzantine quorum systems (BQS) [57, 61, 62, 44]

are a well known tool for ensuring consistency and availability of a shared register. A BQS

is a collection of subsets of servers, each pair of which intersect in a set containing suffi-

ciently many correct servers to guarantee consistency of the replicated register as seen by

clients. Dantas et. al [63] present a comparative evaluation of several Byzantine quorum

based storage algorithms in the literature.

The success of this replicated approach for static systems, where the set of readers,

writers, and servers is fixed, has motivated several similar emulations for dynamic systems,

where nodes may enter and leave. Change in system composition due to nodes entering and

leaving is called churn. Ko et. al [37] provide a detailed discussion of churn behavior in

practice. Most existing emulations of atomic registers in dynamic systems deal with crash-

faults and rely either on the assumption that churn eventually stops for a long enough period

(e.g., DynaStore [11] and RAMBO [12]) or on the assumption that the system size is bounded

(e.g., [13], [36]). Attiya et al. [16, 17] proposed an emulation of a crash-fault tolerant shared

register in a system that does not require churn to ever stop.

Bonomi et al. [64] present an emulation of a server based regular read/write storage in

a synchronous message-passing system that is subject to “mobile Byzantine failures". They

prove that the problem is impossible to solve in an asynchronous setting. The system size,

however, is fixed and mobility, in this work refers to the Byzantine agents that can be moved

from server to server. Baldoni et al. [65] provide the first emulation of a Byzantine-tolerant

safe [52] register in an eventually synchronous system with churn but the size of the system

is upper bounded by a known parameter. To the best of our knowledge, there isn’t much

work on implementing a shared register in a dynamic system with no upper bound on the

70

system size and where servers are subject to Byzantine faults.

The first contribution of this work is an algorithm that emulates an atomic multi-

reader/multi-writer register that does not require churn to ever stop, does not have an

upper bound on the system size and tolerates up to a constant number of Byzantine servers

in the system.Although our algorithm requires that there be a constant known upper bound

on the number of Byzantine servers, this restriction is unavoidable as shown in our second

contribution. This is an impossibility result that shows that it is impossible to emulate an

atomic register in a system with churn if the system size and maximum number of servers

that can be Byzantine in the system is unknown to the nodes.

Our system model is similar to the one in [17]. We assume that there exists a parameter

D, an upper bound, unknown to the nodes, on the delay of any message (between correct

nodes). There is no lower bound on message delays and nodes do not have real time clocks.

It is proved in [17], that it is impossible to solve consensus in this model. Churn is modeled

as follows: we assume that in any time interval of length D, the number of servers that

enter or leave the system is at most a constant fraction, α (known to all nodes), of the

number of servers in the system at the beginning of the interval. Our register emulation

sacrifices atomicity when this constraint on churn is violated (as shown in [17]). We also

assume the messages are authenticated with digital signatures [66]. In real world systems

digital signatures in messages are implemented using public-key signatures [67] and message

authentication codes [68]. Intuitively, this means that Byzantine servers cannot lie about

the sender of a message.

Our algorithm is called BCCReg, for Byzantine Continuous Churn Register. It is loosely

based on the algorithm in [17]. There are several challenges with working with Byzantine

servers in a dynamic system. Unlike crash faults, data may easily be corrupted by Byzantine

servers by sending old information, modified information or even different information to

different sets of nodes while replying to a particular message. Byzantine servers may choose

to not reply to a message at all, even if it is active or they may even choose to reply to

71

a single message multiple times. Our algorithm uses a masking mechanism where at every

stage of the algorithm, we wait for at least f + 1 replies from distinct servers before taking

any major steps, to make sure at least one reply from a non-faulty server was received. We

also have a procedure to check if a message from a server should be ignored either because

it sent out multiple replies to a query or because it lied about leaving the system. While

updating the local register values with information from other servers, we need to make sure

that only writes that are confirmed by more than f servers are considered.

3.2.2 Model

Each node in the system is either a client or a server. Each node p takes steps triggered

by entering the system (Enterp), leaving the system (Leavep), or receiving a message

(Receivep). When a node p takes a step, its output can be a message to be broadcast

either to all the servers or all the clients. If p is a client then it also takes steps triggered by

the invocation of a read (Readp) or a write (Writep). The output of a step by client p can

include a response of Joinp (after entering), Returnp(v) (after invoking a read), or Ackp

(after invoking a write).

A node is present in the system at time t if it has entered but not left by time t. The

number of servers present at time t is denoted NS(t) and is called the system size. A node

is active at time t if it is present at time t and has not crashed by time t (present servers are

always active but a client that has crashed is present but not active).

There are four key system parameters: the maximum message delay D, the churn rate

α, the maximum number of Byzantine servers f , and the minimum system size NSmin(f)

which is a function of f . An execution of the system must satisfy the following:

A1: At every time t, NS(t) is finite and at least NSmin(f).

A2-A4: Every message broadcast (either to all servers or to all clients) is received at most once

by each node; only messages broadcast are received; if an intended recipient p is active

throughout [t, t + D], where t is the send time, then p receives the message; and the

72

delay of every received message is at most D.

A5: For all times t, the number of Enter and Leave events for servers during [t, t+D] is

at most α ·NS(t).

A6: Clients experience only crash failures and any number can crash. Servers can experience

(authenticated) Byzantine faults and up to f can be faulty.

A7: Reads and writes are not invoked on a client until that client has joined.

A8: At most one operation (read or write) is pending at a time at a given client.

An algorithm is correct if each of its executions satisfies:

C1: Every client that enters the system and does not leave or crash eventually joins.

C2: If a client does not leave or crash, then it eventually produces a response for each

operation (Return for Read, and Ack for Write).

C3: The read and write operations are atomic [51, 52, 53]: there is an ordering of all

completed reads and writes and some subset of the uncompleted writes such that

every read returns the value of the latest preceding write (or the initial value of the

register if there is no preceding write) and, if an operation op1 finishes before another

operation op2 begins, then op1 occurs before op2 in the ordering.

Although our model places an upper bound on message delays, it does not place any

lower bound on the message delays or on local computation times. Moreover, nodes cannot

access clocks to measure the passage of real time. Consequently, the well-known consensus

problem is unsolvable in our model as proved in [17], just as it is unsolvable in a model with

no upper bound on message delays [5].

3.2.3 Impossibility of a Uniform Algorithm with Byzantine Servers

An algorithm is called uniform if the code run by every node is independent of both

the system size and the maximum number of Byzantine servers in the system. Thus in a

73

uniform algorithm, for any particular node id p, there is only one state machine that node p

can have regardless of when it enters the system, the system size, or the maximum number

of Byzantine servers.

Theorem 38. It is impossible to simulate an atomic read/write register in our model with

a uniform algorithm.

Proof. Suppose in contradiction, there is a uniform algorithm, A, which simulates an atomic

register and can tolerate f Byzantine server failures, as long as the system size is at least

NSmin(f), for some NSmin and any f ∈ N+. Consider the following executions of A.

Execution e1: The maximum number of Byzantine servers is 1. The set of servers in the

system initially is S1, where |S1| = NSmin(1), and all servers are correct. All message delays

are D. The initial value of the simulated register is v. A new client p enters the system at

time te and joins by time tj ≥ te. Client p invokes a read on the simulated register at time

tr > tj. No other operation on the simulated register is invoked. By assumed correctness of

algorithm A, the read invoked by p returns v at some time t′r ≥ tr.

Execution e′1: Multiply the real time of every event in e1 by min{D
t′r
, 1}. As a result, all

events in the time interval [0, t′r] in e1 are compressed into the interval [0,D] in e′1.

Execution e2: The maximum number of Byzantine servers is f2 = |S1|. The set of

servers in the system initially is S2, where |S2| = Nmin(f2) and S1 is a subset of S2. There is

at least one client in the system initially. All message delays are D. The initial value of the

simulated register is v. No churn happens in this execution. Client q that was in the system

at time 0 invokes a write of v′ ̸= v at time tw. By the assumed correctness of algorithm A,

the write completes at some time t′w ≥ tw. No other operation on the simulated register is

invoked.

Finally we construct the prefix e3 of a new execution from executions e′1 and e2. First,

we specify a set of timed views2 and then we show that this set indeed forms the prefix of an
2A timed view for a node is the restriction of the execution to just the events involving that node, together

with the real times when the events occur.

74

execution. Let e13 be the set of timed views in e2. Note that e13 includes the write operation

invoked by client q. Truncate each each timed view in e13 immediately after the latest step

with associated time at most t′w, i.e., just after the write by client q finishes. Then append

steps that result in the immediate delivery of all messages that are in transit at t′w. Call the

resulting set of timed views e23. Construct e3 from e23 as follows.

Execution e3: Add to the set the prefix of the timed view of client p from e′1 that ends

at time D, but change the time associated with each step by adding t′w to it. For each

server s in S1, append the prefix of s’s timed view in e′1 that ends at time D, but change

the time associated with step by adding t′w to it. Append nothing to the timed views for the

remaining nodes (client or server).

The idea behind e3 is to have all the nodes behave correctly through q’s write of v′, and

then have a new client p enter, join, and invoke a read during which time it communicates

only with the servers in S1. However, the servers in S1 are Byzantine and start acting as

they did in e′1, causing p’s read to incorrectly return the value v, instead of v′. An important

technicality in the construction of e3 is to adjust the time of steps taken from e′1.

In order for the existence of the incorrect read by p in e3 to contradict the assumed

correctness of A, we must show that e3 is the prefix of an execution (otherwise, bad behavior

by A is irrelevant).

We show that e3 is a prefix of an execution by verifying properties A1 through A8. A1,

A5, and A6–A8 are clear.

A2–A4: Every message sent by a node (client or server) has exactly one matching receipt.

We show this in two parts: (i) If the message was sent before t′w, it was either delivered

before t′w (from e2) or at t′w if it was pending at t′w (from construction of e3). (ii) If the

message was sent after t′w: Messages exchanged between p and S1 after t′p are all delivered

within D time (from e′1) and all other messages in e3 after t′w are delivered with delay D. All

message delays in e′1 are ≤ D and the message delays in e2 are D. Therefore, the message

delays in e3 are at most D.

75

In e3, p’s read returns v, whereas the latest preceding write wrote v′ ̸= v. The value

returned by node p is incorrect and as e3 is the prefix of an execution, this violates the

safety property of the register. Therefore, it is impossible to simulate a shared register in

dynamic systems where new nodes entering have no information about the system size and

no information on the number of Byzantine servers present in the system.

76

3.2.4 The BCCReg Algorithm

In [17], all nodes in the system have a server thread and a client thread. This work

introduces a new model where the set of clients is disjoint from the set of servers in the

system, at most f servers can be Byzantine and any number of clients can crash. We

do not allow clients to be Byzantine because, a Byzantine client can maliciously contact

separate sets of servers and write different values which results in an inconsistent register

thus violating safety. The BCCReg algorithm is loosely based on the algorithm in [17]

along with modifications to accommodate the new client-server model. It is divided into

two main parts: Algorithm 8 for servers and Algorithm 9 for clients. Algorithm 10 contains

a set of common procedures used by both servers and clients nodes. The server algorithm

contains a mechanism for tracking the composition of the system with respect to servers and

for assisting clients with reads and writes. The client algorithm is for newly entered clients

to join the system and for joined clients to read from and write to the shared register. Note

that the algorithm in [17] is based on [9] and [10].

Each node p maintains a set of events, Server_Changesp, concerning the servers that

have entered, joined and left the system. A node p also maintains the set Presentp that

stores information about servers that have entered, but have not left, as far as p knows.

A server p is called a member if it has joined the system but not left. Client p maintains

the derived variable Membersp of servers that p considers as members. The variables valp,

nump and w_idp store the latest register value and its timestamp known by p. The set

Known_Writes[q]p stores the values of the writes that server q claims to know about.

Algorithm 8: When a server p enters the system, it broadcasts to all the servers an enter

message requesting information about prior events. When a server q finds out that node

p has entered (or joined or left) the system, q updates Server_Changesp accordingly and

sends out an echo message with information about the system (stored in Server_Changesp)

and the shared register (stored in the variable Known_Writes[p]p). When node p receives

at least f + 1 enter-echo messages from joined servers (to make sure at least one reply is

77

from a correct server), it calculates the number of replies it needs in order to join using γ

and Presentp . Setting γ is a key challenge in the algorithm as setting it too small might not

propagate updated information, whereas setting it too large might not guarantee termination

of the join. The algorithm sends out messages that are authenticated with digital signatures.

As a result Byzantine servers can send out incorrect information about everything except

for node ids. Algorithm 8 is run by servers and at any point in this algorithm, Byzantine

servers can modify information about anything sent out in messages, subject to the following

restrictions:

• Server_Changesp: Byzantine servers can only send out subsets of the Server_Changesp

set. They cannot modify entries as each entry in this variable contains a server node

id which was digitally signed by the sending server.

• val, num and w_id: Byzantine servers can modify variables val and num. But it

cannot modify the w_id variable which is a client node id or ⊥.

• Known_Writes[]p: Byzantine servers can send out subsets of Known_Writes[]p, but

cannot add entries. For an entry (val, (num,w_id)) in Known_Writes[q]p, Byzantine

servers can modify the val and num variables of this entry for node q.

The JoinProtocolp procedure in Algorithm 10 is used by both newly entered servers and

clients to join the system. Once joined, servers can reply to read/write queries from clients.In

addition to that, for all nodes p, there exists an in-built procedure, IsClientp(q) that can check

from a node id, q if q is a client or not. This procedure helps check whether Byzantine servers

are pretending to be clients.

Algorithm 9: Clients might be in the system from the start or may enter the system at

any time. Similar to servers, a newly entered client p, runs the JoinProtocolp procedure in

Algorithm 10 to join the system. Clients treat both read and write operations in a similar

manner. Both operations start with a read phase, which requests the current value of the

register, using a query message, followed by a write phase, using an update message. A

78

Algorithm 6 BCCReg—Local Variables for server p.
In-built Procedure:
IsClient(q) // returns true if q is a client and false if q is a server
Local Variables:
Server_Changes // set that stores information about entering, leaving and joining of

// servers known by p. Initially {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0},
// if p is in the system at time 0 and ∅ otherwise

join_bound // if non-zero, the number of enter-echo messages p should receive before joining;
// initially 0

enter_echo_counter // number of enter-echo messages received so far; initially 0
enter_echo_from_joined_counter // number of enter-echo messages from joined servers

// received so far; initially 0
is_joined // Boolean to check if p has joined the system; initially false
val // latest register value known to p; initially ⊥
num // sequence number of latest value known to p; initially 0
w_id // id of node that wrote latest value known to p; initially ⊥
Known_Writes[] // map from the set of node ids to the powerset of value-timestamp pairs.

// Initially each entry is ∅
Derived Variables:
Present = {q | enter(q) ∈ Server_Changes ∧ leave(q) ̸∈ Server_Changes}
valid_val = value-timestamp pair with latest timestamp that occurs in at least (f + 1) elements

of Known_Writes[], else (⊥, (0,⊥))

write operation broadcasts to all servers the new value it wishes to write, together with a

timestamp, which consists of a sequence number that is one larger than the largest sequence

number it has seen and its id that is used to break ties. A read operation just broadcasts

to all servers the value it is about to return, keeping its sequence number as is. As in [9],

write-back is needed to ensure the atomicity of read operations. Both the read phase and

the write phase wait to receive sufficiently many reply messages. The fraction β is used to

calculate the number of messages that should be received (stored in the rw_bound local

variable) based on the size of the Membersp set, for the operations to terminate. Setting

β is also a key challenge in the algorithm as setting it too small might not return/update

correct information from/to the register, whereas setting it too large might not guarantee

termination of the reads and writes. The fraction β also has to ensure that enough replies

from correct servers are heard so that these replies can efficiently mask incorrect replies from

Byzantine servers.

Algorithm 10: The JoinProtocol() procedure helps newly entered nodes to join the

79

Algorithm 7 BCCReg—Code for server p.
When Enterp occurs:

1: Server_Changes :=
Server_Changes ∪ {enter(p)}

2: s-bcast ⟨“enter”, p⟩
3: c-bcast ⟨“server-info”, Server_Changes⟩

When Receivep⟨“enter”, q⟩ occurs:
4: if IsValidMessage(“enter", q) then
5: Server_Changes :=

Server_Changes ∪ {enter(q)}
6: s-bcast ⟨“enter-echo”, Server_Changes,

Known_Writes[p], is_joined, q, p⟩
7: c-bcast ⟨“server-info”,

Server_Changes⟩

When Receivep⟨“enter-client”, q⟩
occurs:

8: if IsClient(q) then
9: c-bcast ⟨“enter-client-echo”,

Server_Changes, Known_Writes[p],
is_joined, q, p⟩

When Receivep⟨“enter-echo”, C, K,
j, q, r⟩ occurs:

10: if IsValidMessage(“enter-echo",
q, r) then

11: Server_Changes :=
Server_Changes ∪ C

12: if (j = true) then
13: Known_Writes[r] :=

Known_Writes[r] ∪K
14: if ¬is_joined ∧ (p = q) then
15: call JoinProtocol(j)
16: call SetValueTimestamp()

When Receivep⟨“joined”, q⟩ occurs:
17: if IsValidMessage(“joined", q) then
18: Server_Changes := Server_Changes

∪{enter(q), join(q)}
19: s-bcast ⟨“joined-echo”, q, p⟩
20: c-bcast ⟨“server-info”, Server_Changes⟩

When Receivep⟨“joined-echo”, q, s⟩
occurs:

21: if IsValidMessage(“joined-echo",
q, s) then

22: Server_Changes :=
Server_Changes ∪ {enter(q), join(q)}

23: c-bcast ⟨“server-info”, Server_Changes⟩

When Leavep occurs:
24: Server_Changes :=

Server_Changes ∪ {leave(p)}
25: s-bcast ⟨“leave”, p⟩
26: c-bcast ⟨“server-info”, Server_Changes⟩
27: halt

When Receivep⟨“leave”, q⟩ occurs:
28: if IsValidMessage(“leave", q) then
29: Server_Changes :=

Server_Changes ∪ {leave(q)}
30: s-bcast ⟨“leave-echo”, q, p⟩
31: c-bcast ⟨“server-info”, Server_Changes⟩

When Receivep⟨“leave-echo”, q, s⟩
occurs:

32: if IsValidMessage(“leave-echo", q, s) then
33: Server_Changes :=

Server_Changes ∪ {leave(q)}
34: c-bcast ⟨“server-info”, Server_Changes⟩

When Receivep⟨“query”, rt, q⟩ occurs:
35: if is_joined ∧ IsClient(q) then
36: c-bcast ⟨“reply”, Known_Writes[p], rt, q, p⟩

When Receivep⟨“update” , (v, s, i), wt, q⟩
occurs:

37: if IsClient(q) then
38: if (s, i) > (num,w_id) then
39: (val, num,w_id) := (v, s, i)
40: Known_Writes[p] := Known_Writes[p]∪

{(val, num,w_id)}
41: if is_joined then
42: c-bcast ⟨“ack”, wt, q, p⟩
43: s-bcast ⟨“update-echo”, Known_Writes[p],

p ⟩

When Receivep⟨“update-echo”, K, s⟩
occurs:

44: Known_Writes[s] := Known_Writes[s] ∪K
45: call SetValueTimestamp()

80

Algorithm 8 BCCReg—Local Variables for client p.
In-built Procedure:
IsClient(q) // returns true if q is a client and false if q is a server
Local Variables:
Server_Changes // set that stores information about entering, leaving and joining of servers

// known by p. Initially {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0}, if p is in
// the system at time 0 and ∅ otherwise

enter_echo_counter // number of enter-echo messages received so far; initially 0
enter_echo_from_joined_counter // number of enter-echo messages from joined servers

// received so far; initially 0
is_joined // Boolean to check if p has joined the system; initially false
val // latest register value known to p; initially ⊥
num // sequence number of latest value known to p; initially 0
w_id // id of node that wrote latest value known to p; initially ⊥
Known_Writes[] // map from set of node ids to the powerset of value-timestamp pairs.

// Initially each entry is ∅
temp // temporary storage for the value being read or written; initially 0
tag // used to uniquely identify read and write phases of an operation; initially 0
rw_bound // the number of replies/acks p should receive before finishing a read/write phase;

// initially 0
rw_counter // the number of replies/acks received so far for a read/write phase; initially 0
rp_pending // Boolean indicating whether a read phase is in progress; initially false
wp_pending // Boolean indicating whether a write phase is in progress; initially false
read_pending // Boolean indicating whether a read is in progress; initially false
write_pending // Boolean indicating whether a write is in progress; initially false
Derived Variables:
Present = {q | enter(q) ∈ Server_Changes ∧ leave(q) ̸∈ Server_Changes}
Members = {q | join(q) ∈ Server_Changes ∧ leave(q) ̸∈ Server_Changes}
valid_val = value-timestamp pair with latest timestamp that occurs in at least (f + 1) elements

of Known_Writes[], else (⊥, (0,⊥))

81

Algorithm 9 BCCReg—Code for client, p.
When Enterp occurs:

46: s-bcast ⟨“enter-client”, p⟩

When Receivep⟨“enter-client-echo”,
C, K, j, q, r⟩ occurs:

47: if IsValidMessage(“enter-client-echo",
q) ∧ (p = q) then

48: Server_Changes :=
Server_Changes ∪ C

49: if (j = true) then
50: Known_Writes[r] :=

Known_Writes[r] ∪K
51: if ¬is_joined ∧ (p = q) then
52: call JoinProtocol(j)
53: call SetValueTimestamp()

When Receivep⟨“server-info”, C⟩
occurs:

54: Server_Changes :=
Server_Changes ∪ C

Procedure BeginReadPhase()
55: tag++
56: s-bcast ⟨“query”, tag, p⟩
57: rw_bound := β · |Members|
58: rw_counter := 0
59: rp_pending := true

When Receivep⟨“reply”, K, rt, q, s⟩
occurs:

60: if IsValidMessage(“reply", q, rt,
s) then

61: if rp_pending ∧ (rt = tag)∧
(q = p) then

62: rw_counter++

63: Known_Writes[s] :=
Known_Writes[s] ∪K

64: if rw_counter ≥ rw_bound then
65: call SetValueTimestamp()
66: rp_pending := false
67: call BeginWritePhase()

Procedure BeginWritePhase()
68: if write_pending then
69: val := temp
70: num++
71: w_id := p
72: if read_pending then
73: temp := val
74: s-bcast ⟨“update”, (temp, num,w_id),tag, p⟩
75: rw_bound := β · |Members|
76: rw_counter := 0
77: wp_pending := true

When Receivep⟨“ack”, wt, q, s⟩ occurs:
78: if IsValidMessage(“ack", q, wt, s) then
79: if wp_pending ∧ (wt = tag) ∧ (q = p) then
80: rw_counter++
81: if rw_counter ≥ rw_bound then
82: wp_pending := false
83: if read_pending then
84: read_pending := false
85: generate Return(temp)

response
86: if write_pending then
87: write_pending := false
88: generate Ack response

When Leavep occurs:
89: halt

82

system. The other procedures in this algorithm are used to deal with Byzantine servers

and their arbitrary nature. The procedure SetValueTimestamp() checks and updates the

value-timestamp triple ((val, (num,w_id))p) to valid_valp if the timestamp of valid_valp

is higher than the latest known (num,w_id)p pair. The variable valid_valp is necessary

to make sure that before writing any value (learned from other servers) to the register, the

value was seen by at least f + 1 servers. A Byzantine server p may send out more than

one reply for a given message or keep replying after it has sent out a leavep message. The

three IsValidMessage() procedures deal with these situations. They check to make sure that

only one reply from each server for a message is processed by all nodes. They also check

whether the sender q has already sent a leaveq message. Reads and writes invoked by Byzan-

tine servers are ignored by correct servers by the IsClient() checks on Lines 35 and 37 in

Algorithm 9.

The correctness of BCCReg relies on the system parameters α, f , and NSmin satisfying

the following constraints, for some choice of algorithm parameters β and γ:

α ≤ 1− 2−1/4 ≈ 0.159 (3.14)

1 ≤ (1− α)3NSmin − 2f (3.15)

γ ≥ 1 + 2f

(1− α)3NSmin

+
(1 + α)3

(1− α)3
− 1 (3.16)

γ ≤ (1− α)3

(1 + α)3
− f

(1 + α)3NSmin

(3.17)

β ≤ (1− α)3

(1 + α)2
− f

(1 + α)2NSmin

(3.18)

β >
(1 + α)5 − 1 + 2f/NSmin

(1− α)4 − f/NSmin

(3.19)

β >
(1 + α)3 − (1− α)3 + 1 + (1 + 3f)/NSmin

[(2 + 2α + α2)(1− α)2(1 + α)−2]− 2f/NSmin

(3.20)

Constraint (3.14) is an upper bound on the churn rate to ensure that not too many

servers can leave the system in an interval of length 4D. Constraint (3.15) is a lower bound

on the minimum system size to ensure that at least f + 1 correct servers are in the system

83

Algorithm 10 BCCReg—Procedures used by client/server p

Procedure JoinProtocol(j)
90: enter_echo_counter ++
91: if (j = true) ∧ (join_bound = 0) then
92: enter_echo_from_joined_counter ++
93: if enter_echo_from_joined_counter > f then
94: join_bound := γ · |Present|
95: if enter_echo_counter≥join_bound>0 then
96: is_joined := true
97: if IsClient(p) then
98: generate Joinedp response
99: else
100: Server_Changes := Server_Changes ∪ {join(p)}
101: s-bcast ⟨“joined”, p⟩
102: c-bcast ⟨“server-info”, Server_Changes⟩

Procedure SetValueTimestamp()
103: if valid_val ̸=⊥ then
104: if timestamp of valid_val > (num,w_id) then
105: (val, num,w_id) := valid_val
106: Known_Writes[p] := Known_Writes[p]∪

{(val, num,w_id)}

Procedure IsValidMessage(type, r)
107: if type = (“enter"∨ “joined"∨“leave") ∧ (leave(r) /∈ Server_Changes) then
108: return true if this is the first type message received from r,

else return false

Procedure IsValidMessage(type, q, r)
109: if type = (“enter-echo" ∨ “enter_client-echo" ∨

“joined-echo" ∨ “leave-echo")
∧ (leave(r) /∈ Server_Changes) then

110: return true if this is the first type message for q received from r,
else return false

Procedure IsValidMessage(type, q, tag, r)
111: if type = (“reply" ∨ “ack") ∧ (leave(r) /∈ Server_Changes) then
112: return true if this is the first type message for q with sequence tag received

from r, else return false

.

84

throughout an interval of length 3D encompassing the time a node enters, thus ensuring that

the newly entered node successfully terminates its joining protocol. Constraint (3.16) ensures

that the join_bound fraction, γ, is large enough such that updated information about the

system is obtained by an entered node before it joins the system. Constraint (3.17) ensures

that γ is small enough such that for all entered nodes, a join operation terminates if the

entered node is not Byzantine or it does not leave or crash. Constraint (3.18) ensures that

the rw_bound fraction, β, is small enough such that termination of reads and writes is

guaranteed. Constraints (3.19) and (3.20) ensure that β is large enough such that atomicity

is not violated by read and write operations. above constraints are satisfied. In all consistent

sets of parameters, the churn rate α is never more than 0.05. The algorithm can tolerate

any size of f as long as NSmin is proportionally big. Table 3.3 provides a few sets of

values for system parameters f ,NSmin and α and algorithm parameters γ and β that satisfy

Constraints 3.14 to 3.20

BCCReg violates atomicity if Assumption A5 is violated.

3.2.5 Correctness Proof of BCCReg

We will show that BCCReg satisfies the properties C1 to C3 listed at the end of Sec-

tion 3.2.2. Lemmas 39 through 46 are used to prove Theorem 47, which states that every

client and any correct server eventually joins, provided it does not crash or leave. Lemmas 49

through 51 are used to prove Theorem 52, which states that every operation invoked by a

client that remains active eventually completes. Lemmas 55 through 35 are used to prove

Theorem 37, which states that atomicity is satisfied.

Consider any execution. We begin by bounding the number of servers that enter during

an interval of time and the number of servers that are present at the end of the interval, as

compared to the number present at the beginning.

Lemmas 39 and 40 bound the maximum number of servers that can enter and/or leave the

system in any interval of time. Lemma 41 proves that at least f+1 correct servers are active

throughout any interval of length 3D. This lemma is necessary to ensure that at all times,

85

system algorithm
parameters parameters

maximum minimum churn join_bound rw_bound
failures system rate fraction fraction

(f) size (NSmin) (α) (γ) (β)
1 8 0 N/A 0.86
1 10 0.01 0.82 0.84
1 13 0.02 0.79 0.80
1 190 0.05 0.79 0.80
2 19 0.01 0.80 0.83
2 24 0.02 0.81 0.82
2 347 0.05 0.70 0.77
5 44 0.01 0.80 0.83
5 57 0.02 0.79 0.82
5 826 0.05 0.79 0.82
10 85 0.01 0.80 0.83
10 113 0.02 0.79 0.82
10 1630 0.05 0.79 0.82
100 838 0.01 0.79 0.82
100 1107 0.02 0.79 0.82
100 16015 0.05 0.79 0.82
1000 8360 0.01 0.79 0.82
1000 11042 0.02 0.79 0.82
1000 159935 0.05 0.79 0.82

Table 3.3: Values for the BCCReg parameters that satisfy constraints (3.14) to (3.20)

86

an active node (client or server) that expects replies, hears back from at least f + 1 correct

servers in order to mask the bad information sent by Byzantine servers. Lemmas 44 to 46

show that information about correct servers entering, joining, and leaving is propagated

to active clients and correct servers properly, via the Server_Changes sets. Lemmas 39

through 46 are used to prove Theorem 47 which states that every client and every correct

server eventually completes the join protocol in Algorithm 10, provided it does not crash or

leave.

3.2.5.1 Proof that Join Protocol Terminates

Lemma 39. For all i ∈ N and all t ≥ 0, at most ((1 + α)i − 1)NS(t) servers enter during

(t, t+Di] and (1− α)iNS(t) ≤ NS(t+Di) ≤ (1 + α)iNS(t).

Refer to Lemma 16 for the proof. We are also interested in the number of servers that

leave during an interval of time. The calculation of the maximum number of servers that leave

during an interval is complicated by the possibility of servers entering during the interval,

allowing additional servers to leave.

Lemma 40. For α > 0, all nonnegative integers i ≤ −1/ log2(1− α) and every time t ≥ 0,

at most (1− (1− α)i)NS(t) servers leave during (t, t+Di].

Refer to Lemma 17 for the proof.

Recall that a server is active at time t if it has entered by time t, but has not left by time

t. The next lemma shows that there are f +1 correct servers that remain active throughout

any interval of length 3D.

Lemma 41. For every t > 0, at least f +1 correct servers are active throughout [max{0, t−

2D}, t+D].

Proof. Let S be the set of servers present at time t′ = max{0, t − 2D}, so |S| = NS(t′) ≥

NSmin. Constraint (3.14) implies that −1/ log2(1− α) ≥ 4 ≥ 3. So, by Lemma 40, at most

(1 − (1 − α)3)|S| servers leave during (t′, t + D] and there are at least (1 − α)3|S| servers

87

present throughtout time interval (t′, t + D]. At any point in time, there are at most f

Byzantine servers in the system. Thus, at least

(1− α)3|S| − f ≥ (1− α)3NSmin − f

correct servers in S are active at time t+D. By Constraint (3.15), (1−α)3NSmin − f ≥

f + 1, so at least f + 1 correct servers in S are still active at time t+D.

Below, a local variable name is superscripted with t to denote the value of that variable

at time t; e.g., vtp is the value of node p’s local variable v at time t.

In the analysis, we will frequently be comparing the data in nodes’ Server_Changes sets

to the set of Enter, Joined, and Leave events that have actually occurred. To facilitate

this comparison, we define a set SysInfoI that contains perfect information about correct

servers for the time interval I. For each server q, let teq, and tℓq be the times when the events

Enterq, and Leaveq occur, and let tjq be the time when server q sends out a joined message.

Similarly, for each client q, let teq, tjq, and tℓq be the times when the events Enterq, Joinedq,

and Leaveq occur, respectively.

Recall that S0 is the set of servers that were in the system initially. If q ∈ S0, then we

set teq = tjq = 0. Then we have:

SysInfoI = {enter(q) | teq ∈ I} ∪ {join(q) | tjq ∈ I} ∪ {leave(q) | tℓq ∈ I}.

In particular,

SysInfo[0,0] = {enter(q) | q ∈ S0} ∪ {join(q) | q ∈ S0}.

Since a client or correct server p that is active throughout [tep, t+D] directly receives all

enter, joined, and leave messages broadcast by active clients or correct servers during [tep, t],

within D time, we have:

Observation 42. For every client and any correct server p and all times t ≥ tep, if p is

88

active at time t+D, then SysInfo[t
e
p,t] ⊆ Changest+D

p .

Let C0 be the set of clients that are in the system initially. By assumption, for every

node p ∈ S0 ∪ C0, SysInfo[0,0] ⊆ Server_Changes0p, and hence Observation 42 implies:

Observation 43. For every client and any correct server p ∈ S0 ∪C0, if p is active at time

t ≥ 0, then SysInfo[0,max{0,t−D}] ⊆ Changestp.

The purpose of Lemmas 44, 45, and 46 is to show that information about servers entering,

joining, and leaving is propagated properly, via the Server_Changes sets. From now on,

enter messages refer to both enter and enter-client messages and enter-echoes refer to both

enter-echoes and enter-client-echoes.

Lemma 44. Suppose that, at time T ′′, a client or correct server p /∈ S0 ∪ C0 receives an

enter-echo message from a correct server q sent at time T ′ in reply to an enter message

from p. Let T be any time such that max{0, T ′′ − 2D} ≤ T ≤ tep. Suppose p is active at

time T + 2D and q is active throughout [U, T + D], where U ≤ max{0, T ′′ − 2D}. Then

SysInfo(U,T] ⊆ Server_ChangesT+2D
p .

Proof. The proof is adapted from Lemma 21 to include Byzantine servers.

Lemma 45. For every client and any correct server p, if p is active at time t ≥ tep + 2D,

then SysInfo[0,t−D] ⊆ Changestp.

Proof. The proof is adapted from Lemma 22 to include Byzantine servers.

Lemma 46. For every client and any correct server p ̸∈ S0 ∪ C0, if p joins at time tjp and

is active at time t ≥ tjp, then SysInfo[0,max{0,t−2D}] ⊆ Changestp.

Proof. The proof is by induction on the order in which clients and correct servers join the

system. Let p ̸∈ S0 ∪ C0 be a client or correct server that joins at time tjp ≤ t and suppose

89

the claim holds for all clients and correct servers that join before p. If t ≥ tep + 2D, then the

claim follows by Lemma 45. So, suppose t < tep + 2D.

Before joining, p receives f+1 enter-echo message from joined servers in reply to its enter

message (Line number 93). Out of these, at most f can be from Byzantine servers. Thus,

at least one reply is from a correct server. Suppose p receives the first enter-echo message at

time t′′ sent by correct server q at time t′; tep ≤ t′ ≤ t′′ ≤ tjp. From Lemma 45, we know that

this message from q has a perfect information about the Server_Changest
′−2D set. This in

turn means that it has perfect information about the derived set Presentt′−2D. Byzantine

servers can only modify the information about the Server_Changes set by sending a subset

of its Server_Changes set. So, when node p receives at least one reply is from a correct

server, the incomplete information sent by Byzantine servers is overshadowed by this one

reply from q and thus p has a perfect information about Presentt
′−2D.

If correct server q ∈ S0, then by Observation 43, SysInfo[0,max{0,t′−D}] ⊆ Changest
′

q .

Otherwise, by the induction hypothesis, SysInfo[0,max{0,t′−2D}] ⊆ Changest
′

q , since q joined

prior to p and is active at time t′ ≥ tjq. Note that Server_Changest
′

q ⊆ Server_Changest
′′

p

⊆ Server_Changestp. If t ≤ 2D, then max{0, t− 2D} = 0 and the claim holds.

If t > 2D, then let S be the set of servers present at time max{0, t′ − 2D}; |S| =

N(max{0, t′ − 2D}). By Lemma 40 and Constraint (3.14), at most (1− (1− α)3)|S| servers

leave during (max{0, t′ − 2D}, t′ + D]. Since t′′ ≤ t′ + D, it follows that |Presentt
′′

p | ≥

|S| − (1− (1− α)3)|S| = (1− α)3|S|. Hence, from lines 94 and 95 of Algorithm 10, p waits

until it has received at least join_bound = γ ·|Presentt
′′

p | ≥ γ ·(1−α)3|S| enter-echo messages

before joining.

By Lemma 39, at most ((1 + α)3 − 1)|S| servers enter during (max{0, t′ − 2D}, t′ +D].

Thus, at time t′+D, at most (1+α)3|S| servers are present, at most f of which are Byzantine.

Hence, the number of enter-echo messages p receives before joining from servers that were

active throughout [max{0, t′ − 2D}, t′ +D] is join_bound minus the total number of server

90

enters, leaves and faults (as Byzantine servers may not reply at all), which is at least

γ · (1− α)3|S| − [((1 + α)3 − 1)|S|+ (1− (1− α)3)|S|+ f]

= [(1 + γ)(1− α)3 − (1 + α)3]|S| − f ≥ [(1 + γ)(1− α)3 − (1 + α)3]NSmin − f (3.21)

Rearranging Constraint (3.16), we get

[(1 + γ)(1− α)3 − (1 + α)3]NSmin − f ≥ f + 1,

so expression (3.21) is at least f + 1. Hence p receives an enter-echo message at some time

T ′′ ≤ tjp from a correct server q′ that is active throughout

[max{0, t′ − 2D}, t′ +D] ⊇ [max{0, t′ − 2D}, t−D].

Let T ′ be the time that q′ sent its enter-echo message in reply to the enter message from p.

Applying Lemma 44 for q′, with U = max{0, t′ − 2D}, and T = t− 2D gives

SysInfo(max{0,t′−2D},t−2D] ⊆ Server_Changestp.

Thus, we get SysInfo[0,t−2D] = SysInfo[0,max{0,t′−2D}]∪ SysInfo(max{0,t′−2D},t−2D]

⊆ Server_Changestp.

Next we prove that every client and any correct server that remains active sufficiently

long after it enters, will succeed in joining.

Theorem 47. Every client and any correct server p ̸∈ S0∪C0 that is active at time tep+2D

joins by time tep + 2D.

Proof. The proof is by induction on the order in which clients and correct servers enter the

system. Let p ̸∈ S0 ∪ C0 be a client or correct server that enters at time tep and is active at

time tep + 2D. Suppose the claim holds for all client and correct servers that enter before p.

By Lemma 41, there are f + 1 correct servers that are active throughout [max{tep −

91

2D, 0}, tep + D]. Let q be one such server. If q ∈ S0, then q joins at time 0. If not, then

teq ≤ tep − 2D, so, by the induction hypothesis, q joins by time teq +2D ≤ tep. Since q is active

at time tep+D, it receives the enter message from p during [tep, t
e
p+D] and sends an enter-echo

message in reply. Since p is active at time tep + 2D, it receives the enter-echo message from

q by time tep + 2D. Hence, by time tep + 2D, p receives at least one enter-echo message from

a correct joined server in reply to its enter message.

Suppose the first enter-echo message p receives from a correct joined server in reply to

its enter message is sent by server q′ at time t′ and received by p at time t′′. By Lemma 46,

SysInfo[0,max{0,t′−2D}] ⊆ Changest
′

q′ ⊆ Server_Changest
′′

p .

Let S be the set of servers present at time max{0, t′ − 2D}. Since t′′ ≤ t′ +D, it follows

from Lemma 39 that at most ((1 + α)3 − 1)|S| servers enter during (max{0, t′ − 2D}, t′′].

Thus, |Presentt
′′

p | ≤ |S|+ ((1 + α)3 − 1)|S| = (1 + α)3|S|. From line 94 in Algorithm 10, it

follows that join_bound ≤ γ · (1 + α)3|S|.

By Lemma 40 and Constraint (3.14), at most (1 − (1 − α)3)|S| servers leave during

(max{0, t′ − 2D}, t′ +D]. At most f servers are Byzantine at t′ +D. Since tep ≤ t′ ≤ tep +D,

the servers in S that do not leave during (max{0, t′ − 2D}, t′ +D] and are not Byzantine at

t′ +D are active throughout [tep, t
e
p +D] and send enter-echo messages in reply to p’s enter

message. By time tep + 2D, p receives all these enter-echo messages. There are at least

|S| − (1− (1− α)3)|S| − f = (1− α)3|S| − f

such enter-echo messages. By Constraint (3.17),

(1− α)3

(1 + α)3
− f

(1 + α)3NSmin

≥ γ,

92

so the value of join_bound is at most

γ · (1 + α)3|S| ≤
(
(1− α)3

(1 + α)3
− f

(1 + α)3NSmin

)
· (1 + α)3|S| = (1 − α)3|S| − f.

Thus, by time tep+2D, the condition in line 95 of Algorithm 10 holds and node p joins.

3.2.5.2 Proof that Reads and Writes by Clients Terminate

Next, we show that all read and write operations terminate. Specifically, we show that

the number of replies for which an operation waits is at most the number that it is guaranteed

to receive.

Since enter(q) is added to Server_Changesp whenever join(q) is, for server q, we get the

following observation.

Observation 48. For every time t ≥ 0 and every client p that is active at time t, Memberstp ⊆

Presenttp.

Lemma 49 relates a node’s current estimate of the number of servers present to the

number of servers that were present in the system 2D time units earlier. Lemma 50 relates a

client’s current estimate of the number of servers that are members to the number of servers

that were present in the system 4D time units earlier. Lemma 49 is used in the proof of

Lemma 51 and Lemma 50 is used in the proof of Theorem 60.

Lemma 49. For every client and any correct server p and every time t ≥ tjp at which p is

active,

(1 − α)2 · N(max{0, t − 2D}) − f ≤ |Presenttp| ≤ (1 + α)2 · N(max{0, t − 2D}).

Proof. The proof is adapted from Lemma 26 to include f Byzantine servers in the lower

bound.

93

Lemma 50. For every client p and every time t ≥ tjp at which p is active,

(1 − α)4 · N(max{0, t − 4D}) − f ≤ |Memberstp| ≤ (1 + α)4 · N(max{0, t − 4D}).

Proof. The proof is adapted from Lemma 27 to include f Byzantine servers in the lower

bound.

The next lemma proves a lower bound on the number of servers that reply to a client’s

query or update message.

Lemma 51. If a client or correct server p is active at time t ≥ tjp, then the number of

correct servers that are joined by time t and are still active at time t+D is at least
[
(1−α)3

(1+α)2

]
·

|Presenttp| − f .

Proof. By Lemma 40 and Constraint (3.14), the maximum number of servers that leave

during (max{0, t − 2D}, t +D] is at most (1 − (1 − α)3) · N(max{0, t − 2D}). Thus, there

are at least

N(max{0, t− 2D})− (1− (1− α)3) ·N(max{0, t− 2D})− f

= [(1− α)3] ·N(max{0, t− 2D})− f

correct servers that were present at time max{0, t− 2D} and are still active at time t+D.

This number is bounded below by
[
(1−α)3

(1+α)2

]
· |Presenttp|−f since, by Lemma 49, N(max{0, t−

2D}) ≥ |Presenttp|/(1 + α)2. By Theorem 47, all of these servers are joined by time t.

Theorem 52. Every read or write operation invoked by a client that remains active com-

pletes.

Proof. Each operation consists of a read phase and a write phase. We show that each phase

terminates within 2D time, provided the client remains active (does not crash or leave).

94

Consider a phase of an operation by client p that starts at time t. Every correct server

that joins by time t and is still active at time t + D receives p’s query or update message

and replies with a reply message or an ack message by time t+D. By Lemma 51, there are

at least
[
(1−α)3

(1+α)2

]
· |Presenttp| − f such servers.

From Constraint (3.18), Lemma 49 and Observation 48,

[
(1− α)3

(1 + α)2

]
· |Presenttp| − f ≥ β · |Presenttp| ≥ β · |Memberstp| = rw_boundtp.

Thus, by time t + 2D, p receives sufficiently many replies or ack messages to complete the

phase.

3.2.5.3 Proof of Atomicity of BCCReg

Now we prove atomicity of the BCCReg algorithm. Let T be the set of read operations

that complete and write operations that execute line 74 of Algorithm 9. For any node p,

let tstp = (numt
p, w_idtp) denote the timestamp of the latest value known to node p that

is recorded in its Known_Writes[p]p variable. Note that new timestamps are created by

write operations (on lines 70-71 of Algorithm 9) and are sent via enter-echo, update, and

update-echo messages. Initially, ts0p = (0,⊥) for all nodes p.

For any operation o in T by client p, the timestamp of its read phase, tsrp(o), is tstp, where

t is the end of its read phase (i.e., when the condition on line 64 of Algorithm 9 evaluates to

true). The timestamp of its write phase, tswp(o), is tstp, where t is the beginning of its write

phase (i.e., when it s-bcasts on line 74 of Algorithm 9). The timestamp of a read operation

in T is the timestamp of its read phase. The timestamp of a write operation in T is the

timestamp of its write phase.

Note that w_id is equal to p and num is set to one greater than the largest sequence

number occurring in at least f + 1 replies observed during an operation’s read phase. This

implies the next observation:

Observation 53. Each write operation in T has a unique timestamp.

95

The next observation follows by a simple induction, since every timestamp other than

(0,⊥) comes from Lines 70-71 of Algorithm 9.

Observation 54. Consider any read op1 in T . If the timestamp of a read op1 is (0,⊥),

then op1 returns ⊥. Otherwise, there is a write op2 in T such that ts(op1) = ts(op2) and the

value returned by op1 equals the value written by op2.

If a read operation op1 returns the value written by a write operation op2, then we say

that op1 reads from op2.

Lemmas 55–35 show that write phase information propagates properly through the sys-

tem. They are analogous to Observation 43 and Lemmas 44–46, regarding the propagation

of information about server Enter, Joined, and Leave events.

Lemma 55. If o is an operation in T whose write phase w starts at tw, correct server p is

active at time t ≥ tw +D, and tep ≤ tw, then tstp ≥ tswp(o).

Proof. Since server p is active throughout [tw, tw+D], it directly receives the update message

s-bcast by w at time tw. Hence, from lines 38–40 of Algorithm 8, tstp ≥ tswp(o).

Lemma 56. Suppose a correct server p ̸∈ S0 receives (f+1) enter-echo messages from correct

servers by time t′′. Let the f +1st enter-echo message from a correct server be received from

q that sends it at time t′ in reply to an enter message from p. If o is an operation whose

write phase w starts at tw, p is active at time t ≥ max{t′′, tw + 2D}, and the f + 1 correct

servers that send enter-echo messages are active throughout [tw, tw +D], then tstp ≥ tswp(o).

Proof. By Lemma 41, there are at least f+1 correct joined servers that are active throughout

[tw, tw +D]. Since q is active throughout [tw, tw +D], it receives the update message from w

at some time t̂ ∈ [tw, tw +D], so tst̂q ≥ tswp(o). At time t′′ ≤ t, p receives the enter-echo sent

by q at time t′. By the above argument, all f earlier enter-echo messages have timestamp

≥ tswp(o). So, the value of the timestamp in valid_valp and in Known_Writes[p]p is set to

≥ tswp(o). So tstp ≥ tst
′′
p ≥ tst

′
q . If t′ ≥ t̂, then tst

′
q ≥ tst̂q, so tstp ≥ tswp(o). If t̂ > t′, then q

96

sends an update-echo at time t̂ ≤ tw + D, and p receives it by time t̂ + D ≤ tw + 2D ≤ t.

The same argument works for the other f correct, active servers in the system. Thus the

timestamp of the variable valid_valp and Known_Writes[p]p is either the timestamp of w

or of a later write. Thus, tstp ≥ tst̂q ≥ tswp(o).

Lemma 57. If o is an operation in T whose write phase w starts at tw and correct server p

is active at time t ≥ max{tep + 2D, tw +D}, then tstp ≥ tswp(o).

Proof. The proof is by induction on the order in which correct servers enter the system.

Suppose the claim holds for all correct servers that enter before p. If tep ≤ tw, which is the

case for all p ∈ S0, then the claim follows from Lemma 55.

If tw < tep, then by Lemma 41, there are at least f+1 correct joined servers that are active

throughout [max{0, tep − 2D}, tep + D]. These servers receive an enter message from p and

send an enter-echo message containing tst
′
q back to p. Let q be the server whose enter-echo

is the (f + 1)th enter-echo from a correct joined server to reach p. Let server q receive the

enter message from p at some time t′ ∈ [tep, t
e
p + D]. The enter-echo message sent by q is

received by p at some time t′′ ≤ t′ + D ≤ tep + 2D ≤ t. So, the value of the timestamp in

valid_valp and in turn Known_Writes[p]p for p is set to tstp ≥ tst
′′
p ≥ tst

′
q

The first case is when tw ≥ max{0, tep − 2D}. Since tw + D < tep + D, it follows that

the f +1 correct joined servers including q are active throughout [tw, tw +D]. Furthermore,

t ≥ tep + 2D ≥ max{t′′, tw + 2D}. Hence, Lemma 56 implies that tstp ≥ tswp(o).

The second case is when tw < max{0, tep−2D}. Since tw ≥ 0, it follows that tep−2D > 0,

teq ≤ max{0, tep − 2D} = tep − 2D, and tw < tep − 2D ≤ t′ − 2D, so t′ ≥ max{teq +2D, tw +D}.

Note that q is active at time t′ and q enters before p, so, by the induction hypothesis,

tst
′
q ≥ tswp(o). The above argument is true for all the other f correct joined servers that p

hears from. Hence, tstp ≥ tswp(o).

Lemma 58. If o is an operation in T whose write phase starts at tw, correct server p ̸∈ S0

joins at time tjp, and p is active at time t ≥ max{tjp, tw + 2D}, then tstp ≥ tswp(o).

97

Proof. The proof is adapted from Lemma 35 to tolerate f Byzantine servers .

Lemma 59 is the key lemma for proving atomicity of BCCReg. It shows that for two

non-overlapping operations in T , the timestamp of the read phase of the latter operation is

at least as big as the timestamp of the write phase of the former. Theorem 60 uses Lemma 59

to show that the timestamps of two non-overlapping operations respect real time ordering

and completes the proof of atomicity.

Lemma 59. For any two operations op1 and op2 in T , if op1 finishes before op2 starts, then

tswp(op1) ≤ tsrp(op2).

Proof. Let p1 be the client that invokes op1, let w denote the write phase of op1, let tw be the

start time of w, and let τw = tswp(op1) = tstwp1 . Similarly, let p2 be the client that invokes op2,

let r denote the read phase of op2, let tr be the start time of r, and let τr = tsrp(op2) = tstrp2 .

Let Qw be the set of servers that p1 hears from during w (i.e., that sent messages causing

p1 to increment rw_counter on line 80 of Algorithm 9) and Qr be the set of servers that p2

hears from during r (i.e., that sent messages causing p2 to increment rw_counter on line 62

of Algorithm 9). Let Pw = |Presenttwp1 | and Mw = |Memberstwp1 | be the sizes of the Present

and Members sets belonging to p1 at time tw, and Pr = |Presenttrp2| and Mr = |Memberstrp2|

be the sizes of the Present and Members sets belonging to p2 at time tr.

Case I: tr > tw+2D. We start by showing that there exists f +1 correct servers in Qr such

that tjq ≤ tr − 2D.

Each server q ∈ Qr receives and responds to r’s query, so q is joined by time tr +D. By

Theorem 47, the number of servers that can join during (tr−2D, tr+D] is at most the number

of servers that can enter in (max{0, tr − 4D}, tr +D]. By Lemma 39, the number of servers

that can enter during (max{0, tr−4D}, tr+D] is at most ((1+α)5−1) ·N(max{0, tr−4D}).

By Lemma 50, (1− α)4N(max{0, tr − 4D})− f ≤ Mr.

98

From the code and Constraint (3.19), it follows that

|Qr| ≥ βMr >

[
(1 + α)5 − 1 + 2f/NSmin

(1− α)4 − f/NSmin

]
·Mr

≥
[
(1 + α)5 − 1 + 2f/NSmin

(1− α)4 − f/NSmin

]
· ((1− α)4N(max{0, tr − 4D})− f)

≥ [(1 + α)5 − 1] ·N(max{0, tr − 4D}) + 2f

which is 2f + 1 more than the maximum number of servers that can enter in (max{0, tr −

4D}, tr +D). At most f of these can be Byzantine. Thus, at least f + 1 correct servers in

Qr join by time tr − 2D.

Suppose correct server q ∈ Qr receives r’s query message at time t′ ≥ tr ≥ tw + 2D. If

q ∈ S0, then tjq = 0 ≤ tw, so, by Lemma 55, tst′q ≥ tswp(op1) = τw. Otherwise, q ̸∈ S0, so

0 < tjq ≤ tr−2D < t′. Since tw+2D < tr ≤ t′, Lemma 35 implies that tst′q ≥ tswp(op1) = τw.

In either case, q responds to r’s query message with a timestamp at least as large as τw and,

hence, τr ≥ τw.

Case II: tr ≤ tw+2D. Let J = {p | tjp < tr and p is an active server at time tr}∪{p | tr ≤ tjp ≤

tr+D}, which contains the set of all servers that reply to r’s query. By Theorem 47, all correct

servers that are present at time tr − 2D join by time tr if they remain active. Therefore all

servers in J are either active at time max{0, tr−2D} or enter during (max{0, tr−2D}, tr+D].

By Lemma 39, |J | ≤ (1 + α)3N(max{0, tr − 2D}).

Let K be the set of all servers that are present at time max{0, tr − 2D} and do not leave

during (max{0, tr − 2D}, tr + D]. Note that K contains all the servers in Qw that do not

leave during [tw, tr +D] ⊆ [max{0, tr − 2D}, tr +D]. By Lemma 40 and Constraint (3.14),

at most (1− (1− α)3)N(max{0, tr − 2D}) servers leave during [max{0, tr − 2D}, tr +D].

From the code, |Qr| ≥ βMr and, by Lemma 50, Mr ≥ (1− α)4N(max{0, tr − 4D})− f .

99

So,

|Qr| ≥ β
[
(1− α)4N(max{0, tr − 4D})− f

]
.

Similarly, |Qw| ≥ βMw ≥ β [(1− α)4N(max{0, tw − 4D})− f]. Therefore, the size of K is

at least

|K| ≥ |Qw| − (1− (1− α)3)N(max{0, tr − 2D})− f

≥ β
[
(1− α)4N(max{0, tw − 4D})− f

]
− (1− (1− α)3)N(max{0, tr − 2D})− f.

Since tr − tw ≤ 2D, it follows that max{0, tr − 4D} − max{0, tw − 4D} ≤ 2D. By

Lemma 39, N(max{0, tr − 4D}) ≤ (1 + α)2 · N(max{0, tw − 4D}). Thus we can replace

N(max{0, tw − 4D}) in the above expression with (1 + α)−2 · N(max{0, tr − 4D}) and get

the following expression for |Qr|+ |K|:

|Qr|+ |K| ≥β[(1− α)4N(max{0, tr − 4D})− f]

+ β[(1− α)4(1 + α)−2N(max{0, tr − 4D})− f]

− (1− (1− α)3)N(max{0, tr − 2D})− f

= β[(1− α)4(1 + α)−2(2 + 2α + α2)N(max{0, tr − 4D})− 2f]

− (1− (1− α)3)N(max{0, tr − 2D})− f.

By Lemma 39, N(max{0, tr − 4D}) ≥ (1− α)−2N(max{0, tr − 2D}). Thus,

|Qr|+ |K| ≥ β[(1− α)2(1 + α)−2(2 + 2α + α2)N(max{0, tr − 2D})− 2f]

− (1− (1− α)3)N(max{0, tr − 2D})− f

100

By Constraint (3.20),

β >
(1 + α)3 − (1− α)3 + 1 + (1 + 3f)/NSmin

[(2 + 2α + α2)(1− α)2(1 + α)−2]− 2f/NSmin

.

Let Ntr2D = N(max{0, tr − 2D}). So,

|Qr|+ |K| ≥


(
(1 + α)3 − (1− α)3 + 1 + (1+3f)

NSmin

)
((2 + 2α + α2)(1− α)2(1 + α)−2)− 2f/NSmin


·
(
(2 + 2α + α2)(1− α)2(1 + α)−2 − 2f

Ntr2D

)
Ntr2D

− (1− (1− α)3)]Ntr2D − f

Since, Ntr2D ≥ NSmin, we get

|Qr|+ |K| ≥
(
(1 + α)3 − (1− α)3 + 1 + (1 + 3f)/NSmin

)
Ntr2D

− f − (1− (1− α)3)]Ntr2D − f

≥ (1 + α)3Ntr2D + 2f + 1 ≥ |J |+ 2f + 1.

This implies that the intersection of K and Qr has at least 2f + 1 servers. For each servers

p in the intersection, tsp ≥ τw when p sends its reply to r. Since at most f servers can

be Byzantine, there are at least f + 1 correct servers that reply with tsp ≥ τw. Thus the

timestamp of valid_valp on Line number 103 is ≥ τw, thus, τw ≤ τr.

Theorem 60. BCCReg ensures atomicity.

Proof. The proof is adapted from Theorem 37.

101

4. CONCLUSION

4.1 Conclusion and Future Work

This dissertation describes my research to provide fault-tolerant distributed services in

the network topology and middleware layers of a distributed system in message-passing

models.

In Section 2.1 we have implemented the eventually perfect failure detector (♢P) in an

arbitrary partitionable network model composed of ADD channels which experience un-

bounded message loss and unbounded message delay for a majority of the messages. This

work is an important step towards understanding the minimal assumptions on network topol-

ogy, message sizes, reliability of channels and partial synchrony necessary to implement this

oracle. The algorithm is quite practical for sparsely connected graphs as the number of paths

between two nodes (and the message size) will be ≪ n!. Even though the message size for

this algorithm is bounded, can we do better than our current results using smaller messages

or fewer messages? We think that these are important questions that need to be answered

in the future.

In Section 3.1 we have shown how to emulate an atomic read/write register in a crash-

prone system where nodes can enter and leave continually and there is no upper bound on

the system size. Our churn model places a limit on the number of nodes entering and leaving

during each time interval of length D as a fraction of the number of nodes in the system at

the beginning of the interval. This definition is easy to state and does not depend on the

way our algorithm works. Our failure model requires the number of crashed nodes to be at

most a fraction of the nodes in the system. Separating crashes, which are unannounced, from

leaves, which are announced, allows more flexibility. We also proved a lower bound showing

that the existence of churn makes it impossible to achieve the same level of failure-resiliency

as in the static case.

102

There are a number of directions for future work. A natural question is whether the

small churn rate and failure fraction of our algorithm can be improved, perhaps with a

tighter analysis. Proving additional lower bounds or tradeoffs on these parameters is one

interesting avenue. However, it might be possible to completely avoid the bound α on the

churn rate. To prevent the number of nonfaulty nodes from becoming too small, a node

might need to obtain permission before leaving, similarly to what our algorithm does for

joining. This might enable an algorithm to ensure atomicity even when churn rate is high.

Or, perhaps some of the ideas in [69] can be adapted to obtain a modification of our algorithm

that ensures this.

Since the number of crashed nodes must never exceed a fixed fraction of the nodes present

in the system, the system can get into a situation in which no more nodes can crash or leave

unless more nodes enter. If crashed nodes could be detected in some way, then they could

be treated as nodes that have left, thus freeing up the ability for more nodes to crash or

leave. If some mechanism outside the system identifies crashed nodes and informs nodes in

the system, then leave messages can be sent on behalf of these crashed nodes, analogously

to [11] and [12]. It may even be possible to use ongoing, but bounded, churn to detect

crashed nodes, rather than relying on an out-of-system mechanism.

The communication complexity of our algorithm grows without bound. Our algorithm

sends increasingly large Changes sets. The amount of information communicated might be

reduced by sending only recent events, or by removing very old events. Furthermore, the

unbounded counters might be avoided with ideas from [70].

In Section 3.2 we provide an algorithm that emulates a Byzantine-tolerant atomic register

in a dynamic system that never stops changing and has no upper bound on the system size.

We also provide an impossibility proof that in our model, the maximum number of Byzantine

servers cannot be described as a fraction of the current system size.

There are several directions for future work. The values of α, f and NSmin that satisfy

our algorithm are quite restrictive. It will be nice to see if such restrictions are necessary or

103

if they can be improved either with a better algorithm or a tighter correctness analysis.

Currently our model tolerates the most severe end of the fault severity spectrum and

paper [17] considered the most benign end of the fault severity spectrum. The impossibility

result in Section 3.2.3 showing that we cannot have Byzantine servers as a fraction of the

system size is quite restrictive too. In future, we would like to investigate if the same

impossibility extends to less severe failures like omission failures and timing failures [71]. Our

work assumes that digital signatures are available for authenticated Byzantine fault tolerance.

A different direction for future work is the implementation of these digital signatures in

dynamic systems and explore its relation to network security.

The current way of restricting churn relies on the unknown upper bound D on message

delay. Even though nodes have no way of measuring D and it was shown in [17] that

consensus is impossible to solve in this model, it may be a bit confusing and we would like

to explore an alternative way of bounding the churn that doesn’t rely on the existence of D.

An alternative is to define the churn rate with respect to messages in transit. For example,

at all times, the number of servers that can enter/leave the system when any message is in

transit at most α times the system size when the message was sent. It may be possible to

prove that the two models are indeed equivalent, or to show that the algorithms still work,

or can be modified to work, in the new model.

104

REFERENCES

[1] P. H. Gallager, R.G. and P. Spira, “A distributed algorithm for minimum weight span-

ning trees,” pp. 66–77, 1979.

[2] E. W. Dijkstra, “Solution of a problem in concurrent programming control,” Commun.

ACM, vol. 8, no. 9, p. 569, 1965.

[3] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals problem,” ACM

Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[4] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed sys-

tems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus

with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[6] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and Ad-

vanced Topics. John Wiley & Sons, 2004.

[7] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[8] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent

objects,” ACM Trans. Programming Languages and Systems, vol. 12, pp. 463–492, July

1990.

[9] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing

systems,” J. ACM, vol. 42, pp. 124–142, Jan. 1995.

[10] N. A. Lynch and A. A. Shvartsman, “Robust emulation of shared memory using dynamic

quorum-acknowledged broadcasts,” in Proceedings of the 27th International Symposium

on Fault-Tolerant Computing, pp. 272–281, 1997.

[11] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, “Dynamic atomic storage without

consensus,” J. ACM, vol. 58, no. 2, p. 7, 2011.

105

[12] N. A. Lynch and A. A. Shvartsman, “Rambo: A Reconfigurable Atomic Memory Ser-

vice for Dynamic Networks,” in Proceedings of the 16th International Conference on

Distributed Computing, pp. 173–190, 2002.

[13] R. Baldoni, S. Bonomi, A.-M. Kermarrec, and M. Raynal, “Implementing a register

in a dynamic distributed system,” in IEEE International Conference on Distributed

Computing Systems, pp. 639–647, 2009.

[14] S. Kumar and J. L. Welch, “Implementing ⋄P with bounded messages on a network of

ADD channels,” CoRR, vol. abs/1708.02906, 2017.

[15] S. Kumar and J. Welch, “Implementing ⋄P with bounded messages on a network of add

channels,” in Parallel Processing Letters, vol. 29, 2019.

[16] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch, “Simulating a shared

register in an asynchronous system that never stops changing,” in Proceedings of 29th

International Symposium on Distributed Computing, pp. 75–91, 2015.

[17] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch, “Emulating a shared

register in a system that never stops changing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, pp. 544–559, March 2019.

[18] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed sys-

tems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[19] S. Sastry and S. M. Pike, “Eventually perfect failure detectors using ADD channels,”

in Parallel and Distributed Processing and Applications, 5th International Symposium,

ISPA 2007, Niagara Falls, Canada, August 29-31, 2007, Proceedings, pp. 483–496, 2007.

[20] I. Abraham, Y. Amit, and D. Dolev, “Optimal resilience asynchronous approxi-

mate agreement,” in Principles of Distributed Systems, 8th International Conference,

OPODIS 2004, Grenoble, France, December 15-17, 2004, Revised Selected Papers,

pp. 229–239, 2004.

106

[21] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, “Reaching ap-

proximate agreement in the presence of faults,” J. ACM, vol. 33, no. 3, pp. 499–516,

1986.

[22] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs for distributed

consensus problems,” in Proceedings of the Fourth Annual ACM Symposium on Princi-

ples of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985, pp. 59–70,

1985.

[23] J.-M. Chang and N. Maxemchuk, “Reliable broadcast protocols„” pp. 251–273, 1984.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.

[25] A. S. Tanenbaum, Computer networks, 4th Edition. Prentice Hall, 2002.

[26] F. C. Freiling, R. Guerraoui, and P. Kuznetsov, “The failure detector abstraction,” ACM

Comput. Surv., vol. 43, no. 2, pp. 9:1–9:40, 2011.

[27] M. K. Aguilera, W. Chen, and S. Toueg, “Using the heartbeat failure detector for quies-

cent reliable communication and consensus in partitionable networks,” Theor. Comput.

Sci., vol. 220, no. 1, pp. 3–30, 1999.

[28] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service of failure detectors,”

IEEE Trans. Computers, vol. 51, no. 1, pp. 13–32, 2002.

[29] S. Sastry and S. M. Pike, “Eventually perfect failure detectors using ADD channels,”

in Parallel and Distributed Processing and Applications, 5th International Symposium,

ISPA 2007, Niagara Falls, Canada, August 29-31, 2007, Proceedings, pp. 483–496, 2007.

[30] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure detection service,” in

Proceedings of the IFIP International Conference on Distributed Systems Platforms and

Open Distributed Processing, Middleware ’98, (London, UK, UK), pp. 55–70, Springer-

Verlag, 1998.

107

[31] M. Hutle, “An efficient failure detector for sparsely connected networks,” in Proceedings

of the IASTED International Conference on Parallel and Distributed Computing and

Networks, Innsbruck, Austria, February 17-19, 2004, pp. 369–374, 2004.

[32] P. Fraigniaud, S. Rajsbaum, C. Travers, P. Kuznetsov, and T. Rieutord, “Perfect failure

detection with very few bits,” in Stabilization, Safety, and Security of Distributed Sys-

tems - 18th International Symposium, SSS 2016, Lyon, France, November 7-10, 2016,

Proceedings, pp. 154–169, 2016.

[33] C. Fernández-Campusano, R. Cortiñas, and M. Larrea, “A performance study of consen-

sus algorithms in omission and crash-recovery scenarios,” in 22nd Euromicro Interna-

tional Conference on Parallel, Distributed, and Network-Based Processing, PDP 2014,

Torino, Italy, February 12-14, 2014, pp. 240–243, 2014.

[34] E. Jiménez, S. Arévalo, and A. Fernández, “Implementing unreliable failure detectors

with unknown membership,” Inf. Process. Lett., vol. 100, no. 2, pp. 60–63, 2006.

[35] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13,

no. 1, pp. 124–149, 1991.

[36] R. Baldoni, S. Bonomi, and M. Raynal, “Implementing a regular register in an eventu-

ally synchronous distributed system prone to continuous churn,” IEEE Trans. Parallel

Distrib. Syst., vol. 23, no. 1, pp. 102–109, 2012.

[37] S. Y. Ko, I. Hoque, and I. Gupta, “Using tractable and realistic churn models to an-

alyze quiescence behavior of distributed protocols,” in IEEE Symposium on Reliable

Distributed Systems, pp. 259–268, 2008.

[38] H. Attiya, “Efficient and robust sharing of memory in message-passing systems,” J. Alg.,

vol. 34, pp. 109–127, Jan. 2000.

[39] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty, “How fast can a distributed

atomic read be?,” in Proceedings of the 23rd Annual ACM Symposium on Principles of

Distributed Computing, pp. 236–245, 2004.

108

[40] R. Guerraoui and R. Levy, “Robust emulations of shared memory in a crash-recovery

model,” in Proceedings of the International Conference on Distributed Computing Sys-

tems, pp. 400–407, 2004.

[41] R. Guerraoui and M. Vukolić, “Refined quorum systems,” in Proceedings of the 26th

Annual ACM Symposium on Principles of Distributed Computing, pp. 119–128, 2007.

[42] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, “Byzantine disk paxos: optimal

resilience with Byzantine shared memory,” Dist. Comp., vol. 18, no. 5, pp. 387–408,

2006.

[43] A. S. Aiyer, L. Alvisi, and R. A. Bazzi, “Bounded wait-free implementation of optimally

resilient byzantine storage without (unproven) cryptographic assumptions,” in Proceed-

ings of 21st International Symposium on Distributed Computing, pp. 7–19, 2007.

[44] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal byzantine storage,” in Proceedings of

the 16th International Conference on Distributed Computing, pp. 311–325, 2002.

[45] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,” Dist. Comp., vol. 11, no. 4,

pp. 203–213, 1998.

[46] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright, “Probabilistic quorum systems,”

Information and Computation, vol. 170, no. 2, pp. 184–206, 2001.

[47] M. Vukolic, Quorum Systems: With Applications to Storage and Consensus. Synthesis

Lectures on Distributed Computing Theory, Morgan & Claypool Publishers, 2012.

[48] P. Musial, N. Nicolaou, and A. A. Shvartsman, “Implementing distributed shared mem-

ory for dynamic networks,” Communications ACM, vol. 57, no. 6, pp. 88–98, 2014.

[49] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25, 2001.

[50] A. Spiegelman and I. Keidar, “On liveness of dynamic storage,” CoRR,

vol. abs/1507.07086, July 2015.

109

[51] L. Lamport, “On interprocess communication. part I: basic formalism,” Distributed Com-

puting, vol. 1, no. 2, pp. 77–85, 1986.

[52] L. Lamport, “On interprocess communication. part II: algorithms,” Distributed Com-

puting, vol. 1, no. 2, pp. 86–101, 1986.

[53] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent

objects,” Trans. on Prog. Lang. Sys., vol. 12, pp. 463–492, July 1990.

[54] B. Murphy and B. Levidow, “Windows 2000 dependability,” IEEE International Con-

ference on Dependable Systems and Networks., 2000.

[55] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,”

ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, 2002.

[56] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” pp. 173–186, 1999.

[57] L. Alvisi, E. T. Pierce, D. Malkhi, M. K. Reiter, and R. N. Wright, “Dynamic byzan-

tine quorum systems,” in 2000 International Conference on Dependable Systems and

Networks (DSN 2000) (formerly FTCS-30 and DCCA-8), 25-28 June 2000, New York,

NY, USA, pp. 283–292, 2000.

[58] H. Attiya and A. Bar-Or, “Sharing memory with semi-byzantine clients and faulty stor-

age servers,” in 22nd International Symposium on Reliable Distributed Systems, 2003.

Proceedings., pp. 371–378, Oct 2003.

[59] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, “Wait-free regular storage from

byzantine components,” Information Processing Letters, vol. 101, no. 2, pp. 60 – 65,

2007.

[60] J. Martin, L. Alvisi, and M. Dahlin, “Minimal byzantine storage,” in Distributed Com-

puting, 16th International Conference, DISC 2002, Toulouse, France, October 28-30,

2002 Proceedings, pp. 311–325, 2002.

110

[61] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,” Distributed Computing,

vol. 11, no. 4, pp. 203–213, 1998.

[62] D. Malkhi, M. K. Reiter, and A. Wool, “The load and availability of byzantine quorum

systems,” SIAM J. Comput., vol. 29, no. 6, pp. 1889–1906, 2000.

[63] W. S. Dantas, A. N. Bessani, J. d. S. Fraga, and M. Correia, “Evaluating byzantine

quorum systems,” in 2007 26th IEEE International Symposium on Reliable Distributed

Systems (SRDS 2007), pp. 253–264, Oct 2007.

[64] S. Bonomi, A. D. Pozzo, M. Potop-Butucaru, and S. Tixeuil, “Optimal mobile byzantine

fault tolerant distributed storage: Extended abstract,” in Proceedings of the 2016 ACM

Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,

July 25-28, 2016, pp. 269–278, 2016.

[65] R. Baldoni, S. Bonomi, and A. S. Nezhad, “A protocol for implementing byzantine

storage in churn-prone distributed systems,” Theor. Comput. Sci., vol. 512, pp. 28–40,

2013.

[66] Y. Lindell, A. Lysyanskaya, and T. Rabin, “On the composition of authenticated byzan-

tine agreement,” J. ACM, vol. 53, no. 6, pp. 881–917, 2006.

[67] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, pp. 120–126, Feb. 1978.

[68] G. Tsudik, “Message authentication with one-way hash functions,” SIGCOMM Comput.

Commun. Rev., vol. 22, pp. 29–38, Oct. 1992.

[69] K. M. Konwar, N. Prakash, N. A. Lynch, and M. Médard, “RADON: repairable atomic

data object in networks,” in 20th International Conference on Principles of Distributed

Systems, OPODIS 2016, December 13-16, 2016, Madrid, Spain, pp. 28:1–28:17, 2016.

[70] A. Mostéfaoui and M. Raynal, “Two-bit messages are sufficient to implement atomic

read/write registers in crash-prone systems,” in Proceedings of the 2016 ACM Sympo-

111

sium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July

25-28, 2016, pp. 381–389, 2016.

[71] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun. ACM, vol. 34,

no. 2, pp. 56–78, 1991.

112

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF TABLES
	Introduction
	Introduction and Related Work
	Failure Detection in Partitionable Networks Composed of Ill-Behaved Channels
	Fault-Tolerant Register Implementation in Systems with Churn
	Crash-Tolerant Registers
	Byzantine-Tolerant Registers

	Roadmap

	FAILURE DETECTION
	Failure Detection in an Arbitrary, Partitionable Network Composed of ADD Channels
	Introduction and Related Work
	Contributions
	Model and Definitions
	Algorithm for Failure Detection
	Proof of Correctness
	Proof of Eventual Strong Accuracy
	Proof of Strong Completeness
	Proof of Bounded Message Size

	CRASH-TOLERANT REGISTER IMPLEMENTATION
	Crash-Tolerant Register Implementation in Systems with Churn
	Introduction
	Related Work
	Research Goals
	System Model and Problem Statement
	Impossibility of Consensus

	Lower Bound on Crash-Resilience
	The CCReg Algorithm
	Correctness Proof
	Proof that Join Protocol Terminates
	Proof that Reads and Writes Terminate
	Proof of Atomicity of CCReg
	 Proof that CCReg Violates Atomicity if Churn Assumption is Violated.

	Byzantine-Tolerant Register Implementation in Systems with Churn
	Introduction
	Model
	Impossibility of a Uniform Algorithm with Byzantine Servers
	The BCCReg Algorithm
	Correctness Proof of BCCReg
	Proof that Join Protocol Terminates
	Proof that Reads and Writes by Clients Terminate
	Proof of Atomicity of BCCReg

	CONCLUSION
	Conclusion and Future Work

	REFERENCES

