
ANALYSIS OF A COMPOSITIONAL MODELFOR FLUID FLOW IN POROUS MEDIAZHANGXIN CHEN, GUAN QIN, AND RICHARD E. EWING�Abstract. In this paper we consider a compositional model for three-phase multicomponent 
uid
ow in porous media. This model consists of Darcy's law for volumetric 
ow velocities, mass con-servation for hydrocarbon components, thermodynamic equilibrium for mass interchange betweenphases, and an equation of state for saturations. These di�erential equations and algebraic con-straints are rewritten in terms of various formulations of the pressure and component-conservationequations. Phase, weighted 
uid, global, and pseudo-global pressure and component-conservationformulations are analyzed. A numerical scheme based on the mixed �nite element method forthe pressure equation and the Eulerian-Lagrangian localized adjoint method for the component-conservation equations is developed. Numerical results are reported to show the behavior of thesolution to the compositional model and to investigate the performance of the proposed numericalscheme.Key words. compositional model, porous medium simulation, �nite elementsAMS subject classi�cations. 35K60, 35K65, 76S05, 76T051. Introduction. This paper deals with a three-phase multicomponent com-positional model often used in petroleum porous medium simulation. This modelincorporates compressibility, compositional e�ects, and mass interchange betweenphases. It consists of Darcy's law for volumetric 
ow velocities, mass conservation forhydrocarbon components, thermodynamic equilibrium for mass interchange betweenphases, and an equation of state for saturations. It models important enhanced oilrecovery procedures such as condensing gas drive and miscible gas injection. To un-derstand complex chemical and physical phenomena of 
uid 
ow in petroleum porousmedia, it has become increasingly important to study such a realistic model.In this paper we give a qualitative analysis of the compositional model. Themathematical structure of a simpli�ed, one-dimensional multicomponent two-phasecompositional model was analyzed in [27], where capillary pressure e�ects were notconsidered. Here we analyze multidimensional, three-phase multicomponent 
uid 
owwith the capillary e�ects. First, we manipulate the di�erential equations and algebraicconstraints of this model to derive a pressure equation and modi�ed component-conservation equations. Various formulations of the pressure equation, includingphase, weighted 
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2 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGare described. These formulations have been developed for immiscible 
uid 
ow in[11]; here we extend them to the complex compositional model.We then analyze the mathematical structure of the di�erential system of theseformulations. This system is of mixed parabolic-hyperbolic type, typical for 
uid
ow equations in porous media. We prove that the pressure equation is a standardparabolic problem and the modi�ed component-conservation equations are advection-dominated problems in the presence of capillary di�usive forces; they are purelyhyperbolic in the absence of these di�usive forces. For simplicity, we neglect hydraulicdispersion and molecular di�usion e�ects in this paper. We discuss the nonlinearityand coupling of the di�erential system as well. We show that the pressure equation isweakly nonlinear and less dependent on the conservation equations, these conservationequations are strongly nonlinear and heavily dependent on the pressure, and they arestrongly coupled to the thermodynamic equilibrium constraints.We also develop a numerical scheme for the solution of the compositional modelunder consideration. Finite di�erence and �nite element methods have been used tosolve compositional models under various assumptions on physical data (see, e.g., [1,2, 14, 28, 29]). The numerical scheme proposed here is based on the mixed �niteelement method for the pressure equation and the Eulerian-Lagrangian localized ad-joint method (ELLAM) for the component-conservation equations. The combinationof the mixed and ELLAM methods has been considered for a compositional modelin [21, 22, 23], where phase pressure and pseudo total velocity were employed. First,it is known that accurate numerical simulation requires accurate approximations to
ow velocities. However, standard �nite di�erence and �nite element methods do notlead to accurate velocities. On the other hand, the mixed method has a very satis-factory property in both this aspect and the treatment of the geometrically complexgeological structure of porous media (see the references in [12]). Second, due to theiradvection-dominated features, more suitable methods than the standard �nite di�er-ence and �nite element methods must be exploited for the component-conservationequations. The ELLAM method has been shown to be e�cient in handling this typeof problems in a mass-conservative manner [8]. Third, to handle the strong couplingof the system of the pressure and component-conservation equations, we utilize a se-quential solution procedure in this scheme to decouple it. The sequential procedurehas been chosen based on the analysis of the nonlinearity of the compositional systemand the choice of primary variables [21, 22, 23]. The numerical scheme consideredhere utilizes various pressure forms with the usual total velocity.We �nally report numerical experiments to show the behavior of the solution tothe compositional model and to investigate the performance of the proposed numericalscheme. The experiments involve a three-phase 
uid process.The rest of the paper is organized as follows. In the next section, we reviewcompositional 
ow equations. Then in section 3, we analyze an equation of stateand thermodynamic equilibrium conditions. In section 4, we derive and analyze the



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 3pressure and modi�ed component-conservation equations. In section 5, we developour numerical scheme. In section 6, we report numerical experiments. Finally, wegive some remarks in section 7.2. Governing Equations. A compositional 
ow involves mass interchange be-tween phases and compressibility. In a model for this type of 
ow, a �nite numberof hydrocarbon components is used to represent the composition of porous medium
uids. These components associate as phases in the porous medium. In this pa-per, we describe a compositional model under the assumptions that the 
ow processis isothermal (i.e., the constant temperature), the components form at most threephases (e.g., gas, oil, and water), and there is no mass interchange between the waterphase and the hydrocarbon phases (i.e., the oil and gas phases).Because of mass interchange between phases, mass is not conserved within eachphase; the total mass of each component must be conserved:(2:1) @t(�mw) +r � (�wuw) = qw;@t(�mi) +r � (cig�gug + cio�ouo) = qi; i = 1; : : : ; N;where @t denotes time di�erentiation, � is the porosity of the porous medium, g,o, and w refer to gas, oil, and water phases, i is the component index, N is thenumber of hydrocarbon components, mw and mi denote the number of overall molesper pore volume of the water and ith hydrocarbon component, cig and cio are themole fraction of the ith component in gas and oil phases, �� and u� are the molardensity and volumetric 
ow velocity of the � phase, and qw and qi stand for the molar
ow rate of the water and the ith component, respectively, � = g, o, w. In (2.1), thevolumetric velocity u� in multiphase 
ow is given by Darcy's law:(2:2) u� = �kkr��� (rp� � ��gc); � = g; o; w;where k is the e�ective permeability of the porous medium, kr�, ��, p�, and �� arethe relative permeability, viscosity, pressure, and mass density, respectively, of the�-phase, and gc is the gravitational constant vector.In addition to the di�erential equations (2.1) and (2.2), we also need algebraicconstraints for some quantities. The mass balance implies that(2:3) mi = mig +mio; i = 1; : : : ; N;where mig and mio represents the number of moles per pore volume of the ith hydro-carbon component in the oil and gas phases, respectively. Also, the mole fractions cigand cio are given by(2:4) ci� = mi�PNj=1mj� ; i = 1; : : : ; N; � = g; o:



4 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGIn the transport process, the porous medium is fully �lled up with 
uids:(2:5) sT � sg + so + sw = 1;where s� is the saturation of the �-phase, � = g, o, w. By their de�nition, thesaturations are expressed in terms of the phase compositions:(2:6) sw = mw�w ; s� = PNi=1mi��� ; � = g; o:The phase pressures are related by capillary pressures:(2:7) pc�o = p� � po; � = g; o; w;where pcoo = 0, pcgo represents the gas phase capillary pressure, and pcwo is thenegative water phase capillary pressure, which are assumed to be known functionsof the saturations. The relative permeabilities kr� are also assumed to be known interms of the saturations. The viscosities ��, molar densities ��, and mass densities�� are functions of their respective phase pressure and compositions. Finally, massinterchange between phases is characterized by the variation of mass distribution ofeach component in the oil and gas phases. As usual, these two phases are assumedto be in the phase equilibrium state at every moment. This is physically reasonablesince the mass interchange between phases occurs much faster than the 
ow of porousmedium 
uids. Consequently, the distribution of each hydrocarbon component intothe two phases is subject to the condition of stable thermodynamic equilibrium, whichis given by minimizing the Gibbs free energy of the compositional system (see thediscussion in the next section). The closedness of this system in terms of the primaryunknowns chosen in this paper will be discussed later in the fourth section. Forphysical aspects of the compositional 
ow presented here, consult [2, 3].3. Thermodynamic Equilibrium. Equations (2.1){(2.7) form a strongly cou-pled system of time-dependent, nonlinear di�erential equations and algebraic con-straints. It follows from the Gibbs phase rule that this system can be written interms of N +2 primary variables and other variables can be expressed as functions ofthem. The primary variables must be carefully chosen so that main physical propertiesinherent in the governing equations and constraints are preserved, the nonlinearityand coupling among the equations are weakened, and e�cient numerical methodsfor the solution of the resulting system can be devised. In this paper we choose(p;mT ;m1; � � � ;mN) as our primary variables for the reasons to be explained later,where p is some as yet unspeci�ed pressure and mT = mw +PNi=1mi (i.e., the totalmass per pore volume of the 
uids, see [21, 23]). Toward that end, in this sectionwe give a preliminary study on the thermodynamic equilibrium condition on the dis-tribution of hydrocarbon components into phases, which will be needed in the nextsection.



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 53.1. The Gibbs-Duhem condition. Though most of the results in Lemmas3.1 and 3.2 below might be known, we believe that a brief discussion is in order. Also,the arguments used in these two lemmas are di�erent from the usual ones, and theresults will be heavily exploited later in this section.As mentioned before, it is assumed that the oil and gas phases are in the stablephase equilibrium state at every moment, which is expressed in terms of a set of thepotential functions fi� of the ith component in the �-phase, i = 1; : : : ; N , � = g, o.Since the potential functions are derived from thermodynamic principles, they havesome important properties. One of these properties is the Gibbs-Duhem condition[25](3:1) fi� = @
�@mi� ; i = 1; : : : ; N; � = g; o;where 
� indicates the total Gibbs free energy of the �-phase. Equation (3.1) saysthat the potentials are the partial derivatives of the energy with respect to the com-positions. From (3.1), we can deduce some other important properties.Lemma 3.1. Under (3.1), we have(3:2) NXi=1mi� @fi�@mj� = 0; j = 1; : : : ; N; � = g; o;and(3:3) @fi�@mj� = @fj�@mi� ; i; j = 1; : : : ; N; � = g; o:Proof. Recall that the energy 
� is de�ned by
� = NXi=1mi�fi�;so @
�@mj� = fj� + NXi=1mi� @fi�@mj� :This, together with (3.1), implies (3.2). Also, by (3.1), we see that@fi�@mj� = @2
�@mj�@mi� = @2
�@mi�@mj� = @fj�@mi� ;which implies (3.3). This completes the proof. []We remark that the consequence of (3.3) is that the matrix (@fi�=@mj�)N�N issymmetric, � = g, o.



6 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWING3.2. The Kuhn-Tucker conditions. The total Gibbs free energy is de�ned by(3:4) 
 = 
g + 
o:Now, the constrained minimization problem for the Gibbs free energy of the compo-sitional system under consideration is formulated as follows:(3:5) Given 0 � mi; �nd (mig;mio); i = 1; : : : ; N; such that
(mig;mio) = inff
(vig; vio) : 0 � vig; vio and vig + vio = mig:From this minimization problem, we easily derive the Kuhn-Tucker conditions [17].Lemma 3.2. Let (mig;mio) be de�ned as in (3.5). Then(3:6) fig(p;m1g; : : : ;mNg) = fio(p;m1o; : : : ;mNo); i = 1; : : : ; N;and the Hessian matrix (@fig=@mjg + @fio=@mjo)N�N is symmetric and positive de�-nite at (p;mig;mio), where p is treated as a parameter.Proof. From (2.3), (3.1), and (3.4), we see that@
@mig = @
g@mig + NXj=1 @
o@mjo @mjo@mig = @
g@mig � @
o@mio = fig � fio;so (3.6) follows from (3.5). Similarly, we have that@2
@mig@mjg = @fig@mjg + @fio@mjo :Consequently, we see that (@fig=@mjg+@fio=@mjo)N�N is positive-de�nite from (3.5)and the theorem of the second-derivative test in calculus; the symmetry is obvious.The proof is complete. []3.3. Some useful relations. We now exploit Lemmas 3.1 and 3.2 to derivesome relations that will be useful in the next section.Lemma 3.3. Under the assumption of Lemma 3.2, we have(3:7) NXj=1mj�@mi�@mj = 0; �; � = g; o; � 6= �:Proof. It follows from (3.6) that @fio@mj = @fig@mj ;



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 7i.e., NXl=1 @fio@mlo @mlo@mj = NXl=1 @fig@mlg @mlg@mj :By (2.3) and (3.3), we thus see that(3:8) NXl=1  @fio@mlo + @fig@mlg! @mlo@mj = @fig@mjg = @fjg@mig ;which, together with (3.2), implies thatNXj=1 NXl=1  @fio@mlo + @fig@mlg! @mlo@mj mjg = NXj=1 @fjg@migmjg = 0:That is, NXl=1  @fio@mlo + @fig@mlg! NXj=1 @mlo@mj mjg = 0; i = 1; : : : ; N:Now, by Lemma 3.2 the only solution to this system is the null solutionNXj=1 @mlo@mj mjg = 0; l = 1; : : : ; N:With the same argument, we can showNXj=1 @mlg@mj mjo = 0; l = 1; : : : ; N:Thus the proof is completed. []Lemma 3.4. It holds that(3:9) NXj=1mj� @ci�@mj� = 0; i = 1; : : : ; N; � = g; o:This directly comes from the de�nition of ci� in (2.4).Proposition 3.5. Under the assumption of Lemma 3.2, for �, � = g, o we haveNXj=1mj� @s�@mj = ( s� if � = �;0 if � 6= �:Proof. It follows from (2.6) that(3:10) @s�@mj� = 1��  1 � s� NXl=1 @��@cl� @cl�@mj�! ;



8 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGso that @s�@mi = NXj=1 @s�@mj� @mj�@mi = 1�� 0@ NXj=1 @mj�@mi � s� NXj=1 NXl=1 @��@cl� @cl�@mj� @mj�@mi 1A :Hence, we observe thatNXi=1mi� @s�@mi = 1�� 0@ NXj=1 NXi=1mi�@mj�@mi � s� NXj=1 NXl=1 NXi=1mi� @��@cl� @cl�@mj� @mj�@mi 1A :This, together with (3.7), (3.9), and (2.6), yields the desired result. []4. The Compositional System. As mentioned before, the system in (2.1){(2.7) involves a large number of strongly coupled nonlinear di�erential equations andalgebraic constraints. To alleviate the nonlinearity and coupling, we carefully chooseour primary variables and derive a compositional system for them. This systemconsists of the (various) pressure and modi�ed component-conservation equations.We shall use the usual total 
ow velocity(4:1) u = ug + uo + uw:Several choices for p will be made later. For the time being, let us assume that p hasbeen given.4.1. The pressure equation. Note that sT = sT (p;mw;m1; : : : ;mN), as givenin (2.5), is a function of its arguments. Then it follows from the di�erentiation of(2.5) with respect to time that@sT@p @tp+ @sT@mw @tmw + NXi=1 @sT@mi@tmi = 0:Apply (2.1) to see that(4:2) cT@tp+ @sT@mwr � (�wuw)+PNi=1 @sT@mir � (cig�gug + cio�ouo)= @sT@mw qw +PNi=1 @sT@mi qi;where cT is the total 
uid and rock compressibility given by(4:3) cT = ��@sT@p +  mw @sT@mw + NXi=1mi @sT@mi! @�@p :By (2.5), we see that(4:4) @sT@mw = @sw@mw ; @sT@mi = @sg@mi + @so@mi ;



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 9and, by (2.4) and (2.6),(4:5) ci��� = mi�s� ; @sw@mw = 1�w  1 � sw @�w@mw! :Now, apply (4.1), (4.4), (4.5), and Proposition 3.5 to (4.2) to obtaincT@tp +r � u��wr � @sw@mw � � uw �PNi=1r � @sT@mi� � (cig�gug + cio�ouo)�r � �sw @�w@mwuw� = @sw@mw qw +PNi=1 @sT@mi qi:Normally, water is assumed to be incompressible or slightly compressible. In thiscase, we obtain(4:6) cT@tp+r � u� NXi=1r @sT@mi! � (cig�gug + cio�ouo) = qw�w + NXi=1 @sT@miqi;where, by (2.3) and (2.5), cT = ��@sT@p + @�@p :In the subsequent analysis, solely for notational convenience we shall utilize the as-sumption that water is incompressible; then �w is constant. It now remains to expressu in terms of p.4.1.1. Phase pressure. We �rst review the phase pressure formulation. Theoil phase pressure has been often used in petroleum porous medium simulation:(4:7) p = po:For expositional convenience, we introduce the phase mobility functions�� = kr��� ; � = g; o; w;and the total mobility � =X� ��;where (and later) P� = P�=w;o;g. Then it follows from (2.2), (2.7), and (4.7) that(4:8) u = �k� rp�G� +X� ��� rpc�o! ;where G� = gcP� ����=�. Substitution of (4.8) into (4.6) yields the equation forthe phase pressure p. The analysis of the resulting equation will be described in



10 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGsubsection 4.1.5 later. The pressure equation as split in (4.6) and (4.8) into a �rst-order di�erential system is suitable to the application of the mixed �nite elementmethod presented in the next section.From (2.2) and (2.7), we see that the phase velocity is related to the total velocityby(4:9) u� = ��� 0@u+ kX� �� fr(pc�o � pc�o)� (�� � ��)gcg1A ; � = g; o; w:4.1.2. Weighted 
uid pressure. We now de�ne a smoother pressure than thephase pressure given in (4.7). Namely, we de�ne the weighted 
uid pressure(4:10) p =X� s�p�:Note that even if some saturation is zero (i.e., some phase disappears), we still havea non-zero smooth variable p. By (2.5) and (2.7), the phase pressures are given byp� = p+ pc�o �X� s�pc�o; � = g; o; w:Then, apply (2.2) and (4.1) to see that(4:11) u = �k� rp�G� +X� ��� rpc�o �X� r(s�pc�o)! :Finally, the relationships between the phase velocities and the total velocity are thesame as in (4.9).Observe that the pressure is strongly coupled to the saturations or to the com-positions through the last term on the right-hand side of (4.8) (respectively, the lasttwo terms of (4.11)). To have less coupling, we next introduce the so-called globalpressure.4.1.3. Global pressure. To introduce a global pressure, we assume that three-phase relative permeability and capillary pressure functions satisfy the condition(4:12) @@sg  �w� ! @pcwo@sw + @@sg  �g� ! @pcgo@sw = @@sw  �w� ! @pcwo@sg + @@sw  �g� ! @pcgo@sg :This condition is referred to as the total di�erential condition [9, 11]. When it issatis�ed, we can de�ne a pressurepc(sw; sg)= R sw1 n��w� � (�; 0)@pcwo@sw (�; 0) + ��g� � (�; 0)@pcgo@sw (�; 0)od�+ R sg0 n��w� � (sw; �)@pcwo@sg (sw; �) + ��g� � (sw; �)@pcgo@sg (sw; �)od�:



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 11We now introduce the global pressure(4:13) p = po + pc:Apply (2.2), (2.7), (4.1), (4.12), and (4.13) to see that(4:14) u = �k�(rp�G�):The phase velocity is determined by(4:15) u� = ��� u+ k���r(pc � pc�o)� ���; � = g; o; w;where �� =X� ��� (�� � ��)gc:While condition (4.12) is not satis�ed for some of the existing three-phase relativepermeability and capillary pressure functions, it has been shown [11] that it is satis�edfor some simpli�edmodels. Also, a simple numerical procedure for constructing three-phase relative permeability and capillary pressure curves satisfying this condition hasbeen given in [9], some of the numerical examples have been compared with theclassical Stone's model [26], which does not satisfy this condition, and similar resultshave been obtained.4.1.4. Pseudo-global pressure. The global pressure formulation in the previ-ous subsection requires the total di�erential condition (4.12) on the shape of three-phase relative permeability and capillary pressure functions. In this subsection, asintroduced in [11], we �nally consider a pseudo-global pressure formulation, whichdoes not require this condition. For this, assume that the capillary pressures satisfythe usual condition(4:16) pcwo = pcwo(sw); pcgo = pcgo(sg):We then introduce the mean values(4:17) d��w� �(sw) = 11�sw R 1�sw0 ��w� � (sw; �)d�;d��g� �(sg) = 11�sg R 1�sg0 ��g� � (�; sg)d�;and the pseudo-global pressurep = po + Z swswc d �w� !(�)dpcwo(�)dsw d� + Z sgsgc d �g� !(�)dpcgo(�)dsg d�;



12 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGwhere swc and sgc are such that pcwo(swc) = 0 and pcgo(sgc) = 0. Now, apply thesede�nitions to (4.8) to �nd that(4:18) u = �k�8<:rp�G� +X� 0@��� � d ��� !1A dpc�ods� rs�9=; :The phase velocities in terms of the total velocity are expressed as in (4.9). A com-parison of all these formulations will be mentioned later.4.1.5. Analysis of the pressure equation. The pressure equation is given by(4.6) and (4.8) (respectively, (4.11), (4.14), or (4.18), depending upon the formulationused). We analyze the global formulation in detail. Substitution of (4.14) into (4.6)yields that(4:19) cT@tp �r � nk�(rp�G�)o=PNi=1r � @sT@mi� � (cig�gug + cio�ouo) + qw�w +PNi=1 @sT@mi qi:Since the porosity � is a non-decreasing function of pressure, @�=@p � 0. Also,the 
uid compressibility means that ��(@sT=@p) > 0. Hence, the rock and 
uidcompressibility combines to see thatcT = ��@sT@p + @�@p > 0:Furthermore, although the individual phase mobilities �� can be zero (� = g, o, w),the total mobility � is positive. Thus if the absolute permeability k of the porousmedium is positive-de�nite, so is k�. Consequently, it follows from (4.19) that thepressure equation is parabolic. Typically, the rock and 
uid compressibility is quitesmall, and the pressure reachs a steady state very rapidly. The analysis for otherformulations is exactly the same.Note that the relative permeabilities kr� (� = g; o; w) are strongly nonlinearfunctions of the saturations and the viscosities �� mainly depend on the temperature,which is constant here, and are not so sensitive to the pressure change. Thus it followsfrom their de�nitions that the phase mobilities �� are the functions of the saturations.However, since the total mobility � is a much smoother quantity than the phase ones,in general the coe�cient in the second term of the left-hand side of (4.19) can beexplicitly calculated. Also, the �rst term on the right-hand side of (4.19) is e�ectivelyquadratic in velocities, which is usually small in almost all of the porous medium, andcan be explicitly treated. Therefore, according to the rule in [2] that the variablesthat are functions of the pressure only are considered to be weakly nonlinear andthe variables that depend on the saturations are strongly nonlinear, the pressureequation is a weakly nonlinear parabolic equation. It is also less coupled to the massconservation equations derived in the next subsection.



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 13To analyze other pressure formulations, it su�ces to notice that the capillarypressures are usually smaller compared to a porous medium pressure. Consequently,the capillary pressure e�ects in these pressure equations can be explicitly handled.Hence, the above discussion on the nonlinearity for the global formulation applies tothem.4.1.6. Comparison of formulations. Since the four pressure formulationsconsidered above have the same structure as those developed in [11] for the 
owof three immiscible 
uids, we just mention a brief comparison of these formulations.For more details on both theoretical and numerical comparisons, consult [11].The global formulation is far more e�cient than the phase and pseudo-global onesfrom the computational point of view and also more suitable for mathematical analysissince the coupling between the pressure equation and the transport equations derivedin the next subsection is much less. The weakness of the global formulation is the needof the satisfaction of the total di�erential condition (4.12) by the three-phase relativepermeability and capillary pressure curves. In general, the phase formulation can beapplied. However, if the fractional 
ow functions of the water and gas phases are closeto their respective mean values as de�ned in (4.17), the pseudo-global formulation ismore useful. In the (probably unphysical) case where the capillary pressures pcgo andpcwo are zero, all the formulations are the same.4.2. The transport system. In this subsection, we derive the system of trans-port equations, i.e., modi�ed component-conservation equations. Toward that end,�rst sum the second equation in (2.1) over i, use (2.4), and sum the resulting equationwith the �rst equation in (2.1) to see that(4:20) @t(�mT ) +r �  X� ��u�! = qT ;where qT = qw +PNi=1 qi. By its de�nition, note that mT is smoother than mw. Also,the total molar 
ux P� ��u� is a much smoother quantity than the individual 
ux�wuw. That is why we have chosen mT instead of mw as our primary variable.Next, observe that the second equation in (2.1) for mi and equation (4.20) formT depend on the pressure p explicitly through the phase velocities. Thus we needto utilize (4.9) or (4.15) to eliminate these velocities.Notice that the relationships between the phase velocities and the total velocityfor the phase pressure, weighted 
uid pressure, and pseudo-global pressure formula-tions are all the same. Also, apply (4.12) and the de�nition of pc to see that@pc@sw = �w� @pcwo@sw + �g� @pcgo@sw ; @pc@sg = �w� @pcwo@sg + �g� @pcgo@sg :



14 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGThen it follows from (4.15) thatu� = ��� + ��k  �w� rpcwo + �g� rpcgo �rpc�o � ��! ; � = g; o; w;which reduces to (4.9). In terms of rpcwo and rpcgo, the component-conservationequations are thus the same for all pressure formulations. Therefore, it su�ces toderive the modi�ed conservation equations for one of them.Substitution of (4.9) into (4.20) and the use of algebraic manipulations yields(4:21) @t(�mT ) +r � �P� ����� u��r � �P�P� ������� k(�� � ��)gc�+r � n(P� ���� � �w�) �w� krpcwo + (P� ���� � �g�) �g� krpcgoo = qT :Similarly, substitute (4.9) into the second equation in (2.1) to have(4:22) @t(�mi) +r � �P�=g;o ci������ u��r � �P�=g;oP� ci�������� k(�� � ��)gc�+r � n�cig�g�gkrpcgo + �P�=g;o ci������ �P�=g;w ��� krpc�o�o = qi;for i = 1; : : : ; N .We now write rpcwo and rpcgo in terms of the overall compositions mT and mi.For notational simplicity, let pcwo and pcgo satisfy the usual assumption (4.16). Thenit follows from (2.3), (2.6), (4.16), and the de�nition of mT that(4:23) rpcwo = 1�w dpcwodsw �rmT �PNi=1rmi� ;rpcgo = dpcgodsg �@sg@p rp+PNi=1PNj=1 @sg@mig @mig@mj rmj� :Finally, substitute them into (4.21) and (4.22) to see that(4:24) @t(�mT ) +r � �P� ����� u��r � �P�P� ������� k(�� � ��)gc��r � �dTrmT +PNj=1(dwj � dT )rmj + dwprp� = qT ;where dT = � �P� ���w�� � �� �w� dpcwodsw k;dwj= � (P� ���� � �g�) �g� dpcgodsg PNl=1 @sg@mlg @mlg@mj k;dwp= � (P� ���� � �g�) �g� dpcgodsg @sg@p k;and(4:25) @t(�mi) +r � �P�=g;o ci������ u��r � �P�=g;oP� ci�������� k(�� � ��)gc��r � �diTrmT +PNj=1(dij � diT )rmj + diprp� = qi;



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 15where, for i = 1; : : : ; N ,diT= � �cig �g�w�g + cio �o�w�o� �w� dpcwodsw k;dij = � (cig�g[�g � �] + cio�o�o) �g� dpcgodsg PNl=1 @sg@mlg @mlg@mj k;dip= � (cig�g[�g � �] + cio�o�o) �g� dpcgodsg @sg@p k:The system of transport equations consists of (4.24) and (4.25) for mT and mi. Itsanalysis will be carried out in the next subsection.4.2.1. The analysis of the transport system. We note that the di�usionterms in (4.24) and (4.25) stem from the phase capillary pressures. From the proper-ties of the capillary pressures pc�o and the phase mobilities �� (� = g, w) [3], thesedi�usion terms are quite small compared to the advection terms in these equations,as mentioned before. Thus the transport system is advection-dominated. In the se-quential solution procedure presented in the next section, we decouple the di�usionterms in these equations by placing the o�-diagonal terms and other non-signi�cantterms to the right-hand side. Also, as in [21, 23] we de�ne the barycentric velocitiesuT = 1�  PNi=1migmT �gsg + PNi=1miomT �oso + mwmT �wsw ! u;and ui = 1�  migmi �gsg + miomi �oso !u:With all these, (2.4), (2.6), and also moving the gravity terms to the right-hand side,it follows from (4.24) and (4.25) that(4:26) @t(�mT ) +r � (uTmT )�r � (d1TrmT ) = FT ;where d1T = �w dpcwodsw k; d2T = �P� ���w ���w� dpcwodsw k;FT = qT +r � �d2TrmT +PNj=1(dwj � dT )rmj + dwprp�+r � �P�P� ������� k(�� � ��)gc� ;and(4:27) @t(�mi) +r � (uimi)�r � (d1irmi) = Fi;



16 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGwhere d1i = cig�g�g dpcgodsg PNl=1 @sg@mlg @mlg@mi k;d2i = � (cig�g�g + cio�o�o) �g� dpcgodsg PNl=1 @sg@mlg @mlg@mi k;Fi = qi +r � �diTrmT +PNj=1(d̂ij � diT )rmj + diprp�+r � �P�=g;oP� ci�������� k(�� � ��)gc� ;with d̂ij = dij for i 6= j and d̂ii = d2i , i, j = 1; : : : ; N .Note that sg is less dependent on the pressure p, which, together with the physicalproperties of �g and dpcgo=dsg, implies that dwp and dip are small compared to theadvection terms and other di�usion terms in (4.26) and (4.27). In this case, the termsinvolving dwp and dip in FT and Fi can be neglected.Now, the mathematical structure of the transport system is clear. Recall thatpcwo is the negative water phase capillary pressure, so dpcwo=dsw > 0 by the propertyof this capillary pressure. Hence if k is positive-de�nite, then d1T is nonnegative. Thedegeneracy of d1T is caused by the fact that �w can be zero. Therefore, equation (4.26)is a degenerate parabolic problem. Next, it follows from (3.10) that since the molardensities are less dependent on the phase compositions, we have the approximation@sg@mlg � 1�g ; l = 1; : : : ; N:Also, as in (3.8), we see thatNXl=1  @fio@mlo + @fig@mlg! @mlg@mj = @fio@mjo ; i; j = 1; : : : ; N:This equation physically relates how the phase compositions change with respect tothe overall hydrocarbon compositions, at the thermal equilibrium state and �xed pres-sure. Thus each @mig=@mi should be positive [2, 3]. Consequently, these two facts,together with the positiveness of dpcgo=dsg, imply that d1i is nonnegative; the degen-eracy of d1i is caused now by �g. Hence, equation (4.27) is also a degenerate parabolicproblem. Finally, we mention that there are N + 2 equations for the N + 2 primaryvariables (p;mT ;m1; : : : ;mN); the equations consist of the pressure equation in (4.6)and (4.8) (respectively, (4.11), (4.14), or (4.18)) and the transport equations in (4.26)and (4.27) (or (4.24) and (4.25) if desired). Other variables can be calculated by themvia the algebraic constraints described in section two. With appropriate boundaryand initial conditions, the whole compositional system is solvable (see section 5).From the de�nition of uT and ui and the previous nonlinearity analysis for thepressure equation, we see that the nonlinearity of the transport equations (4.26) and(4.27) is primarily caused by the phase mobilities (i.e., the relative permeabilities)



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 17and the minimization problem (3.5) (equivalently (3.6)). The coupling between (4.26)and (4.27) is due to the volumetric constraint (2.5), and the coupling among themodi�ed mass conservation equations for the hydrocarbon components comes from(3.5) or (3.6). Finally, through the barycentric velocities, the transport system heavilydepends on the total velocity u.We close this section with a remark. In the case where the capillary pressuree�ects are fully ignored, equations (4.26) and (4.27) become(4:28) @t(�mT ) +r � (uTmT ) = F̂T ;where F̂T = qT +r � 0@X� X� ������� k(�� � ��)gc1A ;and(4:29) @t(�mi) +r � (uimi) = F̂i; i = 1; : : : ; N;where F̂i = qi +r � 0@ X�=g;oX� ci�������� k(�� � ��)gc1A :In the sequential solution procedure below, we compute the barycentric velocitiesfrom the previous time level to linearize and decouple the advection terms in (4.26)and (4.27). This is reasonable since the barycentric velocities are smoother than thephase velocities due to the introduction of the total velocity and the scaling factorsin the de�nition of uT and ui. Then it is obvious that equations (4.28) and (4.29) arepurely hyperbolic since they are single equations. This is in striking contrast to thelong characteristic analysis presented in [27], where the phase velocities were used.5. Numerical Scheme. In this section we develop a numerical scheme for solv-ing the compositional system derived in the last section. The sequential solutionprocedure considered below to decouple this system is similar to that in [21, 23].5.1. A sequential procedure. As mentioned before, the phase compositionsof the porous medium 
uid are calculated at the thermodynamic phase equilibriumstate when a pressure and the overall compositions of the 
uid are prescribed. Thissolution technique for the phase compositions is called a 
ash calculation in mechanicsand is characterized by the minimization problem (3.5) (or equivalently (3.6)). Wenow state our sequential solution procedure as follows:1. At time t = 0, the primary variables (p;mT ;m1; : : : ;mN) are computed fromthe initial data.



18 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWING2. Use the 
ash calculation to determine the phase compositions mi�, i =1; : : : ; N , � = g, o.3. Evaluate the phase viscosities �� by empirical correlations [18] and molarand mass densities (��; ��) by the equation of state [20], and then the molefractions ci� and saturations s� by (2.4) and (2.6).4. Calculate the coe�cients of the pressure equation in (4.6) and (4.8) (respec-tively, (4.11), (4.14), or (4.18)) and some of the coe�cients of the transportsystem in (4.26) and (4.27), and then proceed to the next time level.5. Apply the mixed �nite element method in the next subsection to solve thepressure equation for u (and p if desired).6. Exploit the total velocity to complete the calculation of the coe�cients ofthe transport system (i.e., to calculate the barycentric velocities uT and ui).7. Utilize the ELLAM method considered below to solve the transport systemfor (mT ;m1; : : : ;mN).8. Perform a few iterations between the pressure equation, transport system,and constitutive relations at the current time level, if necessary.9. Go back to step two to update the coe�cients at the current time level andrepeat the above procedure until a �nal state t = T is reached.In conventional IMPES solution procedures for the simulation of compositional
ow in porous media [1, 2, 14, 28, 29], the pressure equation is solved implicitly withits coe�cients evaluated explicitly, and the transport system is solved explicitly toobtain the overall mass of each component. Hence, the size of time steps must berestricted to stablize the overall procedure due to the explicit computation of thetransport system. Also, in this procedure, initial guesses in the 
ash calculation arecomputed in terms of the phase compositions at the previous time level. Consequently,the size of the time steps has to be severely restricted. In contrast, in this paper thesequential procedure is developed to decouple and linearize the compositional system.Instead of calculating the phase velocities, an accurate total velocity is providedby the mixed method for the transport system. The latter is implicitly solved bythe ELLAM method, which produces accurate compositions without oscillations andnumerical dispersion even if large time steps are taken. Also, for the initial guesses inthe 
ash calculation, the phase compositions are computed from their values at theprevious time level by back-tracking through the characteristics used in the ELLAMmethod. In summary, in our sequential solution procedure the pressure and transportequations are linearized �rst and then solved implicitly (we call it a sequential semi-implicit method); it fully utilizes the physics of the 
ow and transport processes,improves the e�ciency and accuracy of the 
ash calculation, and relaxes the timestep restrictions. Finally, we mention that there were attempts [13, 14] to solvecompositional models in a fully coupled and implicit scheme. This scheme is stablefor large time steps, but its application is restricted to very small problems due tolimited computational resources.



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 195.2. Mixed �nite element methods. In this subsection we brie
y review themixed �nite element method for the pressure equation. For more information on thismethod for second order problems, see [4].Recall that the pressure equation can be written in the general form:(5:1) c@tp +r � u = q; (x; t) 2 
 � J;u = �a(rp� b); (x; t) 2 
 � J;where a(x; t) is a uniformly positive de�nite, bounded, symmetric tensor, b(x; t) is abounded vector, c(x; t) > 0 is a bounded function, 
 is the porous medium domain,and J = (0;T ] (T > 0) is the time interval of interest. Let @
 = ��1 [ ��2 with�1 \ �2 = ;. We consider the boundary conditions(5:2) p = �g1; (x; t) 2 �1 � J;u � � = g2; (x; t) 2 �2 � J;where � is the outer unit normal to 
, and q(x; t), g1(x; t), and g2(x; t) are givenfunctions. Finally, the initial condition is given by(5:3) p(x; 0) = p0(x); x 2 
:Problem (5.1){(5.3) is recast in mixed form as follows. LetL2(
) = nw : R
 jw(x)j2 dx <1o;H(div; 
) = fv 2 (L2(
))d : r � v 2 L2(
)g;W = L2(
);V � = fv 2 H(div; 
) : v � � = � on @�2g;where d is the space dimension of 
 and �(x) is a function de�ned on @�2. Then themixed form of (5.1) and (5.2) for a pair of maps (u; p) : J ! V g2 �W is(5:4) �c@tp;w) + (r � u;w) = (q; w); 8w 2 W;(a�1u; v)� (p;r � v) = (b; v) + (g; v � �)�1; 8v 2 V 0;where (�; �) is the L2(
) or (L2(
))d inner product, as appropriate, and (�; �)�1 denotesthe duality paring between H1=2(�1) and H�1=2(�1). System (5.4) is obtained from(5.1) by Green's formula. This system has a unique solution [4].To de�ne a �nite element method, we need a partition Eh of 
 into elementsE, say, simplexes, rectangular parallelepipeds, and/or prisms, where only faces onthe boundary � = @
 may be curved. In Eh, we also need that adjacent elementscompletely share their common face. Finally, each exterior face has imposed eitherDirichlet or Neumann conditions on it.



20 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGLet V �h �Wh � V � �W denote some standard mixed �nite element space forsecond-order elliptic problems de�ned over Eh (see [5, 6, 7, 10, 19, 24] for all themixed spaces). The mixed �nite element solution of (5.4) is (uh; ph) : J ! V g2h �Whsatisfying(5:5) �c@tph; w) + (r � uh; w) = (q; w); 8w 2 Wh;(a�1uh; v)� (ph;r � v) = (b; v) + (g; v � �)�1 ; 8v 2 V 0h :The approximate initial datum is given by(5:6) ph(x; 0) = p0h(x); x 2 
;where p0h is an appropriate approximation in Wh of p0. The system in (5.5) and (5.6)again has a unique solution. The time di�erentiation term can be discretized by thestandard backward Euler scheme or other more accurate time stepping procedures,for example. The linear system arising from (5.5) is a saddle point problem. Tosee how to solve this saddle point problem, refer to [12]. As remarked before, themixed method yields accurate approximations to both the pressure and velocity in amass-conservative manner. Also, it can handle complicated boundary conditions andgeological boundaries.
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Fig. 1. Pro�le of the mole fraction of methane.
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Fig. 2. Pro�le of the mole fraction of butane.5.3. ELLAM methods. Recall that equations (4.26) and (4.27) are advection-dominated; they are more hyperbolic. Standard �nite di�erence and �nite elementmethods produce numerical solutions with excessive oscillations, while upwindingand stablized versions of these methods tend to generate solutions with nonphysicaldispersions. Although conventional Eulerian-Lagrangian methods can overcome thesedi�culties, they fail to conserve mass. Here we very brie
y review the Eulerian-Lagrangian localized adjoint method (ELLAM), which can accurately and e�cientlysolve advection-dominated problems in a mass-conservative manner.The transport equations can be written in the form:(5:7) @t(�m) +r � (V m�Drm) = q; (x; t) 2 
 � J:For each positive integer I, let 0 = t0 < t1 < � � � < tI = T be a partition of J intosubintervals Jn = (tn�1; tn]. With any space-time test function v that vanishes outside�
� Jn and is possibly discontinuous in time at tn�1, a space-time weak formulationof (5.7) reads as follows:(5:8) (�(tn)m(tn); v(tn)) + RJn(Drm;rv)dt+ RJn(V m�Drm) � �; v)�dt� RJn(m;�@tv + V � rv)dt = ��(tn�1)m(tn�1); v(tn�1+ )�+ RJn(q; v)dt;



22 ZHANGXIN CHEN, GUAN QIN, AND RICHARD EWINGwhere v(x; tn�1+ ) = limt!tn�1+ v(x; t). In the ELLAM method, the test function v ischosen from the solution space of the adjoint problem of (5.7)(5:9) ��@tv � V � rv �r � (Drv) = 0:This solution space is in�nite-dimensional. For a numerical procedure, only a �nitenumber of test functions are needed. Di�erent choices of these functions lead todi�erent classes of approximation methods. In the localized adjoint method used inthis paper, the test function v is assumed to satisfy(5:10) �@tv + V � rv = 0 and r � (Drv) = 0:This implies that v is constant along the characteristics in the direction (�; V ). Ingeneral, we cannot track the characteristics exactly; the test function should be con-stant along approximate characteristics. Also, it follows from (5.10) that v can bechosen as standard hat functions in space. Substituting the test functions into (5.8)and carrying out some algebraic manipulations, we can derive the ELLAM methodfrom the resulting weak formulation. For further details on this method, consult [8].
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Fig. 3. Pro�le of the mole fraction of decane.
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Fig. 4. Pro�le of the gas saturation.6. Numerical Tests. The major part of this paper is concerned with the de-velopment and analysis of the compositional model and its numerical scheme. In thissection we report numerical results for a test example. A comparison of various for-mulations derived in section 4 has been given in [11] through numerical experimentsfor the 
ow of three immiscible 
uids in a porous medium. Since the structure ofthese formulations has the same pattern here, as mentioned before, the test examplepresented here does not involve the comparison. To have an example applicable toall these formulations, we take the zero capillary pressurespcgo = pcwo = 0:In this case, all the formulations are the same. Also, a comparison of the numericalmethods exploited here with other methods such as upwinding �nite di�erence andhigh-order TVD methods has been described in [23]. We shall not compare ournumerical scheme with others. Finally, the main purpose of the test example is toshow the behavior of the solution to the compositional system obtained in previoussections, so we shall consider a one-dimensional problem.The one-dimensional porous medium is 250 ft in length with a sectional area of50 ft2. The porosity of the medium is taken to be 20%. The initial pressure is 2000psi, the temperature is 160� F, and the permeability of the medium is 2 darcy. The
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Fig. 5. Pro�le of the water saturation.relative permeability functions are de�ned by the modi�ed Corey's model [15]krg = �s2:5g �1 � (1� �sg)2� ; kro = �s2:5o �1� (1� �so)3� ; krw = 0:1�s3w;where the normalized saturations are given by�sg = sg � srg1� srg � sro � srw ; �so = so � sro1 � sro � srw ; �sw = sw � srw1 � sro � srwwith the residual saturationssrg = 0; sro = 0:25; srw = 0:35:The initial water saturation is 20% and oil saturation is 80%. The molar densityof the water phase is 3.467 lb-mole/ft3 and its viscosity is 0.5 cp. The oil phase iscomposed of 20% methdane (light hydrocarbon component), 20% butane (mediumhydrocarbon component), and 60% decane (heavy hydrocarbon component).In the test example, we inject 95% water and 5% hydrocarbon mixture (45%methdane, 45% butane, and 5% decane) into the porous medium, and the totalinjection rate is 1000 lb-mole per day. This example involves a three-phase 
uid 
owprocess. The lowest-order Raviart-Thomas space [24] over 40, 50, and 80 elements is
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Fig. 6. Pro�le of the mole fraction of methane.used, and the sequential solution procedure developed in section �ve is utilized. Thepro�les of the mole fractions of methdane, butane, and decane and of the saturationsof the gas and phases are displayed in Figures 1{5. The pro�les per element vs distanceat 100 and 200 days for the experiment of 50 elements are illustrated in these �gures.As seen from them, the numerical scheme is stable and captures the sharp front ofthe solutions. Note that water is the main stream of the injecting 
uid, and a waterfront is formed and propagated as time evolves (at about 55 and 155 ft at 100 and200 days, respectively, in Figure 5). Also, notice that the porous medium pressure isincreased due to the injection, so the resident hydrocarbon 
uid is vaporized to forma gas zone, as shown in Figure 4. Figure 3 describes the computed number of themole fractions of decane, which is the main stream in the oil phase. Note that thetransition of the decane corresponds to the intersection of the water and gas fronts.In Figures 6{10, we show the results of varying the grid size; i.e., the pro�les of themole fractions of methdane, butane, and decane and of the saturations of the gas andphases at 150 days for the experiments of 40, 50, and 80 elements are presented. Weclearly see the stability and convergence of the numerical scheme proposed here.7. Conclusions. The compositional 
ow for multicomponent three-phase 
uidsin porous media involves a time-dependent, strongly coupled system of an enormous
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Fig. 7. Pro�le of the mole fraction of butane.number of nonlinear partial di�erential equations and algebraic constraints. For large-scale petroleum �elds, this system cannot be solved in a fully coupled and implicitmanner. To devise a suitable numerical algorithm for solving it, we have to deriveappropriate formulations for these di�erential equations and algebraic constraints. Inthis paper, with proper choices of primary variables we have developed a composi-tional model for multicomponent, multidimensional three-phase 
uid 
ow in porousmedia. Various pressure formulations have been incorporated in this system to allevi-ate nonlinearities and couplings. The mathematical analysis carried out here providesa qualitative structure of this compositional model. The analysis is also useful in thedesign of numerical methods for solving this model. With the mixed �nite elementmethod, we can obtain accurate volumetric 
ow velocities, which are heavily usedin the Eulerian-Lagrangian localized adjoint method for the transport system. Thelatter method is both accurate and e�cient for handling advection-dominated prob-lems. The numerical experiments done so far show a strong potential of the numericalscheme proposed in this paper. REFERENCES[1] G. Acs, S. Doleschall, and E. Farkas, General purpose compositional model, Soc. Pet. Eng. J.25 (1985), 543{553.



ANALYSIS OF A COMPOSITIONAL MODEL FOR FLUID FLOW 27
40 elements
50 elements
80 elements

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

Distance (feet)

M
ol

e 
F

ra
ct

io
n 

(%
)

Fig. 8. Pro�le of the mole fraction of decane.[2] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science Publisher Ltd, Lon-don, 1979.[3] J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1972.[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, NewYork, 1991.[5] F. Brezzi, J. Douglas, Jr., R. Dur�an, and M. Fortin, Mixed �nite elements for second orderelliptic problems in three variables, Numer. Math. 51 (1987), 237{250.[6] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. Marini, E�cient rectangular mixed �nite elementsin two and three space variables, RAIRO Mod�el. Math. Anal. Num�er. 21 (1987), 581{604.[7] F. Brezzi, J. Douglas, Jr., and L. Marini, Two families of mixed �nite elements for secondorder elliptic problems, Numer. Math. 47 (1985), 217{235.[8] M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian localized ad-joint method for the advection-di�usion equation, Advances in Water Resources 13 (1990),187{206.[9] G. Chavent and J. Ja�r�e, Mathematical Models and Finite Elements for Reservoir Simulation,North-Holland, Amsterdam, 1978.[10] Z. Chen and J. Douglas, Jr., Prismatic mixed �nite elements for second order elliptic problems,Calcolo 26 (1989), 135{148.[11] Z. Chen and R. E. Ewing, Comparison of various formulations of three-phase 
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