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Abstract. Simulations of sulfuric acid concentration and
new particle formation are performed by using the zero-
dimensional version of the model MALTE (Model to pre-
dict new Aerosol formation in the Lower TropospherE) and
measurements from the Campaign of Air Quality Research
in Beijing and Surrounding areas (CAREBeijing) in 2008.
Chemical reactions from the Master Chemical Mechanism
version 3.2 (MCM v3.2) are used in the model. High correla-
tion (slope= 0.72,R = 0.74) between the modelled and ob-
served sulfuric acid concentrations is found during daytime
(06:00–18:00). The aerosol dynamics are simulated by the
University of Helsinki Multicomponent Aerosol (UHMA)
model including several nucleation mechanisms. The re-
sults indicate that the model is able to predict the on- and
offset of new particle formation in an urban atmosphere
in China. In addition, the number concentrations of newly
formed particles in kinetic-type nucleation including ho-
mogenous homomolecular (J = K[H2SO4]2) and homoge-
nous heteromolecular nucleation involving organic vapours
(J = Khet[H2SO4][Org]) are in satisfactory agreement with
the observations. However, the specific organic compounds
that possibly participate in the nucleation process should be
investigated in further studies. For the particle growth, only
a small fraction of the oxidized total organics condense onto
the particles in polluted environments. Meanwhile, the OH
and O3 oxidation mechanism contribute 5.5 % and 94.5 % to
the volume concentration of small particles, indicating the

particle growth is more controlled by the precursor gases and
their oxidation by O3.

1 Introduction

New particle formation (NPF) events have been observed to
take place in diverse atmospheric environments all over the
world including the stratosphere, free troposphere, cloud out-
flows, coastal and marine areas, above and inside the forest,
remote continental boundary layers and polluted urban en-
vironments (Holmes, 2007; Kulmala and Kerminen, 2008;
Kulmala et al., 2004b). Both field measurements and model
results show that particle nucleation is a significant source
of potential cloud condensation nuclei (CCN), which may
influence cloud microphysical and climate-relevant proper-
ties (Merikanto et al., 2009; Spracklen et al., 2008; Wang
et al., 2013a; Wiedensohler et al., 2009; Yue et al., 2011).
Consequently, advancing our understanding on the formation
mechanisms of new particles in the atmosphere has become
critically important.

Several nucleation theories such as binary nucleation (Kul-
mala et al., 1998), ternary nucleation (Napari et al., 2002)
and ion-induced nucleation (Yu and Turco, 2000) have been
proposed and explored since last century. Gaseous sulfuric
acid has been identified as a key precursor in the nucle-
ation process because of its low vapour pressure at typical
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atmospheric temperatures (Berndt et al., 2005; Sipilä et al.,
2010; Weber et al., 1995). In most environments, the rela-
tionship between the observed particle nucleation rates and
ambient sulfuric acid concentrations with the exponents lies
in the range 1–2 (Kuang et al., 2008; Nieminen et al., 2009;
Paasonen et al., 2009; Riipinen et al., 2007; Sihto et al.,
2006). These values indicate the activation (exponent 1) and
kinetic (exponent 2) nucleation processes (Kulmala et al.,
2006; McMurry and Friedlander, 1979), respectively. Mean-
while, higher power values in Beijing have been reported
recently (Wang et al., 2011), implying that thermodynamic
process seems to work better than the activation and kinetic
nucleation theories.

The presence of sulfuric acid in gaseous concentrations
of 106–107 molecules cm−3 is necessary in order to observe
new particle formation events in the atmosphere (Zhang et
al., 2012). However, the measurement of sulfuric acid con-
centration is difficult to achieve due to the high require-
ments of technology. The first measurements of atmospheric
gaseous sulfuric acid have been performed in the strato-
sphere using passive chemical ionization mass spectrometry
(Arnold and Buhrke, 1983; Arnold and Fabian, 1980; Arnold
et al., 1982). Although the measurements of sulfuric acid in
the lower troposphere have been achieved since last century
(Eisele and Tanner, 1993; Weber et al., 1995, 1997), gaseous
sulfuric acid information is still very rare, especially in pol-
luted urban environments.

Several methods have been applied to obtain the sulfuric
acid concentration in order to make up for the absence of
direct measurement. The essential parameterization assumes
only one source (chemical reaction between sulfur dioxide
and the OH radical) and one sink (condensation onto the pre-
existing particles) for sulfuric acid in the atmosphere (Kul-
mala et al., 2001; Weber et al., 1997). Based on this assump-
tion, Petäjä et al. (2009) developed three proxies for the sul-
furic acid concentration, and the estimated results correlated
well with the observations. However, the proxies might be
site-specific. Recent research has found a single proxy for the
sulfuric acid concentration that can be applied over a greater
range of environments (Mikkonen et al., 2011). Nevertheless,
this proxy just originates from the statistical analysis, and
the real chemical process would be covered. Modelling is an
adequate possibility to trace the detailed sources and sinks
of species in the atmosphere. Several box model simulations
have been performed to calculate the sulfuric acid concentra-
tions (Boy et al., 2005, 2006).

However, all these methods were only applied in clean
environments partly due to the lack of direct sulfuric acid
measurement in the polluted environments. The first gaseous
sulfuric acid measurements in Beijing were conducted dur-
ing the CAREBeijing 2008 campaign (Zheng et al., 2011).
Hence, the purpose of this study is to test the MALTE (Model
to predict new Aerosol formation in the Lower TropospherE)
model for Beijing. The sulfuric acid concentration was mod-

elled and the new particle formation event was predicted with
various nucleation mechanisms.

2 Materials and methods

2.1 Instrumentation

The sampling site is located on the sixth floor of an aca-
demic building on the campus of Peking University (PKU;
39.99◦ N, 116.31◦ E). Two major roads with heavy traffic
at the east and south of the site are respectively 200 m
and 500 m away. Detailed descriptions of the measurement
site and surrounding environment can be found in Wu et
al. (2008). The PKU site is assumed to be representative of a
polluted urban atmosphere.

On-line high-resolution measurements of both gaseous
pollutants and aerosol characteristics were carried out simul-
taneously during the CAREBeijing 2008 campaign, from 12
July to 25 September. A dual mobility particle size spectrom-
eter TROPOS-type TDMPS (twin differential mobility par-
ticle sizer) consisting of two parallel Hauke-type differen-
tial mobility analyzers (DMAs) was used to measure number
size distributions of atmospheric particles from 3 to 900 nm
in mobility diameter (Birmili et al., 1999). The relative hu-
midity (RH) within the whole system was kept below 30 %
by adding silica-gel dryers both in the inlet line and in the
sheath air cycle to avoid condensation of water during humid
days. In addition, the particle number size distributions were
corrected for particle losses inside the TDMPS and in the
sampling configuration, following the method of the “equiv-
alent length” as described in Wiedensohler et al. (2012).

Ambient gaseous sulfuric acid concentration is mea-
sured by an AP-ID-CIMS (atmospheric pressure ion drift–
chemical ionization mass spectrometry) apparatus built by
Texas A&M University (Fortner et al., 2004; Zheng et al.,
2010). Briefly, the device consists of four major elements in-
cluding an inlet, an Am-241 ion source, a special ion-drift
tube and a quadrupole mass spectrometer. The main proton-
transfer reaction is

H2SO4 + NO−

3 · HNO3 → HSO−

4 · HNO3 + HNO3. (1)

Both reagent and product ions are detected sequentially
for 12 s. The detection limit of sulfuric acid is as low as
105 molecules cm−3 with an uncertainty of 36 %.

High time-resolution volatile organic compound (VOC)
concentrations were obtained using proton transfer reaction–
mass spectrometer (PTR-MS), which was used for the first
time in China. The uncertainties of PTR-MS for various
compounds were estimated to 20 %, and the detection limits
ranged from 20 to 250 ppt (Yuan et al., 2010). In addition, in-
stantaneous whole air samples were taken using fused silica-
lined stainless steel canisters (3.2 L, Entech Instruments,
Inc., Simi Valley, CA, USA). The samples were quantified by
gas chromatograph (GC, HP-7890A, Hewlett-Packard Co.,
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Palo Alto, CA, USA) equipped with a quadrupole mass spec-
trometer (MSD, HP-5975C, Hewlett Packard), and a flame
ionization detector (FID). Detailed analytical methods and
results can be found in Wang et al. (2010).

The photolysis frequencies of O3 (JO1D) and NO2 (JNO2)

were measured by using specifically designed filter radiome-
ters provided by the Research Centre Jülich (Forschungszen-
trum, FZJ), Germany. The accuracy of the photolysis fre-
quency measurements is estimated to be 10 % at solar zenith
angles smaller than 80◦ (Bohn et al., 2008).

Measurements of the gas concentrations were carried out
by using commercial analyzers (Ecotech, Inc.). The instru-
ment models are EC9810 for O3, EC9830 for CO, EC9850
for SO2 as well as EC9841 for NO and NOx, respectively,
with the lower detection limits 0.5 ppb, 50 ppb, 0.5 ppb and
0.5 ppb. All the trace gas instruments were maintained and
calibrated routinely, and the measurements are reported with
uncertainties of 1 % on average. Meanwhile, an automatic
meteorology station was operated to obtain meteorology pa-
rameters including temperature, relative humidity, pressure
and radiation.

All the observed data are averaged to 10 min in order
to be consistent with the particle number size distribution
measurements. The measured parameters and instrumenta-
tion used in this study are listed in Table 1.

2.2 Model description

2.2.1 MALTE

For model simulations we used the zero-dimensional version
of MALTE. The model structure is described in detail by Boy
et al. (2006, 2008b) and Lauros et al. (2011). MALTE in-
cludes modules for canopy emission of organic compounds,
gas-phase chemical reactions as well as aerosol physics.
The emission module was disabled during our simulations,
and instead the VOC concentrations obtained from PTR-
MS measurements (e.g. methanol, acetaldehyde, acetone,
isoprene, methyl vinyl ketone (MVK) and methyl acrolein
(MACR), methyl ethyl ketone (MEK), benzene, toluene,
styrene, aromatic compounds including 8 and 9 carbon atoms
respectively and monoterpenes) were used as input. Simulta-
neously GC-MS-FID measurements were used to estimate
the separation of compounds with the samem/z (MVK and
MACR, the C8 aromatic compounds, the C9 aromatic com-
pounds, and the monoterpenes). In addition, the atmospheric
trace gases SO2, NO, NOx, CO, O3 and the measured con-
densation sink (CS) for sulfuric acid were likewise used as
input to the model.

2.2.2 Chemistry

Organic and inorganic chemical reactions were mostly se-
lected from the MCM (Master Chemical Mechanism) v3.2
(Jenkin et al., 2003; Saunders et al., 2003) via the website:

http://mcm.leeds.ac.uk/MCM/. Meanwhile, additional reac-
tions from Atkinson (1994) and Atkinson et al. (2004) were
also included. The chemical equations (differential equations
and compound concentrations) are calculated by the Kinetic
PreProcessor (KPP) (Damian et al., 2002). The complete
MCM reaction paths for methane, formaldehyde, methanol,
acetaldehyde, acetone, isoprene, MVK, MACR, MEK, 2-
methyl-3-buten-2-ol (MBO),α-pinene andβ-pinene were
included. Likewise, the full chemistry paths for the follow-
ing aromatic compounds were included: benzene, toluene,
styrene and the following C8-aromatic compounds: ethyl-
benzene,o-xylene andm-xylene, as well as the following
C9-aromatic compounds: propylbenzene, 1-ethyl-2-methyl
benzene, 1-ethyl-3-methyl benzene, 1-ethyl-4-methyl ben-
zene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. In
addition, the first-order reactions between OH, O3, NO3
and the following compounds were also included: cine-
ole, ocimene, sabinene, camphene, myrcene, delta-3-carene,
limonene, “other monoterpenes” than those mentioned here,
β-caryophyllene, farnesene, and “other sesquiterpenes” than
those mentioned here. Acetonitrile was also measured, but
not included in the model simulations, due to unknown
chemistry. Totally the chemistry included 2293 chemical
species and 6604 reactions. Relevant research with more de-
tailed description for the chemistry modelling part has been
published by Mogensen et al. (2011).

2.2.3 Aerosol

Particle number size distribution patterns are estimated
by the University of Helsinki Multicomponent Aerosol
(UHMA) model, which is responsible for the aerosol dy-
namic simulation in MALTE. All the basic aerosol dynamic
processes including nucleation, condensation, coagulation
and dry deposition are implemented in the model (Korho-
nen et al., 2004). The UHMA model has been successful in
predicting the new particle formation observed in forest and
coastal environments (Boy et al., 2006; Vuollekoski et al.,
2009). In the present study we use the fixed sectional ap-
proach with 36 size bins. The size of the critical cluster is
set to 1.5 nm in the model according to field observations
(Kulmala et al., 2007) and quantum chemical calculations
(Zhang, 2010).

Both the activation (J = A[H2SO4]) and kinetic nucle-
ation (J = K[H2SO4]2) theories proposed in the ambient
studies are first tested in the model.A andK refer to the acti-
vation and kinetic nucleation coefficients, respectively, with
values of 3.0× 10−6 s−1 and 8.0× 10−13 cm3 s−1. These
values are close to the measured median values of 17 NPF
event days during CAREBeijing 2008 (Wang et al., 2013b),
however, several times higher compared to the results de-
rived from other field measurements and model simula-
tions in clean environments (Boy et al., 2008a; Paasonen
et al., 2010; Riipinen et al., 2007; Wang et al., 2011). Re-
cent research results indicate that sulfuric acid is not the
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Table 1.Atmospheric parameters and instrumentation from the CAREBeijing 2008 campaign that are used in this study.

Parameters Instruments Reference

Particle number size distribution TDMPS, IfT Wehner et al. (2008)
Sulfuric acid ID-CIMS, TA&MU Zheng et al. (2011)
VOCs PTR-MS, Ionicon Analytik Yuan et al. (2010)
JO1D/JNO2 Filter radiometer, METCON Inc. Bohn et al. (2008)
SO2/NO/NOx/CO/O3 Gas analyzers, Ecotech Inc. –
Pressure/temperature/relative humidity/radiation M7115, LSI LASTEM s.r.l –

only compound taking part in new particle formation, but
low-volatile organic vapours are also needed (Kerminen et
al., 2010; Lauros et al., 2011; Metzger et al., 2010; Ri-
ipinen et al., 2012). Here the homogenous heteromolecu-
lar nucleation mechanism, sulfuric acid-organic nucleation
(J = Khet[H2SO4][Org]), is also tested in the model. How-
ever, the specific organic species involved in the nucleation
process are still unclear. Therefore, following the previous
studies (Laaksonen et al., 2008; Lauros et al., 2011; Paaso-
nen et al., 2010), we assume that the organic vapours are the
products ofα-pinene andβ-pinene via OH radicals oxida-
tion (MTOP). The nucleation coefficientKhet ranges from
0.9× 10−12 cm3 s−1 to 8.0× 10−12 cm3 s−1. These values
are two to three orders of magnitude higher than those in
previous model simulations (Lauros et al., 2011), laboratory
experiments (Metzger et al., 2010) as well as field studies
(Paasonen et al., 2010).

The subsequent growth of newly formed particles is a cru-
cial secondary transformation process. Both sulfuric acid and
the oxidation products of organic components by reactions
with OH are assumed as the condensing vapours according
to the nano-Köhler theory (Kulmala et al., 2004a). In addi-
tion, water, sulfuric acid and reaction products of organic
components, oxidized by OH, NO3 and O3, participate in
the conventional condensational growth of particles. For our
model simulations, we have defined the condensing vapours
as the first stable oxidation products for reactions between
OH, O3, NO3 and all the organic compounds for which we
have included the full chemistry path. The molecular weights
of the condensing molecules are 98 g mol−1 for sulfuric acid
and 150 g mol−1 for the organic products, respectively. The
diffusion volumes for the condensational vapours are set to
52 cm3 mol−1 in the model. Since no saturation vapour pres-
sure estimation is currently included in our model, we have
assumed that 0.5 % of the concentration of the compounds
that we have classified as being condensing vapours actually
condenses onto the particles. This value is one order of mag-
nitude lower compared with a previous study by Lauros et
al. (2011). However, it leads to a good agreement with the
observed growth rates.

Besides the gaseous species concentrations, meteorologi-
cal parameters (temperature, relative humidity, pressure and
radiation), photolysis rates (JO1D andJNO2) as well as the

initial particle number size distribution are also used as in-
put variables. In total, 12 days with complete observation
data, including 4 non-event days and 8 new particle forma-
tion event days, are investigated. The simulation time period
is the entire day from 00:00 to 24:00. The integration time in
the model is 10 s, and the output data are averaged to 10 min
in order to compare with the observation results.

3 Results and discussion

3.1 The simulation of sulfuric acid concentration

The condensation sink, which describes how rapidly vapour
molecules can condense onto the pre-existing particles, is
used to represent the sink term of sulfuric acid in the model.
The CS values can be directly obtained from the measured
particle number size distributions, and expressed as (Kulmala
et al., 2001)

CS= 2πD
∑

βDpN. (2)

Here,D is the diffusion coefficient of the condensing vapour,
β the transitional regime correction factor,Dp the aerosol
particle diameter andN their number concentration. In ad-
dition, the particle number size distributions are calculated
at ambient relative humidity, while the hygroscopic growth
is achieved by using the parameterization of Massling et
al. (2009) based on the measurement results in Beijing.

Figure 1 displays the measured and simulated sulfuric
acid concentrations for 4 selected days including one non-
event day (day 219) and three nucleation event days (day
228, day 244 and day 256). The mean condensation sink
(during 08:00–11:00) on a non-event day (CS= 0.079 s−1)

is typically significantly higher than that on the three NPF
event days, with mean values of 0.006 s−1, 0.014 s−1 and
0.038 s−1, respectively, representing clean, median polluted
and polluted situations. In general, the significant increase
of the sulfuric acid concentration is observed from 8:00 with
the peak shown at noon. A clear diurnal cycle of the modelled
sulfuric acid concentration agrees to a large extent with the
measurements (slope= 0.72 during the daytime). The corre-
lation coefficients between the observed and modelled sul-
furic acid concentrations are 0.78 (morning) and 0.81 (af-
ternoon) for the total 12 investigated cases (see Table 2),
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Table 2. Comparisons of the modelled and measured sulfuric acid
concentrations during different time period for 12 investigated days.
Slope represents the ratio between the modelled and observed sul-
furic acid concentrations.

Time period Slope Correlation
coefficient (R)

Morning (06:00–12:00) 0.62 0.78
Afternoon (12:00–18:00) 0.88 0.81
Daytime (06:00–18:00) 0.72 0.74
Nighttime (00:00–06:00 & 18:00–24:00) 0.32 0.53

respectively. The maximum midday sulfuric acid concentra-
tions vary between 3.1× 106 and 1.1× 107 cm−3 for the ob-
servations (all investigated day), corresponding to 1.2× 106

to 1.0× 107 cm−3 for the modelled results. The ratios of peak
values between the observed and modelled concentrations
are within a factor of 3, with a median value of 1.3± 0.6.

In MALTE, the sulfuric acid concentrations are underes-
timated compared with the observations, especially during
the morning rush hour. The modelled sulfuric acid concen-
trations only account for 62 % of the observations (Table 2).
One possible explanation is that we potentially underestimate
the nitrous acid (HONO) concentration. The HONO concen-
trations were not measured continuously during the whole
campaign; hence we did not use the measurement data as in-
put in the model. A previous study (Kurtenbach et al., 2001)
pointed out that traffic emissions can produce considerable
HONO concentrations. Meanwhile, the photolysis of HONO
is proved to be a significant source of the OH radical, es-
pecially in the early morning (Su et al., 2008). Direct mea-
surements of HONO concentrations were only obtained in
3 days of the total 12 selected cases. On average, the ob-
served HONO concentrations were one order of magnitude
higher than the simulated ones during 06:00–12:00. Hence,
the significant elevations of sulfuric acid concentrations were
observed in the case of measured HONO concentrations as
input data. As a result, the sulfuric acid concentrations could
be enhanced by 1.5–2.5 times at the peak of around 08:00.
Therefore, the lack of measured HONO concentrations in
the model might lead to the substantial underestimation of
sulfuric acid concentrations, especially at the urban site with
heavy traffic emissions during the morning rush hour.

Best agreement between the modelled and observed sul-
furic acid concentrations happened in the afternoon (during
12:00–18:00), with the slope of 0.88. Overall, the modelled
results correlate well with the measured data points during
the daytime (R = 0.74) compared with that during the night-
time (R = 0.53). This phenomenon is due to the lack of un-
derstanding of the nighttime chemistry. However, consider-
ing the NPF event has not been observed during the night-
time, the missing sulfuric acid in the nighttime will not be
discussed further in this study.
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Fig. 1. Measured (red) and modelled (blue) sulfuric acid concen-
trations for four selected days in diverse pollution conditions.(a)
Non-event day,(b, d) NPF event days. Thex axis is presented by
DOY (day of year).

In MALTE, the underestimation of sulfuric acid concen-
trations, by up to a factor of two compared with the mea-
surement, was also found in other sites such as Hyytiälä and
Hohenpeissenberg (Boy et al., 2013). Several other potential
routes to produce sulfuric acid in the ambient atmosphere
have been proposed recently. The evidence from computa-
tional studies, field observations and laboratory experiments
all shows that organic compounds such as Criegee interme-
diates or their derivatives have significant capacity to oxidize
SO2 into SO3 rapidly, which might lead to an enhancement
of gaseous sulfuric acid yields in the ambient atmosphere
(Berndt et al., 2012; Boy et al., 2013; Kurtén et al., 2011;
Mauldin III et al., 2012). Moreover, the SO2 oxidation in-
volving electron-excited oxygen molecules could denote an
additional source of sulfuric acid under specific conditions
(Sorokin, 2010). However, these theories have not been ap-
plied in the box model version used at present, which might
cause the underestimation of the modelled sulfuric acid con-
centration.

3.2 The simulation of new particle formation

The dates 6 August (day 219) and 12 September (day 256)
are selected as examples of a non-event day and a NPF event
day, respectively. Here the measured sulfuric acid concentra-
tions are used in the UHMA model. The diurnal variations
of particle number size distributions from the measurement
and model simulation with two proposed nucleation mech-
anisms are presented in Fig. 2. The modelled on- and off-
set of new particle formation as well as the starting time of
the NPF event are in good agreement with observations. The
time shifts of the starting time of the NPF event between ob-
servation and simulation are achieved within half an hour in

www.atmos-chem-phys.net/13/11157/2013/ Atmos. Chem. Phys., 13, 11157–11167, 2013



11162 Z. B. Wang et al.: The simulations of sulfuric acid concentration

 

 

 

 855 

 856 

Figure 2. Measured and modelled particle number size distributions for two selected days. Left panel represents 857 

the example of non-event day (August 6, day 219), right panel represents the example of a NPF event day 858 

(September 12, day 256); (a) ~ (b): measurement, (c) ~ (d): modelled with activation nucleation mechanism, (e) ~ 859 

(f): modelled with kinetic nucleation mechanism. 860 

Fig. 2. Measured and modelled particle number size distributions for two selected days. Left panel represents the example of non-event day
(6 August, day 219); right panel represents the example of a NPF event day (12 September, day 256);(a, b) measurement,(c, d) modelled
with activation nucleation mechanism,(e, f) modelled with kinetic nucleation mechanism.

6 NPF cases (in total 8 cases). An obvious underestimation of
the particle number concentration in the Aitken mode is ob-
served in the model compared with the measurements. This
might be attributed to the fact that the local traffic emissions
are not completely included in the box model. Hence, fol-
lowing the previous study (Wang et al., 2011), the particle
number concentration in the size range 3–6 nm (N3−6) is se-
lected to represent the newly formed particles in this study,
as shown in Fig. 3. The slight fluctuations ofN3−6 from the
simulation at noon are still observed even on the non-event
day (Figs. 2c, e and 3a). However, the maximum value is only
700 cm−3, which is much lower than that on NPF event days.
A better agreement between the observed and modelledN3−6
on 12 September is found when the nucleation process is as-
sumed as kinetic-type (see Fig. 3b). Although the increase of
the simulatedN3−6 is 20 min earlier than that of the obser-
vation, the maximum value is 8000 cm−3, which is close to
the ambient measurement (9000 cm−3). The peak of simu-
latedN3−6 values is only 2900 cm−3 on 12 September when
activation nucleation is assumed. This result is expected be-
cause the specific activation nucleation coefficient achieved
from the observed particle nucleation rates and sulfuric acid
concentrations is 6× 10−6 s−1 on 12 September (Wang et al.,
2011), which is twice as high compared with the value used
in the model (median value of 17 NPF event days). Totally,
the statistical results suggest that the model overestimates the
number concentrations of newly formed particles on 4 non-
event days and underestimates them on 8 NPF event days.
On average, the ratios between the observed and modelled
maximumN3−6 values in activation and kinetic nucleation

types are 0.8± 0.4 and 0.7± 0.5 on non-event days, respec-
tively. On the contrary, the ratios are 2.2± 1.4 and 1.5± 1.3
on NPF event days.

Besides the measured sulfuric acid, the modelled sulfuric
acid concentrations were also tested in the UHMA model.
The results showed that the on- and offset of new particle
formation are also well predicted. However, it should be clar-
ified that the strength of the nucleation event is decreased,
which is due to the underestimation of sulfuric acid before
noon, as we mentioned above. The ratios of maximumN3−6
values between the cases that modelled and measured sulfu-
ric acid used in MALTE are 0.78± 0.40 for activation nu-
cleation and 0.64± 0.44 for kinetic nucleation, respectively,
suggesting that the underestimation of sulfuric acid concen-
trations should be taken into consideration in the further sim-
ulation in case we do not have sulfuric acid measurements.

The modelled particle volume concentration in nucleation
mode (V3−25) shows a similar growth pattern as observa-
tion on NPF event days. A significant time delay (∼ 2 h) be-
tween the simulated and observedV3−25 is found. This might
be attributed to the underestimation of OH concentrations
before noon (06:00–12:00 a.m.). As a result, the ratios of
maximum values between the simulated and measuredV3−25
are 0.8± 0.3 on NPF event days and 1.8± 1.3 on non-event
days, respectively (see Fig. 4).

During the nucleation event, the fraction ofV3−25 con-
tributed by the sulfuric acid is on average 3.2 %± 1.6 %.
This value is in the range of previous studies (Kuang et al.,
2010; Stolzenburg et al., 2005; Wang et al., 2013b; Wehner
et al., 2005), which suggests the limited contribution of
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Fig. 3. Measured and modelled particle number concentrations in
the size range 3–6 nm (N3−6) for two selected days.(a) A non-
event day (6 August, day 219),(b) NPF event day (12 September,
day 256); black square: measurement, red circle: modelled with ac-
tivation nucleation mechanism, blue circle: modelled with kinetic
nucleation mechanism.

gaseous sulfuric acid to particle growth. Totally, the OH
and O3 oxidation mechanism contribute 5.5 %± 2.3 % and
94.5 %± 2.6 % to theV3−25, respectively, indicating the par-
ticle growth is more controlled by the precursor gases and
their oxidation by O3, which is consistent with the field ob-
servation (Yli-Juuti et al., 2011) and laboratory study (Hao
et al., 2011).

Figure 5 displays the measured and modelled particle
number size distributions using kinetic nucleation (K =

8.0× 10−13) and homogenous heteromolecular nucleation
(Khet = 3.0× 10−12) theories. MALTE could predict the oc-
currence of new particle formation with the nucleation mech-
anism involving the organic vapours (Fig. 5c). In the model,
the ultrafine particle mode is formed around 10:20 in the
morning, which is close to the ambient measurement (10:10).
The diurnal variations of number concentrations of newly
formed particles are exhibited in Fig. 6. The maximum value
of the modelledN3−6 with homogenous heteromolecular nu-
cleation is 8000 cm−3, which is the same as the modelled
N3−6 with kinetic nucleation and close to the ambient mea-
surement (9000 cm−3). However, a significant time delay
(about 2 h) is shown between the model simulations and mea-
surements. Therefore, the specific organic species possibly
involved in the atmospheric nucleation are still unknown in
the polluted urban environment of Beijing. More informa-
tion on the nucleation process and chemical compositions of
freshly formed particles is needed.

4 Summary

The box model version of MALTE, including gas-phase
chemical reactions as well as aerosol physics and dynam-
ics, was applied to predict the sulfuric acid concentration
as well as the new particle formation in the polluted urban
environment of Beijing, China. The chemical processes and
aerosol dynamics were calculated by using MCM v3.2 and
the UHMA code, respectively. Totally, 12 selected days (8
with new particle formation events and 4 without) with com-
plete measurement data were investigated in this study.
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Figure 4. The ratios between the simulated and measured particle volume concentration in nucleation mode (V3-25) 870 
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Fig. 4.The ratios between the simulated and measured particle vol-
ume concentration in nucleation mode (V3−25) on non-event (red)
and NPF event (blue) days.  
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Figure 5. Measured and modelled particle number size distributions on September 12. (a): measurement; (b): 873 

modelled with kinetic nucleation mechanism; (c): modelled with homogenous heteromolecular kinetic nucleation 874 

mechanism.  875 

Fig. 5.Measured and modelled particle number size distributions on
12 September:(a) measurement,(b) modelled with kinetic nucle-
ation mechanism, and(c) modelled with homogenous heteromolec-
ular kinetic nucleation mechanism.

The best agreement (slope= 0.88,R = 0.81) between the
measured and modelled sulfuric acid concentrations was
seen in the afternoon (during 12:00–18:00). The sulfuric
acid concentrations are significantly underestimated in the
model compared with the measurements, especially during
the morning rush hour and nighttime. This result indicates
that unknown important production pathways of the OH rad-
ical or SO2 oxidation mechanisms are missing in the model,
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Fig. 6. Measured and modelled particle number concentrations in
the size range 3–6 nm (N3−6) on September 12. Black square: mea-
surement, blue circle: modelled with kinetic nucleation mechanism,
green circle: modelled with homogenous heteromolecular kinetic
nucleation mechanism.

which might further lead to the underestimation of the sulfu-
ric acid concentration. Although we have not included the
recently proposed production paths for sulfuric acid into
MALTE, the simulated sulfuric acid concentrations are ac-
ceptable during the daytime.

Classic nucleation mechanisms including activation nucle-
ation and kinetic nucleation, with respective nucleation coef-
ficients 3× 10−6 s−1 and 8× 10−13 cm3 s−1, were tested in
the UHMA model. These values were several times higher
compared to the results derived from other field measure-
ments and model simulations in clean environments, imply-
ing that besides sulfuric acid, also other species such as low-
volatility organic vapours might be involved in the nucleation
process in polluted urban Beijing. The model was able to re-
produce the particle formation reasonably well under these
two tested nucleation theories. The diurnal maximum num-
ber concentration of newly formed particles (N3−6) calcu-
lated based on the kinetic nucleation mechanism seems more
reasonable, comparing with the activation nucleation. How-
ever, on average, it is still 1.2 times higher than that in ambi-
ent measurements for all investigated cases. Totally, the sta-
tistical results suggest that the model overestimatesN3−6 on
non-event days and underestimates them on NPF event days.

During nucleation events, only a small fraction (∼ 0.5 %)
of the oxidized total organics condense onto the particles.
As the newly formed particles, the modelled particle volume
concentrations in nucleation mode are overestimated on non-
event days and underestimated on NPF event days. On aver-
age, the OH and O3 oxidation mechanism contribute 5.5 %
and 94.5 % to the volume concentration of small particles,
respectively. This result indicates that the particle growth is
more controlled by the precursor gases and their oxidation by
O3.

Moreover, homogenous heteromolecular nucleation (J =

Khet[H2SO4][Org]) was also tested in this study. The organic
vapours involved in the nucleation process are assumed to be

the oxidation products of monoterpenes by OH radicals. The
diurnal patterns of particle number size distributions as well
as the number concentrations of newly formed particles were
close to the observation. However, a significant time delay
of the number concentration peak is observed, implying that
the specific organic components involved in the nucleation
process still should be concerned in further research.
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