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Abstract

In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic

vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them

concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry

can be broken down to flipped SU(5) × U(1)X or Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge

symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the

TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger

fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet

insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we

study the general gaugino mass relations and their indices, which are valid from the GUT scale

to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) × U(1)X models,

and the Pati-Salam SU(4)C × SU(2)L × SU(2)R models. In the deflected AMSB, we also define

the new indices for the gaugino mass relations, and calculate them as well. Using these gaugino

mass relations and their indices, we may probe the messenger fields at intermediate scale in the

GMSB and deflected AMSB, determine the supersymmetry breaking mediation mechanisms, and

distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.
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I. INTRODUCTION

The supersymmetric Standard Model (SM) is the most elegant extension of the SM

since it solves the gauge hiearchy problem naturally. In particular, the gauge coupling

unification can be achieved at about 2 × 1016 GeV [1], and the lightest supersymmetric

particle (LSP) like the neutralino can be the cold dark matter candidate [2, 3]. To solve the

gauge hiearchy problem in the SM, supersymmetry should be broken around the TeV scale.

Thus, at the Large Hadron Collider (LHC) and future International Linear Collider (ILC),

we may observe the supersymmetric particles and get information about their mass spectra

and interactions. The key questions are how to determine the mediation mechanisms for

supersymmetry breaking and how to probe the Grand Unified Theories (GUTs) and string

derived GUTs.

In the conventional supersymmetric SMs, supersymmetry is assumed to be broken in

the hidden sector, and then its breaking effects are mediated to the SM observable sector.

However, the relations between the supersymmetric particle spectra and the fundamental

theories can be very complicated and model dependent. Interestingly, comparing to the

supersymmetry breaking soft masses for squarks and sleptons, the gaugino masses have the

simplest form and appear to be the least model dependent [4, 5]. For instance, with gravity

mediated supersymmetry breaking in GUTs, we have a universal gaugino mass M1/2 at the

GUT scale, which is called the minimal supergravity (mSUGRA) scenario [6]. Thus, we

have the gauge coupling relation and the gaugino mass relation at the GUT scale MGUT:

1

α3
=

1

α2
=

1

α1
, (1)

M3

α3
=

M2

α2
=

M1

α1
, (2)

where α3, α2, and α1 ≡ 5αY /3 are gauge couplings respectively for SU(3)C , SU(2)L, and

U(1)Y gauge symmetries, and M3, M2, and M1 are the masses for SU(3)C , SU(2)L, and

U(1)Y gauginos, respectively. Note that Mi/αi are constant under one-loop renormaliza-

tion group equation (RGE) running, thus, we obtain that the above gaugino mass relation

in Eq. (2) is valid from the GUT scale to the electroweak scale at one loop. Because the

two-loop RGE running effects on gaugino masses are very small, we can test this gaugino

mass relation at the LHC and ILC where the gaugino masses can be measured [7, 8]. Re-

cently, considering the GUTs with high-dimensional operators [4, 9–19] and the F-theory
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GUTs with U(1) fluxes [20–32], we generalized the mSUGRA scenario [33]. In particular,

we studied the generic gaugino mass relations and proposed their indices [33]. As we know,

there are three major supersymmetry breaking mediation schemes: gravity medidated su-

persymmetry breaking [6], Gauge Mediated Supersymmetry Breaking (GMSB) [34], and

Anomaly Mediated Supersymmetry Breaking (AMSB) [35–37]. Thus, we shall study the

generic gaugino mass relations and their indices in the general GMSB and AMSB.

On the other hand, there exists a few pecent fine-tuning to have the lightest CP-even

Higgs boson mass heavier than 114 GeV in the Minimal Supersymmetric Standard Model

(MSSM). One possible solution is that we introduce the TeV-scale vector-like particles [38].

The lightest CP-even Higgs boson mass can be lifted due to the large Yukawa couplings

for these vector-like particles [38]. Moreover, in the GMSB [34] and deflected AMSB [37],

we need messenger fields at the intermediate scale, which are also vector-like. Also, we can

use the messenger fields to generate the correct neutrino masses and mixings in the mean

time [39, 40]. Thus, it is interesting to study the GUTs with generic vector-like particles.

In this paper, we first point out that the generic vector-like particles do not need to form

complete SU(5) or SO(10) representations in GUTs from the orbifold constructions [41–48],

intersecting D-brane model building on Type II orientifolds [49–51], M-theory on S1/Z2 with

Calabi-Yau compactifications [52, 53], and F-theory with U(1) fluxes [20–32]. Therefore, in

the GMSB and deflected AMSB, the messenger fields do not need to form complete SU(5)

or SO(10) representations. The gauge coupling unification can be preserved by introducing

the extra vector-like particles at the intermediate scale that do not mediate supersymmetry

breaking. To be concrete, we present the orbifold SU(5) models with additional vector-

like particles, the orbifold SO(10) models with extra vector-like particles where the gauge

symmetry can be broken down to flipped SU(5)×U(1)X or Pati-Salam SU(4)C ×SU(2)L×
SU(2)R gauge symmetries, and the F-theory SU(5) models with generic vector-like particles.

In short, these vector-like particles can be at the TeV scale so that we can increase the lightest

CP-even Higgs boson mass in the MSSM [38], and they can be the messenger fields in the

GMSB and deflected AMSB as well. By the way, if the vector-like particles are around

the TeV scale, there may exist the possibility of flavour changing neutral currents even at

tree level. To solve this problem, we can require that the mixings between the TeV-scale

vector-like particles and the SM fermions are very small.

In addition, we shall study the general gaugino mass relations and their indices in the
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GMSB and AMSB, which are valid from the GUT scale to the electroweak scale at one loop.

We briefly review the gaugino mass relations and their indices in the generalization of the

mSUGRA [33], and define the suitable gaugino mass relations in the GMSB and AMSB.

For the GMSB, we first briefly review the gaugino masses. With various possible messenger

fields, we calculate the gaugino mass relations and their indices in the SU(5) models, the

flipped SU(5) × U(1)X models, and the Pati-Salam SU(4)C × SU(2)L × SU(2)R models.

These kinds of models can be realized in orbifold GUTs, F-theory SU(5) models with U(1)Y

flux, F-theory SO(10) models with U(1)X flux where the SO(10) gauge symmetry is broken

down to flipped SU(5)×U(1)X gauge symmetries (we will denote them as F-theory flipped

SU(5)×U(1)X models), and F-theory SO(10) models with U(1)B−L flux where the SO(10)

gauge symmetry is broken down to SU(3)C×SU(2)L×SU(2)R×U(1)B−L gauge symmetries

(we will denote them as F-theory SU(3)C × SU(2)L × SU(2)R × U(1)B−L models). Using

the gaugino mass relations and their indices, we can probe the messenger fields at the

imtermediate scale. Moreover, for the AMSB, we first briefly review the gaugino masses

as well. To solve the tachyonic slepton problem for the original AMSB, we consider two

scenarios: the ultraviolet (UV) insensitive AMSB [36] and the deflected AMSB [37]. In

the UV insensitive AMSB, we calculate the gaugino mass relations and their indices in the

SU(5) models with and without the TeV-scale vector-like particles that form complete SU(5)

multiplets, and in the flipped SU(5) × U(1)X models with TeV-scale vector-like particles

that form complete SU(5) × U(1)X multiplets. To achieve the one-step gauge coupling

unification, we emphasize that the discussions for the Pati-Salam models are similar to

those in the SU(5) models. In the deflected AMSB, without and with the suitable TeV-

scale vector-like particles that can lift the lightest CP-even Higgs boson mass, we study the

generic gaugino mass relations and their indices in the SU(5) models, flipped SU(5)×U(1)X
models, and Pati-Salam SU(4)C×SU(2)L×SU(2)R models with various possible messenger

fields. To probe the messenger fields at intermediate scale, we define the new indices for

the gaugino mass relations, and calculate them in details. Also, we find that in most of our

scenarios, the gluino can be the lightest gaugino at low energy. In particular, we propose a

new kind of interesting flipped SU(5) models as well.

Furthermore, using the gaugino mass relations and their indices, we explain how to de-

termine the supersymmetry breaking mediation mechanisms, and how to probe the four-

dimensional GUTs, orbifold GUTs, and F-theory GUTs. Also, in order to distinguish be-
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tween the different scenarios with the same gaugino mass relations and the same indices, we

need to consider the squark and slepton masses as well, which will be studied elsewhere [54].

This paper is organized as follows. In Sectin II, we discuss the vector-like particles that

we are interested in, and construct orbifold GUTs and F-theory SU(5) models with generic

vector-like particles. We briefly discuss the gaugino mass relations and their indices in

Section III. We study the gaugino mass relations and their indices for GMSB and AMSB in

Section IV and V, respectively. We consider the implications of the gaugino mass relations

and their indices in Section VI. Our conclusions are given in Section VII. We briefly review

the del Pezzo Surfaces in Appendix A.

II. GENERIC VECTOR-LIKE PARTICLES IN THE ORBIFOLD AND F-

THEORY GUTS

In the GMSB and deflected AMSB, there exist messenger fields at intermediate scales,

which are vector-like particles. To realize gauge coupling unification, in the traditional

GMSB and deflected AMSB, we assume that the messenger fields form complete SU(5)

representations, for example, (5, 5). However, we do not have vector-like particles in

complete SU(5) representations in quite a few kinds of model building. In the inter-

secting D-brane model building on Type II orientifolds where the SU(5) gauge symmetry

is broken down to the SM gauge symmetry by D-brane splitting [49–51], and in the M-

theory on S1/Z2 with Calabi-Yau manifold compactifications where the SU(5) and SO(10)

gauge symmetries are respectively broken down to the SU(3)C × SU(2)L × U(1)Y and

SU(3)C × SU(2)L × U(1)B−L × U(1)I3R gauge symmetries by Wilson lines [52, 53], we can

not have the massless vector-like particles that form complete GUT representations. For the

bulk vector-like particles in the orbifold GUTs [41–48], we can not keep the zero modes for all

the vector-like particles in the complete GUT representations, i.e., the zero modes of some

vector-like particles will be projected out. In the F-theory GUTs [20–32], we can also obtain

the vector-like particles that do not form complete GUT multiplets. In fact, the SU(5)

models, flipped SU(5)×U(1)X models [55–59], and SU(3)C ×SU(2)L ×SU(2)R ×U(1)B−L

models with additional vector-like particles have already been constructed locally in F-

theory [22, 23, 25, 26, 28, 29, 32]. Interestingly, we should emphasize that this is the reason

why we can solve the doublet-triplet splitting problem in these kinds of model building. In
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this Section, we shall present the orbifold SU(5) models with additional vector-like particles,

the orbifold SO(10) models with additional vector-like particles where the gauge symmetry

can be broken down to flipped SU(5) × U(1)X or Pati-Salam SU(4)C × SU(2)L × SU(2)R

gauge symmetries, and the F-theory SU(5) models with generic vector-like particles.

First, let us explain our convention for supersymmetric SMs. We denote the left-handed

quark doublets, right-handed up-type quarks, right-handed down-type quarks, left-handed

lepton doublets, right-handed neutrinos and right-handed charged leptons as Qi, U
c
i , D

c
i , Li,

N c
i , and E

c
i , respectively. Also, we denote one pair of Higgs doublets as Hu and Hd, which

give masses to the up-type quarks/neutrinos and the down-type quark/charged leptons,

respectively. In this paper, we consider the vector-like particles whose quantum numbers

are the same as those of the SM fermions and their Hermitian conjugates, particles in the

SU(5) symmetric representation and their Hermitian conjugates, and the SU(5) adjoint

particles. Their quantum numbers under SU(3)C ×SU(2)L×U(1)Y and their contributions

to one-loop beta functions ∆b ≡ (∆b1,∆b2,∆b3) as complete supermultiplets are given as

follows

XQ+XQc = (3, 2,
1

6
) + (3̄, 2,−1

6
) , ∆b = (

1

5
, 3, 2) ; (3)

XU +XU c = (3, 1,
2

3
) + (3̄, 1,−2

3
) , ∆b = (

8

5
, 0, 1) ; (4)

XD +XDc = (3, 1,−1

3
) + (3̄, 1,

1

3
) , ∆b = (

2

5
, 0, 1) ; (5)

XL+XLc = (1, 2,
1

2
) + (1, 2,−1

2
) , ∆b = (

3

5
, 1, 0) ; (6)

XE +XEc = (1, 1, 1) + (1, 1,−1) , ∆b = (
6

5
, 0, 0) ; (7)

XG = (8, 1, 0) , ∆b = (0, 0, 3) ; (8)

XW = (1, 3, 0) , ∆b = (0, 2, 0) ; (9)

XT +XT c = (1, 3, 1) + (1, 3,−1) , ∆b = (
18

5
, 4, 0) ; (10)

XS +XSc = (6, 1,−2

3
) + (6̄, 1,

2

3
) , ∆b = (

16

5
, 0, 5) ; (11)

XY +XY c = (3, 2,−5

6
) + (3̄, 2,

5

6
) , ∆b = (5, 3, 2) . (12)
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A. Traditional Four-dimensional Grand Unified Theories

First, let us briefly review the SU(5) models and explain the convention. We define the

U(1)Y hypercharge generator in SU(5) as follows

TU(1)Y = diag

(

−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)

. (13)

Under SU(3)C×SU(2)L×U(1)Y gauge symmetry, the SU(5) representations are decomposed

as follows

5 = (3, 1,−1/3)⊕ (1, 2, 1/2) , (14)

5 = (3, 1, 1/3)⊕ (1, 2,−1/2) , (15)

10 = (3, 2, 1/6)⊕ (3, 1,−2/3)⊕ (1, 1, 1) , (16)

10 = (3, 2,−1/6)⊕ (3, 1, 2/3)⊕ (1, 1,−1) , (17)

24 = (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)⊕ (3, 2,−5/6)⊕ (3, 2, 5/6) . (18)

There are three families of the SM fermions whose quantum numbers under SU(5) are

F ′
i = 10, f

′

i = 5̄, N c
i = 1 , (19)

where i = 1, 2, 3 for three families. The SM particle assignments in F ′
i and f̄

′
i are

F ′
i = (Qi, U

c
i , E

c
i ) , f

′

i = (Dc
i , Li) . (20)

To break the SU(5) gauge symmetry and electroweak gauge symmetry, we introduce the

adjoint Higgs field and one pair of Higgs fields whose quantum numbers under SU(5) are

Φ′ = 24 , h′ = 5 , h
′
= 5̄ , (21)

where h′ and h
′
contain the Higgs doublets Hu and Hd, respectively.

Second, we would like to briefly review the flipped SU(5) × U(1)X models [55–57]. The

gauge group SU(5)×U(1)X can be embedded into SO(10). We define the generator U(1)Y ′

in SU(5) as

TU(1)
Y′

= diag

(

−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)

. (22)

The hypercharge is given by

QY =
1

5
(QX −QY ′) . (23)
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There are three families of the SM fermions whose quantum numbers under SU(5)×U(1)X
are

Fi = (10, 1), f̄i = (5̄,−3), l̄i = (1, 5), (24)

where i = 1, 2, 3. The particle assignments for the SM fermions are

Fi = (Qi, D
c
i , N

c
i ) , f i = (U c

i , Li) , li = Ec
i . (25)

To break the GUT and electroweak gauge symmetries, we introduce two pairs of Higgs

fields whose quantum numbers under SU(5)× U(1)X are

H = (10, 1) , H = (10,−1) , h = (5,−2) , h = (5̄, 2) , (26)

where h and h contain the Higgs doublets Hd and Hu, respectively.

Moreover, the flipped SU(5) × U(1)X models can be embedded into SO(10). Under

SU(5)× U(1)X gauge symmetry, the SO(10) representations are decomposed as follows

10 = (5,−2)⊕ (5, 2) , (27)

16 = (10, 1)⊕ (5,−3)⊕ (1, 5) , (28)

45 = (24, 0)⊕ (1, 0)⊕ (10,−4)⊕ (10, 4) . (29)

Let us consider the vector-like particles which form complete flipped SU(5) × U(1)X

multiplets. The quantum numbers for these additional vector-like particles under the

SU(5)× U(1)X gauge symmetry are

XF = (10, 1) , XF = (10,−1) , (30)

Xf = (5, 3) , Xf = (5,−3) , (31)

Xl = (1,−5) , Xl = (1, 5) , (32)

Xh = (5,−2) , Xh = (5, 2) (33)

XGW = (24, 0) , XN = (1, 0) , (34)

XX = (10,−4) , XX = (10, 4) . (35)

Moreover, the particle contents for the decompositions of XF , XF , Xf , Xf , Xl, Xl,
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Xh, Xh, XGW , XX , and XX under the SM gauge symmetries are

XF = (XQ,XDc, XN c) , XF = (XQc, XD,XN) , (36)

Xf = (XU,XLc) , Xf = (XU c, XL) , (37)

Xl = XE , Xl = XEc , (38)

Xh = (XD,XL) , Xh = (XDc, XLc) , (39)

XGW = (XG,XW,XQ,XQc) , (40)

XX = (XY,XU c, XE) , XX = (XY c, XU,XEc) . (41)

In flipped SU(5)×U(1)X models of SO(10) origin, there are two steps for gauge coupling

unification: the SU(3)C × SU(2)L gauge symmeties are unified first at the scale M32, and

then the SU(5) × U(1)X gauge symmetries are unified at the higher scale MU , where M32

is about the usual GUT scale around 2× 1016 GeV. Thus, the condition for gauge coupling

unification in the flipped SU(5) × U(1)X models can be relaxed elegantly. To realize the

string-scale gauge coupling unification in the free fermionic string constructions [58] or the

decoupling scenario in the F-theory model building [26, 28], we introduce the TeV-scale

vector-like particles which form the complete flipped SU(5) × U(1)X multiplets [59]. To

avoid the Landau pole problem for the strong coupling, we show that at the TeV scale, we

can only introduce the vector-like particles (XF, XF ) or (XF, XF )⊕ (Xl, Xl) [59]. The

flipped SU(5) × U(1)X models with these vector-like particles are dubbed as the testable

flipped SU(5)×U(1)X models since they can solve the monopole problem, realize the hybrid

inflation, lift the lightest CP-even Higgs boson mass, and predict the proton decay within

the reach of the future proton decay experiments, etc [28, 59].

Third, we would like to briefly review the Pati-Salam models. The gauge group is

SU(4)C × SU(2)L × SU(2)R, which can also be embedded into SO(10). There are three

families of the SM fermions whose quantum numbers under SU(4)C ×SU(2)L×SU(2)R are

FL
i = (4, 2, 1) , FRc

i = (4, 1, 2) , (42)

where i = 1, 2, 3. Also, the particle assignments for the SM fermions are

FL
i = (Qi, Li) , FRc

i = (U c
i , D

c
i , E

c
i , N

c
i ) . (43)

To break the Pati-Salam and electroweak gauge symmetries, we introduce one pair of

Higgs fields and one bidoublet Higgs field whose quantum numbers under SU(4)C×SU(2)L×

9



SU(2)R are

Φ = (4, 1, 2) , Φ = (4, 1, 2) , H ′ = (1, 2, 2) , (44)

where H ′ contains one pair of the Higgs doublets Hd and Hu.

Moreover, the Pati-Salam models can be embedded into SO(10) models. Under SU(4)C×
SU(2)L × SU(2)R gauge symmetry, the SO(10) representations are decomposed as follows

10 = (6, 1, 1)⊕ (1, 2, 2) , (45)

16 = (4, 2, 1)⊕ (4, 1, 2) , (46)

45 = (15, 1, 1)⊕ (1, 3, 1)⊕ (1, 1, 3)⊕ (6, 2, 2) . (47)

Let us consider the vector-like particles which form complete SU(4)C × SU(2)L × SU(2)R

representations. The quantum numbers for the vector-like particles under the SU(4)C ×
SU(2)L × SU(2)R gauge symmetry are

XFL = (4, 2, 1) , XFL = (4, 2, 1) , (48)

XFR = (4, 1, 2) , XFR = (4, 1, 2) , (49)

XDD = (6, 1, 1) , XLL = (1, 2, 2) , (50)

XG4 = (15, 1, 1) , XWL = (1, 3, 1) , (51)

XWR = (1, 1, 3) , XZ = (6, 2, 2) . (52)

Also, the particle contents for the decompositions of XFL, XFL, XFR, XFR, XDD,

XLL, XG4, XWL, XWR and XZ under the SM gauge symmetries are

XFL = (XQ,XL) , XFL = (XQc, XLc) , (53)

XFR = (XU,XD,XE,XN) , XFR = (XU c, XDc, XEc, XN c) , (54)

XDD = (XD,XDc) , XLL = (XL,XLc) , (55)

XG4 = (XG,XU,XU c) , XWL = XW (56)

XWR = (XE,XEc, XN) , XZ = (XQ,XQc, XY,XY c) . (57)

B. Obifold Grand Unified Theories with Generic Vector-Like Particles

In the five-dimensional orbifold supersymmetric GUTs [41–48], the five-dimensional man-

ifold is factorized into the product of ordinary four-dimensional Minkowski space-time M4
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and the orbifold S1/(Z2 × Z ′
2). The corresponding coordinates are xµ (µ = 0, 1, 2, 3) and

y ≡ x5. The radius for the fifth dimension is R. The orbifold S1/(Z2 × Z ′
2) is obtained by

S1 moduloing the equivalent class

P : y ∼ −y , P ′ : y′ ∼ −y′ , (58)

where y′ ≡ y − πR/2. There are two fixed points, y = 0 and y = πR/2.

The N = 1 supersymmetric theory in five dimensions have 8 real supercharges, corre-

sponding to N = 2 supersymmetry in four dimensions. In terms of the physical degrees of

freedom, the vector multiplet contains a vector boson AM with M = 0, 1, 2, 3, 5, two Weyl

gauginos λ1,2, and a real scalar σ. In the four-dimensional N = 1 supersymmetry language,

it contains a vector multiplet V ≡ (Aµ, λ1) and a chiral multiplet Σ ≡ ((σ + iA5)/
√
2, λ2)

which transform in the adjoint representation of group G. The five-dimensional hypermulti-

plet consists of two complex scalars φ and φc, and a Dirac fermion Ψ. It can be decomposed

into two chiral mupltiplets Φ(φ, ψ ≡ ΨR) and Φc(φc, ψc ≡ ΨL), which are in the conjugate

representations of each other under the gauge group.

The general action for the group G gauge fields and their couplings to the bulk hyper-

multiplet Φ is [60]

S =

∫

d5x
1

kg2
Tr

[

1

4

∫

d2θ (W αWα +H.C.)

+

∫

d4θ
(

(
√
2∂5 + Σ̄)e−V (−

√
2∂5 + Σ)eV + ∂5e

−V ∂5e
V
)

]

+

∫

d5x

[∫

d4θ
(

ΦceV Φ̄c + Φ̄e−VΦ
)

+

∫

d2θ

(

Φc(∂5 −
1√
2
Σ)Φ + H.C.

)]

. (59)

Under the parity operator P , the vector multiplet transforms as

V (xµ, y) → V (xµ,−y) = PV (xµ, y)P−1 , (60)

Σ(xµ, y) → Σ(xµ,−y) = −PΣ(xµ, y)P−1 . (61)

For the hypermultiplet Φ and Φc, we have

Φ(xµ, y) → Φ(xµ,−y) = ηΦP
lΦΦ(xµ, y)(P−1)mΦ , (62)
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Φc(xµ, y) → Φc(xµ,−y) = −ηΦP lΦΦc(xµ, y)(P−1)mΦ , (63)

where ηΦ is ±, lΦ and mΦ are respectively the numbers of the fundamental index and anti-

fundamental index for the bulk multiplet Φ under the bulk gauge group G. For example, if

G is an SU(N) group, for a fundamental representation, we have lΦ = 1 and mΦ = 0, and

for an adjoint representation, we have lΦ = 1 and mΦ = 1. Moreover, the transformation

properties for the vector multiplet and hypermultiplets under P ′ are the same as those under

P .

For G = SU(5), to break the SU(5) gauge symmetry, we choose the following 5×5 matrix

representations for the parity operators P and P ′

P = diag(+1,+1,+1,+1,+1) , P ′ = diag(+1,+1,+1,−1,−1) . (64)

Under the P ′ parity, the gauge generators T α (α = 1, 2, ..., 24) for SU(5) are separated into

two sets: T a are the generators for the SM gauge group, and T â are the generators for the

broken gauge group

P T a P−1 = T a , P T â P−1 = T â , (65)

P ′ T a P
′−1 = T a , P ′ T â P

′−1 = −T â . (66)

The zero modes of the SU(5)/SM gauge bosons are projected out, thus, the five-dimensional

N = 1 supersymmetric SU(5) gauge symmetry is broken down to the four-dimensional

N = 1 supersymmetric SM gauge symmetry for the zero modes. For the zero modes and

KK modes, the four-dimensional N = 1 supersymmetry is preserved on the 3-branes at both

fixed points, and only the SM gauge symmetry is preserved on the 3-brane at y = πR/2 [47].

For G = SO(10), the generators T α of SO(10) are imaginary antisymmetric 10 × 10

matrices. In terms of the 2 × 2 identity matrix σ0 and the Pauli matrices σi, they can be

written as tensor products of 2 × 2 and 5 × 5 matrices, (σ0, σ1, σ3) ⊗ A5 and σ2 ⊗ S5 as a

complete set, where A5 and S5 are the 5 × 5 real anti-symmetric and symmetric matrices.

The generators of the SU(5)× U(1) gauge symmetries are

σ0 ⊗A3 , σ0 ⊗A2 , σ0 ⊗ AX

σ2 ⊗ S3 , σ2 ⊗ S2 , σ2 ⊗ SX , (67)

the generators for flipped SU(5)× U(1)X gauge symmetries are

σ0 ⊗ A3 , σ0 ⊗ A2 , σ1 ⊗ AX

σ2 ⊗ S3 , σ2 ⊗ S2 , σ3 ⊗ AX , (68)
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and the generators for Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge symmetries are

(σ0, σ1, σ3)⊗ A3 , (σ0, σ1, σ3)⊗A2 ,

σ2 ⊗ S3 , σ2 ⊗ S2 ,
(69)

where A3 and S3 are respectively the diagonal blocks of A5 and S5 that have indices 1, 2, and

3, while the diagonal blocks A2 and S2 have indices 4 and 5. AX and SX are the off-diagonal

blocks of A5 and S5.

We choose the 10× 10 matrix for P as

P = σ0 ⊗ diag(1, 1, 1, 1, 1) . (70)

To break the SO(10) down to SU(5)× U(1), we choose

P ′ = σ2 ⊗ diag(1, 1, 1, 1, 1) , (71)

to break the SO(10) down to flipped SU(5)× U(1)X , we choose

P ′ = σ2 ⊗ diag(1, 1, 1,−1,−1) , (72)

and to break the SO(10) down to the Pati-Salam gauge symmetries, we choose

P ′ = σ0 ⊗ diag(1, 1, 1,−1,−1) . (73)

For the zero modes, the five-dimensional N = 1 supersymmetric SO(10) gauge symme-

try is broken down to the four-dimensional N = 1 supersymmetric SU(5) × U(1), flipped

SU(5) × U(1)X and Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge symmetries. Including

the KK modes, the 3-branes at both fixed points preserve the four-dimensional N = 1 su-

persymmetry, and the gauge symmetry on the 3-brane at y = πR/2 is SU(5)×U(1), flipped
SU(5)× U(1)X and Pati-Salam gauge symmetries, for different choices of P ′ [47].

In Table I, Table II, and Table III, we present the possible vector-like particles, which

remain as zero modes after orbifold projections, in the orbifold SU(5) models, in the orbifold

SO(10) models whose gauge symmetry is broken down to the flipped SU(5)×U(1)X gauge

symmetry by orbifold projections, and the orbifold SO(10) models whose gauge symmetry

is broken down to the Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge symmetry by orbifold

projections, respectively.
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Representation ηΦ Zero Modes Representation ηΦ Zero Modes

(5, 5) +1 (XD, XDc) (5, 5) −1 (XL, XLc)

(10, 10) +1 (XU, XU c), (XE, XEc) (10, 10) −1 (XQ, XQc)

(15, 15) +1 (XT, XT c), (XS, XSc) (15, 15) −1 (XQ, XQc)

24 +1 XG, XW 24 −1 (XY, XY c)

TABLE I: The possible vector-like particles which remain as zero modes after orbifold projections

in the orbifold SU(5) models.

Representation ηΦ Zero Modes Representation ηΦ Zero Modes

10 +1 Xh 10 −1 Xh

(16, 16) +1 (XF, XF ) (16, 16) −1 (Xf, Xf), (Xl, Xl)

45 +1 XGW, XN 45 −1 (XX, XX)

TABLE II: The possible vector-like particles which remain as zero modes after orbifold projections

in the orbifold SO(10) models where the gauge symmetry is broken down to the flipped SU(5) ×

U(1)X gauge symmetries.

C. F-Theory SU(5) Models with Generic Vector-Like Particles

We first briefly review the F-theory model building [20–24]. The twelve-dimensional F

theory is a convenient way to describe Type IIB vacua with varying axion-dilaton τ =

a + ie−φ. We compactify F-theory on a Calabi-Yau fourfold, which is elliptically fibered

Representation ηΦ Zero Modes Representation ηΦ Zero Modes

10 +1 XDD 10 −1 XLL

(16, 16) +1 (XFL, XFL) (16, 16) −1 (XFR, XFR)

45 +1 XG4, XWL, XWR 45 −1 XZ

TABLE III: The possible vector-like particles which remain as zero modes after orbifold projec-

tions in the orbifold SO(10) models where the gauge symmetry is broken down to the Pati-Salam

SU(4)C × SU(2)L × SU(2)R gauge symmetries.
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π : Y4 → B3 with a section σ : B3 → Y4. The base B3 is the internal space dimensions

in Type IIB string theory, and the complex structure of the T 2 fibre encodes τ at each

point of B3. The SM or GUT gauge theories are on the worldvolume of the observable

seven-branes that wrap a complex codimension-one suface in B3. Denoting the complex

coordinate transverse to these seven-branes in B3 as z, we can write the elliptic fibration in

Weierstrass form

y2 = x3 + f(z)x+ g(z) , (74)

where f(z) and g(z) are sections of K−4
B3

and K−6
B3

, respectively. The complex structure of

the fibre is

j(τ) =
4(24f)3

∆
, ∆ = 4f 3 + 27g2 . (75)

At the discriminant locus {∆ = 0} ⊂ B3, the torus T 2 degenerates by pinching one of its

cycles and becomes singular. For a generic pinching one-cycle (p, q) = pα + qβ where α

and β are one-cylces for the torus T 2, we obtain a (p, q) seven-brane in the locus where the

(p, q) string can end. The singularity types of the ellitically fibres fall into the familiar ADE

classifications, and we identify the corresponding ADE gauge groups on the seven-brane

world-volume. This is one of the most important advantages for the F-theory model building:

the exceptional gauge groups appear rather naturally, which is absent in perturbative Type

II string theory. And then all the SM fermion Yuakwa couplings in the GUTs can be

generated.

We assume that the observable seven-branes with GUTs on its worldvolume wrap a

complex codimension-one suface S in B3, and the observable gauge symmetry is GS. When

h1,0(S) 6= 0, the low energy spectrum may contain the extra states obtained by reduction of

the bulk supergravity modes of compactification. So we require that π1(S) be a finite group.

In order to decouple gravity and construct models locally, the extension of the local metric

on S to a local Calabi-Yau fourfold must have a limit where the surface S can be shrunk to

zero size. This implies that the anti-canonical bundle on S must be ample. Therefore, S is

a del Pezzo n surface dPn with n ≥ 2 in which h2,0(S) = 0 (for a brief review of del Pezzo

surfaces, see Appendix A). By the way, the Hirzebruch surfaces with degree larger than 2

satisfy h2,0(S) = 0 but do not define the fully consistent decoupled models [22, 23].

To describe the spectrum, we have to study the gauge theory of the worldvolume on

the seven-branes. We start from the maximal supersymmetric gauge theory on R3,1 × C2
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and then replace C2 with the Kähler surface S. In order to have four-dimensional N = 1

supersymmetry, the maximal supersymmetric gauge theory on R3,1 ×C2 should be twisted.

It was shown that there exists a unique twist preserving N = 1 supersymmetry in four

dimensions, and chiral matters can arise from the bulk S or the codimension-one curve Σ

in S which is the intersection between the observable seven-branes and the other seven-

brane(s) [22, 23].

In order to have the matter fields on S, we consider a non-trivial vector bundle on S with

a structure group HS which is a subgroup of GS. Then the gauge group GS is broken down

to ΓS ×HS, and the adjoint representation ad(GS) of the GS is decomposed as

ad(GS) → ad(ΓS)
⊕

ad(HS)
⊕

j

(τj , Tj) . (76)

Employing the vanishing theorem of the del Pezzo surfaces, we obtain the numbers of the

generations and anti-generations by calculating the zero modes of the Dirac operator on S

nτj = − χ(S,Tj) , nτ∗j
= − χ(S,Tj

∗) , (77)

where Tj is the vector bundle on S whose sections transform in the representation Tj of HS,

and Tj
∗ is the dual bundle of Tj. In particular, when the HS bundle is a line bundle L, we

have

nτj = − χ(S, Lj) = −
[

1 +
1

2

(

∫

S

c1(L
j)c1(S) +

∫

S

c1(L
j)2
)

]

. (78)

In order to preserve supersymmetry, the line bundle L should satisfy the BPS equation [22]

JS ∧ c1(L) = 0, (79)

where JS is the Kähler form on S. Moreover, the admissible supersymmetric line bundles

on del Pezzo surfaces must satisfy c1(L)c1(S) = 0, thus, nτj = nτ∗j
and only the vector-

like particles can be obtained. In short, we can not have the chiral matter fields on the

worldvolume of the observable seven-branes.

Interestingly, the chiral superfields can come from the intersections between the observ-

able seven-branes and the other seven-brane(s) [22, 23]. Let us consider a stack of seven-

branes with gauge group GS′ that wrap a codimension-one surface S ′ in B3. The intersection

of S and S ′ is a codimenion-one curve (Riemann surface) Σ in S and S ′, and the gauge sym-

metry on Σ will be enhanced to GΣ where GΣ ⊃ GS ×GS′. On this curve, there exist chiral
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matters from the decomposition of the adjoint representation adGΣ of GΣ as follows

adGΣ = adGS ⊕ adGS′ ⊕k (Uk ⊗ U ′
k) . (80)

Turning on the non-trivial gauge bundles on S and S ′ respectively with structure groups HS

and HS′, we break the gauge group GS × GS′ down to the commutant subgroup ΓS × ΓS′.

Defining Γ ≡ ΓS × ΓS′ and H ≡ HS × HS′, we can decompose U ⊗ U ′ into the irreducible

representations as follows

U ⊗ U ′ =
⊕

k
(rk, Vk), (81)

where rk and Vk are the representations of Γ and H , respectively. The light chiral fermions

in the representation rk are determined by the zero modes of the Dirac operator on Σ. The

net number of chiral superfields is given by

Nrk −Nr∗
k
= χ(Σ, K

1/2
Σ ⊗Vk), (82)

where KΣ is the restriction of canonical bundle on the curve Σ, and Vk is the vector bundle

whose sections transform in the representation Vk of the structure group H .

In the F-theory model building, we are interested in the models where GS′ is U(1)′, and

HS and HS′ are respectively U(1) and U(1)′. Then the vector bundles on S and S ′ are line

bundles L and L′. The adjoint representation adGΣ of GΣ is decomposed into a direct sum

of the irreducible representations under the group ΓS × U(1) × U(1)′ that can be denoted

as (rj,qj,q
′
j)

adGΣ = ad(ΓS)⊕ adGS′ ⊕j (rj,qj,q
′
j) . (83)

The numbers of chiral supefields in the representation (rj,qj,q
′
j) and their Hermitian con-

jugates on the curve Σ are given by

N(rj,qj,q
′

j
) = h0(Σ,Vj) , N(̄rj,−qj,−q′

j
) = h1(Σ,Vj) , (84)

where

Vj = K
1/2
Σ ⊗ L

qj
Σ ⊗ L′q

′

j

Σ , (85)

where K
1/2
Σ , L

rj
Σ and L′q

′

j

Σ are the restrictions of canonical bundle KS, line bundles L and L′

on the curve Σ, respectively. In particular, if the volume of S ′ is infinite, GS′ = U(1)′ is

decoupled. And then the index q′
j can be ignored.
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Using Riemann-Roch theorem, we obtain the net number of chiral supefields in the rep-

resentation (rj,qj,q
′
j)

N(rj,qj,q
′

j
) −N(̄rj,−qj,−q′

j
) = 1− g + c1(Vj) , (86)

where g is the genus of the curve Σ, and c1 means the first Chern class.

Moreover, we can obtain the Yukawa couplings at the triple intersection of three curves

Σi, Σj and Σk where the gauge group or the singularity type is enhanced further. To have

the triple intersections, the corresponding homology classes [Σi], [Σj ] and [Σk] of the curves

Σi, Σj and Σk must satisfy the following conditions

[Σi] · [Σj ] > 0 , [Σi] · [Σk] > 0 , [Σj ] · [Σk] > 0 . (87)

The SU(5) models, flipped SU(5) × U(1)X models, and SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L models with additional vector-like particles have been constructed previously [22,

23, 25, 26, 28, 29, 32]. However, the SU(5) models with generic vector-like particles have not

been studied systematically yet. Thus, we shall construct the SU(5) models with additional

vector-like particles in general here. In such SU(5) models, we introduce the vector-like

particles Y F ′ and Y F
′
, and Y f ′ and Y f

′
, whose quantum numbers under SU(5) are

Y F ′ = 10 , Y F
′
= 10 ; Y f ′ = 5 , Y f

′
= 5 . (88)

Moreover, the particle contents from the decompositions of Y F ′, Y F
′
, Y f ′, and Y f

′
under

the SM gauge symmetry are

Y F ′ = (XQ,XU c, XEc) , Y F
′
= (XQc, XU,XE) , (89)

Y f ′ = (XD,XLc) , Y f
′
= (XDc, XL) . (90)

Assuming that S is a dP8 surface, we consider the observable gauge group SU(5). On

codimension-one curves that are the intersections of the observable seven-branes and other

seven-branes, we obtain the SM fermions, Higgs fields, and extra vector-like particles. To

break the SU(5) gauge symmetry down to the SU(3)C×SU(2)L×U(1)Y gauge symmetries,

we turn on the U(1)Y flux on S specified by the line bundle L. To obtain the SM fermions,

Higgs fields and additional vector-like particles, we also turn on the U(1) fluxes on the other

seven-branes that intersect with the observable seven-branes, and we specify these fluxes by

the line bundle L′n.
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We take the line bundle L = OS(E1 − E2)
6/5. Note that χ(S, L5/6) = 0, we do not have

the vector-like particles on the bulk S. Moreover, the curves with homology classes for the

matter fields, Higgs fields and vector-like particles, and the gauge bundle assignments for

each curve in the SU(5) models are given in Table IV. From this table, we obtain: all the

SM fermions are localized on the matter curves ΣF ′ and Σ
f
′; the Higgs fields Hu and Hd

are localized on the curves ΣHu, and ΣHd, respectively; and the vector-like particles Y F ′,

Y F
′
, Y f ′, Y f

′
, (XQ, XQc), (XU, XU c), (XD, XDc), (XL, XLc), and (XE, XEc) are

localized on the curves ΣF ′, ΣF ′ , Σf ′ , Σf ′ , ΣXQ, ΣXU , ΣXD, ΣXL, and ΣXE , respectively.

In addition, there exist singlets from the intersections of the other seven-branes. It is easy

to check that we can realize the SM fermion Yukawa coupling terms in our models. All

the vector-like particles can obtain masses by giving vacuum expectation values (VEVs) to

the SM singlets at the intersections of the other seven-branes. Furthermore, if we take the

line bundle L = OS(E1 − E2 + E7 − E8)
6/5. we shall have one pair of vector-like particles

(XY, XY c) on the bulk S because χ(S, L5/6) = −1.

Fields Curves Class gΣ LΣ L′n
Σ

Hu ΣHu 2H − E1 − E3 0 O(1)6/5 O(1)2/5

Hd ΣHd 2H − E2 − E3 0 O(−1)6/5 O(−1)2/5

10i + n×XF ′ ΣF ′ 2H − E4 − E6 0 O(0) O(3 + n)

n×XF
′

Σ
F

′ 2H − E5 − E6 0 O(0) O(−n)

5i +m×Xf
′

Σ
f
′ H − E7 0 O(0) O(−3−m)

m×Xf ′ Σf ′ H − E8 0 O(0) O(m)

(XQ, XQc) ΣXQ 3H − E1 − E2 (pinched) 1 O(p12)
6/5 O(p12)

−1/5

(XU, XU c) ΣXU 3H − E1 − E2 −E3 (pinched) 1 O(p312)
6/5 O(p312)

4/5

(XD, XDc) ΣXD 3H − E1 − E2 −E4 (pinched) 1 O(p412)
6/5 O(p412)

2/5

(XL, XLc) ΣXL 3H − E1 − E5 (pinched) 1 O(p512)
6/5 O(p512)

−3/5

(XE, XEc) ΣXE 3H − E1 − E2 −E6 (pinched) 1 O(p612)
6/5 O(p612)

−6/5

TABLE IV: The particle curves and gauge bundle assignments for each curve in the SU(5) models

from F-theory. Here i = 1, 2, 3. Moreover, p12 = p1 − p2, p
l
12 = pl1 −P l

2 for l = 3, 4, 5, 6, and we

denote the corresponding blowing up points as p1, p2, p
l
1, and pl2.
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III. GAUGINO MASS RELATIONS AND THEIR INDICES

First, let us briefly review the generalization of mSUGRA. In four-dimensional GUTs

with high-dimensional operators [4, 9–12], and F-theory SU(5) models [24, 27] and SU(3)C×
SU(2)L ×SU(2)R ×U(1)B−L models [29], the SM gauge kinetic functions are not unified at

the GUT scale. In general, the gaugino masses at the GUT scales can be parametrized as

follows [33]

Mi

αi
= MU

1/2 + aiM
NU
1/2 , (91)

where MU
1/2 andM

NU
1/2 are the universal and non-universal gaugino masses at the GUT scale.

Thus, we define the index k of the gaugino mass relation by the following equation [33]

M2

α2
− M3

α3
= k

(

M1

α1
− M3

α3

)

, (92)

where

k ≡ a2 − a3
a1 − a3

. (93)

Because Mi/αi are renormalization scale invariant under one-loop RGE running and the

two-loop RGE running effects are very small [31], the gaugino mass relation in Eq. (92) can

be preserved very well at low energy. Note that the gaugino masses can be measured from

the LHC and ILC experiments [7, 8], we can determine k at low energy. In addition, we

have the following gauge coupling relation at the GUT scale

1

α2
− 1

α3
= k

(

1

α1
− 1

α3

)

. (94)

Thus, we can define the GUT scale via the above gauge coupling relation. In short, the index

k describes not only the gauge coupling relation in Eq. (94) at the GUT scale, but also the

gaugino mass relation in Eq. (92) which is exact from the GUT scale to the electroweak scale

at one loop. Although k is not well defined in the mSUGRA, in this paper, we symbolically

define the index k for the mSUGRA gaugino mass relation as 0/0, i .e., k = 0/0 means the

mSUGRA gaugino mass relation.

Interestingly, in the GMSB and AMSB, the gaugino masses are given by Eq. (91) with

MU
1/2 = 0. Thus, Mi/(aiαi) are proportional to the same constant. And then we can define

their gaugino mass relations as follows

M3

a3α3
=

M2

a2α2
=

M1

a1α1
. (95)
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Therefore, to present the gaugino mass relations in the GMSB and AMSB, we only need to

calculate ai in the following.

IV. GAUGE MEDIATED SUPERSYMMETRY BREAKING

First, let us consider the gaugino mass relations and their indices in the GMSB [34]. In

the messenger sector, we introduce a set of the SM vector-like particles Φj and Φj . To break

supersymmetry, we introduce a chiral superfield X , whose F-term breaks supersymmetry.

The messenger fields couple to X via the following superpotential

W ⊃ λjXΦjΦj , (96)

where λi are Yukawa couplings. For simplicity, we assume that the scalar and auxiliary

components of X obtain VEVs

〈X〉 = M + θ2F . (97)

Thus, the fermionic components of Φj and Φj form Dirac fermions with masses λjM . De-

noting the superfields and their scalar components of Φj and Φj in the same symbols, we

obtain that their scalar components have the following squared-mass matrix in the basis

(Φj , Φ
†

j)

M2 =





|λjM |2 −(λjF )
†

−(λjF ) |λjM |2



 . (98)

Therefore, the scalar messenger mass eigenvetors are (Φj + Φ
†

j)/
√
2 and (Φj − Φ

†

j)/
√
2,

and the corresponding squared-mass eigenvalues are (λjM)2 ± λjF . The supersymmetry

breaking, which is obvious in the messenger spectrum, is communicated to the SM sector

via the gauge interactions of Φj and Φj . And then we obtain the gaugino masses at one loop

as follows

Mi

αi
=

1

4π

F

M

∑

j

ni(Φj)g(xj) , (99)

where ni(Φj) is the sum of Dynkin indices for the vector-like particles Φj and Φj , xj =

|F/(λjM2)|, and

g(x) =
1

x2
[(1 + x)ln(1 + x) + (1− x)ln(1− x)] . (100)
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Approximately, we have the expansion of g(x) as follows

g(x) = 1 +
x2

6
+
x4

15
+
x6

28
+ · · · . (101)

Because the squared-masses for the messenger fields must be positive, we obtain 0 ≤ xj ≤ 1.

Also, g(x) is a monotonically increasing function from g(0) = 1 to g(1) = 1.386. Therefore,

in the GMSB, we have

ai =
∑

j

ni(Φj)g(xj) . (102)

In particular, if all the messenger fields have the same Yukawa couplings to X , i .e , λj are

the same, we have

ai =
∑

j

ni(Φj) . (103)

Moreover, if the messenger fields are heavier than 107 GeV and their Yukawa couplings to

X are about order one for naturalness, we obtain xj ≤ 0.1, and then g(xj) ≃ 1. So we have

ai ≃
∑

j

ni(Φj) . (104)

To preserve the gauge coupling unification in GUTs, we usually assume that the vector-

like messengers form complete SU(5) multiplets, for example, (5, 5). In general, the mes-

sengers do not need to form complete SU(5) multiplets. To achieve the gauge coupling

unification, we can introduce extra vector-like particles around the same messeger scale,

which do not couple to supersymmetry breaking chiral superfield X . For example, assuming

that we have the vector-like messenger fields (XD, XDc) (or (XL, XLc)), we introduce

the vector-like particles (XL, XLc) (or (XD, XDc)) at the messenger scale so that the

gauge coupling unification can be preserved. In GUTs from orbifold constructions, inter-

secting D-brane model building on Type II orientifolds, M-theory on S1/Z2 with Calabi-Yau

compactifications, and F-theory model building, (XD, XDc) and (XL, XLc) do not need

to arise from the same GUT multiplets since the zero modes of their triplet partners and

doublet partners can be projected out, respectively. Thus, we can realize such scenarios

with some fine-tuning. Interestingly, in the flipped SU(5)× U(1)X models, we do not need

to fine-tune the mass scales for the vector-like particles due to the two-step gauge coupling

unification.
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Cases Messengers (n1, n2, n3) k Cases Messengers (n1, n2, n3) k

(1) (XQ, XQc) (1/5, 3, 2) −5/9 (2) (XU, XU c) (8/5, 0, 1) −5/3

(3) (XD, XDc) (2/5, 0, 1) 5/3 (4) (XL, XLc) (3/5, 1, 0) 5/3

(5) (XE, XEc) (6/5, 0, 0) 0 (6) (XY, XY c) (5, 3, 2) 1/3

(7) XG (0, 0, 3) 1 (8) XW (0, 2, 0) ∞

(9) (XT, XT c) (18/5, 4, 0) 10/9 (10) (XS, XSc) (16/5, 0, 5) 25/9

(11) (XQ, XQc) (7/5, 3, 2) −5/3 (12) (XU, XU c) (14/5, 0, 1) −5/9

(XE, XEc) (XE, XEc)

(13) XG (0, 2, 3) 1/3 (14) (XT, XT c) (34/5, 4, 5) −5/9

XW (XS, XSc)

(15) (5,5) (1, 1, 1) 0/0 (16) (10,10) (3, 3, 3) 0/0

(17) (15,15) (7, 7, 7) 0/0 (18) 24 (5, 5, 5) 0/0

TABLE V: The ni(Φ) for the messenger fields and the corresponding indices k of the gaugino mass

relations in SU(5) models.

To calculate the parameters ai and indices k for the gaugino mass relations, we assume

for simplicity that either all the messenger fields have the same Yukawa couplings to X , or

the messenger fields are heavier than 107 GeV, and then, the parameters ai are given by

Eq. (103). Thus, we only need to present the Dynkin indices ni for the messenger fields.

We emphasize that with the gaugino mass relations and their indices k, we may probe the

messenger fields at the intermediate scale. With various messenger fields, we shall consider

SU(5) models, flipped SU(5)× U(1)X models with SO(10) origin, and Pati-Salam Models

with SO(10) origin in the following:

(i) SU(5) Models

In Table V, we present the ni(Φ) for the messenger fields and the corresponding indices

k of the gaugino mass relations in SU(5) models. We can construct orbifold SU(5) models

with vector-like particles in the Cases (1), (3), (4), (6), (12), (13), (14), (15), (16), (17),

and (18) in Table V. Here, the Cases (15), (16), (17), and (18) can be considered as the
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combinations of two Cases, Cases (3) and (4), Cases (1) and (12), Cases (1) and (14), and

Cases (6) and (13), respectively. Assuming the superpotential between the messenger fields

and X is on the D3-brane at y = πR/2 where only the SM gauge symmetries is preserved, we

can construct orbifold SU(5) models with vector-like particles in the rest Cases in Table V,

i.e., the Cases (2), (5), (7), (8), (9), (10), and (11). Moreover, in the F-theory SU(5)

models, we can construct the SU(5) models with vector-like particles in the Cases (1), (2),

(3), (4), (5), (6), (11), (12), (15), and (16) in Table V. In addition, for the Cases (2), (3),

(4), (9), (10), (12), and (13), there are one massless gaugino, and in the Cases (5), (7), and

(8), there are two massless gauginos. Thus, each of these Cases can not be consistent with

the low-energy phenomenological constraints. To give masses to all the SM gauginos, we

can combine the different Cases, and the corresponding indices can be calculated similarly.

For example, we can add the messenger fields (5, 5) for each of these Cases. Then the

Dynkin indices for the messenger fields increase by one, i .e., we change ni to ni +1 for each

of these Cases in Table V. Interestingly, the indices k are the same as those in Table V

since (5, 5) form complete SU(5) representations. Also, some interesting combinations of

the different Cases will be studied in the flipped SU(5)×U(1)X models and the Pati-Salam

SU(4)C ×SU(2)L×SU(2)R models in the following. Furthermore, we emphasize that we do

have the mSUGRA gaugino mass relation if the messenger fields form the complete SU(5)

representations. Also, if two sets of the messenger fields form complete SU(5) representa-

tions, we can show that the indices k for these two sets of the messenger fields are the same.

For example, the messenger fields (XD, XDc) and (XL,XLc) have the same index k = 5/3.

(ii) Flipped SU(5)× U(1)X Models

In Table VI, we present the ni(Φ) for the messenger fields and the corresponding indices

k of the gaugino mass relations in flipped SU(5) × U(1)X models. We can construct

the orbifold SO(10) models with vector-like particles in the Cases (1), (4), (5), (6), (8),

and (11) in Table VI where the SO(10) gauge symmetry is broken down to the flipped

SU(5) × U(1)X gauge symmetries. Assuming the superpotential between the messenger

fields and X is on the D3-brane at y = πR/2 where only the SU(5) × U(1)X gauge

symmetries is preserved, we can construct the orbifold SO(10) models with vector-like

particles in the rest Cases in Table VI, i.e., the Cases (2), (3), (7), (9), (10), and (12).
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Moreover, in the F-theory SO(10) models where the gauge symmetry is broken down

to the flipped SU(5) × U(1)X gauge symmetries by turning on the U(1)X flux, we can

construct the flipped SU(5) × U(1)X models with vector-like particles in all the Cases

in the Table VI except the Case (5) [26, 28]. Interestingly, the indices k for the gaugino

mass relations are zero for all the Cases except the Case (4) with messenger fields

(Xh, Xh). For the Case (4), we obtain the mSUGRA gaugino mass relation. In addition,

we have two massless gauginos in the Case (3), so it can not be consistent with the

low-energy phenomenological constraints by itself. Furthermore, for the Cases (1), (4),

(5), (7), (10), and (11), we can realize the gauge coupling unification naturally. While for

the Cases (2), (3), (6), (8), (9), and (12), we can achieve the gauge coupling unification

in the testable flipped SU(5)×U(1)X models due to the two-step gauge coupling unification.

Cases Messengers (n1, n2, n3) k Cases Messengers (n1, n2, n3) k

(1) (XF, XF ) (3/5, 3, 3) 0 (2) (Xf, Xf) (11/5, 1, 1) 0

(3) (Xl, Xl) (6/5, 0, 0) 0 (4) (Xh, Xh) (1, 1, 1) 0/0

(5) (XGW,XN) (1/5, 5, 5) 0 (6) (XX, XX) (39/5, 3, 3) 0

(7) (XF, XF ) (9/5, 3, 3) 0 (8) (Xf, Xf) (17/5, 1, 1) 0

(Xl, Xl) (Xl, Xl)

(9) (Xh, Xh) (11/5, 1, 1) 0 (10) (XF, XF ) (14/5, 4, 4) 0

(Xl, Xl) (Xf, Xf)

(11) (XF, XF ) (8/5, 4, 4) 0 (12) (Xf, Xf) (16/5, 2, 2) 0

(Xh, Xh) (Xh, Xh)

TABLE VI: The ni(Φ) for the messenger fields and the corresponding indices k of the gaugino

mass relations in flipped SU(5) × U(1)X models.

(iii) Pati-Salam SU(4)C × SU(2)L × SU(2)R Models

In Table VII, we present the ni(Φ) for the messenger fields and the corresponding indices

k of the gaugino mass relations in Pati-Salam SU(4)C × SU(2)L × SU(2)R models. We can

construct the orbifold SO(10) models with vector-like particles in all the Cases in Table VII

where the SO(10) gauge symmetry is broken down to the Pati-Salam SU(4)C × SU(2)L ×
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SU(2)R gauge symmetries. Moreover, in F-theory SO(10) models where the SO(10) gauge

symmetry is broken down to the SU(3)C × SU(2)L × SU(2)R ×U(1)B−L gauge symmetries

by turning on the U(1)B−L flux [25, 29], we can construct the SU(3)C ×SU(2)L×SU(2)R×
U(1)B−L models with vector-like particles in all the Cases in the Table VII except the Case

(5) [29]. In addition, in the Cases (2), (3), (4), and (8), there are one massless gaugino, and

then each of them is not consistent with the low-energy phenomenological constraints by

itself. We can solve the problem by combining the different Cases, and some combinations

of the different simple Cases are given in Table VII as well.

Cases Messengers (n1, n2, n3) k Cases Messengers (n1, n2, n3) k

(1) (XFL, XFL) (4/5, 4, 2) −5/3 (2) (XFR, XFR) (16/5, 0, 2) −5/3

(3) XDD (2/5, 0, 1) 5/3 (4) XLL (3/5, 1, 0) 5/3

(5) (XG4,XWL) (14/5, 2, 4) 5/3 (6) XZ (26/5, 6, 4) 5/3

XWR

(7) (XFL, XFL) (6/5, 4, 3) −5/9 (8) (XFR, XFR) (18/5, 0, 3) −5

XDD XDD

(9) (XFL, XFL) (7/5, 5, 2) −5 (10) (XFR, XFR) (19/5, 1, 2) −5/9

XLL XLL

TABLE VII: The ni(Φ) for the messenger fields and the corresponding indices k of the gaugino

mass relations in Pati-Salam SU(4)C × SU(2)L × SU(2)R models.

V. ANOMALY MEDIATED SUPERSYMMETRY BREAKING

We first briefly review the AMSB [35–37]. The supergravity Lagrangian can be obtained

from a local superconformal field theory by a gauge fixing of extra symmetries, which can

be done by setting the values of the components of a chiral compensator field C. Thus, C

couples to the conformal symmetry violation, i.e., all the dimensionful parameters including

the renormalization scale µ. To have the canonical normalization for the gravity kinetic

terms, we determine the scalar component of C. To cancel the cosmological constant after

supersymmetry breaking in the hidden sector, we give a non-zero VEV to the auxiliary

component FC of C, which is the only source of supersymmetry breaking. With 〈C〉 =
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MC + θ2FC , we obtain the gravitino mass m3/2 = FC/MC . To suppress the supergravity

contributions to the supersymmetry breaking soft terms, we assume the sequestering between

the observable and hidden sectors for simplicity. This can be realized naturally in the five-

dimensional brane world scenario where the observable and hidden sectors are confined on

the different branes [61], or in the models where the contact terms between the observable

and hidden sectors are suppressed dynamically by a conformal sector [62].

In this paper, we concentrate on the gaugino masses. The relevant Lagrangian is

L ⊃
∫

d2θ
1

2g2
Tr [W αWα] + H.C. , (105)

where W α is the field strength of the vector superfield. Because the compensator C couples

to the renormalization scale µ, there are additional contributions at quantum level. Then

we have

L ⊃
∫

d2θ
1

2g2
( µ

C

)Tr [W αWα] + H.C. . (106)

Thus, we obtain the SM gaugino masses

Mi

αi
=

bi
4π

FC

MC
, (107)

where b3, b2, and b1 are the one-loop beta functions for SU(3)C , SU(2)L, and U(1)Y , re-

spectively. In particular, if there are vector-like particles at the intermediate scales which

do not mediate supersymmetry breaking, we emphasize that these vector-like particles will

not affect the low-energy gaugino masses in the AMSB after they are integrated out [5].

Moreover, although AMSB can solve the flavour changing neutral current problem, the

minimal AMSB is excluded since the squared slepton masses are negative and then the

electromagnetism will be broken. In this paper, we consider two solutions: (1) UV insensitive

anomaly mediation [36]; (2) Deflected anomaly mediation [37].

A. UV Insensitive Anomaly Mediation

In the UV insensitive anomaly mediation [36], the U(1) D-terms contribute to the slep-

ton masses, and then the squared slepton masses can be positive. In particular, the U(1)

symmetries can be U(1)Y and U(1)B−L so that we only need to introduce three right-handed
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neutrinos to cancel the U(1)B−L gauge anomalies. Interestingly, the gaugino masses are still

given by Eq. (107). Thus, we obtain

ai = bi . (108)

We shall consider the SU(5) and flipped SU(5)× U(1)X models with TeV-scale vector-

like particles. To achieve the one-step gauge coupling unification, we emphasize that the

discussions for the Pati-Salam SU(4)C × SU(2)L × SU(2)R models are similar to those in

the SU(5) models. Thus, we will not consider the Pati-Salam models here for simplicity. In

SU(5) models, to achieve the gauge coupling unification, we consider the TeV-scale vector-

like particles that form complete SU(5) representations. In Table VIII, we present the

parameters ai and the indices k of the gaugino mass relations in the SU(5) models without

and with TeV-scale vector-like particles. Especially, the indices k are equal to 5/12 for all

these Cases. In addition, we present the parameters ai and the indices k of the gaugino

mass relations in Table IX in the flipped SU(5)× U(1)X models with TeV-scale vector-like

particles. These vector-like particles also form complete SU(5)×U(1)X representations. For

the Cases (1), (4), (5), (8), and (9), we can have the gauge coupling unification naturally.

However, for the Cases (2), (3), (6), and (7), we should introduce the vector-like particles

(XF, XF ) at the intermediate scale 108 GeV or smaller so that we can obtain the gauge

coupling unification.

Furthermore, for the Cases (4) and (6) in the SU(5) models and the Cases (1) and (5) in

the flipped SU(5)×U(1)X models, gluino is massless. This problem can be solved elegantly

in the deflected AMSB in the next subsection. Also, for the Cases (5) and (7) in the SU(5)

models and the Cases (8) and (9) in the flipped SU(5)× U(1)X models, we emphasize that

the masses of the vector-like particles may need to be about 20 TeV or larger so that we

can avoid the Landau pole problem for the strong coupling [28, 59]. Thus, we can not test

these models at the LHC since we may have 10 TeV scale supersymmetry breaking.

B. Deflected Anomaly Mediation

In the deflected anomaly mediation [37], similar to the GMSB, we introduce a chiral

superfield X and a set of the SM vector-like particles Φj and Φj. The superpotential is

W ⊃ λjXΦjΦj +M3−p
∗ Xp , (109)
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Case New Particles (a1, a2, a3) k Case New Particles (a1, a2, a3) k

(1) No (33/5, 1,−3) 5/12 (2) (5,5) (38/5, 2,−2) 5/12

(3) 2× (5,5) (43/5, 3,−1) 5/12 (4) 3× (5,5) (48/5, 4, 0) 5/12

(5) 4× (5,5) (53/5, 5, 1) 5/12 (6) (10,10) (48/5, 4, 0) 5/12

(7) (5,5), (10,10) (53/5, 5, 1) 5/12

TABLE VIII: The parameters ai and the indices k for the UV insensitive AMSB in the SU(5)

models without and with additional vector-like particles.

Case New Particles (a1, a2, a3) k Case New Particles (a1, a2, a3) k

(1) (XF,XF ) (36/5, 4, 0) 5/9 (2) (Xf,Xf) (44/5, 2,−2) 10/27

(3) (Xl,Xl) (39/5, 1,−3) 10/27 (4) (Xh,Xh) (38/5, 2,−2) 5/12

(5) (XF,XF ) (42/5, 4, 0) 10/21 (6) (Xf,Xf) (49/5, 3,−1) 10/27

(Xl,Xl) (Xh,Xh)

(7) (Xl,Xl) (44/5, 2,−2) 10/27 (8) (XF,XF ) (47/5, 5, 1) 10/21

(Xh,Xh) (Xf,Xf)

(9) (XF,XF ) (41/5, 5, 1) 5/9

(Xh,Xh)

TABLE IX: The parameters ai and the indices k for the UV insensitive AMSB in the flipped

SU(5)× U(1)X models with additional vector-like particles.

where p 6= 3, and M∗ is a model-dependent mass parameter. The chiral compensator C

couples to X at tree level by the scale non-invariant term M3−p
∗ Xp, and then the VEVs of

X can be fixed. It was shown that X is stabilized at 〈X〉 >> m3/2 for M∗ >> m3/2 if p > 3

or p < 0 as follows

〈X〉 = MX + θ2FX , (110)

where

MX ≃ m
1/(p−2)
3/2 M (p−3)/(p−2)

∗ ,
FX

MX
= − 2

p− 1

FC

MC
. (111)
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In addition, even without the term M3−p
∗ Xp in the superpotential, X can still be stabilized

by the radiative corrections to its Kähler potential, and then we have

FX

MX
≃ − FC

MC
. (112)

Thus, the contributions to the supersymmetry breaking soft masses from gauge mediation

are comparable to those from anomaly mediation, and then we can solve the tachyonic

slepton problem in the AMSB. Moreover, we obtain the gaugino masses at the TeV scale

Mi

αi

=
1

4π

(

bi +
2

p− 1

∑

j

ni(Φj)g(xj)

)

FC

MC

. (113)

Thus, we have

ai = bi +
2

p− 1

∑

j

ni(Φj)g(xj) . (114)

If the messenger fields are heavier than 107 GeV and their Yukawa couplings to X are about

order one, we obtain

ai ≃ bi +
2

p− 1

∑

j

ni(Φj) . (115)

Thus, choosing the possible value for p and introducing the TeV-scale vector-like particles,

we can calculate the parameters ai and the indices k of the gaugino mass relations.

To probe the messenger fields in the deflected anomaly mediation, we should define a

new index k′ for the gaugino mass relations. In the supersymmetric SM, we have

b1 =
33

5
, b2 = 1 , b3 = −3 . (116)

Thus, b1 and b2 will aways be positive even if we introduce the vector-like particles at the

TeV scale. Therefore, for b3 6= 0, we define the new index k′ as follows

k′ ≡
b1b3

M2

α2
− b1b2

M3

α3

b2b3
M1

α1
− b1b2

M3

α3

=

b1b3
∑

j

n2(Φj)g(xj)− b1b2
∑

j

n3(Φj)g(xj)

b2b3
∑

j

n1(Φj)g(xj)− b1b2
∑

j

n3(Φj)g(xj)
. (117)

And for b3 = 0, we define the new index k′ as follows

k′ ≡
b1
M2

α2

− b2
M1

α1

M3

α3

=

b1
∑

j

n2(Φj)g(xj)− b2
∑

j

n1(Φj)g(xj)

∑

j

n3(Φj)g(xj)
. (118)
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Assuming that the messenger fields are heavier than 107 GeV and their Yukawa couplings

to X are about order one, we consider the SU(5) models, the flipped SU(5) models, the

Pati-Salam Models, and the other possible models in the following:

Cases Messengers (a01, a02, a03) k0 (a11, a12, a13) k1 (a21, a22, a23) k2

(1) (XQ, XQc) (10115 , 3,−5
3)

5
9 (11615 , 4,−2

3)
5
9 (14615 , 6, 43)

5
9

(2) (XU, XU c) (233 , 1,−7
3)

1
3 (263 , 2,−4

3)
1
3 (323 , 4, 23)

1
3

(3) (XD, XDc) (10315 , 1,−7
3)

25
69 (11815 , 2,−4

3)
25
69 (14815 , 4, 23)

25
69

(4) (XL, XLc) (7, 53 ,−3) 7
15 (8, 83 ,−2) 7

15 (10, 143 , 0) 7
15

(5) (XE, XEc) (375 , 1,−3) 5
13 (425 , 2,−2) 5

13 (525 , 4, 0) 5
13

(6) (XY, XY c) (14915 , 3,−5
3)

35
87 (16415 , 4,−2

3)
35
87 (19415 , 6, 43)

35
87

(7) XG (335 , 1,−1) 5
19 (385 , 2, 0) 5

19 (485 , 4, 2) 5
19

(8) XW (335 , 73 ,−3) 5
9 (385 , 103 ,−2) 5

9 (485 , 163 , 0) 5
9

(9) (XT, XT c) (9, 113 ,−3) 5
9 (10, 143 ,−2) 5

9 (12, 203 , 0) 5
9

(10) (XS, XSc) (13115 , 1, 13)
5
63 (14615 , 2, 43)

5
63 (17615 , 4, 103 ) 5

63

(11) (XQ, XQc) (11315 , 3,−5
3)

35
69 (12815 , 4,−2

3)
35
69 (15815 , 6, 43)

35
69

(XE, XEc)

(12) (XU, XU c) (12715 , 1,−7
3)

25
81 (14215 , 2,−4

3)
25
81 (17215 , 4, 23)

25
81

(XE, XEc)

(13) (XG, XW ) (335 , 73 ,−1) 25
57 (385 , 103 , 0) 25

57 (485 , 163 , 2) 25
57

(14) (XT, XT c) (16715 , 113 , 13)
25
81 (18215 , 143 , 43)

25
81 (21215 , 203 , 103 ) 25

81

(XS, XSc)

(15) (5,5) (10915 , 53 ,−
7
3)

5
12 (12415 , 83 ,−

4
3)

5
12 (15415 , 143 , 23)

5
12

(16) (10,10) (435 , 3,−1) 5
12 (485 , 4, 0) 5

12 (585 , 6, 2) 5
12

(17) (15,15) (16915 , 173 , 53)
5
12 (18415 , 203 , 83)

5
12 (21415 , 263 , 143 ) 5

12

(18) 24 (14915 , 133 , 13)
5
12 (16415 , 163 , 43)

5
12 (19415 , 223 , 103 ) 5

12

TABLE X: The parameters a0i , a
1
i , and a2i , and the indices k0, k1, and k2 of the gaugino mass

relations in the SU(5) models with various messenger fields.
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Cases Messengers k′0 k′1 k′2 Cases Messengers k′0 k′1 k′2

(1) (XQ, XQc) 121/23 95/39 14 (2) (XU, XU c) 11/19 19/27 −32/5

(3) (XD, XDc) 11/13 19/21 −8/5 (4) (XL, XLc) 11 19/3 ∞

(5) (XE, XEc) 0 0 ∞ (6) (XY, XY c) 121/47 95/63 22/5

(7) XG 1 1 0 (8) XW ∞ ∞ ∞

(9) (XT, XT c) 22/3 38/9 ∞ (10) (XS, XSc) 55/71 95/111 −64/25

(11) (XQ, XQc) 121/29 19/9 58/5 (12) (XU, XU c) 11/25 19/33 −56/5

(XE, XEc) (XE, XEc)

(13) XG 3 5/3 32/5 (14) (XT, XT c) 187/89 57/43 56/25

XW (XS, XSc)

(15) (5,5) 11/4 19/12 28/5 (16) (10,10) 11/4 19/12 28/5

(17) (15,15) 11/4 19/12 28/5 (18) 24 11/4 19/12 28/5

TABLE XI: The indices k′0, k
′
1, and k′2 of the gaugino mass relations in the SU(5) models with

various messenger fields.

(i) The SU(5) Models

We consider three Types of the SU(5) models with or without additional SM singlet(s):

Type I SU(5) models are the minimal SU(5) models ; Type II SU(5) models are the SU(5)

models with TeV-scale vector-like particles (5, 5); Type III SU(5) models are the SU(5)

models with TeV-scale vector-like particles (10, 10) (or three pairs of (5, 5)). We denote

the parameters ai, and the indices k and k′ for the gaugino mass relations in Type I SU(5)

models as a0i , k0, and k
′
0, in Type II SU(5) models as a1i , k1, and k

′
1, and in Type III SU(5)

models as a2i , k2, and k
′
2, respectively. For k

′
i, we have

k′0 =

33
∑

j

n2(Φj)g(xj) + 11
∑

j

n3(Φj)g(xj)

5
∑

j

n1(Φj)g(xj) + 11
∑

j

n3(Φj)g(xj)
, (119)

k′1 =

19
∑

j

n2(Φj)g(xj) + 19
∑

j

n3(Φj)g(xj)

5
∑

j

n1(Φj)g(xj) + 19
∑

j

n3(Φj)g(xj)
, (120)
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k′2 =

48
∑

j

n2(Φj)g(xj)− 20
∑

j

n1(Φj)g(xj)

5
∑

j

n3(Φj)g(xj)
. (121)

Choosing p = 4, we present the parameters a0i , a
1
i , and a2i , and the indices k0, k1, and

k2 for various messenger fields in Table X. For the Cases (7), (13), and (16) in Type II

SU(5) models, and for the Cases (4), (5), (8), and (9) in Type III SU(5) models, we have

massless gluino. This problem can be solved easily by choosing the other p, for example,

p = 5. Also, we present the indices k′0, k
′
1, and k

′
2 for various messenger fields in Table XI.

We emphasize that the indices k′0, k
′
1, and k′2 will be the same if we assume that all the

messenger fields have the same Yukawa couplings to X since g(xj) is the same for all the

messenger fields. However, in the Cases (7), (8), and (13), we can not solve the tachyonic

slepton problem since the messenger fields are not charged under U(1)Y . Interestingly, the

gluino is the lightest gaugino in most of our scenarios.

(ii) The flipped SU(5)× U(1)X models

We consider three Types of the flipped SU(5)×U(1)X models with or without additional

SM singlet(s): Type I flipped SU(5)×U(1)X models are the minimal flipped SU(5)×U(1)X
models; Type II flipped SU(5)×U(1)X models are the flipped SU(5)×U(1)X models with

TeV-scale vector-like particles (XF, XF ); Type III flipped SU(5)× U(1)X models are the

flipped SU(5)×U(1)X models with TeV-scale vector-like particles (XF, XF ) and (Xl, Xl).

Moreover, we denote the parameters ai, and the indices k and k′ for gaugino mass relations

in the Type I flipped SU(5) × U(1)X models as a0i , k0, and k′0, in the Type II flipped

SU(5)×U(1)X models as a1i , k1, and k
′
1, and in the Type III flipped SU(5)×U(1)X models

as a2i , k2, and k
′
2, respectively. In addition, k′0 is given by Eq. (119), and we have

k′1 =

36
∑

j

n2(Φj)g(xj)− 20
∑

j

n1(Φj)g(xj)

5
∑

j

n3(Φj)g(xj)
, (122)

k′2 =

42
∑

j

n2(Φj)g(xj)− 20
∑

j

n1(Φj)g(xj)

5
∑

j

n3(Φj)g(xj)
. (123)
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Cases Messengers (a01, a02, a03) k0 (a11, a12, a13) k1 (a21, a22, a23) k2

(1) (XF, XF ) (7, 3,−1) 1
2 (385 , 6, 2) 5

7 (445 , 6, 2) 10
17

(2) (Xf, Xf) (12115 , 53 ,−
7
3)

5
13 (263 , 143 , 23)

1
2 (14815 , 143 , 23)

10
23

(3) (Xl, Xl) (375 , 1,−3) 5
13 (8, 4, 0) 1

2 (465 , 4, 0) 10
23

(4) (Xh, Xh) (10915 , 53 ,−
7
3)

5
12 (11815 , 143 , 23)

5
9 (13615 , 143 , 23)

10
21

(5) (XGW,XN) (10115 , 133 , 13)
5
8 (223 , 223 , 103 ) 1 (12815 , 223 , 103 ) 10

13

(6) (XX, XX) (595 , 3,−1) 5
16 (625 , 6, 2) 5

13 (685 , 6, 2) 10
29

(7) (XF, XF ) (395 , 3,−1) 5
11 (425 , 6, 2) 5

8 (485 , 6, 2) 10
19

(Xl, Xl)

(8) (Xf, Xf) (13315 , 53 ,−
7
3)

5
14 (14215 , 143 , 23)

5
11 (323 , 143 , 23)

2
5

(Xl, Xl)

(9) (Xh, Xh) (12115 , 53 ,−
7
3)

5
13 (263 , 143 , 23)

1
2 (14815 , 143 , 23)

10
23

(Xl, Xl)

(10) (XF, XF ) (12715 , 113 ,−1
3)

5
11 (13615 , 203 , 83)

5
8 (15415 , 203 , 83)

10
19

(Xf, Xf)

(11) (XF, XF ) (233 , 113 ,−1
3)

1
2 (12415 , 203 , 83)

5
7 (14215 , 203 , 83)

10
17

(Xh, Xh)

(12) (Xf, Xf) (13115 , 73 ,−
5
3)

5
13 (283 , 163 , 43)

1
2 (15815 , 163 , 43)

10
23

(Xh, Xh)

TABLE XII: The parameters a0i , a
1
i , and a2i , and the indices k0, k1, and k2 of the gaugino mass

relations in the flipped SU(5)× U(1)X models with various messenger fields.

Choosing p = 4, we present the parameters a0i , a
1
i , and a2i , and the indices k0, k1, and

k2 for various messenger fields in Table XII. For the Case (3) in Type II and Type III

flipped SU(5) × U(1)X models, we have massless gluino. This problem can be solved

by choosing the other p, for example, p = 5. Moreover, we present the indices k′0,

k′1, and k′2 for various messenger fields in Table XIII. We emphasize that the indices

k′0, k
′
1, and k′2 will be the same if we assume that all the messenger fields have the same

Yukawa couplings to X . And we have gluino as the lightest gaugino in most of our scenarios.
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Cases Messengers k′0 k′1 k′2 Cases Messengers k′0 k′1 k′2

(1) (XF, XF ) 11/3 32/5 38/5 (2) (Xf, Xf) 2 −8/5 −2/5

(3) (Xl, Xl) 0 ∞ ∞ (4) (Xh, Xh) 11/4 16/5 22/5

(5) (XGW,XN) 55/14 176/25 206/25 (6) (XX, XX) 11/6 −16/5 −2

(7) (XF, XF ) 22/7 24/5 6 (8) (Xf, Xf) 11/7 −32/5 −26/5

(Xl, Xl) (Xl, Xl)

(9) (Xh, Xh) 2 −8/5 −2/5 (10) (XF, XF ) 88/29 22/5 28/5

(Xl, Xl) (Xf, Xf)

(11) (XF, XF ) 44/13 28/5 34/5 (12) (Xf, Xf) 44/19 4/5 2

(Xh, Xh) (Xh, Xh)

TABLE XIII: The indices k′0, k
′
1, and k′2 of the gaugino mass relations in the flipped SU(5)×U(1)X

models with various messenger fields.

(iii) The Pati-Salam SU(4)C × SU(2)L × SU(2)R Models

We consider three Types of the Pati-Salam SU(4)C × SU(2)L × SU(2)R models with or

without additional SM singlet(s): Type I Pati-Salam models are the minimal Pati-Salam

models; Type II Pati-Salam models are the Pati-Salam models with TeV-scale vector-like

particles (5, 5) under SU(5); and Type III Pati-Salam models are the Pati-Salam models

with TeV-scale vector-like particles (10, 10) (or three pairs of (5, 5)) under SU(5). We

denote the parameters ai, and the indices k and k′ for the gaugino mass relations in Type

I Pati-Salam models as a0i , k0, and k
′
0, in Type II Pati-Salam models as a1i , k1, and k

′
1, and

in Type III Pati-Salam models as a2i , k2, and k
′
2, respectively. Also, k

′
0, k

′
1, and k

′
2 are given

by Eqs. (119), (120), and (121), respectively.

Choosing p = 4, we present the parameters a0i , a
1
i , and a

2
i , and the indices k0, k1, and k2

for various messenger fields in Table XIV. For the Cases (7) and (8) in Type II Pati-Salam

models, and for the Case (4) in Type III Pati-Salam models, we have massless gluino. This

problem can be solved by choosing the other p, for example, p = 5. Also, we present the

indices k′0, k
′
1, and k′2 for various messenger fields in Table XV. We emphasize that the

indices k′0, k
′
1, and k

′
2 will be the same if we assume that all the messenger fields have the
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Cases Messengers (a01, a02, a03) k0 (a11, a12, a13) k1 (a21, a22, a23) k2

(1) (XFL, XFL) (10715 , 113 ,−5
3)

20
33 (12215 , 143 ,−2

3)
20
33 (15215 , 203 , 43)

20
33

(2) (XFR, XFR) (13115 , 1,−5
3)

10
39 (14615 , 2,−2

3)
10
39 (17615 , 4, 43)

10
39

(3) XDD (10315 , 1,−7
3)

25
69 (11815 , 2,−4

3)
25
69 (14815 , 4, 23)

25
69

(4) XLL (7, 53 ,−3) 7
15 (8, 83 ,−2) 7

15 (10, 143 , 0) 7
15

(5) (XG4,XWL) (12715 , 73 ,−
1
3)

10
33 (14215 , 103 , 23)

10
33 (17215 , 163 , 83)

10
33

XWR

(6) XZ (15115 , 5,−1
3)

20
39 (16615 , 6, 23)

20
39 (19615 , 8, 83)

20
39

(7) (XFL, XFL) (375 , 113 ,−1) 5
9 (425 , 143 , 0) 5

9 (525 , 203 , 2) 5
9

XDD

(8) (XFR, XFR) (9, 1,−1) 1
5 (10, 2, 0) 1

5 (12, 4, 2) 1
5

XDD

(9) (XFL, XFL) (11315 , 133 ,−5
3)

15
23 (12815 , 163 ,−2

3)
15
23 (15815 , 223 , 43)

15
23

XLL

(10) (XFR, XFR) (13715 , 53 ,−
5
3)

25
81 (15215 , 83 ,−

2
3)

25
81 (18215 , 143 , 43)

25
81

XLL

TABLE XIV: The parameters a0i , a
1
i , and a2i , and the indices k0, k1, and k2 of the gaugino mass

relations in the Pati-Salam SU(4)C × SU(2)L × SU(2)R models with various messenger fields.

same Yukawa couplings to X . Interestingly, the gluino is the lightest gaugino in most of

our scenarios.

(iv) The Other Possible Models

There are some other possible models that are consistent with gauge coupling unifica-

tion. For example, in the SU(5) models, we introduce one pair of the vector-like particles

(XD, XDc) (or (XL, XLc)) around the TeV scale, and we introduce two or three or more

pairs of the vector-like particles (XL, XLc) (or (XD, XDc)) at the intermediate scale.

However, to obtain the gauge coupling unification, we do need to fine-tune the masses of

these vector-like particles. Interestingly, in the flipped SU(5)×U(1)X models, we can relax

36



Cases Messengers k′0 k′1 k′2 Cases Messengers k′0 k′1 k′2

(1) (XFL, XFL) 77/13 19/7 88/5 (2) (XFR, XFR) 11/19 19/27 −32/5

(3) XDD 11/13 19/21 −8/5 (4) XLL 11 19/3 ∞

(5) (XG4,XWL) 55/29 19/15 2 (6) XZ 121/35 95/51 46/5

XWR

(7) (XFL, XFL) 55/13 19/9 56/5 (8) (XFR, XFR) 11/17 19/25 −24/5

XDD XDD

(9) (XFL, XFL) 187/29 133/45 106/5 (10) (XFR, XFR) 55/41 1 −14/5

XLL XLL

TABLE XV: The indices k′0, k
′
1, and k′2 of the gaugino mass relations for various messenger fields

in the Pati-Salam SU(4)C × SU(2)L × SU(2)R models.

the gauge coupling unification condition due to the two-step gauge coupling unification. Let

us present a new kind of the flipped SU(5) × U(1)X models. We introduce the vector-like

particles (Xf, Xf) around the TeV scale, and introduce the messenger vector-like particles

(XF, XF ) or (XF, XF )⊕ (Xh, Xh) at the intermediate scale 108 GeV or smaller so that

the gauge coupling unification can be realized. For the index k′, we have

k′ =

22
∑

j

n2(Φj)g(xj) + 22
∑

j

n3(Φj)g(xj)

5
∑

j

n1(Φj)g(xj) + 22
∑

j

n3(Φj)g(xj)
. (124)

For the model with the intermediate-scale vector-like messenger fields (XF, XF ), we choose

p = 5. Thus, we have a1 = 91/10, a2 = 7/2, and a3 = −1/2, and the indices k = 5/12,

and k′ = 44/23. Also, for the model with the intermediate-scale vector-like messenger fields

(XF, XF ) ⊕ (Xh, Xh), we choose p = 4. Thus, we have a1 = 148/15, a2 = 14/3, and

a3 = 2/3, and the indices k = 10/23, and k′ = 11/6.

VI. IMPLICATIONS OF GAUGINO MASS RELATIONS AND THEIR INDICES

With the gaugino mass relations and their indices, we may distinguish the different su-

persymmetry breaking mediation mechanisms and probe the four-dimensional GUTs and
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string derived GUTs if we can measure the gaugino masses at the LHC and future ILC.

In particular, we emphasize again that the gaugino mass realtions in the gravity mediated

supersymmetry breaking is different from those for the gauge and anomaly mediated su-

persymmetry breaking, as discussed in Section III. Here, we summarize the indices k of

the gaugino mass relations in the typical GUTs with gravity, gauge and anomaly mediated

supersymmetry breaking:

• Gravity Mediated Supersymmetry Breaking

In the typical four-dimensional SU(5) and SO(10) models, in the F-theory SU(5)

models with U(1)Y flux, and in the F-theory SO(10) models with U(1)B−L flux where

the gauge symmetry is broken down to the SU(3)C × SU(2)L × SU(2)R × U(1)B−L

gauge symmetries, the indices for the gaugino mass relations are either 0/0 or 5/3,

where k = 0/0 means the mSUGRA gaugino mass relation [33]. However, in the

F-theory SO(10) models with U(1)X flux where the gauge symmetry is broken down

to the flipped SU(5)×U(1)X gauge symmetries, we only have the mSUGRA gaugino

mass relation [33]. Also, in the four-dimensional minimal SO(10) model [63], the Higgs

field, which breaks the SO(10) gauge symmetry, is in the SO(10) 45 representation.

Thus, only the dimension-six operators can induce the non-universal SM gauge kinetic

functions at the GUT scale, and then such non-universal effects on the SM gauge

kinetic functions are very small and negligible. Therefore, we only have the mSUGRA

gaugino mass relation as well. In short, if we obtain k = 5/3 from the LHC and ILC

experiments, we can rule out the F-theory SO(10) models with U(1)X flux and the

four-dimensional minimal SO(10) model.

• Gauge Mediated Supersymmetry Breaking

In the four-dimensional SU(5) and SO(10) models, we have the mSUGRA gaugino

mass relation in general since it is difficult to split the complete SU(5) and SO(10)

multiplets. However, in the orbifold GUTs and F-theory GUTs with various messenger

fields, we have many new possible gaugino mass relations and their indices, as discussed

in Section IV. In particular, the indices k can be 5/3 in quite a few SU(5) models and

Pati-Salam models. In the flipped SU(5)× U(1)X models, we have k = 0 in general,

which are different from the mSGURA gaugino mass relation except that the messenger

fields are Xh and Xh.
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• UV Insensitive Anomaly Mediated Supersymmetry Breaking

In the four-dimensional SU(5) and SO(10) models (or say Pati-Salam models) with

or without the TeV-scale vector-like particles that form complete GUT multiplets,

we generically have k = 5/12. In the flipped SU(5) × U(1)X models, in addition to

k = 5/12, we can have k = 5/9, k = 10/27, and k = 10/21. Especially, all the

indices k are smaller than 1, and then they can not be 5/3 as in the gravity mediated

supersymmetry breaking.

• Deflected Anomaly Mediated Supersymmetry Breaking

If the messenger fields form complete SU(5) or SO(10) representations, we also have

k = 5/12. For generical messenger fields, the detailed discussions are given in subsec-

tion V.B. Especially, all the indices k are smaller than 1. In addition, we would like

to point out that the discussions for mirage mediation [64] are similar to those for the

deflected AMSB.

Furthermore, to distinguish the different scenarios with the same gaugino mass relations

and the same indices, we need to consider the squark and slepton masses as well, which will

be studied elsewhere [54].

VII. CONCLUSIONS

In GUTs from orbifold constructions, intersecting D-brane model building on Type II

orientifolds, M-theory on S1/Z2 with Calabi-Yau compactifications, and F-theory with U(1)

fluxes, we pointed out that the generic vector-like particles do not need to form the com-

plete SU(5) or SO(10) representations. Thus, in the GMSB and deflected AMSB, the

messenger fields do not need to form complete SU(5) representations. We can achieve the

gauge coupling unification by introducing the extra vector-like particles that do not me-

diate supersymmetry breaking. To be concrete, we presented the orbifold SU(5) models

with additional vector-like particles, the orbifold SO(10) models with additional vector-like

particles where the gauge symmetry can be broken down to flipped SU(5)×U(1)X or Pati-

Salam SU(4)C ×SU(2)L ×SU(2)R gauge symmetries, and the F-theory SU(5) models with

generic vector-like particles. Interestingly, these vector-like particles can be the TeV-scale
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vector-like particles that we need to increase the lightest CP-even Higgs boson mass in the

MSSM, and they can be the messenger fields in the GMSB and deflected AMSB as well.

In addition, we have studied the general gaugino mass relations and their indices in the

GMSB and AMSB, which are valid from the GUT scale to the electroweak scale at one loop.

For the GMSB, we calculated the gaugino mass relations and their indices for the SU(5)

models, the flipped SU(5)×U(1)X models, and the Pati-Salam SU(4)C ×SU(2)L×SU(2)R
models with various possible messenger fields. These kinds of GUTs can be realized in

orbifold GUTs, F-theory SU(5) models with U(1)Y flux, and F-theory SO(10) models with

U(1)X flux and U(1)B−L flux where the SO(10) gauge symmetry is respectively broken down

to the flipped SU(5) × U(1)X gauge symmetries and the SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L gauge symmetries. Especially, we pointed out that using gaugino mass relations

and their indices, we may probe the messenger fields at the intermediate scale. Moreover,

for the AMSB, we considered the UV insensitive AMSB and the deflected AMSB. In the

UV insensitive AMSB, we calculated the gaugino mass relations and their indices in the

SU(5) models without and with TeV-scale vector-like particles that form complete SU(5)

multiplets, and in the flipped SU(5) × U(1)X models with TeV-scale vector-like particles

that form complete SU(5) × U(1)X multiplets. To achieve the one-step gauge coupling

unification, we emphasize that the discussions for the Pati-Salam models are similar to

those in the SU(5) models. In the deflected AMSB, we defined the new indices for the

gaugino mass relations to probe the messenger fields at intermediate scale. Without or with

the suitable TeV-scale vector-like particles that can lift the lightest CP-even Higgs boson

mass, we studied the generic gaugino mass relations, and their indices k and k′ in the SU(5)

models, the flipped SU(5)×U(1)X models, and the Pati-Salam SU(4)C ×SU(2)L×SU(2)R
models with various possible messenger fields. Also, we found that in most of our scenarios,

gluino can be the lightest gaugino at low energy. Especially, we proposed a new kind of

interesting flipped SU(5)× U(1)X models.

Furthermore, using the gaugino mass relations and their indices, we may not only

determine the supersymmetry breaking mediation mechanisms, but also probe the four-

dimensional GUTs, orbifold GUTs, and F-theory GUTs.
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Appendix A: Breifly Review of del Pezzo Surfaces

The del Pezzo surfaces dPn, where n = 1, 2, ..., 8, are defined by blowing up n generic

points of P1 × P1 or P2. The homological group H2(dPn, Z) has the generators

H, E1, E2, ..., En , (A1)

where H is the hyperplane class for P 2, and Ei are the exceptional divisors at the blowing

up points and are isomorphic to P
1. The intersecting numbers of the generators are

H ·H = 1 , Ei · Ej = −δij , H · Ei = 0 . (A2)

The canonical bundle on dPn is given by

KdPn
= −c1(dPn) = −3H +

n
∑

i=1

Ei. (A3)

For n ≥ 3, we can define the generators as follows

αi = Ei −Ei+1 , where i = 1, 2, ..., n− 1 , (A4)

αn = H −E1 − E2 −E3 . (A5)

Thus, all the generators αi is perpendicular to the canonical class KdPn
. And the intersection

products are equal to the negative Cartan matrix of the Lie algebra En, and can be considered

as simple roots.

The curves Σi in dPn where the particles are localized must be divisors of S. And the

genus for curve Σi is given by

2gi − 2 = [Σi] · ([Σi] +KdPk
) . (A6)

For a line bundle L on the surface dPn with

c1(L) =
n
∑

i=1

aiEi, (A7)

41



where aiaj < 0 for some i 6= j, the Kähler form JdPn
can be constructed as follows [22]

JdPk
= b0H −

n
∑

i=1

biEi, (A8)

where
∑k

i=1 aibi = 0 and b0 ≫ bi > 0. By the construction, it is easy to see that the line

bundle L solves the BPS equation JdPk
∧ c1(L) = 0.
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