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ABSTRACT

Very often, critical quantities related to safety, product quality and economic performance of a

chemical process cannot be measured on line. In an attempt to overcome the challenges caused by

inadequate on-line measurements, state estimation provides an alternative approach to reconstruct

the unmeasured state variables by utilizing available on-line measurements and a process model.

Chemical processes usually possess strong nonlinearities, and involve different types of measure-

ments. It remains a challenging task to incorporate multiple measurements with different sampling

rates and different measurement delays into a unified estimation algorithmic framework.

This dissertation seeks to present developments in the field of state estimation by providing the

theoretical advances in multi-rate multi-delay observer design. A delay-free multi-rate observer is

first designed in linear systems under asynchronous sampling. Sufficient and explicit conditions in

terms of maximum sampling period are derived to guarantee exponential stability of the observer,

using Lyapunov’s second method. A dead time compensation approach is developed to compensate

for the effect of measurement delay. Based on the multi-rate formulation, optimal multi-rate ob-

server design is studied in two classes of linear systems where optimal gain selection is performed

by formulating and solving an optimization problem. Then a multi-rate observer is developed in

nonlinear systems with asynchronous sampling. The input-to-output stability is established for the

estimation errors with respect to measurement errors using the Karafyllis-Jiang vector small-gain

theorem. Measurement delay is also accounted for in the observer design using dead time compen-

sation. Both the multi-rate designs in linear and nonlinear systems provide robustness with respect

to perturbations in the sampling schedule.

Multi-rate multi-delay observer is shown to be effective for process monitoring in polymeriza-

tion reactors. A series of three polycondensation reactors and an industrial gas-phase polyethylene

reactor are used to evaluate the observer performance. Reliable on-line estimates are obtained from

the multi-rate multi-delay observer through simulation.
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1. INTRODUCTION

Process system engineering is a discipline that develops theoretical approaches, computational

techniques, and computer-aided tools for modeling, design, optimization, and control of complex

engineering systems. State estimation, as a branch of the discipline, uses computational algorithms

to reconstruct the state or a functional of the state of a dynamic system and thus, places less reliance

on hardware sensors needed in a system. As a result, the cost of device installation and maintenance

is greatly reduced. In addition, it is very rare in practice that all the state variables are available via

direct on-line1 measurements, especially in chemical processes. In most cases, there is a substantial

need for accurate estimation of the unmeasurable state variables in real time, which may be used in

process monitoring, model-based controller synthesis, and early detection of operational problems

[4]. State estimation, as a soft sensor technique, opens up possibilities to tackle the aforementioned

tasks by using available on-line measurements and a process model. However, a chemical process

usually involves different types of measurements, and it remains a challenging and critical task to

incorporate multiple measurements with different sampling rates and different measurement delays

into the same estimator design, in a unified algorithmic framework.

To this extent, this dissertation presents developments in the field of state estimation by provid-

ing the theoretical advances in multi-rate multi-delay state observer design, and several simulation

case studies with focus on polymerization reactors, which are selected as the application area of

the theoretical developments.

1.1 Background and Motivation

The increasingly competitive chemical industry urges innovative smart manufacturing of prod-

ucts in large quantities, with desired quality, and in a cost-effective and sustainable manner. Energy-

efficient operations can often be realized by integration of process design, mathematical modeling,

optimization, and process control. The objective of control is to address problems of process stabi-

1On line means that the techniques have been designed for continuous operation in a production process or at least
appear qualified for such use in the foreseeable future [3].
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lization and regulation as well as enhancement of the stability properties and system performance.

However, the implementation of feedback control laws in a plant often requires the availability of

all state variables for direct on-line measurements. In practice, despite the fact that some physical

variables (e.g., temperature, pressure, flow rate, liquid level) can be directly measured on line, crit-

ical variables related to safety, product quality, and economic performance of a chemical process

usually cannot be measured on line. For example, product quality indices (e.g., molecular weight,

melt index, tear strength, elastic modulus) cannot be measured in real time because of the compli-

cated and slow measurement techniques needed or simply the technical limitations to measure the

quality indices until the final product is formulated or used [5]. Hence, it is extremely difficult to

control and monitor product quality without efficient and reliable on-line measurements.

Polymerization reactors belong to a class of processes where control and monitoring of product

quality are limited by the lack of reliable and robust on-line polymer characterization instruments.

Some product quality measurements (e.g., melt viscosity, polymer structure properties, mechanical

strength) may be available from off-line lab analysis, during the course or at the end of a reaction.

However, infrequent sampling and large measurement delays, caused by the off-line analysis, often

prevent operators from making decisions that maintain high product quality and safe operation in a

timely manner. Consequently, there is a desperate need for the development of new on-line sensors

for product quality monitoring [6, 7]. Comprehensive literature surveys of recent advances in the

development of on-line hardware sensors for monitoring polymerization reactions were presented

in [3, 8], which provided guidance to both academia and industry on the selection of sensors for

different applications. Although technological advancements in electronics and materials have led

to a new generation of sensor products, the development of on-line sensor technology is still slow

due to its multi-disciplinary requirements (e.g., statistics, mathematical modeling, polymer chem-

istry, electronics, instrumentation) and the complex nature of polymerization systems. Apart from

the developments in sensors, efforts have been made to find the qualitative and quantitative rela-

tionships between the difficult-to-measure polymer properties (e.g., drawing behavior, mechanical

strength) and the easier-to-measure fundamental polymer properties (e.g., composition, density, re-
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fractive index, molecular weight) [9–15]. In many cases, the relationships are based on experience

without theoretical justification, and thus could be very application-specific.

In an attempt to overcome some of the problems caused by inadequate on-line measurements,

state estimation methods have gained a lot of attentions because of low cost, ease of implementa-

tion, and reliability of estimation. In a state-space representation, state variables are those variables

that uniquely describe the state of a system at any given time. In other words, the state of a system

can be uniquely determined once all the state variables are known to us. State estimation is a type

of soft sensor that utilizes computational algorithms to reconstruct the unmeasured state variables

by using available on-line measurements and a process model. Effective control and monitoring of

a polymerization reactor can be achieved if reliable real-time information on the state variables are

available. As previously mentioned, a representative mathematical model of the process is required

to perform the estimation task, as the model describes the quantitative relationships among all the

state variables. A significant amount of studies have been carried out in the area of modeling and

simulation of polymerization reactors in the last forty years. Ray [16] and Kiparissides [17] gave

a broad overview of different polymerization processes and mathematical modeling approaches.

Because of the complexity in polymerization mechanisms and the presence of different lengths of

polymer chains in the reaction mixture, detailed models generally contain too many state variables.

Moreover, the dynamics described by ordinary (or partial) differential equations are highly coupled

and nonlinear in nature.

Obviously, mechanism models are too complex to be used in process control and optimization

applications. To guarantee solvable solutions and avoid heavy computational burden, it is desirable

to develop and use dynamic models that are simple in mathematical structure, yet capable of ade-

quately capturing the essential process characteristics. It was presented in [18] that the method of

moments can be applied in a batch solution polymerization to reduce the original infinite number

of differential equations to a tractable set of fewer nonlinear differential equations, which became

favorable for control and optimization purpose. Other representative pieces of work from the lit-

erature can be found in [19–24], where simplified polymerization models were adopted to develop
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feasible control strategies.

There are many survey papers in the literature which reviewed the principal difficulties and the

applications of advanced control and estimation techniques in polymerization reactors [6,7,25–28].

Since early 1980’s, a lot of efforts have been made to design and employ nonlinear state estimators

in free radical polymerization reactors, as the commercial on-line size exclusion chromatography

and other advanced measurements became available. The extended Kalman filter (EKF) has been

widely used in chemical processes (including polymerization reactors) and achieved good perfor-

mance [20,29–41]. However, the EKF has its inherent disadvantages: (i) the error convergence and

stability properties are difficult to analyze mathematically; (ii) it is computationally demanding as

the covariance matrix and the states need to be integrated at each time step; (iii) it could even fail to

converge because of the local linearization approximation, unless a good initial guess of the states

is provided [42–44].

Apart from the EKF, observer methods provide an alternative approach to estimate the unmea-

sured state variables, where the convergence properties can be established mathematically in most

studies. Several observer design methods have been proposed and implemented in polymerization

reactors [45–49], including high-gain observers [50, 51]. The results in [49] clearly demonstrated

the promise of using a nonlinear observer over the EKF in a solution homo-polymerization reactor.

Although temperature and density are usually sampled frequently and are available without delay,

most of the product quality measurements have relatively low sampling rates and significant output

delays. Despite the slow sampling rate and measurement delay, the measurements that provide im-

portant quality information on the products, must be incorporated in an intelligent manner together

with the fast-sampled measurements, to make the entire system observable as well as improve the

estimation accuracy [52].

1.2 Literature Review

Several studies within the literature have investigated state estimation methods for various sys-

tems, e.g., linear and nonlinear systems, continuous-time and sampled-data systems, deterministic

and stochastic processes. In general, most soft sensors can be classified into two classes, namely,
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model-based and data-driven. The model-based soft sensor is developed based on the knowledge

of a first-principle model that captures the evolution of physical and chemical phenomena in the

process. The data-driven soft sensor has recently gained in popularity in the process industry with

increasing amount of available data and rapid growth of computing power. This section will high-

light some of these studies with focus on the model-based methods.

1.2.1 Model-Based Soft Sensors

A wide variety of approaches for model-based state estimation in linear and nonlinear systems

have been proposed in the literature. Some commonly used methods are summarized in Table 1.1.

This section will provide a brief overview of Bayesian filters, state observers, and moving horizon

estimators as well as their applications in chemical processes. Proper techniques should be selected

for estimator design and implementation according to the estimator properties and the features of

particular applications.

Linear Systems Nonlinear Systems

Bayesian Filters
Kalman filter

(optimal estimates)

Extended Kalman filter,
Unscented Kalman filter,
Ensemble Kalman filter,

Particle filter, etc.

State Observers Luenberger observer
Observer error linearization,

High-gain observer, etc.
Optimization-based

Methods
Moving horizon estimation,

etc.

Table 1.1: Some commonly used model-based state estimation methods.

Dating back to the 1960’s, the classic Kalman filter [53, 54] and Luenberger observer [55–58]

were developed as effective methods for on-line state estimation, as long as the process dynamics is

approximately linear. The Kalman filter is a stochastic and recursive estimator2 for linear systems

2A recursive filtering approach means that received data can be processed sequentially rather than as a batch so that
it is not necessary to store the complete dataset nor to reprocess existing data if a new measurement becomes available
[59].

5



where additive Gaussian noises are considered in process model and measurement model. Hence,

the word “filter” is used here to represent the process of finding the best estimates from noisy data

which amounts to “filtering out” the noise. The Kalman filter consists of two steps, i.e., prediction

and update. The prediction step uses the process model to predict forward the probability density

function of the state so that the a priori estimate for the next time step can be obtained. The update

step incorporates the most-recent measurement into the a priori estimate to obtain an improved a

posteriori estimate, which is achieved by using Bayes’ theorem. Such a filter provides the estimate

that tries to minimize the a posteriori error covariance in the least squares sense by choosing a gain

matrix carefully, which weighs the relative uncertainty in the process and the measurement. In this

respect, the Kalman filter is an optimal estimator [60,61]. It is worthwhile to mention that the first

publicly known application of Kalman filter was made during the feasibility studies for the Apollo

space program (see [62] for more details).

The Luenberger observer was first proposed in [55] and further developed in [56] for continuous-

time linear time-invariant (LTI) systems. The observer itself is an LTI system driven by the inputs

and outputs of the system it estimates. It is used to reconstruct the system state or a constant linear

transformation of the state in a deterministic setting, which is distinguished from the Kalman filter.

There is a great deal of freedom in the observer design such as convergence rate and dimensionality.

A full-order observer, which reconstructs the entire state vector of the observed system, possesses

a certain degree of redundancy, because part of the state vector is available by direct measurement.

This redundancy can be eliminated and an observer of lower dimension can be constructed. Notice

that even though most of the results in this dissertation were developed in a reduced-order observer

formulation, the methodology can be applied to full-order observer formulation under appropriate

modifications. Now it is important to consider the effect of an observer on the closed-loop stability

properties of the system once the actual state in the control law is replaced by the estimate. It was

shown in [55] that an observer has no effect on the poles of the original state feedback other than

adding the poles of the observer. Hence, the design of state feedback and the design of state esti-

mator can be carried out independently, which is known as the separation property. In practice, the
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eigenvalues of the observer are selected to be negative (usually more negative than the eigenvalues

of the observed system), so that the observer state will converge to the state of the observed system

[57]. However, there is a trade-off between the convergence rate of the observer and the estimation

accuracy affected by measurement noise. The optimal pole placement of observer is not a simple

problem, which should be based on the criteria such as noise level, parameter variation, reliability,

and ease of synthesis [56]. A rigorous approach for observer design by optimizing an appropriate

performance index will also be discussed in this dissertation.

It is well-known that linear state estimators can be inadequate in the presence of process non-

linearities. For this reason, there have been many research efforts over the past decades to develop

nonlinear estimators for chemical processes, which take the nonlinear process model and account

for the nonlinear dynamic behavior [4,5,63–70]. Along the lines of the Kalman filter, one approach

that has been tried by many researchers and industrial practitioners in an attempt to handle process

nonlinearities is the EKF [71–88]. The EKF adopts the formulae of the classic Kalman filter with

the Jacobian of the nonlinear system in place of the linear matrix at each step. The state distribution

is approximated by a Gaussian random variable, which is then propagated analytically through the

first-order linearization of the nonlinear system. Even though the EKF has successfully applied to

many industrial applications and provides reliable estimates for the system which is almost linear

on the time scale of update intervals, there have been many studies that established its serious diffi-

culties in the presence of strong process nonlinearities and poor initial guess [42–44]. The method

fails to account for the fully nonlinear dynamics in propagating the covariance matrix, which intro-

duces large errors in the true posterior mean and covariance of the transformed Gaussian random

variable. This could lead to suboptimal estimation performance and sometimes even divergence of

the filter [89].

To overcome this limitation, the unscented Kalman filter (UKF) was developed based on the so-

called unscented transformation to propagate mean and covariance information through nonlinear

dynamics [90–92]. The state distribution is again approximated by a Gaussian random variable, but

is now represented using a minimal set of carefully chosen sample points. By using a deterministic
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sampling approach, the sample points completely capture the true mean and covariance accurately

to the third order for any nonlinearities [91]. This approach is more accurate, easier to implement,

and the computational cost is the same order of magnitude as the EKF implementation [92]. A few

UKF applications to chemical processes can be found in [93–100]. However, divergence could still

occur in some nonlinear systems despite the aforementioned improvements [101].

Since their introduction in 1993 [102], particle filters have become a popular class of numerical

methods to solve optimal estimation problems in nonlinear non-Gaussian processes, where analytic

solutions do not typically exist. The particle filter is an implementation of recursive Bayesian filter

using the sequential importance sampling algorithm, which is a Monte Carlo method that serves as

the basis for most sequential Monte Carlo filters developed over the past decades [103–105]. The

probability density function in the particle filter is represented by a group of random samples with

associated weights, as opposed to describing it using a functional form. As the number of samples

becomes very large, this Monte Carlo characterization becomes an equivalent representation to the

usual functional description, and the particle filter approaches the optimal Bayesian estimate [59].

The prediction step uses the process model to propagate each of the samples and generates a set of

prior particles at the next step. Then these prior particles are resampled and replaced according to

their associated weights so that a new set of particles will be produced. Notice that this weight is the

measurement likelihood evaluated at each prior sample. A high likelihood function value indicates

that the state is well supported by the measurement. Therefore, the resampling operation is biased

towards the more plausible prior particles which are likely to be chosen repeatedly. In addition, the

resampling operation avoids wasting majority of the computational efforts in propagating particles

with very low weights, which reduces the effects of the degeneracy problem. It is also worthwhile

to mention that the particle filtering can identify multiple modes and track multiple optima in the

a posteriori distribution.

The ensemble Kalman filter (EnKF) is a special case of the particle filter, where the Bayesian

update step is approximated with a linear update step using the first two moments of the predicted

probability density function [106]. Unlike the EKF, it avoids the computational cost of evaluating
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the Jacobian matrices of the nonlinear systems, because the filter gain can be approximated using

the covariance of the ensemble. Unlike the particle filter, the EnKF does not resample the ensemble

from the posterior probability density function, because each prior model realization is individually

updated to generate the correct posterior ensemble [107]. The EnKF is used extensively in weather

forecasting [108] and oil reservoir simulations [109], where the models are of extremely high order

and nonlinear, and the initial conditions are highly uncertain, and a large number of measurements

are available [106].

Other Bayesian filters have also been developed recently, such as the Gaussian filter [110] and

the cubature Kalman filter [111]. Those who are interested in this topic are encouraged to study the

comprehensive tutorial of nonlinear Bayesian filters [112] as well as their performance comparison

[113], and references therein.

As seen in Table 1.1, another important class of the state estimation methods is based on opti-

mization formulation, where it is allowed to incorporate prior knowledge in the form of inequality

constraints on state variables as well as process disturbances. Several applications to the chemical

processes can be found in [114–120]. However, one drawback of the optimization-based approach

is that the computational burden increases as measurements become available. A possible solution

that fixes the computational cost is to use a finite, fixed-size estimation window, which is known as

moving horizon estimation (MHE) [121–124]. The stability property of the MHE has been studied

for constrained linear and nonlinear systems in [125,126], respectively. Comparative performance

analysis of various Kalman filters and the MHE can be found in [42, 127–129].

Apart from the probabilistic setting, an alternative direction for handling process nonlinearities,

originating from the nonlinear systems theory, is the design of nonlinear observers. A conceptually

straightforward extension of observers to nonlinear systems is the extended Luenberger observer,

but it is based upon local linearization around the reconstructed states [130]. High-gain observers

have attracted lots of attention in the mathematical systems theory literature in the last thirty years.

There have been two lines of thinking in high-gain observers. One, led by Gauthier and co-workers,

focuses on deriving global results under global Lipschitz conditions [131–136]. The main technical
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assumption says that the class of nonlinear systems should be observable for every input (i.e., uni-

formly observable systems), which is satisfied in many physical systems, at least in some operating

domain. For this class of nonlinear systems, the high-gain observer can be designed according to a

canonical form where the observer gain does not depend on the system inputs. However, due to the

nonlinearity of the system, the choice of observer gain which gives the best compromise between

fast convergence, noise rejection, and attenuation of the peak phenomenon is a difficult task [135].

The other, led by Khalil and co-workers, focuses on dealing with the peaking phenomenon when

high-gain observer is used in feedback control (see the survey paper [137] and references therein).

Several papers have studied a wide range of nonlinear control problems using high-gain observers,

including stabilization, regulation, tracking, and adaptive control [138–143]. The main limitation

of the high-gain observer is the significant loss of accuracy in the presence of measurement noise.

Recent theoretical work [144] has derived precise estimation error bounds in the presence of noise.

Besides it has been proved in [145] that the high-gain observer approximates a differentiator in the

limit as the observer gain approaches to infinity.

One more approach, which is capable of directly dealing with process nonlinearities, involves

using state-dependent gain in the observer. This approach enjoys the benefits of (i) computational

simplicity in on-line implementation and (ii) rigorous mathematical foundation, without suffering

from the inherent sensitivity to measurement noise of the high-gain observers. The observer con-

tains a copy of the dynamics and a copy of the output map, but the observer gain is not necessarily

constant, and this opens up many possibilities. Actually, under certain conditions, it is possible to

select the gain function to “shape” the resulting error dynamics. In this direction, there has been a

rich systems theory literature, involving a variety of mathematical approaches, including observer

error Lyapunov function methods [146, 147], and exact linearization methods [148–159]. Notice

that the nonlinear continuous-time observer design in this dissertation employs the exact lineariza-

tion with eigenvalue assignment method [148], which will be discussed in more details in Chapter

2. In addition, overviews of sampled-data observer design and observer design with measurement

delay will be provided in Chapters 3 to 6.
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Other observer design methods, which address the estimation problem in a particular class of

systems or applications, have also been developed, such as the unknown input observer [160–164]

and the sliding mode observer [165].

As pointed out in [57], the following facts make the observer an attractive area of research: (i) it

is computationally simple regarding design and on-line implementation; (ii) it provides a possible

solution for process monitoring and feedback control; (iii) the associated theory is closely related

to the fundamental linear/nonlinear system concepts of controllability, observability, stability, and

dynamic response, and provides a simple setting where all of these concepts interact. Thus, it will

be the focus of this dissertation.

1.2.2 Data-Driven Soft Sensors

In contrast to the model-based soft sensors reviewed in the last section, data-driven soft sensor

does not require the knowledge of the process and is based on empirical observations of the process,

which becomes a valuable alternative to the traditional monitoring algorithms. It has been receiving

considerably increasing attention, in particular for industrial process monitoring, because the plants

are usually heavily instrumented with a lot of sensors that collect a large amount of data on a daily

basis, and a first-principle model is not always available or is too complicated for the model-based

methods to be employed sometimes [166]. Based on the historical data, the data-driven soft sensor

applies multivariate statistics and machine learning methods to predict the multivariate features or

the process state variables, which can be used to make decisions towards a more efficient and safe

process operation.

In this section, a very brief overview of the data-driven soft sensors will be provided, covering

data characteristics in the process industry, typical procedures for the soft sensor development, and

some popular data-driven approaches for soft sensing as well as their applications. It is encouraged

to read some survey papers (e.g., [166–169]) and a comparison study of basic data-driven methods

on the benchmark Tennessee Eastman process in [170] for a more detailed, comprehensive review

on this topic.

The applications of data-driven soft sensors can be found in many areas of the process industry.
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The most common application is the on-line prediction of variables of interest and product quality

which cannot be measured in real time. It is commonly used in fermentation and refinery processes

where rigorous models are usually not available owing to their complex dynamics. The data-driven

methods collect the past input and output information, and then train a model based on the historical

data to predict the difficult-to-measure variables in the process. A few applications to the chemical

processes can be found in [171–174]. Another popular application area of data-driven soft sensors

is the process monitoring and fault detection. Very often, a normal-case process model can be built

based on the normal process data using data-driven methods, which is used to detect possible faults

that deviate from the normal case. This methodology requires less modeling efforts as opposed to

the other one where a data-driven model needs to be built for each interested fault case. Commonly,

statistical process monitoring techniques based on principal component analysis (PCA) and partial

least squares (PLS), or more precisely on Hotelling’s T2 indices [175] and Q-Statistics [176], offer

a practical approach for fault detection [177–181]. Originally developed in [182], kernel PCA and

PLS methods are similar to the linear counterparts in that a nonlinear transformation of the original

variables into a feature space then PCA and PLS models are built in the feature space [183–187].

After a fault is detected, it is desirable to diagnose and identify the source of the fault, and apply

necessary actions to correct the abnormal conditions. The procedure to identify a fault and estimate

normal values in the faulty data is referred to as fault identification and reconstruction [188]. Some

representative pieces of work from the literature can be found in [189–191].

Despite the above applications and a large number of publications on the data-driven soft sen-

sors, there are still many challenging issues, in particular, caused by the common effects present in

the industry data. For example, the failure of a hardware sensor or the failure of data transmission

between the sensors and the database could cause missing data, where one or more variables have

a value that does not reflect the actual state of the measured quantity. Data outliers could also occur

where the sensor output deviates from the typical range of the measured values. Another issue for

data-driven methods is data co-linearity, which is usually caused by redundant sensor arrangement

in the process. For instance, two neighboring temperature sensors would deliver strongly correlated
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measurements [167]. PCA and PLS methods are often used to transform the input variables into a

new reduced space with less co-linearity, as mentioned in [192–194]. Another approach to handle

co-linearity is called variable selection, where a subset of the input variables that are less co-linear

will be selected.

From the above discussions, although data-driven methods are much simpler than the model-

based methods, it is still meaningless to directly apply an arbitrarily selected data-driven model on

the large amount of process data. It is important to first inspect the characteristics of each dataset

and pre-process the dataset in such a way that it can be more effectively processed by the actual

model. After that, model selection is a critical step for the performance of final soft sensor. So far,

there is no unified theoretical approach for this task and thus the model type and its parameters are

often selected in an ad hoc manner, subject to researcher’s past experience and domain knowledge.

Afterwards, model training and validation need to be performed on the training dataset.

Apart from the model-based and data-driven soft sensors, the so-called hybrid approach, which

is a combination of the two methods, has been developed recently [195]. The intuition here is that

the limitations of the model-based and data-driven methods can be overcome by combining them.

In this way, the modeling efforts should be reduced compared to the model-based approaches, and

the monitoring results should be improved compared to the data-driven approaches that do not use

a first-principle model at all.

1.3 Polymerization Reactors

This section will provide a brief overview of the production processes of polyethylene tereph-

thalate (PET) and polyethylene, respectively. The specific applications have been selected not only

because of their major industrial significance, but also because they incorporate all the challenges

that the proposed theory will try to address: presence of severe process nonlinearities, presence of

both continuous and slow-sampled discrete measurements, presence of both delayed and delay-free

measurements.
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1.3.1 Polycondensation of Polyethylene Terephthalate

Although a lot of work has been done in monitoring and control of free radical polymerization

reactors, very few state estimation studies are available for polycondensation processes. One of the

most common polycondensation products is PET, which is the primary raw material for synthetic

fibers, dielectric films, and beverage bottles. Figure 1.1(a) illustrates that polyester, which is com-

monly referred to as PET, dominates synthetic fibers industry over the years, accounting for nearly

half of the global consumption. Figure 1.1(b) shows that the global demand for PET is predicted to

be growing in the next few years. Therefore, producing PET with required properties is of major

industrial importance.

There are several side reactions taking place along with the main polycondensation reaction.

The amount of side products determines the quality and properties of the final product. To ensure

PET product quality, the amount of byproducts needs to be well controlled within certain limits. A

comprehensive understanding of PET synthesis is essential for effective quality control and process

optimization. Generally speaking, there are three stages involved in the PET production. In the first

stage, bis(2-hydroxyethyl) terephthalate (BHET) is produced through either melt transesterification

or direct esterification. Methanol or water is removed continuously and in the meantime, ethylene

glycol (EG) is completely refluxed back to the reactor. This stage often operates in a stirred vessel

under atmospheric pressure [196–198]. In the second stage, BHET and oligomers from the first

stage are transferred to a pre-polymerization reactor at an increased temperature (i.e., 250–280◦C)

and reduced pressure (i.e., 2–3 kPa), where the degree of polymerization (DP) can reach up to 30.

The viscosity of reaction mixture is still low compared to the later stages, and diffusional limitation

does not play an important role in this stage [199, 200]. The product is further polymerized in the

third stage until the DP reaches 100 at 280–290◦C. Because the main reaction is reversible, EG, as a

byproduct, has to be vaporized continuously by applying vacuum to increase the yield. Meanwhile,

viscosity of the reaction mixture also increases rapidly which makes mass transfer a limiting factor.

Therefore, a special film forming device is used in the third stage to provide large surface area for

desorption of EG [201, 202]. In injection or blow molding applications, solid state polymerization
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Figure 1.1: (a) Global webbing market volume by product (kilotons) [1]. (b) Demand forecast of
the global PET market [2].

needs to be carried out to obtain products with DP over 150 [203]. These aforementioned modeling

studies are very useful for process control and optimization purposes. For certain special-purpose

applications, simplified models were also developed, which agreed well with experimental results

[204–206].

Monitoring and control of polycondensation reactor is challenging owing to lack of fast on-line

measurements and significant nonlinearities of the process. State estimation provides an alternative

approach to track the change of molecular weight by integrating on-line sensing, reactor modeling,
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and simulation. The objective in Chapter 2 is to estimate state variables and the degree of polymer-

ization in the PET finishing stage using a nonlinear observer, where measurements with different

sampling rates and output delays will be considered.

1.3.2 Industrial Gas-Phase Polyethylene Production

Polyethylene is the most used synthetic polymer worldwide with the largest annual production.

Over the last seventy years, there has been a continued manufacturing growth from a few hundred

tons in 1940 to more than 160 billion pounds in 2012 [207]. In the next few years, the demand is

forecast to grow on a global basis. Polyethylene products are used as pipes, containers, agricultural

mulch films, and many other applications. In the literature, polyethylene is generally classified into

three groups: low-density polyethylene, linear low-density polyethylene at 0.910–0.930 g/cm3, and

high-density at 0.931–0.970 g/cm3. Experimental results showed that these products are different

in polymer microstructure, such as length of side chain branching, molecular weight and its distri-

bution, degree of crystallinity, and as a result, it leads to different performance characteristics (e.g.,

thermal, physical properties, and rheological behaviors) [208–213].

Polyethylene technology has experienced revolutionary improvements in the last century. Prior

to the 1950’s, polyethylene was produced exclusively using conventional high-pressure polymer-

ization processes operating at temperature above 200◦C and at pressure above 1000 atm. This pro-

cess only produces low-density polyethylene with long-chain branching because of its free radical

mechanism. In order to achieve high molecular weight for practical applications, the high pressure

is required in providing a high ethylene propagation rate. Later, the development of Ziegler-Natta

catalyst made it possible to synthesize linear polyethylene at a more moderate condition via coor-

dination polymerization mechanism.

Currently, there are three commercialized low pressure polyethylene processes: slurry, solution

and gas phase. Among them, the gas-phase process, which does not involve any liquid phase, is the

most versatile and can produce polyethylene covering a complete range of density and melt index

because it is not limited by solubility and viscosity [214]. In a gas-phase reactor, the polymeriza-

tion takes place at the interface between the solid catalyst and the polymer matrix. The feed to the
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reactor, which comprises ethylene, comonomers, hydrogen, and inerts, provides the fluidization by

using a high rate of gas recycle. A heterogeneous Ziegler-Natta catalyst is fed continuously to the

reactor. Since the conversion per pass through the bed is very low (i.e., 2–5%), the unreacted gas is

recycled with fresh feed to the base of the reactor and as a result, the overall monomer conversion

could be as high as 98% [215]. At the same time, the heat generated from the exothermic polymer-

ization is removed through a heat exchanger. Polymerization occurs at a pressure of 30–35 atm and

a temperature of 80–100◦C. The product, polyethylene, discharges near the base of the reactor as

solid powder. Other advantages of gas-phase process over liquid-phase process include production

of copolymer with high α-olefin content, which gives better mechanical properties [216]. Further-

more, the gas-phase process significantly reduces the capital cost up to 30% and the operating cost

up to 35% compared with the conventional liquid-phase processes.

Researchers have made a lot of efforts to study this complex reaction system at different levels

where physical and chemical phenomena take place simultaneously [217–221]. For reactor design,

quality control, and grade changeover, it is essential to understand the dynamic behavior that incor-

porate kinetics of polymerization, heat and mass transfer, and reactor characteristics [222–232]. In

general, the gas-phase polyethylene fluidized-bed reactor has been modeled as single-phase well-

mixed continuous stirred-tank reactor (CSTR) [215], two-phase [217] and three-phase plug flow

reactor [220]. It is assumed in the well-mixed CSTR model that there is little or no resistance in the

monomer and heat transfer between the bubble and emulsion phases. In the operating range of in-

dustrial interest, the differences between the detailed model and the simplified model are less than

3 K in temperature and less than 2 mol% in monomer concentration [215]. Hence, the well-mixed

assumption is valid for modeling the gas-phase polyethylene reactor.

In industrial settings, polyethylene grade is specified in terms of melt index and density [233].

Although reactor temperature, pressure, and gas concentrations are regularly measured on line, the

product quality variables can only be obtained from off-line lab analysis. The sampled and delayed

measurements are essential in the feedback control. A combination of the information from on-line

and off-line measurements can achieve improved state estimation and quality control performance
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between samples. Model-based and data-driven methods for product quality monitoring have been

successfully applied in some polyolefin processes, including the development of on-line parameter

estimation that captures the actual reactor operation conditions [116,234–240]. However, very few

model-based estimation methods have been reported for the gas-phase polyethylene reactor, where

different nature of the measurements need to be considered. As for the off-line manual operations,

perturbations in the sampling schedule will affect the convergence property of the error dynamics.

A multi-rate multi-delay observer can benefit feedback control, quality monitoring, and therefore,

reduction of off-specification products.

1.4 Dissertation Outline and Contributions

The dissertation is constructed in the following manner to illustrate the developments of multi-

rate observer design for process monitoring, with application to polymerization reactors.

In Chapter 2, a nonlinear observer combined with an inter-sample output predictor is designed

and applied to estimate the degree of polymerization in a series of polycondensation reactors. One

continuous measurement and one sampled measurement with delay are considered. The observer

performance is tested in the presence of sensor noise through simulation.

In Chapter 3, focus will shift towards theoretical developments in the area of multi-rate observer

design in linear systems with asynchronous sampling. Sufficient and explicit conditions are derived

to guarantee exponential stability of the multi-rate observer. An industrial gas-phase polyethylene

reactor example is used to demonstrate the applicability of the proposed approach.

In Chapter 4, possible measurement delay is considered in the observer design. The multi-rate

multi-delay observer adopts an available multi-rate observer design proposed in Chapter 3. A dead

time compensation approach is developed to compensate for the delay. It is shown that stability of

the multi-rate observer is preserved under nonconstant, arbitrarily large delays.

Chapter 5 develops a rigorous approach for observer gain selection to reach a compromise be-

tween the effect of modeling error on the accuracy of state estimate and the effect of measurement

error on the accuracy of state estimate. The optimal multi-rate observer design is formulated as an

optimization problem of minimizing a performance index. The approach is demonstrated on linear

18



systems with single-rate measurement and with fast and slow measurements, respectively.

Chapter 6 studies the problem of multi-rate sampled-data observer design in nonlinear systems

under asynchronous sampling. Similar to the multi-rate observer in linear systems, it is based on a

continuous-time design coupled with inter-sample predictors. It is shown that the error dynamics is

input-to-output stable with respect to measurement errors by applying the Karafyllis-Jiang vector

small-gain theorem.

Chapter 7 proposes a design method for multi-rate multi-delay observer in nonlinear systems.

It is based on an available multi-rate observer design coupled with dead time compensation, in the

same spirit as the multi-rate multi-delay observer in Chapter 4. The gas-phase polyethylene reactor

example is reconsidered in the presence of measurement delays.

Finally, Chapter 8 summarizes the main conclusions of the dissertation and provides directions

for future work.
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2. STATE OBSERVER DESIGN IN A SERIES OF POLYCONDENSATION REACTORS ∗

As mentioned in Chapter 1, the presence of severe nonlinearities, the presence of both contin-

uous and slowly sampled discrete measurements, and the presence of both delayed and delay-free

measurements make it a challenging problem to monitor the progress of polymerization reactions

in real time. In this chapter, a nonlinear reduced-order observer is applied to estimate the degree of

polymerization in a series of polycondensation reactors [241]. The finishing stage of polyethylene

terephthalate synthesis is considered as the case study. The process has a special structure of lower

block triangular form, which is properly utilized to facilitate the calculation of the state-dependent

gain in the observer design. There are two possible on-line measurements in each reactor. One is

continuous, and the other is slow-sampled with dead time. For the slow-sampled titration measure-

ment, inter-sample behavior is estimated from an inter-sample output predictor, which is essential

in providing continuous corrections on the observer. Dead time compensation is carried out in the

same spirit as the Smith predictor to compensate for the effect of sensor delay. By integrating the

continuous-time reduced-order observer, the inter-sample predictor and the dead time compensator

together, the degree of polymerization is accurately estimated in all three reactors. In addition, a

pre-filtering technique is used in the presence of sensor noise. The observer performance is demon-

strated by numerical simulations.

Despite the fact that both continuous, delay-free measurement and slow-sampled, delayed mea-

surement are involved in this example, the reduced-order observer only takes the continuous mea-

surement to estimate the unmeasured state but does not depend on the sampled measurement. This

is achieved by taking advantage of the special system structure where a continuous-time observer

with an inter-sample output predictor in the “downstream” is sufficient to handle the state estima-

tion problem in this particular multi-rate polycondensation process.

This chapter is organized as follows: in Section 2.2, an overview of the reduced-order observer

∗Reprinted with permission from “State Observer Design for Monitoring the Degree of Polymerization in a Series
of Melt Polycondensation Reactors” by C. Ling and C. Kravaris, 2016. Processes, 4(1), 4. Copyright is retained by
the authors for all articles published in MDPI journals.
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and sampled-data observer design methods are presented. In particular, a block triangular observer

form is derived from the serial subsystem structure (e.g., multiple CSTRs connected in series). In

Section 2.3, the finishing stage of PET polycondensation, as well as its mathematical model is de-

scribed. In Section 2.4, the performance of the state observer is evaluated in two different cases: (i)

only continuous measurement is available; (ii) both continuous and slow-sampled measurements

are available. Furthermore, sensor noise is considered, and the results show that there is a tradeoff

between the convergence rate and noise sensitivity. Finally, in Section 2.5, conclusions are drawn

from the results of the previous sections.

2.1 Introduction

Polymers are continuously substituting traditional materials, such as glass, woods, and metals,

along with their low cost and good processability. Polyethylene terephthalate is the most common

thermoplastic polymer resin, which is the primary raw material for synthetic fibers, dielectric films,

and beverage bottles. PET has dominated the synthetic fibers industry over the years accounting for

nearly half of the global consumption (see Figure 1.1(a)). Moreover, the global demand for PET is

predicted to grow in the next few years. Therefore, producing PET with the required properties is

of major industrial importance.

It is well known that the end-use properties of PET, such as drawing behavior, melting point,

tensile strength and thermal stability, strongly depend on its molecular weight and byproduct con-

centrations [9,15]. There are several side reactions taking place along with the main polycondensa-

tion reaction. The amount of side products (i.e., diethylene glycol (DEG), acetaldehyde, carboxyl

end groups, vinyl end groups, and water) determines the quality and properties of the final PET

product. For example, every one percent of DEG in the polyester chain could cause a lower melt-

ing point by 5◦C [242]. In addition, even a small amount of DEG leads to reduced heat resistance,

decreased crystallinity and ultraviolet light stability. Vinyl end groups could be polymerized with

other polyester chains to form polyvinyl ester, of which the pyrolysis products have been shown

to be responsible for the coloration of PET [243]. A high initial concentration of carboxyl groups

could induce a decrease in the degree of polymerization due to hydrolytic degradation [244]. In or-
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der to ensure product quality, the amount of byproducts needs to be well controlled within certain

limits.

However, the monitoring and control of polymerization reactors is not an easy task, owing to a

lack of fast on-line measurements and the significant nonlinearity of the processes. Very often, crit-

ical quantities related to safety, product quality and/or economic performance of a polymerization

process cannot be measured on line. Thus, state estimation plays an important role in providing

frequent and reliable information of the process, which can be integrated into model-based control,

as well. Since the early 1980’s, there have been significant efforts in the design and application

of state estimators to polymerization reactions, especially in free radical polymerization. The ex-

tended Kalman filter, as an industrially-popular estimator, has been widely used and achieved fairly

good performance in many studies [20,29–32,34,36,245]. In this approach, the design is based on

an approximate local linearization of the system along a reference trajectory. Even though the EKF

has found industrial applications, there have been studies that established its serious difficulties in

the presence of strong process nonlinearities [42–44]. An alternative approach for estimation in

polymerization processes is state observer design [46–51, 70, 246]. It utilizes the dynamic process

model, which captures the evolution of physical and chemical phenomena, and then generates a

soft sensor that is able to reconstruct the missing state variables with additional appropriate feed-

back terms from all of the on-line measurements. For example, Van Dootingh et al. [50] developed

a nonlinear high-gain observer with adjustable speed of convergence in a styrene polymerization

reactor. Compared to the EKF, this observer does not only have a theoretical proof of convergence,

but also greatly reduces computation time. Tatiraju and Soroush [49, 70] implemented a nonlinear

reduced-order observer to a homopolymerization reactor. Together with an open-loop observer for

the unobservable states, accurate estimates for all states were achieved. Astorga et al. [48] used a

continuous-discrete observer to estimate monomer composition in an emulsion copolymerization

reactor. The proposed observer was validated by comparing the observer outputs with the off-line

gas chromatography results.

Although a significant amount of work has been done in monitoring and control of free radical
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polymerization reactors, very few state estimation studies can be found for polycondensation reac-

tors. Choi and Khan [247] implemented the EKF to estimate nine state variables in the transesteri-

fication stage of the PET synthesis. When supplemented by five additional off-line measurements,

the overall performance of the state estimator was greatly improved. Appelhaus and Engell [248]

designed an extended observer to estimate the concentrations of ethylene glycol and hydroxyl end

groups along with a mass transfer parameter in the batch reactor. In their study, only the reversible

polycondensation reaction was considered.

A comprehensive understanding of PET synthesis is essential for effective quality control and

optimization of the process. Generally, there are three stages (i.e., transesterification/esterification,

pre-polymerization, and polycondensation) involved in PET production. In each reactor, side reac-

tions occur simultaneously and directly affect product quality. On-line measurements for byprod-

uct concentrations are usually not available or at relatively low sampling rates [249]. Hence, based

on the fact that available on-line measurements are not always of the same nature, it is necessary

to develop estimation/monitoring algorithms that can utilize all of these different kinds of on-line

measurements in a synergistic way to provide valuable information of the process.

In this study, the nonlinear observer design method of exact linearization with eigenvalue as-

signment [4, 148] is applied to a series of three continuous polycondensation reactors. A modified

reaction-mass transfer model [206] is considered in our work. The objective is to estimate unmea-

sured concentrations, as well as the degree of polymerization in the PET finishing stage from con-

tinuous hydroxyl measurement and sampled acidimetric titration, where different sampling rates

and time delays are considered. The basis of the observer design methodology is a continuous-time

nonlinear observer design. Subsequently, an inter-sample output predictor [250] is used to account

for the slow-sampled measurements and to provide continuous estimates during the time period in

between two consecutive measurements. At the same time, an estimate of the current output from

the delayed measurement is obtained in the same spirit as the Smith predictor, by initializing the

process model with the most recent delayed output and integrating it up to the present time. In the

presence of sensor noise, a pre-filtering technique is used to cut out the noise to avoid the break-
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down of the observer. The performance of the observer with inter-sample prediction and dead time

compensation is evaluated by numerical simulation.

2.2 Nonlinear Observer Design Method

This section briefly outlines the main results on nonlinear observer design [4,148], block trian-

gular observer design, and sampled-data observer design [250]. All of the observer synthesis and

simulations in later sections are realized on the basis of reduced-order observer. Therefore, a brief

necessary review is presented below.

2.2.1 Reduced-Order Observer

In chemical processes, on-line measurements typically involve a part of the state vector. While

the full-order observer estimates the entire state vector, the reduced-order observer estimates only

the unmeasured states. In this sense, the reduced-order observer is free of redundancy and is more

computationally efficient than the full-order observer.

Consider a multi-output autonomous system whose outputs are a part of the state vector

ẋR = fR(xR, xM)

ẋM = fM(xR, xM)

y = xM

(2.1)

where xR ∈ Rn−m is the state vector that needs to be estimated, xM ∈ Rm is the remaining state

vector that is directly measured, and y ∈ Rm is the measurement vector; fR : Rn → Rn−m and

fM : Rn → Rm are real analytic functions with fR(0, 0) = 0, fM(0, 0) = 0.

In the exact linearization method, the objective is to build an observer so that the resulting error

dynamics is linear in curvilinear coordinates and with the pre-specified rate of decay of the error.

A locally-analytic mapping z = T (xR, xM) from Rn → Rn−m is sought that maps the system (2.1)

to

ż = Az +By
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whereA is a (n−m)×(n−m) matrix andB is a (n−m)×mmatrix. The reduced-order observer

in the original coordinates can be expressed as

˙̂xR = fR(x̂R, y) + L(x̂R, y)

(
dy

dt
− fM(x̂R, y)

)
(2.2)

This leads to the following selection of the state-dependent observer gain [4]:

L(x̂R, y) = −
[
∂T

∂xR
(x̂R, y)

]−1
∂T

∂xM
(x̂R, y)

where T (x) is a solution of the following system of partial differential equations (PDEs):

∂T

∂xR
fR(x) +

∂T

∂xM
fM(x) = AT +BxM (2.3)

Under the above choice of observer gain, the error dynamics in transformed coordinates becomes

linear and is governed by the arbitrarily-selected A matrix

d

dt
(T (xR, y)− T (x̂R, y)) = A(T (xR, y)− T (x̂R, y))

Thus, the matrix A is a design parameter that directly adjusts the speed of convergence of the error.

Remark 1. In order to implement the above nonlinear observer design methodology, an approx-

imate solution needs to be calculated for the system of PDEs of Equation (2.3). As discussed in

[4, 148], it is possible to approximate T (xR, xM) by using a truncated multivariable Taylor series

around the origin. This requires each state expressed in deviation variable form. After expanding

fR, fM and T in Taylor series up to a finite truncation order, the approximate solution can be

obtained by equating the coefficient of each side of the PDEs. This calculation can be executed by

using symbolic computation software (e.g., Maple) [4, 251].
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2.2.2 Reduced-Order Observer in Lower Block Triangular Form

The serial CSTR reactor configuration is used in many types of chemical processes [252,253],

leading to higher product yield and higher concentration. The serial CSTR reactor configuration

usually possesses a special structure in lower block triangular (LBT) form. This special structure

can be utilized properly in state observer design to reduce the complexity of the state dependence

of observer gains. Consider a system in LBT form containing three subsystems

ẋRI = f I
R(xRI, xM I) ẋM I = f I

M(xRI, xM I)

ẋRII = f II
R(xRI, xRII, xM I, xM II) ẋM II = f II

M(xRI, xRII, xM I, xM II)

ẋRIII = f III
R (xRI, xRII, xRIII, xM I, xM II, xM III) ẋM III = f III

M (xRI, xRII, xRIII, xM I, xM II, xM III)

yI = xM I

yII = xM II

yIII = xM III

where I, II, III denote each subsystem, respectively. The objective of observer design is to recon-

struct the missing state variables xRI, xRII and xRIII. Figure 2.1 depicts a general structure of the

system in LBT form, with three subsystems.

Figure 2.1: General structure of a system in lower block triangular form with three subsystems.
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It is intuitive to design sequential observers by taking advantage of the particular LBT structure.

For example, the observer for Subsystem I is designed based on its unmeasured state dynamics and

its own measurements yI, but is independent of the subsequent subsystems and their measurements.

The observer for Subsystem II does not only utilize its own dynamics and measurements, but also

depends on the measurements and state estimates from Subsystem I. Moreover, its state-dependent

gain also depends on the gain of the first observer. Each observer needs to use the information from

all of the previous stages and its own dynamics and measurements. In this way, the computational

effort of calculating the state-dependent gain symbolically is significantly reduced.

After coordinate transformation, the observer in z-coordinates has linear dynamics


żI

żII

żIII

 =


A11 0 0

A21 A22 0

A31 A32 A33



zI

zII

zIII

+


B11 0 0

B21 B22 0

B31 B32 B33



yI

yII

yIII


where both A and B matrices have a special LBT structure. Eigenvalues of the diagonal submatri-

ces can be assigned arbitrarily. As each subsystem’s observer needs the estimates from the previous

subsystems, it would make intuitive sense to tune the observer for Subsystem I faster than the one

for Subsystem II, etc. Accordingly, the nonlinear reduced-order observer in original coordinates is

of the form 
˙̂xRI

˙̂xRII

˙̂xRIII

 =


f I
R(x̂RI, yI)

f II
R(x̂RI, x̂RII, yI, yII)

f III
R (x̂RI, x̂RII, x̂RIII, yI, yII, yIII)



+


L11 0 0

L21 L22 0

L31 L32 L33




dyI

dt
− f I

M(x̂RI, yI)

dyII

dt
− f II

M(x̂RI, x̂RII, yI, yII)

dyIII

dt
− f III

M (x̂RI, x̂RII, x̂RIII, yI, yII, yIII)


(2.4)
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where the LBT state-dependent gain matrix L(x̂R, y) can be designed according to

L11 = −
[
∂T1
∂xRI

]−1
∂T1
∂xM I

,

L21 = −
[
∂T2
∂xRII

]−1 [
∂T2
∂xRI

L11 +
∂T2
∂xM I

]
, L22 = −

[
∂T2
∂xRII

]−1
∂T2
∂xM II

,

L31 = −
[
∂T3
∂xRIII

]−1 [
∂T3
∂xRI

L11 +
∂T3
∂xRII

L21 +
∂T3
∂xM I

]
,

L32 = −
[
∂T3
∂xRIII

]−1 [
∂T3
∂xRII

L22 +
∂T3
∂xM II

]
, L33 = −

[
∂T3
∂xRIII

]−1
∂T3
∂xM III

(2.5)

where T (x) =


T1(xRI, xM I)

T2(xRI, xRII, xM I, xM II)

T3(xRI, xRII, xRIII, xM I, xM II, xM III)

 is a solution of the following system of

PDEs:

∂T1
∂xRI

f I
R +

∂T1
∂xM I

f I
M = A11T1 +B11xM I

∂T2
∂xRI

f I
R +

∂T2
∂xRII

f II
R +

∂T2
∂xM I

f I
M +

∂T2
∂xM II

f II
M = A21T1 + A22T2 +B21xM I +B22xM II

∂T3
∂xRI

f I
R +

∂T3
∂xRII

f II
R +

∂T3
∂xRIII

f III
R +

∂T3
∂xM I

f I
M +

∂T3
∂xM II

f II
M +

∂T3
∂xM III

f III
M

= A31T1 + A32T2 + A33T3 +B31xM I +B32xM II +B33xM III

(2.6)

Under the above observer construction, the estimation error follows linear dynamics in z-coordinates,

which is governed by the A matrix. It is selected to be Hurwitz to guarantee asymptotic stability.

2.2.3 Sampled-Data Observer

When sampling is performed at a slow rate, inter-sample behavior becomes very important and

needs to be accurately estimated by the observer. For this purpose, the process model could be used

to predict the evolution of output during the time period in between two consecutive measurements.

The predictor is able to continuously apply a correction on the most recent sampled measurement

during the sampling interval.

The inter-sample output predictor can be combined with the reduced-order observer. The orig-
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inal system can be appropriately expressed in partitioned form as

ẋR = fR(xR, xMc, xMs)

ẋMc = fMc(xR, xMc, xMs)

ẋMs = fMs(xR, xMc, xMs)

yc = xMc

ys = xMs

where xMc ∈ Rm−1 is the state vector that can be continuously measured, xMs ∈ R is the sampled

state, yc and ys are the corresponding outputs. Here, the output vector is split into two parts: (m−1)

continuous measurements and one sampled measurement.

It is possible to estimate the rate of change of the output
dys
dt

by utilizing the dynamic model

of slow-sampled state variable. This leads to the following inter-sample output predictor:

dψ

dt
= fMs(x̂R, yc, ψ), t ∈ [tk, tk+1)

ψ(tk) = ys(tk)

(2.7)

with ψ representing the output prediction, and tk, tk+1 denote two consecutive sampling instants.

The predictor is reinitialized at the most recent measurement ys(tk) and runs until the new mea-

surement is obtained. When the continuous-time observer of Equation (2.2) is driven by the output

predictor of Equation (2.7), this generates a sampled-data observer. Figure 2.2 illustrates the con-

struction of a continuous-time reduced-order observer with an inter-sample output predictor.

In the earlier work [250], it was shown that, as long as the sampling period does not exceed a

certain limit, the stability of the error dynamics and robustness with respect to measurement error

for the continuous-time observer of Equation (2.2) implies the stability of the error dynamics and

robustness with respect to measurement error for the sampled-data observer. In other words, the

sampled-data implementation inherits the key properties of the continuous-time design, and in fact,

these properties hold at all times, not just at the sampling instants.
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Figure 2.2: Structure of the reduced-order sampled-data observer.

2.3 A Series of Three Polycondensation Reactors

Modeling the finishing stage of PET synthesis is quite challenging owing to the complexity of

reaction kinetics, coupled with mass transfer effects. For the finishing stage, plug flow reactors are

commonly used because of their uniform residence time distribution, leading to a relatively narrow

molecular weight distribution. In some continuous processes, a series of CSTRs are used [254].

The dynamics of plug flow polycondensation reactors can also be accurately modeled as multiple

CSTRs in series [255].

For simplicity, a model of three CSTR in series, which is derived from Rafler’s reaction-mass

transfer model [206], will be used throughout this study. Figure 2.3 shows a three-CSTR in series

configuration. In each reactor, the main polycondensation reaction and the thermal decomposition

of ester groups are considered. Since the main reaction is reversible, EG, as a byproduct, has to be

vaporized continuously by applying a vacuum to increase the yield of the product. The viscosity of

the reaction mass also increases rapidly, which makes mass transfer a limiting factor. The dynamic

process model has the following form
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Dynamics in CSTR I:

dx1
dt

=
1

τ1
(x1,in − x1)− (βa)1(x1 − x1∗) +

1

2
k1(x2

2 − 8x1x4)

dx2
dt

=
1

τ1
(x2,in − x2)− k1(x22 − 8x1x4)

dx3
dt

=
1

τ1
(x3,in − x3) + k2x4

dx4
dt

=
1

τ1
(x4,in − x4) +

1

2
k1(x2

2 − 8x1x4)− k2x4

Dynamics in CSTR II:

dx5
dt

=
1

τ2
(x1 − x5)− (βa)2(x5 − x5∗) +

1

2
k1(x6

2 − 8x5x8)

dx6
dt

=
1

τ2
(x2 − x6)− k1(x62 − 8x5x8)

dx7
dt

=
1

τ2
(x3 − x7) + k2x8

dx8
dt

=
1

τ2
(x4 − x8) +

1

2
k1(x6

2 − 8x5x8)− k2x8

Dynamics in CSTR III:

dx9
dt

=
1

τ3
(x5 − x9)− (βa)3(x9 − x9∗) +

1

2
k1(x10

2 − 8x9x12)

dx10
dt

=
1

τ3
(x6 − x10)− k1(x102 − 8x9x12)

dx11
dt

=
1

τ3
(x7 − x11) + k2x12

dx12
dt

=
1

τ3
(x8 − x12) +

1

2
k1(x10

2 − 8x9x12)− k2x12

All three reactors are operated at constant temperature and pressure. There are four states in each

reactor: the concentration of EG (x1, x5 and x9), hydroxyl end groups (x2, x6 and x10), carboxyl

end groups (x3, x7 and x11) and ester groups (x4, x8 and x12). The concentration of EG on the melt

surface is denoted by the superscript *.

A two-film model is applied to describe mass transfer of volatiles in the finishing stage of melt

polycondensation under high conversion. It is postulated that there is a concentration gradient of
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Figure 2.3: Schematic of three CSTRs in series in the polycondensation stage.

the volatile species throughout a liquid film near the gas-liquid interface, which is based on the ex-

istence of mass transfer resistance at the interface due to the high viscosity of the reaction mixture.

Kim [256] verified the two-phase mass transfer model from experimental data in a polyconden-

sation system and showed that the mass transfer resistance model provided accurate prediction of

molecular weight and product composition over the entire stages. The interfacial equilibrium con-

centration of EG is calculated by using the Flory-Huggins equation (see [256] for equations; see

[257, 258] for physical property parameters). The system parameters used in the simulations are

given in Table 2.1.
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Parameter Description Value
T reactor temperature 553.15 K
P reactor pressure 130 Pa
R gas constant 1.987 cal/(mol·K)
τ1,2,3 residence time of each CSTR 60 min
k1 rate constant of polycondensation reaction2 1.36 × 106 exp(−18,500/(RT)) L/(mol·min)
k2 rate constant of thermal decomposition 7.20 × 109 exp(−37800/(RT)) min−1

(βa)1 mass transfer parameter in CSTR I3 2.70 min−1

(βa)2 mass transfer parameter in CSTR II4 2.03 min−1

(βa)3 mass transfer parameter in CSTR III 1.35 min−1

Table 2.1: System parameters.

In the reactor simulation, the following assumptions are made: (i) only EG exists in the vapor

phase; (ii) the mass transfer resistance on the gas side is negligible; (iii) the concentration of vinyl

end groups in the feed is equal to the concentration of carboxyl end groups; (iv) the mass transfer

parameter does not change over time in each reactor. The operating conditions of the three reactors

are given in Table 2.2, where [OH], [COOH] stand for the hydroxyl and carboxyl end groups, and

[Z] is the concentration of ester groups.

Concentration5 CSTR# [EG] [OH] [COOH] [Z]
Feed6 CSTR I 6.5×10−3 0.40 2.57×10−3 11.2

CSTR I 2.0×10−3 0.40 2.57×10−3 8.0
Initial Condition CSTR II 1.0×10−3 0.30 5.10×10−3 8.0

CSTR III 6.0×10−4 0.24 6.31×10−3 8.1
CSTR I 5.645×10−4 0.283 8.203×10−3 11.25

Steady State CSTR II 4.046×10−4 0.226 1.385×10−2 11.28
CSTR III 3.470×10−4 0.197 1.950×10−2 11.28

Table 2.2: Operating conditions and steady states.

2The rate constants of polycondensation reaction k1 and thermal decomposition k2 are obtained from [258].
3The mass transfer parameter (βa)1 is obtained from [259].
4The mass transfer parameters in the last two reactors (βa)2, (βa)3 are assigned as follows: (βa)2 = 75%×(βa)1,

(βa)3 = 50%× (βa)1.
5All of the concentrations are in units of mol/L.
6The feed condition is obtained from [260], which is the reactor outflow from the pre-polymerization stage.
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As pointed out in Section 2.1, the number of on-line measurements in the polycondensation re-

actors is limited. In particular, measurements of various functional end groups are usually off-line,

infrequent and delayed. In this study, two possible measurements are involved: one is continuous

and the other is slow-sampled with dead time. The concentration of hydroxyl end groups can be

obtained from a correlation using continuously-measured torque, temperature, and stirrer speed,

which needs to be calibrated for the specific reactor [248]. This can be considered as a continuous

measurement without time delay. The carboxyl concentration can be obtained by using acidimetric

titration [261], which has a lower sampling rate and an approximately twenty-minute delay. DP is

calculated from the state estimates using the following formula:

DP = 1 +
2[Z]

[OH] + [COOH] + [Ev]

where [Ev] denotes the concentration of vinyl end groups.

2.4 State Estimation via Reduced-Order Observer

Linear observability analysis was performed in two cases: (i) only hydroxyl end groups (x2, x6

and x10) are continuously measured; (ii) in addition to hydroxyl end groups, carboxyl end groups

(x3, x7 and x11) are also measured by using on-line acidimetric titration. In Case (i), the conclusion

is that the system is not observable, because carboxyl end groups are “downstream” relative to the

hydroxyl end groups. It should be noticed that the interfacial concentration of EG does not depend

on the state variables in the reactor. In Case (ii), the system of CSTRs is observable. The results of

observability analysis suggest that the carboxyl measurement is necessary for accurate estimation

of the states and therefore, of DP, and it should be utilized in the observer despite its low sampling

rate.

From a physical point of view, the system of three CSTRs clearly possesses a serial structure:

the outflow of the preceding reactor is the feed for the next reactor. Hence, it is straightforward to

design sequential observers by taking advantage of the particular LBT structure, which is described

in Section 2.2.2. The interconnection of these subsystems is shown in Figure 2.4, from which the
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unobservability in the absence of carboxyl measurements is clearly visible.

Figure 2.4: Subsystems representation of three CSTRs in series.

2.4.1 State Estimation with Continuous Measurement Exclusively

In Case (i), the output vector y =

[
x2 x6 x10

]T
represents the concentrations of hydroxyl

end groups in three polycondensation reactors, which are continuously measured. Despite the fact

that the entire system is unobservable in the absence of carboxyl measurement, if only Subsystems

Ia, IIa and IIIa are taken into account, the new system becomes observable. In other words, the

concentrations of EG and ester groups can be estimated by using only hydroxyl measurement. For

the specific system (i.e., Ia, IIa and IIIa), we have implemented observer Equation (2.4) with state-

dependent gain computed from Equation (2.5), where the mapping function T (x) is a solution of

the system of PDEs of Equation (2.6) with design parametersA andB. Two different choices of the

A matrix, with different sets of eigenvalues, are considered in the simulations: “fast” (−2.0, −1.8,

−1.6,−1.4,−1.2,−1.0) and “slow” (−0.2,−0.18,−0.16,−0.14,−0.12,−0.1). Truncation order

N = 3 is used considering the balance between the accuracy of the approximate PDE solutions and

computation time. The initial guess of the estimates is given in Table 2.3.
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CSTR# [EG] (mol/L) [COOH] (mol/L) [Z] (mol/L)
CSTR I 1.0×10−3 7.57×10−3 10.0
CSTR II 0 1.01×10−2 10.0
CSTR III 1.6×10−3 1.13×10−2 10.1

Table 2.3: Initial estimated values for the observer.

As a result of being the “downstream” states, carboxyl dynamics are detached from Subsystems

Ia, IIa and IIIa. An open-loop observer is designed to estimate the concentrations of carboxyl end

groups, because their dynamics are open-loop stable. The open-loop observer equations are given

as follows

dx̂3
dt

=
1

τ1
(x3,in − x̂3) + k2x̂4

dx̂7
dt

=
1

τ2
(x̂3 − x̂7) + k2x̂8

dx̂11
dt

=
1

τ3
(x̂7 − x̂11) + k2x̂12

with x̂4, x̂8 and x̂12 obtained from the observer equations driven by the continuous measurements

y1, y2 and y3.

Figure 2.5 shows the performance of the reduced-order observer with the “fast” eigenvalues by

comparing the actual and estimated states, as well as the DP in all three CSTRs. Consequently, the

concentrations of EG and ester groups converge to the actual states very fast. Since the unobserv-

able states (i.e., concentrations of carboxyl end groups) are estimated from an open-loop observer,

the speed of convergence depends on the dynamics itself, and this is not adjustable. Therefore, it

takes much longer to converge, which also explains the offset in the DP estimates in the beginning.

However, the offset will be eliminated eventually as x̂3, x̂7 and x̂11 converge.

2.4.2 State Estimation with Both Measurements

In Case (ii), both the continuous and slow-sampled measurements are utilized in the observer

design. Instead of using an open-loop observer, an inter-sample output predictor is used to estimate

the evolution of the slow-sampled output between two consecutive sampling instants. At the same
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Figure 2.5: Performance of the reduced-order observer with the “fast” eigenvalues: (a) actual and
estimated states in CSTR I; (b) actual and estimated states in CSTR II; (c) actual and estimated
states in CSTR III; (d) actual and estimated degree of polymerization in all three CSTRs.

time, dead time compensation is carried out to account for the time delay between the present time

and sensor dead time. For acidimetric titration, it is assumed that there is a ten-minute sampling

interval, and the dead time of the sensor is twenty minutes. It should be noticed that the output of

the predictor does not feed into the reduced-order observer because carboxyl concentrations do not

affect the other states and are not used in the estimation of concentrations of EG and ester groups.

However, they will affect the estimation of DP. In this case, the dead time compensator is actually
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combined with the inter-sample output predictor, demonstrated as follows

dŷ4
dt

=
1

τ1
(x3,in − ŷ4) + k2x̂4, t ∈ [tk − θ, tk + η)

dŷ5
dt

=
1

τ2
(ŷ4 − ŷ5) + k2x̂8, t ∈ [tk − θ, tk + η)

dŷ6
dt

=
1

τ3
(ŷ5 − ŷ6) + k2x̂12, t ∈ [tk − θ, tk + η)

ŷ4 = y4(tk)

ŷ5 = y5(tk)

ŷ6 = y6(tk)

where the state estimates x̂4, x̂8 and x̂12 are obtained from the continuous-time observer. y4, y5

and y6 are the delayed outputs with dead time θ, while ŷ4, ŷ5 and ŷ6 are the estimates at the present

time, respectively. The three equations are reinitialized at the most recent measurement at tk and

run from tk − θ to tk + η, where η is the length of the sampling interval. It serves as a dead time

compensator between tk − θ and tk and also serves as an inter-sample output predictor between tk

and tk +η. In the first θ time units of each simulation, an open-loop observer is used for estimating

the carboxyl end groups, because there is no measurement information available.

In Figure 2.6, the convergence speed of EG and ester groups is slow because the “slow” eigen-

values are chosen in this case. In the estimates of carboxyl concentrations, a few steps are observed,

because the slow-sampled measurement makes a correction on the predictor output when the most

recent measurement becomes available each time. In addition, the observer together with the inter-

sample output predictor and the dead time compensator can estimate the DP accurately in all three

CSTRs.

2.4.3 Observer Performance under Sensor Noise

While the reduced-order observer is computationally more efficient by reconstructing only un-

measured state variables, it suffers from sensitivity to sensor noise. Therefore, the performance of

the reduced-order observer needs to be tested under sensor noise. Pre-filtering of the measurement
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Figure 2.6: Performance of the reduced-order observer with “slow” eigenvalues when using both
measurements: (a) actual and estimated states in CSTR I; (b) actual and estimated states in CSTR
II; (c) actual and estimated states in CSTR III; (d) actual and estimated degree of polymerization
in all three CSTRs.

signal may be necessary to cut out the noise, which inevitably introduces some lag.

Figure 2.7 shows that the same level of white noise is added to all three hydroxyl measurements

with a standard deviation equal to 0.01. A first-order filter is employed to cut out the high frequency

noise. The following filter factors, 0.005, 0.005, and 0.007, are selected respectively, according to

the level of filtering needed. As expected, we can see lags in the filtered signal by comparing it with

the actual state. Meanwhile, white noise with a standard deviation of 3×10−4 is also considered
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for the on-line sampled titration measurements. Figure 2.7(d) shows the evolution of estimated and

actual DP when the sensor noise is introduced. Despite the fact that the estimates deviate from the

actual state quite significantly in the beginning, fairly accurate estimation is achieved after 70 min.

The “slow” eigenvalues are used here because the “fast” eigenvalues will lead to a more aggressive

response which may adversely affect observer performance.

Figure 2.7: Measurement signals before (blue) and after (black) pre-filtering: (a) in CSTR I; (b) in
CSTR II; (c) in CSTR III. Observer performance: (d) actual and estimated degree of polymeriza-
tion in all three CSTRs.
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2.5 Conclusions

This chapter presents an application of a nonlinear state observer for monitoring DP in a series

of PET polycondensation reactors. By exploiting the special LBT structure of the system, sequen-

tial observers are designed, and as a result, the complexity of the state dependence of the observer

gains is reduced. The unmeasurable states of EG and ester groups’ concentrations are accurately

estimated by using a reduced-order observer when only the continuous measurement is considered.

The rate of convergence is adjustable by tuning the eigenvalues of the design parameter A. When

the slow-sampled measurement of carboxyl end groups is also available, an inter-sample output

predictor is used to estimate the evolution of the sampled output between two consecutive sam-

pling instants. Furthermore, dead time compensation is used to compensate for the effect of delay

in the output. Simulation results show that the degree of polymerization of PET is accurately esti-

mated in all three reactors when both continuous and sampled measurements are considered. Even

in the presence of sensor noise, the observer is still able to provide good estimates after applying

pre-filtering.
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3. MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS ∗

The necessity of developing a general observer design method that accounts for different sam-

pling rates and measurement delays was explained in Chapter 1. Chapter 2 presented the observer

design in a series of three polycondensation reactors where one continuous, delay-free measure-

ment and one sampled, delayed measurement were considered. However, the problem of multi-rate

observer design was bypassed because the sampled discrete measurement was not an input for the

continuous-time observer, as a consequence of its special system structure.

In this chapter, the problem of state observer design in linear multi-output systems with asyn-

chronous sampling is addressed. The proposed multi-rate observer is based on a continuous-time

Luenberger observer design coupled with an inter-sample predictor for each sampled measurement,

which generates an estimate of the output in between consecutive measurements. The sampling

times are not necessarily uniformly spaced, but there exists a maximum sampling period among all

the sensors. Sufficient and explicit conditions are derived to guarantee exponential stability of the

multi-rate observer. The proposed framework of multi-rate observer design is examined through a

mathematical example and a gas-phase polyethylene reactor. In the latter case, the amount of ac-

tive catalyst sites is estimated, with a convergence rate that is comparable to the case of continuous

measurements [52].

This chapter is organized as follows. In Section 3.2, the continuous-time reduced-order Luen-

berger observer design will be reviewed, which will serve as the basis for the multi-rate observer

to be proposed in Section 3.3. An analytic proof of exponential stability of the multi-rate observer

will be the provided in Section 3.3, including a special case where only continuous and single-rate

measurements are involved. The effectiveness and applicability of the proposed multi-rate observer

will be illustrated through two case studies in Section 3.4. In Section 3.5, conclusions are drawn

from the results of the previous sections.

∗Reprinted with permission from “Multi-Rate Observer Design for Process Monitoring Using Asynchronous Inter-
Sample Output Predictions” by C. Ling and C. Kravaris, 2017. AIChE Journal, 63(8), 3384–3394, Copyright 2017 by
John Wiley and Sons.
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3.1 Introduction

Effective control and monitoring of chemical processes require frequent and reliable informa-

tion acquisition on the essential state variables. Very often, the quantities related to safety, product

quality, and/or economic performance of a chemical process cannot be measured on line. A state

estimator, as a soft sensor, provides an alternative approach to reconstruct the states by utilizing the

available measurements and a dynamic process model (see [5, 262, 263] and references therein).

The problem of state estimator design has been widely studied for the systems under fast sampling

[54,55,130,132,148,155,264]. However, a key issue in the operation of chemical processes is that

the measurements are not available at the same rate. For example, temperature or liquid level can

be continuously measured, while molecular weight or melt index is only available at infrequent and

irregular times. Despite their slow sampling rate, the measurements that provide important qual-

ity information on the products, should be incorporated in an intelligent manner together with the

continuous measurements, to make the entire system observable as well as improve the estimation

accuracy.

The need for multi-rate estimation has been well recognized in polymer and biochemical in-

dustries since late 1980’s [29, 241, 246, 265–269]. The problem of multi-rate estimation has been

mainly studied in the extended Kalman filter framework [5]. A two-time-scale EKF was developed

to accommodate both frequent and infrequent, delayed measurements in [29,265,266]. A fixed-lag

smoothing based EKF algorithm was proposed for systems with multi-rate measurements in [267].

The performance was evaluated via an emulsion copolymerization batch process, which is shown

to be superior to the standard EKF. Other multi-rate estimation methods, including state observer

design [241, 246, 268], and moving horizon estimation [269–272], have also been investigated. In

the multi-rate observer design, the method of least squares was used on the most-recent, infrequent

measurements to predict the inter-sample behavior in [246,268]. Under moderate nonlinearity and

sampling period, this multi-rate observer was able to calculate reliable, continuous estimates in the

presence of disturbances and model mismatch.

EKF and MHE-based approaches are primarily implemented by using an exact or approximate
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discrete-time process model. Although it is a reasonable approach in the presence of sampled mea-

surements, the inter-sample dynamic behavior is completely lost and the continuous measurements

are not utilized in an efficient way. Furthermore, mismatch between the time step of the discrete-

time model and the actual sampling schedule also induces estimation error. Despite the fact that

fairly good estimation results have been achieved in the aforementioned studies, stability analysis

of a multi-rate estimator remained open due to the asynchronous nature of measurements.

Motivated by the Luenberger observer developed in [55], the problem of designing single-rate

sampled-data observers in a continuous-time manner has attracted lots of attention in the literature.

One proposed approach is based on the continuous-discrete observer design method for a certain

class of nonlinear systems, where a continuous-time observer runs in open-loop, with a reset map

acting at the sampling instants [273–276]. Another approach is based on the design of observer

matrices via linear matrix inequality (LMI), where an inter-sample injection term is introduced in

between consecutive samples based on a continuous processing of the most-recent measurements

[277, 278]. Sufficient conditions subject to the solvability of LMIs were established to guarantee

global exponential stability of the error dynamics. Recently, a single-rate sampled-data observer

was proposed using a continuous-time design coupled with an inter-sample output predictor, which

utilizes the dynamic model to estimate the evolution of the output in between samples [250]. This

idea was further exploited in the sampled-data observer design for nonlinear systems with delayed

measurements in [279].

As mentioned before, the asynchronous nature of different sensors and uncertainty in the sam-

pling schedule pose great challenges in the multi-rate observer design, even for linear systems. An

approach that was recently proposed in [280] involves modeling each sensor as a sample-and-hold

device and deriving sufficient Krasovskii-based conditions in terms of LMIs for the observer de-

sign in linear multi-rate sampled-data systems, given some maximum allowable sampling period

for each sensor.

In this chapter, a new method for multi-rate observer design in linear systems will be proposed,

where, for each slow-sampled measurement, an output predictor will be used in the same spirit as
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in [250]. Differently from the aforementioned work (i.e., [280]), presence of possible continuous

measurements is also considered in this framework. Therefore, the output map is of hybrid nature

as opposed to just sampled-data outputs. In addition, the proposed approach offers a more mean-

ingful way to approximate the inter-sample behavior by using model-based prediction instead of

sample-and-hold strategy. The focus of Chapter 3 will be on the design of multi-rate reduced-order

observers, however, the design of multi-rate full-order observer can be formulated in the same fash-

ion as will be mentioned later. An analytic proof of exponential stability of the error dynamics will

be provided, in the same spirit as the stability analysis of a networked control system with general

multiple-packet transmission in [281]. As a special case, the stability condition of the multi-rate

observer for a class of systems with continuous outputs and single-rate sampled outputs is also de-

rived but in a different way, which gives a less conservative stability bound. The effectiveness and

applicability of the proposed design is demonstrated through numerical examples of a third-order

system and an industrial gas-phase polyethylene reactor.

3.2 Preliminaries

3.2.1 Notations

Throughout this chapter, the zero matrix and identity matrix of appropriate size are denoted by

0 and I , respectively. The operator ‖·‖ denotes the Euclidean norm of a vector or a matrix. For

a matrix A, A′ denotes its transpose matrix. If A is square, A−1 denotes the inverse matrix, ρ(A)

denotes the spectral radius, and λmin(A) and λmax(A) denote the smallest and largest eigenvalues

of A, respectively. tk represents the k-th sampling time in a system with sampled outputs. For any

function x : R→ Rn, we define x(t+k ) = limh→0 x(tk + h).

3.2.2 Reduced-Order Luenberger Observer Design

In the presence of multiple measurements, it makes more sense to use a reduced-order observer

so that a significantly lower dimensionality can ease implementation of the observer. Therefore, a

reduced-order observer formulation will be the focus in the chapter. However, as will be discussed

in this chapter, a very similar approach can be applied to the multi-rate full-order observer design
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as well.

Let us consider a continuous-time linear system, where without loss of generality, the output is

assumed to be a part of the state vector

ẋR(t) = F11xR(t) + F12xM(t) +G1u(t)

ẋM(t) = F21xR(t) + F22xM(t) +G2u(t)

y(t) = xM(t)

(3.1)

where xR ∈ Rn−m denotes the unmeasured state vector, xM ∈ Rm denotes the remaining state

vector that is directly measured, y is the output vector, u ∈ Rq is the control input. F11, F12, F21,

F22, G1 and G2 are matrices of appropriate dimensions. Suppose that the system of Equation (3.1)

is observable and a continuous-time reduced-order observer design is available

ż(t) = Az(t) +By(t) +Wu(t)

x̂R(t) = TR
−1(z(t)− TMy(t))

(3.2)

where z ∈ Rn−m is the observer state, A is a Hurwitz matrix with desired eigenvalues, B is a

matrix which forms a controllable pair withA, the matrixW = TRG1+TMG2, and transformation

matrices TR, TM satisfy the following Sylvester equation:

[
TR TM

]F11 F12

F21 F22

 = A

[
TR TM

]
+B

[
0 I

]
(3.3)

Remark 2. According to a well-known result [55], the stated assumptions: observability of the

pair (F11, F21), controllability of the pair (A,B), and the matrices A and

F11 F12

F21 F22

 not having

common eigenvalues, should be satisfied to guarantee uniqueness of TR and TM , and the invert-

ibility of TR.
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3.3 Main Results

3.3.1 Proposed Multi-Rate Observer Design

Now consider a linear system of Equation (3.1) with xM(t) partitioned as xM =

[
x′c x′d

]′
to

distinguish between continuous and sampled outputs


ẋR(t)

ẋc(t)

ẋd(t)

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



xR(t)

xc(t)

xd(t)

+


G1

G2

G3

u(t)

yc(t) = xc(t)

yid(tk) = xid(t
i
j), k, j ∈ Z+, i = 1, 2, . . . ,md

(3.4)

where xR ∈ Rn−mc−md is the unmeasured state vector, xc ∈ Rmc is the continuously measured

state vector, xd ∈ Rmd is the remaining state vector that is slow-sampled, yc denotes the continuous

outputs, and yd denotes the sampled outputs with different rates. tij denotes the j-th sampling time

for the i-th component in xd, at some countable set of time instants. At a specific time, there may

be measurements of more than one output. The sampling times for each sensor are not necessarily

uniformly spaced, but there exists a maximum sampling period, τm, among all the sensors.

Motivated by [250], the question we consider here is whether the continuous-time observer of

Equation (3.2) could still be the basis in the presence of “medium-size” sampling periods, when

coupled with inter-sample predictors to estimate the output behavior between measurements. For

the multi-rate system of Equation (3.4), the inter-sample output predictor will be utilized for each

sampled output in yd. These predictors will operate continuously at different time horizons, whose

values need to feed the continuous-time observer. For t ∈ [t+k , tk+1] (notice that tk, tk+1 are not

necessarily the sampling times from the same sensor), we propose the following design of multi-
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rate reduced-order observer

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = F31x̂R(t) + F32yc(t) + F33w(t) +G3u(t)

wi(t+k ) = yid(tk)

x̂R(t) = T−1R (z(t)− TMcyc(t)− TMdw(t))

(3.5)

withw ∈ Rmd being the vector of predicted outputs during each sampling interval, andwi being the

i-th predicted state which is reinitialized once a measurement becomes available at tk. Notice that

only the associated component in w vector will get reinitialized and the others do not change until

their measurements become available. Since the system contains continuous and sampled outputs,

the matrices TM and B in Equation (3.2) are partitioned into TMc, TMd and Bc, Bd respectively,

with appropriate dimensions from the continuous-time design. The multi-rate observer of Equation

(3.5) possesses hybrid nature and demonstrates impulsive behavior at sampling times.

We label the estimation error in x-coordinates eR(t) = xR(t) − x̂R(t), output prediction error

ew(t) = xd(t)−w(t), and observer error ez(t) = TReR(t) +TMdew(t). The estimation error eR(t)

can also be written as T−1R ez(t)− T−1R TMdew(t). Notice that eR(t) and ez(t) are estimation errors

in different coordinates, so they are virtually the same after coordinates transformation. Consider

the error dynamics of ez(t) and ew(t) in the sampling interval [t+k , tk+1]

 ėz(t)
ėw(t)

 =

 A Bd

F31T
−1
R F33 − F31T

−1
R TMd


ez(t)
ew(t)

 (3.6)

For simplicity, we denote

M =

 A Bd

F31T
−1
R F33 − F31T

−1
R TMd

 (3.7)

Remark 3. The multi-rate observer of Equation (3.5) can be applied to estimate the state of multi-
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rate sampled-data systems in [280], if there are exclusively sampled outputs, i.e., for systems in

the form

ẋR(t)

ẋd(t)

 =

F11 F12

F21 F22


xR(t)

xd(t)

+

G1

G2

u(t)

yid(tk) = xid(t
i
j), k, j ∈ Z+, i = 1, 2, . . . ,md

Inter-sample predictors, which are operating at different time horizons, are used for each sampled

measurement to estimate the evolution of the output in between consecutive samples. This provides

a more meaningful approach to predict the inter-sample behavior as opposed to a simple sample-

and-hold policy.

Remark 4. Since the design parameter A is Hurwitz, there exists a unique symmetric positive

definite matrix P , satisfying the Lyapunov equation:

A′P + PA = −I (3.8)

We define σ1 = λmin(P ) and σ2 = λmax(P ). The following stability analysis is derived based on

Lyapunov’s second method and the prediction error is treated as a vanishing perturbation on the

system. So choosing the right-hand side of Equation (3.8) equal to −I is desirable for maximizing

the tolerable perturbation bound [282].

Remark 5. The continuous-time observer design coupled with inter-sample output predictors can

be applied to build multi-rate full-order observers, under appropriate modifications. Consider a

system in the form

ẋ(t) = Fx(t) +Gu(t)

yc(t) = Hcx(t)

yid(tk) = H i
dx(tk), k ∈ Z+, i = 1, 2, . . . ,md
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where Hc is the continuous-time output matrix, and H i
d is the i-th row of the discrete-time output

matrix. Likewise, we show the multi-rate full-order observer design for t ∈ [t+k , tk+1]

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = HdFx̂(t) +HdGu(t)

wi(t+k ) = yid(tk)

x̂(t) = T−1z(t)

(3.9)

where W = TG and the transformation matrix T satisfies the following Sylvester equation:

TF = AT +BcHc +BdHd

For t ∈ [t+k , tk+1], the error dynamics of the augmented state vector satisfies

 ėz(t)
ėw(t)

 =

 A Bd

HdFT
−1 0


ez(t)
ew(t)

 (3.10)

Only the associated component in ew(t) will be reinitialized to 0 at tk. The state updates in the

inter-sample predictors can be easily realized if the multi-rate observer is implemented on a mi-

crocontroller, and the states can be set to any value at any time [283].

Remark 6. There are two major differences between the multi-rate full-order and reduced-order

observers: (i) the dimension of the multi-rate full-order observer of Equation (3.9) is (n + md),

whereas it reduces to (n − mc) for the multi-rate reduced-order observer of Equation (3.5); (ii)

different from the multi-rate reduced-order observer, the estimated states x̂ in the multi-rate full-

order observer do not show impulsive behavior.

3.3.2 Stability Analysis

Using the same idea as in [281], the estimation error of Equation (3.6) is proved to exponen-

tially converge to the origin. The Bellman-Gronwall Lemma is first introduced which provides an
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explicit bound to the unknown function.

Lemma 1 (see [284, 285]). Let f(t) and u(t) be nonnegative continuous functions on I = [a,∞),

for which the inequality

u(t) 6 c+

∫ t

a

f(s)u(s) ds, t ∈ I

holds, where c is a nonnegative constant. Then

u(t) 6 c · exp

(∫ t

a

f(s) ds

)
, t ∈ I

The following theorem gives sufficient conditions with explicit stability bound of the multi-rate

observer of Equation (3.5), in terms of the maximum sampling period.

Theorem 1. Consider the linear system defined in Equation (3.4) and a multi-rate reduced-order

observer of Equation (3.5) with error dynamics of Equation (3.6). If the maximum sampling period,

τm, is less than the minimum of

ln 2

‖M‖
,

1

4md

(√
σ2
σ1

+
1

4

)
‖M‖

,
1

16mdσ2

(
σ2
σ1

+
1

4

√
σ2
σ1

)
‖Bd‖ ‖M‖

where M is given by Equation (3.7), and σ1 and σ2 are the smallest and largest eigenvalues of

the solution of Equation (3.8), then the error dynamics of the multi-rate reduced-order observer is

exponentially stable.

Proof. Denote by {tk}∞k=1 the entire set of sampling instants in ascending order. At every tk, one

or more components in ew(t) will be reinitialized to 0. According to the definition of τm, each state

in xd will be measured at least once in the period of length of τm. In other words, each component

in ew(t) will get reinitialized at least once during any period of length of τm.

Let us consider any initial time t0, with the initial condition e(t0) =

[
e′z(t0) e′w(t0)

]′
. It is

assumed that ‖e(t0)‖ > 0. Applying Lemma 1 to Equation (3.6), we have

‖e(t)‖ 6 ‖e(t0)‖ exp(‖M‖ τm)
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for all t ∈ [t0, t0 + τm]. Since τm <
ln 2

‖M‖
is chosen, we obtain

‖e(t)‖ < 2 ‖e(t0)‖ , ∀t ∈ [t0, t0 + τm] (3.11)

Using Equation (3.11), in the interval of [t0, t0 + τm], the absolute value of the i-th component in

ėw(t) satisfies

|ėiw(t)| 6 ‖ė(t)‖

6 ‖M‖ ‖e(t)‖

< 2 ‖M‖ ‖e(t0)‖

(3.12)

Since each component in ew(t) will get reinitialized to 0 at least once in any interval of length of

τm, it is assumed that tij is the last sampling time for eiw(t) in [t0, t0 + τm] so that eiw(tij
+

) = 0.

Using Equation (3.12), |eiw(t)| can be bounded in the interval of [tij
+
, t0 + τm]

eiw(t) = eiw(tij
+

) +

∫ t

tij

ėiw(s) ds =

∫ t

tij

ėiw(s) ds (3.13)

|eiw(t)| 6
∫ t

tij

|ėiw(s)| ds < 2 ‖M‖ ‖e(t0)‖ τm (3.14)

Using Equation (3.14), ‖ew(t)‖ is bounded at t = t0 + τm

‖ew(t0 + τm)‖ =

√√√√ md∑
i=1

|eiw(t0 + τm)|2

6
md∑
i=1

|eiw(t0 + τm)|

< 2md ‖M‖ ‖e(t0)‖ τm

(3.15)

Based on Equation (3.8), we define a Lyapunov function V (ez(t)) = e′z(t)Pez(t), which satis-
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fies the following inequalities

σ1 ‖ez(t)‖2 6 V (ez(t)) 6 σ2 ‖ez(t)‖2 , ∀t > t0 (3.16)

Using Equations (3.11) and (3.16), we obtain for all t ∈ [t0, t0 + τm]

V (ez(t)) 6 σ2 ‖ez(t)‖2 < 4σ2 ‖e(t0)‖2 (3.17)

Next, we would like to show that for all t > t0 + τm

‖ew(t)‖ < γ1 ‖e(t0)‖ (3.18)

V (ez(t)) < 4σ2 ‖e(t0)‖2 (3.19)

where γ1 = 2md

(√
σ2
σ1

+
1

4

)
‖M‖ τm. From Equations (3.15) and (3.17), it is obvious that both

inequalities hold at t = t0 + τm (Notice that
σ2
σ1

> 1). For those t > t0 + τm, we will prove that

the two inequalities hold by contradiction. Let us now consider the following two disjoint events

which cover all possibilities.

1. Suppose there exists t̂ > t0+τm such that Equation (3.18) is violated first. In other words, we

have
∥∥ew(t̂)

∥∥ = γ1 ‖e(t0)‖ and V (ez(t̂)) < 4σ2 ‖e(t0)‖2. From the inequality and Equation (3.16),

we obtain
∥∥ez(t̂)∥∥ < 2

√
σ2
σ1
‖e(t0)‖. Because of this bound, we have that for all t ∈ [t̂− τm, t̂]

‖ėw(t)‖ 6 ‖M‖
√
‖ez(t)‖2 + ‖ew(t)‖2

6 ‖M‖ (‖ez(t)‖+ ‖ew(t)‖)

<

(
2

√
σ2
σ1

+ γ1

)
‖M‖ ‖e(t0)‖

(3.20)

Using Equation (3.20) and the fact that there exists at least one sampling instant tij ∈ [t̂− τm, t̂], at
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which the associated eiw(t) will be reinitialized to 0, we obtain

|eiw(t̂)| 6
∫ t̂

tij

|ėiw(s)| ds

6
∫ t̂

tij

‖ėw(s)‖ ds

< 2

(√
σ2
σ1

+
γ1
2

)
‖M‖ ‖e(t0)‖ (t̂− tij)

< 2

(√
σ2
σ1

+
γ1
2

)
‖M‖ ‖e(t0)‖ τm

Since we have selected τm such that γ1 is smaller than 0.5, |eiw(t̂)| < 2

(√
σ2
σ1

+
1

4

)
‖M‖ ‖e(t0)‖ τm

always holds. As a result, we have that at t = t̂

∥∥ew(t̂)
∥∥ =

√√√√ md∑
i=1

|eiw(t̂)|2

6
md∑
i=1

|eiw(t̂)|

< 2md

(√
σ2
σ1

+
1

4

)
‖M‖ ‖e(t0)‖ τm

= γ1 ‖e(t0)‖

(3.21)

Equation (3.21) leads to a contradiction. Therefore, we prove that ‖ew(t)‖ < γ1 ‖e(t0)‖ holds for

all t > t0 + τm.

2. Suppose there exists t̂ > t0+τm such that Equation (3.19) is violated first or both inequalities

are violated at time t̂. In other words, we have
∥∥ew(t̂)

∥∥ 6 γ1 ‖e(t0)‖ and V (ez(t̂)) = 4σ2 ‖e(t0)‖2.

Using this equality and Equation (3.16), we obtain
∥∥ez(t̂)∥∥ ≥ 2 ‖e(t0)‖. Thus, V̇ (t) satisfies

V̇ (t) = −‖ez(t)‖2 + 2e′z(t)PBdew(t)

6 −‖ez(t)‖2 + 2 ‖e′z(t)‖ ‖P‖ ‖Bdew(t)‖

6 −‖ez(t)‖ (‖ez(t)‖ − 2σ2 ‖Bd‖ ‖ew(t)‖)

(3.22)
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Since τm has been chosen such that γ1 is smaller than
1

σ2 ‖Bd‖
, we obtain that at t = t̂

V̇ (t̂) 6 −
∥∥ez(t̂)∥∥ (∥∥ez(t̂)∥∥− 2σ2 ‖Bd‖

∥∥ew(t̂)
∥∥)

which is strictly negative. It implies that V (ez(t̂)) will never reach 4σ2 ‖e(t0)‖2, which leads to a

contradiction.

Therefore, it is concluded that both ‖ew(t)‖ < γ1 ‖e(t0)‖ and V (ez(t)) < 4σ2 ‖e(t0)‖2 hold

for all t > t0 + τm.

Next, we would like to prove that for all time t > t0, we have V (ez(t)) < 4σ3
2 ‖Bd‖2 γ21 ‖e(t0)‖

2.

If it reached equality, we obtain ‖ez(t)‖ > 2σ2 ‖Bd‖ γ1 ‖e(t0)‖, which makes V̇ (ez(t)) < 0. This

leads to a contradiction. Using Equation (3.16) and the above inequality, we have

V (ez(t)) < 4σ3
2 ‖Bd‖2 γ21 ‖e(t0)‖

2 , t > t0

‖ez(t)‖ < 2σ2

√
σ2
σ1
‖Bd‖ γ1 ‖e(t0)‖ , t > t0

Since we have chosen τm such that γ1 <
1

8σ2

√
σ2
σ1
‖Bd‖

, ‖ez(t)‖ <
1

4
‖e(t0)‖ holds for all t > t0.

Using the fact that γ1 < 0.5, we have

‖e(t)‖ 6 ‖ez(t)‖+ ‖ew(t)‖ < 3

4
‖e(t0)‖ , t > t0 + τm

After a period of length of τm, ‖e(t+ τm)‖ < 3

4
‖e(t)‖. Hence, for any positive integer k, we have

‖e(t0 + kτm)‖ <
(

3

4

)k
‖e(t0)‖

The error dynamics of Equation (3.6) of the multi-rate reduced-order observer is exponentially

stable.

Remark 7. Following the above steps, the error dynamics of the multi-rate full-order observer of
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Equation (3.10) can be shown to converge to the origin exponentially, given the same upper bound

formula of τm as stated in Theorem 1.

Next consider a special case where the multi-rate observer design is applied to a class of sys-

tems with continuous outputs and single-rate sampled outputs. The set of sampling instants {tk}∞k=1

is not necessarily uniformly spaced, but satisfies 0 < tk+1 − tk < τm for all k ∈ Z+, for some

τm > 0. Technically, it is still a multi-rate observer design problem taking the different nature of

two measurements into account. The difference with the more general multi-rate observer design

of Equation (3.5) is that the entire ew will be reinitialized to 0 at tk. As a special case, the stability

condition is derived in a different way, which gives a less conservative stability bound.

Lemma 2 (see [281]). Given λ(t) and k(t) nonnegative piecewise continuous functions of time t

with λ(t) differentiable. If the function y(t) satisfies y(t) 6 λ(t) +
∫ tf
t
k(s)y(s) ds, ∀tf > t > 0,

then y(t) 6 λ(tf ) exp(
∫ tf
t
k(s) ds)−

∫ tf
t
λ̇(s) exp(

∫ s
t
k(τ) dτ) ds, ∀tf > t > 0.

Theorem 2. Consider a class of linear systems defined in Equation (3.4) with continuous outputs

and nonuniformly-spaced single-rate sampled outputs, and a multi-rate reduced-order observer of

Equation (3.5) with error dynamics of Equation (3.6). If the maximum sampling period τm satisfies

τm <
ln 2

‖M‖
(3.23a)

exp(‖A‖ τm)(‖A‖−1 + 2σ2 ‖M‖ τm) <
1 + 2 ‖Bd‖ ‖A‖−1

2 ‖Bd‖
(3.23b)

where M is given by Equation (3.7) and σ2 is the largest eigenvalue of the solution of Equation

(3.8), then the error dynamics of the multi-rate reduced-order observer is exponentially stable.

Proof. Applying Lemma 1 to Equation (3.6), we can obtain ‖e(t)‖ 6 2
∥∥e(t+k )

∥∥ since τm <
ln 2

‖M‖

56



is chosen. Therefore, in each sampling interval [t+k , tk+1], we have

‖ėw(t)‖ 6 ‖ė(t)‖

6 ‖M‖ ‖e(t)‖

6 2 ‖M‖
∥∥e(t+k )

∥∥
(3.24)

Using Equation (3.24), ‖ew(t)‖ is bounded for all t ∈ [t+k , tk+1]

‖ew(t)‖ 6
∥∥ew(t+k )

∥∥+

∫ t

tk

‖ėw(s)‖ ds

6 2 ‖M‖
∥∥e(t+k )

∥∥ τm (3.25)

Select two times in the sampling interval [t+k , tk+1], t and t′ (i.e., t+k 6 t 6 t′ < tk+1), where t′ is

fixed here. Consequently, it yields

ez(t) = ez(t
′)−

∫ t′

t

(Aez(s) +Bdew(s)) ds (3.26)

‖ez(t)‖ 6 ‖ez(t′)‖+

∫ t′

t

(‖A‖ ‖ez(s)‖+ ‖Bd‖ ‖ew(s)‖) ds

6 ‖ez(t′)‖+ 2 ‖Bd‖
∥∥e(t+k )

∥∥ (t′ − t) +

∫ t′

t

‖A‖ ‖ez(s)‖ ds
(3.27)

Applying Lemma 2 to Equation (3.27), we have

‖ez(t)‖ 6 ‖ez(t′)‖ exp(‖A‖ (t′ − t)) + 2 ‖Bd‖
∥∥e(t+k )

∥∥ ‖A‖−1 (exp(‖A‖ (t′ − t))− 1) (3.28)

Let t′ = t, t = t+k in Equation (3.28) and it yields

∥∥ez(t+k )
∥∥ 6 ‖ez(t)‖ exp(‖A‖ (t− t+k )) + 2 ‖Bd‖

∥∥e(t+k )
∥∥ ‖A‖−1 (exp(‖A‖ (t− t+k ))− 1) (3.29)

Since
∥∥ez(t+k )

∥∥ =
∥∥e(t+k )

∥∥, the left-hand side in Equation (3.29) is replaced by
∥∥e(t+k )

∥∥ and it
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yields

‖ez(t)‖ >
∥∥e(t+k )

∥∥ (1− 2 ‖Bd‖ ‖A‖−1 (exp(‖A‖ τm)− 1))

exp(‖A‖ τm)
(3.30)

Since τm is chosen such that

exp(‖A‖ τm)(‖A‖−1 + 2σ2 ‖M‖ τm) <
1 + 2 ‖Bd‖ ‖A‖−1

2 ‖Bd‖

using Equations (3.22), (3.25), and (3.30), we conclude that V̇ (t) is strictly negative in each sam-

pling interval [t+k , tk+1]. As a result, the error dynamics of the multi-rate observer is exponentially

stable.

Notice that for Equation (3.23b) in Theorem 2, the left-hand side is a monotonically increasing

function of τm once the observer parameters are assigned, whereas the right-hand side is a constant.

Based on the facts that Equation (3.23b) holds true at τm = 0 and the left-hand side is monoton-

ically increasing and unbounded, it indicates that this inequality will be violated at some τm > 0.

Therefore, conditions of Theorem 2 will be satisfied for all positive τms that do not exceed a cer-

tain bound. The error dynamics of the multi-rate observer will be stable as long as the sampling

period is small enough, under the assumption that a continuous-time Luenberger observer design

is available.

3.4 Case Studies

3.4.1 A Mathematical Example

A third-order system with one continuous measurement and one sampled measurement is pre-

sented here to illustrate the relationship between the sampling period and the feasible range of the

eigenvalues of the design parameter A, which will be scalar in this case. The state-space model of
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the system is


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


3 1 −3

0 1 2

5 1 −4



x1(t)

x2(t)

x3(t)


yc(t) = x2(t)

yd(tk) = x3(tk), k ∈ Z+

(3.31)

where x2 is continuously measured and x3 is sampled. The eigenvalues of the system of Equation

(3.31) are 1.91 and −0.96 ± 1.66i, respectively. It will be assumed that the sampling period τ is

uniform. Using Equation (3.6), the error vectors e(t) at two consecutive sampling instants t+k , t+k+1

follow ez(t+k+1)

ew(t+k+1)

 =

1 0

0 0

 exp(Mτ)

ez(t+k )

ew(t+k )


with ew(t+k ) = 0, once the predictor is reinitialized after sampling. We will choose B =

[
1 2

]

throughout this example. Then, M =

 A 2

7−A3

2A
−1− A

 and for simplicity, we will denote

G =

1 0

0 0

 exp(Mτ)

ez(t) will converge to 0 if ρ(G) < 1.

At first, the design parameter of the multi-rate reduced-order observer for the system of Equa-

tion (3.31) is fixed as A = −10. Figure 3.1(a) shows how the uniform sampling period τ affects

the spectral radius of G. It is observed that the error dynamics becomes unstable once τ > 0.215 s.

At τ = 0.101 s, the spectral radius of G becomes 0, and the observer becomes deadbeat.

Second, the feasible range of A that guarantees stability of the error dynamics as a function of
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Figure 3.1: (a) Spectral radius of G as a function of the sampling period τ (uniform) when A =
−10, Bc = 1 and Bd = 2; (b) feasible range of A as a function of the sampling period τ (uniform)
when Bc = 1 and Bd = 2.

the sampling period τ is shown in Figure 3.1(b). The upper stability limit for A is zero. The lower

stability limit for A was calculated numerically by solving the equation ρ(G) = 1 where

G =

1 0

0 0

 exp


 A 2

7−A3

2A
−1− A

 τ


using interval halving.

We see from Figure 3.1(b) that as the sampling period goes to zero, an arbitrarily fast eigenvalue

is allowed for A. However, this might deteriorate the observer performance (e.g., large overshoot)

during the transient period, and the multi-rate observer will be sensitive to noise. Conversely, as

60



the sampling period becomes larger and larger, it is necessary to use slower and slower eigenvalue

for A, leading to poor observer performance. Figure 3.1 also indicates that basically there are two

ways to guarantee stability of the multi-rate observer. One is to assign a slower eigenvalue for the

design parameter A. The other is to increase the sampling frequency. When designing a multi-rate

observer, the eigenvalues of A are often assigned an order of magnitude larger than the smallest

eigenvalue of the system. If the error dynamics becomes unstable and the sampling period cannot

be reduced any more, then slower eigenvalues need to be selected.

Next, we compare the maximum sampling period that satisfies the conditions of the two Theo-

rems in the previous section. We choose A = −10 and have τm = 3.835 × 10−3 s from Theorem

1, τm = 0.0133 s from Theorem 2, respectively. It shows that Theorem 2 provides a less conserva-

tive bound on the maximum sampling period to guarantee stability for a certain class of multi-rate

systems.

Figure 3.2 shows the multi-rate reduced-order observer performance for system (3.31), with the

following design parameters and initial conditions: A = −10,B =

[
1 2

]
, x(0) =

[
80 −30 0

]′
,

and x̂1(0) = 40. Sampling normally takes place every 0.14 s. However, perturbations in the sam-

pling schedule is considered here and the actual sampling times are 0, 0.11, 0.28, 0.40, 0.56, 0.66,

0.78, and 0.95 s. In Figure 3.2, the estimates from multi-rate observer converge to the actual state

after approximately 0.4 s. In addition, the performance of the multi-rate observer is compared

with that of using sample-and-hold approach and discrete-time observer in Figure 3.2(a). Note that

the discrete-time observer is designed based on the discrete-time model of the system (3.31) with a

sampling period of 0.14 s. The eigenvalue is placed at 0.2466 in order to match the continuous-time

observer design. The sample-and-hold approach has very poor performance because of the large

sampling period. In general, the discrete-time observer design performs better than the sample-

and-hold approach. However, the presence of perturbation in the sampling schedule causes inac-

curacy in the estimation. Besides, the inter-sample behavior is completely lost and the continuous

measurement is not efficiently used. We see from Figure 3.2(a) that the estimation error does not

converge to zero in either sample-and-hold approach or discrete-time observer design. Therefore,
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the proposed multi-rate observer provides a more meaningful way for state estimation in multi-rate

systems.

Time (s)
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Figure 3.2: Performance of the multi-rate reduced-order observer with an inter-sample predictor
for the system of Equation (3.31): (a) actual and estimated state of x1 (comparison with sample-
and-hold approach and discrete-time observer design); (b) actual and estimated state of x3.

Remark 8. In the multi-rate observer design, a continuous-time observer will be the basis where

A and B are two free parameters to be selected. In particular, A plays a significant role in shaping

the error dynamics of the continuous-time design and its eigenvalues are often selected an order

of magnitude larger than the smallest eigenvalue of the system. If the error dynamics of the multi-

rate observer is not stable, then either faster sampling or slower eigenvalues of A are required to
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guarantee stability. In most cases, the sampling rate of a sensor is limited by its capability. Hence,

iteration is required to find a good choice of A with satisfactory multi-rate observer performance.

3.4.2 A Gas-Phase Polyethylene Reactor

The application of multi-rate reduced-order observer is also explored in an industrial gas-phase

polyethylene reactor (see Figure 3.3). In the reactor, the polymerization takes place at the interface

between the solid catalyst and the polymer matrix. The feed to the reactor, which contains ethylene,

comonomers, hydrogen, and inerts, provides the fluidization by using a high rate of gas recycle.

Ziegler-Natta catalysts are fed continuously to the reactor. The heat generated from the exothermic

reaction is removed through a heat exchanger. The product, polyethylene, discharges near the base

of the reactor as solid powder.

Bleed

Heat 

exchanger Catalyst

Ethylene

Comonomer

Hydrogen

Inerts

Product

Polymer

matrix

Figure 3.3: Schematic of an industrial gas-phase polyethylene reactor.

As previously mentioned in Section 1.3.2, the fluidized-bed reactor in Figure 3.3 can be mod-
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eled as a single-phase, well-mixed continuous stirred-tank reactor in the operating range of indus-

trial interest [215]. A property kinetic model was developed for the gas-phase polyethylene process

accounting for the evolution of melt index and density of the product, the amount of catalytic sites,

and gas concentrations in the reactor. In the reactor modeling, the following assumptions are made

and justified [286]

1. The time-delay associated with the recycle gas flow through the heat exchanger and recycle

lines is neglected.

2. The rate of catalyst deactivation is independent of reactor temperature and is not influenced

by the terminal monomer nor chain length.

3. The vertical concentration and temperature gradient are uniform through the bed.

4. The fludized-bed reactor can be modeled as a CSTR that contains a well-mixed solid phase

interacting with a well-mixed gas phase because of a high ratio of the recycle gas to the fresh

feed.

5. The ethylene and comonomer propagation reactions have similar activation energies.

6. The temperature of the heat exchanger is constant.

Apart from the above assumptions, it is assumed that there is only one type of active catalyst sites
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for simplicity [227]. A mathematical model for this reactor has the form [226]

dY

dt
= Fcac − kdY −

(RM1MW1 +RM2MW2)Y

Bw

dT

dt
=
Hf +Hg −Htop −Hr −Hpol

MrCpr +BwCppol
d[In]

dt
=
FIn − xInbt

Vg
d[M1]

dt
=
FM1 − xM1bt −RM1

Vg
d[M2]

dt
=
FM2 − xM2bt −RM2

Vg
d[H]

dt
=
FH − xHbt

Vg

dMI
− 1

3.5
c

dt
=

1

τr
MI

− 1
3.5

i − 1

τr
MI

− 1
3.5

c

dD−1c
dt

=
1

τr
D−1i −

1

τr
D−1c

(3.32)
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where

RM1 = kp1 exp

[
−Ea
R

(
1

T
− 1

Tref

)]
· Y · [M1]

RM2 = kp2 exp

[
−Ea
R

(
1

T
− 1

Tref

)]
· Y · [M2]

Hf = (FM1Cp1 + FM2Cp2 + FInCpIn + FHCpH)(Tf − Tref )

Hg = FgCpg(Tg − Tref )

Cpg = xM1Cp1 + xM2Cp2 + xInCpIn + xHCpH

Htop = (Fg + bt)(T − Tf )Cpg

bt = VpCv
√

([In] + [M1] + [M2] + [H])RR · T − Pv

Hr = ∆HreacMW1RM1

Hpol = Cppol(RM1MW1 +RM2MW2)(T − Tref )

MIi = exp

[
k7

(
1

T
− 1

Tref

)](
k0 + k1

[M2]

[M1]
+ k3

[H]

[M1]

)3.5

Di = p0 + p1 · ln(MIi)−
(
p2

[M2]

[M1]

)p4
τr =

Bw

RM1MW1 +RM2MW2

(3.33)

The definitions of all the variables in Equations (3.32) and (3.33) are listed in Table 3.1. The values

of the process parameters are listed in Table 3.2 [222,227,228]. Notice that the parameters used in

calculating the melt index and density have been scaled for proprietary reasons [222].

The process model of Equation (3.32) is linearized at the design steady state given in Table 3.3.

A linear state-space model with eight deviation variables can be obtained, where x1 denotes moles

of active catalyst sites, x2 denotes reactor temperature, x3, x4, x5 and x6 represent gas concentra-

tions of inerts, ethylene, comonomer, and hydrogen respectively, and x7, x8 denote the cumulative

melt index and density of the product. As for the outputs, yc(t) = x2(t) is continuously measured

on line. yd,1 =

[
x3 x4 x5 x6

]′
is obtained every 20 min by using on-line gas chromatography.

In addition, the off-line lab analysis of melt index and density, yd,2 =

[
x7 x8

]′
, is sampled every
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Parameter Description
Y Moles of active catalyst site
Fc, Fg Flow rate of catalyst and recycle gas
ac Active site concentration of catalyst
kd Deactivation rate constant for the catalyst site
Bw Mass of polymer in the fluidized bed
RM1, RM2 Ethylene and comonomer consumption rate due to reaction
MW1 , MW2 Molecular weight of ethylene and comonomer
kp1, kp2 Pre-exponential factor for polymer propagation rate
Ea Activation energy
R, RR Ideal gas constant, unit of J/(mol·K) and m3atm/(mol·K)
T , Tref , Tf , Tg Reactor, reference, feed and recycle gas temperature
[In], [M1], [M2], [H] Molar concentration of inerts, ethylene, comonomer, hydrogen in the gas phase
CpIn, Cp1, Cp2, CpH Specific heat capacity of inerts, ethylene, comonomer and hydrogen
FIn, FM1 , FM2 , FH Flow rate of inerts, ethylene, comonomer and hydrogen
xIn, xM1 , xM2 , xH Mole fraction of inerts, ethylene, comonomer, hydrogen in the gas
Hf , Hg Enthalpy of fresh feed stream, cooled recycle gas stream to reactor
Htop, Hpol Enthalpy of total gas outflow stream from reactor and polymer
Hr Heat generated by polymerization reaction
bt Overhead gas bleed
Vp Bleed stream valve position
Cv Vent flow coefficient
Pv Pressure downstream of bleed vent
∆Hreac Heat of reaction
Cpg, Cppol Specific heat capacity of the recycle gas and polymer
MrCpr Product of mass and heat capacity of reactor walls
Vg Volume of gas phase in the reactor
MIi, MIc Instantaneous and cumulative melt index of polymer
Di, Dc Instantaneous and cumulative density of polymer
τr Solid phase residence time
k0, k1, k3, k7 Parameters in the inference model for instantaneous melt index of polymer
p0, p1, p2, p4 Parameters in the inference model for instantaneous density of polymer

Table 3.1: Process variables.

30 min, which provides quality information of the polyethylene. In the reaction, the active catalyst

site may become inactive due to spontaneous decay and adsorption of impurities, which forms dead

site and dead polymer chains. Because of the difficulty in measuring the amount of active catalyst

sites, it is necessary to monitor this quantity from a reliable on-line soft sensor. Besides, providing

continuous and reliable estimates for the inter-sample dynamic behavior of these sampled outputs

is also significant for quality control and monitoring.
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ac = 0.548 mol/kg kd = 0.0001 s−1

Bw = 7×104 kg Fc = 1.611×10−3 kg/s
MW1 = 0.02805 kg/mol MW2 = 0.0562 kg/mol
kp1 = 0.085 m3/(mol·s) kp1 = 0.003 m3/(mol·s)
Ea = 37681.2 J/mol Tref = 360 K
R = 8.314 J/(mol·K) RR = 8.2058×10−5 m3 atm/(mol·K)
CpIn = 28.889 J/(mol·K) CpH = 32.238 J/(mol·K)
Cp1 = 46.055 J/(mol·K) Cp2 = 100.48 J/(mol·K)
FIn = 2.52 mol/s FH = 1.6 mol/s
FM1 = 131.13 mol/s FM2 = 3.51 mol/s
Tf = 293 K Fg = 8500 mol/s
Tg = 324.7 K Vp = 0.5
Cv = 7.5 atm−0.5 mol/s Pv = 17 atm
∆Hreac = -3.7430×106 J/kg Cppol = 3558.8 J/(kg·K)
MrCpr = 5.8615×107 J/K Vg = 500 m3

k0 = 0.41 k1 = 0.0726
k3 = 0.3298 k7 = 2.2627×104

p0 = 28.35 p1 = 1.227
p2 = 85.29 p4 = 0.5292

Table 3.2: Process values and units.

Y = 5.778 mol T = 356.68 K
[In] = 217.59 mol/m3 [M1] = 292.40 mol/m3

[M2] = 130.00 mol/m3 [H] = 138.16 mol/m3

MI
− 1

3.5
c = 1.4148 D−1c = 0.0500

Table 3.3: Steady-state operating conditions of system (3.32).

Consider the following multi-rate reduced-order observer design based on Equation (3.5)

A = −0.00068, Bc = 0.01,

Bd =

[
0.01 0.01 0.01 0.01 0.01 0.01

]
,

TR = −562.7, TMc = 72.6,

TMd =

[
13.3 6.03 23.3 13.7 15.9 15.9

]

It is assumed that the first available outputs yd,1, yd,2 are obtained at t = 10 min. The initial condi-
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tions of the process and the observer are given in Table 3.4. The multi-rate observer performance

is tested via MATLAB simulation shown in Figure 3.4.

Initial Condition of the Process Initial Guess of the Observer
Y = 4.6 mol T = 360 K Y = 2.44 mol [In] = 380.28 mol/m3

[In] = 450 mol/m3 [M1] = 340 mol/m3 [M1] = 325.72 mol/m3 [M2] = 144.00 mol/m3

[M2] = 150 mol/m3 [H] = 200 mol/m3 [H] = 181.45 mol/m3 MI
− 1

3.5
c = 1.5250

MI
− 1

3.5
c = 1.5723 D−1c = 0.0511 D−1c = 0.0507

Table 3.4: Initial conditions of the process (3.32) and the observer.

In Figure 3.4, the response of inter-sample output predictors (i.e., dotted lines in (b)-(f)) demon-

strates impulsive behavior at sampling times, caused by reinitialization, which brings the predicted

output back to the actual state. As a consequence, it creates discontinuity in the estimates x̂1 as the

observer state z does not change at sampling instants. Figure 3.4(a) shows that the estimates from

the multi-rate observer (i.e., dotted line) has approximately the same convergence rate as that from

the continuous-time design (i.e., dash-dot line). The multi-rate observer design of Equation (3.5)

provides reliable estimation results.

3.5 Conclusions

This chapter proposes a design method for multi-rate observers in linear multi-output systems,

considering both continuous and discrete measurements with asynchronous sampling. It is based

on an available continuous-time Luenberger observer design coupled with multiple, asynchronous

inter-sample predictors for the sampled outputs. This new observer is of hybrid nature, and it is

able to make use of all possible measurements in the system. The stability analysis was carried out

based on Lyapunov’s second method and it is concluded that the error dynamics of the proposed

multi-rate observer will be exponentially stable as long as the sampling period is sufficiently small.

It provides sufficient and explicit conditions, in terms of maximum sampling period, to guarantee

exponential stability, irrespective of perturbations in the sampling schedule. Iteration on the design
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Figure 3.4: Performance of the multi-rate reduced-order observer with inter-sample output predic-
tors: (a) x1 (solid), x̂1 (dash-dot) assuming continuous outputs for all the sensors, and x̂1 (dotted)
with multi-rate outputs; (b) x4 (solid) and x̂4 (dotted) from predictor; (c) x5 (solid) and x̂5 (dotted)
from predictor; (d) x6 (solid) and x̂6 (dotted) from predictor; (e) x7 (solid) and x̂7 (dotted) from
predictor; (f) x8 (solid) and x̂8 (dotted) from predictor.

parameter A is required to achieve satisfactory observer performance, which is limited by the sen-

sor hardware. From the simple third-order example considered, we see that the multi-rate observer

performs much better than the sample-and-hold approach and discrete-time observer design.

The upper bound of the maximum sampling period given by Theorems 1 and 2 is found to be

very conservative from the simulation. Finding a tighter bound would help to select appropriate

sensors for particular systems. This open question will be the subject of future research.

Another important characteristic of the process output, which is time delay, will be taken into

account in the linear observer design in Chapter 4.
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4. MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS WITH MEASUREMENT

DELAY ∗

In Chapter 3, we developed a multi-rate observer design method in linear systems with asyn-

chronous sampling based on a Luenberger observer design coupled with inter-sample predictors.

In this chapter, the problem of multi-rate multi-delay observer design are addressed where both

asynchronous sampling and possible measurement delays are accounted for [287]. The proposed

observer adopts an available multi-rate observer design in the time interval between two consecu-

tive delayed measurements. A dead time compensation approach is developed to compensate for

the effect of delay and update the past estimates when a delayed measurement arrives. The stability

and robustness properties of the multi-rate observer will be preserved under nonconstant, arbitrarily

large measurement delays. A mathematical example and a gas-phase polyethylene reactor example

demonstrate good performance of the proposed observer in the presence of nonuniform sampling

and nonconstant measurement delays.

The chapter is organized as follows. In Section 4.1, the necessity of incorporating measurement

delay in the observer design is given. In Section 4.2, the multi-rate observer design in the absence

of measurement delays are reviewed, which will serve as the basis for the multi-rate multi-delay

observer to be proposed in Section 4.3. Stability analysis of the observer is quite straightforward

based on the stability analysis of a delay-free multi-rate observer and will be discussed in Section

4.3. The applicability of the proposed observer will be illustrated via two case studies in Section

4.4. In Section 4.5, conclusions are drawn from the results of the previous sections.

4.1 Introduction

Motivated by many engineering applications, state estimation of continuous-time dynamic sys-

tems in the presence of sampled and delayed measurements has received lots of attention recently.

∗Reprinted with permission from “A Dead Time Compensation Approach for Multirate Observer Design with
Large Measurement Delays” by C. Ling and C. Kravaris, 2019. AIChE Journal, 65(2), 562–570, Copyright 2018 by
John Wiley and Sons.
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In networked control systems, for example, output data is transmitted over a digital communication

channel in discrete packets, and the network-induced delay becomes non-negligible if the system

to be controlled or monitored is located far away from the computing unit. In chemical processes,

product quality measurements are sampled infrequently and require off-line lab analysis which in-

evitably introduces delay as a consequence of sample preparation, analysis and calculation. Since

the aforementioned systems are usually equipped with multiple sensors of different sampling rates

and different measurement delays, continuous-time and/or single-rate sampled-data observer de-

sign methods from the literature are not directly applicable any more. Hence, the objective of this

work is to develop a state observer which is able to handle multi-rate multi-delay measurements in

linear systems.

Most of the observer design methods using delayed output are based on a chain of state observa-

tion algorithms, where various types of output delay (e.g., constant, time-varying, piecewise) have

been considered. A chain structure algorithm was proposed in [288] for globally drift-observable

systems where the measurement became available after a constant delay. The chain observer con-

sisted of a number of cascaded subsystems where each subsystem reconstructed the system states

at different delayed time instants. It was shown that there exists an observer of suitable dimension

which achieves exponential error decay for any size of delay. A similar methodology was applied

to single-output systems with constant delay where the observer design followed a different path by

using the error linearization with eigenvalue assignment method [148], and consequently enhanced

design flexibility was achieved [289]. A set of cascade high-gain observers with the same structure

was proposed to estimate the states of triangular nonlinear systems when the delay was arbitrarily

long and constant [290]. To reduce the number of subsystems and avoid a long oscillatory transient

behavior, an alternative cascade structure was developed where the first subsystem was an observer

for the delayed state whereas each one of the remaining subsystems was replaced by a state predic-

tor [291]. This design approach can be appropriately adapted to deal with time-varying delay. The

assumption on constant output delay has been relaxed in recent studies. Motivated by the chain-

like structure, a cascade of two observers was proposed for linear systems where the output delay

72



was assumed to be a piecewise constant function of time [292]. A simple observer was derived for

nonlinear systems with time-varying measurement delay and asymptotic stability of the estimation

error was proved by using Lyapunov-Razumikhin tools [293]. In this design, the observer had the

same size as the original system and no particular hypothesis on the delay function was required.

The delayed output considered in all the above contributions is assumed to be continuous. As

most of the product quality measurements in chemical processes are sampled infrequently and are

obtained with a delay, sampling and delay effects need to be simultaneously considered and com-

pensated for in the observer design. A chain observer, composed of several elementary observers

and output predictors in series, was designed to compensate for sampling and large measurement

delay in a class of triangular nonlinear systems in [294]. A robust global exponential observer was

proposed for certain classes of nonlinear systems under sampled measurement with a constant de-

lay, where a state predictor was used to estimate the current state [279]. Two classes of observers

were presented for multi-input multi-output state affine systems based on the continuous-discrete

observer design [273], and the sampled-data observer design coupled with an inter-sample output

predictor [250], respectively. The unknown output delay had an upper bound and it was assumed

that the sampled measurements will become available before the next sampling [295]. Multi-rate

observer design in the presence of multiple measurement delays was proposed and implemented

in a polymerization reactor in [246, 296] where the evolution of the slow measurements was pre-

dicted by using the method of least squares. In spite of the fact that fairly good estimation results

have been achieved, stability analysis of a multi-rate multi-delay observer remained open. Other

multi-rate estimation methods considering measurement delays, such as the extended Kalman fil-

ter [266, 297, 298], and the moving horizon estimation [269–271], have also been investigated. In

addition, a number of results are available in the literature regarding controller design for nonlinear

systems with delays in states, actuators and measurements [299–303].

The problem of multi-rate observer design in the absence of measurement delays was studied

in Chapter 3 for linear systems and will be studied in Chapter 6 for nonlinear systems. Motivated

by the single-rate sampled-data observer design in [250], a multi-rate observer was developed

73



based on an available continuous-time design coupled with multiple, asynchronous inter-sample

predictors for the sampled measurements. Each predictor generated an estimate of a sampled

output in between two consecutive measurements using a model-based method. The predictor was

reinitialized once the associated, most-recent measurement became available. Sufficient conditions

were derived to guarantee stability of the error dynamics using Lyapunov’s second method [281],

and the vector small-gain theorem [304], respectively. Furthermore, the multi-rate design provided

robustness with respect to perturbations in the sampling schedule.

In this chapter, we will address the problem of observer design in a linear multi-output system

where measurements are available at different sampling rates and with different delays. Notice that

input delay and state delay are not in the scope of this study. In the case of linear systems, the prob-

lem of controller design that is capable of handling dead time was solved by the well-known Smith

predictor in [305]. It simulates the difference between the delay-free part of the process model and

the process model with dead time. Motivated by dead time compensation algorithms in [305,306],

we approach the multi-rate multi-delay observer design in a two-step manner. First, a multi-rate

observer design [52] is adopted as a starting point and estimates of the current state are obtained

in the time interval between consecutive delayed measurements. Second, we propose a model-

based dead time compensation approach to handle possible measurement delays and show that the

stability property of the multi-rate observer will be preserved under arbitrarily large measurement

delays. Differently from the Smith predictor, the assumption that the process is open-loop stable is

not required. Two attractive features of the approach are that it inherits the stability and robustness

properties from a delay-free multi-rate observer and convergence is not affected by nonconstant

measurement delays. The mathematical example and the industrial gas-phase polyethylene reactor

example of [52] will be reconsidered in the presence of delays to illustrate the applicability of the

proposed method.
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4.2 Preliminaries

4.2.1 Notations

The zero matrix and identity matrix of appropriate size are denoted by 0 and I , respectively.

The operator ‖·‖ denotes the Euclidean norm of a vector or a matrix. For a matrix A, A′ denotes its

transpose matrix. If A is square, A−1 denotes the inverse matrix. The set of nonnegative integers

is denoted by Z+. For any function x : R→ Rn, we define x(t+) = limh→0 x(t+ h).

4.2.2 Multi-Rate Observer Design in the Absence of Output Delays

This section contains a brief summary of the theoretical results presented in Chapter 3 on linear

multi-rate observer design in the absence of measurement delays, which will serve as the basis of

the multi-rate multi-delay observer design to be proposed in Section 4.3. A reduced-order observer

formulation will be the focus in this chapter because lower dimensionality can ease implementation

of the observer.

Consider a linear system with continuous and sampled outputs in the absence of delays, where

without loss of generality, the outputs are assumed to be a part of the state


ẋR(t)

ẋc(t)

ẋd(t)

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



xR(t)

xc(t)

xd(t)

+


G1

G2

G3

u(t)

yc(t) = xc(t)

yid(tk) = xid(t
i
j), k, j ∈ Z+, i = 1, 2, . . . ,md

(4.1)

where xR ∈ Rn−mc−md is the unmeasurable state, xc ∈ Rmc is the continuously measured state,

xd ∈ Rmd is the remaining state that is slow-sampled, yc denotes the continuous outputs, yd denotes

the sampled outputs at different rates, and u ∈ Rq denotes the control inputs. Fij and Gi,∀i, j =

1, 2, 3, are matrices of appropriate dimensions. tij is the j-th sampling time for the i-th component

in xd, at some sequence of time instants S = {tk}∞k=0. Notice that S is the sequence of all sampling

times in ascending order. The sampling times of each sensor are not necessarily uniformly spaced,
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but satisfying 0 < tij+1− tij 6 τm,∀j ∈ Z+, where τm is the maximum sampling period among all

the sensors.

The multi-rate observer design is based on a continuous-time Luenberger observer design cou-

pled with multiple asynchronous inter-sample predictors. The system of Equation (4.1) can be used

to predict the evolution of the sampled outputs in between two consecutive measurements. The pre-

dicted outputs will then replace the continuous outputs in the implementation of a continuous-time

observer. It was seen in [52] that the model-based prediction provides a more meaningful approach

to approximate the inter-sample behavior as opposed to a sample-and-hold strategy, especially un-

der large sampling period. For t ∈ [t+k , tk+1], suppose a multi-rate observer design of the following

form is available for the multi-rate system of Equation (4.1)

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = F31x̂R(t) + F32yc(t) + F33w(t) +G3u(t)

wi(t+k ) = yid(tk)

x̂R(t) = T−1R (z(t)− TMcyc(t)− TMdw(t))

(4.2)

where z ∈ Rn−mc−md is the observer state, x̂R ∈ Rn−mc−md is the state estimates, and w ∈ Rmd

is the predicted outputs in the sampling interval. The i-th component in w(t) will be reinitialized

once a new measurement yid(tk) becomes available at tk, while the rest of the predictor states do

not change until their measurements are obtained. At a specific time tk, there may be measurement

of more than one output or the sampling of one sensor may coincide with another. Therefore, some

sampling instants may be present more than once in the sequence S, where the reinitialization step

will occur repeatedly but on different elements in w(t).

All the matrices in the multi-rate observer of Equation (4.2) are inherited from a continuous-

time Luenberger observer design under appropriate partitions, where A is a Hurwitz matrix with

desired eigenvalues,
[
Bc Bd

]
is a matrix that forms a controllable pair with A, the matrix W =

TRG1 + TMcG2 + TMdG3, and the transformation matrices TR, TMc, TMd satisfy the following
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Sylvester equation

[
TR TMc TMd

]
F11 F12 F13

F21 F22 F23

F31 F32 F33

 = A

[
TR TMc TMd

]
+

[
Bc Bd

]0 I 0

0 0 I

 (4.3)

Notice that observability of the pair

F11,

F21

F31


, controllability of the pair

(
A,

[
Bc Bd

])
,

and the Hurwitz matrix A and the transition matrix F not having common eigenvalues, should be

satisfied to guarantee uniqueness of TR, TMc, TMd, and invertibility of TR.

We denote the estimation error in x-coordinates eR(t) = xR(t)− x̂R(t), output prediction error

ew(t) = xd(t)−w(t), and observer error ez(t) = TReR(t) + TMdew(t). Under the above choice of

the observer matrices, the multi-rate observer (4.2) induces the following error dynamics of ez(t)

and ew(t) in the sampling interval [t+k , tk+1]

 ėz(t)
ėw(t)

 =

 A Bd

F31T
−1
R F33 − F31T

−1
R TMd


ez(t)
ew(t)


eiw(t+k ) = 0

(4.4)

Notice that eR(t) and ez(t) represent estimation errors in different coordinates. For simplicity, we

denote

M =

 A Bd

F31T
−1
R F33 − F31T

−1
R TMd

 (4.5)

To ensure exponential stability of the error dynamics of Equation (4.4), the maximum sampling

period τm should be less than the minimum of

ln 2

‖M‖
,

1

4md

(√
σ2
σ1

+
1

4

)
‖M‖

,
1

16mdσ2

(
σ2
σ1

+
1

4

√
σ2
σ1

)
‖Bd‖ ‖M‖

(4.6)
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where σ1 and σ2 are the smallest and largest eigenvalues of a unique symmetric positive definite

matrix P respectively, satisfying the Lyapunov equation

A′P + PA = −I (4.7)

This is a sufficient and explicit condition derived from Lyapunov’s second method and it is con-

cluded that the error dynamics of the multi-rate observer will be exponentially stable as long as the

sampling period is sufficiently small, irrespective of perturbations in the sampling schedule (see

[52] for more details).

Remark 9. The multi-rate observer design contains a continuous-time Luenberger observer and

multiple inter-sample output predictors. Consequently, the error dynamics is governed by the ma-

trix M instead of the Hurwitz matrix A exclusively. A, Bc and Bd are the three design parameters

to be selected which play a significant role in “shaping” the error dynamics of the multi-rate ob-

server. If the error dynamics is not stable, then either faster sampling or slower eigenvalues of

A are required to guarantee stability. In most cases, the sampling rate of a sensor is limited by

its capability. Hence, iteration is required to find a good choice of A with satisfactory multi-rate

observer performance.

4.3 Main Results

4.3.1 Proposed Multi-Rate Multi-Delay Observer Design

Now consider a linear multi-rate system of Equation (4.1) with possible delays in the sampled

measurements yd(t)


ẋR(t)

ẋc(t)

ẋd(t)

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



xR(t)

xc(t)

xd(t)

+


G1

G2

G3

u(t), t > −∆

yc(t) = xc(t)

yid(t
i
j) = xid(t

i
j − δij), j ∈ Z+, i = 1, 2, . . . ,md

(4.8)
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where tij denotes the time when the j-th measurement of xid becomes available after some possible

delay δij > 0. In other words, the measured output yid(t
i
j) is a function of the state xid at time tij−δij .

The measurement delay δij is not constant but is assumed bounded by a positive real number ∆.

Notice that δij = 0 if there is no delay in the output yid. Similar to the multi-rate system of Equation

(4.1), the sampling times of each measurement are not necessarily uniformly spaced, but satisfying

0 <
∣∣(tij′ − δij′)− (tij − δij)

∣∣ 6 τm for any consecutive sampling instants.

The proposed observer for the system (4.8) with multiple measurement delays is based on the

multi-rate observer design (4.2) combined with dead time compensation. As depicted in Figure 4.1

(notice that the continuous outputs are not shown), the estimation process is composed of two steps.

First, dead time compensation will be triggered once a delayed measurement is obtained at tij . Past

estimates are recalculated by integrating the observer and compensator equations from tij − δij to

tij . Any available measurement can be used as a delay-free output to reinitialize the corresponding

compensator at its sampling time. The estimates of the current state at tij are consequently updated

at the end of the compensation. This step ensures that these available measurements are used in the

observer without delay, in the same order as they are sampled. Second, the updated estimates are

used as the initial condition of the observer and the inter-sample output predictors at tij . The multi-

rate multi-delay observer operates like a delay-free multi-rate observer when there is no delayed

measurement.

When a sampled and delayed measurement becomes available at tij , dead time compensation is

executed to update the past estimates. For all t ∈ [tij − δij, tij) where δij 6= 0, the following design
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Figure 4.1: An illustration of the proposed two-step estimation process of a multi-rate multi-delay
observer in the presence of two sampled and delayed measurements starting from t0.

of a multi-rate observer with dead time compensation is proposed

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t) (4.9a)

ẇ(t) = F31x̂R(t) + F32yc(t) + F33w(t) +G3u(t) (4.9b)

wi((tij − δij)+) = yid(t
i
j) (4.9c)

wi
′
((ti

′
j′ − δi

′
j′)

+) = yi
′
d (ti

′
j′), ∀ti′j′ , (ti

′
j′ − δi

′
j′) ∈ [tij − δij, tij) (4.9d)

x̂R(t) = T−1R (z(t)− TMcyc(t)− TMdw(t)) (4.9e)

where w ∈ Rmd is the compensator state representing the past estimates for xd(t). Equation (4.9c)

shows the reinitialization of the i-th dead time compensator using the delayed measurement yid(t
i
j)

at its sampling time tij−δij . The outputs that are sampled and measured between tij−δij and tij can be

used to reset the compensators at their respective sampling times as seen in Equation (4.9d), where

ti
′
j′−δi

′
j′ is the sampling time of the j′-th measurement of xi′d at ti′j′ for all j′ ∈ Z+, i′ = 1, 2, . . . ,md.
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Remark 10. If the delayed measurement at tij has more than one output, reinitialization should be

performed on multiple dead time compensators in Equation (4.9c).

Remark 11. In Equation (4.9), the observer state z(t), compensator state w(t), control input u(t),

continuous outputs yc(t), and sampled outputs yd(t) all represent the past information in the system

throughout the dead time compensation, which need to be stored in a buffer. Notice that the past

estimates are generated for the purpose of correcting the state estimates at tij based on the delayed

measurement yid(t
i
j) and therefore improving the estimation accuracy afterwards. The memory size

of the buffer will be finite as long as the upper bound of the measurement delay ∆ is finite, as will

be discussed later.

Once the estimates at tij are obtained after the dead time compensation, inter-sample prediction

comes into play in the time interval between two consecutive measurements at tij and ti′j′ . For all

t ∈ [tij, t
i′
j′), the multi-rate multi-delay observer follows

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = F31x̂R(t) + F32yc(t) + F33w(t) +G3u(t)

x̂R(t) = T−1R (z(t)− TMcyc(t)− TMdw(t))

(4.10)

where w ∈ Rmd is the predicted outputs for the sampled measurements yd(t) in the sampling inter-

val. The inter-sample predictors run simultaneously with the observer, and estimate the evolution

of the sampled outputs, in the same spirit as in a delay-free multi-rate observer. The estimates in

Equation (4.10) can be used for real-time monitoring or control purposes. If a sampled, undelayed

measurement becomes available at tij , the inter-sample prediction will run immediately after reini-

tialization and no dead time compensation will be needed. Algorithm 1 summarizes the estimation

process of the proposed multi-rate multi-delay observer.

Remark 12. Unlike the chain observer where a high dimensionality may be required to reconstruct

the state in the case of large measurement delays [288–291], the proposed multi-rate multi-delay

observer does not require a chain-like structure and the dimension of the observer (4.9) and (4.10)
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Algorithm 1 Algorithm for Linear Multi-rate Multi-delay Observer

STEP 0: Initialize z(t0), w(t0), and solve Equation (4.10) for [t0, t
i
j).

STEP 1: Calculate z(t) and w(t) when a sampled measurement becomes available at tij .
if δij > 0 then

Solve Equation (4.9) for [tij − δij, tij) and update z(tij), w(tij). . Dead time compensation
end if
Reinitialize Equation (4.10) with z(tij), w(tij), and solve it for [tij, t

i′
j′). . Inter-sample prediction

STEP 2: Set tij = ti
′
j′ and go to Step 1.

is significantly reduced to (n −mc). Moreover, it can handle multiple nonconstant measurement

delays.

Remark 13. Notice that the continuous measurement considered in the system (4.8) was assumed

delay-free. In case it is delayed, one method is to sample the output at a certain sampling frequency

so that it can be treated as a sampled measurement with delay in the same manner as yd(t), at the

expense of losing some information from the measurement signals. The sampling period should be

less than τm to guarantee stability.

4.3.2 Stability Analysis

Past estimates are recalculated in the dead time compensation once a sampled, delayed mea-

surement becomes available. Estimates at certain times may be calculated more than once, if the

measurement order differs from the sampling order. We name the last updated estimates obtained

from the multi-rate multi-delay observer “final estimates”. We denote t̃ the most-recent sampling

time where the measurements of all the samples taken before t̃ (including t̃) are available. It im-

plies that the final estimates are obtained for all t 6 t̃. Because the measurements are used in the

same order as the way they are sampled when calculating the final estimates, the final estimates

z(t), w(t) and x̂R(t) for all t 6 t̃ in the multi-rate multi-delay observer are identical to those in a

delay-free multi-rate observer, under the same design parameters. Once the final estimates at t̃ are

obtained, all the stored measurements that are sampled before t̃, control inputs, etc. can be cleared

from the buffer.
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Because of the previous assumption that the measurement delay in the system (4.8) has a finite

upper bound ∆, t̃ will approach infinity as t goes to infinity. We label the estimation error eR(t) =

xR(t)− x̂R(t), compensation error (or output prediction error) ew(t) = xd(t)−w(t), and observer

error ez(t) = TReR(t)+TMdew(t). According to the two-step estimation process, we would like to

show convergence of the error dynamics in the dead time compensation as well as the inter-sample

prediction, respectively.

We denote tij the time where the most-recent, delayed measurement becomes available. The

dead time compensation will be performed and for all t ∈ [tij − δij, tij) the error dynamics follows

ėz(t) = Aez(t) +Bdew(t)

ėw(t) = F31T
−1
R ez(t) + (F33 − F31T

−1
R TMd)ew(t)

eiw((tij − δij)+) = 0

ei
′
w((ti

′
j′ − δi

′
j′)

+) = 0, ∀ti′j′ , (ti
′
j′ − δi

′
j′) ∈ [tij − δij, tij)

(4.11)

Notice that the transition matrix in the above error dynamics is identical to the matrix M given by

Equation (4.5) in the multi-rate observer formulation. We denote e(t) =

[
e′z(t) e′w(t)

]′
. From

Equation (4.11), we have e(t) = exp(M(t− ti′j′ + δi
′
j′))e(t

i′
j′− δi

′
j′) where some elements in ew(ti

′
j′−

δi
′
j′) are reinitialized to 0. If the maximum sampling period τm in the multi-rate multi-delay system

of Equation (4.8) is guaranteed to be less than the minimum of the expressions in Equation (4.6),

the final estimates e(t̃) will exponentially converge to 0, in the same manner as a multi-rate observer

in the absence of delay. As the estimates in the dead time compensation are generated by forward

predicting the process model from t̃ with reinitialization at some sampling instants, as a result, e(t)

will converge to zero exponentially in the compensation.

In the inter-sample prediction that follows up, we have that for all t ∈ [tij, t
i′
j′)

ėz(t) = Aez(t) +Bdew(t)

ėw(t) = F31T
−1
R ez(t) + (F33 − F31T

−1
R TMd)ew(t)

(4.12)
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Likewise, we have e(t) = exp(M(t − tij))e(tij) for all t ∈ [tij, t
i′
j′). Since lim

t→+∞
e(tij) = 0 holds at

the end of the dead time compensation, it is obvious that e(t) will exponentially converge to zero in

the inter-sample prediction. When a sampled, undelayed measurement becomes available at tij , the

i-th predictor will get reinitialized immediately, and this does not affect stability of the observer.

It can be seen that stability of the proposed multi-rate multi-delay observer completely depends

on the maximum sampling period as in a delay-free multi-rate observer. Thus, the assumption on

an open-loop stable process is not required. In addition, stability of the multi-rate observer will be

preserved under nonconstant and arbitrarily large delays. Another attractive feature of the proposed

approach is that it can handle the situation where the delayed measurement sequence is not in the

same order as the sampling sequence.

Remark 14. The above multi-rate multi-delay observer design can be adapted to a full-order ob-

server formulation, under appropriate modifications. Consider a multi-rate system in the presence

of output delays in the form

ẋ(t) = Fx(t) +Gu(t), t > −∆

yc(t) = Hcx(t)

yid(t
i
j) = H i

dx(tij − δij), j ∈ Z+, i = 1, 2, . . . ,md

(4.13)

where Hc is a mc × n matrix for continuous outputs, and H i
d is the i-th row of the matrix Hd for

sampled and delayed outputs.

Likewise, we first propose the following design of multi-rate full-order observer with dead time
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compensation for all t ∈ [tij − δij, tij)

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = HdFx̂(t) +HdGu(t)

wi((tij − δij)+) = yid(t
i
j)

wi
′
((ti

′
j′ − δi

′
j′)

+) = yi
′
d (ti

′
j′), ∀ti′j′ , (ti

′
j′ − δi

′
j′) ∈ [tij − δij, tij)

x̂(t) = T−1z(t)

(4.14)

where W = TG, and the transformation matrix T satisfies the following Sylvester equation

TF = AT +BcHc +BdHd

After the dead time compensation, inter-sample prediction is used to estimate the evolution of

the sampled outputs in the time interval between two consecutive measurements at tij and ti
′
j′ . For

all t ∈ [tij, t
i′
j′), the multi-rate multi-delay observer follows

ż(t) = Az(t) +Bcyc(t) +Bdw(t) +Wu(t)

ẇ(t) = HdFx̂(t) +HdGu(t)

x̂(t) = T−1z(t)

(4.15)

The multi-rate full-order observer with output delays has a dimension of (n+md). Stability is

inherited from stability of a multi-rate observer in the absence of measurement delays.

4.4 Case Studies

In this section, the third-order system and the industrial gas-phase polyethylene reactor exam-

ples of Chapter 3 are utilized to test the performance of the proposed observer. Perturbations in the

sampling schedule and nonconstant measurement delays will be considered for sampled outputs in

the simulations.
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4.4.1 A Mathematical Example

Consider a third-order system in the presence of one continuous output without delay and one

sampled, delayed output


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


3 1 −3

0 1 2

5 1 −4



x1(t)

x2(t)

x3(t)


yc(t) = x2(t)

yd(tj) = x3(tj − δj), j ∈ Z+

(4.16)

where tj is the j-th measurement time of x3(t) with output delay δj > 0, which is not constant.

The system (4.16) was studied in the absence of measurement delay in Chapter 3. It was found

that the convergence rate of a multi-rate observer depends on the sampling period and this should

be accounted for in the selection of parameters in the multi-rate observer design. As the sampling

period goes to zero, an arbitrarily fast eigenvalue is allowed for A. However, this might deteriorate

observer performance (e.g., large overshoot) in the transient period and the multi-rate observer will

be sensitive to noise. Conversely, as the sampling period becomes larger and larger, it is necessary

to use a slower and slower eigenvalue forA, leading to lower observer performance. Thus, iteration

is required to find a good choice of A with satisfactory performance.

A multi-rate reduced-order observer design [52], which serves as the basis of a multi-rate multi-

delay observer, is used with the following design parameters: A = −10, Bc = 1, and Bd = 2.

Sampling normally takes place every 0.14 s. However, perturbations in the sampling schedule and

nonconstant measurement delays are considered here. The actual sampling times and their corre-

sponding measurement delays are listed in Table 4.1. As can be seen, the measurement delay could

be either smaller or larger than the following sampling period. It has been illustrated in Section 3.4

that the estimates from the multi-rate observer converge to the actual state after approximately 0.4

s. Next, we would like to show that stability of the multi-rate observer will be preserved in the pres-
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ence of measurement delays. Figure 4.2 shows the performance of multi-rate multi-delay observer

for the system (4.16), with the following initial conditions: x(0) =

[
80 −30 0

]′
, x̂1(0) = 92,

and w(0) = 20. We see from Figure 4.2(a) that the estimate from multi-rate multi-delay observer

converges to the actual state after 0.53 s, which is about 0.13 s slower than the multi-rate observer

in the absence of delay. In Figure 4.2(b), the inter-sample predictor can estimate the inter-sample

behavior with high accuracy after a few samplings. Inevitably, the presence of measurement delay

induces slower convergence of the observer compared with the delay-free multi-rate observer.

Sampling (s) 0 0.11 0.28 0.40 0.56 0.66 0.78 0.95
Delay (s) 0.12 0.13 0.14 0.13 0.12 0.14 0.13 0.15

Table 4.1: Actual sampling schedule and measurement delays in system (4.16).

4.4.2 A Gas-Phase Polyethylene Reactor

The application of a multi-rate multi-delay observer is then explored in an industrial gas-phase

polyethylene reactor (see Figure 3.3), where the measurement delays of on-line gas chromatogra-

phy and off-line lab analysis will be accounted for. In this reactor, the polymerization takes place

at the interface between the solid catalyst and the polymer matrix. The feed to the reactor, which

consists of ethylene, comonomers, hydrogen, and inerts, provides the fluidization by using a high

rate of gas recycle. Ziegler-Natta catalysts are fed continuously to the reactor. The heat generated

from the exothermic reaction is removed through a heat exchanger. The product, polyethylene,

discharges near the base of the reactor as solid powder.

In the operating range of industrial interest, the fluidized-bed reactor in Figure 3.3 can often be

modeled as a single-phase, well-mixed CSTR [215]. For simplicity, it is assumed that there is only

one type of active catalyst sites [227]. A mathematical model for this reactor has the form [226]
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(a)

actual state
estimate (multi-rate observer)
estimate (multi-rate observer w/ delay)

Time (s)
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x 3
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(b)

actual state
predicted output w/o delay
predicted output w/ delay

Figure 4.2: Comparison of the multi-rate multi-delay observer (red) for the system (4.16) and the
multi-rate observer in the absence of measurement delay (green): (a) actual and estimated state of
x1, (b) actual and estimated state of x3 from an inter-sample predictor.
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dY

dt
= Fcac − kdY −

(RM1MW1 +RM2MW2)Y

Bw

dT

dt
=
Hf +Hg −Htop −Hr −Hpol

MrCpr +BwCppol
d[In]

dt
=
FIn − xInbt

Vg
d[M1]

dt
=
FM1 − xM1bt −RM1

Vg
d[M2]

dt
=
FM2 − xM2bt −RM2

Vg
d[H]

dt
=
FH − xHbt

Vg

dMI
− 1

3.5
c

dt
=

1

τr
MI

− 1
3.5

i − 1

τr
MI

− 1
3.5

c

dD−1c
dt

=
1

τr
D−1i −

1

τr
D−1c

(4.17)
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where

RM1 = kp1 exp

[
−Ea
R

(
1

T
− 1

Tref

)]
· Y · [M1]

RM2 = kp2 exp

[
−Ea
R

(
1

T
− 1

Tref

)]
· Y · [M2]

Hf = (FM1Cp1 + FM2Cp2 + FInCpIn + FHCpH)(Tf − Tref )

Hg = FgCpg(Tg − Tref )

Cpg = xM1Cp1 + xM2Cp2 + xInCpIn + xHCpH

Htop = (Fg + bt)(T − Tf )Cpg

bt = VpCv
√

([In] + [M1] + [M2] + [H])RR · T − Pv

Hr = ∆HreacMW1RM1

Hpol = Cppol(RM1MW1 +RM2MW2)(T − Tref )

MIi = exp

[
k7

(
1

T
− 1

Tref

)](
k0 + k1

[M2]

[M1]
+ k3

[H]

[M1]

)3.5

Di = p0 + p1 · ln(MIi)−
(
p2

[M2]

[M1]

)p4
τr =

Bw

RM1MW1 +RM2MW2

(4.18)

The definitions of all the variables in Equations (4.17), (4.18) and the values of the process param-

eters are listed in Tables 3.1 and 3.2 in Section 3.4.

As for outputs, the reactor temperature is continuously measured on line without delay. The

gas concentrations of inerts, ethylene, comonomer and hydrogen are normally sampled every 20

min and measured by using on-line gas chromatography, which induces about 8 min delay caused

by sample preparation (2.5 min), analysis (4 min), and computer calculation (1.5 min) [307]. In

addition, the off-line lab analysis of melt index and density is normally sampled every 40 min with

60 min delay, which provides quality information of the polyethylene [222]. During the reaction,

the active catalyst site may become inactive due to spontaneous decay and adsorption of impurities,

which forms dead site and dead polymer chains. Because of the difficulty in measuring the amount
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of active catalyst sites in the reactor, it is necessary to monitor this quantity from a reliable on-line

soft sensor. Providing continuous and reliable estimates for the inter-sample dynamic behavior of

these sampled outputs is also significant for quality control and monitoring.

The process model (4.17) is linearized at the design steady state given in Table 4.2 and a linear

state-space model can be obtained. System output to be used in an observer will be generated from

the linearized model. The multi-rate multi-delay observer is based on a multi-rate observer design

in the absence of delay with the following design parameters

A = −0.00068, Bc = 0.01,

Bd =

[
0.01 0.01 0.01 0.01 0.01 0.01

]
,

TR = −562.7, TMc = 72.6,

TMd =

[
13.3 6.03 23.3 13.7 15.9 15.9

]

It is assumed that the first sample of gas chromatography is taken at t = 5 min and the first sam-

ple of lab analysis is taken at t = 10 min. Perturbations in the sampling schedule and nonconstant

measurement delays are considered in the simulation, whereas it was assumed uniform sampling

without delay in Section 3.4. The actual sampling schedule and their corresponding measurement

delays are given in Table 4.3. Notice that the measurement delay of gas chromatography is smaller

than its sampling period whereas the delay of off-line lab analysis is relatively larger. The initial

conditions of the process and the observer are given in Table 4.4.

Y = 5.778 mol T = 356.68 K
[In] = 217.59 mol/m3 [M1] = 292.40 mol/m3

[M2] = 130.00 mol/m3 [H] = 138.16 mol/m3

MI
− 1

3.5
c = 1.4148 D−1c = 0.0500

Table 4.2: Steady-state operating conditions of system (4.17).

91



Gas chromatography

Sampling (min) 5 23 43 62.5 81.5 102 122 140
Delay (min) 8.0 8.7 8.5 7.5 8.0 8.0 8.2 7.8
Sampling (min) 161.5 179.5 199.5 219 238 258.5 278.5 300.5
Delay (min) 8.5 8.3 8.0 8.2 7.7 8.0 8.0 8.3

Lab analysis
Sampling (min) 10 48 93 134 170 210 248 288
Delay (min) 60 56 62.8 66.3 54.5 60 60.5 66.7

Table 4.3: Actual sampling schedule and measurement delays in system (4.17).

Initial Condition of the Process Initial Guess of the Observer
Y = 4.6 mol T = 360 K Y = 2.44 mol [In] = 380.28 mol/m3

[In] = 450 mol/m3 [M1] = 340 mol/m3 [M1] = 325.72 mol/m3 [M2] = 144.00 mol/m3

[M2] = 150 mol/m3 [H] = 200 mol/m3 [H] = 181.45 mol/m3 MI
− 1

3.5
c = 1.5250

MI
− 1

3.5
c = 1.5723 D−1c = 0.0511 D−1c = 0.0507

Table 4.4: Initial conditions of the process (4.17) and the observer.

The performance of multi-rate multi-delay observer is shown in Figure 4.3, where it is com-

pared with a multi-rate observer in the absence of measurement delays with the same design pa-

rameters. Figure 4.3(a) shows that the estimate from the multi-rate multi-delay observer has ap-

proximately the same convergence rate as that from the multi-rate design. Figures 4.3(b)-(f) show

the evolution of estimated outputs obtained from inter-sample predictors and in this way, the inter-

sample behavior can be reconstructed under nonuniform sampling schedule. When a sampled and

delayed measurement arrives, dead time compensation is performed by integrating Equation (4.9)

from sampling time to current time and therefore the estimates will get updated, which explains the

impulsive behavior. The multi-rate multi-delay observer design (4.9)&(4.10) provides reliable esti-

mation results. In the presence of multiple measurements, the reduced-order observer formulation

is preferred because the dimension would be significantly lower than the full-order formulation.

Remark 15. In Figure 4.3, the estimates of the linear multi-rate multi-delay observer is evaluated

against the states of the linearized process model around the designed steady state. However, it

is well-known that linear observers can be inadequate in the presence of strong process nonlin-

earities. To broaden the applicability of the proposed method, a nonlinear observer with constant
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(a)

(d)

(b) (c)

(e) (f)

Figure 4.3: Comparison of the multi-rate multi-delay observer (red) and the multi-rate observer in
the absence of measurement delay (green) in the linearized gas-phase polyethylene reactor exam-
ple.

gain computed from linearization can be constructed to estimate the states in a nonlinear system,

where the nonlinear model will be used in the dead time compensation and inter-sample prediction

to cope with the nonlinearities.

4.5 Conclusions

The chapter proposes a design method for multi-rate multi-delay observers in linear systems. It

is based on an available multi-rate observer design (see Chapter 3) combined with dead time com-

pensation, where continuous and sampled measurements, in the presence of possible measurement

delays, are accounted for. The estimation process has two steps: (i) dead time compensation when

a delayed measurement becomes available and then current estimates are updated, (ii) inter-sample

prediction in the time interval between two consecutive delayed measurements. Two attractive fea-

tures of the proposed observer are that it inherits the stability and robustness properties from a

delay-free multi-rate observer and it can handle nonconstant and arbitrarily large measurement de-
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lays. Unlike the chain observers in the literature where a high dimension may be required in the

case of large delays, the proposed observer has the same dimension as a multi-rate observer for a

delay-free system. From the two case studies, we see that the multi-rate multi-delay observer can

provide reliable estimation results. The presence of delays in the measurements inevitably slows

down convergence of the observer.
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5. OPTIMAL MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS

The previous Chapters 3 and 4 have focused on the problem of incorporating different types of

measurements in a unified observer framework in linear multi-rate systems, for prescribed eigen-

values of the error dynamics. There is still one piece of information missing regarding the selection

of observer design parameters. In many practical problems, it is possible to use empirical rules for

the selection of the eigenvalues of the error dynamics, in conjunction with trial and error (i.e., sim-

ulation and evaluation of the observer response in the presence of modeling error and measurement

error), and obtain an observer with satisfactory performance.

In this chapter, the desirable eigenvalues of the error dynamics are adjustable parameters in the

observer design procedure. Because the observer is dual to the state feedback controller, a rigorous

approach for observer design by optimizing an appropriate performance index will be developed in

the same spirit as gain selection in optimal state feedback control. As mentioned in Chapter 1, there

is a trade-off between the convergence rate of the observer and the estimation accuracy affected by

measurement noise. The optimal pole placement of observer is not a simple problem, which should

be based on the criteria such as noise level, parameter variation, reliability, and ease of synthesis.

In general, as the eigenvalues of the error dynamics get faster, the decay of the initial error will get

faster. But at the same time, state estimates lose accuracy because the effect of measurement noise

gets magnified. Conversely, as the eigenvalues of the error dynamics get slower, state estimates get

less affected by measurement noise, but the decay of the initial error will get slower and the effect

of modeling error of the the process dynamics will get more pronounced.

Because of this qualitative behavior and the fact that measurement error is usually independent

of modeling error of state dynamics, it makes sense to use a performance index which is a weighted

sum of measure of the effect of dynamic model error on the accuracy of state estimates and measure

of the effect of measurement error on the accuracy of state estimates. The weight coefficient may be

selected in accordance with the relative magnitude between modeling error and measurement error

in the dynamic system.
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The use of a performance index of the above form is in alignment with the intuitive formulation

of linear multi-rate observer design of Equation (3.5), as trying to reach a compromise between the

dynamic model and the measurement model, which are not perfectly consistent due to the presence

of errors. Optimization of the performance index will give the optimal compromise.

The rest of the chapter is organized as follows. We start from the problem of optimal single-rate

observer design in Section 5.1, where the selection of observer gain is formulated as an optimiza-

tion problem. A few important properties of a single-rate observer will be discussed. Second-order

systems and a numerical example are used to study the relationship between sampling period and

feasible range of the eigenvalues of observer design parameter, and an analytical bound can be ob-

tained. The optimal single-rate observer design method is then illustrated via studying the observer

response to single unit impulse in the modeling and measurement error. In Section 5.2, the optimal

multi-rate observer design is demonstrated on a class of linear systems in the presence of two types

of measurements, i.e., one fast-sampled and the other slow-sampled. A numerical example is used

to illustrate the applicability of the method. In Section 5.3, conclusions are drawn from the results

of the previous sections.

5.1 Optimal Single-Rate Observer Design

The study in this section is developed based on the multi-rate observer design in Chapter 3 with

focus on the reduced-order observer formulation. Single-rate measurements are considered here as

a special case and it is assumed that no continuous measurements are involved. In other words, all

the measurements are discrete and synchronized in this class of sampled-data systems.
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5.1.1 Problem Formulation

Consider a linear single-rate sampled-data system where the output is assumed to be available

at discrete time instants tk

ẋR(t) = F11xR(t) + F12xM(t) + γ1v(t)

ẋM(t) = F21xR(t) + F22xM(t) + γ2v(t)

y(tk) = xM(tk) + βu(tk), k = 0, 1, 2, . . .

(5.1)

where xR ∈ Rn−m is the unmeasured state vector, xM ∈ Rm is the remaining state vector which

is directly measured, y is the output vector, v and u are two unknown scalar functions of time that

represent uncertainty in the dynamic model and in the measurement model respectively. γ1, γ2 and

β are constant column vectors that account for the relative accuracy of the model and measurement

equations. The sampling times of all the measurements are synchronized and it is assumed that the

sampling period τ is uniform. The system input is omitted here for brevity.

Suppose the system (5.1) is observable if the outputs were assumed to be continuous and hence,

a continuous-time Luenberger observer design is available. From the proposed multi-rate observer

design (3.5), for t ∈ [t+k , tk+1], we have the following single-rate reduced-order observer design

ż(t) = Az(t) +Bw(t)

ẇ(t) = F21x̂R(t) + F22w(t)

w(t+k ) = y(tk)

x̂R(t) = TR
−1(z(t)− TMw(t))

(5.2)

where z = TRx̂R + TMw is the observer state, w ∈ Rm is the predicted output, and TR, TM satisfy

the following Sylvester equation:

[
TR TM

]F11 F12

F21 F22

 = A

[
TR TM

]
+B

[
0 I

]
(5.3)
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We denote the estimation error in x-coordinates eR(t) = xR(t)− x̂R(t), output prediction error

ew(t) = xM(t) − w(t), and observer error ez(t) = TReR(t) + TMew(t). The difference between

the single-rate observer (5.2) and the multi-rate observer (3.5) is that the entire vector of prediction

error ew(t) will be reinitialized to 0 at tk, as shown in the following error dynamics of the observer

for t ∈ [t+k , tk+1] in the absence of modeling and measurement error

ėz(t) = Aez(t) +Bew(t)

ėw(t) = F21T
−1
R ez(t) + (F22 − F21T

−1
R TM)ew(t)

ew(t+k ) = 0

(5.4)

In Equation (5.2), the observer state z(t) does not change at the sampling instants. For simplicity,

we denote

F =

F11 F12

F21 F22


M =

 A B

F21T
−1
R F22 − F21T

−1
R TM


It can be shown that the matrix M shares the same eigenvalues as the transition matrix F

T−1R −T−1R TM

0 I


 A B

F21T
−1
R F22 − F21T

−1
R TM


TR TM

0 I

 =

F11 F12

F21 F22


Thus, the error dynamics of the observer in the sampling interval has the same stability property as

the original system dynamics. Using Equation (5.4), the error vectors at two consecutive sampling

instants t+k , t+k+1 satisfy

ez(t+k+1)

ew(t+k+1)

 =

I 0

0 0

 exp(Mτ)

ez(t+k )

ew(t+k )

 (5.5)
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We will denote e(t) =

[
e′z(t) e′w(t)

]′
and G =

I 0

0 0

 exp(Mτ) for simplicity. As mentioned in

the mathematical example of Chapter 3, the estimation error will converge to 0 if ρ(G) < 1, where

ρ(G) is the spectral radius of G.

Remark 16. As the sampling period τ approaches 0, we calculate the change of estimation error

at two consecutive sampling instants t+k and t+k+1

ė(t) = lim
τ→0

e(t+k+1)− e(t
+
k )

τ
= lim

τ→0

(G− I)e(t+k )

τ

Because of the fact that limτ→0G =

I 0

0 0

, we have limτ→0(G−I)e(t+k ) = 0. Using L’Hôpital’s

rule, the above equation can be simplified

ė(t) = lim
τ→0

I 0

0 0

M exp(Mτ)e(t+k )

= lim
τ→0

A B

0 0

 exp(Mτ)e(t+k )

=

A B

0 0


ez(t+k )

0


where ew(t+k ) will be reinitialized to 0 at each sampling instant.

As the sampling period τ approaches 0, the adjacent sampling instants become infinitely close

so that we will remove the index k and consider the sampling is performed in a continuous manner.

Therefore, the error dynamics of z(t) follows

ėz(t) = Aez(t)

which is governed by the arbitrarily selected A matrix. Thus, the error dynamics in z-coordinates
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will behave exactly the same as in a continuous-time Luenberger observer.

The single-rate observer (5.2) is designed in z-coordinates and state estimates in the original x-

coordinates can be reconstructed after linear transformation. Equivalently, there exists an observer

in x-coordinates, and it can be derived using Equations (5.2) and (5.3)

˙̂xR = T−1R (ż − TM ẇ)

= T−1R Az + T−1R Bw − T−1R TMF21x̂R − T−1R TMF22w − T−1R TM(y(tk)− w(t−k ))δ(t− tk)

= F11x̂R + F12w + l · (y(tk)− w(t−k ))δ(t− tk)

ẇ = F21x̂R + F22w + (y(tk)− w(t−k ))δ(t− tk)

where l = −T−1R TM is the observer gain in a reduced-order Luenberger observer design, δ(t) is a

unit impulse function that has the effect of reinitializing the state estimates x̂R(t) and the predictor

state w(t) at each sampling time tk. We denote w(t−k ) = limh→0w(tk − h). For t ∈ [t+k , tk+1], we

have the following single-rate observer coupled with inter-sample predictors

˙̂xR(t) = F11x̂R(t) + F12w(t)

ẇ(t) = F21x̂R(t) + F22w(t)

x̂R(t+k ) = x̂R(t−k ) + l · (y(tk)− w(t−k ))

w(t+k ) = y(tk)

(5.6)

where the reinitialization step is shown explicitly on the state x̂R and w at tk. For t ∈ [t+k , tk+1], the

error dynamics of the observer (5.6), in the absence of modeling and measurement error, follows

ėR(t) = F11eR(t) + F12ew(t)

ėw(t) = F21eR(t) + F22ew(t)

eR(t+k ) = eR(t−k )− l · (y(tk)− w(t−k ))

ew(t+k ) = 0

(5.7)
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Using Equation (5.7), the error vectors at two consecutive sampling instants t+k , t+k+1 satisfy

eR(t+k+1)

ew(t+k+1)

 =

I −l
0 0

 exp(Fτ)

eR(t+k )

ew(t+k )



We denote Γ =

I −l
0 0

 exp(Fτ) for simplicity. It can be shown that the matrix G shares the

same eigenvalues as the matrix Γ

T−1R −T−1R TM

0 I


I 0

0 0

 exp(Mτ)

TR TM

0 I


=

T−1R 0

0 0


TR TM

0 I

 exp(Fτ)

T−1R −T−1R TM

0 I


TR TM

0 I


=

I −l
0 0

 exp(Fτ)

Thus, it is concluded that the estimation error will converge to zero if ρ(Γ) < 1.

Note that the discussions above do not consider the modeling error v(t) and measurement error

u(t) in the derived error dynamics of the observer. Next, the problem of optimal gain selection will

be discussed. It makes more sense to adopt the single-rate observer in x-coordinates as the gain l

would be the only parameter to be optimized, as opposed to optimize two design parameters A and

B if the observer in z-coordinates is adopted.

Now we denote x̂ =

x̂R
w

 , L =

 l
I

 , γ =

γ1
γ2

 , ε =

xR
xM

−
x̂R
w

, and we can write the

observer (5.6) in a compact form

˙̂x(t) = Fx̂(t)

x̂(t+k ) = x̂(t−k ) + L · (y(tk)− w(t−k ))
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The dynamics of the estimation error ε(t), in the presence of modeling error and measurement

error, is described by

ε̇(t) = Fε(t) + γv(t)

ε(t+k ) = ε(t−k )− L · (y(tk)− w(t−k ))

(5.8)

We see that the uncertainties v(t) and u(t), in the model and the measurement respectively, are

inputs to the dynamics of the state estimation error ε(t) so that it is possible to evaluate their effect

by studying the response of ε(t) to standard changes, e.g., unit impulse. Since measurement error is

often independent of modeling error of state dynamics, it is possible to calculate the corresponding

estimation error caused by the modeling error v(t) and the measurement error u(t) separately. So

we denote εv(t) the corresponding state estimation error if the modeling error is a continuous-time

unit impulse function (i.e., v(t) = δ(t)), in the absence of measurement error and initial condition

error. Likewise, we denote εu(t) the corresponding state estimation error if the measurement error

is a discrete-time unit impulse function (i.e., u(t) = δ[t]), in the absence of initial condition error

and modeling error.

In case v(t) and u(t) are superpositions of impulses of random magnitude occurring at random

time instants (also known as noise), i.e.,

v(t) =
∑
i

Mviδ(t− ti)

u(t) =
∑
k

Mukδ[t− tk]

where Mvi is the magnitude of the impulse occurring at ti and Muk is the magnitude of the impulse

occurring at discrete time instants tk. The effect of each impulse on the state estimation error will

be additive

εdue to noise(t) =
∑
i

Mviεv(t− ti) +
∑
k

Mukεu(t− tk)
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It should be emphasized at this point that a rigorous analysis of the error due to the presence

of noise should be based on a stochastic formulation of the problem, to calculate and minimize the

covariance of the state estimation error (see the discussions on Kalman filter in Chapter 1), which

is beyond the scope of this dissertation.

A simpler approach to the problem of finding the optimal compromise between modeling error

and measurement error is to consider a single continuous-time unit impulse for v(t) and a single

discrete-time unit impulse for u(t), and seek for the minimum of the performance index

J =

∫ ∞
0

‖εv(t)‖2 dt+ ρ

∫ ∞
0

‖εu(t)‖2 dt (5.9)

where ‖·‖ is the Euclidean norm in Rn (i.e., ‖x‖2 = x′x), εv(t) and εu(t) are the responses of the

estimation error to unit impulse changes in v(t) and u(t) respectively. ρ > 0 is a weight coefficient.

The first integral is a measure of the effect of modeling error on the accuracy of the state observer,

whereas the second integral is a measure of the effect of measurement error on the accuracy of the

observer.

Because εv(t) and εu(t) are responses to unit-magnitude impulses in v(t) and u(t), and because

they are squared inside the integrals, it is reasonable to choose the weight coefficient as the ratio of

the mean value of [u(t)]2 divided by the mean value of [v(t)]2, so that the performance index J is

proportional to the overall measure of the squared error. In particular, given statistical information

on v(t) and u(t), the weight coefficient ρ may be chosen as

ρ =
(Standard deviation of noise u)2

(Standard deviation of noise v)2

First, the response of the estimation error to a unit impulse change in v(t) will be investigated,

in the absence of measurement error and initial condition error. εv(t) can be calculated in the first
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few sampling periods using Equation (5.8) as follows

t ∈ [0, τ) : εv(0
+) = γ, εv(t) = exp(Ft)εv(0

+),

εv(τ
−) = exp(Fτ)εv(0

+)

t ∈ [τ, 2τ) : εv(τ
+) = (I − LH)εv(τ

−), εv(t) = exp(F (t− τ))εv(τ
+),

εv(2τ
−) = exp(Fτ)εv(τ

+)

t ∈ [2τ, 3τ) : εv(2τ
+) = (I − LH)εv(2τ

−), εv(t) = exp(F (t− 2τ))εv(2τ
+),

εv(3τ
−) = exp(Fτ)εv(2τ

+)

. . . . . .

where H =

[
0 I

]
and the previously mentioned matrix Γ = (I − LH) exp(Fτ).

Consider the first integral in the performance index (5.9) corresponding to εv(t), which will be

integrated piecewise

Jv =

∫ ∞
0

‖εv(t)‖2 dt

= Tr

(∫ τ

0

exp(Ft)εv(0
+)ε′v(0

+) exp(F ′t) dt

+

∫ 2τ

τ

exp(F (t− τ))εv(τ
+)ε′v(τ

+) exp(F ′(t− τ)) dt

+

∫ 3τ

2τ

exp(F (t− 2τ))εv(2τ
+)ε′v(2τ

+) exp(F ′(t− 2τ)) dt+ · · ·
)

where Tr(·) denotes the trace of a square matrix. Setting Jv = Tr(Pv), we observe that

FPv + PvF
′ =

∫ τ

0

[
d

dt

(
exp(Ft)εv(0

+)ε′v(0
+) exp(F ′t)

)]
dt

+

∫ 2τ

τ

[
d

dt

(
exp(F (t− τ))εv(τ

+)ε′v(τ
+) exp(F ′(t− τ))

)]
dt

+

∫ 3τ

2τ

[
d

dt

(
exp(F (t− 2τ))εv(2τ

+)ε′v(2τ
+) exp(F ′(t− 2τ))

)]
dt+ · · ·
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Simplify the above equation and we have

FPv + PvF
′ = exp(Fτ)εv(0

+)ε′v(0
+) exp(F ′τ)− εv(0+)ε′v(0

+)

+ exp(Fτ)εv(τ
+)ε′v(τ

+) exp(F ′τ)− εv(τ+)ε′v(τ
+)

+ exp(Fτ)εv(2τ
+)ε′v(2τ

+) exp(F ′τ)− εv(2τ+)ε′v(2τ
+) + · · ·

(5.10)

For simplicity, we denote Sv =
∞∑
i=0

εv(iτ
+)ε′v(iτ

+) =
∞∑
i=0

Γiγγ′(Γ′)i and we have

ΓSvΓ
′ = Γγγ′Γ′ + Γ2γγ′(Γ′)2 + · · · (5.11)

Sv − ΓSvΓ
′ = γγ′ (5.12)

where limn→∞ Γn = 0 as long as the error dynamics is stable.

Second, the response of the estimation error to a unit impulse change in u(t) will be discussed,

in the absence of modeling error and initial condition error. εu(t) can be calculated in the first few

sampling periods using Equation (5.8) as follows

t ∈ [0, τ) : εu(0
+) = −Lβ, εu(t) = exp(Ft)εu(0

+),

εu(τ
−) = exp(Fτ)εu(0

+)

t ∈ [τ, 2τ) : εu(τ
+) = (I − LH)εu(τ

−), εu(t) = exp(F (t− τ))εu(τ
+),

εu(2τ
−) = exp(Fτ)εu(τ

+)

t ∈ [2τ, 3τ) : εu(2τ
+) = (I − LH)εu(2τ

−), εu(t) = exp(F (t− 2τ))εu(2τ
+),

εu(3τ
−) = exp(Fτ)εu(2τ

+)

. . . . . .

(5.13)

We denote Ju =
∫∞
0
‖εu(t)‖2 dt = Tr(Pu) and Su =

∞∑
i=0

εu(iτ
+)ε′u(iτ

+) =
∞∑
i=0

ΓiLββ′L′(Γ′)i. By
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following the similar steps above, we obtain

FPu + PuF
′ = exp(Fτ)Su exp(F ′τ)− Su (5.14)

Su − ΓSuΓ
′ = Lββ′L′ (5.15)

as long as the error dynamics of the observer is stable.

Now we combine the two integrals Jv, Ju, and seek for the minimum of the performance index

(5.9). Using Equations (5.10), (5.12), (5.14) and (5.15), the problem of single-rate observer design

can be formulated as an optimization problem

min
l

Tr(P )

s.t. FP + PF ′ = exp(Fτ)S exp(F ′τ)− S

S − ΓSΓ′ = γγ′ + ρLββ′L′

(5.16)

where P = Pv + ρPu and S = Sv + ρSu.

5.1.2 Case Studies

In Section 3.4, the proposed multi-rate observer was first applied to a third-order system with

one continuous measurement and one sampled measurement. The feasible range of observer design

parameterA (that guarantees stability of the error dynamics) as a function of the sampling period τ

was calculated numerically using interval halving and was illustrated in Figure 3.1. In this section,

second-order systems will be used to study the relationship between sampling period and feasible

range of the eigenvalue of design parameter and a closed-form bound can be derived in the absence

of modeling error and measurement error. The optimal single-rate observer design method will be

illustrated through a second-order numerical example.
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Consider a general second-order system in the presence of one sampled output

ẋR(t) = F11xR(t) + F12xM(t)

ẋM(t) = F21xR(t) + F22xM(t)

y(tk) = xM(tk), k = 0, 1, 2, . . .

(5.17)

where y ∈ R is the sampled output. It will be assumed that the sampling period τ is uniform. F11,

F12, F21 and F22 are scalars in this case. The single-rate observer will be designed in z-coordinates

and using Equation (5.5), the estimation error vectors e(t) at two consecutive sampling instants t+k ,

t+k+1 satisfy ez(t+k+1)

ew(t+k+1)

 =

1 0

0 0

 exp(Mτ)

ez(t+k )

ew(t+k )


with ew(t+k ) = 0, once the predictor state is reinitialized after sampling.

Next we would like to study the feasible range of A as a function of the sampling period τ . In

[308], an explicit formula was derived for the exponential of a general 2×2 complex matrix, given

in terms of the eigenvalues of the matrix. It is assumed thatM has two distinct eigenvalues λ and µ

satisfying µ > λ. Then an explicit formula of G, which involves the calculation of an exponential

matrix (i.e., exp(Mτ)), can be obtained

G =

1 0

0 0

 exp


 A B

F21T
−1
R F22 − F21T

−1
R TM

 τ


=

1 0

0 0


µ exp(λτ)− λ exp(µτ)

µ− λ

1 0

0 1

+
exp(µτ)− exp(λτ)

µ− λ
M


=

µ exp(λτ)− λ exp(µτ) + A exp(µτ)− A exp(λτ)

µ− λ
B exp(µτ)−B exp(λτ)

µ− λ
0 0


The estimation error e(t) will converge to zero if ρ(G) < 1. Hence, the following inequalities

107



need to be solved

µ exp(λτ)− λ exp(µτ) + A exp(µτ)− A exp(λτ)

µ− λ
> −1

µ exp(λτ)− λ exp(µτ) + A exp(µτ)− A exp(λτ)

µ− λ
< 1

As a result, the feasible range of the design parameter A satisfies

λ− µ+ λ exp(µτ)− µ exp(λτ)

exp(µτ)− exp(λτ)
< A <

µ− λ+ λ exp(µτ)− µ exp(λτ)

exp(µτ)− exp(λτ)
(5.18)

A numerical example will be used to study the relationship between the sampling period τ and

the feasible range of the eigenvalues of the design parameterA. Consider the following state-space

model of a second-order system

ẋ1(t)
ẋ2(t)

 =

−0.007 0.005

0.002 −0.003


x1(t)
x2(t)

+

1

1

 v(t)

y(tk) = x2(tk) + u(tk), k = 0, 1, 2, . . .

where x1 ∈ R is the unmeasured state and x2 ∈ R is the sampled state. In the absence of modeling

error and measurement error (i.e., v(t) = u(t) ≡ 0), the design parameters of single-rate observer

are fixed asA = −0.05 andB = 1. Figure 5.1(a) shows how the uniform sampling period τ affects

the spectral radius of G. It is observed that the error dynamics become unstable once τ > 51 s. At

τ = 22.3 s, the spectral radius of G becomes 0 and the observer becomes deadbeat. Figure 5.1(b)

depicts the feasible range of A as a function of the sampling period τ , which is obtained using the

closed-form expression in Equation (5.18).

In the presence of modeling error and measurement error, an optimal single-rate observer will

be designed in the case that a single continuous-time unit impulse for v(t) and a single discrete-

time unit impulse for u(t) are considered and a performance index of Equation (5.9) is minimized.

The sampling period τ = 10 and the weight coefficient ρ = 1 are chosen. Solving the optimization
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Figure 5.1: (a) Spectral radius of G as a function of the sampling period τ (uniform) when A =
−0.05 and B = 1; (b) feasible range of A as a function of the sampling period τ (uniform) when
B = 1.

of Equation (5.16), the optimal observer design has the following parameters

l = 0.8488, P =

18.0782 18.2493

18.2493 19.7712

 , S =

1.8436 1.8488

1.8488 2.0000



5.2 Optimal Multi-Rate Observer Design with Fast and Slow Measurements

In this section, optimal multi-rate observer design is demonstrated on a class of systems in the

presence of two sampling rates. Besides, it will be assumed that the high sampling rate is an integer

multiple of the low sampling rate, which implies that the two types of sampling are synchronized
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at the sampling time instants of the slow measurement.

5.2.1 Problem Formulation

Consider a linear multi-rate sampled-data system with fast- and slow-sampled measurements,

where without loss of generality, the output is assumed to be a part of the state vector

ẋR(t) = F11xR(t) + F12xMf (t) + F13xMs(t) + γ1v(t)

ẋMf (t) = F21xR(t) + F22xMf (t) + F23xMs(t) + γ2v(t)

ẋMs(t) = F31xR(t) + F32xMf (t) + F33xMs(t) + γ3v(t)

yf (tf,i) = xMf (tf,i) + βfuf (tf,i), i = 0, 1, 2, . . .

ys(ts,j) = xMs(ts,j) + βsus(ts,j), j = 0, 1, 2, . . .

(5.19)

where xR ∈ Rn−mf−ms is the unmeasured state vector, xMf ∈ Rmf is the fast-sampled state vector,

xMs ∈ Rms is the slow-sampled state vector, tf,i is the i-th sampling time for the fast measurement

yf , and ts,j is the j-th sampling time for the slow measurement ys. v, uf and us are the unknown

scalar functions of time that represent uncertainty in the dynamic model, fast measurement model,

and slow measurement model respectively. γ1, γ2 and γ3 are constant column vectors that account

for the relative accuracy of the model equations. βf and βs are constant column vectors that account

for the relative accuracy of the measurement equations. It will be assumed that the sampling period

of the fast measurement is uniform (i.e., τf = τ ), and the sampling period of the slow measurement

is uniform and is an integer multiple of τf (i.e., τs = aτ where a is a positive integer).

Suppose the system (5.19) is observable if the outputs were assumed to be continuous and thus,

a continuous-time Luenberger observer design is available. From the proposed multi-rate observer
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design (3.5), for t ∈ [t+f,i, tf,i+1], we have the following multi-rate reduced-order observer design

ż(t) = Az(t) +Bfwf (t) +Bsws(t)

ẇf (t) = F21x̂R(t) + F22wf (t) + F23ws(t)

ẇs(t) = F31x̂R(t) + F32wf (t) + F33ws(t)

wf (t
+
f,i) = yf (tf,i)

ws(t
+
s,j) = ys(ts,j), if tf,i = ts,j

x̂R(t) = TR
−1(z(t)− TMfwf (t)− TMsws(t))

(5.20)

where z = TRx̂R + TMfwf + TMsws is the observer state, wf ∈ Rmf , ws ∈ Rms are the predicted

outputs for the fast and slow measurements, respectively. If the sampling of the slow measurement

coincides with the sampling of the fast measurement, all the predictor states, including ws, will get

reinitialized when tf,i = ts,j . TR, TMf , TMs satisfy the following Sylvester equation:

[
TR TMf TMs

]
F11 F12 F13

F21 F22 F23

F31 F32 F33

 = A

[
TR TMf TMs

]
+

[
Bf Bs

]0 I 0

0 0 I

 (5.21)

The multi-rate observer (5.20) is designed in z-coordinates and state estimates in the original x-

coordinates can be reconstructed after linear transformation. Equivalently, there exists an observer

in x-coordinates, and it can be derived using Equations (5.20) and (5.21)

˙̂xR = T−1R (ż − TMf ẇf − TMsẇs)

= F11x̂R + F12wf + F13ws + lf · (yf (tf,i)− wf (t−f,i))δ(t− tf,i)

+ ls · (ys(ts,j)− ws(t−s,j))δ(t− ts,j)

ẇf = F21x̂R + F22wf + F23ws + (yf (tf,i)− wf (t−f,i))δ(t− tf,i)

ẇs = F31x̂R + F32wf + F33ws + (ys(ts,j)− ws(t−s,j))δ(t− ts,j)
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where lf = −T−1R TMf and ls = −T−1R TMs are the observer gains in a reduced-order Luenberger

observer design, δ(t) is a unit impulse function that has the effect of reinitializing the state estimates

x̂R(t) and the predictor states wf (t), ws(t) at corresponding sampling instants. For t ∈ [t+f,i, tf,i+1],

we have the following multi-rate observer coupled with inter-sample predictors

˙̂xR(t) = F11x̂R(t) + F12wf (t) + F13ws(t) (5.22a)

ẇf (t) = F21x̂R(t) + F22wf (t) + F23ws(t) (5.22b)

ẇs(t) = F31x̂R(t) + F32wf (t) + F33ws(t) (5.22c)

˙̂xR(t+f,i) = x̂R(t−f,i) + lf · (yf (tf,i)− wf (t−f,i)) (5.22d)

˙̂xR(t+s,j) = x̂R(t−s,j) + ls · (ys(ts,j)− ws(t−s,j)), if tf,i = ts,j (5.22e)

wf (t
+
f,i) = yf (tf,i) (5.22f)

ws(t
+
s,j) = ys(ts,j), if tf,i = ts,j (5.22g)

where the reinitialization step is shown explicitly on x̂R,wf ,ws at corresponding sampling instants.

At tf,i = ts,j , both fast and slow measurements become available and thus, Equations (5.22e) and

(5.22g) will be executed to reset the states using the most-recent slow measurement.

Denote x̂ =


x̂R

wf

ws

 , Lf =


lf

I

0

 , Ls =


ls

0

I

 , L =

[
Lf Ls

]
=


lf ls

I 0

0 I

 , γ =


γ1

γ2

γ3

 , ε =
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xR

xMf

xMs

−

x̂R

wf

ws

 , F =


F11 F12 F13

F21 F22 F23

F31 F32 F33

, and we can write the observer (5.22) in a compact form

˙̂x = Fx̂

x̂(t+f,i) = x̂(t−f,i) + Lf · (yf (tf,i)− wf (t−f,i)), if tf,i 6= ts,j

x̂(t+s,j) = x̂(t−s,j) + L ·

yf (tf,i)− wf (t−f,i)
ys(ts,j)− ws(t−s,j)

 , if tf,i = ts,j

The dynamics of the estimation error ε(t), in the presence of modeling error and measurement

error, is described by

ε̇(t) = Fε(t) + γv(t)

ε(t+f,i) = ε(t−f,i)− Lf · (yf (tf,i)− wf (t
−
f,i)), if tf,i 6= ts,j

ε(t+s,j) = ε(t−s,j)− L ·

yf (tf,i)− wf (t−f,i)
ys(ts,j)− ws(t−s,j)

 , if tf,i = ts,j

(5.23)

Similar to the optimal single-rate observer design, it is possible to evaluate the effects of mod-

eling error v(t) and measurement errors uf (t), us(t) separately by studying the response of ε(t) to

standard changes, e.g., unit impulse. We will denote εv(t) the corresponding state estimation error

if the modeling error is a continuous-time unit impulse function (i.e., v(t) = δ(t)), in the absence of

measurement error and initial condition error. We denote εf (t) the corresponding state estimation

error if the error of the fast measurement is a discrete-time unit impulse function (i.e., uf (t) = δ[t]),

in the absence of modeling error, initial condition error and error of the slow measurement. Last,

we denote εs(t) the corresponding state estimation error if the error of the slow measurement is

a discrete-time unit impulse function (i.e., us(t) = δ[t]), in the absence of modeling error, initial

condition error and fast measurement error.

The optimal observer gain will be selected by finding the optimal compromise among modeling

113



error, error of the fast measurement and error of the slow measurement. We consider a single unit

impulse for v(t), uf (t) and us(t) separately, and seek for the minimum of the performance index

J =

∫ ∞
0

‖εv(t)‖2 dt+ ρf

∫ ∞
0

‖εf (t)‖2 dt+ ρs

∫ ∞
0

‖εs(t)‖2 dt (5.24)

where εv(t) is the response of the estimation error to a unit impulse change in v(t), εf (t) and εs(t)

are the responses of the estimation error to a unit impulse change in uf (t) and us(t), respectively.

ρf , ρs > 0 are the weight coefficients of estimation error caused by the fast measurement error and

the slow measurement error, respectively.

First, the response of the estimation error to a unit impulse change in v(t) will be discussed, in

the absence of measurement error and initial condition error. εv(t) can be calculated for t ∈ [0, aτ)

using Equation (5.23) as follows

t ∈ [0, τ) : εv(0
+) = γ, εv(t) = exp(Ft)εv(0

+),

εv(τ
−) = exp(Fτ)εv(0

+)

t ∈ [τ, 2τ) : εv(τ
+) = (I − LfHf )εv(τ

−),

εv(t) = exp(F (t− τ))εv(τ
+),

εv(2τ
−) = exp(Fτ)εv(τ

+)

. . . . . .

t ∈ [(a− 1)τ, aτ) : εv((a− 1)τ+) = (I − LfHf )εv((a− 1)τ−),

εv(t) = exp(F (t− (a− 1)τ))εv((a− 1)τ+),

εv(aτ
−) = exp(Fτ)εv((a− 1)τ+)

t ∈ [aτ, (a+ 1)τ) : εv(aτ
+) = (I − LH)εv(aτ

−),

εv(t) = exp(F (t− aτ))εv(aτ
+),

εv((a+ 1)τ−) = exp(Fτ)εv(aτ
+)

. . . . . .
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whereHf =

[
0 I 0

]
,Hs =

[
0 0 I

]
,H =

Hf

Hs

 =

0 I 0

0 0 I

, Γf = (I−LfHf ) exp(Fτ),

and Γ = (I − LH) exp(Fτ).

Consider the first integral in the performance index (5.24) corresponding to εv(t), which will

be integrated piecewise

Jv =

∫ ∞
0

‖εv(t)‖2 dt

= Tr

(∫ τ

0

exp(Ft)εv(0
+)ε′v(0

+) exp(F ′t) dt

+

∫ 2τ

τ

exp(F (t− τ))εv(τ
+)ε′v(τ

+) exp(F ′(t− τ)) dt+ · · ·

+

∫ (a+1)τ

aτ

exp(F (t− aτ))εv(aτ
+)ε′v(aτ

+) exp(F ′(t− aτ)) dt+ · · ·
)

where Tr(·) denotes the trace of a square matrix. Setting Jv = Tr(Pv), we have

FPv + PvF
′ = exp(Fτ)εv(0

+)ε′v(0
+) exp(F ′τ)− εv(0+)ε′v(0

+)

+ exp(Fτ)εv(τ
+)ε′v(τ

+) exp(F ′τ)− εv(τ+)ε′v(τ
+) + · · ·

+ exp(Fτ)εv(aτ
+)ε′v(aτ

+) exp(F ′τ)− εv(aτ+)ε′v(aτ
+) + · · ·

(5.25)

For simplicity, we denote Sv =
∞∑
k=0

εv(kτ
+)ε′v(kτ

+) and we have

ΓfSvΓ
′
f − Sv = (Γafγγ

′(Γ′f )
a − γγ′)

+ (ΓafΓΓa−1f γγ′(Γ′f )
a−1Γ′(Γ′f )

a − ΓΓa−1f γγ′(Γ′f )
a−1Γ′)

+ (ΓafΓΓa−1f ΓΓa−1f γγ′(Γ′f )
a−1Γ′(Γ′f )

a−1Γ′(Γ′f )
a

− ΓΓa−1f ΓΓa−1f γγ′(Γ′f )
a−1Γ′(Γ′f )

a−1Γ′) + · · ·

=
∞∑
k=0

(ΓafΓ
k
cγγ

′(Γ′c)
k(Γ′f )

a − Γkcγγ
′(Γ′c)

k)

(5.26)

where Γc = ΓΓa−1f . For simplicity, we denote Qv =
∞∑
k=0

Γkcγγ
′(Γ′c)

k. From Equation (5.26), it can
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be derived that

ΓfSvΓ
′
f − Sv = ΓafQv(Γ

′
f )
a −Qv (5.27)

Qv − ΓcQvΓ
′
c = γγ′ (5.28)

where limn→∞ Γnc = 0 as long as the error dynamics is stable.

Second, the response of the estimation error to a unit impulse change in uf (t) will be discussed,

in the absence of modeling error, initial condition error and error of the slow measurement. εf (t)

can be calculated for t ∈ [0, aτ) using Equation (5.23) as follows

t ∈ [0, τ) : εf (0
+) = −Lfβf , εf (t) = exp(Ft)εf (0

+),

εf (τ
−) = exp(Fτ)εf (0

+)

t ∈ [τ, 2τ) : εf (τ
+) = (I − LfHf )εf (τ

−),

εf (t) = exp(F (t− τ))εf (τ
+),

εf (2τ
−) = exp(Fτ)εf (τ

+)

. . . . . .

t ∈ [(a− 1)τ, aτ) : εf ((a− 1)τ+) = (I − LfHf )εf ((a− 1)τ−),

εf (t) = exp(F (t− (a− 1)τ))εf ((a− 1)τ+),

εf (aτ
−) = exp(Fτ)εf ((a− 1)τ+)

t ∈ [aτ, (a+ 1)τ) : εf (aτ
+) = (I − LH)εf (aτ

−),

εf (t) = exp(F (t− aτ))εf (aτ
+),

εf ((a+ 1)τ−) = exp(Fτ)εf (aτ
+)

. . . . . .

For simplicity, we denote Jf =
∫∞
0
‖εf (t)‖2 dt = Tr(Pf ), Sf =

∞∑
k=0

εf (kτ
+)ε′f (kτ

+) and
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Qf =
∞∑
k=0

ΓkcLfβfβ
′
fL
′
f (Γ

′
c)
k. By following the similar steps above, we obtain

FPf + PfF
′ = exp(Fτ)Sf exp(F ′τ)− Sf (5.29)

ΓfSfΓ
′
f − Sf = ΓafQf (Γ

′
f )
a −Qf (5.30)

Qf − ΓcQfΓ
′
c = Lfβfβ

′
fL
′
f (5.31)

as long as the error dynamics of the observer is stable.

Third, the response of the estimation error to a unit impulse change in us(t) will be discussed,

in the absence of modeling error, initial condition error and error of the fast measurement. Notice

that the detailed derivation of εs(t) in each sampling period is omitted here which can be obtained

in the same spirit as the analysis of εf (t).

For simplicity, we denote Js =
∫∞
0
‖εs(t)‖2 dt = Tr(Ps), Ss =

∞∑
k=0

εs(kτ
+)ε′s(kτ

+) and

Qs =
∞∑
k=0

ΓkcLsβsβ
′
sL
′
s(Γ
′
c)
k. By following the similar steps above, we obtain

FPs + PsF
′ = exp(Fτ)Ss exp(F ′τ)− Ss (5.32)

ΓfSsΓ
′
f − Ss = ΓafQs(Γ

′
f )
a −Qs (5.33)

Qs − ΓcQsΓ
′
c = Lsβsβ

′
sL
′
s (5.34)

as long as the error dynamics of the observer is stable.

We combine the three integrals Ju, Jf , Js, and seek for the minimum of the performance index

(5.24). The optimal multi-rate observer design can be formulated as an optimization problem

min
lf ,ls

Tr(P )

s.t. FP + PF ′ = exp(Fτ)S exp(F ′τ)− S

ΓfSΓ′f − S = ΓafQ(Γ′f )
a −Q

Q− ΓcQΓ′c = γγ′ + ρfLfβfβ
′
fL
′
f + ρsLsβsβ

′
sL
′
s

(5.35)
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where P = Pv + ρfPf + ρsPs, S = Sv + ρfSf + ρsSs, and Q = Qv + ρfQf + ρsQs.

5.2.2 A Numerical Example

In this section, the optimal multi-rate observer design will be illustrated via a third-order math-

ematical example. Consider a multi-rate system of the following state-space model


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


3 1 −3

0 1 2

5 1 −4



x1(t)

x2(t)

x3(t)

+


1

1

1

 v(t)

yf (tf,i) = x2(tf,i) + uf (tf,i), i = 0, 1, 2, . . .

ys(ts,j) = x3(ts,j) + us(ts,j), j = 0, 1, 2, . . .

where x1 is the unmeasured state, x2 is the fast-sampled state with uniform sampling period τf =

0.04 s, and x3 is the slow-sampled state with uniform sampling period τs = 0.08 s. So it is obvious

that a = 2. Besides, ρf = ρs = 1 are selected as the weight coefficients in the performance index

(5.24), which will be minimized. Solving the optimization of Equation (5.35), the optimal observer

design has the following parameters

L =


0.2742 0.6376

1 0

0 1

 , P =


0.1047 0.0592 0.1208

0.0592 0.0872 0.0511

0.1208 0.0511 0.1644

 ,

S =


2.6091 1.2742 3.0132

1.2742 2.0000 1.0000

3.0132 1.0000 4.1161

 , Q =


1.5980 1.2742 1.6376

1.2742 2.0000 1.0000

1.6376 1.0000 2.0000


(5.36)

5.3 Conclusions

This chapter develops an optimal multi-rate observer design method based on the linear multi-

rate observer design in Chapter 3. A rigorous approach for observer gain selection is proposed to
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reach a compromise between the effect of dynamic model error on the accuracy of state estimates

and the effect of measurement error on the accuracy of state estimates. The effects of measurement

error and modeling error are evaluated by studying the response of the observer error dynamics to

a unit impulse function. The optimal observer design is formulated as an optimization problem of

minimizing a performance index, and is demonstrated through two classes of linear systems, i.e.,

systems with single-rate measurements and systems with fast and slow measurements. The optimal

observer design is obtained in the case that a single unit impulse is considered for modeling error

and measurement error respectively.

It is possible to generalize the optimal observer design approach to systems with measurements

of more than two sampling rates, but at the cost of more constraints in the optimization formulation.

The derivations can be carried over to more complex linear multi-rate systems.
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6. MULTI-RATE OBSERVER DESIGN IN NONLINEAR SYSTEMS ∗

The previous Chapters 3 to 5 have focused on the multi-rate observer design in linear systems.

However, it is well-known that linear observers can be inadequate in the presence of strong process

nonlinearities. In this chapter, the problem of multi-rate sampled-data observer design in nonlinear

systems under asynchronous sampling will be investigated [309]. The proposed multi-rate observer

is based on a continuous-time design coupled with inter-sample output predictors for the sampled

measurements. The multi-rate system together with the multi-rate observer forms a hybrid system

and it is shown that the error dynamics of the overall system is input-to-output stable with respect

to measurement errors, by applying the Karafyllis-Jiang vector small-gain theorem. The multi-rate

design also offers robustness with respect to perturbations in the sampling schedule. The proposed

method is evaluated on linear detectable systems and two nonlinear examples.

The rest of this chapter is organized as follows. In Section 6.2, we formulate the representation

of a multi-rate sampled-data observer and propose the definitions of robust observers with respect

to measurement errors for forward complete systems. In Section 6.3, we derive the sufficient con-

ditions that guarantee stability of the error dynamics of the multi-rate observer and robustness with

respect to measurement errors as well as perturbations in the sampling schedule. The effectiveness

and applicability of the proposed multi-rate sampled-data observer is illustrated through linear de-

tectable systems and two nonlinear examples in Section 6.4. In Section 6.5, conclusions are drawn

from the results of the previous sections.

6.1 Introduction

The objective of this chapter is to develop an observer in multi-rate sampled-data systems under

asynchronous sampling. The problem of nonlinear observer design has been intensively studied for

systems under fast sampling [130, 132, 148, 155, 264], which can be potentially applied to estima-

∗Parts of this chapter are reproduced with permission from “Multi-Rate Sampled-Data Observers Based on a
Continuous-Time Design” by C. Ling and C. Kravaris, 2017. in Proceedings of the 56th IEEE Conference on De-
cision and Control, Melbourne, Australia, 3664–3669, Copyright 2017 by IEEE.
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tion, process control, and fault detection and identification. Motivated by practical implementation

needs, however, one of the biggest challenges is to design a state observer for general multi-rate

systems (e.g., chemical processes, biological systems, networked control systems), where different

sampling rates of sensors need to be accommodated in the observer design framework.

The observer design for linear multi-rate systems was investigated in [52] and [280]. The ap-

proach in [280] involves modeling each sensor as a sample-and-hold device and deriving sufficient

Krasovskii-based conditions for exponential stability in terms of linear matrix inequalities, given

some maximum allowable sampling period for each sensor. In [52], we reported a continuous-time

Luenberger observer design coupled with asynchronous inter-sample predictors. Each predictor, in

the same spirit as in [250, 279], generates an estimate of a sampled output in between consecutive

measurements, and will get reinitialized once the associated, most-recent measurement becomes

available. Sufficient and explicit conditions were established in terms of maximum sampling pe-

riod in [52] to guarantee exponential stability of the error dynamics. Both approaches adopted an

available continuous-time observer design but employed different methods (i.e., sample-and-hold

strategy and model-based prediction, respectively) to approximate the inter-sample behavior. The

two approaches also provide robustness with respect to perturbations in the sampling schedule.

In nonlinear systems, the focus has been primarily on single-rate sampled-data observer design

based on a mixed continuous and discrete strategy. Inspired by [72], the continuous-discrete time

Kalman filter has been adapted to the framework of observer design for continuous-time systems

with sampled measurements. In [273], an observer for continuous-discrete state affine systems was

designed, similar to the structure of the Kalman filter, when the inputs are regularly persistent. The

results in [273] were extended to observer design for state affine systems up to output injection in

[274] and adaptive observer design in [310]. The continuous-discrete approach has been applied to

high-gain observers in [131, 275, 276, 311–313]. In general, the continuous-discrete observer con-

sists of two steps: (i) open-loop prediction when no measurements are available, and (ii) impulsive

correction once a new measurement becomes available. A similar idea was used in [277,314], and

sufficient conditions with guaranteed global convergence of estimation error were derived in terms
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of LMIs.

The problem of nonlinear multi-rate observer design has received very little attention, consider-

ing the challenge in stability analysis that arises from the asynchronous nature of different sensors

and uncertainty in the sampling schedule. A nonlinear multi-rate observer design was developed in

[315] based on an approximate discrete-time model, with guaranteed semiglobal practical input-to-

state stability (ISS) from exogenous disturbance to estimation error. An artificial fast-rate sampler

and a hold device were introduced to reconstruct the missing outputs as well as the inputs between

sampling times, which were then fed to a single-rate observer working at a base sampling period

of the plant. The results were extended to one-sided Lipschitz systems in [316]. A hybrid observer

was reported for a class of nonlinear systems with multi-rate sampled and delayed measurements,

with global exponential stability of the error dynamics [317]. However, it assumes a certain special

structure of the nonlinear system for the method to be applicable.

In this work, the proposed multi-rate sampled-data observer design adopts the idea in [250,279]

of using a state predictor to approximate the inter-sample behavior, but in a more general context,

where multiple inter-sample predictors are utilized for the multi-rate system. These predictors will

be running asynchronously at the same time and each predictor generates an estimate of the evo-

lution of a sampled output between consecutive measurements, in the same spirit as [52] for linear

systems. The existence of a continuous-time observer is a prerequisite for a multi-rate observer

design. This is a common assumption in the continuous-discrete observer design for sampled-data

systems [311]. Taking the measurement errors as inputs and the estimation errors as outputs, the

notion of input-to-output stability (IOS), originated from [318] for systems described by ordinary

differential equations, is adopted for stability analysis of the sampled-data system and the multi-

rate observer. Since the overall system is a hybrid system in the sense that the classical semigroup

property does not hold, the notion of weak semigroup property introduced in [319, 320] will be

utilized, as it is more relaxed than the semigroup property and allows to study a very general class

of systems (e.g., sampled-data systems, networked control systems, and hybrid systems). A direct

product from this system theoretic framework is a small-gain theorem for two interconnected feed-
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back systems [321], which played an important role in the stability analysis of the single-output

sampled-data observer in [250]. The result was further generalized to a vector small-gain theorem

in [304], which allows to study the IOS and ISS properties for large-scale systems that consist of

multiple interacting subsystems, such as the proposed multi-rate sampled-data observer in Section

6.2.

The multi-rate observer design philosophy in this chapter is different from a multi-rate Kalman

filter. This paragraph gives a brief overview of the multi-rate Kalman filtering from the literature.

Wavelet transform-based algorithms for dynamical multi-resolutional distributed filtering were in-

troduced in [322–324]. However, these algorithms were limited to the systems where the ratio of

any two sampling rates was a power of two. The results were extended in [325] such that the ratio

of any two sampling rates was allowed to be any positive integer. Some of the local estimators can

even handle non-uniform sampling rates. However, it is required in the algorithm that the measure-

ment with the highest sampling rate samples uniformly and the number of samples per block of the

other measurements needs to be fixed [325, 326], which limits applications of the algorithm. The

results in [327, 328] on asynchronous estimation problem are relatively computational expensive,

since the state transition matrices need to be computed at every estimation time. The measurement

augmentation at every estimation time also results in high dimensionality and expensive computa-

tional cost. Multi-sensor fusion estimation with non-uniform estimation rates was studied in [329]

where the estimation rate switches between a fast mode and a slow mode according to its power

situation, requirements of estimation performance, and dynamic change of the process. However,

the synchronization assumption on two or more local estimates at some time instants was imposed

in the algorithm. Lin and Sun [330] presented a distributed estimation algorithm for multi-sensor

multi-rate systems where the state update rate is positive integer multiples of the measurement sam-

pling rates and all the sensors have uniform sampling schedule. Notice that all the aforementioned

multi-rate Kalman filter design [322–330] did not account for control input, on the understanding

that the multi-rate estimation can be used for process or condition monitoring, target tracking, and

localization.
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In summary, the proposed multi-rate observer is different from the existing multi-rate Kalman

filters in the following aspects:

• This chapter addresses the multi-rate state estimation problem in general nonlinear systems

and rigorous stability analysis is conducted. To the best of the author’s knowledge, almost all

the multi-rate Kalman filters in the literature [322–330] are limited to linear systems.

• The proposed multi-rate design can handle non-uniform and asynchronous sampling in non-

linear systems, whereas the multi-rate Kalman filters in [322–330] required that the sampling

period of each measurement is uniform, the ratio of any two sampling periods is an integer,

and the sampling of different measurements synchronize at some time instants periodically.

Up to now, optimal multi-rate Kalman filter with arbitrary ratio of sampling periods is still an

open problem [325]. However, these assumptions are removed from the multi-rate observer

design to be proposed in this chapter.

• As long as the maximum sampling period does not exceed a certain limit, the error dynamics

of the proposed multi-rate observer is input-to-output stable, irrespective of perturbations in

the sampling schedule. The robustness property is important in practical implementation as

non-uniform sampling could occur if the sample is taken manually by operators.

6.2 Formulation of the Sampled-Data Observer

6.2.1 Notations

Throughout the chapter, we adopt the following notations.

• K+ denotes the class of positive, continuous functions defined on R+ := {x ∈ R : x > 0}.

We say that a function ρ : R+ → R+ is positive definite if ρ(0) = 0 and ρ(s) > 0,∀s > 0. K

denotes the set of positive definite, increasing and continuous functions. We say a positive

definite, increasing and continuous function ρ : R+ → R+ is of classK∞ if lims→+∞ ρ(s) =

+∞. We denote by KL the set of all continuous functions σ = σ(s, t) : R+ × R+ → R+
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with the two properties: (i) the mapping σ(·, t) is of class K for each t > 0; (ii) the mapping

σ(s, ·) is non-increasing with limt→+∞ σ(s, t) = 0 for each s > 0.

• The set of nonnegative integers is denoted by Z+.

• Rn
+ := {[x1, . . . , xn]′ ∈ Rn : x1 > 0, . . . , xn > 0}. Let x, y ∈ Rn. We say that x 6 y if and

only if (y − x) ∈ Rn
+. We say that a function ρ : Rn

+ → R+ is of class Nn if ρ is continuous

with ρ(0) = 0 and such that ρ(x) 6 ρ(y) for all x, y ∈ Rn
+ with x 6 y.

• For every positive integer l and an open, non-empty set A ⊆ Rn, C l(A; Ω) denotes the class

of continuous functions on A with continuous derivatives of order l, which take values in

Ω ⊆ Rm. C0(A; Ω) denotes the class of continuous functions on A which take values in Ω.

• We denote by ‖·‖X the norm of the normed linear space X . By | · |, we denote the `1-norm

of Rn. Let I ⊆ R+ be an interval and D ⊆ Rl be a non-empty set. By L∞loc(I;D), we

denote the class of all Lebesgue measurable and locally bounded functions u : I → D.

For u ∈ L∞loc(R+;Rn), we define the norm ‖u(t)‖U :=
∑n

i=1 supτ∈[0,t] |ui(τ)|. Notice that

supτ∈[0,t] |ui(τ)| denotes the actual supremum of |ui(t)| on [0, t].

6.2.2 Problem Formulation

Consider a multi-output continuous-time autonomous system, where without loss of generality,

the output is assumed to be a part of the state vector

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

y(t) = xM(t)

(6.1)

with xR ∈ Rn−m being the unmeasured state vector, xM ∈ Rm being the remaining state vector

that is directly measured, y denoting the output vector, and fR ∈ C1(Rn−m × Rm;Rn−m), fM ∈

C1(Rn−m × Rm;Rm) with fR(0, 0) = 0, fM(0, 0) = 0.
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Note that the above system does not have an input. The understanding here is that an observer

will be built for the purpose of condition monitoring of system (6.1).

In the presence of multiple measurements, it makes more sense to use a reduced-order observer

so that a significantly lower dimensionality can ease implementation of the observer. Therefore, a

reduced-order observer formulation will be the focus of this work. Suppose that a continuous-time

reduced-order observer design is available for system (6.1)

ż(t) = F (z(t), y(t))

x̂R(t) = Ψ(z(t), y(t))

(6.2)

where z ∈ Rk is the observer state, x̂R ∈ Rn−m is the state estimates, and F ∈ C1(Rk × Rm;Rk),

Ψ ∈ C1(Rk × Rm;Rn−m) with F (0, 0) = 0, Ψ(0, 0) = 0.

The output equation of system (6.1) should be modified under slow-sampled measurements,

which yields the following multi-rate sampled-data system

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

yi(tij) = xiM(tij), j ∈ Z+, i = 1, 2, . . . ,m

(6.3)

where tij denotes the j-th sampling time for the i-th component in xM , at some sequence of time

instants S = {tk}∞k=0. The sampling times of the i-th sensor form an infinite subsequence which

tends to infinity. These sampling times are not necessarily uniformly spaced, but satisfying 0 <

tij+1 − tij 6 r for all j ∈ Z+, where r is the maximum sampling period among all the sensors. The

sampling times from all the subsequences are considered as the sampling times of the multi-rate

sampled-data system (6.3). Notice that S is the sequence of all sampling times in ascending order.

There is a one-to-one mapping from {tij : j ∈ Z+, i = 1, 2, . . . ,m} to {tk}∞k=0. Finally, we assume

there is no measurement available at the initial time t0.

As mentioned in Section 6.1, a continuous-time design (6.2) will serve as the basis of a multi-
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rate observer design in the presence of asynchronous sampled measurements, as long as the inter-

sample behavior is taken care of. In this way, a continuous-time observer design from the literature

can be reused in the context of a multi-rate observer so that we do not need to design from scratch.

System (6.3) can be used to predict the evolution of the output between consecutive measurements.

As depicted in Figure 6.1, we propose the multi-rate sampled-data observer design

ż(t) = F (z(t), w(t)), t ∈ [tk, tk+1)

ẇ(t) = fM(Ψ(z(t), w(t)), w(t)), t ∈ [tk, tk+1)

wi(tk+1) = yi(tk+1)

x̂R(t) = Ψ(z(t), w(t)), x̂R ∈ Rn−m

(6.4)

This observer has the same dynamics as the continuous-time observer (6.2). The predictors operate

continuously at different time horizons, which generate additional signals w(t) to approximate and

replace the output y(t) in the implementation of the continuous-time observer (6.2). wi(t) will be

reinitialized once a new measurement yi(tk+1) becomes available, while the rest of the predictor

states do not change until their measurements are obtained. By integrating the predictor equations,

a model-based correction is applied on the most-recent measurement. Notice that tk and tk+1 are

not necessarily the sampling times from the same sensor. It was seen in [52] that the model-based

prediction offers a more meaningful approach to approximate the inter-sample behavior instead of

a simple sample-and-hold strategy, especially under large sampling period.

It is important to point out that the sampled-data system (6.3) together with the multi-rate ob-

server (6.4) is a hybrid system, which does not satisfy the classical semigroup property. However,

the weak semigroup property still holds (see [319,320]). The recent results in [304,319–321] for a

wide class of systems will be used in the proof of the main theorem to be stated in the next section.

From the main theorem, other important features of this multi-rate sampled-data observer include:

(i) the missing inter-sample behavior can be reconstructed by using the inter-sample predictors,

(ii) as long as the maximum sampling period is sufficiently small, if the continuous-time observer

implementation guarantees stability of the error dynamics and robustness with respect to measure-
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ẋR = fR(xR, xM )
ẋM = fM (xR, xM )
yi(tij) = xi

M (tij)

Plant

ẇ1 = f1
M (Ψ(z, w), w), t ∈ [t1j , t

1
j+1)

w1(t1j+1) = y1(t1j+1)

ẇm = fm
M (Ψ(z, w), w), t ∈ [tmj , tmj+1)
wm(tmj+1) = ym(tmj+1)

Inter-sample Predictors

ż = F (z, w)
x̂R = Ψ(z, w)

Continuous-time
Observer

y1(t1j+1)

ym(tmj+1)

z(t)

w1(t) wi 6=1(t)

wm(t) wi 6=m(t)

w1(t)

wm(t)

x̂R(t)

Figure 6.1: Schematic of the multi-rate sampled-data observer with the plant in the absence of
measurement error.

ment errors, then the multi-rate observer will inherit these properties as well. These properties are

unaffected by perturbations in the sampling schedule, which is a major advantage of the proposed

hybrid implementation as opposed to an approximate discrete-time observer approach. Moreover,

this continuous-discrete observer approach is able to use all possible measurements with different

sampling rates, without making common assumptions when a discrete-time observer is used, such

as that the sampling periods of the sensors are uniform and/or their ratios are rational numbers.

6.2.3 Basic Notions

We require that the following assumption holds.

Assumption 1. System (6.1) is forward complete.

Assumption 1, according to the main results in [331], implies the existence of functions µ ∈ K+

and a ∈ K∞ such that for every (xR,0, xM,0) ∈ Rn−m × Rm, the solution (xR(t), xM(t)) of (6.1)

with initial condition (xR(0), xM(0)) = (xR,0, xM,0) exists for all t > 0 and satisfies

|(xR(t), xM(t))| 6 µ(t)a(|(xR,0, xM,0)|), ∀t > 0 (6.5)

In other words, a finite dimensional system described by ordinary differential equations is forward
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complete if and only if the corresponding solution exists for all t > 0 and for every initial condition

[279].

Similarly to Definition 2.1 in [250] but in the context of a reduced-order observer, it is necessary

to propose the following notion of robust observer for system (6.1) with respect to measurement

errors, which is important for developing the main results of this work.

Definition 1. The system

ż(t) = F (z(t), y(t)), z ∈ Rk

x̂R(t) = Ψ(z(t), y(t)), x̂R ∈ Rn−m
(6.6)

where F ∈ C1(Rk × Rm;Rk), Ψ ∈ C1(Rk × Rm;Rn−m) with F (0, 0) = 0, Ψ(0, 0) = 0, is called

a robust observer for system (6.1) with respect to measurement errors, if the following conditions

are met:

(i) there exist functions σ ∈ KL, γ, p ∈ N1, µ ∈ K+ and a ∈ K∞ such that for every

(xR,0, xM,0, z0, v) ∈ Rn−m × Rm × Rk × L∞loc(R+;Rm), the solution (xR(t), xM(t), z(t)) of

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

ż(t) = F (z(t), xM(t) + v(t))

x̂R(t) = Ψ(z(t), xM(t) + v(t))

(6.7)

with initial condition (xR(0), xM(0), z(0)) = (xR,0, xM,0, z0) corresponding to v ∈ L∞loc(R+;Rm)

exists for all t > 0 and satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ(|(xR,0, xM,0, z0)|, t) + γ(‖v(t)‖U), ∀t > 0 (6.8a)

|z(t)| 6 µ(t)[a(|(xR,0, xM,0, z0)|) + p(‖v(t)‖U)], ∀t > 0 (6.8b)

(ii) for every (xR,0, xM,0) ∈ Rn−m × Rm, there exists z0 ∈ Rk such that the solution

(xR(t), xM(t), z(t)) of system (6.7) with initial condition (xR(0), xM(0), z(0)) = (xR,0, xM,0, z0)
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corresponding to v ≡ 0, satisfies xR(t) = Ψ(z(t), xM(t)) for all t > 0.

Remark 17. If the system (6.6) is a robust observer for system (6.1) with respect to measurement

errors, then system (6.7) with the output Y = Ψ(z, xM + v) − xR satisfies the uniform input-to-

output stability (UIOS) property from the input v ∈ L∞loc(R+;Rm) with gain γ ∈ N1 (see [321] for

more details).

Instead of using on-line, continuous outputs, a multi-rate sampled-data observer uses outputs

at discrete sampling times in S = {tk}∞k=0. The sampling partition is not necessarily uniform, but

there exists a maximum sampling period r acting as the upper bound on each sampling interval.

Next, we propose the definition of a robust multi-rate sampled-data observer.

Definition 2. The system

ζ̇(t) = g(ζ(t), ζ(tk)), t ∈ [tk, tk+1)

ζ(tk+1) = G

(
lim

t→t−k+1

ζ(t), yi(tk+1)

)

x̂R(t) = Ψ(ζ(t))

(6.9)

where g ∈ C1(Rk × Rk;Rk), G ∈ C0(Rk × R;Rk), Ψ ∈ C1(Rk;Rn−m) with g(0, 0) = 0,

G(0, 0) = 0, Ψ(0) = 0, is called a robust multi-rate sampled-data observer for system (6.3) with

respect to measurement errors, if the following conditions are met:

(i) there exist functions σ ∈ KL, γ, p ∈ N1, µ ∈ K+ and a ∈ K∞ such that for every

(xR,0, xM,0, ζ0, d, v) ∈ Rn−m × Rm × Rk × L∞loc(R+; [0, 1])× L∞loc(R+;Rm), the solution
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(xR(t), xM(t), ζ(t)) of

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

ζ̇(t) = g(ζ(t), ζ(tk)), t ∈ [tk, tk+1)

ζ(tk+1) = G

(
lim

t→t−k+1

ζ(t), xiM(tk+1) + vi(tk+1)

)

tk+1 = tk + rd(tk)

x̂R(t) = Ψ(ζ(t))

(6.10)

with initial condition (xR(0), xM(0), ζ(0)) = (xR,0, xM,0, ζ0) corresponding to d ∈ L∞loc(R+; [0, 1])

and v ∈ L∞loc(R+;Rm) exists for all t > 0 and satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ(|(xR,0, xM,0, ζ0)|, t) + γ(‖v(t)‖U), ∀t > 0 (6.11a)

|ζ(t)| 6 µ(t)[a(|(xR,0, xM,0, ζ0)|) + p(‖v(t)‖U)], ∀t > 0 (6.11b)

(ii) for every (xR,0, xM,0) ∈ Rn−m×Rm, there exists ζ0 ∈ Rk such that for all d ∈ L∞loc(R+; [0, 1]),

the solution (xR(t), xM(t), ζ(t)) of (6.10) with initial condition (xR(0), xM(0), ζ(0)) =

(xR,0, xM,0, ζ0) corresponding to d ∈ L∞loc(R+; [0, 1]) and v ≡ 0, satisfies xR(t) = Ψ(ζ(t)) for all

t > 0.

Remark 18. If the system (6.9) is a robust multi-rate sampled-data observer for system (6.3) with

respect to measurement errors, then the system (6.10) with the output Y = Ψ(ζ)− xR satisfies the

UIOS property from the input v ∈ L∞loc(R+;Rm), with gain γ ∈ N1 (see [321], where the notion

of UIOS is defined for hybrid systems, e.g., (6.10), which does not satisfy the classical semigroup

property).

Remark 19. The sampling period in each subsequence is allowed to be time-varying. The equation

tk+1 = tk + rd(tk) generates the sampling instants in S sequentially with 0 6 tk+1 − tk 6 r for

all k ∈ Z+. The value that d(tk) takes introduces uncertainty to the end-point of each sampling
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interval. Proving stability for any disturbance d ∈ L∞loc(R+; [0, 1]) will guarantee stability for all

sampling schedules of system (6.10).

Remark 20. At a specific instant tk, there could be measurement of more than one output or the

sampling of one sensor may coincide with another (i.e., d(tk) = 0). Hence, some sampling instants

may appear more than once in the sequence S, where the reinitialization step will occur repeatedly

but on different elements in w(t).

6.3 Main Results

Recently, the nonlinear small-gain theorem was generalized from two interconnected systems

to large-scale complex systems consisting of multiple, interacting input-to-output stable (or input-

to-state stable) subsystems in [332–334]. In [334], a more general cyclic small-gain criterion was

developed for continuous-time, input-to-output stable systems. It can be described in general terms

as follows: the composition of the gain functions along every simple cycle is less than the identity

function, where a simple cycle is a closed path with no repeated subsystems other than the starting

and ending ones [335]. In [304], a generalization of several previously developed nonlinear small-

gain theorems was obtained. Uniform and non-uniform IOS and ISS properties were studied for a

wide class of nonlinear feedback systems that do not satisfy the semigroup property, such as hybrid

and switched systems.

In this section, we assume there exists a robust observer for system (6.1) in the sense of Defi-

nition 1, and would like to give conditions such that stability of the error dynamics and robustness

with respect to measurement errors still hold for the multi-rate design.

Theorem 3. Consider system (6.1) under Assumption 1 and suppose that (6.6) is a robust observer

for system (6.1) with respect to measurement errors. Moreover, suppose that there exist constants

Ci > 0 and functions σ̄i ∈ KL for all i = 1, 2, . . . ,m, such that for every (xR,0, xM,0, z0, v) ∈

Rn−m ×Rm ×Rk ×L∞loc(R+;Rm), the solution (xR(t), xM(t), z(t)) of (6.7) with initial condition

(xR(0), xM(0), z(0)) = (xR,0, xM,0, z0) corresponding to v ∈ L∞loc(R+;Rm) exists for all t > 0
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and satisfies the following estimate

|f iM(Ψ(z(t), xM(t) + v(t)), xM(t) + v(t))− f iM(xR(t), xM(t))|

6 σ̄i(|(xR,0, xM,0, z0)|, t) + Ci ‖v(t)‖U , ∀t > 0

(6.12)

Additionally, suppose that (i) 3rCim < 1 for i = 1, 2, . . . ,m; (ii) 3γ(ms) < s for all s > 0, where

γ ∈ N1 is the gain function in the estimate (6.8a) of the robust observer. Then (6.4) is a robust

multi-rate sampled-data observer for system (6.3) with respect to measurement errors.

Proof. We focus on the following hybrid system, consisting of a sampled-data system and a multi-

rate observer
ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

ż(t) = F (z(t), w(t)), t ∈ [tk, tk+1)

ẇ(t) = fM(Ψ(z(t), w(t)), w(t)), t ∈ [tk, tk+1)

wi(tk+1) = xiM(tk+1) + vi(tk+1)

tk+1 = tk + rd(tk)

Y (t) = Ψ(z(t), w(t))− xR(t)

(6.13)

By virtue of Definition 2, it is necessary to show that system (6.13) with the output Y = Ψ(z, w)−

xR satisfies the UIOS property from the input v ∈ L∞loc(R+;Rm).

Notice that the hybrid system (6.13) has a distributed structure, where each inter-sample predic-

tor is a subsystem operating asynchronously. Each subsystem receives the corresponding system

output and reinitializes its own inter-sample predictor. These subsystems also communicate with

each other as well as the continuous-time observer by transmitting the predicted outputs. We focus

on the i-th subsystem and treat wj(t) (j 6= i) and vi(t) as inputs to this subsystem. First, the bound-

edness of ‖w(t)− xM(t)‖U will be established. Next, we will focus on the overall hybrid system

(6.13) and study the UIOS property from the actual input v ∈ L∞loc(R+;Rm). A vector small-gain

theorem (see [304]) will be used to complete the proof.
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Now consider the i-th subsystem from the distributed structure, where wj(t) (j 6= i) and vi(t)

is considered as inputs

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

ż(t) = F (z(t), w(t)), t ∈ [tij, t
i
j+1)

ẇi(t) = f iM(Ψ(z(t), w(t)), w(t)), t ∈ [tij, t
i
j+1)

wi(tij+1) = xiM(tij+1) + vi(tij+1)

tij+1 = tij + rd(tij)

Y (t) = Ψ(z(t), w(t))− xR(t)

(6.14)

which satisfies the weak semigroup property. Because any two different samplings can never occur

at the same time in a subsystem (i.e., tij1 6= tij2 if j1 6= j2), disturbance d ∈ L∞loc(R+; (0, 1]) is used

to introduce perturbations in the sampling schedule of the i-th subsystem, and this rules out the

Zeno phenomenon. Because system (6.6) is a robust observer for system (6.1) with respect to mea-

surement errors, it follows from (6.8a), (6.8b), and (6.12) that for every (xR,0, xM,0, z0, w
i
0, d) ∈

Rn−m×Rm×Rk×R×L∞loc(R+; (0, 1]), the solution (xR(t), xM(t), z(t), wi(t)) of (6.14) with ini-

tial condition (xR(0), xM(0), z(0), wi(0)) = (xR,0, xM,0, z0, w
i
0) corresponding to the inputs wj(t)

where j 6= i (i.e., predicted outputs from other predictors) satisfies the following estimates for all

t ∈ [0, tmax)

|Y (t)| 6 σ̂(|(xR,0, xM,0, z0)|, t) + γ(‖w(t)− xM(t)‖U) (6.15)

|z(t)| 6 µ(t)[a(|(xR,0, xM,0, z0)|) + p(‖w(t)− xM(t)‖U)] (6.16)

|f iM(Ψ(z(t), w(t)), w(t))− f iM(xR(t), xM(t))| 6 σ̄i(|(xR,0, xM,0, z0)|, t) + Ci ‖w(t)− xM(t)‖U

(6.17)
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Since Assumption 1 holds, we obtain from (6.5) and (6.16)

|(xR(t), xM(t), z(t))| 6 µ̄(t)[ā(|(xR,0, xM,0, z0)|) + p(‖w(t)− xM(t)‖U)], ∀t ∈ [0, tmax)

(6.18)

for appropriate functions σ̂, σ̄i ∈ KL, γ, p ∈ N1, µ, µ̄ ∈ K+ and a, ā ∈ K∞, where tmax ∈ (0,+∞]

is the maximal existence time of the solution.

Consider those time intervals where the reinitialization step occurs at the beginning. For all

t ∈ [tij, t
i
j+1) ∩ [0, tmax) with j > 1, we have

|wi(t)− xiM(t)| 6
∫ t

tij

∣∣f iM(Ψ(z(s), w(s)), w(s))− f iM(xR(s), xM(s))
∣∣ ds+ |vi(tij)|

6 rσ̄i(|(xR,0, xM,0, z0)|, tij) + rCi ‖w(t)− xM(t)‖U + |vi(tij)|

6 σi1(|(xR,0, xM,0, z0)|, t) + rCi ‖w(t)− xM(t)‖U + sup
06τ6t

|vi(τ)|

(6.19)

where σi1(s, t) = rσ̄i(s, t − r) for t > r and σi1(s, t) = exp(r − t)rσ̄i(s, 0) for t < r. Notice that

σi1(s, t) ∈ KL. Because there is no measurement available at the initial time ti0 = 0, we make an

initial guess wi(ti0) = wi(0) = wi0 for the i-th state of the predictor. For all t ∈ [0, ti1) ∩ [0, tmax),

we get

|wi(t)− xiM(t)| 6 |wi0 − xiM,0|+ r sup
06s6t

|f iM(Ψ(z(s), w(s)), w(s))− f iM(xR(s), xM(s))|

6 |wi0|+ |xiM,0|+ rσ̄i(|(xR,0, xM,0, z0)|, 0) + rCi ‖w(t)− xM(t)‖U

6 σi2(|(xR,0, xM,0, z0, w
i
0)|, t) + rCi ‖w(t)− xM(t)‖U

(6.20)

where σi2(s, t) = [rσ̄i(s, 0) + s] exp(r − t) and σi2(s, t) ∈ KL. Combining (6.19) and (6.20), we

conclude that the following estimate holds for all t ∈ [0, tmax) and for i = 1, 2, . . . ,m

|wi(t)− xiM(t)| 6 σi(|(xR,0, xM,0, z0, w
i
0)|, t) + rCi ‖w(t)− xM(t)‖U + sup

06τ6t
|vi(τ)| (6.21)
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From Equation (6.21), the fact that
m∑
i=1

rCi < 1/3, and the assumption that tmax is finite, it

suffices to show the boundedness of ‖w(t)− xM(t)‖U for all t ∈ [0, tmax). In fact,

‖w(t)− xM(t)‖U 6

m∑
i=1

σi(|(xR,0, xM,0, z0, w
i
0)|, 0) + ‖v(t)‖U

1−
m∑
i=1

rCi

(6.22)

From (6.18), (6.21), (6.22), and the Boundedness-Implies-Continuation (BIC) property (see [319])

for system (6.14), we conclude that tmax = +∞. Consequently, all the above inequalities hold for

all t > 0 and thus, t ∈ [0, tmax) can be replaced by t > 0 in these inequalities. In addition, the BIC

property of each subsystem implies that the BIC property holds true for the overall hybrid system

(6.13) with tmax = +∞.

Now, we are in a position to study the UIOS property of the overall hybrid, multi-rate system

(6.13) from the actual input v ∈ L∞loc(R+;Rm). A vector small-gain theorem will be used to check

stability of the large-scale hybrid systems composed of multiple interconnected subsystems.

Without loss of generality, we may assume that µ̄(t) > 1 in (6.18). From (6.18), (6.22), and

the triangle inequality |w(t)| 6 |w(t)− xM(t)|+ |xM(t)|, we obtain for all t > 0

|(xR(t), xM(t), z(t), w(t))| 6 2µ̄(t)[â(|(xR,0, xM,0, z0, w0)|) + p̂(‖v(t)‖U)] (6.23)

for appropriate functions â(s) = ā(s) +

m∑
i=1

σi(s, 0)

1−
m∑
i=1

rCi

+ p

2
m∑
i=1

σi(s, 0)

1−
m∑
i=1

rCi

 (notice that â ∈ K∞)

and p̂(s) =
1

1−
m∑
i=1

rCi

s + p

 2s

1−
m∑
i=1

rCi

 (notice that p̂ ∈ N1). Furthermore, (6.23) and the

BIC property of the hybrid system (6.13) imply the following important properties:

• System (6.13) is robustly forward complete from the input v ∈ L∞loc(R+;Rm).

• 0 ∈ Rn−m ×Rm ×Rk ×Rm is a robust equilibrium point from the input v ∈ L∞loc(R+;Rm),

with any output function H(t, xR, xM , z, w, v) with H(t, 0, 0, 0, 0, 0) = 0 for all t > 0.
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The inequality (6.23) also yields

|(xR(t), xM(t), z(t), w(t))| 6 µ̄2(t) + [â(|(xR,0, xM,0, z0, w0)|) + p̂(‖v(t)‖U)]2

6 µ̄2(t) + 2â2(|(xR,0, xM,0, z0, w0)|) + 2p̂2(‖v(t)‖U)

6 3 max
{
µ̄2(t), 2â2(|(xR,0, xM,0, z0, w0)|), 2p̂2(‖v(t)‖U)

} (6.24)

Consider system (6.13) with the output map that we have defined and apply the vector small-

gain theorem with the following functions

γi,j(s) =



3rC1ms . . . 3rC1ms 0 . . . 0

... . . . ...
... . . . ...

3rCmms . . . 3rCmms 0 . . . 0

3γ(ms) . . . 3γ(ms) 0 . . . 0

... . . . ...
... . . . ...

3γ(ms) . . . 3γ(ms) 0 . . . 0


, ∀i, j = 1, 2, . . . , n

V (t, xR, xM , z, w, v) =



|w1(t)− x1M(t)|
...

|wm(t)− xmM(t)|

|Y (t)|
...

|Y (t)|


∈ Rn,

Γ(x) =



3rC1mmaxi=1,2...,m{xi}
...

3rCmmmaxi=1,2...,m{xi}

3γ(mmaxi=1,2...,m{xi})
...

3γ(mmaxi=1,2...,m{xi})


: Rn

+ → Rn
+,
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L(t, xR, xM , z, w) = |(xR(t), xM(t), z(t), w(t))|,

σ(s, t) = 3

(
m∑
i=1

σi(s, t) + σ̂(s, t)

)
,

ν(t) = 3µ̄2(t), c ≡ 1, ζ(s) = 3s,

a(s) = 6â2(s), pu(s) = 6p̂2(s), p ≡ 0,

b(s) = s, g ≡ 0, µ(t) = β(t) = κ(t) ≡ 1, q(x) = xn(x ∈ Rn
+)

where Γ(x) : Rn
+ → Rn

+ is a MAX-preserving continuous map (see [304] for the definition) with

Γ(0) = 0.

Now, Hypotheses (H1)-(H4) of the vector small-gain theorem are satisfied by virtue of the

above definitions, and inequalities (6.15), (6.21), (6.22) and (6.23). We conclude that the hybrid

system (6.13) satisfies the UIOS property from the input v ∈ L∞loc(R+;Rm). In other words, there

exist functions σ̃ ∈ KL, γ̃, p̃ ∈ N1, µ̃ ∈ K+ and ã ∈ K∞ such that for every (xR,0, xM,0, z0, w0, d, v)

∈ Rn−m×Rm×Rk×Rm×L∞loc(R+; [0, 1])×L∞loc(R+;Rm), the solution (xR(t), xM(t), z(t), w(t))

of (6.13) with initial condition (xR(0), xM(0), z(0), w(0)) = (xR,0, xM,0, z0, w0) corresponding to

d ∈ L∞loc(R+; [0, 1]) and v ∈ L∞loc(R+;Rm) satisfies the following estimates for all t > 0

|Y (t)| 6 σ̃(|(xR,0, xM,0, z0, w0)|, t) + γ̃(‖v(t)‖U) (6.25a)

|(z(t), w(t))| 6 µ̃(t)[ã(|(xR,0, xM,0, z0, w0)|) + p̃(‖v(t)‖U)] (6.25b)

Moreover, for every (xR,0, xM,0) ∈ Rn−m × Rm, there exists (z0, w0) ∈ Rk × Rm with w0 = xM,0

such that for all d ∈ L∞loc(R+; [0, 1]), the solution (xR(t), xM(t), z(t), w(t)) of (6.13) with initial

condition (xR(0), xM(0), z(0), w(0)) = (xR,0, xM,0, z0, w0) corresponding to d ∈ L∞loc(R+; [0, 1])

and v ≡ 0, satisfies xR(t) = Ψ(z(t), w(t)) for all t > 0.

Remark 21. If we consider system (6.13) with the prediction error as the output map, i.e., Y ′(t) =

w(t)−xM(t), by applying the vector small-gain theorem again, we conclude that with this output,

the hybrid system (6.13) also satisfies the UIOS property from the input v ∈ L∞loc(R+;Rm). In other

words, there exist functions σ̃ ∈ KL and γ̃ ∈ N1 such that for every (xR,0, xM,0, z0, w0, d, v) ∈
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Rn−m×Rm×Rk×Rm×L∞loc(R+; [0, 1])×L∞loc(R+;Rm), the solution (xR(t), xM(t), z(t), w(t))

of (6.13) with initial condition (xR(0), xM(0), z(0), w(0)) = (xR,0, xM,0, z0, w0) corresponding to

d ∈ L∞loc(R+; [0, 1]) and v ∈ L∞loc(R+;Rm) satisfies

|w(t)− xM(t)| 6 σ̃(|(xR,0, xM,0, z0, w0)|, t) + γ̃(‖v(t)‖U), ∀t > 0 (6.26)

Without measurement errors, the error dynamics of the multi-rate sampled-data observer, in-

cluding the inter-sample predictors, will converge to zero asymptotically.

Remark 22. The continuous-time observer design coupled with inter-sample predictors can be ap-

plied to multi-rate full-order observer design, under appropriate modifications. The vector small-

gain theorem is applicable to study the UIOS property of the overall system (i.e., the sampled-data

system and the multi-rate observer) from measurement errors.

6.4 Applications

In this section, the performance of the proposed multi-rate sampled-data observer is illustrated

through linear systems and two nonlinear third-order examples. An explicit formula for estimating

the maximum sampling period will be derived for the linear detectable systems with application to

an oscillator example.

6.4.1 Linear Detectable Systems

Consider a linear detectable system, where without loss of generality, the output is assumed to

be a part of the state vector

ẋR(t) = A11xR(t) + A12xM(t), xR ∈ Rn−m

ẋM(t) = A21xR(t) + A22xM(t), xM ∈ Rm

y(t) = xM(t)

(6.27)
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A reduced-order Luenberger observer design is available

ż(t) = Fz(t) +Hy(t)

x̂R(t) = T−1R (z(t)− TMy(t))

(6.28)

where F is a Hurwitz matrix with desired eigenvalues and forms a controllable pair with H . The

transformation matrices TR, TM satisfy the following Sylvester equation:

[
TR TM

]A11 A12

A21 A22

 = F

[
TR TM

]
+H

[
0 I

]
(6.29)

Consequently, there exists a positive definite matrix P such that F ′P +PF is negative definite and

there exist constants α, δ > 0 such that

x′(F ′P + PF )x+ 2x′PHv 6 −2αx′Px+ δ|v|2 (6.30)

for all (x, v) ∈ Rn−m×Rm. Inequality (6.30) implies for every (xR,0, xM,0, z0, v) ∈ Rn−m×Rm×

Rn−m × L∞loc(R+;Rm), the solution of (6.27) with

ż(t) = Fz(t) +H(y(t) + v(t))
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with initial condition (xR(0), xM(0), z(0)) = (xR,0, xM,0, z0) corresponding to v ∈ L∞loc(R+;Rm)

satisfies the estimates for i = 1, 2, . . . ,m

|x̂R − xR| 6 |T−1R | exp(−αt)
√
K2

K1

|z0 − TRxR,0 − TMxM,0|

+

(
|T−1R |

√
δ

2αK1

+ |T−1R TM |

)
sup
06τ6t

|v(τ)|,

∀t > 0

|Ai21(x̂R − xR) + Ai22v| 6 |Ai21||T−1R | exp(−αt)
√
K2

K1

|z0 − TRxR,0 − TMxM,0|

+

(
|Ai21||T−1R |

√
δ

2αK1

+ |Ai21||T−1R TM |+ |Ai22|

)
sup
06τ6t

|v(τ)|,

∀t > 0

where K1, K2 > 0 are constants such that K1|x|2 6 x′Px 6 K2|x|2 for all x ∈ Rn−m, and Ai21,

Ai22 are the i-th row of the matrices A21, A22 respectively. We conclude from Theorem 3 that the

following system

ż(t) = Fz(t) +Hw(t), t ∈ [tk, tk+1)

ẇ(t) = A21x̂R(t) + A22w(t), t ∈ [tk, tk+1)

wi(tk+1) = xiM(tk+1) + vi(tk+1)

x̂R(t) = T−1R (z(t)− TMw(t))

(6.31)

is a robust multi-rate sampled-data observer for system (6.27) with respect to measurement errors

given that the maximum sampling period r satisfies the inequalities

3rm

(
|Ai21||T−1R |

√
δ

2αK1

+ |Ai21||T−1R TM |+ |Ai22|
)
< 1, i = 1, 2, . . . ,m (6.32)

and

3m

(
|T−1R |

√
δ

2αK1

+ |T−1R TM |

)
< 1 (6.33)

Remark 23. It seems that one of the conditions in Theorem 3, i.e., 3rCim < 1, becomes harder to
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satisfy as the number of outputs m increases. However, this is not always true. From the condition

3rCim < 1, it can be seen that the maximum sampling period does not only depend on the number

of outputs, but also depends on the constants Ci in the estimate (6.12) of a robust observer. As m

increases, the dynamics of a continuous-time observer will become different from the one with less

outputs. It is possible that the maximum sampling period increases as m increases.

A fourth-order linear system will be discussed where the maximum sampling period with three

asynchronous discrete outputs is actually larger than the one with two outputs. Consider a linear

system of the following state-space model



ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


=



−0.1 0 0 0

100 −1 0 0

50 5 −0.5 0

200 12 0 −0.3





x1(t)

x2(t)

x3(t)

x4(t)


with two cases:

1. Case I (m = 2): There are two asynchronous measurements that measure x3 and x4 at

discrete time instants. Inequality (6.30) holds with the following parameters

F =

−1.2 0

0 −1.03

 , H =

1 2

1 1

 , P =

1 0

0 1

 ,
K1 = K2 = 1, δ = 8.34, α = 0.6

Inequalities (6.32) and (6.33) are satisfied with the maximum sampling period r < 0.005.

2. Case II (m = 3): There are three asynchronous measurements that measure x2, x3 and x4

at discrete time instants. Inequality (6.30) holds with the following parameters

F = −1.03, H =

[
1 1 1

]
, P = K1 = K2 = 1,

δ = 2.913, α = 0.515
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Inequalities (6.32) and (6.33) are satisfied with the maximum sampling period r < 0.008.

However, the relationship between r and Ci is very complicated even in linear systems as seen

in (6.32) and (6.33). The maximum sampling period given by Theorem 3 is a sufficient condition

which is very conservative. The stability and robustness properties of a multi-rate observer can be

maintained under much larger sampling period.

Consider a third-order linear oscillator
ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


0 0 −0.1

20 −1 0

20 0 0



x1(t)

x2(t)

x3(t)


y1(t1j) = x2(t

1
j), j ∈ Z+

y2(t2j) = x3(t
2
j), j ∈ Z+

(6.34)

where x2 and x3 are sampled with different sampling rates. A reduced-order Luenberger observer is

designed with F = −2, H =

[
1 2

]
. Inequality (6.30) holds true with P = K1 = K2 = 3, α = 1,

δ = 7.5. It is concluded from (6.32), (6.33) that there exists a multi-rate sampled-data observer for

system (6.34) given that the maximum sampling period r < 0.039. Notice that conditions (6.32),

(6.33) are very conservative. Indeed, simulations show the stability and robustness of the multi-rate

observer will be preserved under much larger sampling period. The actual sampling subsequences

of y1 and y2 are as follows

t1j = {0.40, 2.15, 4.05, 5.88, 7.70},

t2j = {0.20, 1.07, 2.17, 3.02, 4.07, 5.13, 6.20, 7.07}

where perturbations in the sampling schedule are considered.

Figure 6.2 illustrates the performance of the multi-rate sampled-data observer with the initial

conditions: x(0) =

[
0 0.5 0.3

]′
, x̂1(0) = −0.5, w1(0) = 3, w2(0) = −7.2. It is clear that the

multi-rate observer provides reliable estimation of the state.
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Figure 6.2: (a) Comparison of the multi-rate sampled-data observer with a continuous-time ob-
server using continuous measurements for system (6.34); (b),(c) Performance of the inter-sample
output predictors for the sampled measurements y1 and y2 respectively for system (6.34).

6.4.2 A Batch Chemical Reactor

Consider an isothermal batch reactor, where the following series reactions are taking place

M → P

2P → Q→ R
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The reaction rates of M , P and Q are assumed to be

rM = −k1CM

rP = k1CM − k2CP 2

rQ = k2CP
2 − k3CQ

where k1 = 0.4 h−1, k2 = 1 L/(mol·h), and k3 = 0.5 h−1. The concentrations of P and Q can be

measured by on-line analytical instruments, with different sampling rates. Let x1, x2, x3 represent

the concentrations of M , P and Q respectively. The state-space model is given by

ẋ1(t) = f1(x1, x2, x3) = −0.4x1(t)

ẋ2(t) = f2(x1, x2, x3) = 0.4x1(t)− x22(t)

ẋ3(t) = f3(x1, x2, x3) = x22(t)− 0.5x3(t)

y1(t1j) = x2(t
1
j), j ∈ Z+

y2(t2j) = x3(t
2
j), j ∈ Z+

(6.35)

There exists only one equilibrium point xe = (0, 0, 0). The eigenvalues of the linearized system

around xe are 0, −0.4 and −0.5, respectively, which indicate that the equilibrium point is locally

asymptotically stable. Sampling normally occurs every 0.4 h for y1 and every 0.5 h for y2. How-

ever, perturbations in the sampling schedule are considered and the actual sampling subsequences

of y1 and y2 are as follows

t1j = {0.38, 0.79, 1.23, 1.60, 1.98, 2.41, 2.82, 3.20},

t2j = {0.50, 0.99, 1.52, 2.01, 2.48, 3.01, 3.52, 4.01}

A continuous-time observer, which serves as the basis of the multi-rate sampled-data observer,

will be designed by using the exact error linearization method (see [148] for the full-order observer
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formulation, and [4] for the reduced-order observer formulation) as follows

ż(t) = Az(t) +B

y1(t)
y2(t)



with A = −2 and B =

[
2 1.5

]
. The immersion map z = T (x) satisfies

∂T

∂x1
f1(x) +

∂T

∂x2
f2(x) +

∂T

∂x3
f3(x) = AT (x) +B

x2
x3


which admits a global solution

T (x) = −0.25x1 + x2 + x3

which is solvable with respect to the unmeasured state x1.

We design a multi-rate sampled-data observer based on (6.4) and the performance is illustrated

in Figure 6.3 with the initial conditions: x(0) =

[
1 0.7 0

]′
, x̂1(0) = 1.5, w1(0) = 0.6, w2(0) =

0.1. Figure 6.3(a) shows that the speed of convergence of the multi-rate sampled-data observer and

the continuous-time observer is comparable under the selected design parameters. From Figures

6.3(b) and (c), the inter-sample output predictors are able to predict the inter-sample behavior with

high accuracy after a few samplings by using model-based prediction.

6.4.3 A Numerical Example

In this section, the performance of the proposed multi-rate sampled-data observer is illustrated

through a third-order example, in the presence of two asynchronous sampled measurements. Con-
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Figure 6.3: (a) Comparison of the multi-rate sampled-data observer with a continuous-time ob-
server using continuous measurements for system (6.35); (b),(c) Performance of the inter-sample
output predictors for the sampled measurements y1 and y2 respectively for system (6.35).

sider the following state-space model

ẋ1(t) = f1(x1, x2, x3) = −x1(t)x2(t)− x1(t)x3(t) + x2(t)x3(t) + 9x2(t) + 3x3(t)

ẋ2(t) = f2(x1, x2, x3) = −x1(t)− x2(t)

ẋ3(t) = f3(x1, x2, x3) = −x1(t)

y1(t1j) = x2(t
1
j), j ∈ Z+

y2(t2j) = x3(t
2
j), j ∈ Z+

(6.36)

There exists only one equilibrium point xe = (0, 0, 0). The eigenvalues of the linearized system
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around xe are −0.254 and −0.373± 3.416i, respectively, which indicate that the equilibrium point

is locally asymptotically stable. Sampling normally takes place every 0.4 h for y1 and every 0.5 h

for y2. Perturbations in the sampling schedule are considered and the actual sampling subsequences

of y1 and y2 are as follows

t1j = {0.38, 0.79, 1.23, 1.60, 1.98, 2.41, 2.82, 3.20},

t2j = {0.50, 0.99, 1.52, 2.01, 2.48, 3.01, 3.52, 4.01}

A continuous-time observer, which serves as the basis of the multi-rate sampled-data observer,

will be designed by using the exact error linearization method (see [148] for the full-order observer

formulation, and [4] for the reduced-order observer formulation) as follows

ż(t) = Az(t) +B

y1(t)
y2(t)



with A = −2 and B =

[
−10 −5

]
. The immersion map z = T (x) satisfies

∂T

∂x1
f1(x) +

∂T

∂x2
f2(x) +

∂T

∂x3
f3(x) = AT (x) +B

x2
x3


which admits a global solution

T (x1, x2, x3) = x2x3 − x1 − x2 − x3

which is solvable with respect to the unmeasured state x1.

We design a multi-rate sampled-data observer based on (6.4) and the performance is illustrated

in Figure 6.4 with the initial conditions: x(0) =

[
−2 −1 2

]′
, x̂1(0) = −6, w1(0) = 0, w2(0) =

3. Figure 6.4(a) shows that the speed of convergence of the multi-rate sampled-data observer and

the continuous-time observer is comparable under the selected design parameters. From Figures
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6.4(b) and (c), the inter-sample output predictors are able to predict the inter-sample behavior with

high accuracy after a few samplings by using model-based prediction.
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Figure 6.4: (a) Comparison of the multi-rate sampled-data observer with a continuous-time ob-
server using continuous measurements for system (6.36); (b),(c) Performance of the inter-sample
output predictors for the sampled measurements y1 and y2 respectively for system (6.36).

6.5 Conclusions

This chapter develops a design method for nonlinear multi-rate sampled-data observer based on

an available continuous-time design, coupled with inter-sample predictors. The main contributions

are: (i) the input-to-output stability property is established for the estimation errors and prediction

errors with respect to measurement errors; (ii) the multi-rate design can handle non-uniform and
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asynchronous sampling without any assumption on the ratio of sampling periods to be an integer,

as seen in the oscillator and nonlinear examples; (iii) as long as the maximum sampling period does

not exceed a certain limit, the error dynamics of the proposed multi-rate observer is input-to-output

stable, irrespective of perturbations in the sampling schedule. (ii) and (iii) are the major advantages

of the proposed hybrid observer over an approximate discrete-time observer. Checkable sufficient

conditions for stability and robustness are derived for linear detectable systems.

The theoretical framework of this study refers to a global observer design. For general nonlin-

ear systems, a local observer formulation is of great interest, subject to future research. In addition,

measurement delay will be considered in nonlinear multi-rate observer design in Chapter 7.
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7. MULTI-RATE OBSERVER DESIGN IN NONLINEAR SYSTEMS WITH

MEASUREMENT DELAY

In Chapter 6, we developed a robust multi-rate observer design method for nonlinear systems in

the presence of asynchronous sampling. In this chapter, measurement delays are accounted for in

the observer design. Motivated by dead time compensation algorithms in [305,306], the multi-rate

multi-delay observer design is approached in a two-step manner, which is similar to the multi-rate

multi-delay observer design for linear systems developed in Chapter 4. First, a multi-rate observer

design of Chapter 6 is adopted as a starting point and estimates of the current state are obtained in

the time interval between consecutive delayed measurements. Second, a dead time compensation

approach is developed to compensate for the effect of delay and update the past estimates when a

delayed measurement arrives. It is shown that stability of the multi-rate observer will be preserved

under nonconstant, arbitrarily large delays, in the absence of measurement errors. A nonlinear gas-

phase polyethylene reactor example demonstrates good performance of the multi-rate multi-delay

observer under nonuniform sampling and nonconstant delays. There are two attractive features of

the proposed approach: it inherits the stability property from a multi-rate observer in the absence

of measurement errors and convergence is not affected by nonconstant delays. Notice that input

delay and state delay are not in the scope of this study.

This chapter is organized as follows. In Section 7.1, a brief summary of the theoretical results

presented in Chapter 6 on a nonlinear delay-free multi-rate observer is provided. In Section 7.2, a

dead time compensation approach is proposed to handle measurement delays and stability analysis

is conducted. The applicability and effectiveness of the observer is examined through a gas-phase

polyethylene reactor example in Section 7.3 where we directly cope with the process nonlinearities

and sampled, delayed measurements. In Section 7.4, conclusions are drawn from the results of the

previous sections.
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7.1 Preliminaries

The notations in Section 6.2 are adopted throughout this chapter. This section outlines the main

results in [309] on multi-rate observer design for nonlinear systems under asynchronous sampling,

in the absence of measurement delays. It is based on a continuous-time design coupled with inter-

sample output predictors. The stability and robustness properties of the observer will be reviewed.

The delay-free multi-rate observer design serves as a point of departure when measurement delays

are considered in the next section.

7.1.1 Delay-Free Multi-Rate Observer Design

A reduced-order observer design is preferred for multi-output systems, as lower dimensionality

can ease implementation of the observer. In addition, continuous estimates of the sampled outputs

in each sampling interval can be reconstructed from the inter-sample predictors. Hence, a reduced-

order observer formulation will be the focus of this work.

Consider a nonlinear forward complete system with continuous outputs, where without loss of

generality, the outputs are assumed to be a part of the state

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

y(t) = xM(t) + v(t)

(7.1)

where xR ∈ Rn−m is the unmeasured state, xM ∈ Rm is the remaining state that can be measured, y

is the continuous outputs subject to measurement errors v ∈ L∞loc(R+;Rm), and fR ∈ C1(Rn−m ×

Rm;Rn−m), fM ∈ C1(Rn−m × Rm;Rm) with fR(0, 0) = 0, fM(0, 0) = 0.

Suppose that there exists a robust observer for system (7.1) with respect to measurement errors,

in the sense of Definition 1 of Section 6.2

ż(t) = F (z(t), y(t))

x̂R(t) = Ψ(z(t), y(t))

(7.2)
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where z ∈ Rk is the observer state, x̂R ∈ Rn−m is the state estimates, and F ∈ C1(Rk × Rm;Rk),

Ψ ∈ C1(Rk × Rm;Rn−m) with F (0, 0) = 0, Ψ(0, 0) = 0. In other words, there exist functions

σ ∈ KL, γ, p ∈ N1, µ ∈ K+ and a ∈ K∞ such that for every (xR,0, xM,0, z0, v) ∈ Rn−m ×

Rm×Rk×L∞loc(R+;Rm), the solution (xR(t), xM(t), z(t)) of (7.1) and (7.2) with initial condition

(xR(0), xM(0), z(0)) = (xR,0, xM,0, z0) corresponding to v ∈ L∞loc(R+;Rm) exists for all t > 0

and satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ(|(xR,0, xM,0, z0)|, t) + γ(‖v(t)‖U), ∀t > 0 (7.3a)

|z(t)| 6 µ(t)[a(|(xR,0, xM,0, z0)|) + p(‖v(t)‖U)], ∀t > 0 (7.3b)

Next we present a robust multi-rate sampled-data observer design with respect to measurement

errors for a multi-rate system. Consider system (7.1) with asynchronous, sampled outputs

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t))

yi(tij) = xiM(tij) + vi(tij), j ∈ Z+, i = 1, 2, . . . ,m

(7.4)

where tij denotes the j-th sampling time for the state xiM , at some sequence of time instants S =

{tk}∞k=0. The sampling times of each sensor are not necessarily uniformly spaced, but satisfying

0 < tij+1 − tij 6 r for all j ∈ Z+, where r is the maximum sampling period among all the sensors.

There is a one-to-one mapping from {tij : j ∈ Z+, i = 1, 2, . . . ,m} to {tk}∞k=0.

Consider a multi-rate sampled-data observer design of the following form

ż(t) = F (z(t), w(t)), t ∈ [tk, tk+1)

ẇ(t) = fM(Ψ(z(t), w(t)), w(t)), t ∈ [tk, tk+1)

wi(tk+1) = yi(tk+1)

tk+1 = tk + rd(tk)

x̂R(t) = Ψ(z(t), w(t))

(7.5)
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wherew ∈ Rm is the predicted outputs, d ∈ L∞loc(R+; [0, 1]) generates the actual sampling schedule

which is allowed to be time-varying. This multi-rate observer design consists of a continuous-time

observer coupled with m inter-sample predictors. Therefore, the existence of a robust continuous-

time observer (7.2) is a prerequisite for the observer design in a multi-rate system. The inter-sample

predictors continuously generate estimates of the sampled outputs in each sampling interval. wi(t)

will get reinitialized once a new measurement yi(tk+1) becomes available, whereas the rest of the

predictor states do not change until their measurements are obtained.

The multi-rate design offers two attractive features: (i) a continuous-time observer design from

the literature can be reused in the context of a multi-rate design by coupling with predictors; (ii)

the unmeasured state is reconstructed from the observer, and continuous estimates of the sampled

outputs are reconstructed from the inter-sample predictors. It was seen in [52] that the model-based

prediction offers a more meaningful approach to approximate the inter-sample behavior compared

with a sample-and-hold strategy, especially under large sampling period.

Suppose that there exists a robust continuous-time observer (7.2) for system (7.1) with respect

to measurement errors. Moreover, suppose that there exist constantsCi > 0 and functions σ̄i ∈ KL

for all i = 1, 2, . . . ,m, such that for every (xR,0, xM,0, z0, v) ∈ Rn−m×Rm×Rk ×L∞loc(R+;Rm),

the solution (xR(t), xM(t), z(t)) of the overall system (i.e., the continuous-time system (7.1) and

robust observer (7.2)) with initial condition (xR(0), xM(0), z(0)) = (xR,0, xM,0, z0) corresponding

to v ∈ L∞loc(R+;Rm) exists for all t > 0 and satisfies the following estimate

|f iM(Ψ(z(t), xM(t) + v(t)), xM(t) + v(t))− f iM(xR(t), xM(t))|

6 σ̄i(|(xR,0, xM,0, z0)|, t) + Ci ‖v(t)‖U , ∀t > 0

(7.6)

In addition, suppose that (i) 3rCim < 1 for i = 1, 2, . . . ,m; (ii) 3γ(ms) < s for all s > 0, where

γ ∈ N1 is the gain function in the estimate (7.3a) of the robust observer.

If the above properties are satisfied in a continuous-time observer design, it can be proved that

(7.5) is a robust multi-rate sampled-data observer for (7.4) with respect to measurement errors. In

other words, there exist functions σ̃R, σ̃M ∈ KL, γ̃R, γ̃M , p̃ ∈ N1, µ̃ ∈ K+ and ã ∈ K∞ such that

154



for every (xR,0, xM,0, z0, w0, d, v) ∈ Rn−m × Rm × Rk × Rm × L∞loc(R+; [0, 1]) × L∞loc(R+;Rm),

the solution (xR(t), xM(t), z(t), w(t)) of the overall system of (7.4) and (7.5) with initial condition

(xR(0), xM(0), z(0), w(0)) = (xR,0, xM,0, z0, w0) corresponding to d ∈ L∞loc(R+; [0, 1]) and v ∈

L∞loc(R+;Rm) satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ̃R(|(xR,0, xM,0, z0, w0)|, t) + γ̃R(‖v(t)‖U), ∀t > 0 (7.7a)

|w(t)− xM(t)| 6 σ̃M(|(xR,0, xM,0, z0, w0)|, t) + γ̃M(‖v(t)‖U), ∀t > 0 (7.7b)

|(z(t), w(t))| 6 µ̃(t)[ã(|(xR,0, xM,0, z0, w0)|) + p̃(‖v(t)‖U)], ∀t > 0 (7.7c)

The input-to-output stability property has been established for the observer and predictor errors

of the overall system with respect to measurement noises, by applying the Karafyllis-Jiang vector

small-gain theorem (see detailed proof in Section 6.3). In addition, the multi-rate design provides

robustness with respect to perturbations in the sampling schedule.

7.2 Main Results

In this section, an available multi-rate observer design (7.5) is the starting point. Similar to the

multi-rate multi-delay observer in linear systems, a dead time compensation algorithm is proposed

to handle possible measurement delays. Measurement errors are not considered (i.e., v ≡ 0) in the

system. It is shown that the multi-rate multi-delay observer is asymptotically stable in the presence

of nonconstant and arbitrarily large delays.

7.2.1 Proposed Multi-Rate Multi-Delay Observer Design

Consider a multi-rate system (7.4) with possible delays in the outputs yi(tij) for all j ∈ Z+, i =

1, 2, . . . ,m, in the absence of measurement errors

ẋR(t) = fR(xR(t), xM(t))

ẋM(t) = fM(xR(t), xM(t)), t > −∆

yi(tij) = xiM(tij − δij)

(7.8)
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where tij denotes the time when the j-th measurement of xiM becomes available after some possible

delay δij > 0. In other words, the measured output yi(tij) is a function of the state xiM at time tij−δij .

The measurement delay δij is not constant but is assumed bounded by a positive real number ∆.

Notice that δij = 0 if there is no delay in the output yi. Similar to the multi-rate system of Equation

(7.4), the sampling times of each measurement are not necessarily uniformly spaced, but satisfying

0 <
∣∣(tij′ − δij′)− (tij − δij)

∣∣ 6 r for any consecutive sampling instants.

The proposed observer for the system (7.4) with multiple measurement delays is based on the

multi-rate observer design (7.5) combined with dead time compensation. As depicted in Figure 4.1

(notice the continuous outputs are not considered), the estimation process is composed of two steps.

First, dead time compensation will be triggered once a delayed measurement is obtained at tij . Past

estimates are recalculated by integrating the observer and compensator equations from tij − δij to

tij . Any available measurement can be used as a delay-free output to reinitialize the corresponding

compensator at its sampling time. The estimates of the current state at tij are consequently updated

at the end of the compensation. This step ensures that these available measurements are used in the

observer without delay, in the same order as they are sampled. Second, the updated estimates are

used as the initial condition of the observer and the inter-sample output predictors at tij . The multi-

rate multi-delay observer operates like a delay-free multi-rate observer when there is no delayed

measurement.

When a sampled and delayed measurement becomes available at tij , dead time compensation is

performed to update the past estimates. For all t ∈ [tij − δij, tij) where δij 6= 0, the following design
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of a multi-rate observer with dead time compensation is proposed

ż(t) = F (z(t), w(t)) (7.9a)

ẇ(t) = fM(Ψ(z(t), w(t)), w(t)) (7.9b)

wi(tij − δij) = yi(tij) (7.9c)

wi
′
(ti
′
j′ − δi

′
j′) = yi

′
(ti
′
j′), ∀ti′j′ , (ti

′
j′ − δi

′
j′) ∈ [tij − δij, tij) (7.9d)

x̂R(t) = Ψ(z(t), w(t)) (7.9e)

where w ∈ Rm is the compensator state representing the past estimates for xM(t). From (7.9c), it

shows the reinitialization step of the i-th dead time compensator by using the delayed measurement

yi(tij) at its sampling time tij − δij . The outputs that are sampled and measured between tij − δij and

tij can be used to reset the compensators at their respective sampling times, as seen in (7.9d).

Remark 24. The observer state z(t), compensator state w(t), and sampled outputs yi
′

in (7.9) all

represent the past information in the system throughout the dead time compensation, which need

to be stored in a buffer. Notice that the past estimates are generated for the purpose of correcting

the state estimates at tij and therefore improving the estimation accuracy afterwards. The memory

size of the buffer will be finite as long as the upper bound of the measurement delay ∆ is finite, as

will be discussed later.

Once the estimates at tij are obtained after the dead time compensation, inter-sample prediction

comes into play in the time interval between two consecutive measurements at tij and ti′j′ . For all

t ∈ [tij, t
i′
j′), the multi-rate multi-delay observer follows

ż(t) = F (z(t), w(t))

ẇ(t) = fM(Ψ(z(t), w(t)), w(t))

x̂R(t) = Ψ(z(t), w(t))

(7.10)

where w ∈ Rm is the predicted outputs for the sampled measurements yi in the sampling interval.
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These predictors estimate the evolution of the sampled outputs, in the same spirit as in a delay-free

multi-rate observer. If an undelayed measurement is available at tij , the inter-sample prediction will

run immediately after reinitialization, and no dead time compensation will be needed. Algorithm

2 summarizes the estimation process of the proposed multi-rate multi-delay observer.

Algorithm 2 Algorithm for Nonlinear Multi-rate Multi-delay Observer

STEP 0: Initialize z(t0), w(t0), and solve Equation (7.10) for [t0, t
i
j).

STEP 1: Calculate z(t) and w(t) when a sampled measurement becomes available at tij .
if δij > 0 then

Solve Equation (7.9) for [tij − δij, tij) and update z(tij), w(tij). . Dead time compensation
end if
Reinitialize Equation (7.10) with z(tij), w(tij), and solve it for [tij, t

i′
j′). . Inter-sample prediction

STEP 2: Set tij = ti
′
j′ and go to Step 1.

7.2.2 Stability Analysis

Past estimates are recalculated in the dead time compensation once a sampled, delayed mea-

surement becomes available. Estimates at certain times may be calculated more than once, if the

measurement order differs from the sampling order. We name the last updated estimates obtained

from the multi-rate multi-delay observer “final estimates”. We denote t̃ the most-recent sampling

time where the measurements of all the samples taken before t̃ (including t̃) are available. It im-

plies that the final estimates are obtained for all t 6 t̃. Because the measurements are used in the

same order as the way they are sampled when calculating the final estimates, the final estimates

z(t), w(t) and x̂R(t) for all t 6 t̃ in the multi-rate multi-delay observer are identical to those in a

delay-free multi-rate observer, under the same design parameters. Once the final estimates at t̃ are

obtained, all the stored measurements that are sampled before t̃ can be cleared from the buffer.

Despite the fact that the estimation process depicted in Figure 4.1 involves two steps, stability

of the multi-rate multi-delay observer will be presented in a unified manner, as the essence of both

compensation and prediction is to predict the dynamic model forward.
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It is straightforward to show that the estimates and predicted outputs are bounded for all t > 0.

The fact that the system (7.1) is forward complete implies the existence of functions µ ∈ K+ and

a ∈ K∞ such that for every (xR,0, xM,0) ∈ Rn−m × Rm, the solution (xR(t), xM(t)) of (7.1) with

initial condition (xR(0), xM(0)) = (xR,0, xM,0) exists for all t > 0 and satisfies

|(xR(t), xM(t))| 6 µ(t)a(|(xR,0, xM,0)|) (7.11)

Obviously, |(x̂R(t), w(t))| will be bounded before the first measurement becomes available as the

initial condition of the observer is finite. After the first measurement, the estimates in the compen-

sation (or prediction) will be generated by forward predicting the model from t̃with reinitialization

at some sampling times. The estimates at t̃ are identical to those in a delay-free multi-rate observer,

which are bounded from (7.7a) and (7.7b). Therefore, |(x̂R(t), w(t))| is bounded for all t > t̃.

Because of the previous assumption that the measurement delay in the system (7.8) has a finite

upper bound, t̃ will approach infinity as t goes to infinity. From (7.7a) and (7.7b), we have

lim
t̃→+∞

x̂R(t̃) = xR(t̃) (7.12a)

lim
t̃→+∞

w(t̃) = xM(t̃) (7.12b)

Hence, the observer can accurately estimate the actual state in the compensation and prediction as

t goes to infinity, in the absence of measurement errors. Reinitialization in the compensation does

not affect the convergence property.

An attractive feature of the approach is that it can handle the situation where the delayed mea-

surement sequence is not in the same order as the sampling sequence.

Remark 25. The proposed dead time compensation approach can be applied to a multi-rate full-

order observer formulation, under appropriate modifications.
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7.3 A Gas-Phase Polyethylene Reactor

The application of a multi-rate multi-delay observer is then explored in an industrial gas-phase

polyethylene reactor (see Figure 3.3), where the measurement delays of on-line gas chromatogra-

phy and off-line lab analysis will be accounted for. In this reactor, the polymerization takes place

at the interface between the solid catalyst and the polymer matrix. The feed to the reactor, which

consists of ethylene, comonomers, hydrogen, and inerts, provides the fluidization by using a high

rate of gas recycle. Ziegler-Natta catalysts are fed continuously to the reactor. The heat generated

from the exothermic reaction is removed through a heat exchanger. The product, polyethylene,

discharges near the base of the reactor as solid powder.

In the operating range of industrial interest, the fluidized-bed reactor in Figure 3.3 can often

be modeled as a single-phase, well-mixed CSTR [215]. For simplicity, it is assumed that there is

only one type of active catalyst sites [227]. The mathematical model for this reactor can be found

in Section 4.4. The definitions of all the variables in Equations (4.17), (4.18) and the values of the

process parameters are listed in Tables 3.1 and 3.2 in Section 3.4.

As for outputs, the reactor temperature is continuously measured on line without delay. The

gas concentrations of inerts, ethylene, comonomer and hydrogen are normally sampled every 20

min and measured by using on-line gas chromatography, which induces about 8 min delay caused

by sample preparation (2.5 min), analysis (4 min), and computer calculation (1.5 min) [307]. In

addition, the off-line lab analysis of melt index and density is normally sampled every 40 min with

60 min delay, which provides quality information of the polyethylene [222]. During the reaction,

the active catalyst site may become inactive due to spontaneous decay and adsorption of impurities,

which forms dead site and dead polymer chains. Because of the difficulty in measuring the amount

of active catalyst sites in the reactor, it is necessary to monitor this quantity from a reliable on-line

soft sensor. Providing continuous and reliable estimates for the inter-sample dynamic behavior of

these sampled outputs is also significant for quality control and monitoring.

A continuous-time observer, which serves as the basis of the multi-rate multi-delay observer,

will be designed by using the exact error linearization method (see [148] for the full-order observer
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formulation, and [4] for the reduced-order observer formulation) as follows

ż(t) = Az(t) +By(t)

where

A = −0.00068,

B =

[
0.01 0.01 0.01 0.01 0.01 0.01 0.01

]

The immersion map z = T (x) satisfies

∂T

∂xR
fR(x) +

∂T

∂xM
fM(x) = AT (x) +BxM

It is possible to calculate the solution T (x) in the form of a multivariate Taylor series around the

steady state. The truncation order is set to N = 4 when solving the system of linear PDEs.

It is assumed that the first sample of gas chromatography is taken at t = 5 min and the first

sample of lab analysis is taken at t = 10 min. Perturbations in the sampling schedule and noncon-

stant measurement delays are considered in the simulation. The actual sampling schedule and their

corresponding measurement delays are given in Table 7.1. Note that the measurement delay of gas

chromatography is smaller than its sampling period, whereas the delay of lab analysis is relatively

larger. The initial conditions of the process and the observer are given in Table 4.4.

Gas chromatography

Sampling (min) 5 23 43 62.5 81.5 102 122 140
Delay (min) 8.0 8.7 8.5 7.5 8.0 8.0 8.2 7.8
Sampling (min) 161.5 179.5 199.5 219 238 258.5 278.5 300.5
Delay (min) 8.5 8.3 8.0 8.2 7.7 8.0 8.0 8.3

Lab analysis
Sampling (min) 10 48 93 134 170 210 248 288
Delay (min) 60 56 62.8 66.3 54.5 60 60.5 66.7

Table 7.1: Actual sampling schedule and measurement delays in the gas-phase polyethylene reactor
example.
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The performance of multi-rate multi-delay observer is shown in Figure 7.1, where it is com-

pared with a multi-rate observer in the absence of measurement delays with the same design pa-

rameters. Figure 7.1(a) shows that the estimate from the multi-rate multi-delay observer has ap-

proximately the same convergence rate as that from the multi-rate design. Figures 7.1(b)-(f) show

the evolution of estimated outputs obtained from inter-sample predictors and in this way, the inter-

sample behavior can be reconstructed under nonuniform sampling schedule. When a sampled and

delayed measurement arrives, dead time compensation is performed by integrating Equation (7.9)

from sampling time to current time and therefore the estimates will get updated, which explains the

impulsive behavior. The multi-rate multi-delay observer design (7.9)&(7.10) provides reliable esti-

mation results. In the presence of multiple measurements, the reduced-order observer formulation

is preferred because the dimension would be significantly lower than the full-order formulation.

Figure 7.1: Comparison of the multi-rate multi-delay observer (red) and the multi-rate observer in
the absence of measurement delay (green) in the nonlinear gas-phase polyethylene reactor exam-
ple.
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7.4 Conclusions

The present chapter proposes a design method for multi-rate multi-delay observers in nonlinear

systems. It is based on an available multi-rate observer design combined with dead time compen-

sation, where asynchronous and sampled measurements, in the presence of possible measurement

delays, are accounted for. The estimation process has two steps: (i) dead time compensation when

a delayed measurement becomes available and the current estimates are updated; (ii) inter-sample

prediction in the time interval between consecutive delayed measurements. Two attractive features

of the proposed observer are that it inherits the stability property from a delay-free multi-rate ob-

server and it can handle nonconstant and arbitrarily large delays, in the absence of measurement

errors. Unlike the chain observers in the literature where a high dimensionality may be required

in the case of large delays, the proposed observer has the same dimension as a multi-rate observer

for a delay-free system. From the case study, we see that the multi-rate multi-delay observer can

provide reliable estimation results. The presence of delays in the measurements inevitably slows

down convergence of the observer.
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8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

State observer design is a vast and rapidly growing research field with potential applications to

process monitoring, controller synthesis, and fault detection and identification. While this disser-

tation focuses on only a subset of the theory and applications of observer design, it accomplishes a

goal of furthering the algorithms and applicability of observer design by enabling the utilization of

all available on-line measurements and demonstrates its usefulness in a polymerization reactor con-

text. Motivated by practical needs of monitoring chemical processes, this dissertation addressed

the problem of multi-rate multi-delay observer design in linear and nonlinear systems and stability

analysis was carried out based on Lyapunov’s stability theory and the vector small-gain theorem,

respectively.

Chapter 2 presented an application of a nonlinear observer for monitoring degree of polymer-

ization in a series of PET polycondensation reactors in the presence of a continuous measurement

and a sampled, delayed measurement. By exploiting the special LBT structure of the system, the

complexity of the state dependence of the observer gains was reduced. Inter-sample prediction and

dead time compensation were used to handle the sampled, delayed measurement. From simulation,

it was shown that the observer can provide good estimates in the presence of sensor noise. But the

problem of multi-rate observer design was bypassed because the discrete measurement was not an

input for the continuous-time observer.

Chapter 3 developed a design method for multi-rate observers in linear multi-output systems,

considering both continuous and discrete measurements with asynchronous sampling. It was based

on an available continuous-time Luenberger observer design coupled with inter-sample predictors

for the sampled measurements. The stability analysis was carried out based on Lyapunov’s second

method and it was concluded that the error dynamics of the multi-rate observer will be exponential

stable as long as the sampling period is sufficiently small. Sufficient and explicit conditions were

provided, in terms of maximum sampling period, to guarantee exponential stability, irrespective of

perturbations in the sampling schedule. A gas-phase polyethylene reactor example demonstrated
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the applicability of the proposed method in a linear context.

Another important characteristic of the process outputs is time delay which was accounted for

in Chapter 4. A design method of multi-rate multi-delay observers in linear systems was developed

based on an available multi-rate observer design proposed in Chapter 3 combined with dead time

compensation. Two attractive features of the observer are that it inherits stability from a delay-free

multi-rate observer and it can handle nonconstant, arbitrarily large measurement delays. The two

case studies of Chapter 3 were reconsidered in the presence of delays and it can be seen that the

multi-rate multi-delay observer provided reliable estimation results.

The previous chapters focused on the problem of incorporating different types of measurements

in the observer design, for prescribed eigenvalues of the error dynamics. In Chapter 5, a rigorous

approach for observer gain selection was developed so that a compromise can be reached between

the effect of modeling error on the accuracy of state estimates and the effect of measurement error

on the accuracy of state estimates, by optimizing a performance index. The effects of modeling er-

ror and measurement error were evaluated by studying the response of the observer error dynamics

to a unit impulse function. This approach was demonstrated through two classes of linear systems

with single-rate measurements and with fast and slow measurements, respectively. It is possible to

generalize the optimal observer design to a broader class of multi-rate systems.

Chapter 6 presented a design method for multi-rate observers in nonlinear systems under asyn-

chronous sampling. It was based on an available continuous-time design coupled with inter-sample

predictors for the sampled measurements. The input-to-output stability was established for the es-

timation/prediction errors with respect to measurement errors using the vector small-gain theorem.

Moreover, the multi-rate design provided robustness with respect to perturbations in the sampling

schedule. The applicability of the proposed method was seen through various example problems.

Multi-rate multi-delay observer in nonlinear systems was studied in Chapter 7. It was based on

an available multi-rate observer design combined with dead time compensation, in the same spirit

as the linear multi-rate multi-delay observer in Chapter 4. It inherited the stability property from a

delay-free multi-rate observer in the absence of measurement errors. The gas-phase polyethylene
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reactor example was reconsidered in the presence of measurement delays where reliable estimation

results were demonstrated through simulation.

To this extent, this dissertation presents developments in the field of state estimation by provid-

ing the theoretical advances in multi-rate multi-delay state observer design, and several simulation

examples with focus on polymerization reactors. It is the author’s hope that the multi-rate observer

framework may assist in the implementation of state observers for process monitoring in the future.

In particular, some key areas for future work will be discussed to conclude this dissertation, as they

flow naturally out of the specific developments explored to this point.

8.1 Future Work

The theoretical developments of multi-rate observers in linear and nonlinear systems provided

sufficient stability conditions in terms of maximum sampling period, which were shown to be very

conservative. It is desirable to find a tighter bound which would help to select appropriate sensors

for particular systems and predetermine the nominal sampling rate for each sensor. Other stability

tools may be required in the analysis.

Optimal multi-rate observer design was studied in linear systems in Chapter 5, along the same

line as optimal feedback controller tuning. Future research efforts may focus on optimal multi-rate

observer design in nonlinear systems. A systematic approach for the optimal selection of controller

parameters was proposed in [336], in the sense of minimizing a performance index calculated as a

function of the controller parameters by solving Zubov’s PDE. Standard optimization techniques

were then employed to find the optimal values of the controller parameters. There is clearly poten-

tial to extend the methodology to the optimal selection of design parameters in nonlinear multi-rate

observer.

It was assumed in this dissertation that a perfect model is always available in the development of

multi-rate multi-delay observers. In practice, model and parameter uncertainties are very common

even in a well-developed process model. It is desirable to study the response of multi-rate observer

affected by model and parameter uncertainties, both from a theory and application perspective. In

addition, it is of great interest to test the multi-rate multi-delay observer on a meaningful lab-scale
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process with experimental data. In this way, observer performance can be evaluated in the presence

of measurement errors, model and parameter uncertainties, and disturbances.

This dissertation investigated the model-based approach for process monitoring where the mea-

surements considered are functions of the state variables. However, a large amount of data recorded

in the process industry cannot be represented in terms of state variables of a first-principle model.

For example, visual appearance is an important feature in the quality assessment of chemical and

pharmaceutical products. An image contains essential information on product morphology, shape,

size and color. It would be beneficial to incorporate this kind of information into the process mon-

itoring scheme by developing automatic machine-based image analysis systems. It is believed that

the hybrid approach would overcome the limitations from a standalone model-based or data-driven

approach.

In Chapter 7, the proposed multi-rate sampled-data observer was developed for an autonomous

nonlinear system. A multi-rate observer design method for non-autonomous systems may be con-

sidered as a future research direction, where the input variable enters the system’s equations in an

explicit way. In such a case, a new set of sufficient conditions for the solution of the above problem

should be developed.

Finally, another interesting future research direction might be devoted to the study of coupling

the proposed nonlinear multi-rate observer with a state feedback controller, and to study the result-

ing closed-loop properties. Separation principle does not hold any longer in nonlinear systems (at

least very restrictive) and thus, the design of state feedback and the design of state observer cannot

be performed independently. This problem is of considerable theoretical and practical merits.
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[101] J. H. Kotecha and P. M. Djurić, “Gaussian particle filtering,” IEEE Transactions on Signal

Processing, vol. 51, no. 10, pp. 2592–2601, 2003.

[102] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” IEE Proceedings F - Radar and Signal Processing,

vol. 140, no. 2, pp. 107–113, 1993.

[103] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for

Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208, 2000.

[104] A. Doucet, N. de Freitas, and N. Gordon, “An introduction to sequential Monte Carlo meth-

ods,” in Sequential Monte Carlo Methods in Practice, pp. 3–14, Springer, 2001.

[105] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen years

later,” in The Oxford Handbook of Nonlinear Filtering, pp. 656–704, Oxford University

Press, 2009.

[106] S. Gillijns, O. Barrero Mendoza, J. Chandrasekar, B. L. R. De Moor, D. S. Bernstein, and

A. Ridley, “What is the ensemble Kalman filter and how well does it work,” in Proceedings

of the American Control Conference, IEEE, 2006.

[107] G. Evensen, “The ensemble Kalman filter for combined state and parameter estimation,”

IEEE Control Systems, vol. 29, no. 3, pp. 83–104, 2009.

178



[108] G. Evensen, “Advanced data assimilation for strongly nonlinear dynamics,” Monthly

Weather Review, vol. 125, no. 6, pp. 1342–1354, 1997.

[109] S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, and B. Vallès, “The ensemble

Kalman filter in reservoir engineering–a review,” SPE Journal, vol. 14, no. 03, pp. 393–412,

2009.

[110] K. Ito, “Gaussian filter for nonlinear filtering problems,” in Proceedings of the 39th IEEE

Conference on Decision and Control, vol. 2, pp. 1218–1223, IEEE, 2000.

[111] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transactions on Automatic

Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[112] H. Fang, N. Tian, Y. Wang, M. C. Zhou, and M. A. Haile, “Nonlinear Bayesian estima-

tion: from Kalman filtering to a broader horizon,” IEEE/CAA Journal of Automatica Sinica,

vol. 5, no. 2, pp. 401–417, 2018.

[113] T. Lefebvre, H. Bruyninckx, and J. De Schutter, “Kalman filters for non-linear systems: a

comparison of performance,” International Journal of Control, vol. 77, no. 7, pp. 639–653,

2004.

[114] D. G. Robertson, J. H. Lee, and J. B. Rawlings, “A moving horizon-based approach for

least-squares estimation,” AIChE Journal, vol. 42, no. 8, pp. 2209–2224, 1996.

[115] V. M. Zavala, C. D. Laird, and L. T. Biegler, “A fast moving horizon estimation algorithm

based on nonlinear programming sensitivity,” Journal of Process Control, vol. 18, no. 9,

pp. 876–884, 2008.

[116] V. M. Zavala and L. T. Biegler, “Optimization-based strategies for the operation of low-

density polyethylene tubular reactors: Moving horizon estimation,” Computers & Chemical

Engineering, vol. 33, no. 1, pp. 379–390, 2009.

[117] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock, “A real-time algorithm for mov-

ing horizon state and parameter estimation,” Computers & Chemical Engineering, vol. 35,

no. 1, pp. 71–83, 2011.

179



[118] F. V. Lima and J. B. Rawlings, “Nonlinear stochastic modeling to improve state estimation

in process monitoring and control,” AIChE Journal, vol. 57, no. 4, pp. 996–1007, 2011.

[119] A. Küpper, L. Wirsching, M. Diehl, J. P. Schlöder, H. G. Bock, and S. Engell, “Online

identification of adsorption isotherms in SMB processes via efficient moving horizon state

and parameter estimation,” Computers & Chemical Engineering, vol. 34, no. 12, pp. 1969–

1983, 2010.

[120] L. Ji and J. B. Rawlings, “Application of MHE to large-scale nonlinear processes with de-

layed lab measurements,” Computers & Chemical Engineering, vol. 80, pp. 63–72, 2015.

[121] K. R. Muske, J. B. Rawlings, and J. H. Lee, “Receding horizon recursive state estimation,”

in Proceedings of American Control Conference, pp. 900–904, IEEE, 1993.

[122] K. R. Muske and J. B. Rawlings, “Nonlinear moving horizon state estimation,” in Methods

of Model Based Process Control, pp. 349–365, Springer, 1995.

[123] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright, “Nonlinear pre-

dictive control and moving horizon estimation–an introductory overview,” in Advances in

Control, pp. 391–449, Springer, 1999.

[124] C. V. Rao and J. B. Rawlings, “Constrained process monitoring: Moving-horizon approach,”

AIChE Journal, vol. 48, no. 1, pp. 97–109, 2002.

[125] C. V. Rao, J. B. Rawlings, and J. H. Lee, “Constrained linear state estimation–a moving

horizon approach,” Automatica, vol. 37, no. 10, pp. 1619–1628, 2001.

[126] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estimation for nonlinear

discrete-time systems: Stability and moving horizon approximations,” IEEE Transactions

on Automatic Control, vol. 48, no. 2, pp. 246–258, 2003.

[127] J. B. Rawlings and B. R. Bakshi, “Particle filtering and moving horizon estimation,” Com-

puters & Chemical Engineering, vol. 30, no. 10-12, pp. 1529–1541, 2006.

180



[128] X. Shao, B. Huang, and J. M. Lee, “Constrained Bayesian state estimation–A comparative

study and a new particle filter based approach,” Journal of Process Control, vol. 20, no. 2,

pp. 143–157, 2010.

[129] A. Mesbah, A. E. M. Huesman, H. J. M. Kramer, and P. M. J. Van den Hof, “A comparison of

nonlinear observers for output feedback model-based control of seeded batch crystallization

processes,” Journal of Process Control, vol. 21, no. 4, pp. 652–666, 2011.

[130] M. Zeitz, “The extended Luenberger observer for nonlinear systems,” Systems & Control

Letters, vol. 9, no. 2, pp. 149–156, 1987.

[131] F. Deza, E. Busvelle, J. P. Gauthier, and D. Rakotopara, “High gain estimation for nonlinear

systems,” Systems & Control Letters, vol. 18, no. 4, pp. 295–299, 1992.

[132] J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear systems ap-

plications to bioreactors,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 875–

880, 1992.

[133] J. P. Gauthier and I. A. K. Kupka, “Observability and observers for nonlinear systems,”

SIAM Journal on Control and Optimization, vol. 32, no. 4, pp. 975–994, 1994.

[134] K. Busawon, M. Farza, and H. Hammouri, “Observer design for a special class of nonlinear

systems,” International Journal of Control, vol. 71, no. 3, pp. 405–418, 1998.

[135] H. Hammouri, B. Targui, and F. Armanet, “High gain observer based on a triangular struc-

ture,” International Journal of Robust and Nonlinear Control, vol. 12, no. 6, pp. 497–518,

2002.

[136] G. Besançon, “High-gain observation with disturbance attenuation and application to robust

fault detection,” Automatica, vol. 39, no. 6, pp. 1095–1102, 2003.

[137] H. K. Khalil and L. Praly, “High-gain observers in nonlinear feedback control,” Interna-

tional Journal of Robust and Nonlinear Control, vol. 24, no. 6, pp. 993–1015, 2014.

181



[138] A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization of a class of

nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44, no. 9, pp. 1672–

1687, 1999.

[139] A. N. Atassi and H. K. Khalil, “Separation results for the stabilization of nonlinear sys-

tems using different high-gain observer designs,” Systems & Control Letters, vol. 39, no. 3,

pp. 183–191, 2000.

[140] L. Praly, “Asymptotic stabilization via output feedback for lower triangular systems with

output dependent incremental rate,” IEEE Transactions on Automatic Control, vol. 48, no. 6,

pp. 1103–1108, 2003.

[141] V. Andrieu, L. Praly, and A. Astolfi, “High gain observers with updated gain and homoge-

neous correction terms,” Automatica, vol. 45, no. 2, pp. 422–428, 2009.

[142] L. Praly and Z.-P. Jiang, “Linear output feedback with dynamic high gain for nonlinear

systems,” Systems & Control Letters, vol. 53, no. 2, pp. 107–116, 2004.

[143] A. A. Prasov and H. K. Khalil, “A nonlinear high-gain observer for systems with measure-

ment noise in a feedback control framework,” IEEE Transactions on Automatic Control,

vol. 58, no. 3, pp. 569–580, 2013.

[144] D. Astolfi, L. Marconi, L. Praly, and A. Teel, “Sensitivity to high-frequency measurement

noise of nonlinear high-gain observers,” in Proceedings of 10th IFAC Symposium on Non-

linear Control Systems, pp. 276–278, IFAC, 2016.

[145] L. K. Vasiljevic and H. K. Khalil, “Error bounds in differentiation of noisy signals by high-

gain observers,” Systems & Control Letters, vol. 57, no. 10, pp. 856–862, 2008.

[146] J. Tsinias, “Observer design for nonlinear systems,” Systems & Control Letters, vol. 13,

no. 2, pp. 135–142, 1989.

[147] J. Tsinias, “Further results on the observer design problem,” Systems & Control Letters,

vol. 14, no. 5, pp. 411–418, 1990.

182



[148] N. Kazantzis and C. Kravaris, “Nonlinear observer design using Lyapunov’s auxiliary theo-

rem,” Systems & Control Letters, vol. 34, no. 5, pp. 241–247, 1998.

[149] C. Kravaris, V. Sotiropoulos, C. Georgiou, N. Kazantzis, M. Xiao, and A. J. Krener, “Non-

linear observer design for state and disturbance estimation,” Systems & Control Letters,

vol. 11, no. 56, pp. 730–735, 2007.

[150] C. Kravaris and G. Savoglidis, “Modular design of nonlinear observers for state and distur-

bance estimation,” Systems & Control Letters, vol. 57, no. 11, pp. 946–957, 2008.

[151] V. Andrieu and L. Praly, “On the existence of a Kazantzis–Kravaris/Luenberger observer,”

SIAM Journal on Control and Optimization, vol. 45, no. 2, pp. 432–456, 2006.

[152] A. Astolfi and L. Praly, “Global complete observability and output-to-state stability imply

the existence of a globally convergent observer,” Mathematics of Control, Signals and Sys-

tems, vol. 18, no. 1, pp. 32–65, 2006.

[153] M. Guay, “Observer linearization by output-dependent time-scale transformations,” IEEE

Transactions on Automatic Control, vol. 47, no. 10, pp. 1730–1735, 2002.

[154] G. Kreisselmeier and R. Engel, “Nonlinear observers for autonomous Lipschitz continuous

systems,” IEEE Transactions on Automatic Control, vol. 48, no. 3, pp. 451–464, 2003.

[155] A. J. Krener and A. Isidori, “Linearization by output injection and nonlinear observers,”

Systems & Control Letters, vol. 3, no. 1, pp. 47–52, 1983.

[156] A. J. Krener and W. Respondek, “Nonlinear observers with linearizable error dynamics,”

SIAM Journal on Control and Optimization, vol. 23, no. 2, pp. 197–216, 1985.

[157] A. J. Krener and M. Xiao, “Nonlinear observer design in the Siegel domain,” SIAM Journal

on Control and Optimization, vol. 41, no. 3, pp. 932–953, 2002.

[158] X.-H. Xia and W.-B. Gao, “Nonlinear observer design by observer error linearization,” SIAM

Journal on Control and Optimization, vol. 27, no. 1, pp. 199–216, 1989.

183



[159] M. Xiao, “A direct method for the construction of nonlinear discrete-time observer with lin-

earizable error dynamics,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 128–

135, 2006.

[160] W. Chen and M. Saif, “Unknown input observer design for a class of nonlinear systems: an

LMI approach,” in Proceedings of American Control Conference, pp. 834–838, IEEE, 2006.

[161] X. Pan and M. N. Karim, “Modelling and monitoring of natural gas pipelines: New method

for leak detection and localization estimation,” in Computer Aided Chemical Engineering,

vol. 37, pp. 1787–1792, Elsevier, 2015.

[162] X. Pan, W. Tang, J. P. Raftery, and M. N. Karim, “Design of an unknown input observer for

leak detection under process disturbances,” Industrial & Engineering Chemistry Research,

vol. 56, no. 4, pp. 989–998, 2017.

[163] X. Pan, W. Tang, and M. N. Karim, “Detection of multiple leaks in a natural gas pipeline

using observer and mixed-integer partial differential equation-constrained optimization,” In-

dustrial & Engineering Chemistry Research, vol. 56, no. 41, pp. 11839–11846, 2017.

[164] X. Pan, J. P. Raftery, C. Botre, M. R. DeSessa, T. Jaladi, and M. N. Karim, “Estimation of

unmeasured states in a bioreactor under unknown disturbances,” Industrial & Engineering

Chemistry Research, vol. 58, no. 6, pp. 2235–2245, 2019.

[165] Y. Xiong and M. Saif, “Sliding mode observer for nonlinear uncertain systems,” IEEE Trans-

actions on Automatic Control, vol. 46, no. 12, pp. 2012–2017, 2001.

[166] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-driven approaches for

industrial process monitoring,” IEEE Transactions on Industrial Electronics, vol. 61, no. 11,

pp. 6418–6428, 2014.

[167] P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven soft sensors in the process industry,”

Computers & Chemical Engineering, vol. 33, no. 4, pp. 795–814, 2009.

[168] P. Kadlec, R. Grbić, and B. Gabrys, “Review of adaptation mechanisms for data-driven soft

sensors,” Computers & Chemical Engineering, vol. 35, no. 1, pp. 1–24, 2011.

184



[169] Z. Ge, Z. Song, and F. Gao, “Review of recent research on data-based process monitoring,”

Industrial & Engineering Chemistry Research, vol. 52, no. 10, pp. 3543–3562, 2013.

[170] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-

driven fault diagnosis and process monitoring methods on the benchmark Tennessee East-

man process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012.

[171] S. Park and C. Han, “A nonlinear soft sensor based on multivariate smoothing procedure for

quality estimation in distillation columns,” Computers & Chemical Engineering, vol. 24,

no. 2-7, pp. 871–877, 2000.

[172] S. J. Qin, “Recursive PLS algorithms for adaptive data modeling,” Computers & Chemical

Engineering, vol. 22, no. 4-5, pp. 503–514, 1998.

[173] L. Chen, O. Bernard, G. Bastin, and P. Angelov, “Hybrid modelling of biotechnological

processes using neural networks,” Control Engineering Practice, vol. 8, no. 7, pp. 821–827,

2000.

[174] S. James, R. Legge, and H. Budman, “Comparative study of black-box and hybrid estima-

tion methods in fed-batch fermentation,” Journal of Process Control, vol. 12, no. 1, pp. 113–

121, 2002.

[175] H. Hotelling, “The generalization of student’s ratio,” The Annals of Mathematical Statistics,

vol. 2, no. 3, pp. 360–378, 1931.

[176] J. E. Jackson and G. S. Mudholkar, “Control procedures for residuals associated with prin-

cipal component analysis,” Technometrics, vol. 21, no. 3, pp. 341–349, 1979.

[177] J. V. Kresta, J. F. MacGregor, and T. E. Marlin, “Multivariate statistical monitoring of

process operating performance,” The Canadian Journal of Chemical Engineering, vol. 69,

no. 1, pp. 35–47, 1991.

[178] J. F. MacGregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi, “Process monitoring and

diagnosis by multiblock PLS methods,” AIChE Journal, vol. 40, no. 5, pp. 826–838, 1994.

185



[179] J. F. MacGregor and T. Kourti, “Statistical process control of multivariate processes,” Con-

trol Engineering Practice, vol. 3, no. 3, pp. 403–414, 1995.

[180] J. Chen and K.-C. Liu, “On-line batch process monitoring using dynamic PCA and dynamic

PLS models,” Chemical Engineering Science, vol. 57, no. 1, pp. 63–75, 2002.

[181] W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin, “Recursive PCA for adaptive process

monitoring,” Journal of Process Control, vol. 10, no. 5, pp. 471–486, 2000.

[182] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel

eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[183] J.-M. Lee, C. Yoo, S. W. Choi, P. A. Vanrolleghem, and I.-B. Lee, “Nonlinear process mon-

itoring using kernel principal component analysis,” Chemical Engineering Science, vol. 59,

no. 1, pp. 223–234, 2004.

[184] S. W. Choi and I.-B. Lee, “Nonlinear dynamic process monitoring based on dynamic kernel

PCA,” Chemical Engineering Science, vol. 59, no. 24, pp. 5897–5908, 2004.

[185] S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, “Fault detection and identification

of nonlinear processes based on kernel PCA,” Chemometrics and Intelligent Laboratory

Systems, vol. 75, no. 1, pp. 55–67, 2005.

[186] Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized fault diagnosis of large-scale

processes using multiblock kernel partial least squares,” IEEE Transactions on Industrial

Informatics, vol. 6, no. 1, pp. 3–10, 2010.

[187] C. Botre, M. Mansouri, M. Nounou, H. Nounou, and M. N. Karim, “Kernel PLS-based

GLRT method for fault detection of chemical processes,” Journal of Loss Prevention in the

Process Industries, vol. 43, pp. 212–224, 2016.

[188] S. J. Qin, “Survey on data-driven industrial process monitoring and diagnosis,” Annual Re-

views in Control, vol. 36, no. 2, pp. 220–234, 2012.

186



[189] R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy, “Identification of faulty sensors using

principal component analysis,” AIChE Journal, vol. 42, no. 10, pp. 2797–2812, 1996.

[190] R. Dunia and S. J. Qin, “Subspace approach to multidimensional fault identification and

reconstruction,” AIChE Journal, vol. 44, no. 8, pp. 1813–1831, 1998.

[191] H. H. Yue and S. J. Qin, “Reconstruction-based fault identification using a combined index,”

Industrial & Engineering Chemistry Research, vol. 40, no. 20, pp. 4403–4414, 2001.

[192] B. Lin, B. Recke, J. K. Knudsen, and S. B. Jørgensen, “A systematic approach for soft sensor

development,” Computers & Chemical Engineering, vol. 31, no. 5-6, pp. 419–425, 2007.

[193] H. Zhang and B. Lennox, “Integrated condition monitoring and control of fed-batch fermen-

tation processes,” Journal of Process Control, vol. 14, no. 1, pp. 41–50, 2004.

[194] O. Marjanovic, B. Lennox, D. Sandoz, K. Smith, and M. Crofts, “Real-time monitoring

of an industrial batch process,” Computers & Chemical Engineering, vol. 30, no. 10-12,

pp. 1476–1481, 2006.

[195] N. Sheibat-Othman, N. Laouti, J.-P. Valour, and S. Othman, “Support vector machines com-

bined to observers for fault diagnosis in chemical reactors,” The Canadian Journal of Chem-

ical Engineering, vol. 92, no. 4, pp. 685–695, 2014.

[196] K. Ravindranath and R. A. Mashelkar, “Modeling of poly(ethylene terephthalate) reactors. I.

A semibatch ester interchange reactor,” Journal of Applied Polymer Science, vol. 26, no. 10,

pp. 3179–3204, 1981.

[197] K. Ravindranath and R. A. Mashelkar, “Modeling of poly(ethylene terephthalate) reactors.

II. A continuous transesterification process,” Journal of Applied Polymer Science, vol. 27,

no. 2, pp. 471–487, 1982.

[198] J. Shin, Y. Lee, and S. Park, “Optimization of the pre-polymerization step of polyethylene

terephthalate (PET) production in a semi-batch reactor,” Chemical Engineering Journal,

vol. 75, no. 1, pp. 47–55, 1999.

187



[199] K. Ravindranath and R. A. Mashelkar, “Modelling of poly(ethylene terephthalate) reactors.

III. A semibatch prepolymerization process,” Journal of Applied Polymer Science, vol. 27,

no. 7, pp. 2625–2652, 1982.

[200] K. Ravindranath and R. A. Mashelkar, “Modeling of poly(ethylene terephthalate) reac-

tors: 5. A continuous prepolymerization process,” Polymer Engineering & Science, vol. 22,

no. 10, pp. 619–627, 1982.

[201] K. Ravindranath and R. A. Mashelkar, “Modeling of poly(ethylene terephthalate) reactors:

6. A continuous process for final stages of polycondensation,” Polymer Engineering & Sci-

ence, vol. 22, no. 10, pp. 628–636, 1982.

[202] C. Laubriet, B. LeCorre, and K. Y. Choi, “Two-phase model for continuous final stage melt

polycondensation of poly(ethylene terephthalate). 1. Steady-state analysis,” Industrial &

Engineering Chemistry Research, vol. 30, no. 1, pp. 2–12, 1991.

[203] I. Devotta and R. A. Mashelkar, “Modelling of polyethylene terephthalate reactors–X. A

comprehensive model for solid-state polycondensation process,” Chemical Engineering Sci-

ence, vol. 48, no. 10, pp. 1859–1867, 1993.

[204] K. Tomita, “Studies on the formation of poly(ethylene terephthalate): 1. Propagation and

degradation reactions in the polycondensation of bis(2-hydroxyethyl) terephthalate,” Poly-

mer, vol. 14, no. 2, pp. 50–54, 1973.

[205] W. Zhong, W. Wang, Z. Shao, Y. Zhang, and J. Qian, “Optimization of an industrial batch

polycondensation reactor,” in Proceedings of the American Control Conference, vol. 1,

pp. 368–373, IEEE, 2001.

[206] G. Rafler, G. Reinisch, E. Bonatz, H. Versaumer, H. Gajewski, H.-D. Sparing, K. Stein,

and C. Mühlhaus, “Kinetics of mass transfer in the melt polycondensation of poly(ethylene

terephthalate),” Journal of Macromolecular Science–Chemistry, vol. 22, no. 10, pp. 1413–

1427, 1985.

188



[207] T. E. Nowlin, Business and Technology of the Global Polyethylene Industry. Beverly, MA,

USA: John Wiley & Sons, 2014.

[208] D. Yan, W.-J. Wang, and S. Zhu, “Effect of long chain branching on rheological properties

of metallocene polyethylene,” Polymer, vol. 40, no. 7, pp. 1737–1744, 1999.

[209] P. M. Wood-Adams, J. M. Dealy, A. W. deGroot, and O. D. Redwine, “Effect of molecu-

lar structure on the linear viscoelastic behavior of polyethylene,” Macromolecules, vol. 33,

no. 20, pp. 7489–7499, 2000.

[210] P. M. Wood-Adams and S. Costeux, “Thermorheological behavior of polyethylene: effects

of microstructure and long chain branching,” Macromolecules, vol. 34, no. 18, pp. 6281–

6290, 2001.

[211] F. J. Stadler, J. Kaschta, and H. Münstedt, “Thermorheological behavior of various long-

chain branched polyethylenes,” Macromolecules, vol. 41, no. 4, pp. 1328–1333, 2008.

[212] H. A. Khonakdar, S. H. Jafari, U. Wagenknecht, and D. Jehnichen, “Effect of electron-

irradiation on cross-link density and crystalline structure of low- and high-density polyethy-

lene,” Radiation Physics and Chemistry, vol. 75, no. 1, pp. 78–86, 2006.

[213] X. Zhang, S. Elkoun, A. Ajji, and M. A. Huneault, “Oriented structure and anisotropy prop-

erties of polymer blown films: HDPE, LLDPE and LDPE,” Polymer, vol. 45, no. 1, pp. 217–

229, 2004.

[214] T. Xie, K. B. McAuley, J. C. C. Hsu, and D. W. Bacon, “Gas phase ethylene polymerization:

Production processes, polymer properties, and reactor modeling,” Industrial & Engineering

Chemistry Research, vol. 33, no. 3, pp. 449–479, 1994.

[215] K. B. McAuley, J. P. Talbot, and T. J. Harris, “A comparison of two-phase and well-mixed

models for fluidized-bed polyethylene reactors,” Chemical Engineering Science, vol. 49,

no. 13, pp. 2035–2045, 1994.

189



[216] P. S. Chum and K. W. Swogger, “Olefin polymer technologies–History and recent progress

at The Dow Chemical Company,” Progress in Polymer Science, vol. 33, no. 8, pp. 797–819,

2008.

[217] K.-Y. Choi and W. H. Ray, “The dynamic behaviour of fluidized bed reactors for solid

catalysed gas phase olefin polymerization,” Chemical Engineering Science, vol. 40, no. 12,

pp. 2261–2279, 1985.

[218] K. B. McAuley, J. F. MacGregor, and A. E. Hamielec, “A kinetic model for industrial gas-

phase ethylene copolymerization,” AIChE Journal, vol. 36, no. 6, pp. 837–850, 1990.

[219] K. B. McAuley, D. A. Macdonald, and P. J. McLellan, “Effects of operating conditions on

stability of gas-phase polyethylene reactors,” AIChE Journal, vol. 41, no. 4, pp. 868–879,

1995.

[220] F. A. N. Fernandes and L. M. F. Lona, “Heterogeneous modeling for fluidized-bed polymer-

ization reactor,” Chemical Engineering Science, vol. 56, no. 3, pp. 963–969, 2001.

[221] A. Kiashemshaki, N. Mostoufi, and R. Sotudeh-Gharebagh, “Two-phase modeling of a gas

phase polyethylene fluidized bed reactor,” Chemical Engineering Science, vol. 61, no. 12,

pp. 3997–4006, 2006.

[222] K. B. McAuley and J. F. MacGregor, “On-line inference of polymer properties in an indus-

trial polyethylene reactor,” AIChE Journal, vol. 37, no. 6, pp. 825–835, 1991.

[223] K. B. McAuley and J. F. MacGregor, “Optimal grade transitions in a gas phase polyethylene

reactor,” AIChE Journal, vol. 38, no. 10, pp. 1564–1576, 1992.

[224] K. B. McAuley and J. F. MacGregor, “Nonlinear product property control in industrial gas-

phase polyethylene reactors,” AIChE Journal, vol. 39, no. 5, pp. 855–866, 1993.

[225] S. A. Dadebo, M. L. Bell, P. J. McLellan, and K. B. McAuley, “Temperature control of

industrial gas phase polyethylene reactors,” Journal of Process Control, vol. 7, no. 2, pp. 83–

95, 1997.

190



[226] C. Sato, T. Ohtani, and H. Nishitani, “Modeling, simulation and nonlinear control of a

gas-phase polymerization process,” Computers & Chemical Engineering, vol. 24, no. 2-7,

pp. 945–951, 2000.

[227] E. Ali, K. Al-Humaizi, and A. Ajbar, “Multivariable control of a simulated industrial gas-

phase polyethylene reactor,” Industrial & Engineering Chemistry Research, vol. 42, no. 11,

pp. 2349–2364, 2003.

[228] A. Gani, P. Mhaskar, and P. D. Christofides, “Fault-tolerant control of a polyethylene reac-

tor,” Journal of Process Control, vol. 17, no. 5, pp. 439–451, 2007.

[229] P. Mhaskar, A. Gani, C. McFall, P. D. Christofides, and J. F. Davis, “Fault-tolerant control of

nonlinear process systems subject to sensor faults,” AIChE Journal, vol. 53, no. 3, pp. 654–

668, 2007.

[230] B. J. Ohran, D. Muñoz de la Peña, P. D. Christofides, and J. F. Davis, “Enhancing data-based

fault isolation through nonlinear control,” AIChE Journal, vol. 54, no. 1, pp. 223–241, 2008.

[231] A. Shamiri, M. A. Hussain, F. S. Mjalli, N. Mostoufi, and S. Hajimolana, “Dynamics and

predictive control of gas phase propylene polymerization in fluidized bed reactors,” Chinese

Journal of Chemical Engineering, vol. 21, no. 9, pp. 1015–1029, 2013.

[232] C. Chatzidoukas, J. D. Perkins, E. N. Pistikopoulos, and C. Kiparissides, “Optimal grade

transition and selection of closed-loop controllers in a gas-phase olefin polymerization flu-

idized bed reactor,” Chemical Engineering Science, vol. 58, no. 16, pp. 3643–3658, 2003.

[233] C. Kiparissides, G. Verros, and J. F. MacGregor, “Mathematical modeling, optimization,

and quality control of high-pressure ethylene polymerization reactors,” Journal of Macro-

molecular Science, Part C: Polymer Reviews, vol. 33, no. 4, pp. 437–527, 1993.

[234] J. Liu, “On-line soft sensor for polyethylene process with multiple production grades,” Con-

trol Engineering Practice, vol. 15, no. 7, pp. 769–778, 2007.

191



[235] V. M. Zavala and L. T. Biegler, “Large-scale parameter estimation in low-density polyethy-

lene tubular reactors,” Industrial & Engineering Chemistry Research, vol. 45, no. 23,

pp. 7867–7881, 2006.

[236] C. Kiparissides, G. Verros, A. Pertsinidis, and I. Goossens, “On-line parameter estimation

in a high-pressure low-density polyethylene tubular reactor,” AIChE Journal, vol. 42, no. 2,

pp. 440–454, 1996.

[237] H. Jiang, Z. Yan, and X. Liu, “Melt index prediction using optimized least squares support

vector machines based on hybrid particle swarm optimization algorithm,” Neurocomputing,

vol. 119, pp. 469–477, 2013.

[238] W. Wang and X. Liu, “Melt index prediction by least squares support vector machines with

an adaptive mutation fruit fly optimization algorithm,” Chemometrics and Intelligent Labo-

ratory Systems, vol. 141, pp. 79–87, 2015.

[239] J. Li and X. Liu, “Melt index prediction by RBF neural network optimized with an MPSO-

SA hybrid algorithm,” Neurocomputing, vol. 74, no. 5, pp. 735–740, 2011.

[240] B. Kou, K. B. McAuley, C. C. Hsu, D. W. Bacon, and K. Z. Yao, “Mathematical model

and parameter estimation for gas-phase ethylene homopolymerization with supported met-

allocene catalyst,” Industrial & Engineering Chemistry Research, vol. 44, no. 8, pp. 2428–

2442, 2005.

[241] C. Ling and C. Kravaris, “State observer design for monitoring the degree of polymerization

in a series of melt polycondensation reactors,” Processes, vol. 4, no. 1, p. 4, 2016.

[242] R. Janssen, H. Ruysschaert, and R. Vroom, “The determination of the diethylene glycol

incorporated in poly(ethylene terephthalate),” Die Makromolekulare Chemie: Macromolec-

ular Chemistry and Physics, vol. 77, no. 1, pp. 153–158, 1964.

[243] J.-M. Besnoin and K. Y. Choi, “Identification and characterization of reaction byproducts

in the polymerization of polyethylene terephthalate,” Journal of Macromolecular Science.

Reviews in Macromolecular Chemistry and Physics, vol. 29, no. 1, pp. 55–81, 1989.

192



[244] H. Zimmerman and N. T. Kim, “Investigations on thermal and hydrolytic degradation of

poly(ethylene terephthalate),” Polymer Engineering & Science, vol. 20, no. 10, pp. 680–

683, 1980.

[245] T. J. Crowley and K.-Y. Choi, “On-line monitoring and control of a batch polymerization

reactor,” Journal of Process Control, vol. 6, no. 2-3, pp. 119–127, 1996.

[246] S. Tatiraju, M. Soroush, and B. A. Ogunnaike, “Multirate nonlinear state estimation with

application to a polymerization reactor,” AIChE Journal, vol. 45, no. 4, pp. 769–780, 1999.

[247] K.-Y. Choi and A. A. Khan, “Optimal state estimation in the transesterification stage of

a continuous polyethylene terephthalate condensation polymerization process,” Chemical

Engineering Science, vol. 43, no. 4, pp. 749–762, 1988.

[248] P. Appelhaus and S. Engell, “Design and implementation of an extended observer for the

polymerization of polyethylenterephthalate,” Chemical Engineering Science, vol. 51, no. 10,

pp. 1919–1926, 1996.

[249] T. Yamada, Y. Imamura, O. Makimura, and H. Kamatani, “A mathematical model for com-

puter simulation of the direct continuous esterification process between terephthalic acid and

ethylene glycol. part II: Reaction rate constants,” Polymer Engineering & Science, vol. 26,

no. 10, pp. 708–716, 1986.

[250] I. Karafyllis and C. Kravaris, “From continuous-time design to sampled-data design of ob-

servers,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2169–2174, 2009.

[251] N. Kazantzis, Lie and Lyapunov Methods in the Analysis and Synthesis of Nonlinear Process

Control Systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1997.

[252] C. D. de Gooijer, W. A. M. Bakker, H. H. Beeftink, and J. Tramper, “Bioreactors in se-

ries: An overview of design procedures and practical applications,” Enzyme and Microbial

Technology, vol. 18, no. 3, pp. 202–219, 1996.

[253] K. Boe and I. Angelidaki, “Serial CSTR digester configuration for improving biogas pro-

duction from manure,” Water Research, vol. 43, no. 1, pp. 166–172, 2009.

193



[254] D. Thoenes, Chemical Reactor Development: From Laboratory Synthesis to Industrial Pro-

duction. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994.

[255] L. Cao and H. Yue, “Modelling and control of molecular weight distribution for a polycon-

densation process,” in Proceedings of the 2004 IEEE International Symposium on Intelligent

Control, pp. 137–142, IEEE, 2004.

[256] Y. Kim, “Two phase mass transfer model for the semibatch melt polymerization process

of polycarbonate,” Korean Journal of Chemical Engineering, vol. 15, no. 6, pp. 671–677,

1998.

[257] T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals:

Data Compilation. New York, NY, USA: Hemisphere Publishing Corporation, 1989.

[258] K. Ravindranath and R. A. Mashelkar, “Finishing stages of PET synthesis: a comprehensive

model,” AIChE Journal, vol. 30, no. 3, pp. 415–422, 1984.

[259] I. S. Kim, B. G. Woo, K. Y. Choi, and C. Kiang, “Two-phase model for continuous final-

stage melt polycondensation of poly(ethylene terephthalate). III. Modeling of multiple re-

actors with multiple reaction zones,” Journal of Applied Polymer Science, vol. 90, no. 4,

pp. 1088–1095, 2003.

[260] V. Bhaskar, S. K. Gupta, and A. K. Ray, “Modeling of an industrial wiped film poly(ethylene

terephthalate) reactor,” Polymer Reaction Engineering, vol. 9, no. 2, pp. 71–99, 2001.

[261] H. A. Pohl, “Determination of carboxyl end groups in a polyester, polyethylene terephtha-

late,” Analytical Chemistry, vol. 26, no. 10, pp. 1614–1616, 1954.

[262] C. Kravaris, J. Hahn, and Y. Chu, “Advances and selected recent developments in state and

parameter estimation,” Computers & Chemical Engineering, vol. 51, pp. 111–123, 2013.

[263] J. M. Ali, N. H. Hoang, M. A. Hussain, and D. Dochain, “Review and classification of

recent observers applied in chemical process systems,” Computers & Chemical Engineering,

vol. 76, pp. 27–41, 2015.

194



[264] H. Michalska and D. Q. Mayne, “Moving horizon observers and observer-based control,”

IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 995–1006, 1995.

[265] M. F. Ellis, T. W. Taylor, V. Gonzalez, and K. F. Jensen, “Estimation of the molecular weight

distribution in batch polymerization,” AIChE Journal, vol. 34, no. 8, pp. 1341–1353, 1988.

[266] R. D. Gudi, S. L. Shah, and M. R. Gray, “Adaptive multirate state and parameter estimation

strategies with application to a bioreactor,” AIChE Journal, vol. 41, no. 11, pp. 2451–2464,

1995.

[267] R. K. Mutha, W. R. Cluett, and A. Penlidis, “A new multirate-measurement-based estimator:

Emulsion copolymerization batch reactor case study,” Industrial & Engineering Chemistry

Research, vol. 36, no. 4, pp. 1036–1047, 1997.

[268] N. Zambare, M. Soroush, and M. C. Grady, “Real-time multirate state estimation in a pilot-

scale polymerization reactor,” AIChE Journal, vol. 48, no. 5, pp. 1022–1033, 2002.

[269] R. López-Negrete and L. T. Biegler, “A Moving Horizon Estimator for processes with multi-

rate measurements: A Nonlinear Programming sensitivity approach,” Journal of Process

Control, vol. 22, no. 4, pp. 677–688, 2012.

[270] S. Krämer and R. Gesthuisen, “Multirate state estimation using moving horizon estimation,”

in Proceedings of the 16th IFAC World Conference, pp. 1–6, IFAC, 2005.

[271] S. Krämer, R. Gesthuisen, and S. Engell, “Fixed structure multirate state estimation,” in

Proceedings of the American Control Conference, pp. 4613–4618, IEEE, 2005.

[272] A. Liu, W. Zhang, L. Yu, and J. Chen, “Moving horizon estimation for multi-rate systems,”

in Proceedings of the 54th IEEE Conference on Decision and Control, pp. 6850–6855,

IEEE, 2015.

[273] M. Nadri and H. Hammouri, “Design of a continuous-discrete observer for state affine sys-

tems,” Applied Mathematics Letters, vol. 16, no. 6, pp. 967–974, 2003.

195



[274] M. Nadri, H. Hammouri, and C. Astorga, “Observer design for continuous-discrete time

state affine systems up to output injection,” European Journal of Control, vol. 10, no. 3,

pp. 252–263, 2004.

[275] H. Hammouri, M. Nadri, and R. Mota, “Constant gain observer for continuous-discrete time

uniformly observable systems,” in Proceedings of the 45th IEEE Conference on Decision

and Control, pp. 5406–5411, IEEE, 2006.

[276] M. Nadri, H. Hammouri, and R. M. Grajales, “Observer design for uniformly observable

systems with sampled measurements,” IEEE Transactions on Automatic Control, vol. 58,

no. 3, pp. 757–762, 2013.

[277] T. Raff, M. Kögel, and F. Allgöwer, “Observer with sample-and-hold updating for Lips-

chitz nonlinear systems with nonuniformly sampled measurements,” in Proceedings of the

American Control Conference, pp. 5254–5257, IEEE, 2008.

[278] F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, “A hybrid observer with a

continuous intersample injection in the presence of sporadic measurements,” in Proceedings

of the 54th IEEE Conference on Decision and Control, pp. 5654–5659, IEEE, 2015.

[279] T. Ahmed-Ali, I. Karafyllis, and F. Lamnabhi-Lagarrigue, “Global exponential sampled-

data observers for nonlinear systems with delayed measurements,” Systems & Control Let-

ters, vol. 62, no. 7, pp. 539–549, 2013.

[280] M. Moarref and L. Rodrigues, “Observer design for linear multi-rate sampled-data systems,”

in Proceedings of the American Control Conference, pp. 5319–5324, IEEE, 2014.

[281] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked control systems,”

IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 438–446, 2002.

[282] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ, USA: Prentice Hall, 2002.

[283] T. Raff and F. Allgöwer, “Observers with impulsive dynamical behavior for linear and non-

linear continuous-time systems,” in Proceedings of the 46th IEEE Conference on Decision

and Control, pp. 4287–4292, IEEE, 2007.

196



[284] T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a

system of differential equations,” Annals of Mathematics, vol. 20, pp. 292–296, 1919.

[285] R. Bellman, “The stability of solutions of linear differential equations,” Duke Mathematical

Journal, vol. 10, no. 4, pp. 643–647, 1943.

[286] K. B. McAuley, Modelling, Estimation and Control of Product Properties in a Gas Phase

Polyethylene Reactor. PhD thesis, McMaster University, Hamilton, Ontario, Canada, 1991.

[287] C. Ling and C. Kravaris, “A dead time compensation approach for multirate observer design

with large measurement delays,” AIChE Journal, vol. 65, no. 2, pp. 562–570, 2019.

[288] A. Germani, C. Manes, and P. Pepe, “A new approach to state observation of nonlinear

systems with delayed output,” IEEE Transactions on Automatic Control, vol. 47, no. 1,

pp. 96–101, 2002.

[289] N. Kazantzis and R. A. Wright, “Nonlinear observer design in the presence of delayed output

measurements,” Systems & Control Letters, vol. 54, no. 9, pp. 877–886, 2005.

[290] T. Ahmed-Ali, E. Cherrier, and F. Lamnabhi-Lagarrigue, “Cascade high gain predictors for

a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 57, no. 1,

pp. 224–229, 2012.

[291] M. Farza, M. M’Saad, T. Ménard, M. L. Fall, O. Gehan, and E. Pigeon, “Simple cascade

observer for a class of nonlinear systems with long output delays,” IEEE Transactions on

Automatic Control, vol. 60, no. 12, pp. 3338–3343, 2015.

[292] K. Subbarao and P. C. Muralidhar, “A state observer for LTI systems with delayed outputs:

Time-varying delay,” in Proceedings of the American Control Conference, pp. 3029–3033,

IEEE, 2008.

[293] F. Cacace, A. Germani, and C. Manes, “An observer for a class of nonlinear systems with

time varying observation delay,” Systems & Control Letters, vol. 59, no. 5, pp. 305–312,

2010.

197



[294] M. Kahelras, T. Ahmed-Ali, F. Giri, and F. Lamnabhi-Lagarrigue, “Sampled-data chain-

observer design for a class of delayed nonlinear systems,” International Journal of Control,

vol. 91, no. 5, pp. 1076–1090, 2018.

[295] T. Ahmed-Ali, V. Van Assche, J.-F. Massieu, and P. Dorléans, “Continuous-discrete observer

for state affine systems with sampled and delayed measurements,” IEEE Transactions on

Automatic Control, vol. 58, no. 4, pp. 1085–1091, 2013.

[296] N. Zambare, M. Soroush, and B. A. Ogunnaike, “A method of robust multi-rate state esti-

mation,” Journal of Process Control, vol. 13, no. 4, pp. 337–355, 2003.

[297] A. Gopalakrishnan, N. S. Kaisare, and S. Narasimhan, “Incorporating delayed and infre-

quent measurements in Extended Kalman Filter based nonlinear state estimation,” Journal

of Process Control, vol. 21, no. 1, pp. 119–129, 2011.

[298] A. Fatehi and B. Huang, “Kalman filtering approach to multi-rate information fusion in the

presence of irregular sampling rate and variable measurement delay,” Journal of Process

Control, vol. 53, pp. 15–25, 2017.

[299] C. Antoniades and P. D. Christofides, “Feedback control of nonlinear differential difference

equation systems,” Chemical Engineering Science, vol. 54, no. 23, pp. 5677–5709, 1999.

[300] J. Liu, D. Muñoz de la Peña, P. D. Christofides, and J. F. Davis, “Lyapunov-based model

predictive control of nonlinear systems subject to time-varying measurement delays,” Inter-

national Journal of Adaptive Control and Signal Processing, vol. 23, no. 8, pp. 788–807,

2009.

[301] J. Liu, D. Muñoz de la Peña, and P. D. Christofides, “Distributed model predictive control of

nonlinear systems subject to asynchronous and delayed measurements,” Automatica, vol. 46,

no. 1, pp. 52–61, 2010.

[302] J. Liu, X. Chen, D. Muñoz de la Peña, and P. D. Christofides, “Iterative distributed model

predictive control of nonlinear systems: Handling asynchronous, delayed measurements,”

IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 528–534, 2012.

198



[303] M. Ellis and P. D. Christofides, “Economic model predictive control of nonlinear time-delay

systems: Closed-loop stability and delay compensation,” AIChE Journal, vol. 61, no. 12,

pp. 4152–4165, 2015.

[304] I. Karafyllis and Z.-P. Jiang, “A vector small-gain theorem for general non-linear control

systems,” IMA Journal of Mathematical Control and Information, vol. 28, no. 3, pp. 309–

344, 2011.

[305] O. J. M. Smith, “Closer control of loops with time delays,” Chemical Engineering Progress,

vol. 53, pp. 216–219, 1957.

[306] M. Krstic, “Lyapunov stability of linear predictor feedback for time-varying input delay,”

IEEE Transactions on Automatic Control, vol. 55, no. 2, pp. 554–559, 2010.

[307] A. Echevarría, J. R. Leiza, J. C. de la Cal, and J. M. Asua, “Molecular-weight distribution

control in emulsion polymerization,” AIChE Journal, vol. 44, no. 7, pp. 1667–1679, 1998.

[308] D. S. Bernstein and W. So, “Some explicit formulas for the matrix exponential,” IEEE Trans-

actions on Automatic Control, vol. 38, no. 8, pp. 1228–1232, 1993.

[309] C. Ling and C. Kravaris, “Multi-rate sampled-data observers based on a continuous-time

design,” in Proceedings of the 56th IEEE Conference on Decision and Control, pp. 3664–

3669, IEEE, 2017.

[310] T. Ahmed-Ali, R. Postoyan, and F. Lamnabhi-Lagarrigue, “Continuous-discrete adaptive

observers for state affine systems,” Automatica, vol. 45, no. 12, pp. 2986–2990, 2009.

[311] M. Farza, M. M’Saad, M. L. Fall, E. Pigeon, O. Gehan, and K. Busawon, “Continuous-

discrete time observers for a class of MIMO nonlinear systems,” IEEE Transactions on

Automatic Control, vol. 59, no. 4, pp. 1060–1065, 2014.

[312] M. Farza, I. Bouraoui, T. Ménard, R. B. Abdennour, and M. M’Saad, “Adaptive observers

for a class of uniformly observable systems with nonlinear parametrization and sampled

outputs,” Automatica, vol. 50, no. 11, pp. 2951–2960, 2014.

199



[313] V. Andrieu, M. Nadri, U. Serres, and J.-C. Vivalda, “Self-triggered continuous-discrete ob-

server with updated sampling period,” Automatica, vol. 62, pp. 106–113, 2015.

[314] T. N. Dinh, V. Andrieu, M. Nadri, and U. Serres, “Continuous-discrete time observer de-

sign for Lipschitz systems with sampled measurements,” IEEE Transactions on Automatic

Control, vol. 60, no. 3, pp. 787–792, 2015.

[315] H. Beikzadeh and H. J. Marquez, “Multirate observers for nonlinear sampled-data systems

using input-to-state stability and discrete-time approximation,” IEEE Transactions on Auto-

matic Control, vol. 59, no. 9, pp. 2469–2474, 2014.

[316] H. Beikzadeh and H. J. Marquez, “Sampled-data observer for one-sided Lipschitz sys-

tems: Single-rate and multirate cases,” in Proceedings of the American Control Conference,

pp. 3386–3391, IEEE, 2015.

[317] Y. Shen, D. Zhang, and X. Xia, “Continuous observer design for a class of multi-output

nonlinear systems with multi-rate sampled and delayed output measurements,” Automatica,

vol. 75, pp. 127–132, 2017.

[318] E. D. Sontag and Y. Wang, “Notions of input to output stability,” Systems & Control Letters,

vol. 38, no. 4-5, pp. 235–248, 1999.

[319] I. Karafyllis, “A system-theoretic framework for a wide class of systems I: Applications to

numerical analysis,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2,

pp. 876–899, 2007.

[320] I. Karafyllis, “A system-theoretic framework for a wide class of systems II: Input-to-output

stability,” Journal of Mathematical Analysis and Applications, vol. 328, no. 1, pp. 466–486,

2007.

[321] I. Karafyllis and Z.-P. Jiang, “A small-gain theorem for a wide class of feedback systems

with control applications,” SIAM Journal on Control and Optimization, vol. 46, no. 4,

pp. 1483–1517, 2007.

200



[322] L. Hong, “Multiresolutional filtering using wavelet transform,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1244–1251, 1993.

[323] L. Hong and T. Scaggs, “Real-time optimal multiresolutional sensor/data fusion,” in Pro-

ceedings of IEEE International Conference on Robotics and Automation, pp. 117–122,

IEEE, 1993.

[324] L. Hong, “Multiresolutional distributed filtering,” IEEE Transactions on Automatic Control,

vol. 39, no. 4, pp. 853–856, 1994.

[325] L. Yan, B. Liu, and D. Zhou, “Asynchronous multirate multisensor information fusion algo-

rithm,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1135–

1146, 2007.

[326] J. Ma, H. Lin, and S. Sun, “Distributed fusion filter for asynchronous multi-rate multi-sensor

non-uniform sampling systems,” in Proceedings of the 15th International Conference on

Information Fusion, pp. 1645–1652, IEEE, 2012.

[327] A. T. Alouani, J. E. Gray, and D. H. McCabe, “Theory of distributed estimation using

multiple asynchronous sensors,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 41, no. 2, pp. 717–722, 2005.

[328] Y. Hu, Z. Duan, and D. Zhou, “Estimation fusion with general asynchronous multi-rate

sensors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 4, pp. 2090–

2102, 2010.

[329] W.-A. Zhang, S. Liu, and L. Yu, “Fusion estimation for sensor networks with nonuniform

estimation rates,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,

no. 5, pp. 1485–1498, 2014.

[330] H. Lin and S. Sun, “Distributed fusion estimator for multisensor multirate systems with

correlated noises,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48,

no. 7, pp. 1131–1139, 2018.

201



[331] D. Angeli and E. D. Sontag, “Forward completeness, unboundedness observability, and

their Lyapunov characterizations,” Systems & Control Letters, vol. 38, no. 4-5, pp. 209–

217, 1999.

[332] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “An ISS small gain theorem for general

networks,” Mathematics of Control, Signals, and Systems, vol. 19, no. 2, pp. 93–122, 2007.

[333] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “Small gain theorems for large scale

systems and construction of ISS Lyapunov functions,” SIAM Journal on Control and Opti-

mization, vol. 48, no. 6, pp. 4089–4118, 2010.

[334] Z.-P. Jiang and Y. Wang, “A generalization of the nonlinear small-gain theorem for large-

scale complex systems,” in Proceedings of the 7th World Congress on Intelligent Control

and Automation, pp. 1188–1193, IEEE, 2008.

[335] T. Liu, D. J. Hill, and Z.-P. Jiang, “Lyapunov formulation of ISS cyclic-small-gain in

continuous-time dynamical networks,” Automatica, vol. 47, no. 9, pp. 2088–2093, 2011.

[336] N. Kazantzis, C. Kravaris, C. Tseronis, and R. A. Wright, “Optimal controller tuning for

nonlinear processes,” Automatica, vol. 41, no. 1, pp. 79–86, 2005.

202


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Background and Motivation
	Literature Review
	Model-Based Soft Sensors
	Data-Driven Soft Sensors

	Polymerization Reactors
	Polycondensation of Polyethylene Terephthalate
	Industrial Gas-Phase Polyethylene Production

	Dissertation Outline and Contributions

	STATE OBSERVER DESIGN IN A SERIES OF POLYCONDENSATION REACTORS
	Introduction
	Nonlinear Observer Design Method
	Reduced-Order Observer
	Reduced-Order Observer in Lower Block Triangular Form
	Sampled-Data Observer

	A Series of Three Polycondensation Reactors
	State Estimation via Reduced-Order Observer
	State Estimation with Continuous Measurement Exclusively
	State Estimation with Both Measurements
	Observer Performance under Sensor Noise

	Conclusions

	MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS
	Introduction
	Preliminaries
	Notations
	Reduced-Order Luenberger Observer Design

	Main Results
	Proposed Multi-Rate Observer Design
	Stability Analysis

	Case Studies
	A Mathematical Example
	A Gas-Phase Polyethylene Reactor

	Conclusions

	MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS WITH MEASUREMENT DELAY
	Introduction
	Preliminaries
	Notations
	Multi-Rate Observer Design in the Absence of Output Delays

	Main Results
	Proposed Multi-Rate Multi-Delay Observer Design
	Stability Analysis

	Case Studies
	A Mathematical Example
	A Gas-Phase Polyethylene Reactor

	Conclusions

	OPTIMAL MULTI-RATE OBSERVER DESIGN IN LINEAR SYSTEMS
	Optimal Single-Rate Observer Design
	Problem Formulation
	Case Studies

	Optimal Multi-Rate Observer Design with Fast and Slow Measurements
	Problem Formulation
	A Numerical Example

	Conclusions

	MULTI-RATE OBSERVER DESIGN IN NONLINEAR SYSTEMS
	Introduction
	Formulation of the Sampled-Data Observer
	Notations
	Problem Formulation
	Basic Notions

	Main Results
	Applications
	Linear Detectable Systems
	A Batch Chemical Reactor
	A Numerical Example

	Conclusions

	MULTI-RATE OBSERVER DESIGN IN NONLINEAR SYSTEMS WITH MEASUREMENT DELAY
	Preliminaries
	Delay-Free Multi-Rate Observer Design

	Main Results
	Proposed Multi-Rate Multi-Delay Observer Design
	Stability Analysis

	A Gas-Phase Polyethylene Reactor
	Conclusions

	CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	Future Work

	REFERENCES

