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ABSTRACT

This dissertation presents a higher-order finite volume method (FVM) for computational fluid

dynamics (CFD) for unstructured mesh topologies using Moving Least-Squares (MLS) as the

backbone of the method. The MLS method is improved in several ways. First, the local sten-

cil is weighed using a minimum volume enclosing ellipsoid (MVEE), which better encapsulates

the local nodal topology than traditional spherical descriptions. Furthermore, a novel approach,

known herein as Affine MLS, uses a spherical transformation of the ellipsoidal weights to map

to the unit ball, where direct application of orthogonal polynomial bases can be used. This ap-

proach dramatically reduces the condition number of the MLS Moment/Gram matrix, especially

on stretched grids which are commonly used for viscous flows and where traditional methods fail.

All the MLS methods are also extended to use the Pivoting QR method for matrix inversion. The

MLS method and improvements are extensively tested with several analytical functions for the full

MLS reconstruction and fully diffuse derivatives. Optimal scaling parameters are also determined

for the MLS method.

Additionally, from work with MLS, the boundary conditions of the higher-order method are

enforced with ghost nodes, an approach more commonly used in Immersed Boundary Methods.

These boundary conditions do a better job of enforcing the boundary states, since they are in-

cluded directly into the fluxes and gradients. Non-reflecting ghost nodes are implemented using the

Navier–Stokes Characteristic Boundary Condition (NSCBC) for the inlet, outlet, and freestream

boundary conditions for the first time in a finite volume ghost boundary node context. A higher-

order viscous state reconstruction is presented as well wherein the MLS method is used to deter-

mine the state and derivatives at the quadrature location. Some simple test cases are presented

that highlight the benefits of the ghost node boundary conditions and viscous flux reconstruction.

Finally, the higher-order CFD method is applied to the Taylor-Green Vortex (TGV) problem, a

benchmark Large-Eddy Simulation (LES) case.
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NOMENCLATURE

Roman

a, b, c - indexes for derivatives

c - speed of sound

CFL - Courant-Friedrichs-Levy stability condition

D - deviatoric stress tensor

E - total energy

F - vector of fluxes

G - convolution filter

G - vector of source terms

I - identity matrix

i, j, k - indexes for derivatives

k - thermal conductivity, Moving Least-Squares smoothing parameter,
or number of neighbors for implicit residual smoothing

` - order of accuracy

M - Mach number

n - normal vector for surface

p - pressure

p - polynomial basis vector

q - heat flux

Q - state vector of conservative variables

r - Moving Least-Squares smoothing length or support radii

R - residual vector
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s - edge-based area

s - spline parameter for Moving Least-Squares

S - cell face surface area

t - time

T - temperature or total time

u - velocity component in x-direction

v - free-stream flow velocity vector

v - velocity component in y-direction

w - velocity component in z-direction or
quadrature weighting function

W - Moving Least-Squares weight function

x - coordinate vector

Greek

β - vortex strength

γ - gas constant

∆ - filter length

Θ - work of viscous stresses and heat conduction

µ - viscosity

ξ - general integration variable

ρ - density

σ - sub-grid stress

τ - viscous stress

φ - general basis function

Φ - limiter function

ψ - Moving Least-Squares shape function
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Ψ - Moving Least-Squares basis function

Ω - cell volume

ΩxI - Moving Least-Squares stencil

Subscripts

contra - contravariant

conv - convective

i - ith node

i, j, k - component pertaining to the x, y, or z-direction

visc - viscous

x - component pertaining to x-direction

y - component pertaining to y-direction

z - component pertaining to z-direction

Abbreviations

ADER - Arbitrary Derivative Riemann Problem -

Aniso. - Anisotropic

CFD - Computational Fluid Dynamics

DGM - Discontinuous Galerkin method

DGSEM - Discontinuous Galerkin Spectral Element method

DNS - Direct Numerical Simulation

ENO - Essentially Non-Oscillatory

ILES - Implicit Large-Eddy Simulation

Iso. - Isotropic

LES - Large-Eddy Simulation
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MILES - Monotonically Integrated Large-Eddy Simulation

MEA - Modified Equation Analysis

MLS - Moving Least-Squares

NASA - National Aeronautics and Space Administration

RANS - Reynolds-averaged Navier–Stokes

Re - Reynolds Number

RPM - rotations per minute

SGS - sub-grid stress

SST - Shear Stress Transport

SPD - Symmetric Positive Definite

SVD - Singular Value Decomposition

UNS3D - Unstructured 3D flow solver

WENO - Weighted Essentially Non-Oscillatory
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1. INTRODUCTION

1.1 Statement of the Problem

With a push toward increasing efficiencies in turbomachinery, accurate simulation of complex

flow geometries with Computational Fluid Dynamics (CFD) has become critical in the design

process. Flows through these machines are generally turbulent, highly unsteady, and compressible,

increasing the difficulty of performing numerical simulations. While there are several approaches

to solve this difficult problem, not all of them are well suited.

The most accurate method for computing turbulent flows is Direct Numerical Simulation (DNS),

which directly solves the Navier–Stokes equations. However, the fidelity of DNS does come at

a steep price: as one increases the Reynolds number, Re, the computational cost associated with

solving the Navier–Stokes scales withRe9/4 and the number of operations increases asRe11/4 [131,

pgs. 347-348]. In addition to the large computational cost associated with DNS, DNS utilizes high-

order schemes, such as Weighted and Essentially Non-Oscillatory (WENO/ENO), compact, and

spectral, that are either extremely difficult or impossible to extend to complex geometries [129].

Furthermore, recent DNS simulations [99] solved the flow in a channel at Re = 5200, which is a

Re that is well below what is normally seen in typical turbomachinery applications. Additionally,

while DNS has been performed on the T106A Low Pressure Turbine Cascade at more applicable

Reynolds numbers (Re = 60000 − 148, 000) [171], DNS is still generally limited to a tool for

understanding the underlying nature of turbulence.

Less accurate but more efficient than DNS [131, pg. 560], Large-Eddy Simulation (LES) de-

composes the Navier–Stokes equations into large and small scale components, utilizing the small

scale universality of turbulence [114]. LES solves the large scales and models the small univer-

sal scales. The goals of LES are “to compute the three-dimensional, time-dependent details of

the largest scales of motion using a simple model for the smaller scales” [137]. LES has been

successfully applied to a wide range of complex flows [143, 56, 142], including flows in turboma-
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chinery [158].

The most common method for computing turbulent flows is the Reynolds-averaged Navier–

Stokes (RANS) method. RANS decomposes the Navier–Stokes equations into a time-averaged and

temporally fluctuating component, where only the time-averaged, but still unsteady, equations are

solved [131, pgs. 83-85]. This method has been successfully used to solve a wide range of flows;

however, there are drawbacks. The resulting decomposition produces an additional term in the

governing equations known as Reynolds stresses. These stresses require modeling as the Reynolds

decomposition creates a closure problem [131, pg. 87]. There is a wide range of turbulence

models which address the closure problem, see [168, Chapters 3-5] and [131, Chapters 10-11].

All turbulence models use the Boussinesq eddy viscosity approximation in some form to compute

the Reynolds stress tensor [168, pg. 53]. However, eddy viscosity is flow dependent [168, pg.

53], and turbulence models are specifically tuned for certain flows [169]. This ad hoc nature

of turbulence models means that there is no ‘universal’ model. Furthermore, the very nature of

turbulence would suggest that a time-averaged approach, especially for unsteady flows with large

non-local effects, will not yield accurate results [65]. Tyacke et al. [159] showed that for labyrinth

seals, RANS solutions had higher error in the results by as much as 20% between models when

compared to LES solutions.

Experience shows that RANS might not be well suited for vortex dominated flows in turbo-

machinery. The NASA Rotor 67 and preswirl vane geometry are just two examples. The NASA

Rotor 67 is a standard turbomachinery test case. Carpenter [18] simulated a single vane of the

22-bladed cascade at 16,000 RPM with a total pressure ratio of 1.6 and mass flow of 34 kg/s,

with Re = 2.92 · 106 based on the relative Mach number at tip of the rotor. The case was run

second-order accurate scheme and steady, with the Reynolds stresses modeled using the Shear

Stress Transport (SST) model [115] in the RANS solver UNS3D [77]. The mesh, shown in Fig-

ures 1.1(a) and 1.1(b), contains approximately 4.5 million nodes.
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Figure 1.1: Mesh for Rotor 67, adapted with permission [18]1.

Results are shown in Figure 1.2. Toward the hub, the flow follows the blade passages nicely;

however, as the tip is approached the flow becomes highly turbulent and vortex dominated. Flow

near the tip of the blade is complex. Flow travels up and down the blade surface as well as over

and around the tip of the blade, generating vortices that spanned multiple blades. To resolve any of

the flow without having the solver diverge, significant refinement was needed in this region as seen

in Figure 1.1(b). Not only would using higher-order methods improve the accuracy of the results,

it would also come with a reduction in the number of nodes.

1*Adapted with permission from Practical Aspects of Computational Fluid Dynamics for Turbomachinery, by
Forrest Carpenter, 2016, Ph.D. Thesis. College Station, Texas. Copyright 2016 by Forrest Carpenter.
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Figure 1.2: Mach Ribbons for Rotor 67, adapted with permission [18].

The preswirl vane geometry is also a complex problem with large, strong vortices. Simulating

a single 0o vane from a cascade of 72 with a mesh of 5.6 million nodes (see Figure 1.3),

Figure 1.3: Mesh for Preswirl Vane, Courtesy of Neil Matula2.

2*Obtained from personal communication with Neil Matula while discussing flow characteristics of pre-swirl
vanes.
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the preswirl vane is run second-order accurate scheme and steady with turbulence modeled

using the SST model in the RANS solver UNS3D [77]. The flow simulated with a stagnation

pressure of 7 MPa, a mass flow of 0.7 kg/s, and a rotor speed of 10,200 RPM, with Re = 1.2×106

based on the inlet gap. Results for the preswirl vane are given in Figure 1.4.

Figure 1.4: Mach Ribbons for Preswirl Vane, Courtesy of Neil Matula.3

The flow enters the domain at nearly 90o and turns sharply almost immediately parallel with

the blade. A large, full blade vortical structure is on the suction side, with spillage of the structure

onto the pressure side. This large vortical structure is very hard to initialize and requires extreme

refinement to capture. As with the Rotor 67, using higher-order methods would allow both a

reduction in the total mesh refinement and improvement in overall accuracy of the results.

Additionally, using higher-order methods could provide marked improvement flows with strong

dependence on fluid-structure interaction, such as the aeroelastic response of the General Trans-

3*Obtained from personal communication with Neil Matula while discussing flow characteristics of pre-swirl
vanes.
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port Wing [82]. The results generated in [82] were simulated on a unstructured mesh of ‘medium’

refinement to reduce the computational costs for long, unsteady simulations. The structure model

is a plate model, which does not include thermal effects. The flow regime in the stability/instability

envelope is very complex, with strong, moving shocks and separation, wing-tip vortices, and tran-

sition to turbulence. Using RANS models in this regime might not be appropriate, due to the

known inadequacies of the RANS in these regimes [36]. The application of LES in this class of

flows would be more suitable [36]. Aeroelastic simulations of these flow regimes have shown great

promise [67, 68]. The usage of higher-order methods helps facilitate these simulations, since Im-

plicit LES comes from the usage of higher-order methods. Additionally, higher-order methods may

lend to a better fluid/structure model coupling method, depending on how the boundary conditions

are applied linking the two methods.

To accurately solve complex flows, such as those previously discussed, it would appear a dif-

ferent approach than the one currently employed is necessary. Currently, the problems discussed

have been solved using an unstructured finite volume RANS solver, UNS3D [77], which is second-

order accurate in both space and time. Since DNS is still out of reach for these class of flows, and

RANS as previously mentioned may be inadequate, the method required would appear to be LES.

Also, since the current second-order accuracy of the current approaches may also be the cause of

the inability to accurately model complex flows, a higher-order method would also appear to be

required. The next section will review current approaches in both LES and higher-order methods,

and how they both can solve the current problem.

1.2 Literature Review

Large-Eddy Simulations were originally developed to predict global meteorological patterns [56,

Chapter 1], where the scales of turbulence range from kilometers to centimeters, and the compu-

tational domain is highly under-resolved [46, Chapter 3, pg. 51]. The first LES model was de-

veloped by Smagorinsky [148], and later expanded by Lilly [103] and Deardorff [34]. The first

engineering flow of interest simulated with LES was channel flow by Deardorff [33]. Incompress-

ible pipe flow results were first obtained by Unger & Friedrich [161]. The first compressible LES
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simulations were carried out by the research group at NASA Langley on compressible isotropic

turbulence [42]. Xu et al. [175] generated compressible second-order results for isothermal and

minimally convective turbulent pipe flow. Subbareddy & Candler [150] developed a kinetic energy

based method with shock-capturing ability to aid in solving compressible flows with LES.

LES has seen wide application to various components of turbomachinery, from compres-

sors to low pressure turbines [158]. Kato et al. [87] used LES to simulate a mixed-flow pump

stage. Larchevêque et al. [98, 97, 96] performed simulations of deep cavity flows which matched

well with experimental data. Mahesh et al. [108] simulated flow through swirl combustors. Tyacke

et al. [160] performed simulations on two labyrinth seal geometries. O’Mahoney et al. [127] per-

formed a comprehensive study comparing Unsteady RANS to LES for a turbine rim seal, showing

much better agreement of the LES results to experimental data. McMullan & Page [112] outline

the steps necessary to simulate axial compressor cascades and show the benefits of running LES

simulations on these configurations, especially in off-design configurations, for the Monterey cas-

cade, Cranfield BRR axial compressor, and Cambridge axial compressor rig. Wang et al. [163]

outlined some of the approaches and difficulties in simulating complete engines. Wang et al. [163]

also introduced an overlapping grid solver for rotor-stator meshes using LES with the Smagorinsky

model [148] producing reasonable results.

LES is generally divided into two camps: explicit sub-grid models and implicit sub-grid mod-

els. Explicit sub-grid models seek to model the forward energy cascade explicitly, and derivations

of these models can be divided into two additional categories: Fourier and physical space [141, pg.

105]. Fourier sub-grid models are used for spectral finite difference methods. A list and description

of the various spectral sub-grid models is given in [141, pgs. 105-109]. Sub-grid models based on

physical space fall into three categories: (1) based on the resolved scales, (2) based on the energy

at the energy cutoff, and (3) based on the sub-grid scales themselves [141, pg. 112]. Additionally,

sub-grid models can be combinations of each of the three types; these are the so-called mixed mod-

els [141, pg. 123]. Physical space sub-grid models owe their existence to Smagorinsky [148], who

developed the now famous Smagorinsky model [148]. Though still widely used, the Smagorinsky
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model suffers from poor wall treatment and poor performance in flows with substantial shear [100],

in addition to being global in nature and deficient for high Reynolds numbers [176]. Various mod-

ifications to the original Smagorinsky model have been developed over the years, including the

Dynamic Smagorinsky model [61, 63] and the shear-improved Smagorinsky [100]. For a com-

prehensive review of physical space sub-grid models and strategies for both incompressible and

compressible flows for explicit LES, see [141, Chapters 5-7], [58, Chapters 4-5], [131, Chapter

13], and [114].

Implicit sub-grid modeling in LES, rather than explicitly computing the sub-grid contributions,

relies on the numerical discretization to mimic the sub-grid terms. Boris [14] was the first to pos-

tulate and utilize this approach in MILES, or Monotonically Integrated LES. Implicit LES (ILES),

an extension of MILES, typically employs high-resolution finite volume schemes to generate the

sub-grid models [143] [72, Chapter 4a]. Not every high-resolution finite volume scheme is suit-

able for ILES; a method known as Modified Equation Analysis (MEA) provides a framework for

determining the explicit sub-grid model counterpart that the scheme will generate [72, Chapter 5].

The implicit sub-grid models in ILES tend to mimic mixed models in explicit LES [110]. ILES

is not widely accepted in the turbulence community due to the lack of a rigorous justification for

ILES [110]. However, ILES has been successfully used to model a variety of complex flows, such

as a swept wing [75], internal hill flows [74], cavity flows [96], low pressure turbine blades [135],

swirl combustors [71], and labyrinth seals [159]. For a comprehensive review on ILES, see [72].

Modern commercial and many research codes model the LES equations second-order accurate

in space and time [129]. This level of accuracy, however, is not acceptable for LES. Ghosal [62]

showed that the LES equations must be solved with schemes greater than two because the numer-

ical discretization produces errors larger than the sub-grid terms. Dairay et al. [30] has performed

extensive work on tuning ILES for higher-order schemes to be spectral in nature and shows the

sensitivity of explicit sub-grid models to numerical errors even at higher-orders. While strides

have been made in improving the accuracy of LES, especially for flows of engineering interest,

many challenges remain [37]. An often overlooked consideration for higher-order finite volume
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methods is temporal accuracy. Balsara & Shu [7] have shown that higher-order temporal schemes

are required to obtain accurate and non-oscillatory (stable) solutions when using higher-order spa-

tial schemes. High-order temporal schemes tend to be memory intensive; therefore, low-storage

schemes are desirable [41]. The low storage Runge–Kutta schemes produced by Kennedy et al.

[89], for example, are accurate up to sixth-order and have been successfully used for DNS sim-

ulations. The major challenge for implementing higher-order finite volume schemes, though, is

the employment and implementation of higher-order schemes on unstructured topologies [129].

There are several methodologies to achieve higher-order accuracy, including compact schemes,

WENO/ENO, and Discontinuous Galerkin, and meshless methods. For a comprehensive review

on the subject, see [41].

Pouangué et al. [133] have developed a sixth-order LES solver using compact schemes. Com-

pact schemes, however, are only valid for structured and curvilinear meshes, as grid distortion com-

mon with unstructured grids automatically reduces the formal accuracy to third order at best [149].

Biswas [11] used a fourth/fifth-order WENO finite difference scheme for transition flows in a

low pressure turbine. WENO/ENO schemes are extremely difficult to construct for unstructured

topologies in three dimensions [179]. WENO/ENO schemes of at least fifth order have been con-

structed for finite volume schemes, but only for structured meshes [155]. Combined Arbitrary

Derivative Riemann Problem - Weighted Essentially Non-Oscillatory (ADER-WENO) schemes

have achieved up to seventh order, but again these are only for structured meshes [38]. Currently,

WENO schemes up to only third order for tetrahedral meshes have been constructed [179, 39].

Discontinuous Galerkin methods (DGM) are another way to achieve high-order accuracy in

finite volume methods, where the accuracy is achieved through higher-order finite element basis

functions [25]. DGM does not suffer like the previous two methods on arbitrary topologies: as

a finite element based method, elements of arbitrary shape are permitted and easily accommo-

dated [147]. While DGM has excellent performance for linear problems, nonlinear problems, such

as the equations solved for LES, are not provably convergent [25]. Additionally, DGM may not

be stable with explicit time stepping methods when strong shocks are present [25]. Shock and
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discontinuity handling in DGM is still an open research topic, behind that of more traditional finite

volume methods [125]. However, some recent advances for DGM, such as inclusion of spectral

methods (or DGSEM) [80], have allowed for DNS simulation of flow past a sphere. DGSEM have

been successfully applied to the canonical Taylor–Green Vortex flow [59]. While DGM techniques

have been developed for LES [83] and used for simple flows [86, 15], the outlined issues with

DGM has prevented it from gaining wide usage.

The final method for achieving higher-order finite volumes schemes utilizes meshless methods.

Initially used for smooth particle hydrodynamics [16, pg. 1], meshless methods offer promising

advantages over the other techniques. First, since the methods are meshless by design, the mesh

topology is handled as a collection of point clouds such that any elements generated by the meshing

algorithm can be used. Additionally, meshless methods, in the context of finite volume methods,

allow for easy extension of current finite volume solvers to higher order. Meshless methods were

first used for finite volume discretizations of the shallow water equations, utilizing Moving Least

Squares (MLS) for gradient determination by Cueto-Felgueroso [26]. A shock-capturing tech-

nique, which also can be used as an explicit filter for LES, has been developed by Nogueira et al.

[125]. Chassaing et al. [22] have used the third-order Moving Kriging meshless method on de-

caying compressible turbulence. Simulations of decaying compressible turbulence have also been

performed with a fourth-order MLS method [126]. Nogueira et al. [123] have successfully used

the meshless method with MLS for ILES simulations of non-wall-bounded turbulent flows.

1.3 Original Contributions of Present Work

Building upon the previous work of the second-order accurate unstructured finite volume solver

UNS3D [77], in addition to the works of Kim [91], Gargoloff [57], and Carpenter [18], this disser-

tation presents the development and implementation of a fourth-order spatial and temporal accu-

rate, unstructured finite volume method.

The primary focus of this dissertation is on the implementation of the meshless method of

Moving Least-Squares, first used in finite volume schemes by Cueto-Felgueroso [26], to compute

the numerical gradients of an unstructured mesh topology. MLS is used herein to achieve fourth-
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order spatial accuracy, overcoming the deficiencies of compact, WENO/ENO, and Discontinuous

Galerkin higher-order methods by being easily extensible to unstructured topologies. MLS, un-

like the other gradient methods, maintains the shock-capturing and limiting abilities of second-

order methods. To increase the overall stability of MLS, several improvements to the original

algorithm are made. First, a pivoting QR algorithm is applied to MLS, which delays deteriorat-

ing effects of rounding errors and improves decomposition of rank-deficient problems. A new,

user-independent anisotropic weighting method is developed. This method uses minimum volume

enclosing ellipsoids (MVEE) [156] built from the natural mesh topology, rather than ad-hoc rectan-

gular anisotropic weights. For poorly conditioned systems, which arise in most three-dimensional

problems, a novel affine transformation is applied to the MLS weights to dramatically improve the

condition number of the MLS moment matrix, making derivatives computed via the method more

reliable. A parametric study is performed to determine the bounds on the scaling parameter used

with MLS. Additionally, a study is conducted on the effect of using orthogonal polynomials as the

basis set for MLS. A new recursive form for the MLS derivatives is proposed, along with a study

on the effect of diffusive derivatives on the accuracy of the computed MLS derivatives.

The work of dissertation then shifts to boundary conditions applied to both inviscid and viscous

flows. First, the periodic boundaries are improved by properly accounting for the geometry and

gradients on the master and slave sides of the domain. Next, using the concept of image/intercept

nodes, non-periodic boundary conditions are implemented using a novel MLS-finite difference

ghost node method. Furthermore, to improve the wave characteristics of the overall simulation,

Navier-Stokes Characteristic Boundary Condition (NSCBC)-based ghost nodes are used for the

first time in a finite-volume method to define the inlet, outlet, and farfield boundaries, as an ex-

tension to the work of Motheau et al. [120] who applied the NSCBC to finite difference schemes

using ghost nodes. The various boundary conditions are tested with some simple flows. Finally,

the combined method is used to simulate the Taylor–Green Vortex problem, an LES benchmarking

case..
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1.4 Dissertation Outline

Chapter 2 presents the governing flow equations, the Navier–Stokes equations. Chapter 3

presents the flow models, with focus on Large-Eddy Simulation (LES) and Reynolds-Averaged

Navier–Stokes (RANS) and how both models can be implemented together in the same flow

solver. Chapter 4 presents the standard numerical method used for second-order accurate finite vol-

ume methods. Chapter 5 presents the numerical methods necessary for higher-order flow solvers,

specifically Moving Least-Squares (MLS), and improvements to MLS, and boundary conditions

necessary for higher-order methods. Chapter 6 presents two-dimensional results for the Moving

Least-Squares method. The method is tested with several functions showing the validation of the

implementation and improvements to the method, particularly the use of anisotropic weights and

Affine MLS. Chapter 7 presents results for the higher-order method, first showing the improve-

ments to the conditioning of the MLS system for typical mesh topologies. Higher-order boundary

conditions are then tested to show the improvement over the standard boundary conditions. Fi-

nally, the chapter concludes with results for a benchmark LES case with structured and unstruc-

tured grids, the Taylor–Green Vortex. Conclusions and recommendations for future work are given

in Chapter 8.
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2. GOVERNING EQUATIONS

Most flows of engineering interest are highly unsteady, compressible, and viscous. These flows

are modeled using the mass, momentum and energy conservation equations collectively known as

the the Navier-Stokes equations. They are:

∂

∂t

∫
Ω

Q · dΩ +

∮
∂Ω

(Fconv − Fvisc) n dS =

∫
Ω

G · dΩ. (2.1)

Ω is the fluid element over which we are integrating and n is the outward-pointing normal of Ω.

The state vector of conservative variables is:

Q ≡


ρ

ρv

ρE

 (2.2)

where

v ≡


u

v

w

 (2.3)

are the x, y, and z-velocity components, ρ is the density, andE is the total energy of a fluid particle.

The convective, or inviscid, and viscous flux vectors are

Fconv ≡


ρvT

ρvvT + pI

ρEvT + pvT

 (2.4)

13



and

Fvisc ≡


0

τ

(τv + k∇T )T

 (2.5)

respectively. k is the thermal conductivity of the fluid, and T is the temperature. τ is the viscous

stress tensor, defined as:

τ ≡ 2µD− 2

3
µ (∇ · v) I (2.6)

where

D ≡ 1

2

(
∇v +∇vT

)
(2.7)

τ can also be expressed as:

τxx = 2
3
µ
(

2∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
τyy = 2

3
µ
(

2∂v
∂y
− ∂w

∂z
− ∂u

∂x

)
τzz = 2

3
µ
(

2∂w
∂z
− ∂u

∂x
− ∂v

∂y

)
τxy = τyx = µ

(
∂u
∂y

+ ∂v
∂x

)
τyz = τzy = µ

(
∂v
∂z

+ ∂w
∂y

)
τzx = τxz = µ

(
∂w
∂x

+ ∂u
∂z

)
(2.8)

where µ is the viscosity of the fluid.

The vector of source terms, G is equal to zero in the absence of body forces or lack of internal

sources.
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3. FLOW MODEL

For the Navier–Stokes equations, there is no closed-form solution and very few exact solu-

tions. This comes from the non-linearity of the equations, specifically due to viscous stresses

τ (2.6) (v∇v). Mathematically, turbulence arises from these terms, and modeling must be applied

to achieve solutions to the Navier–Stokes equations were turbulence is present, which is in most

flows of importance. There are three main approaches available when modeling turbulence: Di-

rect Numerical Simulation (DNS), Large-Eddy Simulation (LES), and Reynolds-averaged Navier–

Stokes (RANS).

3.1 Direct Numerical Simulation

Direct Numerical Simulation takes the Navier–Stokes equations (2.1) and attempts to solve the

equations directly, using the appropriate discretizations in time and space. This method is typically

only feasible for low Reynolds Number flows [131, p. 347-348] and is therefore not yet applicable

to turbomachinery or other complex flows. It will not be further discussed in this dissertation.

3.2 Large-Eddy Simulation

Large-Eddy Simulation strives to “compute the three-dimensional, time-dependent details of

the largest scales of motion using a simple model for the smaller scales” [137]. The viscous

stresses (2.6) are calculated by spatially averaging the flow variables and modeling the smaller

scales, which are assumed to be universal.

To derive the LES model, filtering operations are applied to the finite volume formulation of

the compressible Navier–Stokes equations (2.1). Three distinct filtering operations are performed

on the equations to separate and remove the sub-grid terms for modeling purposes. The three

filtering operations are grid, convolution, and Favre. Grid filtering is an implicit filtering step, as

the information smaller than the grid is automatically removed. Figure 3.1 shows this. The orange

vortices are smaller than the grid and therefore unable to be captured by the numerical method.

Maroon vortices are much larger, and while not captured exactly, have most of their salient features
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Figure 3.1: Grid Filtering of Small Scale Structures. Maroon spirals are captured by more than
one grid point. Orange spirals are captured by at most one grid point.

represented by the mesh.

Convolution filtering is a high-pass filtering operation that removes the higher-frequency, smaller

scale information from the model. The field is decomposed into large and small scales,

q(x, t) = q̄(x, t) + q′(x, t), (3.1)

where (̄) are the large scales and ()′ are the small scales. A convolution integral is then applied

to (3.1) such that

q̄(x, t) = G ? q ≡
∫

Ω

G(x, ξ)q(ξ, t) dξ (3.2)

where G is the filter function. There are a few options available for G, but in the context of

finite volume schemes, G is automatically satisfied by the finite volume formulation, where G is

explicitly a top-hat filter or volume averaging operation [131]:

G(x, ξ) =

 1/∆3 if ||x− ξ||≤ ∆/2

0 otherwise
(3.3)
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where ∆ is the convolution filter length and the cell volume Ω = ∆3. The convoluted variables are

then expressed as:

q̄(x, t) = G ? q =
1

Ω

∫
Ω

q(ξ, t)dΩ. (3.4)

The governing equations now take the following form:

∂

∂t

∫
Ω

Q dΩ +

∮
∂Ω

(Fconv − Fvisc) · n dS = 0, (3.5)

where

Q ≡


ρ̄

ρ̄v̄

ρ̄Ē

 , (3.6)

and v̄ are the filtered velocity components, ρ̄ is the filtered density, and Ē is the filtered total energy

of a fluid element. It is important to point out that (3.5) is nearly identical to (2.1) (without the

source term). The filtered convective and viscous flux vectors are [58]

Fconv ≡


ρ̄v̄T

ρ̄v̄v̄T + p̄I

ρ̄Ēv̄T + p̄v̄T

 , (3.7)

and

Fvisc ≡


SGSD

τ̄ + SGSM

(τ̄ v̄ + q̄ + SGSE)T

 . (3.8)

SGSD, SGSM , and SGSE are the sub-grid terms for the continuity, momentum, and energy equa-
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tions. They are given by [58]:

SGSD ≡ ρvT − ρ̄v̄T (3.9)

SGSM ≡ (ρ̄vvT − ρ̄v̄v̄T ) + (ρvvT − ρ̄vvT ) (3.10)

SGSE ≡ (ρ̄EvT − ρ̄Ēv̄T ) + (ρEvT − ρ̄EvT ) + (pvT − p̄v̄T ) + (τv − τ̄ v̄) (3.11)

It is not desirable to have a sub-grid term in the continuity equation, so Favre filtering is utilized to

remove the term. Favre filtering density-weighs the variables, such that

q̃ =
ρq

ρ̄
. (3.12)

Terms such as ρvvT in the momentum sub-grid term are decomposed as:

ρvvT = ρ̄ṽvT = ρ̄ṽṽT + [G?,H](ρ,v,vT ) (3.13)

where [G?,H] is the filter error term and

σ = [G?,H](ρ,v,vT ) = ρ̄(ṽvT − ṽṽT ) (3.14)

is the sub-grid stress term. Favre filtering is not applied to density or pressure, since doing so

would cancel out the density, but is applied to the temperature.

p̄ = ρ̄RT̃ . (3.15)

After all of the filtering has been applied to the governing equations, the fully filtered LES equa-

tions are

∂

∂t

∫
Ω

Q dΩ +

∮
∂Ω

(Fconv − Fvisc) · n dS = 0,
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where

Q ≡


ρ̄

ρ̄ṽ

ρ̄Ẽ

 , (3.16)

is the filtered state vector. The fluxes are given as [58]:

Fconv ≡


ρ̄ṽT

ρ̄ṽṽT + p̄I

ρ̄ẼṽT + p̄ṽT

 , (3.17)

and

Fvisc ≡


0T

τ̌ + SGSM

(τ̌ ṽ + q̌ + SGSE)T

 , (3.18)

with the computable (not modeled) heat flux, total energy, and stress tensor defined as [58]:

q̌ ≡ k̃∇T̃ (3.19)

ρ̄Ẽ ≡ p̄

γ − 1
+

1

2
ρ̄ṽT ṽ + diag(σ) (3.20)

τ̌ ≡ 2µ̃D̃− 2

3
µ̃ (∇ · ṽ) I (3.21)

where k̃ is the thermal conductivity of the fluid as a function of the Favre-average temperature T̃

and σ is the sub-grid stress [148]. The momentum and energy equations each have a sub-grid term

remaining, which needs to be modeled using an appropriate sub-grid model. These terms are given

by [58]:

SGSM ≡ σ + (τ̄ − τ̌ ) (3.22)

SGSE ≡
1

2
ρ̄(ṽvTv − ṽṽTv) + cpρ̄(ṽTT − ṽT T̃ ) + (τv − τ̄ ṽ) + (q̄− q̌) (3.23)
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where cp is the specific heat at constant pressure.

3.3 Reynolds-Averaged Navier–Stokes

The Reynolds-averaged Navier–Stokes model, like LES, averages the Navier–Stokes equa-

tions (2.1) to model the viscous stresses (2.6). Rather than averaging in space, the RANS model is

a time average, or in some cases, phase average, of the Navier–Stokes equations. This averaging

makes the underlying turbulence in the viscous stresses steady.

To derive the RANS equations, the finite volume formulation of the compressible Navier–

Stokes equations (2.1) is first time average. The time average of a variable is given as:

q̄(x, t) =
1

T

∫
T

q(x, t)dt (3.24)

The field is then decomposed using the Reynolds decomposition into the mean (̄) and temporally

fluctuating part ()′.

q(x, t) = q̄(x, t) + q′(x, t) (3.25)

For compressible flows, Favre averaging of the mean is introduced, similar to the operations when

deriving the LES equations. The Favre density-weighted time average is

q̃ =
ρq

ρ̄
. (3.26)

Note that (3.26) and (3.12) appear the same, but both work with different averages, LES with

spatial averages and RANS with temporal averages. The Favre decomposition of the field is

q = q̃ + q′′. (3.27)

These two decompositions, (3.25) and (3.27) are applied as follows: (1) the Reynolds decomposi-

tion is applied to the density and pressure, and the Favre decomposition is applied to the velocity,
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total energy, and temperature.

ρ = ρ̄+ ρ′,

p = p̄+ p′, (3.28)

and (2) to the velocity, total energy, and temperature

v = ṽ + v′′,

E = Ẽ + E ′′,

T = T̃ + T ′′. (3.29)

The fully-averaged RANS equations are then defined as:

∂

∂t

∫
Ω

Q dΩ +

∮
∂Ω

(Fconv − Fvisc) · n dS = 0,

where

Q ≡


ρ̄

ρ̄ṽ

ρ̄Ẽ

 , (3.30)

is the averaged state vector. The fluxes are given as:

Fconv ≡


ρ̄ṽT

ρ̄ṽṽT + p̄I

ρ̄ẼṽT + p̄ṽT

 , (3.31)

and

Fvisc ≡


0T

τ̌ +RANSM

(τ̌ ṽ + q̌ +RANSE)T

 , (3.32)
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with the computable heat flux, total energy, and stress tensor defined as [12]:

q̌ ≡ k∇T̃ (3.33)

ρ̄Ẽ ≡ p̄

γ − 1
+

1

2
ρ̄ṽT ṽ +

1

2
ρ̄ṽ′′Tv′′ (3.34)

τ̌ ≡ 2µD̃− 2

3
µ (∇ · ṽ) I, (3.35)

Similar to the LES equations, the RANS equations have Reynolds stress terms in the momentum

and energy equations. They are given by [12, pg. 233-234]:

RANSM ≡ −ρ̃v′′Tv′′ (3.36)

RANSE ≡
1

2
(ṽ ˜ρv′′ · v′′) + ṽρ̃v′′Tv′′ + ρ̃v′′TT − τ̃v′′ +

1

2
˜ρv′′v′′Tv′′. (3.37)

The Reynolds stress terms of (3.36) and (3.37) must be further modeled. Blazek [12] and Pope

[131] both are excellent starting places for Reynolds stress models. In this work, the Reynolds

stresses are modeled using the Shear-Stress Transport (SST) model of Menter [115].

3.4 Similarities between RANS and LES

The similarities between the governing equations for the RANS and LES models are summa-

rized in Table 3.1. The only difference between the models are the sub-grid and Reynolds stress

terms. This is true for both incompressible and compressible flows, as proven by Germano [60]

and Suman & Girimaji [151]. This means that any Navier–Stokes code can be both a RANS and

an LES code, provided the viscous fluxes Fvisc are appropriately modeled in both cases.

3.5 Sub-grid Models for Large-Eddy Simulation

Having shown in the previous section that an LES model can be implemented into an existing

RANS model, the next difficulty arises in how the sub-grid stresses given by (3.22) and (3.23)

are to be modeled. There are a plethora of sub-grid models available for the terms in (3.22)

and (3.23) [141, 58]. The first sub-grid model proposed was by Smagorinsky [148] which mod-
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Table 3.1: Similarities of LES and RANS Governing Equations.

LES RANS
Q Identical

Fconv Identical

Fvisc

 0T

τ̌ + SGSM
(τ̌ ṽ + q̌ + SGSE)T

  0T

τ̌ +RANSM
(τ̌ ṽ + q̌ +RANSE)T



eled σ in (3.22). The various models presented in [141] and [58] work better for some flows than

others, as is the case with RANS models, and should be selected with care.

A consideration when selecting sub-grid models is the underlying accuracy of the numerical

model. Typically, previous LES models implemented in the finite volume framework have been

second-order accurate [129]. The seminal work of Ghosal [62] showed that the numerical error

generated by the second-order finite volume method was significantly larger than the sub-grid

modeled stresses. More recently, Dairay et al. [30] showed that even at high-orders, explicit sub-

grid models, such as the Smagorinsky [148] model, show significant sensitivity to the numerical

dissipation of the scheme. Therefore, to accurately apply LES in the finite volume framework,

one must have a numerical accuracy of greater than second order regardless of the model. Boris

[14] postulated even before Ghosal [62] that one could rely totally on the numerics in finite volume

frameworks to generate the sub-grid model. Boris [14] called his method Monotonically Integrated

LES or MILES. Now more popularly known as ILES, or Implicit LES, a higher-order finite volume

method can generate the sub-grid stresses of (3.22) and (3.23) [72]. With this knowledge and the

insight of Ghosal [62] and the recent work of Dairay et al. [30], the sub-grid terms herein are

modeled implicitly with the numerical model. The numerical model used to achieve this will be

discussed in the next two chapters.
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4. NUMERICAL SCHEME AND DISCRETIZATION

This chapter will discuss how to implement a second-order scheme using the Finite Volume

Method (FVM), which takes advantage of the integral form of the governing equations (2.1). The

implementation of third- and higher-order scheme in the FVM context will be discussed in detail in

the next chapter, but details discussed in this chapter are necessary for all orders of accuracy. The

chapter presents the discretization of the computational domain, the spatial discretization of the

governing equations, numerical implementation of the fluxes, including those on the boundaries,

and the temporal discretization of the governing equations.

4.1 Spatial Discretization

The computational domain is constructed using a mesh composed of the combination of differ-

ent polyhedral cells. This unstructured topology has the advantage of using fewer total nodes and

better body-fitting capabilities. In this approach, the conserved state variables are stored and the

governing equations are discretized at the vertices of the mesh. Control volumes constructed about

the vertices of the mesh are made using the mesh duals. There are two approaches to constructed

the mesh duals: median and centroid. In the median dual mesh paradigm, the control volume is

made by connecting the lowest simplex centroids (cell, face, and edge). For the centroid duals, the

highest simplex centroids are connected. Examples of these dual mesh paradigms are shown in

Figure 4.1. The difference in strategies is more readily apparent in Figure 4.2, which shows the

differing control volumes. For first- and second-order schemes, the median- and centroid-duals are

effectively the same, since it is assumed that the flow variables are constant on dual volume faces.

However, third- and higher-order schemes require the fluxes (2.4) and (2.5) be computed through

each partial face of the dual volume. The median-dual approach guarantees that each face of the

dual volume is a quadrilateral, which greatly simplifies the quadrature procedure [12, pg. 145].

The centroid-dual also generates quadrilateral faces, but their exact boundaries are more difficult

to define. Additionally, control volumes generated by the median dual volume approach are typ-
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(a) Median Dual (b) Centroid Dual

Figure 4.1: Examples of Cell-Vertex Dual Mesh Representations.

(a) Median Dual (b) Centroid Dual

Figure 4.2: Examples of Cell-Vertex Dual Control Volume Representations.

ically better, especially for skewed meshes. Therefore, the median dual volume approach is used

herein, since most meshes used in typical CFD simulations have these skewed or stretched cells.

Fluxes are computed through each median dual volume face, or in an edge-based method,

through each dual volume face associated with an edge. Figure 4.3 illustrates where fluxes are

computed for first- and second-order. For first- and second-order schemes, it is sufficient to com-

pute the fluxes at the midpoint of the edge. Single-point quadratures may not be sufficient for first

and second-order schemes if the mesh is skewed. In those situations, the fluxes should be com-

puted through each face centroid of the dual volume. The convective (2.4) and viscous (2.5) fluxes

computed along an edge are:

∮
∂Ω

(Fconv − Fvisc) · ndS =
∑
j=k(i)

(Fconv − Fvisc) · |Sij| (4.1)
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1st/2nd Order at Edge-Centroid 1st/2nd Order at Face Centroid

3rd/4th Order 
LEGEND

Node

Flux Node

Quadrature Node

Figure 4.3: Quadrature Node Locations Using the Dual-Median Mesh Paradigm for 1st- and 2nd-
Order Flux Computation.

where |Sij| is the edge-projected area of the dual volumes’ faces attached to an edge and n is the

normal vector of the edge-projected area. The summation in (4.1) is over each dual face, based

on the paradigm illustrated in Figure 4.3 for the specified order of the solver. The state vector and

source terms are computed as cell averages:

Qi =

∫
Ω

QdΩ

Ω
, (4.2)

Gi =

∫
Ω

GdΩ

Ω
. (4.3)

The governing equation can be recast in semi-discrete form at each nodal location as:

∂QiΩ

∂t
= −

∑
j=k(i)

(Fconv − Fvisc) · |Sij|+GΩ. (4.4)

If the mesh is stationary, the semi-discrete form of the governing equation at each nodal location
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becomes:

Ω
∂Qi

∂t
= −

∑
j=k(i)

(Fconv − Fvisc) · |Sij|+GΩ. (4.5)

4.2 Flux Computation

The real stumbling block in computing solutions to the Navier–Stokes lies in the computation

of the convective and viscous fluxes of (4.4). The next two sections focus on the methods used to

compute each.

4.2.1 Convective Fluxes

Convective fluxes (2.4) are computed using the Roe-Riemann flux-difference splitting method

[138]. The convective fluxes at a dual face are approximated as [12]

Fconv =
1

2
[FconvQR + FconvQL − |ARoe|· (QR −QL)] (4.6)

where |ARoe| is the Roe matrix, and QR and QL are the states on the right and left sides of a dual

face. The second term of (4.6) |ARoe|· (QR −QL) is evaluated as:

|ARoe|· (QR −QL) = |∆F1|+|∆F2,3,4|+|∆F5| (4.7)

where |∆F1|, |∆F2,3,4|, and |∆F5| are

|∆F1|= |Ṽ − c̃|
∆p− ρ̃c̃∆V

2c̃2


1

ṽ − c̃ · n

H̃ − c̃Ṽ

 (4.8)

|∆F2,3,4|= |Ṽ |
(

∆ρ− ∆p

c̃2

)
1

ṽ

q̃2/2

+ |Ṽ |ρ̃


0

∆v −∆V · n

ṽ ·∆v − Ṽ∆V

 (4.9)
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|∆F5|= |Ṽ + c̃|∆p+ ρ̃c̃∆V

2c̃2


1

ṽ + c̃ · n

H̃ + c̃Ṽ

 . (4.10)

(̃) are the Roe-averages [138]

q̃ =
qL
√
ρL + qR

√
ρR√

ρL +
√
ρR

(4.11)

∆() = ()R − ()L, H̃ is the Roe-averaged total enthalpy, c̃ is

c̃ =

√
(γ − 1)

(
H̃ − q̃2

2

)
, (4.12)

Ṽ is

Ṽ = ṽ · n, (4.13)

and

q̃2 = ṽ · ṽ. (4.14)

It is important to note that the fluxes generated using (4.6) can have numerical issues. To explain

this mathematically, |ARoe| in the Roe-Flux is determined as:

|ARoe|= T|Λ|cT−1 (4.15)

where T and T−1 are the left and right eigenvectors, and |Λ|c is the diagonal matrix of the eigen-

values. The eigenvalue matrix is:

|Λ|c=
(
Ṽ − c̃ Ṽ Ṽ Ṽ Ṽ + c̃

)
I (4.16)

|Λ|c becomes poorly conditioned or even singular if the flow approaches the speed of sound, such

that Ṽ − c̃→ 0, or if Ṽ is small. To avoid |Λ|c potentially becoming singular in these situations, a
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perturbation, or correction, is applied to the eigenvalues:

|Λ|c,i=


|Λ|c,i if |Λ|c,i> δf

|Λ|2c,i+δ2
f

2δf
if |Λ|c,i< δf

(4.17)

where δf is a small value, typically a fraction of the local speed of sound. This correction is

commonly known as the Harten entropy fix [79]. The Harten entropy fix is also used to generate

numerical dissipation in the scheme.

The fluxes in (4.6) require the left- and right-state QL and QR to be known. However, these

states are not known directly, nor are their locations. Extrapolations from a node and quadratures

on the dual faces must be determined to compute (4.6). Quadrature procedures for flux computation

will be discussed in the next chapter. The extrapolation, or reconstruction, of a state at a node to the

dual-face is necessary to determine either QL and QR. Figure 4.4 shows a constant reconstruction

of QL and QR. Constant reconstructions are used only for first-order schemes. For second- and

Qi

Qj

QL

QR

Q

x
Cell i Cell j

Figure 4.4: Constant Reconstruction of Left and Right States for Fluxes.

higher-order schemes, the reconstructions must use derivatives to determine QL and QR. The

left and right states are extrapolated to the quadrature points via Taylor expansion of the desired
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order. Figure 4.5 shows a second-order linear reconstruction of QL and QR. Mathematically, the

Qi

Qj

QL

QR

Q

x

∇Qi

∇Qj

Cell i Cell j

Figure 4.5: Linear Reconstruction of Left and Right States for Fluxes.

second-order linear reconstruction of the states, from the left and right, are:

QL = Qi + rT∇Qi (4.18)

QR = Qj + rT∇Qj. (4.19)

where r is the vector from node i or j to the edge mid-point. The left and right derivatives, ∇Qi,j

are computed for the standard second-order method using least-squares [91].

To achieve a greater order of accuracy, a quadratic or greater piecewise reconstruction is re-

quired using a suitably accuracy gradient method to compute QL and QR. Details on achieving this

are given in the next chapter. A linear (or greater) piecewise reconstruction (4.19) does not guar-

antee monotonic solutions for linear schemes; therefore, limiters must be applied to avoid over-

or undershoots of the state vector at the dual face [12, pgs. 168-169]. The general reconstruction
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using limiters is now written as, from the left and right:

QL = Qi + Φi · (rT∇Qi +
1

2
rT∇(∇Qi)r + . . .) (4.20)

QR = Qj + Φj · (rT∇Qj +
1

2
rT∇(∇Qj)r + . . .) (4.21)

with Φi,j the limiter function. The limiter function can be computed by Venkatakrishnan’s lim-

iter [162] or other suitable limiter. The flux at a node is then computed as a sum of all the fluxes

between a node and its neighbors:

Fconv =
∑

k∈edges

Fconv, k|S|i,k (4.22)

where |S| is the edge-based area.

4.2.2 Viscous Fluxes

This section discusses how the viscous fluxes (2.5) are computed for (4.4). The viscous

flux (2.5) requires both the velocity and temperature gradients as well as the state vector on the

dual face. The state vector at the interface for first and second order is computed using an average

of the left and right state

Qdual =
1

2
(QR + QL). (4.23)

Gradients can be handled in a similar way, however, decoupling can occur when the average ap-

proach is applied directly. For second order, directional derivatives along the edge are computed

as [12, pg. 176]:

∇Qdual = ∇Qdual −
[
∇Qdual ·

∆x

|∆x|
− QR −QL

|∆x|

]
· ∆x

|∆x|
(4.24)

where |∆x| is the edge length and () is the average. To achieve a higher-order viscous flux, direct

computation of the states and gradients at the quadrature points are required. Details on how a

higher-order accurate viscous flux is achieved are given in the next chapter.
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4.2.3 Boundary Fluxes

On the boundaries, both the convective and viscous fluxes must be modified to accurately

update the state on the boundaries. On non-wall boundaries, the convective fluxes are integrated

using the states at the boundary node and state at the boundary face quadrature node. Figure 4.6

shows a typical boundary surface. From Equation (4.6), the left state is the state at the boundary

LEGEND

Boundary Node

Boundary Quadrature Node

Figure 4.6: Typical Boundary Surface Showing Boundary Quadrature Locations.

node and the right state is the boundary face quadrature state. For second-order, only the left state

is required to be reconstructed in (4.19), since the right state is directly known at the quadrature

node. The state at the boundary quadrature node is determined from the boundary conditions using

a method such as that presented in [12, Chapter 8].

For wall boundaries, the convective flux can be computed in two ways. The first approach

applies the same methodology use for the other boundaries. The second approach recognizes that
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on the wall boundary, the flow is subject to a non-slip condition:

v · n = 0. (4.25)

The convective flux on the wall boundary therefore reduces to:

Fconv =


0

Pwn

0

 , (4.26)

where Pw is the wall pressure and set equal to the pressure at the boundary quadrature node

Pw = Pqb (4.27)

and n is the normal vector on the wall boundary surface at the quadrature node. Equation (4.26) is

true regardless of the numerical accuracy of the method.

The viscous fluxes described by Equation (2.5) are handled similarly to the convective fluxes

on the boundaries; however the left state does not contribute to (4.23). The derivatives of the state

vector in (4.24) are determined exclusively by the derivative at the boundary node in Figure 4.6.

For wall boundaries, the viscous flux contribution is dependent on the thermal boundary condition.

For adiabatic thermal wall boundaries, only the flux for the energy equation is computed:

Fvisc =



0

0

0

0

(τv)T


(4.28)

For isothermal walls, Fvisc = 0 since the wall temperature is prescribed. Again, these fluxes are
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true for all numerical orders of accuracy.

4.3 Temporal Discretization

The semi-discrete form of the Navier–Stokes equations (4.4) is written for a node i as:

∂Qi

∂t
Ωi = Ri (4.29)

where the residuals Ri are:

Ri = −
∑
j=k(i)

(Fconv − Fvisc) · Sij + GiΩi −
∂Ωi

∂t
Qi (4.30)

and ∂Ωi
∂t

is the temporal evolution of the cell volume in the mesh deformation case. Herein, the

mesh is fixed and ∂Ωi
∂t

= 0. For first- and second-order schemes, an explicit four-stage second-

order Runge–Kutta scheme is used to integrate (4.29) forward in time:

Q
(0)
i = Qn

i

Q
(1)
i = Q

(0)
i + α1

∆ti
Ωi

R
(
Q

(0)
i

)
Q

(2)
i = Q

(0)
i + α2

∆ti
Ωi

R
(
Q

(1)
i

)
Q

(3)
i = Q

(0)
i + α3

∆ti
Ωi

R
(
Q

(3)
i

)
(4.31)

Q
(4)
i = Q

(0)
i + α4

∆ti
Ωi

R
(
Q

(4)
i

)
Qn+1
i = Q

(4)
i

where δti is the time step at node i and the superscript () is the Runge–Kutta stage index. α are

the Runge–Kutta stage coefficients. See [12, pgs. 184-185] for more details about the method. A

four-stage method is used to increase the stability characteristics of the Runge–Kutta method [92,

Chapter 8].

Equation (4.31) uses a global time step ∆t at all of the nodes to ensure the second-order time
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accuracy is met. The global time step is the minimum time step of all the dual cells:

∆t = min
i∈Ω

∆ti

where the local time step is based on the local stability conditions at the dual cell [12, pg. 189]

using the Courant-Friedrichs-Lewy stability condition (CFL)

∆ti = CFL
Ωi

(Λx
c + Λy

c + Λz
c)i + 4 (Λx

v + Λy
v + Λz

v)i
, (4.32)

where Λc are the convective spectral radii and Λv are the viscous spectral radii. The convective

spectral radii are:

Λx
c = (|u|+c)∆Sx

Λy
c = (|v|+c)∆Sy (4.33)

Λz
c = (|w|+c)∆Sz

where c is the local wave speed. ∆S is the projection of the control volume Ωi onto the yz−, xz−,

and xy−planes. They are given as:

∆Sx =
1

2

NF∈Ωi∑
j=1

|Sx|j

∆Sy =
1

2

NF∈Ωi∑
j=1

|Sy|j (4.34)

∆Sz =
1

2

NF∈Ωi∑
j=1

|Sz|j

where (Sx, Sy, Sz) are the components of the face vector S = n∆S. The viscous spectral radii
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are [12, pg. 190]:

Λx
v =

1

ρ
max

(
4

3
, γ

)(
µL
PrL

+
µT
PrT

)
(∆Sx)

2

Ωi

Λy
v =

1

ρ
max

(
4

3
, γ

)(
µL
PrL

+
µT
PrT

)
(∆Sy)

2

Ωi

(4.35)

Λz
v =

1

ρ
max

(
4

3
, γ

)(
µL
PrL

+
µT
PrT

)
(∆Sz)

2

Ωi

where Pr is the Prandtl number, µ is the dynamic viscosity, and the subscripts L and T designate

laminar and turbulent values, respectively. For a purely laminar flow, µT
PrT

is ignored in the viscous

spectral radii.

4.4 Implicit Residual Smoothing

While solving (4.29) using (4.31), the time step can become small and cause the convergence

to stall. This is a particular problem for low-speed and sonic conditions. To alleviate the issues

arising from small time steps, implicit residual smoothing is added to impart an implicit flavor

to the explicit method of (4.31) [12, pg. 306]. The smoothing aids in stabilizing the solution,

increasing convergence and CFL, and adding numerical dissipation.

The residual at a node is smoothed by taking a weighted average of the residuals of its neigh-

bors, such that an iteration for the smoothed residual R∗ at node i is:

R∗i + ε

k∑
j=1

(R∗i −R∗j) = Ri (4.36)

or isolated for the smoothed residual at i,

R∗i =
Ri + ε

∑k
j=1 R∗j

1 + ε
∑k

j=1 1
, (4.37)

where k is the number of neighbors of i and ε is the smoothing coefficient. Typically, ε ∈

[0.5, 0.8]. (4.37) is solved using Jacobi iterations, converging in no more than 4 iterations [12,

Chapter 10]. For viscous flows, after each iteration the residuals at walls must be prescribed to en-
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sure the proper thermal condition is enforced. However, recent work has shown that using implicit

residual smoothing on viscous flows can effectively destroy the solution in the boundary layer near

a wall, and it is best avoided when solving (4.29) for viscous flows [18]. Additionally, any normal

gradient boundary condition is essentially destroyed through the relaxation, which is undesirable.

Once the residuals are smoothed, the modified residuals are used directly in (4.31) to solve the

governing equations.
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5. HIGHER-ORDER METHODS

This chapter describes the implementation of a higher-order (greater than second-order) scheme

in the numerical model. Building upon the work in the previous chapter, this chapter presents and

describes the areas from Chapter 4 that require additional work or terms to achieve higher-order

accuracy. The specific areas that require additional attention to achieve higher-order accuracy are:

(1) Derivatives

(2) Quadratures

(3) Fluxes: Convective and Viscous

(4) Boundary Conditions

(5) Temporal Schemes

In the following sections, each method will be discussed in detail.

5.1 Higher-Order Derivatives

This section provides an overview of the methods for computing derivatives in CFD and de-

scribes and derives the Moving Least-Squares approach for computing derivatives with minimum

restrictions.

5.1.1 Overview

When selecting ways to determine the derivatives needed for the reconstruction of the states

on the left and right sides of the flux boundary, there would seem to be several viable options

to choose from. Unfortunately, that is not the case. The traditional methods used to compute

the derivatives in finite volume CFD codes are Green–Gauss, Least-Squares, and Weight Essen-

tially Non-Oscillatory (WENO) schemes. Green–Gauss will only compute first derivatives. Least-

Squares can be extended to higher-order derivatives but the systems become poorly conditioned

and stiff with functional support over the entire domain, which can be very problematic [27].

38



WENO schemes can also be used to compute higher-order derivatives and have been used suc-

cessfully in finite difference methods. However, the usage of WENO for finite volumes is limited

to first-derivatives [179]. Additionally, WENO is undefined for triangular topologies above third

order in any method [179, 39].

With the limitations of traditional methods prohibitive for higher-order schemes in finite vol-

ume methods, more recent developments for determining derivatives are explored. There are com-

pact schemes, which are very popular for use with spectral schemes. In finite volume schemes,

compact schemes are, at best, only third order when any curvature is introduced, and compact

schemes are therefore only for structured topologies [149]. There are also Discontinuous Galerkin

methods (DGM), which work well for both structured and unstructured meshes [147]. DGM are

similar to finite elements where shape functions are generated internally to achieve a specified

order [25]. Discontinuous Galerkin methods perform poorly when shocks or discontinuities are

present [125], though much work is currently ongoing to rectify these deficiencies. Additionally,

the computational cost of DGM is significantly higher than that of finite volume methods [106].

Meshless methods, however, do not suffer from the restrictions of any of the previous methods.

Meshless methods can have arbitrary order, applied to any mesh topology, and have been used for

flows with shocks and discontinuities. Stability (conditioning) issues do arise when using these

methods; however, unlike standard least-squares methods, meshless methods have strategies to

overcome these deficiencies. The meshless method chosen herein is Moving Least-Squares, first

introduced by Lancaster & Salkauskas [95] as a tool for surface generation in computer graphics

and to the CFD finite-volume community by Cueto-Felgueroso et al. [29].

5.1.2 Moving Least-Squares

This section presents the general theoretical framework and derivation of Moving Least-

Squares (MLS) for computing gradients based partly on the work of Cueto-Felgueroso et al. [29].

MLS uses a weighted least-squares fit to approximate q (x) at a node in the mesh, xI , as q̂ (x) us-

ing the neighboring values of q. Operating on each component of q (x) separately at xI , the MLS
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approximation of q is using a set of basis vectors, φ(xI), and the MLS shape functions, ψ (xI):

q(xI) ≈ q̂(xI) =
n∑
i=1

φi(xI)ψi(xI) = φ T (xI)ψ(xI) (5.1)

where n is the number of terms in the basis φ(xI). The initial formulation given here assumes a

monomial basis p (x) for φ(x), though no restriction is placed on what the basis must be. Conse-

quently, (5.1) becomes:

q(xI) =
n∑
i=1

pi(xI)ψi(xI) = pT (xI)ψ(xI) . (5.2)

The size of the polynomial basis p(xI), n, is determined by the dimension, d, and order `, of the

polynomial basis. For example, a one-dimensional, third-order polynomial basis would have n = 3

terms:

p(x) = (1, x, x2)T .

A two-dimensional, third-order polynomial basis would have n = 6 terms:

p(x) = (1, x, y, x2, xy, y2)T .

In three dimensions, an element of the basis p (x) is:

pi(x) = xaybzc, 0 ≤ a+ b+ c ≤ `− 1, a, b, c ∈ N (5.3)

Table 5.1 summarizes the size of p(xI), n, for one-, two-, and three-dimensional polynomial basis

for first to fourth order. The full basis is written in the form:

p(x) = (p1(x), p2(x), p3(x), · · · , pn(x))T .
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Table 5.1: Polynomial Basis Size Requirement for MLS.

Order, `
1 2 3 4

Dimension, d
1 1 2 3 4
2 1 3 6 10
3 1 4 10 20

To determine the MLS basis function ψ in (5.2), an error functional in a least-squares sense [66,

pg. 234][92, pg. 434][44, pgs. 191-192] is written for (5.2)

J(ψ (xI)) =
∑
j∈ΩxI

W (xj − xI ; rsupport)
[
q(x)− pTj (x)ψj (xI)

]2
. (5.4)

W is a general weighting function, explicitly defined later, described over the support radius rsupport

rsupport =
1

k
rmax =

1

k
max
j∈ΩxI

‖xj − xI‖=
1

k
max
j∈ΩxI

‖∆jIx‖

where rmax is the maximum radii between nodes j and I in the stencil, ∆jI = ()j − ()I , and k is

a scaling parameter. Cueto-Felgueroso & Colominas [27] used k ∈ [0.6, 0.7] in their work, but no

basis was given for the choice in k. The effect of k on the support radius is shown in Figure 5.1.

Extensive tests are performed herein to determine how the MLS reconstruction varies with varying

scaling parameter k.

The weighting functions W in (5.4), and by extension the functional itself, are defined to have

compact local support over the region ΩxI , the stencil for node xI . This is where MLS differs

from weighted least-squares. In traditional weighted least-squares, the weighting function W has

global support over the entire domain Ω [121]. In MLS, W is compact, and (5.4) is applied locally

at each point in the domain [121]. Additionally, W is parameterized within the stencil by s, where

s at a stencil node is defined as:

sjI =

√
(∆jIx)2 + (∆jIy)2 + (∆jIz)2

rmax
. (5.5)
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Figure 5.1: Effect of Varying the Scaling Parameter k on the Support Radius.

This function is sufficient if the points in ΩxI are uniformly distributed, such as on a disk in 2D

or a sphere in 3D. However, for meshes with anisotropic point distribution, such as those typically

constructed for boundaries or viscous flux reconstructions, or just general triangular or tetrahedral

topologies, the standard scaling function (5.5) is insufficient to accurately compute W without bi-

asing one direction over another in ΩxI . To overcome this, a rectangular anisotropic weighting

function may be used [124]. This method, however, is computationally expensive, since a weight

for each direction is computed via a coordinate transformation. It is also difficult to determine

the orientation of the points in ΩxI . To avoid the issues with rectangular anisotropic weights,

a novel ellipsoidal anisotropic weighting function to describe ΩxI is used. This approach is in-

spired by Principal Component Analysis, which tries to fit an n-dimensional ellipsoid to a set of

data [172]. In particular, the ellipsoid generated should be a minimum volume enclosing ellipsoid

(MVEE) [156]. Unlike rectangular anisotropic weights [124], the algorithm used to generate the

MVEE automatically picks the correct direction of anisotropy. The MVEE of ΩxI is a rather com-

plex nonlinear programming problem, which is computationally expensive in its own right, though

ways to limit convergence stalls have been implemented herein, as described in Appendix A. The
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resultant of the MVEE are ellipsoidal coefficients, which are then used to define s as:

sjI =

√√√√√√cx(∆jIx)2 + cy(∆jIy)2 + cz(∆jIz)2+

2(cyz∆jIy∆jIz + cxz∆jIx∆jIz + cxy∆jIx∆jIy)

(5.6)

where c() are the ellipsoidal coefficients determined from the MVEE algorithm. It is important to

state that when ΩxI is nearly spherical, the MVEE algorithm tends to stall, and one should avoid

using it in those cases. However, for truly anisotropic mesh topologies, the algorithm converges

nicely. Further details on the MVEE algorithm can be found in [156] and Appendix A.

There are several choices for W ; however, the appropriate W must be selected based on the

following criteria [104]:

• W > 0 within ΩxI .

• W = 0 outside of ΩxI .

• W is a monotonically decreasing function, with a maximum at xI .

• W is sufficiently smooth in ΩxI .

• W is continuously differentiable up to the approximation order of q̂ such that q̂ is continu-

ously differentiable up to the approximation order [101, 102].

It is important to note that the order of W does not contribute to the order of the MLS approxi-

mation, but only to the smoothness of the approximation [43]. The function used in this work that

follows these criteria is the Wendland function [166, 146].The Wendland function is:

W (s) =


∫ 1

s
t(1− t)µ (t2−s2)l−1

+

Γ(k)2l−1 dt s ≤ 1

0 s > 1

(5.7)
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where µ = d/2 + l + 1, Γ is the Gamma function:

Γ(k) =

∫ ∞
0

xk−1e−x dx (5.8)

shown in Figure 5.2, d is the dimension of the problem, and l is the desired order. The family of

Wendland functions used herein is presented in Figure 5.3.

With the weight function defined, the functional (5.4) is minimized to find ψ to such that:

∂J(ψ)

∂ψ
= 0 = 2

∑
j∈ΩxI

W (sj)
[
qj(x)− pTj (x)ψj (xI)

]
(−pj). (5.9)

Rearranging (5.9) and dropping (xI) to simplify the notation, (5.9) becomes

∑
j∈ΩxI

W (sj)qjpj =
∑
j∈ΩxI

W (sj)p
T
j ψjpj (5.10)
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With the vector identity,

aTba = (a · b)a = aaTb,

where a, b ∈ Rn, (5.10) is rewritten:

∑
j∈ΩxI

W (sj)qjpj =
∑
j∈ΩxI

W (sj)pjp
T
j ψj. (5.11)

Equation (5.11) is expressed in matrix-vector form as:

PWqΩxI
= PWPTψ, (5.12)

where W is a diagonal Rm,m matrix of the weights W for m points in ΩxI , P is the Rn,m set of

polynomial basis vectors of all the points in ΩxI

P =
[
p (x1) p (x2) · · · p (xmaxΩxI

)
]
, (5.13)
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and qΩxI
are the nodal values of the state vector in ΩxI . P, using the monomial basis (5.3),

forms the classic Vandermonde matrix [92, Chapter 6, Section 1], which could potentially cause

problems from a stability standpoint as the order increases. Equation (5.12) is solved for the MLS

shape functions ψ

ψ = M−1PWqΩxI
(5.14)

where the moment matrix M, a Rm,m Gram, Symmetric Positive Definite (SPD) matrix [43], is

defined as:

M = PWPT . (5.15)

Substituting (5.14) into (5.2), the MLS approximation is:

q̂(xI) = p TM−1PWqΩxI
= ΨTqΩx =

∑
j∈ΩxI

Ψj(xI)qj(xj) (5.16)

where Ψ = p TM−1PW is theRm MLS basis vector. Ψ is a function of xI and xj∈ΩxI
only.

5.1.3 Stability of the Moving Least-Squares

The accuracy of the MLS reconstruction of q is strongly tied to the order of the basis p. An

`th order MLS reconstruction (using an `th-order polynomial basis) has an approximation order of

O(`+1) [43]. Numerical tests for an `th-order MLS reconstruction and a general irregularly-spaced

set of neighbor points, the s th-order gradient accuracy is approximately (`− s+ 1) [69].

For higher-order problems, the Gram Matrix M becomes ill-conditioned, even for ‘nice’ sten-

cils ΩxI , and the condition of the matrix must be considered when attempting to solve systems [92,

pg. 403]. The condition of the matrix can be accessed by computing the condition number κ:

κ(A) = ||A|| ||A−1|| (5.17)

where A ∈ Rn,n matrix and || || is a general matrix norm [92, pg. 190-191]. Note that there

is no exact condition number that determines a ‘well-conditioned’ system, but in general a larger
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condition number κ implies a poorly conditioned system [92, pg. 193]. Even though there are

specialized methods to compute the inverse of M (see any of the SPD inverse methods available

from LAPACK [3]), these methods may not be sufficient to overcome the conditioning issues of

M to produce an accurate inverse. There are a few ways to modify the condition number of M to

improve the stability of the method.

5.1.3.1 Scaled Polynomial Basis

The first method used to improve the stability of the system is to scale the polynomial basis

p (x). p (x) is shifted and scaled such that when evaluated at the point xI , the basis takes the form

p (xI−x
rmax

) [27]. An element of the scaled polynomial in three dimensions is:

pi(xI − x; rmax) =

(
xI − x
rmax

)a(
yI − y
rmax

)b(
zI − z
rmax

)c
, 0 ≤ a+ b+ c ≤ l − 1 (5.18)

The weights of (5.7) are implicitly scaled through s (5.5) or (5.6). With this change to the polyno-

mial, the MLS shape functions now become:

ΨT = p T (0)C = p T (0)M−1PW . (5.19)

where C is defined as:

C = M−1PW . (5.20)

However, this is often not sufficient to significantly reduce the condition number of M.

5.1.3.2 QR Decomposition

The next choice to improve the stability of the method is to use a matrix decomposition method

to invert the Gram Matrix M. Without modifying the neighborhood of xI , two matrix decompo-

sition methods are available. One is singular value decomposition (SVD); the other method is

QR decomposition. Both QR and singular value decomposition (SVD) have been used frequently

in the framework of MLS. The QR method for MLS was developed herein and by Mirzaei et al.
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[117]. For SVD versions of MLS, consult [23] and [69], among others. While either approach is

acceptable, SVD was shown to perform slower than QR by Mirzaei et al. [117], and both cases will

perform slower than the standard approach. The QR decomposition method is therefore selected

to solve the inversion issue.

To derive QR decomposition for MLS, we define the decomposition

QR =
√

WPT , (5.21)

where Q is an orthogonal m×n matrix and R is a square n×n upper-triangular matrix. With this

definition of QR, the moment matrix M then becomes:

M = PWPT = (QR)TQR = RTQTQR = RTR (5.22)

where QTQ = I. Furthermore, C becomes:

C = M−1PW = (RTR)−1RTQT
√

W

RC = R(RTR)−1RTQT
√

W

RC = QT
√

W

C = R−1QT
√

W (5.23)

where the identity

R(RTR)−1RT = I (5.24)

is used, where R ∈ Rnxn. The QR decomposed shape functions are then defined as:

ΨT = pT (0)R−1QT
√

W (5.25)

QR decomposed version of MLS only requires the inversion of R to determine the shape functions

computed by (5.25), since the inversion for the diagonal matrix W is simple.
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To improve the numerical stability and accuracy of the QR decomposition, pivoting can be

introduced [32, 165]. Pivoting during the decomposition delays the deteriorating effects of round-

ing errors and has been shown to improve the decomposition of rank-deficient least-square prob-

lems [32], as in the current situation. The QR decomposition, with column pivoting can be written

as:

QRPT
v =
√

WPT , (5.26)

where Pv is the pivot coefficient matrix. With this definition, the moment matrix M is expressed

as:

M = PWPT = (QRPT
v )TQRPT

v = PvR
TQTQRPT

v = PvR
TRPT

v = RTR (5.27)

Note that M is the same in both decompositions since pivoting is an orthogonal transformation.

The definition of C, however, is changed by the pivoting. Let B = RPT
v , then

C = M−1PW = (PvR
TRPT

v )−1PvR
TQT
√

W

C = (BTB)−1BTQT
√

W

BC = B(BTB)−1BTQT
√

W

BC = QT
√

W

C = B−1QT
√

W

C = (RPT
v )−1QT

√
W

C = PvR
−1QT

√
W (5.28)

The shape function using QR decomposition with pivoting is then:

ΨT = pT (0)PvR
−1QT

√
W. (5.29)
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5.1.3.3 Orthogonal Polynomial Basis

The third method used to improve the numerical stability of MLS is the usage of an orthog-

onal basis instead of a monomial basis (5.3) when constructing the Gram Matrix M [17]. The

advantage of using orthogonal polynomials as the basis is that P will no longer be linearly (or near

linearly) dependent, since orthogonal polynomials are designed as such over a scaled interval in

one dimension or more dimensions. There are a few options on how to incorporate or build an

orthogonal basis. First, one might consider taking P, which with a monomial basis is a classic

Vandermonde matrix [92, Chapter 6, Section 1], and perform a Gram–Schmidt process [92, Chap-

ter 5, Section 3] operation such that P becomes a linearly independent set. This approach works,

but is expensive, and it is difficult to extract the coefficients of the orthogonal polynomial basis

created by this procedure for a general ΩxI . Another approach finds an optimal basis for a given

stencil using an SVD decomposition of a positive-definite system G = XXT , where X is a square

system of full rank of monomial powers spanning the stencil [17]. This approach also works, but

the SVD method becomes increasingly expensive with larger stencil sizes in addition to forming

G for each location [17]. Another issue is that the orthogonal set generated by the procedure does

not include a complete set of the monomials for a given order, and ‘extra’ stencil points, which are

naturally added to the stencil and would normally be required to fully span the monomial basis,

instead create an incomplete higher-order basis [17].

Both methods may be circumvented by predefining the orthogonal basis. Noting that the stencil

ΩxI is easily scaled on the interval[−1, 1]2 or [−1, 1]3, any orthogonal polynomial for any set of

nodes may be selected, such as Legendre, Hermite, or Chebyshev (first or second kind). While

these orthogonal polynomials are defined in one-dimension over the interval [−1, 1], a two- or

three-dimensional orthogonal polynomial set may be constructed [40]:

Po(x, y, z) = Pi(x)Pj(y)Pk(z) 0 < i+ j + k < n (5.30)

where Po is the combined orthogonal basis, (i, j, k) are permutation indexes, and n is the specified
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order of the polynomial. Another advantage to this method is that the coefficients of the polynomial

are known in advance, so ΨT may be computed correctly:

ΨT = p̂ T (0)C , (5.31)

where p̂ T (0) is the vector resulting from evaluating each polynomial in the span at 0. This happens

in the monomial case, but since the combined monomial basis (1, x, y, z...) evaluated at 0 is the

same as evaluating (1(0), x(0), y(0), z(0), ...), the change in notation is warranted for clarification.

A similar procedure must be carried out when computing derivatives.

The orthogonal polynomials mentioned above are the obvious candidates; however, there are

special orthogonal polynomials that are better suited for the natural distribution of the nodes in

ΩxI . ΩxI forms a radial basis, so orthogonal polynomials defined over the unit sphere might be

more appropriate than those defined over essentially the unit box. There are two orthogonal poly-

nomials that are used herein: the Zernike [111] and the Gegenbauer [153, 109]. Zernike are a class

of orthogonal polynomials used on the unit sphere in the optics community [111]. The Zernike

polynomials are based on a radial function, but have expressions in Cartesian coordinates that are

used herein [111]. The Gegenbauer polynomials are ultra-spherical polynomials as determined by

their generating weight function [153]. The exact form of the Gegenbauer polynomial is [153]:

1

(1− 2xt+ t2)α
=
∞∑
n=0

Cα
n (x)tn (5.32)

where Cα
n is the Gegenbauer polynomial. If α = 1/2, the Gegenbauer polynomials are equivalent

to the Legendre polynomials [1]. If α = 1, the Gegenbauer polynomials are equivalent to the

Chebyshev polynomials of the second kind [1]. In this work, α = 2, such that the weighting

function used to define the orthogonalization (n 6= m):

∫ 1

−1

Cα
n (x)Cα

m(x)w(x)dx = 0 (5.33)
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is:

w(z) = (1− z2)α−
1
2 = (1− z2)1.5. (5.34)

The first five Gegenbauer polynomials with α = 2 are plotted in Figure 5.4.
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Figure 5.4: First Five Gegenbauer Polynomials with α = 2.

Both the Zernike and Gegenbauer polynomials may be used directly when using (5.5) to define

W . However, when using (5.6) to determine W , a transformation is required to map ΩxI to a unit

disk or sphere before either radial orthogonal polynomials are valid.

5.1.3.4 Affine Moving Least-Squares

The last method used to improve the stability is by using an affine map on the stencil ΩxI . The

nodes in ΩxI are ‘quasi’ spherical. While the s (5.5) assumes the points are distributed in a spheri-

cal manner about xI , as mentioned earlier in 5.1.2 and in A, the better ellipsoidal fitting using (5.6)

is explicitly not spherical. Writing the ellipsoidal coefficients in the quadratic form H (see Ap-

pendix A, (A.50)), a mapping between the ellipsoid and the unit sphere can be generated [132].

52



These results are derived from John’s ellipsoid theorem, for any ellipsoid there exists a unit ball

(or sphere) under an affine transformation [73]. There are two choices to map to the unit sphere:

SVD or Cholesky [132]. The SVD method is essentially a principle component analysis [172] of

the ellipsoid H:

H = UΣV∗ (5.35)

where U is an m × m orthogonal matrix composed of the eigenvectors of HTH, V is an n × n

orthogonal matrix of the eigenvectors of HTH, and Σ is a diagonal matrix of the eigenvalues of

HTH. The mapping to the unit sphere is [132]

S = H
√

ΣV∗ (5.36)

which, mapped to the ellipsoid is

H = U
√

ΣS, (5.37)

where S is the quadratic form of the unit sphere. While mathematically the SVD mapping is

affine (invertible), numerically the transformation is in general non-affine, that is when applying

the ‘inverse’ transformation to the unit sphere, the original ellipsoid is not restored. This problem

is due to the nature of the method, that while stable, the SVD decomposition involves operations

that have known round-off and truncation issues. The Cholesky decomposition is much stabler and

always affine. Additionally, the Cholesky and SVD method are equivalent when performed on H,

since H is symmetric positive-definite (see Appendix G for details). The Cholesky mapping of H

is

H = LL∗ (5.38)

where L is a lower triangular matrix and L∗ is the conjugate transpose. The forward (to unit sphere)

transformation is

S = HL∗ (5.39)
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and the inverse transformation is

H = LS (5.40)

Graphically, the transformation of the MLS basis is shown in Figure 5.5. An additional benefit to

H

S

L*

L

Figure 5.5: Graphical Representation of the Forward and Backward Affine Transformation of ΩxI

from a General Ellipsoid H to a Unit Sphere S.

the Cholesky Decomposition is that it is substantially faster (O(mn2)) than the SVD decomposition

(O(mn2 + n3). The transformed coordinates of ΩxI are [132]:

∆jIxS = L∗∆jIxH (5.41)

where ()us are the coordinates of the unit sphere and ()ell are the coordinates of the ellipsoid. The

maximum radius is now rmax = 1. Since the unit sphere is a dual of the ellipsoid, from John’s

Theorem [73], the MLS basis Φ of the unit sphere is the same basis as on the ellipsoid. The

derivatives of Φ, however, have to be mapped back to the ellipsoid. This is discussed in the

derivative section. The procedure given above to compute the MLS basis Φ using an affine map is

as follows:
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Algorithm 5.1 Computing MLS Basis Functions of the Affine Map.
Require: Quadratic form of the ellipsoid determined via the Todd Algorithm A.6 described in

Appendix A

1: Perform the Cholesky Decomposition of H via (5.38).

2: Transform the coordinates of the stencil ΩxI to the unit sphere using (5.41).

3: Compute MLS basis functions as described in Section 5.1.2

The effect of the algorithm, coupled with an orthogonal polynomial basis (5.30), is to greatly

reduce the condition number of the Gram Matrix M. For example, on a flat plate-type grid, the

condition number using the general MLS formulation is on average 1021. When using the affine

MLS formulation and the Gegenbauer basis, the average condition number of the Gram Matrix is

only 40, which greatly improves the overall stability and accuracy of the method. Algorithm 5.1

can also be used with (5.5) general spherical weight scaling function, since a sphere is a special

case of an ellipsoid.

5.1.4 Stencil Selection for MLS

With the overall method for computing MLS described, it is now time to discuss how ΩxI is

determined. Beginning with a node xI , neighboring points are collected into a stencil. In a meshed

framework, the nodal connectivities are known a priori, and this information is used to build the

stencil for xI . Groups of nodes, or layers in the stencil, are collected from the nodal and edge

connectivities based on the desired spatial order. This is shown in Figure 5.6 for second- and third-

order stencils in two dimensions. An additional layer of nodes would generally be needed for a

fourth-order reconstruction. The polynomial basis given by (5.3) and (5.18), and by extension the

methods given to compute the shape functions and their derivatives, require a minimum number

of nodes (and layers) to exist within the stencil. The concept of a minimum set comes from

interpolation theory [92, Chapter 6, Section 1]. To avoid (5.15) becoming singular, the minimum

number of nodes required for a given polynomial order is equal to the number of terms in the
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Figure 5.6: 2nd and 3rd-Order ΩxI for MLS Showing Support Radius.

polynomial basis. For example, (5.3) requires at minimum of 20 nodes to be contained within

the stencil. Often, this minimum requirement is not sufficient to fully resolve the shape functions,

or in the worst-case scenario, even compute them. Therefore, it is common practice to include

20-50% more nodes than are minimally required in the stencil to improve the condition of M

from (5.15) [69]. Table 5.2 summarizes this information for first through sixth orders in two

dimensions. Gossler [69] has also done extensive work in showing the effects of the size of the

stencil on the accuracy and computability of the shape functions and reconstructed derivatives, and

the interested reader is referred to that work for more information.

5.1.4.1 Periodic Boundary Stencils

Stencils for periodic boundary nodes take the same general form as interior nodes. Figure 5.7

shows an example translational periodic boundary stencil. Nodes from the slave stencil are trans-

lated over to the master stencil for completeness. Slave stencil nodes that are on the slave periodic
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Table 5.2: Minimum Size of the ΩxI .

Size of Neighborhood ΩxI

Order, ` Minimum In-Practice Minimum
1 1 3
2 4 6
3 10 15
4 20 30
5 35 53
6 56 84

boundary are not translated, since they have matching counterparts on the master boundary and

would be redundant. The relative location of a slave stencil node to the master is:

dxsst→m = xsst − xs (5.42)

where ()sst is the slave stencil node, ()s is the slave node, and ()m is the master node. Since in the

relative frame the slave and master are the same node, the coordinate difference between a slave

stencil node and the slave is the same after it is shifted. When multiple periodic boundaries are

used (two or three dimensional periodic boundaries), special care should be taken to ensure that

the proper relative location is maintained.

For rotational periodic boundaries, the process to generate stencils is the same as for transla-

tional periodic boundaries, except when computing the relative distance. Instead of computing a

simple difference, the difference is rotated

dxsst→m = Rθ(xsst − xs) (5.43)

with the rotation matrix Rθ to properly locate the slave stencil node within the master stencil.

An important result from the generation of periodic stencils is that the explicit requirement of

geometric quantities on either side of the master or slave periodic boundary faces must be periodic

with their counterparts. Before, when dealing with first- and second-order methods, one generally
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Figure 5.7: 2nd and 3rd-Order Translational Periodic Boundary ΩxI for MLS Showing Support
Radius.

assumes that only the information closest (only the first cells) to the master/slave boundaries is

periodic with respect to the boundaries. However, since the stencils for third- and fourth-order

span at least four cells away from the boundary all of the related geometric information is also now

subject to the periodicity requirements. By extension, this also includes any information related

to the state vector, as is the case with lower-order methods. This effectively means that any fluxes

or other computations carried out in the slave periodic buffer zone do not need to be computed.

However, in practice, the logic involved to not compute information over this large of an area is

rather difficult and involved. Therefore, as with the standard lower-order approach, calculations

are avoided only on the slave boundary itself.
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5.1.4.2 Non-Periodic Boundary Stencils

Non-periodic boundary node stencils require special care. In general, stencils for boundary

nodes will never automatically satisfy the minimum size requirement, due to their lack of connec-

tivity. Figure 5.8 shows two approaches to reach the least-squares minimum threshold: augmented

stencils and ghost nodes.

LEGEND

Center Node

2nd Order Stencil Node

Ghost Stencil Node

rmax

rsupport

Augmented Stencil Node

Extrapolation Node

Boundary Stencils

rmax
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Ghost
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i-2,j i-1,j i+1,j i+2,j

i+1,j+1

i-1/2,j i+1/2,j i+3/2,ji-3/2,j

Augmented Stencil

Ghost Stencil

Figure 5.8: Augemented and Ghost Boundary ΩxI for 2nd-Order MLS Showing Support Radius.
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5.1.4.2.1 Augmented Stencils The augmented stencil is the first approach for non-periodic

boundary stencils. This approach is shown at the bottom of Figure 5.8. Augmented stencils

are inspired from finite differences. In finite differences, an additional node or nodes is added

to the extremity of the finite-difference stencil to maintain the desired order of the difference. This

approach is commonly referred to as forward or backward differencing, depending on how the

boundary and node are oriented. In the framework of this dissertation, typically a single layer

is enough to increase the population of the stencil for node (i, j) to least-square levels and im-

prove the condition number of M from (5.15) [23]. Referring to Figure 5.8, the nodes necessary

to maintain a second-order MLS reconstruction at node (i, j) would be (i − 2, j), (i − 1, j + 1),

(i, j + 2), (i + 1, j + 1), and (i + 2, j). No extrapolation is needed to define these extra nodes,

as they exist in the interior of the mesh. Additional boundary nodes, known as extrapolation or

zero-area nodes [28, 23], can also be added to the augmented stencil. Zero-area nodes are places

at the midpoints of the boundary faces. From Figure 5.8, these nodes are (i− 3/2, j), (i− 1/2, j),

(i+1/2, j), and (i+3/2, j). Zero-area nodes by themselves do not add enough nodes to the overall

stencil of (i, j) to satisfy the least-squares problem. These nodes are normally just used to enrich

the data set for the reconstruction of the derivatives. However, since the extrapolation nodes are

usually a function of neighboring values, the data added by them is minimal.

5.1.4.2.2 Ghost Nodes The other approach for defining a boundary stencil uses true ghost

nodes, as shown at the top of Figure 5.8. Ghost nodes are points outside of the regular domain

of interior points. A ghost node is generated during the mesh generation process. This is the eas-

iest and safest approach, as the interior mesh can generally be exactly extruded into the exterior

of the domain without too much difficulty. Figure 5.9 shows an example structured mesh and its

ghost mesh generated using the extruded approach.
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Figure 5.9: Example Ghost Node Mesh Topology Built from Extrusion of Main Mesh.

To properly enforce the boundary conditions at boundary nodes, the ghost nodes are aligned

normal to the boundary after the initial extrusion. Effectively, the ghost nodes are projected onto

the boundary normals through a vector projection:

projgn =
g · n
n · n

n (5.44)

where n is the boundary normal and g = xg−xm. The subscripts g and m represent the ghost and

main mesh nodes. Figure 5.10 shows the resultant projection of the ghost mesh of Figure 5.9.
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Figure 5.10: Example Ghost Node Mesh Topology Built from Projection onto the Boundary Nor-
mals of the Main Mesh.

Corners are added for the ghost mesh where non-wall boundaries meet. This ensures the geo-

metric quantities, such as the cell volume and edge-based area |S|, are correctly computed at these

locations. Ghost nodes in corner regions are not used to update the solution, since the flow field

is ambiguous in these regions [12, Chapter 8, pg. 200]. Additionally, ghost nodes from corner

regions are not used in stencils. The procedure to define the flow variables at a ghost node is

described later in the chapter when boundary conditions are discussed.

5.1.4.2.3 Comparison of Stencils Having introduced both the augmented stencil and the con-

cept of ghost nodes, it’s imperative to determine which is better in the context of the MLS recon-

struction. For that purpose, a simple demonstration is made using a Gaussian:

f(x, y) = e−
(x−xo)2+(y−yo)2

δ2 (5.45)
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(a) Ghost Nodes (b) Augmented Stencil

Figure 5.11: Error for ∂G
∂y

Near Boundary for 812 Stretched Mesh using Augmented and Ghost
Node ΩxI Paradigm.

with δ2 = 0.02 centered at (x0, y0) = (0.5, 0.0), or on the boundary. The mesh used here has

81 nodes with an initial spacing of 0.031625 in each direction, and a dimensional growth rate of

1.3. The growth rate is defined as the ratio between the height (or width) of a lower cell and an

adjacent cell. The mesh is meant to mimic one that would typically be used for a flat plate. The

Wendland weight function (5.7) was used when constructing the MLS approximation. Since this

case is used only to show the differences between the two boundary stencil methods, only first

derivatives (second-order) are computed. Each method was solved using the Pivoting QR decom-

position technique (5.29). For the ghost node results, the values at the ghost are directly determined

from (5.45). Results are shown for the wall normal derivative on the boundary in Figure 5.11. For

the interior field in both cases, the results are the same as expected, since the stencils are the same

there. When looking at the boundary, however, it is clear the answers are different. For the aug-

mented stencil, over and undershoots of the derivative are manifested, and the largest error of the

field occurs on the boundary. The ghost node results, on the other hand, look excellent at the wall.

In fact, some of the lowest error occurs at the wall, most likely due to the small spacing in the

wall-normal direction there. Why does the augmented stencil not work here? For finite differ-

ences, one-sided differences are typically used on boundaries and can even be easily constructed
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(a) Ghost Nodes (b) Augmented Stencil

Figure 5.12: Weights for ∂G
∂y

for a Boundary Node ΩxI Using an Augmented or Ghost Node ΩxI

Paradigm.

to have the same order of accuracy of centered differences, even for nonuniform meshes [49].

However, for radial functions (see (5.7)), a one-sided difference is not sufficient to compute radial

functions or their derivatives [51]. Additionally, errors for radial function reconstructions are typ-

ically the highest near the boundary, as shown by Wang & Liu [164] and others. In Figure 5.12,

the derivatives of the weight function over the entire stencil are shown for the ghost node and

augmented stencil case. For one, the stencil using ghost nodes is much more compact than the

augmented stencil, and the aim should be to have as compact stencils as possible. Disregarding the

magnitude of the weight function derivative, which will be different between the two since their

footprint is different, notice that the augmented stencil fails to capture any of the lower half of

the radius of influence. Without any through-center information of the radial function, one cannot

hope to accurately compute the derivatives in that direction. This assessment is true whether using

isotropic (5.5) or anisotropic (5.6) definition of the weights, since the MVEE algorithm will still

choose the ‘larger’ wall normal dimension for the minor axis and have similar weights as to those

shown in Figure 5.12. Therefore, it is beneficial to eliminate issues near boundaries as best as

possible. With ghost nodes, the boundaries are effectively eliminated, and their derivatives can
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reasonably and accurately be computed.

5.1.5 Derivatives: Full, Semi-Diffuse, and Fully-Diffuse

This section describes the methodology for computing derivatives for both the standard and

QR versions of MLS described herein. The derivatives of the shape functions are used to compute

the reconstructions of the derivative fields, where the reconstruction is:

∂a+b+cq(xI)

∂xa∂yb∂zc
≈
∑
i∈ΩxI

∂a+b+cΨ(x)

∂xa∂yb∂zc
qi, 0 ≤ a+ b+ c ≤ l (5.46)

where ∂a+b+cΨ(x)
∂xa∂yb∂zc

are the derivatives of the MLS shape functions given by (5.19) and (5.25). There

are three methods used to compute the MLS derivatives: full, semi-diffuse, and full-diffuse.

5.1.5.1 Full Derivatives

The full derivatives of the MLS shape functions are derived by differentiating (5.19) with re-

spect to the local coordinates centered at xI to yield:

∂Ψ

∂xi
=
∂p T (0)

∂xi
C + p T (0)

∂C

∂xi
. (5.47)

Higher-order derivatives for the shape function follow directly from (5.47). The second and third

derivatives for the shape function are then:

∂2Ψ

∂xj∂xi
=
∂2p T (0)

∂xj∂xi
C +

∂p T (0)

∂xi

∂C

∂xj
+
∂p T (0)

∂xj

∂C

∂xi
+ p T (0)

∂2C

∂xj∂xi
(5.48)

∂3Ψ

∂xk∂xj∂xi
=

∂3p T (0)

∂xk∂xj∂xi
C +

∂2p T (0)

∂xj∂xi

∂C

∂xk
+
∂2p T (0)

∂xk∂xi

∂C

∂xj

+
∂p T (0)

∂xi

∂2C

∂xk∂xj
+
∂2p T (0)

∂xk∂xj

∂C

∂xi
+
∂p T (0)

∂xj

∂2C

∂xk∂xi

+
∂p T (0)

∂xk

∂2C

∂xj∂xi
+ p T (0)

∂3C

∂xk∂xj∂xi
. (5.49)
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Examining (5.47), (5.48), and (5.49), the main computational effort and difficulty will not come

from any of the derivatives of p T (0), but from the first, second, and third derivatives of C. The

derivatives of a monomial p T (0) are given component-wise as:

∂a+b+cp(0)

∂xa∂yb∂zc
=
a ∗ b ∗ c
ra+b+c

, 0 ≤ a+ b+ c ≤ l − 1 (5.50)

where if a, b, or c is equal to zero, they are instead equal to 1 in the numerator. Using the definition

of C given by (5.20), and the definition of the derivative of an inverse matrix [180]:

∂A−1(x)

∂xi
= −A−1∂A(x)

∂xi
A−1, (5.51)

the first derivatives of C are:

∂C

∂xi
=

∂

∂xi
(M−1PW)

=
∂

∂xi
(M−1)PW + M−1P

∂

∂xi
(W)

= −M−1∂M

∂xi
M−1PW + M−1P

∂W

∂xi

= −M−1P
∂W

∂xi
PTM−1PW + M−1P

∂W

∂xi

= M−1P
∂W

∂xi
(I−PTC)

∂C

∂xi
= CW−1∂W

∂xi
(I−PTC), (5.52)

which is similar to the expression given by [21]. ∂W
∂xi

are the derivatives of the weighting function,

where the explict form is given in Appendix C. The QR version of the derivative of C is:

∂C

∂xi
= R−1QT

√
W−1

∂W

∂xi

(
I−
√

W−1QQT
√

W
)
. (5.53)
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With pivoting, the QR derivative is:

∂C

∂xi
= PvR

−1QT
√

W−1
∂W

∂xi

(
I−
√

W−1QQT
√

W
)
. (5.54)

A few observations can be made from (5.52),(5.53), and (5.54). Since the differentiation is local,

the polynomial basis remains constant through the differentiation due to the global definition of

the basis. Therefore, only the weighting kernels are differentiable, and M−1 is only differentiable

insofar as it contains W. Computing successive derivatives of C is both complex and very expen-

sive, due to the additional matrix/matrix and matrix/vector multiplications. The second derivatives

of C are:

∂2C

∂xj∂xi
=

(
CW−1

)(∂W

∂xj

(
I−PTC

)
W−1∂W

∂xi
− ∂W

∂xj
W−1∂W

∂xi

+
∂2W

∂xj∂xi
− ∂W

∂xi
PTCW−1∂W

∂xj

)(
I−PTC

)
. (5.55)

The QR form for the second derivative, using the definition of ∂C
∂xi

given by (5.53) is

∂2C

∂xj∂xi
=

(
R−1QT

√
W−1

)(∂W

∂xj

(
I−
√

W−1QQT
√

W
)

W−1∂W

∂xi

− ∂W

∂xj
W−1∂W

∂xi
+

∂2W

∂xj∂xi
− ∂W

∂xi

√
W−1QQT

√
W−1

∂W

∂xj

)
(
I−
√

W−1QQT
√

W
)
. (5.56)
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The third derivatives of C are:

∂3C

∂xk∂xj∂xi
= A

(
∂2B

∂xk∂xj
DW−1∂W

∂xi
− ∂W

∂xj
DW−1∂W

∂xk
W−1∂W

∂xi

+
∂W

∂xj
DW−1 ∂2W

∂xk∂xi
− ∂W

∂xj
DW−1∂W

∂xi
E
∂W

∂xk

− ∂W

∂xk
DW−1∂W

∂xj
W−1∂W

∂xi
+
∂W

∂xk
W−1∂W

∂xj
W−1∂W

∂xi

− ∂2W

∂xk∂xj
W−1∂W

∂xi
+
∂W

∂xj
W−1∂W

∂xk
W−1∂W

∂xi

− ∂W

∂xj
W−1 ∂2W

∂xk∂xi
+
∂W

∂xj
W−1∂W

∂xi
E
∂W

∂xk

+
∂W

∂xk
DW−1 ∂2W

∂xj∂xi
− ∂W

∂xk
W−1 ∂2W

∂xj∂xi

+
∂3W

∂xk∂xj∂xi
− ∂2W

∂xj∂xi
E
∂W

∂xk

− ∂W

∂xk
DW−1∂W

∂xi
E
∂W

∂xj

+
∂W

∂xk
W−1∂W

∂xi
E
∂W

∂xj

− ∂2W

∂xk∂xi
E
∂W

∂xj
+
∂W

∂xi
E

∂2B

∂xk∂xj

)
D (5.57)

where

A = CW−1, (5.58)

D = I−PTC, (5.59)

E = PTA, (5.60)

(5.61)

and

∂2B

∂xj∂xi
=

(
∂W

∂xj
DW−1∂W

∂xi
− ∂W

∂xj
W−1∂W

∂xi
+

∂2W

∂xj∂xi
− ∂W

∂xi
E
∂W

∂xj

)
. (5.62)
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The QR version of (5.57) is identical to the standard version, but A, D, and E are defined as:

A = R−1QT
√

W−1, (5.63)

D = I−
√

W−1QQT
√

W, (5.64)

E =
√

W−1QQT
√

W−1. (5.65)

A simpler form exists for the second and third derivatives of C than (5.55) and (5.57). The succes-

sive derivatives of C can instead be built recursively, such that the second and third derivatives of

C are:

∂2C

∂xj∂xi
= CW−1 ∂2W

∂xj∂xi

(
I−PTC

)
−CW−1

(
∂W

∂xj
PT ∂C

∂xi
+
∂W

∂xi
PT ∂C

∂xj

)
(5.66)

and

∂3C

∂xk∂xj∂xi
= CW−1 ∂3W

∂xk∂xj∂xi

(
I−PTC

)
− CW−1

(
∂W

∂xk
PT ∂2C

∂xj∂xi
+
∂W

∂xj
PT ∂2C

∂xk∂xi
+
∂W

∂xi
PT ∂2C

∂xk∂xj

)
− CW−1

(
∂2W

∂xj∂xi
PT ∂C

∂xk
+

∂2W

∂xk∂xi
PT ∂C

∂xj
+

∂2W

∂xk∂xj
PT ∂C

∂xi

)
(5.67)

This form of the derivatives, while more efficient than (5.55) and (5.57), is still expensive to com-

pute. Two methods for reducing the costs of computing derivatives are discussed in the following

two sections.

5.1.5.2 Semi-Diffuse Derivatives

Rather than compute the full form for the second and third derivatives of the shape func-

tions given by (5.48) and (5.49), and by extension the second and third derivatives of C given

by (5.55), (5.56), and (5.57) and (5.66) and (5.67), Chassaing et al. [21] introduces the concept of

semi-diffuse derivatives of the shape functions. The first derivatives of C (5.52) and (5.53) are still

computed for the semi-diffuse higher-order derivatives of the shape functions, but the higher-order
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derivatives of C are dropped. Chassaing et al. [21] showed that the spatial accuracy does not

suffer any appreciable drop when this is done. The second derivatives for the shape functions then

become:
∂2Ψ

∂xj∂xi
=
∂2p T (0)

∂xj∂xi
C +

∂p T (0)

∂xi

∂C

∂xj
+
∂p T (0)

∂xj

∂C

∂xi
, (5.68)

and the third derivatives, which were not included in [21], are:

∂3Ψ

∂xk∂xj∂xi
=

∂3p T (0)

∂xk∂xj∂xi
C +

∂2p T (0)

∂xj∂xi

∂C

∂xk
+
∂2p T (0)

∂xk∂xi

∂C

∂xj
+
∂2p T (0)

∂xk∂xj

∂C

∂xi
. (5.69)

Another form of the semi-diffuse derivatives, if the cost associated with computing the second

derivatives (5.55) or (5.56) is not prohibitive, would be to compute the full form of (5.48) and (5.55)

or (5.56) and only drop the third derivatives (5.57) from (5.49).

5.1.5.3 Fully Diffuse Derivatives

If cost of computing any of the derivatives of C is prohibitive, then the derivatives of the shape

function can be approximated using only the derivatives of p T (0). The derivatives for the shape

functions of first, second, and third order are then computed as:

∂Ψ

∂xi
=
∂p T (0)

∂xi
C (5.70)

∂2Ψ

∂xj∂xi
=
∂2p T (0)

∂xj∂xi
C (5.71)

∂3Ψ

∂xk∂xj∂xi
=

∂3p T (0)

∂xk∂xj∂xi
C. (5.72)

Chassaing et al. [21], along with several others, have shown that the diffuse derivatives are compa-

rable and converge to the full derivatives as the mesh is refined. Optionally, one could compute the

full first derivatives of the shape function and semi- or fully diffuse derivatives of the higher-order

derivatives of the shape functions.
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5.1.5.4 Derivatives of the Affine MLS

As mentioned in 5.1.3, while the MLS basis functions are not affected by the affine mapping

to the unit sphere, the derivatives are. This comes from the derivatives of the weighting function,

which are explicitly a function of the coordinate system, i.e. (x, y, z). To finish the computation of

the derivatives in Cartesian space, the first derivatives are transformed back to Cartesian from the

affine unit-sphere space as:
∂Ψ

∂xi Cart
= L

∂Ψ

∂xi S
(5.73)

where ()S denotes the derivatives on the unit sphere. The second derivatives mapped to Cartesian

derivatives are:

Ψd,Cart = LΨd,SL∗ (5.74)

where Ψd is the Hessian:

Ψd =


∂2Ψ
∂x2

∂2Ψ
∂xy

∂2Ψ
∂xz

∂2Ψ
∂xy

∂2Ψ
∂y2

∂2Ψ
∂yz

∂2Ψ
∂xz

∂2Ψ
∂yz

∂2Ψ
∂z2

 (5.75)

The third derivative mapping does not have a tensor form, but a third derivative in Cartesian coor-

dinates is:
∂3Ψ

∂xk∂xj∂xi Cart

= Li,mLj,nLk,o
∂3Ψ

∂xo∂xn∂xm S

(5.76)

The mappings of (5.73), (5.74), and (5.76) are valid for the full (5.47), semi-diffuse (5.69), and

fully-diffuse (5.72) derivatives.

5.2 Higher-Order Quadrature

This section describes the quadrature procedure for higher-order methods. As with lower-order

methods, the fluxes are computed by cycling over the edges. However, unlike lower-order methods,

the quadrature does not take place at the edge midpoint. For higher-order methods, each compo-

nent dual face of a dual cell must be integrated to correctly compute the fluxes. Since the dual

volume faces are quadrilaterals, exact weights and positions of the quadrature are known [136].
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The weights and locations for the quadratures on a quadrilateral are given in Appendix E. Since

the quadratures are given for a perfect quadrilateral, the dual face must be mapped to isoparametric

space such that the quadrature can correctly defined. An example of this is shown in Figure 5.13.

If the mesh is highly skewed, the quadrilaterals can be subdivided into triangles, and a similar

η

ξ

(-1,1)

(-1,-1) (1,-1)

(1,1)

z

x

(x2,z2)

(x1,z1)

(x4,z4)

(x3,z3)

(x,z)
(ξ,η)

Figure 5.13: Isoparametric Mapping of a Quadrature Point in Parametric Space to a Flux Face [47].

mapping procedure can be utilized to determine the quadrature locations and weights. A more

thorough discussion on isoparametric mapping can be found in [107] or [47].

5.3 Higher-Order Fluxes

This section presents higher-order convective and viscous fluxes. To generate higher-order

fluxes, reconstructions and quadratures are increased in order. Higher-order quadratures were

discussed previously, but reconstructions are discussed here. Fluxes at the boundaries will be

discussed in Section 5.4.3 on higher-order boundary condition.

5.3.1 Convective Fluxes

The first step to generate a higher-order convective flux, the reconstructions at a quadrature

node on a dual face are determined using higher-order reconstructions. In Section 4.2.1, the linear

reconstruction was discussed. For third- and fourth-order accuracy, a quadratic or cubic recon-

72



struction at the quadrature location is required. Figure 5.14 shows a third-order quadratic recon-

struction of QL and QR required for the convective flux. Mathematically, the third-order quadratic

Qi

Qj

QL

QR

Q

x

∇∇Qi

∇∇Qj

Cell i Cell j

Figure 5.14: Quadratic Reconstruction of Left and Right States for Fluxes.

reconstruction of the state vector at the quadrature location is:

QL,R = Qi,j + rT(i,j)→q∇Qi,j +
1

2
rT(i,j)→q∇(∇Qi,j)r(i,j)→q (5.77)

where r(i,j)→q represents the distance from either node i or j to the quadrature node. Figure 5.15

shows a fourth-order cubic reconstruction of QL and QR. Mathematically, the fourth-order cubic

reconstruction of the state vector at the quadrature location is:

QL,R = Qi,j + rT(i,j)→q∇Qi,j +
1

2
rT(i,j)→q∇(∇Qi,j)r +

1

6
(r2)T(i,j)→q∇(∇(∇Qi,j))r(i,j)→q (5.78)

The state vectors computed using (5.77), and (5.78), just as for (4.19), do not guarantee monotonic

solutions. As with the second-order case (4.21), limiters are applied to enforce TVD conditions.

There is some debate on how limiters should be applied to a higher order reconstruction, and

higher-order limiters is still an active area of research. The first method applies separate limiters
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Figure 5.15: Cubic Reconstruction of Left and Right States for Fluxes.

to the first derivatives and higher-order derivatives [116, 122]. This has the general form:

QL,R = Qi,j + Φi,j · (rT(i,j)→q∇Qi,j)

+Ψi,j · (
1

2
rT(i,j)→q∇(∇Qi,j)r(i,j)→q +

1

6
(r2)T(i,j)→q∇(∇(∇Qi,j))r(i,j)→q + . . .) (5.79)

where Φi,j is the limiter for the first derivatives and Ψi,j is the limiter, or sometimes referred to as

the discontinuity detector, for the higher-order derivatives. This approach can be problematic, as

Ψi,j can over-limit and violate monotonicity. In fact, the higher-order derivatives may contribute to

reducing overshooting of the reconstruction, and if limited with Ψi,j , cause Φi,j to be insufficient

to enforce monotonicity [116].

The second approach, and the one used herein, applies a single limiter to all the derivatives [88].

This looks similar to the second-order limited reconstruction (4.21):

QL,R = Qi,j + Φi,j · (rT(i,j)→q∇Qi,j+
1

2
rT(i,j)→q∇(∇Qi,j)r(i,j)→q

+
1

6
(r2)T(i,j)→q∇(∇(∇Qi,j))r(i,j)→q + . . .) (5.80)

where Φi,j is computed in a analog manner to a more traditional second-order limiter. In this

work, the Michalak-Gooch [116] and Venkatakrishan [162] limiters are used.. For (5.77), (5.78),
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and (5.80), the limiters are based on the unlimited reconstruction of the state vector of nodes i and

j at the quadrature locations.

The second step to compute a higher-order convective flux is to integrate the flux through each

dual face attached on an edge. Figure 5.16 shows an edge with its duals and quadrature locations.

The total flux computed about an edge (i, j) is

3rd/4th Order 

LEGEND 
Node 
Flux Node 
Quadrature Point 

LEGEND
Node i

Flux Node j

Quadrature Node

ij

j

j

jj

Figure 5.16: Quadrature Node Locations Using the Dual-Median Mesh Paradigm for 3rd- and 4th-
Order Flux Computation.

Fconv,(i,j) =
∑
k∈dual

 ∑
q∈nquaddual

wqFconv, q

 |S|dual (5.81)

wherewq is the weight at the quadrature node for the dual face, as defined explicitly in Appendix E,

and |S|dual is the dual face area. The edge flux described by (5.87) can also be used in areas of high

curvature, where the composite |S|dual may not be accurate. Additionally, this method is valid for

the convective fluxes in RANS turbulence models.
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5.3.2 Viscous Flux

Viscous fluxes, unlike convective fluxes, require the velocities, temperature, and their deriva-

tives at the quadrature nodes q in 5.16. To compute the states and derivatives for higher-order

methods, there are three ways. The first method simply averages the state vector and derivative at

the quadrature location using (4.23) as discussed previously in Section 4.2.2. This method is the

least accurate but potentially the most stable since the fields are not reconstructed via unlimited

reconstructions.

The second computes the unlimited reconstruction at the quadrature node from the left and right

state for both the state and the derivative. For third-order, the states are reconstructed using (5.77),

and the derivatives are reconstructed using

∇QL,R = ∇Qi,j + rT∇(∇Qi,j) (5.82)

For fourth-order, the state is reconstructed using (5.78), and the derivatives are reconstructed using:

∇QL,R = ∇Qi,j + rT∇(∇Qi,j) +
1

2
rT∇(∇(∇Qi,j))r. (5.83)

As discussed in Section 4.2.2, the states and derivatives are still averaged using (4.23). This method

could have issues if the unlimited reconstructions over- or under-shoot the bounds in the adjoining

cells. It can be shown that even if one side of the average over- or under-shoots while the other

does not, the method could over- or under-predict QL,R or∇QL,R.

The last method directly determines the states and derivatives at the quadrature nodes q in

Figure 5.16. For each quadrature node q, a stencil is built for an MLS reconstruction about the

quadrature node q, with q not included explicitly in the stencil. The viscous flux stencil at q is

build as a union of the stencils at node i and j such that:

Ωxq = Ωxi ∪ Ωxj (5.84)
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An example viscous flux stencil is shown in Figure 5.17. The MLS reconstruction at the quadrature

LEGEND

Node i

Viscous Quadrature Node q

Node j

j i

Viscous Stencil Node

Viscous Stencil Boundary

q

Figure 5.17: Example 2D Viscous Flux Stencil for 2nd-Order.

node of the velocity and temperature using the viscous flux stencil is:

vq =
∑
k∈Ωxq

Ψkvk

Tq =
∑
k∈Ωxq

ΨkTk. (5.85)

The MLS derivative reconstruction at the quadrature node for the velocity and temperature using
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the viscous flux stencil is:

(
∂v

∂x

)
q

=
∑
k∈Ωxq

(
∂Ψ

∂x

)
k

vk(
∂T

∂x

)
q

=
∑
k∈Ωxq

(
∂Ψ

∂x

)
k

Tk. (5.86)

Both (5.85) and (5.86) are then used in (2.5) to compute the viscous flux at the quadrature node.

While this method is the most accurate, it is also the most expensive of the three viscous flux

methods. This is due to the MLS reconstruction of the states and derivatives at each quadrature

location. Additionally, as the order of MLS reconstruction increases, the size of the viscous flux

stencil also increases, typically twice the size of a nodal stencil. Limits could be placed on the size

of the viscous stencil, but this could potentially reduce the accuracy of (5.85) and (5.86). The total

viscous flux for an edge (i, j) is then:

Fvisc,(i,j) =
∑
k∈dual

 ∑
q∈nquaddual

wqFvisc, q

 (5.87)

As with the higher-order convective flux, the higher-order viscous flux can be used with the viscous

fluxes in RANS turbulence models.

5.3.3 Leading-Edge Flux Modification

When solving flows with wall boundaries interfaced with symmetry-type boundaries, a ‘pres-

sure’ rise will occur at the leading-edge of the wall. For viscous flows, this would be the expected

situation. For inviscid flows, this pressure rise should not happen, since the boundaries are both

effectively slip-walls. However, ghost node-based boundary conditions will cause a pressure rise.

Figure 5.18 shows the pressure rise when using ghost nodes.
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Figure 5.18: Pressure Rise at a Leading-Edge (x = 0) Due to the Flow ‘Seeing’ a Corner when
Using Ghost Nodes.

This is due to the control volumes at the leading edge. The symmetry boundary node will have

a full control volume, while the wall boundary will only have the interior control volume, which

means that the flux at the control volume face will be twice as large as it should be. A modification

to the flux, both convective and diffusive, must be made for the nodes along the leading-edge. The

leading-edge flux should be removed below the wall/symmetry plane for the wall node. Instead of

recomputing the flux and removing it directly, the normal convective flux is computed. However,

when summing the contributions for the left and right state, the quadrature weight is set to zero for

the wall contribution. Effectively, the flux face has left and right weights that can be turned on or

off depending on the situation. The convective flux now reads:

Fconv,(i,j) =
∑
k∈dual

 ∑
q∈nquaddual

wq,(i,j)Fconv, q

 |S|dual (5.88)

where wq,(i,j) is the quadrature weight from the left or right. Figure 5.19 illustrates this.
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Figure 5.19: Illustration of Removing Flux from Ghost Region at a Leading-Edge.

The effect of the leading-edge flux modification is shown in Figure 5.20.

Figure 5.20: Effect of Correction of the Leading-Edge (x = 0) Fluxes.
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It should be noted that this type of boundary (symmetry-wall) causes instabilities in the flow, so

the usefulness of this correction is probably limited. Meshes with this boundary interface should

best be avoided to avoid these issues when possible.

5.4 Higher-Order Boundary Conditions

This section presents the higher-order boundary conditions required for implementing a higher-

order flow solver. A general overview of higher-order boundary conditions will be presented,

followed by specific implementation details. Additionally, boundary fluxes will be discussed at the

end of the section.

5.4.1 Periodic Boundary Conditions

Periodic boundary conditions are used to reduce the size of the computational domain. To

facilitate the reduction, information must be transferred from one side (or sides) of the reduced

domain to the other. This information transfer is handled through the use of boundary faces or

directly with the nodes. With periodic nodes, two- and three-dimensional periodic boundaries are

possible, which is necessary for many DNS cases and for LES benchmarking. Additionally, peri-

odic nodes allow for a smoother implementation of continuous derivatives across the boundaries.

Mathematically, the conditions at periodic nodes are:

qs = qm

∂a+b+cqs

∂xaybzc
=
∂a+b+cqm

∂xaybzc
0 ≤ a+ b+ c ≤ l (5.89)

where ` is the maximum order of the derivatives. Figure 5.21 shows a second-order periodic

boundary. Cell volumes, Ω, and edge-based areas, S, for a periodic node are computed at the

master and slave nodes normally. Figure 5.22 shows how a slave cell volume is added to a master

volume. Since volumes are direction-invariant, the partial dual-volumes obtained in the slave flux

region are directly added to the master dual-volumes to obtain the full dual-volume on the master

periodic boundary. The slave dual-volumes are then set equal to the master dual-volumes. For a
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Figure 5.21: Illustration of a Linear 2nd-Order Periodic Boundary.

discussion on dual-volumes, refer to Section 4.1.

Edge-based areas, unlike dual-volumes, are not direction-invariant, and therefore care must be

taken to compute the periodic edge-based areas needed for the fluxes. In general, edges on the

master and slave boundaries will not be oriented in the same direction. Figure 5.23 shows how

the edge-based areas are added. If the dot product of the edge-based areas of the master and slave

edges is less than zero, the slave edge-based areas are rotated 180◦.

Rs→m =


R(180◦) if sm · ss < 0

R(0◦) if sm · ss > 0

(5.90)
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Figure 5.22: Illustration of Corrected Control Volumes for Periodic Boundaries.

Adding the edge-based areas together is then:

sm = sm + Rs→mss (5.91)

ss = sm

To compute derivatives at the master mode (nx, j) in Figure 5.21, the stencil used in the MLS

approximation 5.16 would also include node (i + 1, j). Note that nodes (i, j + 1) and (i, j − 1)

would not be included in the stencil, since they are slave nodes of nodes already in the master

node stencil. The distance from node (i + 1, j) to the master is computed as the distance from

(i + 1, j) to the slave node, since the relative location is the same. Once the stencil is determined

for a periodic boundary node, the steps outlined for determining a derivative about a non-periodic

83



i,j

Periodic Boundary Edge-Based Areas

Master BoundarySlave Boundary

Slave 

Flux 

Region

Slave 

Flux 

Region

LEGEND

Master Periodic Node

Slave Periodic Node

Flux Node

Slave Flux Node

nx,j+1

nx,j-1

Non-Flux Slave Node

Slave Flux Edge

i+1,j

i,j-1

i,j+1

nx, j

nx-1, j

i+1,j

Interior 

of 

Domain

Slave Dual Volume

Master 

Dual Volume

Total Dual Volume

se

Rsmsesm

Slave Edge-Based Area Vector

Master Edge-Based Area Vector

Total Edge-Based Area Vector

Figure 5.23: Illustration of Corrected Edge-Based Areas for Periodic Boundaries.

node in Section 5.1.5 are used. Fluxes are computed along active edges according to (4.6) and

(2.5), where an active edge is an edge with either no slave nodes or only one slave node attached

to it. In Figure 5.21, the non-active edges would be the slave edges; that means that no flux is

computed between the slave (i, j) and nodes (i, j + 1) and (i, j − 1). For periodic boundaries, the

flux between the slave (i, j) and node (i − 1, j) is added to the sum of the fluxes (4.22) to finish

updating the master node’s residual.

Rm = Rm + Rs (5.92)

At the end of the time step or sub-iteration, the state vector determined at the master node is
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Figure 5.24: Illustration of a 2nd-Order Rotational Periodic Boundary.

transferred to the slave node.

Rotational periodic boundaries are a special case of periodic boundaries. Figure 5.24 shows

an example of a rotational periodic boundary. The conditions of (5.89) are modified to include the

rotation matrix for velocities on the master and slave boundaries:

vs = Rθvm (5.93)

where Rθ is the rotation matrix defined by the angle θ between the master and slave periodic

boundaries. As for periodic boundaries, the orientation of edge-based areas of the master and slave

edges must be made compatible. The rotational matrix Rθ is used to properly orient the slave
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edges with the master edges, such that Rs→m in (5.91) becomes:

Rs→m =


RθR(180◦) if sm · ss < 0

RθR(0◦) if sm · ss > 0

(5.94)

For derivatives, the relative distance between node (i + 1, j) and the slave node in Figure 5.24 is

rotated using Rθ to give the correct distance between (i + 1, j) and the master node. Derivatives

are rotated to ensure continuity across the boundary:

∂a+b+cqs

∂xaybzc
= Rθ

∂a+b+cqm

∂xaybzc
0 ≤ a+ b+ c ≤ l (5.95)

The rotation is performed on the coordinates specifically, not the thermodynamic variables. Deriva-

tives of velocities require a double rotation, a result of (5.93).

∂a+b+cvs

∂xaybzc
= RθRθ

∂a+b+cvm

∂xaybzc
0 ≤ a+ b+ c ≤ l (5.96)

Finally, after the fluxes are computed along each active edge, the residuals of the slave node are

rotated and added to the master.

Rm = Rm + RθRs (5.97)

Updated state quantities at the master are transferred using Rθ.

An important issue is raised when using periodic boundaries for higher-order methods. Typi-

cally, the master and slave are assumed to be co-located if the requisite translation is performed.

Referring to Figure 5.7, it is not just sufficient for nodes (i, j) and (i + 6, j) to be periodic, but

also (i+ 1, j) with (i+ 5, j), (i+ 2, j) with (i+ 4, j), and all the remaining points to the right of

(i, j) with the remaining right points of (i + 6, j). In effect, all the geometric and flow quantities

n− 1-orders of magnitude away from the master periodic boundaries must be periodic with n− 1-

orders of magnitude. This condition could also allow for less computation since more points are

effectively fixed within the domain. However, practically speaking, only the outer-most slave flow
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vector is not directly computed since the logic involved to limit computation would be significant.

It is sufficient, though, to require only the geometry to be explicitly periodic for the higher-order

slaves, and allow the flow solver to take care implicitly to ensure the periodicity of the higher-order

slave flow variables.

It should be noted that results using the improved periodic boundaries have been published

in Freno et al. [53], Freno et al. [54] and Krath et al. [93].

5.4.2 Non-Periodic Boundaries

Non-periodic boundaries present substantial difficulty in implementation compared to periodic

boundaries for higher-order methods. Whereas for periodic boundaries the requirement is only to

properly attach the slave information to the master, non-periodic boundaries require determination

of the stencils and each corresponding state vector. From Section 5.1.4, stencils near boundaries

are either augmented or utilize ghost nodes. Therefore, the boundary conditions may be enforced

two ways: with augmented stencils or ghost nodes. Using augmented stencils, boundary conditions

can only be enforced in a manner similar to the method used by Kim [91] and Gargoloff [57]. To

increase the order, the quadrature on the boundary flux would require higher accuracy in addition

to a higher-order interpolation/extrapolation to determine the state vector at the quadrature nodes,

which would in turn require higher-order derivatives. Using ghost nodes, the stencils are similar to

their interior counterparts, but the ghost nodes only need to be defined.

Ghost nodes are used to enforce the boundary conditions. The ghost nodes are defined such that

the flux integration at the boundary nodes using (4.6) and (2.5) enforces the required conditions

for each boundary. Fluxes are computed between nodes and ghost nodes along ghost flux edges.

Ghost flux edges are edges containing a boundary node and a ghost node. In general, both (4.6)

and (2.5) are computed without adding extra conditions.

The difficulty in using ghost nodes comes from defining the ghost node state. One could define

the flow variables at a ghost node similar to the method given in [12, Chapter 8, pg. 272-273].

However, this assumes that the ghost and interior nodes are normal to the boundary [12, Chapter

8]. This may not always be true. When the ghost grid is not orthogonal to the boundary, the grid
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deficiencies must be taken into account in order to accurately reconstruct the flow variables at the

ghost nodes. Finite element-type approaches would be the logical choice to define ghost nodes,

where shape functions constructed at the boundary could be leveraged, with the necessary condi-

tions applied, to determine what the ghost node states should be. However, this is also problematic

since interpolation error could occur and degrade the solution. Additionally, this method may not

account for the boundary, as in the case of walls. To circumvent both issues discussed above, im-

age and intercept nodes are introduced to aid in setting the boundary conditions. The ghost nodes

are required to be orthogonal to the boundary, though the interior may not always be.

5.4.2.1 Generation of Image and Intercept Nodes

The concept of image and intercept nodes is taken from immersed boundary methods [118].

In immersed boundary methods, the flow variables at the ghost nodes are set using these nodes,

where the ghost nodes are defined as any node lying within the immersed boundary surface. What

is presented within is a similar situation; however, the current case is simpler as the boundary is

explicitly known as well as the ghost nodes.

To generate the image and intercept nodes, Algorithm 5.2 is used, with reference to Figure 5.25.
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Figure 5.25: Generation of Image and Intercept Nodes for Ghost Node (i, j − 1).
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Algorithm 5.2 Image and Intercept Node Generation
1: Take the ghost node, its corresponding main mesh boundary node, and the boundary surface

normal at the boundary node. These nodes are nodes (i, j − 1) and (i, j) in Figure 5.25.

2: Using the inverse of the affine transformation outlined in 5.1.4.2.2, the ghost node is reflected

into the interior of the domain, such that



xim − xi,j

yim − yi,j

zim − zi,j

1


= A



xg − xi,j

yg − yi,j

zg − zi,j

1


. (5.98)

where A is the affine matrix, and (xim, yim, zim) are the coordinates of the image node. In

Figure 5.25,

rrf =


xim − xi,j

yim − yi,j

zim − zi,j

 (5.99)

and

r =


xg − xi,j

yg − yi,j

zg − zi,j

 (5.100)

The stencils for the image and intercept nodes are presented in Figure 5.26. The stencils built

for these nodes are based on (b) of State 5 in Algorithm 5.2. For the image node stencils, the sten-

cils do not include any ghost nodes to avoid coupling. At boundaries where a Neumann condition

is required, the intercept stencil can be trimmed to only include nodes lying along the boundary

nodal normal. These normal intercept stencils are shown in Figure 5.27.
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Algorithm 5.2 Image and Intercept Node Generation, Continued
3: Find the image node within the main mesh. This is handled with an octree partitioning [145]

of the main mesh. This search must performed since the location of the image node is not
explicitly known. It is possible to have the image node located:

(a) Co-located with a main mesh node.

(b) Located on a face in the main mesh.

(c) Located within a cell of the main mesh.

(d) Any of the above three options, but within the ghost mesh.

The octree is discussed in Appendix F.
4: Once the location of the image node is known, the intercept node is taken as the average of the

image and ghost nodes. This is generally sufficient, but additional refinement of the intercept
location could be made for a curved surface, if desired.

5: Stencils for both the image and intercept nodes are generated. For the image node, the stencil
is generated by:

(a) The matching main mesh node. This effectively sets the image node quantities exactly
equal to those of the interior mesh node. This only occurs if the image node is co-located
with a main mesh node.

(b) The stencil of the closest node on the face or within the cell of the main mesh. The stencil
taken from the closest node is adjusted such that it is centered on the image node.

(c) A union of the stencils on the face or within the cell that the image is located on/in.
Duplicate nodes are removed, and the stencil is adjusted to be centered on the image
node.

For the intercept node, the stencil is generated in the same way as the image node, except the
stencil is directly copied from the matching main mesh node. This is because the derivative
is required at the intercept location. Additionally, if the ghost node and image node do not
appear in the copied list, they are added to the intercept node stencil. If the image node is not
explicitly a node in the main mesh, then the image node stencil nodes are added to the intercept
node stencil.
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Figure 5.26: Illustration of Image and Intercept Nodes and Stencils Related to Ghost Node (i, j −
1).
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Figure 5.27: Illustration of Normal Intercept Stencils Related to Ghost Nodes (i, j− 1) and (i, j−
2).
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5.4.2.2 Building the Boundary System with Ghost, Image, & Intercept Nodes

Once the image, intercept, and ghost node stencils are built, the boundary system used to

solve for the boundary conditions can be built. In this work, the Moving-Least Square basis func-

tions (5.14) are used to determine the values of the flow variables at the image and intercept nodes.

The flow variables at the ghost nodes are then determined using a combination of finite-differences

and the MLS basis functions (5.14). An advantage of using (5.14) is that the ghost nodes are ex-

plicitly included in the stencil. This is important for building a system of equations that can be

used to determine ghost node states. The linear system of equations for the ghost nodes takes the

form:

Ax = b (5.101)

where A is a Ng × Ng × Neq sparse matrix, b is a Ng × Neq vector, and x is a Ng × Neq vector

containing the ghost nodes. Ng is the number of ghost nodes and Neq is the number of equations.

For the purposes of the discussion, boundary conditions and derivation of values for the ghost

nodes will be based on the node indexes in Figure 5.28.
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Figure 5.28: Illustration of a General Boundary with Ghost, Image, and Intercept Nodes Used
to Derive Boundary Conditions. Stencils are Outlined to Highlight Relationships Between Each
Stencil.

The system is built using equations relating the image and intercept nodes to the ghost nodes.

Four options are available to relate the ghost nodes to corresponding image and intercept nodes:

Dirichlet, Neumann, Robin, or reflection conditions. Extrapolation is also possible, but not used

herein.

The Dirichlet condition are set by equating the value at the ghost node to a desired value:

qb = q̂b (5.102)

where q̂ is the desired value for the boundary node. Using (5.16) as a guide, the Dirichlet boundary

condition is defined as:

q̂b =
∑
k∈ΩxI

Ψkqk. (5.103)
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Equation (5.103) is manipulated to isolate the ghost nodes:

∑
k∈ΩxI
k=ghost

Ψkqk = q̂b −
∑
k∈ΩxI
k 6=ghost

Ψkqk (5.104)

Where applicable, this system is a boundary node and put into the general system (5.101).

Neumann boundary conditions enforce a gradient condition on the boundary. This is expressed

as:

∇qint · ni,j =
̂( ∂q
∂n

)
int

where
(̂
∂q
∂n

)
int is the desired value for the normal gradient on the boundary at the intercept node,

and n is the boundary normal at the boundary node. An example of a Neumann boundary is

the pressure gradient on a viscous wall, where the normal pressure gradient is zero. In the MLS

framework, the Neumann boundary condition is set using (5.46):

(
∂q̂int

∂x
,
∂q̂int

∂y
,
∂q̂int

∂z

)
· ni,j =

̂( ∂q
∂n

)
int

=
∑
k∈Ω,int

(
∂Ψk

∂x
,
∂Ψk

∂y
,
∂Ψk

∂z

)
· ni,j qk (5.105)

where ni,j is the normal of the boundary at node (i, j). Isolating for ghost nodes, Equation (5.105)

is written as:

∑
k∈ΩxI
k=ghost

(
∂Ψ

∂n

)
k

qk =
̂( ∂q
∂n

)
i,j

−
∑
k∈ΩxI
k 6=ghost

(
∂Ψ

∂n

)
k

qk (5.106)

If the target normal
(̂
∂q
∂n

)
i,j

is non-zero, then the Neumann condition is effectively an extrapolation

condition. The Neumann-extrapolation condition assumes that the flow is continuous at the bound-

ary of interest. Where applicable, (5.106) is written for each node and used to populate (5.101).

The previous description of the Neumann condition (5.106) can have deficiencies leading

to unacceptable errors. The intercept stencil includes non-normal nodes which can be overly

weighted. Also, from numerical experiments, the anisotropic weighted-MLS, while producing
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accurate derivatives, will not highly weight unnecessary points for the specified order. For exam-

ple, using Figure 5.29 as a guide, a second-order MLS reconstruction using anisotropic weights

will only weight (i, j + 1) and (i, j − 1) for ∂Ψ
∂y

. Nodes (i, j + 2) and (i, j − 2) have very small

weights for ∂Ψ
∂y

, causing numerical issues in (5.101).

n
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Figure 5.29: Illustration of Normal Intercept Stencils Related to Ghost Nodes (i, j− 1) and (i, j−
2).

To overcome this, the boundary normal nodes in the intercept stencil are isolated to build a

stencil purely normal to the boundary, as shown in Figure 5.28. Once the normal intercept stencil

is built, which is a straightforward process, the stencil is used to build finite differences. The choice

in computing the weights for the finite difference is the Fornberg algorithm [48, 50], which allows

for unequal spacing in the stencil. However, the intercept stencil is purposefully build to have equal

spacing to avoid issues with large unphysical weights for the center node. Once the weights are
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determined, the Neumann system can be built:

̂( ∂q
∂n

)
int

=
∑

k∈Ω,int, Fornberg

∂ψk
∂n

, qk (5.107)

where ψ is the Fornberg finite difference weight.

The next step is to determine how the boundary stencils are to be coupled for the Neumann

condition, or how are the ghost node values are prescribed using sets of finite differences. To

simplify the analysis, the points are assumed to be equally spaced, since it eliminates the spacing

h from the equations. For a first- or second-order problem, the stencils are oriented as shown in

Figure 5.29. The possible finite difference equations, with h eliminated, are:

qi,j+1 − qi,j−1 = 0

qi,j+2 − qi,j−2 = 0

qi,j+1 − qi,j−2 = 0

qi,j+2 − qi,j−1 = 0

−qi,j+2 + 8qi,j+1 − 8qi,j−1 + qi,j−2 = 0

2qi,j+1 + 3qi,j − 6qi,j−1 + qi,j−2 = 0

−qi,j+2 + 6qi,j+1 − 3qi,j − 2qi,j−1 = 0

qi,j+2 + 12qi,j − 16qi,j−1 + 3qi,j−2 = 0

−3qi,j+2 + 16qi,j+1 − 12qi,j − qi,j−2 = 0.

A least-squares approach could be used with these stencils, such that the system would be:

Aqg = Bqm (5.108)
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where

A =



1 0

0 1

0 1

1 0

8 −1

6 −1

2 0

16 −3

0 1



, B =



0 1 0

0 0 1

0 1 0

0 0 1

0 8 −1

3 2 0

−3 6 −1

0 12 1

−12 16 −3



. (5.109)

The vectors qg and qm are the state vectors for the ghost and main mesh nodes, respectively. If

qm =


qi,j

qi,j+1

qi,j+2

 =


0.714

0.714

0.714

 (5.110)

or, a uniform non-dimensional pressure field for sea-level pressure, and (5.108) is solved in a

least-squares sense for the pressure at the ghost nodes, one will correctly determine the ghost node

pressure to be:

qg =

qi,j−1

qi,j−2

 =

0.714

0.714

 . (5.111)

If a similar procedure for the third-order ghost nodes using a reduced set of finite differences, A
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and B would be:

A =



−8 1 0

−45 9 −1

−27 0 1

0 −9 2

−45 0 1


, B =



0 8 −1 0

0 −45 9 −1

0 −27 0 1

60 −90 27 −4

60 −135 36 5


. (5.112)

Using an initial uniform pressure field

qm =



qi,j

qi,j+1

qi,j+2

qi,j+3


=



0.714

0.714

0.714

0.714


(5.113)

, the ghost node pressures would be:

qg =


qi,j−1

qi,j−2

qi,j−3

 =


0.4887

−0.6269

−0.0430

 (5.114)

which is unphysical. Even if all of the second-order stencils are included from (5.108) into (5.112)

to increase the size of the third-order set, the ghost node values would be:

qg =


qi,j−1

qi,j−2

qi,j−3

 =


−0.7966

−2.8271

−10.020

 (5.115)

which is worse. This error is alluded to when the MLS stencils are coupled at the boundary to

generate Neumann conditions using (5.106), namely that coupling these sets will lead to unphysical
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results. Both of these methods are therefore unacceptable for use herein.

This still leaves open the question on how ghost nodes are defined for Neumann conditions.

One suggestion is using a Lagrange interpolating polynomial for the ghost nodes is suggested

by Berthelsen & Faltinsen [9]; however, Lagrange polynomials have numerical issues as the order

of the polynomial is increased (think ill-conditioned system) and the Runge phenomenon [92,

Chapter 6]. The Runge phenomenon shows that for equally spaced nodes, the error can become

unbounded, especially at extrema [92, Chapter 6, pg. 319]. This is less than ideal, since the ghost

nodes are located at the extrema of the stencils. Some authors suggest shifting the extrapolation

polynomial, effectively using finite differences where the boundary is not the ‘central’ node, though

this reduces the accuracy of the approximation for the ghost nodes [64, 55]. Effectively, these

methods use non-symmetric stencils at the boundaries, which can produce unphysical values at the

ghost nodes. Another approach is to solve a so-called extrapolation partial differential equation of

varying-order to a steady state using interior information and a level-set function (defined as the

signed distance to a boundary) [5]. This method has been used exclusively for Cartesian overset

grids [5] and would be difficult to implement for finite-volume discretizations. Therefore, to avoid

the issues discussed above, the ghost nodes for Neumann boundary conditions are solved by using

a lower-order extrapolation, as used by Motheau et al. [120]. The ghost nodes are prescribed using

a set of finite differences (where h is the step size):

∂q

∂n
=
qi,j+1 − qi,j−1

2h
(5.116)

∂q

∂n
=
−qi,j+2 + 8qi,j+1 − 8qi,j−1 + qi,j−2

12h
∂q

∂n
=
qi,j+3 − 9qi,j+2 + 45qi,j+1 − 45qi,j−1 + 9qi,j−2 − qi,j−3

60h
∂q

∂n
=
−3qi,j+4 + 32qi,j+3 − 168qi,j+2 + 672qi,j+1 − 672qi,j−1 + 168qi,j−2 − 32qi,j−3 + 3qi,j−4

840h

or the equivalent set generated by the Fornberg algorithm, based on the order desired. While it

may not seem to be the most accurate, it is the most stable method. Based on construction of the

stencils, the image nodes in the stencil are either known directly from the interior or approximated
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with MLS, the definition of the ghost nodes is considered higher-order [157, 8]. Writing the stencil

set (5.116) in terms of (5.107) and isolating for the ghost nodes, the boundary condition is written

as

(
∂ψ

∂n
q

)
i,j−2

+

(
∂ψ

∂n
q

)
i,j−1

=
̂( ∂q
∂n

)
int, Fornberg

−{(
∂ψ

∂n
q

)
i,j

+

(
∂ψ

∂n
q

)
im:(i,j−1)

+

(
∂ψ

∂n
q

)
im:(i,j−2)

+

}
. (5.117)

In compact form, (5.117) is:

∑
k∈ΩxI
k=ghost

(
∂ψ

∂n

)
k

qk =
̂( ∂q
∂n

)
i,j

−
∑
k∈ΩxI
k 6=ghost

(
∂Ψ

∂n

)
k

qk −
∑
k∈ΩxI
k=image

(
∂Ψ

∂n

)
k

qk (5.118)

Where applicable, (5.118) is written for each node and used to populate (5.101). If the image nodes

are not main mesh nodes, then the stencil for the image, Ωximage , is used to interpolate the value

at the image when solving (5.118). Also, if the intercept node is not explicitly in the main mesh

nodes, the intercept node is interpolated using Ωxint with the ghost nodes excluded.

Robin, or mixed, boundary conditions apply both the Dirichlet and Neumann boundary condi-

tions. Robin conditions are common in heat transfer on a surface. Without repeating the previous

two sections, the compact form of the Robin condition using (5.118) and (5.104) is:

∑
k∈ΩxI
k=ghost

(
Ψ +

(
∂Ψ

∂n

))
k

qk =
̂( ∂q
∂n

)
i,j

+ q̂b −
∑
k∈ΩxI
k 6=ghost

(
Ψ +

(
∂Ψ

∂n

))
k

qk (5.119)

∂Ψ
∂n

in 5.119 can be either the 1D derivative coefficients or the full MLS derivative basis for the

intercept node. Where applicable, (5.119) is written for each node and used to populate (5.101).

The last condition that can be enforced on the ghost nodes is the reflection condition. This

boundary condition is most notably used on a symmetry boundary to mirror all of the information
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to the ghost nodes. For scalar quantities, this is straightforward. The ghost node is set directly by

the image node

q(i,j−1) =
∑

k∈Ωximage

Ψkqk (5.120)

with the compact form taking the same appearance as the Dirichlet compact form. A vector quan-

tity is handled differently. First, an affine reflection matrix is built using the nodal normal at the

boundary node following the same procedure outlined in 5.1.4.2.2. The rotation matrix takes an

identical form to (D.16). The translation matrix is the identity matrix since the velocities are not

being shifted. Effectively, the affine transformation is A = Rrot. The velocity at the ghost nodes

can then be determined as:  v(i,j−1)

1

 =
∑

k∈Ωximage

ΨkA

 vk

1

 , (5.121)

where the velocity is augmented with 1 for consistency. In compact form, the reflection for the

velocity is written as:

−
∑
k∈ΩxI
k=ghost
k 6=i,j−1

At(Ψk1) + (1−At(Ψi,j−11)) =
∑
k∈ΩxI
k 6=ghost

AtΨkvk (5.122)

where At is the truncated affine transformation, where the last row and column are removed.

Equations (5.104), (5.118), and (5.122) are used to populate A and b in (5.101). Since A

is only composed of the MLS basis functions and therefore dependent only on the mesh, A is

precomputed and stored, and only needs updating if there is mesh movement. In this work, the

sparse matrix package UMFpack in the SuiteSparse [31] matrix suite was used to solve (5.101).

UMFpack can symbolically factorize A and store it; A stays the same if its structure remains nearly

constant. This is important for two reasons: 1) A can change structurally only if nodes are added

or removed from the mesh and 2) the structure of A is essentially the same for all the of variables

in the state vector. In effect, A only needs to be factored once symbolically and numerically and
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can be stored for the entire simulation. Even though this can be taxing from a memory stand-point,

it will cut down significantly on the computational cost to solve (5.101). UMFpack can also solve

the system exactly or iteratively.

It is important to note that (5.101) will only define the ghost nodes. In general, specifying

the ghost nodes will be sufficient for setting the boundary conditions. In special cases, such as a

viscous wall, the boundary nodes will also require prescribing a value as well. Thus, the boundary

main mesh nodes are discussed as well in the following sections.

5.4.2.3 Inlet

Inlet boundary conditions are used to enforce conditions present at −∞. The ghost nodes

‘bridge’ the −∞ conditions and the interior. Figure 5.30 illustrates the general construction of

the inlet boundary using ghost nodes. For sonic or supersonic flows, the ghost nodes are directly

n
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i-2,j
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Intercept Stencil of (i-1,j)

Intercept Stencil of (i-2,j)

Figure 5.30: Illustration of an Inlet Bop;lundary with ghost nodes.
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determined from the −∞:

qg = q̂ =


ρ−∞

v−∞

p−∞

 (5.123)

If the flow is subsonic, the ghost nodes are more difficult to define. A Dirichlet condition based

on the image node/stencil is one way to define the ghost nodes, but this is only effective for the

ghost closest to the inlet. Ghost nodes further away from the inlet are defined using the freestream

conditions, but this approach is too restrictive in not allowing information to travel outward through

the inlet. The inlet ghost nodes must be defined with consideration given to allowing information

pass through the boundary. It is important to illustrate then what physically happens at the inlet.

Figure 5.31 shows an example inlet. At the inlet, the flow is described by five waves: two acoustic

Inlet
Direction of Flow

u+c

u

u-c

y

x
z

Figure 5.31: Illustration of an Inlet Boundary with Characteristic Waves.

wavs, two vortical waves, and one entropic wave. Four waves enter the domain at speed u (vortical

and entropic) and u+c (acoustic), while the other acoustic wave traveling at speed u−c is allowed

to exit the domain. c is the local speed of sound. The inlet boundary condition should allow for the

correct propagation of these waves.

There are three common methods to implement a non-reflecting boundary condition. The most

accurate approach is to numerically extract all of the waves that would pass through the boundary
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with a full-eigenvector decomposition at the boundaries [24]. This approach is computationally

expensive. On the other end of the spectrum, the least expensive approach is to use Riemann

Invariants [12, Chapter 8]. This method has been successfully used in [91, 57, 18], but does not

readily allow for the ghost states beyond the closet ghost node to the inlet to be defined. The final

approach is to use Navier–Stokes Characteristic Boundary Conditions (NSCBC) or the Locally

One-Dimensional Inviscid (LODI) boundary conditions [130, 120]. The NSCBC decompose the

flow into a set of one-dimensional characteristic waves. This allows for numerical control of

information into and out of the domain. These waves, as shown in Figure 5.31, are the vortical and

entropic waves. Formally, the NSCBC are given as [130]:

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0

∂u

∂t
+

1

2ρc
(L5 − L1) = 0

∂v

∂t
+ L3 = 0

∂w

∂t
+ L4 = 0

∂p

∂t
+

1

2
(L5 + L1) = 0 (5.124)

L are LODI relations in (5.124):

L1 = (u− c)1

2

(
∂p

∂x
− ρc∂u

∂x

)
L2 = u

(
c2 ∂ρ

∂x
− ∂p

∂x

)
L3 = u

∂v

∂x

L4 = u
∂w

∂x

L5 = (u+ c)
1

2

(
∂p

∂x
+ ρc

∂u

∂x

)
(5.125)

The gradients in (5.125) are determined via one-sided differences. Additional terms to account for

viscous [152] and transverse [178] effects may be added to (5.124) to better model the flow at the
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nonreflecting boundary. Accounting for the transverse terms, the NSCBC in characteristic form

is [178]:

1

2

(
∂p

∂t
− ρc∂u

∂t

)
+ L1 − T 1

1 = 0

∂ρ

∂t
− 1

c2

∂p

∂t
+ L2 − T 1

2 = 0

∂v

∂t
+ L3 − T 1

3 = 0

∂w

∂t
+ L4 − T 1

4 = 0

1

2

(
∂p

∂t
+ ρc

∂u

∂t

)
+ L5 − T 1

5 = 0 (5.126)

where T 1 are the characteristic transverse terms:

T 1
1 = T1

5 − ρcT1
2

T 1
2 = c2T1

1 − T1
5

T 1
3 = T1

3

T 1
4 = T1

4

T 1
5 = T1

5 + ρcT1
2 (5.127)

and the transverse terms T1 are:

T1 = −∂ρv
∂y

T2 = −v∂u
∂y

T3 = −v∂v
∂y
− 1

ρ

∂p

∂y

T4 = −v∂w
∂y

T5 = −v∂p
∂y
− γp∂v

∂y
(5.128)
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At the inlet, four variables are prescribed corresponding to the four incoming waves: the velocity

v and temperature T−∞. The LODI relations are modified to prescribe these variables:

L2 = β2(T − T−∞) + T 1
2

L3 = β3(v − v−∞) + T 1
3

L4 = β4(w − w−∞) + T 1
4

L5 = β5(u− u−∞) + T 1
5 (5.129)

where β are relaxation parameters, (T, u, v, w)−∞ are the desired target values at the boundary,

and (T, u, v, w) are the current values of the state vector on the boundary. T 1
5 is modified to [105]:

T 1
5 = T1

5 − ρcT1
2 (5.130)

if the inlet is at x1 = 0. The relaxation parameters are [178, 120]:

β2 = η2

ρcRgas

lx

β3 = η3
c

lx

β4 = η4
c

lx

β5 = η5
ρc2(1−M2

∞)

lx
(5.131)

where lx is the characteristic length of the domain, and η are further constants used to tune the flow.

Typically, η3 = η4 = 0 and η2 = −η5 = −0.278 [178]. Additionally, the transverse terms may not

be included since the majority of the flow variables are prescribed at the inlet [178]. However, if

the waves propagating from the interior of the domain are non-planar, the transverse waves should

not be neglected. The NSCBC conditions are written in terms of the flow gradients [154, 130, 120]:

∂q

∂xNSCBC
=
∂q

∂x
= SxΛ

−1L (5.132)
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where Sx is the eigenvector matrix:

Sx =



1
2c2

1
c2

0 0 1
2c2

−1
2ρc

0 0 0 1
2ρc

0 0 1 0 0

0 0 0 1 0

1
2

0 0 0 1
2


(5.133)

and Λ is the eigenvalue matrix λI.

The final issue with the inlet boundary conditions is where the condition is applied. For tra-

ditional finite-volume cell-vertex and finite difference methods, the boundary condition is applied

on the boundaries, and fluxes are computed on the boundary face. For finite-volume cell-center

schemes, the boundary condition is also applied on the boundary face, but since the state vector

is stored at the cell center, gradient conditions are applied directly in the flux. Since the current

implementation is a ‘mix’ of the cell-center and cell-vertex, the application of the inlet boundary

condition is applied at the flux face of the augmented inlet boundary cell, as shown in Figure 5.32.

As the flux location lies outside of the domain, for second-order or higher, the state vector and gra-

dients are extrapolated to the flux face from the boundary/intercept location to determine the nonre-

flecting gradients (5.132). The inlet boundary condition could be set at the interior, but that would

cause the boundary to become decoupled from the rest of the field. Once the LODI conditions are

determined, the ghost node system for inlet nodes is built using the Neumann condition (5.118) for

the ghost node system (5.101).

For the SST-Menter RANS turbulence model [115], the ghost node state vector is set to constant
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Figure 5.32: Flux Location of Inlet Boundary Cells.

values prescribed by [13, Chapter 7, pg 249]:

ω∞ = C1
||v∞||
L

(µT )∞ = (µL)∞10−C2 (5.134)

K∞ =
(µT )∞
ρ∞

ω∞

where∞ = g, 1 ≤ C1 ≤ 10, 2 ≤ C2 ≤ 5, and L is the length of the domain.

5.4.2.4 Outlet

Outlet boundary conditions enforce the conditions at∞. Figure 5.33 illustrates the conditions

enforced at the outlet boundary. There are three options to set the outlet boundary condition. The

first is the zero-normal gradient condition:

̂(∂q

∂n

)
= 0. (5.135)
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Figure 5.33: Illustration of an Outlet Boundary with Ghost Nodes.

This boundary condition does not explicitly set the back pressure but relies on the upstream values

to maintain the desired flow. The second option is the convective boundary condition. This takes

the form: ̂(∂q

∂n

)
=

(
∂q

∂n

)
interior

(5.136)

where
(
∂q
∂n

)
interior is the derivative normal to the boundary determined by a one-sided backward

finite difference at the intercept node. This condition is only applied to the pressure and density,

as the zero-normal gradient condition is applied to the velocity fields. Applying the convective

boundary to the velocities will cause the flow to become unstable at the outlet.
(
∂q
∂n

)
interior is com-

puted either with a one-sided finite difference or a one-sided MLS derivative reconstruction (5.46)

at the intercept node. The MLS derivative reconstruction (5.46) is used when the intercept node

is not explicitly a node in the main mesh. A convective boundary is preferred when the flow does

not exit normal to the boundary or for supersonic flows. It is not recommended for subsonic flows

since the back pressure is difficult to maintain.

The final approach is using the NSCBC/LODI conditions as at the inlet (5.132). For the outlet
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boundary, only the acoustic wave is allowed to enter the domain, as shown in Figure 5.34. The

Outlet
Direction of Flow

u+c

u

u-c

y

x
z

Figure 5.34: Illustration of an Outlet Boundary with Characteristic Waves.

LODI relations at the outlet are modified to prescribe the pressure [177]:

L1 = αx(p− p∞) + (1− β1)T 1
1 (5.137)

where αx is the pressure relaxation term

αx =
σc(1−M2)

lx
(5.138)

β1 = M is the transverse relaxation term, and T1 is given by (5.128). σ is the pressure relaxation

coefficient, typically set to σ = 0.28 [139, 140]. The pressure relaxation term keeps the pressure

from drifting [139, 140, 130]. For inviscid flows, the remaining transverse terms given by (5.127)

are included. However, for viscous flows, the remaining transverse terms are neglected, since large

wall-normal gradients near the wall, especially during transients, can cause the solution to diverge

quickly. The nonreflecting gradients (5.132) using (5.137) are determined for each ghost node and

are used to build the Neumann condition (5.118) for the ghost node system (5.101).

For the SST-Menter RANS turbulence model [115], the ghost node turbulent state vector is
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defined via the zero-normal derivative

(̂
∂qT

∂n

)
= 0. (5.139)

using (5.118).

5.4.2.5 Far-Field

Far-field boundary conditions enforce the far field conditions at ∞. Figure 5.35 shows the

layout for a typical far-field boundary. The far-field boundary is considered an ‘open’, or free
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Figure 5.35: Illustration of a Far-Field Boundary with Ghost Nodes.

boundary, allowing the boundary to effectively switch between an inlet or an outlet. There are a

few methods available to define the state at the ghost nodes. The first is to simply define the ghost
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nodes values as the freestream conditions:

qg = q̂ =


ρ∞

v∞

p∞

 (5.140)

While this method does lead to overall good convergence and solutions, it does not explicitly allow

information to pass in or out of the domain, since the ghost nodes state values are rigidly defined.

The second approach is consider the boundary as streamline, which effectively makes the far-field

boundary a symmetry boundary. This approach is discussed in more detail the next section. The

symmetry-far-field boundary is a pure reflective boundary, though, and can cause stalling (or no)

convergence of the solution. The final approach is to use the LODI relations, which should allow

information to pass freely through the boundary. Figure 5.36 illustrates the waves entering and

exiting the far-field boundary. The eigenvalues are ξ = (v − c, v, v, v, v + c). It is important to

Far-Field
Direction of Flow

v+c
v

v-c
y

x
z

Figure 5.36: Illustration of a Far-Field Boundary with Characteristic Waves.

note that the vortical and entropic waves (those traveling at speed v) are not guaranteed to exit the
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domain as shown in Figure 5.36. The LODI relations in the y-direction, with transverse terms, are:

1

2

(
∂p

∂t
− ρc∂v

∂t

)
+M1 − T 2

1 = 0

∂u

∂t
+M2 − T 2

2 = 0

∂ρ

∂t
− 1

c2

∂p

∂t
+M3 − T 2

3 = 0

∂w

∂t
+M4 − T 2

4 = 0

1

2

(
∂p

∂t
+ ρc

∂v

∂t

)
+M5 − T 2

5 = 0 (5.141)

whereM are the y-direction LODI relations:

M1 = (v − c)1

2

(
∂p

∂y
− ρc∂v

∂y

)
M2 = v

∂u

∂y

M3 = v

(
c2∂ρ

∂y
− ∂p

∂y

)
M4 = v

∂w

∂y

M5 = (v + c)
1

2

(
∂p

∂y
+ ρc

∂v

∂y

)
, (5.142)

T 2 are the characteristic transverse terms:

T 2
1 = T2

5 − ρcT2
3

T 2
2 = T2

2

T 2
3 = c2T2

1 − T2
5

T 2
4 = T2

4

T 2
5 = T2

5 + ρcT2
3, (5.143)
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and the transverse terms T2 are:

T2
1 = −∂ρu

∂x

T2
2 = −u∂u

∂x

T2
3 = −u∂u

∂x
− 1

ρ

∂p

∂x

T2
4 = −u∂w

∂x

T2
5 = −u∂p

∂x
− γp∂u

∂x
. (5.144)

If the characteristics are traveling outward, the LODI relations are determined directly from the

interior one-sided differences. If the characteristics are traveling into the domain, then the LODI

M = 0 [84]. The pressure relation,M1, however, is determined using a relationship similar to the

outlet:

M1 = αy(p− p∞) + (1− β1)T 2
1 (5.145)

where αy is the pressure relaxation term

αy =
σc(1−M2)

ly
(5.146)

and ly is the characteristic height of the domain [35]. At the far-field boundary,

∂q

∂y LODI
=
∂q

∂y
= SyΞ

−1M (5.147)
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where Sy is the eigenvector matrix:

Sy =



1
2c2

0 1
c2

0 1
2c2

0 1 0 0 0

−1
2ρc

0 0 0 1
2ρc

0 0 0 1 0

1
2

0 0 0 1
2


(5.148)

and Ξ−1 is only applied to non-zero waves. M are not multiplied by ξ to avoid numerical issues

when ξ ← 0. The characteristic approach is the preferred method herein, and it is used to build the

system for each far-field ghost node and added to the system (5.101).

5.4.2.6 Non-Reflecting Compatibility Boundaries

Before continuing with the remaining boundary conditions, the special cases of adjacent non-

reflecting boundary conditions must be discussed. At these boundaries, the waves in two directions

become coupled, and special care must be taken to ensure robustness and stability of the boundary

condition. The NSCBC written in two-dimensions are:

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
+

1

c2

[
M3 +

1

2
(M5 +M1)

]
= 0

∂u

∂t
+

1

2ρc
(L5 − L1) +M2 = 0

∂v

∂t
+ L3 +

1

2ρc
(M5 −M1) = 0

∂w

∂t
+ L4 +M4 = 0

∂p

∂t
+

1

2
(L5 + L1) +

1

2
(M5 +M1) = 0 (5.149)
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In characteristic form, the NSCBC equations are written separately. In the x-direction, the NSCBC

equations are:

1

2

(
∂p

∂t
− ρc∂u

∂t

)
+ L1 − T 1

1 = 0

∂ρ

∂t
− 1

c2

∂p

∂t
+ L2 − T 1

2 = 0

∂v

∂t
+ L3 − T 1

3 = 0

∂w

∂t
+ L4 − T 1

4 = 0

1

2

(
∂p

∂t
+ ρc

∂u

∂t

)
+ L5 − T 1

5 = 0 (5.150)

and in the y−direction:

1

2

(
∂p

∂t
− ρc∂v

∂t

)
+M1 − T 2

1 = 0

∂u

∂t
+M2 − T 2

2 = 0

∂ρ

∂t
− 1

c2

∂p

∂t
+M3 − T 2

3 = 0

∂w

∂t
+M4 − T 2

4 = 0

1

2

(
∂p

∂t
+ ρc

∂v

∂t

)
+M5 − T 2

5 = 0 (5.151)

The formal difference between these equations, (5.150) and (5.151), and the original LODI equa-

tions, (5.126) and (5.141), lies in the transverse terms. The transverse terms are now written in
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terms of the other characteristics. The characteristic transverse terms in the x−direction are:

T 1
1 = −1

2
(M5 +M1) + ρcM2

T 1
2 = −M3

T 1
3 = − 1

2ρc
(M5 −M1)

T 1
4 = −M4

T 1
5 = −1

2
(M5 +M1)− ρcM2 (5.152)

and in the y−direction

T 2
1 = −1

2
(L5 + L1) + ρcL3

T 2
2 = − 1

2ρc
(L5 − L1)

T 2
3 = −L2

T 2
4 = L4

T 2
5 = −1

2
(L5 + L1)− ρcL3, (5.153)

Both (5.150) and (5.151) are modified appropriately to related the conditions in the x− and y−

direction. The derivatives for the ghost nodes at these locations are defined by:

∂q

∂xLODI
=
∂q

∂x
= SxΛ

−1L (5.154)

and
∂q

∂y LODI
=
∂q

∂y
= SyΞ

−1M (5.155)

The three situations discussed herein on how (5.150) and (5.151):

• Outlet/Far-Field

• Inlet/Far-Field
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• Wall/Symmetry & Inlet/Outlet

5.4.2.6.1 Outlet/Far-field At the boundary where an outlet and far-field boundary meet, two

waves, one from each direction normal to the boundary, enter the domain, while the remaining

waves are allowed to exit the domain. Figure 5.37 illustrates this. Both incoming waves are

Outlet/Far-Field Compatability Boundary
Direction of Flow

v+c
v

v-c
y

x
z

u+c

u

u-c

Figure 5.37: Illustration of an Outlet/Far-Field Boundary with Characteristic Waves.

acoustic waves, and defined by:

1

2

(
∂p

∂t
− ρc∂u

∂t

)
+ L1 − T 1

1 = 0

1

2

(
∂p

∂t
− ρc∂v

∂t

)
+M1 − T 2

1 = 0 (5.156)

with the transverse terms defined by (5.152) and (5.153) [105]. The pressure, as before with the

outlet and far-field, is relaxed:

1

2

(
∂p

∂t
− ρc∂u

∂t

)
+ αx(p− p∞) + (1− β)T 1

1 = 0

1

2

(
∂p

∂t
− ρc∂v

∂t

)
+ αy(p− p∞) + (1− β)T 2

1 = 0 (5.157)
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Using (5.156) and (5.157), the compatibility relations for the acoustic waves are expressed as [105]:

L1 +
1− β

2
M1 = αx(p− p∞) + (1− β)T 1

1

1− β
2
L1 +M1 = αy(p− p∞) + (1− β)T 2

1 (5.158)

with the characteristic transverse terms modified to:

T 1
1 = −1

2
M5 − ρcM2

T 2
1 = −1

2
L5 − ρcL3

(5.159)

The system (5.158) is solved and used in (5.154) and (5.155) to define the ghost nodal values.

5.4.2.6.2 Inlet/Far-Field At the boundary where an inlet and far-field boundary meet, five waves,

four from the inlet and one from the far-field, enter the domain. Figure 5.38 illustrates this. The

Inlet/Far-Field Compatability Boundary
Direction of Flow

v+c
v

v-c
y

x
z

u+c

u

u-c

Figure 5.38: Illustration of an Inlet/Far-Field Boundary with Characteristic Waves.

compatibility relationship could be defined as for the outlet/far-field boundary, but this situation

has known stability issues [105]. Instead, the pressure relation at the far-field,M1 is set to zero,

allowing the pressure to adjust to the inlet parameters. The LODI relations for the inlet are defined
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as [105]:

L2 = β2(T − T−∞)− T 1
2

L3 = β3(v − v−∞)− T 1
3

L4 = β4(w − w−∞)− T 1
4

L5 = β5(u− u−∞)− T 1
5 (5.160)

where the characteristic transverse terms T 1 are defined as:

T 1
1 = −1

2
M5 + ρcM2

T 1
2 = −M3

T 1
3 = − 1

2ρc
M5

T 1
4 = −M4

T 1
5 = −1

2
M5 − ρcM2 (5.161)

For the far-field, the LODI relations are defined as:

M1 = −T 2
1

M2 =M2

M3 =M3

M4 =M4

M5 =M5 − T 2
5 (5.162)

where the characteristic transverse terms T 2 are defined as in (5.153). The ghost nodal values are

then defined using (5.154) and (5.155).
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5.4.2.7 Inflow/Wall or Symmetry and Outflow/Wall or Symmetry

The last grouping of combined boundary conditions is where an inlet or outflow meet a sym-

metry or wall boundary. In all cases, the wall and symmetry are reflective boundaries. At the

outflow/wall boundary, L2,3,4 = 0 and the acoustic waves are equal L5 = L1. When the outflow

interfaces with a symmetry boundary, L2 is not zero, but the remaining LODI relations are the

same as for a outflow/wall interface. At the inflow boundary, the same relations hold as at the

outflow/wall and outflow/symmetry interfaces, but instead L1 = L5.

5.4.2.8 Symmetry and Inviscid Walls

The symmetry and inviscid wall boundaries require zero-normal derivatives for all flow vari-

ables as well as zero-normal velocity:

∂q

∂n
= 0

v · n = 0 (5.163)

Figure 5.39 illustrates a typical symmetry boundary. For the orthogonal grid case, the pressure and

density for the ghost node can be directly specified from the image node:

ρg = ρim

pg = pim (5.164)

For the non-orthogonal case, the pressure and density for the ghost node are determined by the

Neumann condition (5.118) with a zero-normal gradient

̂( ∂ρ
∂n

)
= 0

̂( ∂p
∂n

)
= 0. (5.165)
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Figure 5.39: Illustration of a Symmetry Boundary with Ghost Nodes.

The velocities are determined from the reflected velocity at the image node, as given by (5.122)

and as outlined by Algorithm D.2 in Appendix D. The relationships for the density, pressure, and

velocities for inviscid wall and symmetry ghost nodes are built and added into the system (5.101).

Additionally, the velocity for inviscid wall and symmetry boundary nodes may be set to:

vi · ni = 0 (5.166)

where ni is the boundary normal at the node, typically taken as an average normal of the related

boundary faces. This strongly enforces the boundary conditions, but enforcing the boundary con-

ditions in this way can cause the solution convergence to stall.

For curved inviscid walls, the zero-gradient pressure condition is not correct. Instead, the
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pressure gradient at the wall is a function of the curvature [134]:

̂( ∂p
∂n

)
=
ρvt
R

(5.167)

where vt is the tangential velocity and R is the average radius of curvature of surface, determined

by:

Rj =
∑
i

(ni − nj) · (xi − xj)

||xi − xj||
(5.168)

where i is the connected surface nodes, and n are the averaged nodal normals. The normal density

gradient is, using the ideal gas law and T = constant in an inviscid flow:

P = ρRgT

∂P

∂n
= Rg

∂(ρT )

∂n
∂P

∂n
= RgTw

∂ρ

∂n
+Rgρw

∂T

∂n
∂P

∂n
= RgTw

∂ρ

∂n
∂ρ

∂n
=

1

RgTw

∂P

∂n

∂ρ

∂n
=

1

RgTw

ρwvt
R

(5.169)

where Rg is the gas constant and ()w is a quantity at the wall. At the symmetry boundary for

viscous flows, the SST-Menter RANS turbulence model [115], the ghost node turbulent state vector

is defined via the zero-normal derivative

(̂
∂qT

∂n

)
= 0. (5.170)

using (5.118). The Neumann condition is built for each ghost inviscid wall or symmetry node and

added into the system (5.101).
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5.4.2.9 Viscous Walls

Viscous, no-slip, walls require zero velocity

v = 0 (5.171)

and zero normal pressure gradient
∂p

∂n
= 0 (5.172)

at the wall. Constraints on the temperature require either zero-normal gradient for adiabatic walls

∂T

∂n
= 0 (5.173)

or constant temperature on the wall for isothermal walls

Tw = Twall. (5.174)

The boundary conditions applied at a viscous wall are shown in Figure 5.40.

The velocities for the ghost nodes of both adiabatic and isothermal walls are defined using a

zero-second derivative [12, Chapter 8, pg 281]:

∂2v

∂n2
= 0 (5.175)

For an adiabatic wall, both the pressure and density are enforced using (5.118) with a zero-

normal gradient condition. For an isothermal wall, only the pressure is enforced using the zero-

normal gradient. The temperature for the wall ghost nodes is the isothermal wall temperature, Tw.

The density for the ghost nodes is determined directly from Tw and the pressure gradient. One

could be tempted to differentiate the ideal gas law to derive an expression for the density:

∂ρ

∂n
= −ρw

Tw

∂T

∂n
(5.176)
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Figure 5.40: Illustration of a Viscous Wall with Ghost Nodes.

but this is unstable and will set unphysical (low) temperatures and (high) densities in the wall.

What is instead done herein is to compute the ghost density after ghost system is solved using the

normal pressure and isothermal wall temperature. After the ghost states are determined, the wall

pressure at the boundary is determined using a one-sided finite difference.

For an adiabatic wall, the states at the ghost are defined using (5.118) and (5.175), and for

an isothermal wall the states at the ghost are defined using (5.118), (5.175), and (5.176). These

relationships are built and added into the system (5.101).

For the SST-Menter RANS turbulence model [115], the ghost node turbulent state vector is

defined via the zero-normal derivative

(̂
∂qT

∂n

)
= 0. (5.177)
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using (5.118). K and ω in the SST-Menter RANS model is also directly applied to the wall nodes:

K = 0

ω = 10
6µL
ρβ1d2

1

(5.178)

where d1 is the distance to the first wall node. The Neumann condition is built for each ghost wall

node and added into the system (5.101).

5.4.2.10 Rotating Walls

Rotating walls are handled the same as their stationary viscous or inviscid counterparts for the

flow variables. Figure 5.41 illustrates a rotating wall boundary.

n
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Figure 5.41: Illustration of Ghost Node Definitions for a Rotating Wall.

The modification made for rotational wall boundaries is the velocity on the wall is now non-
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zero. The velocity on the wall is with the rotation about the x−axis is:

u = 0

v = Ωzb

w = −Ωyb (5.179)

where Ω is the rotational speed of the wheel, and yb and zb are the coordinates of the boundary

node. To define the wall ghost nodes, (5.118) and (5.175) for adiabatic walls and (5.118), (5.175),

and (5.176) for isothermal walls are used. These relationships are built and added into the sys-

tem (5.101).

For the SST-Menter RANS turbulence model [115], the ghost node turbulent state vector is

defined via the zero-normal derivative

(̂
∂qT

∂n

)
= 0. (5.180)

using (5.118). The Neumann condition is built for each ghost rotating wall node and added into

the system (5.101).

5.4.3 Boundary Fluxes

As discussed in Sections 4.2 and 5.3, special care is required when integrating both the con-

vective and diffusive fluxes at the boundaries. When ghost nodes are used, the non-wall boundary

fluxes are effectively computed using the same methodology applied to an internal edge. The flux

is computed between a boundary node and a ghost node, which comprise a ghost flux edge. Fig-

ure 5.42 illustrates a ghost-flux edge at one of the boundaries. For the convective flux, the state vec-

tor and derivative at the ghost node takes the place of either the left or right state in (4.19), (5.77),

or (5.78) for the reconstruction and (4.6) for the flux. The reconstruction and quadrature takes

place on the shared dual faces of the boundary dual cell with the ghost dual cell. When determin-

ing the flux limiter for the reconstruction in (4.19), (5.77), or (5.78), the ghost nodes are included.
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Figure 5.42: Ghost-Flux Edge for Integration of the Fluxes along Boundaries.

Once the convective fluxes along the ghost flux edge is determined, the boundary node residual is

updated since the ghost node is determined from the ghost node system (5.101).

For the diffusive flux, the state vector and derivative at the ghost node again takes the place

of either the left or right state in (5.82) or (5.83) for the averaged reconstructed viscous flux. In

the case of the MLS reconstructed viscous flux, the viscous flux stencil is built at the quadrature

nodes of the dual faces such that (5.85) and (5.86) can be determined. Once the reconstructions are

determined using either approach, (2.5) is determined. The boundary nodes residuals are updated

as with the convective fluxes.

Wall boundaries using ghost require a slight modification when computing the fluxes. Instead

of computing the flux on the interface dual faces, the flux is computed at the quadrature nodes on

the wall, since the wall is a physical boundary. These are the standard quadrature nodes shown

in Figure 5.42. For viscous walls, wall boundary fluxes may not be computed. For adiabatic wall

boundary conditions, only the flux for the energy equation is computed. For isothermal walls, the
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flux is not computed, since the state at the wall is fully defined.

5.5 Higher-Order Temporal Schemes

This section discusses the final step to creating a higher-order method: the temporal scheme.

Unlike first- and second-order accurate methods, where a single register is sufficient to integrate

accurately, third- and higher-order accurate methods require more than one register to achieve the

desired numerical accuracy. A register is an array of data. As an example, in (4.31) the register

is the residual R
(
Q

()
i

)
. Third- and fourth-order accuracy is achieved by utilizing an additional

register. Two-register Runge–Kutta schemes are widely used in the DNS community, as implicit

schemes smooth information that is critical to solving these flows [89].

There are two approaches to implementing two-register Runge–Kutta schemes. Both are imple-

mented in this work. The first approach is attributed to Williamson [170]. Williamson’s approach,

or 2N schemes, is written for one stage:

∆Q
(j)
i = αj∆Q

(j−1)
i +

∆ti
Ωi

R
(
Q

(j−1)
i

)
Q

(j)
i = Q

(j−1)
i + βj∆Q

(j)
i (5.181)

where ∆Q
(j)
i is the intermediate change in Qi which now also needs to be stored. α and β are

related to the Butcher coefficients. The second approach is Wray’s van der Houwen scheme [89].

In Wray’s method, or 2R schemes, only two registers are used to achieve the desired accuracy.

Over two stages, a 2R scheme is written as:

Q
(j+1)
i = ∆Q

(j)
i + αj+1

∆ti
Ωi

R
(
Q

(j)
i

)
∆Q

(j+1)
i = Q

(j+1)
i + (βj − αj+1)

∆ti
Ωi

R
(
Q

(j)
i

)
Q

(j+2)
i = ∆Q

(j+1)
i + αj+2

∆ti
Ωi

R
(
Q

(j+1)
i

)
∆Q

(j+2)
i = Q

(j+2)
i + (βj+1 − αj+2)

∆ti
Ωi

R
(
Q

(j+1)
i

)
(5.182)
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In the 2R schemes, the previous solution Q
()
i is written over, and ∆Q

()
i is used to transfer informa-

tion from one stage to another. The overwrite does not have to take place, and in some cases is not

desired, but the resultant scheme has different coefficients than (5.181). α and β in (5.182) are also

related to the Butcher coefficients. Specifics on both 2N and 2R schemes, as well as coefficients α

and β, are presented in [19, 89].
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6. MOVING LEAST-SQUARES 2D RESULTS

6.1 Introduction

This chapter presents results of the implementation of Moving Least-Squares for computing

derivatives. First, a brief study on the methodology used to compute the inverse of the moment

matrix M needed for the MLS basis vector Ψ in the MLS reconstruction (5.16) is presented. A

full study of the effectiveness and accuracy of Moving Least-Squares is performed using three

difference mesh topologies. The structured, unstructured, and stretched grids are shown in Fig-

ures 6.1, 6.2, and 6.3. All of the meshes are two-dimensional square [0 − 1]2 domains with node

counts of 322 to 2562. The unstructured grids are padded with structured cells to handle boundary

terms. The stretched grid spacing in the corners is initially dx = dy = 0.0625 and halved each

refinement. The spacing is grown at a ratio of 1.3 from the corner. On each set of grids, results for

the studies are generated for each of the weighting strategies, unless otherwise noted:

• Isotropic Weights

• Anisotropic Weights

• Affine MLS with Isotropic Weights, also referred to as Affine (1)

• Affine MLS with Anisotropic Weights, also referred to as Affine (2)
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Figure 6.1: Structured Meshes Used for Analysis of MLS.
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Figure 6.2: Unstructured Meshes Used for Analysis of MLS.
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Figure 6.3: Stretched Meshes Used for Analysis of MLS.

Each weighting strategy is tested with four different analytic functions:

• Gaussian, shown with its derivatives in Figures 6.4 and 6.5 :

f(x, y) = e−
(x−xo)2+(y−yo)2

δ2 (6.1)

with δ2 = 0.02 centered at (x0, y0) = (0.5, 0.5).
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(a) Gaussian (b) ∂f
∂x

(c) ∂f
∂y (d) ∂2f

∂x2

Figure 6.4: Gaussian Function and Some of Its Derivatives.
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(a) ∂2f
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(c) ∂3f
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(e) ∂3f
∂xy2 (f) ∂3f

∂y3

Figure 6.5: Additional Derivatives of the Gaussian Function.
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• An equation used by [85], shown with its derivatives Figures 6.6 and 6.7:

f(x, y) =
5
4

+ cos(5.4y)

6 + 6(3x− 1)2
. (6.2)

(a) Kansa Function (b) ∂f
∂x

(c) ∂f
∂y (d) ∂2f

∂x2

Figure 6.6: Kansa Function and Some of Its Derivatives.
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(c) ∂3f
∂x3 (d) ∂3f
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(e) ∂3f
∂xy2 (f) ∂3f

∂y3

Figure 6.7: Additional Derivatives of the Kansa Function.
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• Levi No. 13 Function, also referred herein as to Levi, shown with its derivatives in Fig-

ures 6.8 and 6.9:

f(x, y) = sin2(3πx) + (x− 1)2(1 + sin2(3πy)) + (y − 1)2(1 + sin2(2πy)) (6.3)

(a) Levi No. 13 (b) ∂f
∂x

(c) ∂f
∂y (d) ∂2f

∂x2

Figure 6.8: Levi No. 13 Function and Some of Its Derivatives.
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(c) ∂3f
∂x3 (d) ∂3f
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(e) ∂3f
∂xy2 (f) ∂3f

∂y3

Figure 6.9: Additional Derivatives of the Levi No. 13 Function.
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• Schaffer No. 2 Function, also herein referred to as Schaffer, shown with its derivatives in

Figures 6.10 and 6.11:

f(x, y) =
1

2
+

sin2(x2 − y2)

(1 + 0.001(x2 + y2))2
(6.4)

(a) Schaffer No. 2 (b) ∂f
∂x

(c) ∂f
∂y (d) ∂2f

∂x2

Figure 6.10: Schaffer No. 2 Function and Some of Its Derivatives.
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∂y3

Figure 6.11: Additional Derivatives of the Schaffer No. 2 Function.
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Both the Levi No. 13 and Schaffer No. 2 functions are commonly used functions to test optimiza-

tion problems [4]. For each study, the error for the state q and derivatives is computed using the

L2 norm

L2(j) =

√√√√ 1

n ·maxn ∂jq

n∑
i=1

(∂jq − ∂jqanalytic)2 (6.5)

where j is the current derivative compared. Next, a study on the accuracy of the MLS diffusive

derivatives is performed. A full study on the effect of the scaling parameter k on the MLS recon-

struction is done. Finally, the effect of changing the polynomial basis is studied.

6.2 Inverse of Moment Matrix M for 2D Meshes

This section presents a study on the usage of different inversion methods for the determination

of the inverse of the moment matrix M when computing the MLS basis vector Ψ needed for the

MLS reconstruction (5.16). In Section 5.1.3.2, three methods for computing the inverse of M were

presented:

• General SPD Inverse: inv(M) = M−1

• QR Decomposition: inv(M) = (RTR)−1

• Pivoting QR Decomposition: inv(M) = (PvR
TRPT

v )−1

The general SPD Inverse algorithm used herein is the LAPACK algorithm dpotri in conjunction

with dpotrf, which computes the inverse of a symmetric positive definite matrix via a LU inverse of

a Cholesky Decomposed matrix [3]. The SVD method for matrix decomposition was not included,

since it was shown in previous studies to be slower than QR decomposition [117] and numerically

non-affine (see Section 5.1.3.4 for more details). Rather than looking at the numerical accuracy of

the overall MLS method, this study will look at the average condition number of M on the meshes

to be used in later studies herein. The condition number κ is determined using the LAPACK

algorithm dpocon in conjunction with the L∞ matrix norm

||A||∞= max
i

n∑
j=1

|ai,j| (6.6)
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for the general SPD Inverse and dtrcon for the QR methods [3]. The meshes, structured, unstruc-

tured, and stretched, were shown in Figures 6.1, 6.2, and 6.3. For each set of grids, the MLS re-

construction from second- to fourth-order is performed. The background equation is not important

for M, since it is purely a function of the nodal locations in the stencil ΩxI . Only isotropic weights

are used in this study, since the other weighting strategies are examined later. The monomial poly-

nomial is scaled as shown in (5.18). Ultimately, this section aims to show the improvement in the

condition of M when using the Pivoting QR method.

6.2.1 Structured Meshes

The average condition number of the second-order reconstruction is presented in Table 6.1

for each of the matrix inversion methods. For the two-dimensional case, the overall condition

Table 6.1: Average Condition Number of M on Structured Grids: 2nd-Order.

Method
Mesh Size

32 64 128 256
General SPD 4.17 4.15 4.15 4.14

QR 2.04 2.04 2.04 2.04
Pivoting QR 2.04 2.04 2.04 2.04

number is low, so no matter the method the inverse of M should be accurate. As expected, the

general SPD method has the largest average condition number. The QR and Pivoting QR method

condition numbers are also two times lower than the general SPD method. As the order of the

reconstruction is increased, this difference should get larger. It is also interesting to note that

the Pivoting QR and QR method have the same condition number, which would imply that the

stencils ΩxI do not require any pivoting. Table 6.2 shows the average condition number for the

third-order reconstruction. As with the second-order reconstruction, the average condition number

for the moment matrix M is largest for the general SPD method. The condition number for the

general SPD method is almost eleven times larger than both the QR and Pivoting QR method. Ad-

ditionally, the Pivoting QR method again has the same (or nearly) condition number as the general
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Table 6.2: Average Condition Number of M on Structured Grids: 3rd-Order.

Method
Mesh Size

32 64 128 256
General SPD 153.6 152.7 152.4 152.4

QR 13.82 13.79 13.79 13.79
Pivoting QR 13.82 13.79 13.79 13.79

QR method, so as with the second-order case, pivoting in not required for these stencils. For third-

order, one should start considering using one of the advanced methods for matrix inversion, though

the general SPD methods still produce relatively accurate inverses for the condition numbers seen

here. Table 6.3 shows the average condition number for the fourth-order reconstruction. For the

Table 6.3: Average Condition Number of M on Structured Grids: 4th-Order.

Method
Mesh Size

32 64 128 256
General SPD 3185 3142 3131 3128

QR 74.07 73.80 73.73 73.71
Pivoting QR 54.17 53.95 53.89 53.88

fourth-order reconstruction, the inverse methods now all have different condition numbers for M.

The general method has average condition numbers nearly sixty times larger than the Pivoting QR

method, and for these stencils one should use advanced decomposition methods to ensure some

level of accuracy. The condition number for the general QR method is about 1.3 times larger than

the Pivoting QR method. While the difference is not large, one should use Pivoting QR since it

would produce a more accurate inverse. Overall, the results presented in Tables 6.1, 6.2, and 6.3

confirm that the Pivoting QR method should be used since it always produces the lowest average

condition number. However, for some systems, the general QR method will produce the same

average condition number, though it is difficult to know a priori if the stencils used will behave in

the manner shown here.
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6.2.2 Unstructured Meshes

The average condition number of the second-order reconstruction is presented in Table 6.4 for

each of the matrix inversion methods. For the two-dimensional case, the overall condition number

Table 6.4: Average Condition Number of M on Unstructured Grids: 2nd-Order.

Method
Mesh Size

32 64 128 256
General SPD 6.96 7.18 7.43 7.46

QR 2.72 2.85 2.96 2.97
Pivoting QR 2.72 2.85 2.96 2.97

is, as with the structured mesh, low. This again means that any of the decomposition methods

will produce accurate inverses of M. As with the structured mesh results of Table 6.1, the general

SPD method has the largest average condition number. In this case, the general method has an

average condition number 2.5 times larger than the Pivoting QR method. Also, unlike the struc-

tured mesh results of Table 6.1, the QR and Pivoting QR method condition numbers are slightly

different, with the Pivoting QR method producing a better, though only slightly, average condition

number for these meshes. These results should hold for the third-order reconstruction. Table 6.5

shows the average condition number for the third-order reconstruction. As with the second-order

Table 6.5: Average Condition Number of M on Unstructured Grids: 3rd-Order.

Method
Mesh Size

32 64 128 256
General SPD 195.3 196.4 192.6 186.1

QR 15.21 15.09 15.09 14.72
Pivoting QR 14.30 14.20 14.05 13.81

reconstruction, the average condition number for the moment matrix M is largest for the general
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SPD method. The condition number for the general SPD method is approximately fourteen times

larger than the Pivoting QR method. Additionally, the Pivoting QR method has a slightly better

condition number compared to the general QR method. As with the structured mesh results, one

should start considering using one of the advanced methods for matrix inversion, though the gen-

eral SPD methods still produce relatively accurate inverses for the condition numbers seen here.

Table 6.3 shows the average condition number for the fourth-order reconstruction. For the fourth-

Table 6.6: Average Condition Number of M on Unstructured Grids: 4th-Order.

Method
Mesh Size

32 64 128 256
General SPD 3538 3433 3264 3076

QR 70.11 67.67 65.51 63.35
Pivoting QR 54.11 52.37 51.65 49.96

order reconstruction, the general method average condition numbers are approximately sixty-five

times larger than the Pivoting QR method, which is similar to the structured mesh results shown in

Table 6.3. Again, the results highlight the requirement to use an advanced decomposition method

for solving any higher-order least squares problem. The condition number for the general QR

method is about 1.3 times larger than the Pivoting QR method. While the difference is not large,

one should use Pivoting QR since it would produce a more accurate inverse. Overall, the results

presented in Tables 6.4, 6.5, and 6.6 confirm that the Pivoting QR method should be used since it

always produces the lowest average condition number.

6.2.3 Stretched Meshes

The average condition number of the second-order reconstruction is presented in Table 6.7 for

each of the matrix inversion methods. For the two-dimensional case, the overall condition num-

ber is relatively low, but unlike the structured and unstructured mesh results shown in Tables 6.1

and 6.4 the SPD method condition number is on average ten times larger than the QR methods.

147



Table 6.7: Average Condition Number. of M on Stretched Grids: 2nd-Order.

Method
Mesh Size

32 64 128 256
General SPD 80.43 67.29 60.65 57.33

QR 7.11 6.51 6.20 6.05
Pivoting QR 7.11 6.51 6.20 6.05

The QR and Pivoting QR method condition numbers are the same for these meshes. These re-

sults should hold for the third-order reconstruction. Table 6.8 shows the average condition number

for the third-order reconstruction. As with the second-order reconstruction, the average condition

Table 6.8: Average Condition Number of M on Stretched Grids: 3rd-Order.

Method
Mesh Size

32 64 128 256
General SPD 36851 32714 28391 25620

QR 135.8 122.3 111.9 105.7
Pivoting QR 118.0 116.2 97.26 92.00

number for the moment matrix M is largest for the general SPD method. For the stretched grids,

the condition number for the general SPD method is over 300 times larger than the Pivoting QR

method. Additionally, the Pivoting QR method has a slightly better condition number compared

to the general QR method. Unlike the structured and unstructured meshes, for third-order, one

should never use a general matrix method for inversion due to the conditioning of M. Table 6.3

shows the average condition number for the fourth-order reconstruction. For the fourth-order re-

construction, the general method average condition numbers are nearly 8000 times larger than

the Pivoting QR method. Any results with the general SPD method are worthless at these high

condition numbers. The user should only use the advanced matrix decomposition methods for

fourth-order reconstructions. For the advanced methods, the condition number for the general QR

method is about 1.2 times larger than the Pivoting QR method. While the difference is not large,
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Table 6.9: Average Condition Number of M on Stretched Grids: 4th-Order.

Method
Mesh Size

32 64 128 256
General SPD 1.61E7 2.15E7 2.10E7 1.92E7

QR 2450 2502 2325 2166
Pivoting QR 2028 2082 1938 1806

one should use Pivoting QR since it would produce a more accurate inverse. Overall, the results

presented in Tables 6.7, 6.8, and 6.9 confirm that the Pivoting QR method should be used since it

always produces the lowest average condition number.

6.3 Order of Accuracy Study

This section performs a full assessment of the order of accuracy of the MLS reconstruction

method on the structured, unstructured, and stretched grids shown in Figures 6.1- 6.3. The Gaus-

sian (6.1), Kansa (6.2), Levi No. 13 (6.3), and Schaffer (6.4) functions are analyzed on these

grids. All of the weighting strategies are examined and compared to determine how changing the

weighting strategy affects the accuracy and overall error of the MLS reconstruction. The variation

of the weighting strategies is shown at the end of each mesh section. The scaling parameter in this

section is k = 0.8, and the polynomial basis used is the standard monomial basis. The inversion

method of choice for this study is the Pivoting QR method, since it always produced the minimum

condition number for M for each of the grids, as shown in Section 6.2.

6.3.1 Structured Grids

This section presents the results of order of accuracy of the MLS derivatives on structured grids.

The field is reconstructed using the isotropic, anisotropic weighting strategies as well as the Affine

MLS with isotropic weights. This section concludes with a comparison study for each function

and each weighting strategy.
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6.3.1.1 Isotropic Weights

This subsection presents the results for MLS reconstructions on structured grids using an

isotropic weighting scheme. The second-order results using isotropic weights are shown in Fig-

ure 6.12.
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Figure 6.12: Error Norms on Structured Grids: 2nd-Order MLS with Isotropic Weights.

Figure 6.12 shows that the function and first derivative achieve approximately second-order

accuracy. Table 6.10 summarizes the computed order of accuracy from the data. There also appears

to be no significant change in the order of accuracy based on which function is used.
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Table 6.10: Accuracy on Structured Grids: 2nd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.98 1.98 1.98

Kansa 2.00 2.00 1.99

Levi 2.00 1.99 2.00

Schaffer 2.00 2.02 1.99

Third-order results are shown in Figure 6.13. Figure 6.13 shows that the function achieves

approximately fourth-order accuracy and the first- and second-derivative achieve approximately

second-order accuracy. Table 6.11 summarizes the computed order of accuracy for each equation

on structured grids using isotropic weights. The best accuracy is achieved when reconstructing the

Schaffer function and worse for the Gaussian.

Table 6.11: Accuracy on Structured Grids: 3rd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.95 1.96 1.96 1.96 1.98 1.96

Kansa 3.99 1.99 1.99 2.00 1.98 2.01

Levi 3.99 1.96 1.98 1.99 1.97 2.07

Schaffer 3.98 2.02 2.01 2.00 2.00 1.97

Fourth-order results are shown in Figure 6.14. Figure 6.14 shows that the function and first-

derivatives achieve approximately fourth-order accuracy, while the second- and third-derivatives
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Figure 6.13: Error Norms on Structured Grids: 3rd-Order MLS with Isotropic Weights.

are approximately second-order accurate. Table 6.12 summarizes the computed order of accuracy

for each equation on structured grids using isotropic weights. As with the third-order solution, the

reconstruction performs best with the Schaffer function and worse with the Gaussian.
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Figure 6.14: Error Norms on Structured Grids: 4th-Order MLS with Isotropic Weights.

Table 6.12: Accuracy on Structured Grids: 4th-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Kansa 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Levi 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Schaffer 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01
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6.3.1.2 Anisotropic Weights

This subsection presents the results for MLS reconstructions on structured grids using an

anisotropic weighting scheme. The second-order results using anisotropic weights are shown in

Figure 6.15.
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Figure 6.15: Error Norms on Structured Grids: 2nd-Order MLS with Anisotropic Weights.

Figure 6.15 shows that the function and first derivative achieve approximately second-order

accuracy. Table 6.13 summarizes the computed order of accuracy for each equation on structured

grids using anisotropic weights. The results are same as those produced by the isotropic weights
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presented in Table 6.10, as one would expect since the anisotropic weight would degenerate to the

isotropic case for these grids. As with the isotropic case, the reconstruction performs similar for

all the equations.

Table 6.13: Accuracy on Structured Grids: 2nd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.98 1.98 1.98

Kansa 2.00 2.00 1.99

Levi 2.00 1.99 2.00

Schaffer 2.00 2.02 1.99

Third-order results are shown in Figure 6.16. Figure 6.16 shows that the function achieves

approximately fourth-order accuracy and the first- and second-derivative achieve approximately

second-order accuracy. Table 6.14 summarizes the computed order of accuracy for each equation

on structured grids using anisotropic weights. As with the second-order reconstruction, the third-

order reconstruction with anisotropic weights produces the same level of accuracy as the isotropic

weighted MLS shown in Table 6.11. The reconstruction performs the best for the Schaffer function,

and the reconstruction is worse for the Gaussian.

155



10 100 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Gaussian
L 2

 E
rro

r

No. of Nodes, n

(a) Gaussian

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Kansa

L 2
 E

rro
r

No. of Nodes, n

(b) Kansa Function

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

q
dx
dy
dxx
dxy
dyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Levi No. 13

L 2
 E

rro
r

No. of Nodes, n

(c) Levi Function

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Schaffer No. 2

L 2
 E

rro
r

No. of Nodes, n

(d) Schaffer Function

Figure 6.16: Error Norms on Structured Grids: 3rd-Order MLS with Anisotropic Weights.

Table 6.14: Accuracy on Structured Grids: 3rd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.95 1.96 1.96 1.96 1.98 1.96

Kansa 3.99 1.99 1.99 2.00 1.98 2.01

Levi 3.99 1.96 1.98 1.99 1.97 2.07

Schaffer 3.98 2.02 2.01 2.00 2.00 1.97
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Fourth-order results are shown in Figure 6.17.
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Figure 6.17: Error Norms on Structured Grids: 4th-Order MLS with Anisotropic Weights.

Figure 6.17 shows that the function and first-derivatives achieve approximately fourth-order

accuracy, while the second- and third-derivatives are approximately second-order accurate. Ta-

ble 6.15 summarizes the computed order of accuracy for each equation on structured grids using

isotropic weights. As with the second- and third-order reconstruction, the fourth-order reconstruc-

tion with anisotropic weights produces the same level of accuracy as the isotropic weighted MLS

shown in Table 6.12. The reconstruction is best with the Schaffer No. 2 function, and it performs
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worse for the Gaussian.

Table 6.15: Accuracy on Structured Grids: 4th-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Kansa 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Levi 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Schaffer 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01

6.3.1.3 Affine MLS

This subsection presents the results for Affine MLS reconstructions on structured grids using

an isotropic weighting scheme. The second-order results using Affine MLS with isotropic weights

are shown in Figure 6.18. Note that anisotropic weights are not used for the structured mesh test,

since they degenerate to the isotropic case as shown in the previous section.
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Figure 6.18: Error Norms on Structured Grids: 2nd-Order Affine MLS with Isotropic Weights

Figure 6.18 shows that the reconstruction and first-derivatives achieve approximately second-

order accuracy. Table 6.16 summarizes the computed order of accuracy for each equation on

structured grids using Affine MLS with isotropic weights. As with the previous two methods,

the Affine MLS produces second-order results for both the function and first derivatives. Affine

MLS also produces the same results as general method using isotropic and anisotropic method as

presented in Tables 6.10 and 6.13. As with the previous two sections, the reconstruction performs

similarly for all equations.
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Table 6.16: Accuracy on Structured Grids: 2nd-Order Affine MLS with Isotropic Weights

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.98 1.98 1.98

Kansa 2.00 2.00 1.99

Levi 2.00 1.99 2.00

Schaffer 2.00 2.02 1.99

Third-order results are shown in Figure 6.19. Figure 6.19 shows that the function is ap-

proximately fourth-order accurate, while the first- and second-order derivatives are approximately

second-order accurate. Table 6.17 summarizes the computed order of accuracy for each equation

using Affine MLS on structured grids with isotropic weights. As with the second-order reconstruc-

tion, Affine MLS reproduces the same level of accuracy as the isotropic and anisotropic weighted

MLS as shown in Tables 6.11 and 6.14. The reconstruction performs best for the Schaffer function,

and it performs worse for the Gaussian.

Table 6.17: Accuracy on Structured Grids: 3rd-Order Affine MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.95 1.96 1.96 1.96 1.98 1.96

Kansa 3.99 1.99 1.99 2.00 1.98 2.01

Levi 3.99 1.96 1.98 1.99 1.97 2.07

Schaffer 3.98 2.02 2.01 2.00 2.00 1.97
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Figure 6.19: Error Norms on Structured Grids: 3rd-Order Affine MLS with Isotropic Weights.

Fourth-order results are shown in Figure 6.20. Figure 6.20 shows that the reconstruction of the

function and first-derivatives achieves approximately fourth-order accuracy, while the second- and

third-derivatives are approximately second-order accurate. Table 6.18 summarizes the computed

order of accuracy for each equation using Affine MLS on structured grids with isotropic weights.

Affine MLS reproduces the same level of accuracy as the isotropic and anisotropic weighted MLS

as shown in Tables 6.12 and 6.15. As with the previous sections, the reconstruction performs best

for the Schaffer function, and it performs worse for the Gaussian.

161



10 100 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Gaussian
L 2

 Er
ro

r

No. of Nodes, n

(a) Gaussian

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Kansa

L 2
 Er

ro
r

No. of Nodes, n

(b) Kansa Function

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

101

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Levi No. 13

L 2
 Er

ro
r

No. of Nodes, n

(c) Levi Function

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Schaffer No. 2

L 2
 Er

ro
r

No. of Nodes, n

(d) Schaffer Function

Figure 6.20: Error Norms on Structured Grids: 4th-Order Affine MLS with Isotropic Weights.

Table 6.18: Accuracy on Structured Grids: 4th-Order Affine MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Kansa 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Levi 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Schaffer 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01
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6.3.1.4 Summary

After computing all of the reconstructions using the various weighting strategies, it is worth

comparing the accuracy and error computed from each strategy for each function. Table 6.19 sum-

marizes the order of accuracy for each of the functions using a second-order MLS reconstruction.

Table 6.19: Accuracy on Structured Grids: 2nd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

Gaussian

Iso. 1.98 1.98 1.98

Aniso. 1.98 1.98 1.98

Affine (1) 1.98 1.98 1.98

Kansa

Iso. 2.00 2.00 1.99

Aniso. 2.00 2.00 1.99

Affine (1) 2.00 2.00 1.99

Levi

Iso. 2.00 1.99 2.00

Aniso. 2.00 1.99 2.00

Affine (1) 2.00 1.99 2.00

Schaffer

Iso. 2.00 2.02 1.99

Aniso. 2.00 2.02 1.99

Affine (1) 2.00 2.02 1.99

Table 6.19 shows that the weighting strategy does not change the order of accuracy for any

of the functions. This is the expected and desired effect, since on a structured mesh each of the

strategies degenerate to the isotropic weighting case. Table 6.20 summarizes the order of accuracy

for each of the functions using a third-order MLS reconstruction.
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Table 6.20: Accuracy on Structured Grids: 3rd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 3.95 1.96 1.96 1.96 1.98 1.96

Aniso. 3.95 1.96 1.96 1.96 1.98 1.96

Affine (1) 3.95 1.96 1.96 1.96 1.98 1.96

Kansa

Iso. 3.99 1.99 1.99 2.00 1.98 2.01

Aniso. 3.99 1.99 1.99 2.00 1.98 2.01

Affine (1) 3.99 1.99 1.99 2.00 1.98 2.01

Levi

Iso. 3.99 1.96 1.98 1.99 1.97 2.07

Aniso. 3.99 1.96 1.98 1.99 1.97 2.07

Affine (1) 3.99 1.96 1.98 1.99 1.97 2.07

Schaffer

Iso. 3.98 2.02 2.01 2.00 2.00 1.97

Aniso. 3.98 2.02 2.01 2.00 2.00 1.97

Affine (1) 3.98 2.02 2.01 2.00 2.00 1.97

Table 6.20 shows that the weighting strategy does not change the order of accuracy for any

of the functions. This is the expected and desired effect, since on a structured mesh each of the

strategies degenerate to the isotropic weighting case. Table 6.21 summarizes the order of accuracy

for each of the functions using a third-order MLS reconstruction.
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Table 6.21: Accuracy on Structured Grids: 4th-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Iso. 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Aniso. 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Affine (1) 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Kansa

Iso. 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Aniso. 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Affine (1) 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97

Levi

Iso. 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Aniso. 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Affine (1) 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92

Schaffer

Iso. 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01

Aniso. 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01

Affine (1) 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01

Table 6.21 shows that the weighting strategy does not change the order of accuracy for any

of the functions, as with the second- and third-order case. By inspection, one would want to

choose the isotropic weighting strategy, since it produces the same order of accuracy for the lowest

computational cost across any of the orders of reconstruction. However, this does not tell the full

story, as the condition number should also be assessed when making this decision. A condition

number comparison is given for each order in Section 6.6.

6.3.2 Unstructured Grids

This section presents the results of order of accuracy of the MLS derivatives on unstructured

grids. First, the MLS derivatives using isotropic weights is presented. Next, the MLS derivatives
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using anisotropic weights are shown. The section concludes with the Affine MLS derivatives using

anisotropic weights.

6.3.2.1 Isotropic Weights

This subsection presents the results for MLS reconstructions on unstructured grids using an

isotropic weighting scheme. The second-order results using isotropic weights are shown in Fig-

ure 6.21.
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Figure 6.21: Error Norms on Unstructured Grids: 2nd-Order MLS with Isotropic Weights.

From Figure 6.21, the function is reconstructed approximately second-order, and the first
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derivatives are reconstructed approximately first-order. Table 6.22 summarizes the computed or-

der of accuracy for each equation on unstructured grids using isotropic weights. The accuracy

on the unstructured grids is reduced as expected compared to structured grids; however, the first-

derivatives are as accurate as the theory would predict (first-order for a second-order approxima-

tion). The reconstruction of the first-derivatives is best for the Gaussian and worse for the Schaffer

function. Third-order results are shown in Figure 6.22.

Table 6.22: Accuracy on Unstructured Grids: 2nd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 2.00 0.95 0.93
Kansa 1.97 0.90 0.93
Levi 1.97 0.95 0.90

Schaffer 1.98 0.88 0.89
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Figure 6.22: Error Norms on Unstructured Grids: 3rd-Order MLS with Isotropic Weights.

Figure 6.22 shows that the accuracy for the function is approximately third-order accurate, and

the first-derivatives second-order accurate, and second-derivatives first-order accurate. Table 6.23

summarizes the computed order of accuracy for each equation on unstructured grids using isotropic

weights. The accuracy is similar to the second-order results on unstructured grids; the accuracy

achieved is more based on the level of derivation than the structured case. The reconstruction is

best for the Gaussian function overall, but the reconstruction of the Levi is nearly as accurate.

Fourth-order results are shown in Figure 6.23.
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Table 6.23: Accuracy on Unstructured Grids: 3rd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.05 1.99 1.98 0.99 1.10 1.02
Kansa 2.99 1.97 2.00 1.01 1.05 0.96
Levi 3.13 1.98 1.99 1.05 1.04 1.08

Schaffer 2.96 1.98 1.99 0.92 0.97 0.96
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Figure 6.23: Error Norms on Unstructured Grids: 4th-Order MLS with Isotropic Weights.

Figure 6.23 shows that the function is approximately fourth-order accurate, first-derivatives ap-
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proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.24 summarizes the computed order of accuracy for each equation on

unstructured grids using isotropic weights. The best overall reconstruction is with the Gaussian

function.

Table 6.24: Accuracy on Unstructured Grids: 4th-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 4.01 3.15 3.13 1.97 1.96 1.95 1.06 1.04 1.09 1.01
Kansa 3.94 3.08 3.06 2.01 1.95 2.00 0.99 1.02 0.93 1.03
Levi 3.96 3.20 3.14 2.04 1.90 2.07 1.33 1.05 1.02 1.19

Schaffer 4.00 3.04 3.05 2.07 1.93 2.06 1.00 1.02 1.01 0.99

6.3.2.2 Anisotropic Weights

This subsection presents the results for MLS reconstructions on unstructured grids using an

anisotropic weighting scheme. The second-order results using anisotropic weights are shown in

Figure 6.24.
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Figure 6.24: Error Norms on Unstructured Grids: 2nd-Order MLS with Anisotropic Weights.

From Figure 6.24, the function is reconstructed approximately second-order, and the first

derivatives are reconstructed approximately first-order. Table 6.25 summarizes the computed or-

der of accuracy for each equation on unstructured grids using anisotropic weights. As with the

isotropic case, the reconstruction produces second-order results for the function and first-order re-

sults for the first derivatives. There are some slight differences between the isotropic weight results

summarized in Table 6.22, but that is expected since the weights are different in the unstructured

case. The reconstruction of the first-derivatives is best for the Gaussian and worse for the Schaffer

No. 2 function. Third-order results are shown in Figure 6.25.
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Table 6.25: Accuracy on Unstructured Grids: 2nd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 2.00 0.94 0.92
Kansa 1.97 0.93 0.96
Levi 1.97 1.00 0.97

Schaffer 1.98 0.89 0.90
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Figure 6.25: Error Norms on Unstructured Grids: 3rd-Order MLS with Anisotropic Weights.

Figure 6.25 shows that the accuracy for the function is approximately third-order accurate,
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and the first-derivatives second-order accurate, and second-derivatives first-order accurate. Ta-

ble 6.26 summarizes the computed order of accuracy for each equation on unstructured grids using

anisotropic weights. The results are again similar to the isotropic weighing results presented in

Table 6.23, with the function obtaining approximately third-order accuracy, the first-derivatives

are second-order, and the second-derivatives are roughly first-order. The reconstruction is best for

the Gaussian function overall, but the reconstruction of the Levi is nearly as accurate. Fourth-order

Table 6.26: Accuracy on Unstructured Grids: 3rd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.05 2.00 1.99 1.00 1.11 1.03
Kansa 3.01 1.97 2.00 1.02 1.05 0.97
Levi 3.14 1.99 2.00 1.07 1.05 1.10

Schaffer 2.97 1.98 1.99 0.94 0.96 0.98

results are shown in Figure 6.26.
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Figure 6.26: Error Norms on Unstructured Grids: 4th-Order MLS with Anisotropic Weights.

Figure 6.26 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.27 summarizes the computed order of accuracy for each equation on

unstructured grids using anisotropic weights. As with the second- and third-order reconstruction,

the fourth-order reconstruction with anisotropic weights produces the same level of accuracy as

the isotropic weighted MLS shown in Table 6.24, yielding a fourth-order accurate function, third-

order accurate first-derivatives, second-order accurate second-derivatives, and first-order accurate

third-derivatives. The best overall reconstruction is with the Gaussian function.
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Table 6.27: Accuracy on Unstructured Grids: 4th-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Kansa 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08
Levi 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30

Schaffer 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10

6.3.2.3 Affine MLS

This subsection presents the results for Affine MLS reconstructions on unstructured grids using

an anisotropic weighting scheme. The second-order results using Affine MLS with anisotropic

weights are shown in Figure 6.27.
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Figure 6.27: Error Norms on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic Weights.

From Figure 6.27, the function is reconstructed approximately second-order, and the first

derivatives are reconstructed approximately first-order. Table 6.28 summarizes the computed order

of accuracy for each equation on unstructured grids using Affine MLS with isotropic weights. As

with the previous two methods, Affine MLS in general produces second-order results for both the

function and first-order first derivatives. Affine MLS produces the same results as the anisotropic

weighted results in Table 6.25 since it uses the same base weighting scheme. The reconstruction

of the first-derivatives is best for the Gaussian and worse for the Schaffer function. Third-order

results are shown in Figure 6.28.
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Table 6.28: Accuracy on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 2.00 0.94 0.92
Kansa 1.97 0.93 0.96
Levi 1.97 1.00 0.97

Schaffer 1.98 0.89 0.90
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Figure 6.28: Error Norms on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic Weights.

Figure 6.28 shows that the accuracy for the function is approximately third-order accurate, and
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the first-derivatives second-order accurate, and second-derivatives first-order accurate. Table 6.29

summarizes the computed order of accuracy for each equation using Affine MLS on unstructured

grids with anisotropic weights. As with the second-order reconstruction, Affine MLS reproduces

the same level of accuracy as the isotropic and anisotropic weighted MLS as shown in Tables 6.23

and 6.26, with the results matching the anisotropic weighted results since the Affine MLS uses the

same base weighting scheme. The reconstruction is best for the Gaussian function overall, but the

reconstruction of the Levi is nearly as accurate. Fourth-order results are shown in Figure 6.29.

Table 6.29: Accuracy on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.05 2.00 1.99 1.00 1.11 1.03
Kansa 3.01 1.97 2.00 1.02 1.05 0.97
Levi 3.14 1.99 2.00 1.07 1.05 1.10

Schaffer 2.97 1.98 1.99 0.94 0.96 0.98
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Figure 6.29: Error Norms on Unstructured Grids: 4th-Order Affine MLS with Anisotropic Weights.

Figure 6.26 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.30 summarizes the computed order of accuracy for each equation us-

ing Affine MLS on unstructured grids with anisotropic weights. Affine MLS reproduces the same

level of accuracy as the anisotropic weighted MLS as shown in Table 6.27, since it uses the same

base weighting scheme. The best overall reconstruction is with the Gaussian function.
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Table 6.30: Accuracy on Unstructured Grids: 4th-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Kansa 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08
Levi 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30

Schaffer 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10

6.3.2.4 Summary

After computing all of the reconstructions using the various weighting strategies, it is worth

comparing the accuracy and error computed from each strategy for each function. Table 6.31 sum-

marizes the order of accuracy for each of the functions using a second-order MLS reconstruction.

Table 6.31: Accuracy on Unstructured Grids: 2nd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

Gaussian
Iso. 2.00 0.95 0.93

Aniso. 2.00 0.94 0.92
Affine (2) 2.00 0.94 0.92

Kansa
Iso. 1.97 0.90 0.93

Aniso. 1.97 0.93 0.96
Affine (2) 1.97 0.93 0.96

Levi
Iso. 1.97 0.95 0.90

Aniso. 1.97 1.00 0.97
Affine (2) 1.97 1.00 0.97

Schaffer
Iso. 1.98 0.88 0.89

Aniso. 1.98 0.89 0.90
Affine (2) 1.98 0.89 0.90

Table 6.31 shows that the weighting strategy does have a slight effect on the orders of accu-

racy. For the Gaussian, the anisotropic weighted methods have a slightly lower accuracy for the
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first derivatives, while the other functions using anisotropic weighting have a slightly higher accu-

racy for the first derivatives. There should be some differences between the strategies due to the

description of the stencil through s. It is also easy to see here that the Affine MLS obtains the

same accuracy as the base anisotropic weighting strategy, which is the desired result. It is also

worthwhile to exam the error from the reconstructions. Table 6.32 shows the L2 error for each of

the functions on the finest mesh.

Table 6.32: L2 Error on Finest Unstructured Grid: 2nd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

Gaussian

Iso. 9.66E-5 2.99E-3 2.96E-3

Aniso. 9.69E-5 3.01E-3 2.97E-3

Affine (2) 9.69E-5 3.01E-3 2.97E-3

Kansa

Iso. 3.32E-5 3.05E-3 1.99E-3

Aniso. 3.33E-5 3.17E-3 2.08E-3

Affine (2) 3.33E-5 3.17E-3 2.08E-3

Levi

Iso. 1.46E-4 4.33E-3 4.83E-3

Aniso. 1.46E-4 5.65E-3 6.05E-3

Affine (2) 1.46E-4 5.65E-3 6.05E-3

Schaffer

Iso. 2.47E-5 1.97E-3 1.95E-3

Aniso. 2.48E-5 2.01E-3 2.00E-3

Affine (2) 2.48E-5 2.01E-3 2.00E-3

Effectively, the differences in the computed error are negligible for the second-order recon-

struction. The first derivatives have a slightly higher error, but 1E-3 or less will not make much
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of a difference to the overall results. Table 6.33 summarizes the order of accuracy for each of the

functions using a third-order MLS reconstruction.

Table 6.33: Accuracy on Unstructured Grids: 3rd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 3.05 1.99 1.98 0.99 1.10 1.02

Aniso. 3.05 2.00 1.99 1.00 1.11 1.03

Affine (2) 3.05 2.00 1.99 1.00 1.11 1.03

Kansa

Iso. 2.99 1.97 2.00 1.01 1.05 0.96

Aniso. 3.01 1.97 2.00 1.02 1.05 0.97

Affine (2) 3.01 1.97 2.00 1.02 1.05 0.97

Levi

Iso. 3.13 1.98 1.99 1.05 1.04 1.08

Aniso. 3.14 1.99 2.00 1.07 1.05 1.10

Affine (2) 3.14 1.99 2.00 1.07 1.05 1.10

Schaffer

Iso. 2.96 1.98 1.99 0.92 0.97 0.96

Aniso. 2.97 1.98 1.99 0.94 0.96 0.98

Affine (2) 2.97 1.98 1.99 0.94 0.96 0.98

Table 6.33 shows that the weighting strategy does have an effect on the orders of accuracy. For

each of the functions, the anisotropic weighting strategy has the better accuracy on the unstructured

mesh. There should be some differences between the strategies due to the description of the stencil

through s. It is also worthwhile to exam the error from the reconstructions. Table 6.34 shows the

L2 error for each of the functions on the finest mesh.
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Table 6.34: L2 Error on Finest Unstructured Grid: 3rd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 1.76E-6 4.37E-4 4.38E-4 2.80E-3 3.72E-3 2.73E-3

Aniso. 1.66E-6 4.45E-4 4.46E-4 3.05E-3 3.72E-3 2.99E-3

Affine (2) 1.66E-6 4.45E-4 4.46E-4 3.05E-3 3.72E-3 2.99E-3

Kansa

Iso. 2.18E-7 1.94E-4 1.61E-4 1.71E-3 4.20E-3 2.67E-3

Aniso. 2.10E-7 1.97E-4 1.64E-4 1.87E-3 4.34E-3 2.92E-3

Affine (2) 2.10E-7 1.97E-4 1.64E-4 1.87E-3 4.34E-3 2.92E-3

Levi

Iso. 1.18E-6 1.69E-3 8.37E-4 7.94E-3 1.93E-2 2.86E-3

Aniso. 1.19E-6 1.72E-3 8.52E-4 8.70E-3 2.14E-2 3.17E-3

Affine (2) 1.19E-6 1.72E-3 8.52E-4 8.70E-3 2.15E-2 3.17E-3

Schaffer

Iso. 9.47E-8 5.74E-5 5.72E-5 1.47E-3 9.84E-4 1.48E-3

Aniso. 8.84E-8 5.84E-5 5.81E-5 1.62E-3 9.90E-4 1.62E-3

Affine (2) 8.84E-8 5.84E-5 5.81E-5 1.62E-3 9.91E-4 1.62E-3

As with the second-order results in Table 6.32, the difference in the error is negligible for the

third-order reconstruction. Any differences are small, so any of the weighting strategies should

produce the same results. Table 6.35 summarizes the order of accuracy for each of the functions

using a third-order MLS reconstruction.
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Table 6.35: Accuracy on Unstructured Grids: 4th-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Iso. 4.01 3.15 3.13 1.97 1.96 1.95 1.06 1.04 1.09 1.01

Aniso. 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

Affine (2) 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

Kansa

Iso. 3.94 3.08 3.06 2.01 1.95 2.00 0.99 1.02 0.93 1.03

Aniso. 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08

Affine (2) 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08

Levi

Iso. 3.96 3.20 3.14 2.04 1.90 2.07 1.33 1.05 1.02 1.19

Aniso. 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30

Affine (2) 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30

Schaffer

Iso. 4.00 3.04 3.05 2.07 1.93 2.06 1.00 1.02 1.01 0.99

Aniso. 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10

Affine (2) 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10

Table 6.35 shows that the weighting strategy again has an effect on the orders of accuracy.

For each of the functions, the anisotropic weighting strategy has better accuracy for the higher-

derivative terms, while the isotropic weighting has better accuracy for the function and first deriva-

tives. These differences are probably due to the variations in the stencils that naturally arise from

the mesh topology, where the anisotropic weighting better describes the stencils for the higher

derivative terms. The L2 error of the reconstructions on the finest mesh shown in Tables 6.36

and 6.37 may shed some additional light on this.
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Table 6.36: L2 Error on Finest Unstructured Grid: 4th-Order MLS Weight Comparison, State and
First and Second Derivatives.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 6.08E-7 7.82E-6 7.57E-6 8.38E-4 1.69E-3 8.49E-4

Aniso 5.99E-7 7.77E-6 7.55E-6 9.03E-4 1.78E-3 8.96E-4

Affine (2) 5.99E-7 7.77E-6 7.55E-6 9.03E-4 1.78E-3 8.96E-4

Kansa

Iso. 4.07E-8 1.54E-6 9.02E-7 3.93E-4 7.40E-4 2.85E-4

Aniso. 4.07E-8 1.54E-6 9.02E-7 3.93E-4 7.40E-4 2.85E-4

Affine (2) 4.07E-8 1.54E-6 9.02E-7 3.93E-4 7.40E-4 2.85E-4

Levi

Iso. 9.88E-7 1.06E-5 6.54E-6 3.89E-3 3.21E-3 1.33E-3

Aniso. 9.88E-7 1.06E-5 6.54E-6 3.89E-3 3.21E-3 1.33E-3

Affine (2) 9.88E-7 1.06E-5 6.54E-6 3.89E-3 3.21E-3 1.33E-3

Schaffer

Iso. 9.04E-9 3.83E-7 3.75E-7 1.51E-4 8.88E-5 1.50E-4

Aniso. 9.06E-9 3.83E-7 3.75E-7 1.51E-4 8.88E-5 1.50E-4

Affine (2) 9.06E-9 3.83E-7 3.75E-7 1.51E-4 8.88E-5 1.50E-4
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Table 6.37: L2 Error on Finest Unstructured Grid: 4th-Order MLS Weight Comparison, Third
Derivatives.

Function

Equation Weight
∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Iso. 6.79E-3 1.02E-2 1.04E-2 6.88E-3

Aniso. 7.07E-3 1.08E-2 1.11E-2 6.98E-3

Affine (2) 7.07E-3 1.08E-2 1.11E-2 6.98E-3

Kansa

Iso. 5.13E-3 7.84E-3 1.41E-2 5.33E-3

Aniso. 5.13E-3 7.84E-3 1.41E-2 5.33E-3

Affine (2) 5.13E-3 7.84E-3 1.41E-2 5.33E-3

Levi

Iso. 6.94E-3 0.64 3.14E-2 4.07E-3

Aniso. 6.94E-3 0.64 3.14E-2 4.07E-3

Affine (2) 6.94E-3 0.64 3.14E-2 4.07E-3

Schaffer

Iso. 3.68E-3 5.92E-3 5.81E-3 3.62E-3

Aniso. 3.68-3 5.92E-3 5.81E-3 3.62E-3

Affine (2) 3.68E-3 5.92E-3 5.81E-3 3.62E-3

Unlike the previous results in Tables 6.32 and 6.34, the error results for the non-Gaussian

functions are the same for each of the weighting strategies (and to a higher precision than shown

here). For the Gaussian function, the differences in the error are small, at most less than 1E−4, so

there again should be no difference in the results. The results show that for any of the orders there

is little difference in the weighting strategies, with some slight variations in the order or error. The

condition number for each of the methods will complete the picture for the unstructured mesh, as

will be shown in Section 6.6.
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6.3.3 Stretched Grids

This section presents the results of order of accuracy of the MLS derivatives on stretched grids.

First, the MLS derivatives using isotropic weights is presented. Next, the MLS derivatives using

anisotropic weights are shown. Unlike the previous two sections, the Affine MLS with isotropic

and anisotropic weights are evaluated as well.

6.3.3.1 Isotropic Weights

This subsection presents the results for MLS reconstructions on stretched grids using an isotropic

weighting scheme. The second-order results using isotropic weights are shown in Figure 6.30.
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Figure 6.30: Error Norms on Stretched Grids: 2nd-Order MLS with Isotropic Weights.
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Figure 6.30 shows that the function and first derivative achieve approximately second-order

accuracy. Table 6.38 summarizes the computed order of accuracy from the data. There appears

to be no significant change in the order of accuracy based on which function is used. Third-order

Table 6.38: Accuracy on Stretched Grids: 2nd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.99 1.98 1.98
Kansa 2.01 2.02 2.01
Levi 2.00 1.92 1.90

Schaffer 2.01 1.88 1.88

results are shown in Figure 6.31.
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Figure 6.31: Error Norms on Stretched Grids: 3rd-Order MLS with Isotropic Weights.

Figure 6.31 shows that the function achieves approximately fourth-order accuracy and the first-

and second-derivative achieve approximately second-order accuracy. Table 6.39 summarizes the

computed order of accuracy for each equation on stretched grids using isotropic weights. The

best accuracy is achieved when reconstructing the Schaffer function and worse for the Gaussian.

Fourth-order results are shown in Figure 6.32.
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Table 6.39: Accuracy on Stretched Grids: 3rd-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.97 1.95 1.95 1.97 1.98 1.97
Kansa 4.05 1.98 1.98 2.10 1.83 2.11
Levi 4.01 1.96 1.95 2.07 1.72 2.06

Schaffer 4.18 1.98 1.98 2.13 1.86 2.13
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Figure 6.32: Error Norms on Stretched Grids: 4th-Order MLS with Isotropic Weights.

Figure 6.32 shows that the function and first-derivatives achieve approximately fourth-order
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accuracy, while the second- and third-derivatives are approximately second-order accurate. Ta-

ble 6.40 summarizes the computed order of accuracy for each equation on stretched grids using

isotropic weights. As with the third-order solution, the reconstruction performs best with the Schaf-

fer function and worse with the Gaussian.

Table 6.40: Accuracy on Stretched Grids: 4th-Order MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79
Kansa 3.99 4.11 4.06 1.90 1.98 2.02 1.57 2.16 2.16 1.84
Levi 3.94 4.04 4.05 1.91 1.99 1.95 1.62 2.12 2.11 1.71

Schaffer 4.02 4.16 4.16 2.00 2.00 2.00 1.69 2.25 2.25 1.69

6.3.3.2 Anisotropic Weights

This subsection presents the results for MLS reconstructions on stretched grids using an anisotropic

weighting scheme. The second-order results using anisotropic weights are shown in Figure 6.33.
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Figure 6.33: Error Norms on Stretched Grids: 2nd-Order MLS with Anisotropic Weights.

Figure 6.33 shows that the function and first derivative achieve approximately second-order

accuracy. Table 6.41 summarizes the computed order of accuracy for each equation on stretched

grids using anisotropic weights. Unlike the structured and unstructured meshes, the anisotropic

weighted results show a slight decrease in the order for the derivatives compared the isotropic

weights shown in Table 6.38. This is probably due to the difficulty in correctly modeling the

derivatives of C for the elliptical weights. As with the isotropic case, the reconstruction performs

similar for all the equations. Third-order results are shown in Figure 6.34.
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Table 6.41: Accuracy on Stretched Grids: 2nd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.99 1.93 1.93
Kansa 2.01 1.73 1.71
Levi 1.99 1.73 1.70

Schaffer 2.01 1.72 1.72
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Figure 6.34: Error Norms on Stretched Grids: 3rd-Order MLS with Anisotropic Weights.

Figure 6.34 shows that the function achieves approximately fourth-order accuracy and the first-
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and second-derivative achieve approximately second-order accuracy. Table 6.42 summarizes the

computed order of accuracy for each equation on stretched grids using anisotropic weights. As

with the second-order reconstruction, the third-order reconstruction with anisotropic weights have

a slightly lower level of accuracy than the isotropic weights shown in Table 6.39, due to the ability

to model the second derivative of C. The reconstruction performs the best for the Schaffer function,

and the reconstruction is worse for the Gaussian. Fourth-order results are shown in Figure 6.35.

Table 6.42: Accuracy on Stretched Grids: 3rd-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.98 1.94 1.94 1.99 1.99 1.99
Kansa 4.06 1.98 1.98 1.95 2.29 1.95
Levi 4.02 1.96 1.95 1.95 2.48 1.95

Schaffer 4.30 1.99 1.99 1.94 2.06 1.94
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Figure 6.35: Error Norms on Stretched Grids: 4th-Order MLS with Anisotropic Weights.

Figure 6.35 shows that the function and first-derivatives achieve approximately fourth-order

accuracy, while the second- and third-derivatives are approximately second-order accurate for the

Gaussian. The same is true for the other functions, except for the third-derivatives. What appears

to be happening is that the third-derivative of C is not accurately being modeled, so the third-

derivatives of the function are not well captured. If these terms are the fault of the error, the diffuse

derivative tests should show the issue removed. Table 6.43 summarizes the computed order of

accuracy for each equation on stretched grids using anisotropic weights. The same trends from the

second- and third-order results are seen here with a slight decrease in the order for each derivatives

as compared to the isotropic weighted results. .As with the second- and third-order reconstruction,
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the fourth-order reconstruction with anisotropic weights produces the same level of accuracy as

the isotropic weighted MLS shown in Table 6.40.

Table 6.43: Accuracy on Stretched Grids: 4th-Order MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Kansa 3.99 4.12 3.94 1.89 1.98 1.90 0.76 1.78 1.75 0.63
Levi 3.95 4.07 4.06 1.87 2.00 1.89 0.65 1.73 1.73 0.65

Schaffer 4.03 4.29 4.29 1.91 2.00 1.91 0.65 1.72 1.72 0.65

6.3.3.3 Affine MLS: Isotropic Weights

This subsection presents the results for Affine MLS reconstructions on stretched grids using

an isotropic weighting scheme. The second-order results using Affine MLS with isotropic weights

are shown in Figure 6.36.
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Figure 6.36: Error Norms on Stretched Grids: 2nd-Order Affine MLS with Isotropic Weights.

Figure 6.36 shows that the reconstruction and first-derivatives achieve approximately second-

order accuracy. Table 6.44 summarizes the computed order of accuracy for each equation on

stretched grids using Affine MLS with isotropic weights. As with the previous two methods,

Affine MLS in general produces second-order results for both the function and first derivatives.

Affine MLS also produces the same results as general method using isotropic weights as presented

in Tables 6.38. As with the previous two sections, the reconstruction performs similarly for all

equations. Third-order results are shown in Figure 6.37.

197



Table 6.44: Accuracy on Stretched Grids: 2nd-Order Affine MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.99 1.98 1.98
Kansa 2.01 1.91 1.92
Levi 2.00 1.92 1.90

Schaffer 2.01 1.88 1.88
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Figure 6.37: Error Norms on Stretched Grids: 3rd-Order Affine MLS with Isotropic Weights.

Figure 6.37 shows that the function is approximately fourth-order accurate, while the first-
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and second-order derivatives are approximately second-order accurate. Table 6.45 summarizes the

computed order of accuracy for each equation using Affine MLS on stretched grids with isotropic

weights. As with the second-order reconstruction, Affine MLS reproduces the same level of accu-

racy as the isotropic weighted MLS as shown in Table 6.39. The reconstruction performs best for

the Schaffer function, and it performs worse for the Gaussian. Fourth-order results are shown in

Table 6.45: Accuracy on Stretched Grids: 3rd-Order Affine MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.97 1.95 1.95 1.97 1.98 1.97
Kansa 4.05 1.98 1.98 2.10 1.83 2.11
Levi 4.01 1.96 1.95 2.07 1.72 2.06

Schaffer 4.18 1.98 1.98 2.13 1.86 2.13

Figure 6.38.
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Figure 6.38: Error Norms on Stretched Grids: 4th-Order Affine MLS with Isotropic Weights.

Figure 6.38 shows that the reconstruction of the function and first-derivatives achieves approx-

imately fourth-order accuracy, while the second- and third-derivatives are approximately second-

order accurate. Table 6.46 summarizes the computed order of accuracy for each equation using

Affine MLS on stretched grids with isotropic weights. Affine MLS reproduces the same level of

accuracy as the isotropic weighted MLS as shown in Table 6.40. As with the previous sections, the

reconstruction performs best for the Schaffer function, and it performs worse for the Gaussian.
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Table 6.46: Accuracy on Stretched Grids: 4th-Order Affine MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79
Kansa 3.99 4.11 4.06 1.90 1.98 2.02 1.57 2.16 2.16 1.84
Levi 3.94 4.04 4.05 1.91 1.99 1.95 1.62 2.12 2.11 1.71

Schaffer 4.02 4.16 4.16 2.00 2.00 2.00 1.69 2.25 2.25 1.69

6.3.3.4 Affine MLS: Anisotropic Weights

This subsection presents the results for Affine MLS reconstructions on stretched grids using

an anisotropic weighting scheme. The second-order results using Affine MLS with anisotropic

weights are shown in Figure 6.39.
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Figure 6.39: Error Norms on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights.

Figure 6.39 shows that the reconstruction and first-derivatives achieve approximately second-

order accuracy. Table 6.47 summarizes the computed order of accuracy for each equation on

stretched grids using Affine MLS with anisotropic weights. As with the previous methods, Affine

MLS in general produces second-order results for both the function and first derivatives. Affine

MLS also produces the same results as general method using anisotropic weights as presented

in Table 6.41. As with the previous two sections, the reconstruction performs similarly for all

equations. Third-order results are shown in Figure 6.40.
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Table 6.47: Accuracy on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.99 1.93 1.93
Kansa 2.01 1.73 1.71
Levi 1.99 1.73 1.70

Schaffer 2.01 1.72 1.72
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Figure 6.40: Error Norms on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights.

Figure 6.40 shows that the function is approximately fourth-order accurate, while the first-

203



and second-order derivatives are approximately second-order accurate. Table 6.48 summarizes the

computed order of accuracy for each equation using Affine MLS on stretched grids with anisotropic

weights. As with the second-order reconstruction, Affine MLS reproduces the same level of accu-

racy as the anisotropic weighted MLS as shown in Table 6.42. The reconstruction performs best

for the Schaffer function, and it performs worse for the Gaussian. Fourth-order results are shown

Table 6.48: Accuracy on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian 3.98 1.94 1.94 1.99 1.99 1.99
Kansa 4.06 1.98 1.98 1.95 2.29 1.95
Levi 4.02 1.96 1.95 1.95 2.48 1.95

Schaffer 4.30 1.99 1.99 1.94 2.06 1.94

in Figure 6.41.
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Figure 6.41: Error Norms on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights.

Figure 6.41 shows that the reconstruction of the function and first-derivatives achieves approx-

imately fourth-order accuracy, while the second- and third-derivatives are approximately second-

order accurate for the Gaussian, and the same issues presented for the other functions in Figure 6.35

are seen here. It should be noted then that the Affine MLS method will only produce a more ac-

curate inverse, not necessarily more accurate derivatives. Table 6.49 summarizes the computed

order of accuracy for each equation using Affine MLS on stretched grids with anisotropic weights.

Affine MLS reproduces the same level of accuracy as the anisotropic weighted MLS as shown in

Table 6.40.
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Table 6.49: Accuracy on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Kansa 3.99 4.12 3.94 1.89 1.98 1.90 0.76 1.78 1.75 0.63
Levi 3.95 4.07 4.06 1.87 2.00 1.89 0.65 1.73 1.73 0.65

Schaffer 4.03 4.29 4.29 1.91 2.00 1.91 0.65 1.72 1.72 0.65

6.3.3.5 Summary

After computing all of the reconstructions using the various weighting strategies, it is worth

comparing the accuracy and error computed from each strategy for each function. Table 6.50 sum-

marizes the order of accuracy for each of the functions using a second-order MLS reconstruction.

Table 6.50: Accuracy on Stretched Grids: 2nd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

Gaussian

Iso. 1.99 1.98 1.98
Aniso. 1.99 1.93 1.93

Affine (1) 1.99 1.98 1.98
Affine (2) 1.99 1.93 1.93

Kansa

Iso. 2.01 2.02 2.01
Aniso. 2.01 1.73 1.71

Affine (1) 2.01 1.91 1.92
Affine (2) 2.01 1.73 1.71

Levi

Iso. 2.00 1.92 1.90
Aniso. 1.99 1.73 1.70

Affine (1) 2.00 1.92 1.90
Affine (2) 1.99 1.73 1.70

Schaffer

Iso. 2.01 1.88 1.88
Aniso. 2.01 1.72 1.72

Affine (1) 2.01 1.88 1.88
Affine (2) 2.01 1.72 1.72
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Table 6.50 shows that the weighting strategy has a noticeable effect on the accuracy for the first

derivatives. The first derivatives using the anisotropic weighting strategy have a lower order of

accuracy than the isotropically weighted reconstructions. Additionally, it is worth pointing out that

the reconstruction of the Levi function varies based on the weighting strategy, but only slightly

so. Table 6.51 shows the L2 error for each of the functions on the finest mesh. Table 6.51

Table 6.51: L2 Error on Finest Stretched Grid: 2nd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

Gaussian

Iso. 1.42E-4 2.36E-4 2.36E-4
Aniso. 1.41E-4 3.19E-4 3.19E-4

Affine (1) 1.42E-4 2.36E-4 2.36E-4
Affine (2) 1.41E-4 3.19E-4 3.19E-4

Kansa

Iso. 4.92E-5 5.41E-4 3.17E-4
Aniso. 5.21E-5 1.95E-3 2.50E-3

Affine (1) 4.92E-5 5.41E-4 3.17E-4
Affine (2) 5.21E-5 1.95E-3 2.50E-3

Levi

Iso. 2.12E-4 1.94E-3 1.29E-3
Aniso. 2.24E-4 6.24E-3 8.59E-3

Affine (1) 2.12E-4 1.94E-3 1.29E-3
Affine (2) 2.24E-4 6.24E-3 8.53E-3

Schaffer

Iso. 2.86E-5 2.21E-4 2.21E-4
Aniso. 2.95E-5 1.02E-3 1.02E-3

Affine (1) 2.86E-5 2.21E-4 2.21E-4
Affine (2) 2.95E-5 1.02E-3 1.02E-3

shows that the anisotropic errors are higher for all of the functions except the Gaussian, but the

difference is only noticeable for the first derivatives, where the difference is almost an order of

magnitude. However, this difference is still only in the 1E-3 range, which is not significantly large

for second-order schemes. Table 6.52 summarizes the order of accuracy for each of the functions

using a third-order MLS reconstruction. Table 6.52 shows that the weighting strategy does have

a noticeable effect on the accuracy of the reconstruction. For all the functions, the functions are
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Table 6.52: Accuracy on Stretched Grids: 3rd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 3.97 1.95 1.95 1.97 1.98 1.97
Aniso. 3.98 1.94 1.94 1.99 1.99 1.99

Affine (1) 3.97 1.95 1.95 1.97 1.98 1.97
Affine (2) 3.98 1.94 1.94 1.99 1.99 1.99

Kansa

Iso. 4.05 1.98 1.98 2.10 1.83 2.11
Aniso. 4.06 1.98 1.98 1.95 2.29 1.95

Affine (1) 4.05 1.98 1.98 2.10 1.83 2.11
Affine (2) 4.06 1.98 1.98 1.95 2.29 1.95

Levi

Iso. 4.01 1.96 1.95 2.07 1.72 2.06
Aniso. 4.02 1.96 1.95 1.95 2.48 1.95

Affine (1) 4.01 1.96 1.95 2.07 1.72 2.06
Affine (2) 4.02 1.96 1.95 1.95 2.48 1.95

Schaffer

Iso. 4.18 1.98 1.98 2.13 1.86 2.13
Aniso. 4.30 1.99 1.99 1.94 2.06 1.94

Affine (1) 4.18 1.98 1.98 2.13 1.86 2.13
Affine (2) 4.30 1.99 1.99 1.94 2.06 1.94

reconstructed better while the first derivatives are of the same order as the isotropic weighted ones,

though for the Gaussian they are slightly lower. The second derivatives show some variation, but

which is better is difficult to discern from these results. The exception to this is the Gaussian,

where the anisotropically weighted reconstructions have a higher accuracy. Table 6.53 shows the

L2 error for each of the functions on the finest mesh.
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Table 6.53: L2 Error on Finest Stretched Grid: 3rd-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 7.23E-7 7.26E-4 7.26E-4 4.28E-4 4.29E-4 4.28E-4

Aniso. 6.93E-7 7.37E-4 7.37E-4 4.10E-4 4.25E-4 4.10E-4

Affine (1) 7.23E-7 7.26E-4 7.26E-4 4.28E-4 4.29E-4 4.28E-4

Affine (2) 6.93E-7 7.37E-4 7.37E-4 4.10E-4 4.25E-4 4.10E-4

Kansa

Iso. 7.21E-8 5.02E-4 2.17E-4 5.81E-4 7.00E-4 1.81E-3

Aniso. 6.91E-8 5.05E-4 2.22E-4 1.53E-3 3.02E-4 4.98E-3

Affine (1) 7.21E-8 5.02E-4 2.17E-4 5.81E-4 7.00E-4 1.81E-3

Affine (2) 6.91E-8 5.05E-4 2.22E-4 1.53E-3 3.02E-4 4.98E-3

Levi

Iso. 1.49E-6 3.47E-3 1.86E-3 5.94E-3 7.34E-3 5.66E-3

Aniso. 1.42E-6 3.53E-3 1.88E-3 1.17E-2 2.02E-3 1.15E-2

Affine (1) 1.49E-6 3.47E-3 1.86E-3 5.94E-3 7.34E-3 5.66E-3

Affine (2) 1.42E-6 3.53E-3 1.88E-3 1.17E-2 2.02E-3 1.15E-2

Schaffer

Iso. 1.55E-8 9.28E-5 9.28E-5 4.43E-4 8.77E-5 4.43E-4

Aniso. 1.02E-8 9.36E-5 9.36E-5 1.67E-3 6.04E-5 1.67E-3

Affine (1) 1.55E-8 9.28E-5 9.28E-5 4.43E-4 8.77E-5 4.43E-4

Affine (2) 1.02E-8 9.36E-5 9.36E-5 1.67E-3 6.04E-5 1.67E-3

The error on the finest grid shows that the anisotropic produces lower error for the function

alone, but slightly higher error for the derivatives, at most 5E-3 for the second-derivatives. As

with the second-order results in Table 6.51, this difference is low. Table 6.54 summarizes the order

of accuracy for each of the functions using a third-order MLS reconstruction. Table 6.54 shows

that the weighting strategy does again have a noticeable effect on the accuracy of the reconstruc-

tion. Generally, the functions and derivatives are reconstructed to a higher accuracy when using
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Table 6.54: Accuracy on Stretched Grids: 4th-Order MLS Weight Comparison.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Iso. 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79
Aniso. 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

Affine (1) 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79
Affine (2) 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

Kansa

Iso. 3.99 4.11 4.06 1.90 1.98 2.02 1.57 2.16 2.16 1.84
Aniso. 3.99 4.12 3.94 1.89 1.98 1.90 0.76 1.78 1.75 0.63

Affine (1) 3.99 4.11 4.06 1.90 1.98 2.02 1.57 2.16 2.16 1.84
Affine (2) 3.99 4.12 3.94 1.89 1.98 1.90 0.76 1.78 1.75 0.63

Levi

Iso. 3.94 4.04 4.05 1.91 1.99 1.95 1.62 2.12 2.11 1.71
Aniso. 3.95 4.07 4.06 1.87 2.00 1.89 0.65 1.73 1.73 0.65

Affine (1) 3.94 4.04 4.05 1.91 1.99 1.95 1.62 2.12 2.11 1.71
Affine (2) 3.95 4.07 4.06 1.87 2.00 1.89 0.65 1.73 1.73 0.65

Schaffer

Iso. 4.02 4.16 4.16 2.00 2.00 2.00 1.69 2.25 2.25 1.69
Aniso. 4.03 4.29 4.29 1.91 2.00 1.91 0.65 1.72 1.72 0.65

Affine (1) 4.02 4.16 4.16 2.00 2.00 2.00 1.69 2.25 2.25 1.69
Affine (2) 4.03 4.29 4.29 1.91 2.00 1.91 0.65 1.72 1.72 0.65

the anisotropic weighting strategy. For the higher derivatives, generally the isotropic weighted

reconstructions perform better. Tables 6.55 and 6.56 show the L2 error. Table 6.55 shows that

the anisotropic weighted reconstructions produce lower error for the function and first derivatives.

For the second derivatives, it depends on the function as to which weighing strategy does best.

For the third derivatives, Table 6.56 shows that the isotropically weighted approach always has the

lowest error. However, the difference is not large for the Gaussian and Schaffer functions, and with

the exception of the
∂3q

∂y3
, the Kansa function as well. The third derivatives of the Levi function

using the anisotropic weighting strategy, however, are always an order of magnitude worse than

the isotropically weighted one. As speculated in the previous section, is this most likely due to the

difficultly in accurately computing the highest derivatives of C. Overall, though, the differences

for the highest derivatives should not overly affect the solution of a fourth-order scheme, but it is

difficult on the stretched grid to say which weighing strategy is better. To make a final judgment

on the best weighting strategy for the stretched mesh, the condition numbers will be computed in
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Table 6.55: L2 Error on Finest Stretched Grid: 4th-Order MLS Weight Comparison, State and First
and Second Derivatives.

Function

Equation Weight q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian

Iso. 2.74E-6 4.86E-6 4.86E-6 1.87E-3 1.09E-3 1.87E-3
Aniso. 2.71E-6 4.51E-6 4.51E-6 1.96E-3 1.09E-3 1.96E-3

Affine (1) 2.74E-6 4.86E-6 4.86E-6 1.87E-3 1.09E-3 1.87E-3
Affine (2) 2.71E-6 4.51E-6 4.51E-6 1.96E-3 1.09E-3 1.96E-3

Kansa

Iso. 2.43E-7 1.30E-6 3.01E-7 1.57E-3 4.67E-4 2.75E-3
Aniso. 2.43E-7 1.29E-6 3.17E-7 1.56E-3 4.74E-4 2.40E-3

Affine (1) 2.43E-7 1.30E-6 3.01E-7 1.57E-3 4.67E-4 2.75E-3
Affine (2) 2.43E-7 1.29E-6 3.17E-7 1.56E-3 4.74E-4 2.40E-3

Levi

Iso. 5.34E-6 2.00E-5 1.05E-5 1.37E-2 2.03E-3 9.50E-3
Aniso. 5.29E-6 1.85E-5 1.00E-5 1.34E-2 2.06E-3 8.72E-3

Affine (1) 5.34E-6 2.00E-5 1.05E-5 1.37E-2 2.03E-3 9.50E-3
Affine (2) 5.29E-6 1.85E-5 1.00E-5 1.34E-2 2.06E-3 8.72E-3

Schaffer

Iso. 2.74E-8 8.98E-8 8.98E-8 3.62E-4 4.85E-5 3.61E-4
Aniso. 2.74E-8 6.85E-8 6.854E-8 3.44E-4 4.92E-5 3.44E-4

Affine (1) 2.74E-8 8.98E-8 8.98E-8 3.62E-4 4.85E-5 3.62E-4
Affine (2) 2.74E-8 6.85E-8 6.854E-8 3.44E-4 4.92E-5 3.44E-4

Section 6.6.

6.4 MLS Diffusive Derivatives

This section presents the order of accuracy of the various diffusive MLS derivatives described

in Sections 5.1.5.2 and 5.1.5.3. Timings of the reconstruction methods are given when evaluating

the semi- and fully-diffusive derivatives, but only for when evaluating the Gaussian function, since

the computation of the shape functions is independent of the function reconstructed. The timings

are performed on a Mac Pro with 24 GB of memory and a 2.26 GHz Quad-Core Intel Xeon pro-

cessor. All of the weights are used. The scaling parameter in this section is k = 0.8, and the

polynomial basis is the standard monomial basis. The inversion method of choice for this study

is the Pivoting QR method, since it always produced the minimum condition number for M for

each of the grids, as shown in Section 6.2. The fully and semi-diffuse derivative orders of accuracy

are directly compared to the full derivatives for each of the meshes and orders of accuracy when a
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Table 6.56: L2 Error on Finest Stretched Grid: 4th-Order MLS Weight Comparison, Third Deriva-
tives.

Function

Equation Weight
∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Iso. 3.32E-3 8.44E-4 8.44E-4 3.32E-3
Aniso. 5.13E-3 8.74E-4 8.74E-4 5.13E-3

Affine (1) 3.32E-3 8.44E-4 8.44E-4 3.32E-3
Affine (2) 5.13E-3 8.74E-4 8.74E-4 5.13E-3

Kansa

Iso. 1.32E-2 1.68E-3 2.09E-2 3.08E-2
Aniso. 8.91E-2 6.18E-3 8.01E-2 0.80

Affine (1) 1.32E-2 1.68E-3 2.09E-2 3.08E-2
Affine (2) 8.91E-2 6.18E-3 8.01E-2 0.80

Levi

Iso. 4.64E-2 1.42 0.10 3.54E-2
Aniso. 0.75 4.83 0.36 0.85

Affine (1) 4.64E-2 1.42 0.10 3.54E-2
Affine (2) 0.75 4.83 0.36 0.85

Schaffer

Iso. 5.83E-3 1.89E-3 1.89E-3 5.83E-3
Aniso. 9.40E-2 7.85E-3 7.85E-3 9.40E-2

Affine (1) 5.83E-3 1.89E-3 1.89E-3 5.83E-3
Affine (2) 9.40E-2 7.85E-3 7.85E-3 9.40E-2

difference is apparent.

6.4.1 Structured Grids

This section presents the results of order of accuracy of the diffusive MLS derivatives on struc-

tured grids. For the structured grids, only the isotropic weights are used, as the more advanced

weighting methods degenerate to the isotropic case.

6.4.1.1 Second-Order

The second-order MLS reconstruction of the derivatives can be in the full form (5.47) or in

the fully-diffuse form (5.72). The full derivatives, reconstructed using isotropic weights, were

shown in Table 6.10. The fully-diffuse derivatives reconstructed with isotropic weights are shown

in Figure 6.42.
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Figure 6.42: Error Norms on Structured Grids: 2nd-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.42 shows that the reconstruction achieves second-order accuracy for the function and

first-derivatives. Table 6.57 summarizes the computed order of accuracy for each equation on

structured grids using isotropic weights. The fully-diffuse reconstruction produces second-order

results for both the function and first derivatives, which matches the order observed using the full

reconstruction shown in Table 6.10.
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Table 6.57: Accuracy on Structured Grids: 2nd-Order Fully-Diffuse MLS with Isotropic Weights.

Function

Equation q
∂q

∂x

∂q

∂y

Gaussian 1.98 1.98 1.98

Kansa 2.00 2.00 1.99

Levi 2.00 1.99 2.00

Schaffer 2.00 2.02 1.99

It is also constructive to look at the timing for the full and fully-diffuse derivatives. Table 6.58

shows the timing for the reconstruction of the Gaussian. As seen from Table 6.58, the second-order

Table 6.58: Timing on Structured Grids: 2nd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.038 0.032
64 0.136 0.120

128 0.537 0.457
256 2.106 1.836

fully-diffuse is only slightly faster than the full reconstruction, so it is not overly beneficial to use

the fully-diffuse.

6.4.1.2 Third-Order

The third-order MLS reconstruction of the derivatives can be in the full form (5.47), semi-

diffuse (5.68), or in the fully-diffuse form (5.72). The semi-diffuse derivatives reconstructed with

isotropic weights are shown in Figure 6.43.
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Figure 6.43: Error Norms on Structured Grids: 3rd-Order Semi-Diffuse MLS with Isotropic
Weights.

Figure 6.43 shows that the accuracy for the function is approximately fourth-order accurate,

and the first- and second-order derivatives is second-order accurate. The fully-diffuse derivatives

reconstructed with isotropic weights are shown in Figure 6.44.
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Figure 6.44: Error Norms on Structured Grids: 3rd-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.44 shows that the accuracy for the function is approximately fourth-order accurate,

and the first- and second-order derivatives is second-order accurate. Table 6.59 summarizes the

computed order of accuracy for each of the diffuse derivative methods. The accuracy for each of

the derivative methods is the same for the function and first derivatives, and slightly different for

the second derivatives, but not noticeably so. It is also constructive to look at the timing for the full

and fully-diffuse derivatives. Table 6.66 shows the timing for the reconstruction of the Gaussian.

As seen from Table 6.66, the fully-diffuse is nearly twice as fast at the highest level of refinement.

The fully-diffuse as accurate as the full reconstruction, it makes sense to use the fully-diffuse to
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Table 6.59: Accuracy on Structured Grids: 3rd-Order Diffuse MLS with Isotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.95 1.96 1.96 1.96 1.98 1.96
SD 3.95 1.96 1.96 1.96 1.98 1.96
FD 3.95 1.97 1.97 1.96 1.98 1.96

Kansa
Full 3.99 1.99 1.99 2.00 1.98 2.01
SD 3.99 1.99 1.99 2.00 1.98 2.01
FD 3.99 2.00 1.99 2.00 1.99 2.00

Levi
Full 3.99 1.96 1.98 1.99 1.97 2.07
SD 3.99 1.99 1.99 2.00 1.98 2.00
FD 3.99 1.97 1.99 1.99 2.06 2.01

Schaffer
Full 3.98 2.02 2.01 2.00 2.00 1.97
SD 3.98 2.02 2.01 2.00 2.00 1.97
FD 3.98 2.02 2.02 2.01 2.01 1.98

Table 6.60: Timing on Structured Grids: 3rd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.121 0.091 0.082
64 0.457 0.347 0.308

128 1.843 1.373 1.233
256 7.180 5.425 4.675

reduce computational time for larger systems.

6.4.1.3 Fourth-Order

The fourth-order MLS reconstruction of the derivatives can be in the full form (5.47), semi-

diffuse (5.68) (with or without the second derivatives of C), or in the fully-diffuse form (5.72).

The semi-diffuse derivatives, including the second-derivatives of C, reconstructed with isotropic

weights are shown in Figure 6.45.
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Figure 6.45: Error Norms on Structured Grids: 4th-Order Semi-Diffuse (1) MLS with Isotropic
Weights.

Figure 6.45 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. The semi-diffuse derivatives, without

the second-derivatives of C, reconstructed with isotropic weights are shown in Figure 6.46.
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Figure 6.46: Error Norms on Structured Grids: 4th-Order Semi-Diffuse (2) MLS with Isotropic
Weights.

Figure 6.46 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. The fully-diffuse derivatives recon-

structed with isotropic weights are shown in Figure 6.47.

219



10 100 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Gaussian
L 2

 Er
ro

r

No. of Nodes, n

(a) Gaussian

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Kansa

L 2
 Er

ro
r

No. of Nodes, n

(b) Kansa Function

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

101

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Levi No. 13

L 2
 Er

ro
r

No. of Nodes, n

(c) Levi Function

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Schaffer No. 2

L 2
 Er

ro
r

No. of Nodes, n

(d) Schaffer Function

Figure 6.47: Error Norms on Structured Grids: 4th-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.47 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. Table 6.61 compares the computed

order of accuracy for each equation on structured grids using isotropic weights for each level of

diffusivity. As with the third-order results shown in Table 6.61, the orders of accuracy for the

function and lower derivatives (first and second) the same between the levels of diffusivity. For the

third-derivatives, the methods produce only slight differences in the order. It is also constructive

to look at the timing for the varying levels of diffusivity. Table 6.62 shows the timing for the

reconstruction of the Gaussian. Note that in the table, semi-diffuse (1) refers to the semi-diffuse
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Table 6.61: Accuracy on Structured Grids: 4th-Order Diffuse MLS with Isotropic Weights.
SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93
SD1 3.92 3.92 3.92 1.91 1.95 1.91 1.94 1.95 1.95 1.94
SD2 3.92 3.92 3.92 1.92 1.95 1.92 1.95 1.95 1.95 1.95
FD 3.92 3.92 3.92 1.94 1.96 1.94 1.95 1.95 1.95 1.95

Kansa

Full 3.98 3.97 3.97 1.97 1.98 1.99 1.97 1.98 1.98 1.97
SD1 3.98 3.967 3.97 1.97 1.98 1.99 1.98 1.98 1.98 1.96
SD2 3.98 3.97 3.97 1.98 1.98 1.99 1.98 1.98 1.99 1.98
FD 3.98 3.97 3.98 1.99 1.98 1.99 1.98 1.98 1.99 1.98

Levi

Full 3.95 3.95 3.92 1.94 2.12 1.95 1.95 1.92 1.95 1.92
SD1 3.95 3.95 3.92 1.94 2.12 1.95 1.96 1.92 1.95 1.89
SD2 3.95 3.95 3.92 1.95 2.13 1.96 1.96 1.92 1.95 1.94
FD 3.95 3.95 3.93 1.97 2.11 1.98 1.96 1.92 1.94 1.95

Schaffer

Full 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 1.99 2.01
SD1 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.00 2.00 2.02
SD2 4.01 4.01 4.01 2.01 2.02 2.01 2.00 2.00 2.00 2.02
FD 4.01 4.01 4.01 2.01 2.02 2.01 2.01 2.01 1.99 2.02

results that include the second-derivative of C while semi-diffuse (2) does not include the second-

derivative of C. As seen from Table 6.62, the reduction in computation time is nearly two from

Table 6.62: Timing on Structured Grids: 4th-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 0.716 0.413 0.302 0.268
64 2.081 1.480 1.259 1.029

128 11.037 6.219 4.498 4.067
256 43.758 24.471 17.921 15.497

full to semi-diffuse (with C), and from full to full-diffuse the reduction is nearly three. Therefore,

it is beneficial to use the diffuse derivatives when possible.
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6.4.2 Unstructured Grids

This section presents the results of order of accuracy of the diffusive MLS derivatives on un-

structured grids. First, the diffuse MLS derivatives using isotropic weights is presented. Next,

the diffuse MLS derivatives using anisotropic weights are shown. The section concludes with the

diffuse Affine MLS derivatives using anisotropic weights.

6.4.2.1 Isotropic Weights

This subsection presents diffuse derivatives using isotropic weights on unstructured grids.

6.4.2.1.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The fully-diffuse derivatives reconstructed

with isotropic weights are shown in Figure 6.48. From Figure 6.48, the function is reconstructed

approximately second-order, and the first derivatives are reconstructed approximately first-order.

Table 6.63 compares the order of accuracy between the full and fully-diffuse derivatives. From

Table 6.63: Accuracy on Unstructured Grids: 2nd-Order Diffuse MLS with Isotropic Weights.
FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 2.00 0.95 0.93
FD 2.00 0.97 0.94

Kansa
Full 1.97 0.90 0.93
FD 1.97 0.91 0.93

Levi
Full 1.97 0.95 0.90
FD 1.97 1.02 0.93

Schaffer
Full 1.98 0.88 0.89
FD 1.98 0.88 0.89

Table 6.63, there is no difference in the accuracy of the function based on the diffusivity of the

derivatives. The first derivatives are either the same or slightly better when using the fully-diffuse
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Figure 6.48: Error Norms on Unstructured Grids: 2nd-Order Fully-Diffuse MLS with Isotropic
Weights.

derivatives. This is probably because the less accurate derivatives of C are not computed with

the fully-diffuse method. It is also constructive to look at the timing for the full and fully-diffuse

derivatives. Table 6.64 shows the timing for the reconstruction of the Gaussian. As seen from

Table 6.64, the second-order fully-diffuse is only slightly faster than the full reconstruction, so it

is not overly beneficial to use the fully-diffuse from a timing standpoint.

6.4.2.1.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The full derivatives, recon-

structed using isotropic weights, were shown in Table 6.11. The semi-diffuse derivatives recon-

structed with isotropic weights are shown in Figure 6.49.
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Table 6.64: Timing on Unstructured Grids: 2nd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.055 0.050
64 0.226 0.121

128 0.925 0.821
256 3.733 3.337
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Figure 6.49: Error Norms on Unstructured Grids: 3rd-Order Semi-Diffuse MLS with Isotropic
Weights.

Figure 6.43 shows that the accuracy for the function is approximately third-order accurate,

and the first-derivatives second-order accurate, and second-derivatives first-order accurate. The
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fully-diffuse derivatives reconstructed with isotropic weights are shown in Figure 6.50.
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Figure 6.50: Error Norms on Unstructured Grids: 3rd-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.50 shows that the accuracy for the function is approximately third-order accurate, and

the first-derivatives second-order accurate, and second-derivatives first-order accurate. Table 6.65

compares the orders of accuracy for the each level of diffusivity. The functions have the same accu-

racy for any of the derivative methods, and the full and semi-diffuse have the same first derivative

accuracy as shown in Table 6.65. The fully-diffuse first derivatives are slightly better for the Gaus-

sian, but slightly worse for the other functions. The fully-diffuse he second derivatives are more
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Table 6.65: Accuracy on Unstructured Grids: 3rd-Order Diffuse MLS with Isotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.05 1.99 1.98 0.99 1.10 1.02
SD 3.05 1.99 1.98 1.03 1.10 1.06
FD 3.05 2.01 2.00 1.11 1.13 1.13

Kansa
Full 2.99 1.97 2.00 1.01 1.05 0.96
SD 2.99 1.97 2.00 1.03 1.05 0.96
FD 2.99 1.96 2.00 1.09 1.06 0.98

Levi
Full 3.13 1.98 1.99 1.05 1.04 1.08
SD 3.13 1.98 1.99 1.15 1.01 1.15
FD 3.13 1.97 1.96 1.35 1.00 1.31

Schaffer
Full 2.96 1.98 1.99 0.92 0.97 0.96
SD 2.96 1.98 1.99 0.92 0.96 0.96
FD 2.96 1.95 1.96 0.97 0.97 0.99

accurate than the full derivatives. As with the second-order results, this is probably due to the less

accurate derivatives of C are not computed with the fully-diffuse method. It is also constructive

to look at the timing for the full and fully-diffuse derivatives. Table 6.66 shows the timing for the

reconstruction of the Gaussian. As seen from Table 6.66, the fully-diffuse is nearly twice as fast at

Table 6.66: Timing on Unstructured Grids: 3rd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.225 0.168 0.142
64 0.978 0.709 0.604
128 4.114 2.935 2.607
256 17.234 11.923 10.322

the highest level of refinement. Considering the fully-diffuse as accurate as the full reconstruction,

it makes sense to use the fully-diffuse to reduce computational time for larger systems. Addition-

ally, the semi-diffuse is nearly as fast as the fully-diffuse, so the additional terms are not much
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more expensive.

6.4.2.1.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The full derivatives, reconstructed using isotropic weights, were shown in

Table 6.24. The semi-diffuse derivatives, including the second-derivatives of C, reconstructed

with isotropic weights are shown in Figure 6.51.
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Figure 6.51: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (1) MLS with Isotropic
Weights.

Figure 6.51 shows that the function is approximately fourth-order accurate, first-derivatives ap-
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proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. The semi-diffuse derivatives, without the second-derivatives of C, recon-

structed with isotropic weights are shown in Figure 6.52.
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Figure 6.52: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (2) MLS with Isotropic
Weights.

Figure 6.52 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. The fully-diffuse derivatives reconstructed with isotropic weights are shown

in Figure 6.53.
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Figure 6.53: Error Norms on Unstructured Grids: 4th-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.53 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.67 compares the accuracy for each of the diffusivity levels. The results

in Table 6.67 are similar to the third-order results in Table 6.65, where the methods produce effec-

tively the same accuracy except for the second and third derivatives. Interestingly, the semi-diffuse

(2) method does not produce better second derivatives, as removing the second-derivatives of C is

probably detrimental to the accuracy. The fully-diffuse produces the highest level of accuracy, as

was the case for the lower orders. It is also constructive to look at the timing for the varying levels
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Table 6.67: Accuracy on Unstructured Grids: 4th-Order Fully-Diffuse MLS with Isotropic Weights.
SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 4.01 3.15 3.13 1.97 1.96 1.95 1.06 1.04 1.09 1.01
SD1 4.01 3.15 3.13 1.97 1.96 1.95 1.10 1.09 1.13 1.06
SD2 4.01 3.15 3.13 1.97 1.97 1.96 1.25 1.21 1.23 1.24
FD 4.01 3.18 3.16 1.99 1.98 1.98 1.36 1.27 1.29 1.36

Kansa

Full 3.94 3.08 3.06 2.01 1.95 2.00 0.99 1.02 0.93 1.03
SD1 3.94 3.08 3.06 2.01 1.95 2.00 1.05 1.04 0.97 1.04
SD2 3.94 3.08 3.06 1.99 1.95 1.99 1.25 1.09 1.04 1.06
FD 3.94 3.09 3.06 1.96 1.97 1.98 1.33 1.12 1.06 1.08

Levi

Full 3.96 3.20 3.14 2.04 1.90 2.07 1.33 1.05 1.02 1.19
SD1 3.96 3.20 3.14 2.04 1.90 2.07 1.27 1.08 1.07 1.21
SD2 3.96 3.20 3.14 2.01 1.91 2.03 1.31 1.12 1.15 1.31
FD 3.96 3.31 3.19 1.97 1.96 1.97 1.58 1.11 1.18 1.50

Schaffer

Full 4.00 3.04 3.05 2.07 1.93 2.06 1.00 1.02 1.01 0.99
SD1 4.00 3.04 3.05 2.07 1.93 2.06 1.04 1.04 1.03 1.03
SD2 4.00 3.04 3.05 2.03 1.93 2.03 1.04 1.07 1.05 1.03
FD 4.00 3.04 3.05 1.99 1.95 1.98 1.04 1.08 1.06 1.03

of diffusivity. Table 6.68 shows the timing for the reconstruction of the Gaussian. As seen from

Table 6.68: Timing on Unstructured Grids: 4th-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.779 0.879 0.564 0.521
64 7.982 4.035 2.701 2.252
128 34.135 16.524 11.297 9.437
256 140.772 69.860 44.479 37.756

Table 6.62, the reduction in computation time is nearly two from full to semi-diffuse (with C), and

from full to full-diffuse the reduction is nearly four. Therefore, it is beneficial to use the diffuse

derivatives when possible.
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6.4.2.2 Anisotropic Weights

This subsection presents diffuse derivatives using anisotropic weights on unstructured grids.

6.4.2.2.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The fully-diffuse derivatives reconstructed with

anisotropic weights are shown in Figure 6.54.
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Figure 6.54: Error Norms on Unstructured Grids: 2nd-Order Fully-Diffuse MLS with Anisotropic
Weights.

From Figure 6.54, the function is reconstructed approximately second-order, and the first
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derivatives are reconstructed approximately first-order. Table 6.69 compares the accuracy for the

different diffusivity levels. From Table 6.63, there is no difference in the accuracy of the function

Table 6.69: Accuracy on Unstructured Grids: 2nd-Order Diffuse MLS with Anisotropic Weights.
FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 2.00 0.94 0.92
FD 2.00 0.97 0.95

Kansa
Full 1.97 0.93 0.96
FD 1.97 0.91 0.93

Levi
Full 1.97 1.00 0.97
FD 1.97 1.02 0.93

Schaffer
Full 1.98 0.89 0.90
FD 1.98 0.89 0.90

based on the diffusivity of the derivatives. The first derivatives are either the same or slightly better

when using the fully-diffuse derivatives. This is probably because the less accurate derivatives of

C are not computed with the fully-diffuse method. Table 6.70 shows the timing for the reconstruc-

tion of the Gaussian. As seen from Table 6.70, the second-order fully-diffuse is only slightly faster

Table 6.70: Timing on Unstructured Grids: 2nd-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.054 0.050
64 0.223 0.121

128 0.925 0.851
256 3.871 3.469

than the full reconstruction, so it is not overly beneficial to use the fully-diffuse from a timing

standpoint.
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6.4.2.2.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The semi-diffuse derivatives

reconstructed with anisotropic weights are shown in Figure 6.55.

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Gaussian

L 2
 E

rro
r

No. of Nodes, n

(a) Gaussian

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Kansa

L 2
 E

rro
r

No. of Nodes, n

(b) Kansa Function

10 100 1000
10-6

10-5

10-4

10-3

10-2

10-1

1

q
dx
dy
dxx
dxy
dyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Levi No. 13

L 2
 E

rro
r

No. of Nodes, n

(c) Levi Function

10 100 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

q
dx
dy
dxx
dxy
dyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Schaffer No. 2

L 2
 E

rro
r

No. of Nodes, n

(d) Schaffer Function

Figure 6.55: Error Norms on Unstructured Grids: 3rd-Order Semi-Diffuse MLS with Anisotropic
Weights.

Figure 6.55 shows that the accuracy for the function is approximately third-order accurate,

and the first-derivatives second-order accurate, and second-derivatives first-order accurate. The

fully-diffuse derivatives reconstructed with anisotropic weights are shown in Figure 6.56.
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Figure 6.56: Error Norms on Unstructured Grids: 3rd-Order Fully-Diffuse MLS with Anisotropic
Weights.

Figure 6.56 shows that the accuracy for the function is approximately third-order accurate, and

the first-derivatives second-order accurate, and second-derivatives first-order accurate. Table 6.71

compares the computed order of accuracy for each equation on unstructured grids using anisotropic

weights for the diffusivity of the derivatives. The functions have the same accuracy for any of

the derivative methods, and the full and semi-diffuse have the same first derivative accuracy as

shown in Table 6.71. The fully-diffuse first derivatives are slightly better for the Gaussian, but

slightly worse for the other functions. The fully-diffuse second derivatives are more accurate than

the full derivatives. As with the second-order results, this is probably due to the less accurate
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Table 6.71: Accuracy on Unstructured Grids: 3rd-Order Diffuse MLS with Anisotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.05 2.00 1.99 1.00 1.11 1.03
SD 3.05 2.00 1.99 1.03 1.11 1.08
FD 3.05 2.01 2.00 1.11 1.14 1.14

Kansa
Full 3.01 1.97 2.00 1.02 1.05 0.97
SD 3.01 1.97 2.00 1.07 1.06 0.98
FD 3.01 1.95 2.00 1.11 1.07 0.99

Levi
Full 3.14 1.99 2.00 1.07 1.05 1.10
SD 3.14 1.99 2.00 1.15 1.01 1.16
FD 3.14 1.97 1.96 1.35 1.01 1.33

Schaffer
Full 2.97 1.98 1.99 0.94 0.96 0.98
SD 2.97 1.98 1.99 0.95 0.97 1.01
FD 2.97 1.95 1.95 0.98 0.98 1.00

derivatives of C are not computed with the fully-diffuse method. Table 6.72 shows the timing

for the reconstruction of the Gaussian. As seen from Table 6.72, the fully-diffuse is nearly twice

Table 6.72: Timing on Unstructured Grids: 3rd-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.221 0.169 0.144
64 0.987 0.707 0.622
128 4.218 2.966 2.577
256 17.246 12.300 10.704

as fast at the highest level of refinement. Considering the fully-diffuse as accurate as the full

reconstruction, it makes sense to use the fully-diffuse to reduce computational time for larger

systems. Additionally, the semi-diffuse is nearly as fast as the fully-diffuse, so the additional terms

are not much more expensive.
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6.4.2.2.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The semi-diffuse derivatives, including the second-derivatives of C, recon-

structed with anisotropic weights are shown in Figure 6.57.
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Figure 6.57: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (1) MLS with
Anisotropic Weights.

Figure 6.57 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives
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first-order accurate. The semi-diffuse derivatives, without the second-derivatives of C, recon-

structed with anisotropic weights are shown in Figure 6.58.
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Figure 6.58: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (2) MLS with
Anisotropic Weights.

Figure 6.58 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. The fully-diffuse derivatives reconstructed with anisotropic weights are shown

in Figure 6.59.

237



10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Gaussian
L 2

 Er
ro

r

No. of Nodes, n

(a) Gaussian

10 100 1000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Kansa

L 2
 Er

ro
r

No. of Nodes, n

(b) Kansa Function

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

101

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Levi No. 13

L 2
 Er

ro
r

No. of Nodes, n

(c) Levi Function

10 100 1000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
dxx
dxy
dyy
dxxx
dxxy
dxyy
dyyy
1st order
2nd order
3rd order
4th order

L2 Error of MLS Reconstruction: Schaffer No. 2

L 2
 Er

ro
r

No. of Nodes, n

(d) Schaffer Function

Figure 6.59: Error Norms on Unstructured Grids: 4th-Order Fully-Diffuse MLS with Anisotropic
Weights. SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse.

Figure 6.59 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.73 compares the computed order of accuracy for each equation on un-

structured grids using anisotropic weights for each diffusivity level of the derivatives. The results

in Table 6.73 are similar to the third-order results in Table 6.71, where the methods produce effec-

tively the same accuracy except for the second and third derivatives. As with the isotropic weighted

results, the semi-diffuse (2) method does not produce better second derivatives, as removing the

second-derivatives of C is probably detrimental to the accuracy. The fully-diffuse produces the
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Table 6.73: Accuracy on Unstructured Grids: 4th-Order Fully-Diffuse MLS with Anisotropic
Weights. SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
SD1 4.00 3.15 3.13 1.95 1.97 1.96 1.09 1.08 1.13 1.08
SD2 4.00 3.15 3.13 1.97 1.97 1.97 1.21 1.20 1.23 1.22
FD 4.00 3.17 3.15 1.99 1.98 1.98 1.36 1.26 1.28 1.36

Kansa

Full 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08
SD1 3.94 3.08 3.06 2.03 1.95 2.00 1.09 1.05 0.98 1.04
SD2 3.94 3.08 3.06 2.00 1.96 1.99 1.24 1.09 1.04 1.06
FD 3.94 3.08 3.06 1.96 1.97 1.98 1.34 1.12 1.05 1.08

Levi

Full 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30
SD1 3.96 3.15 3.12 2.03 1.97 2.06 1.15 1.11 1.08 1.16
SD2 3.96 3.15 3.12 2.00 1.95 2.03 1.22 1.12 1.15 1.24
FD 3.96 3.29 3.18 1.97 1.96 1.97 1.56 1.11 1.18 1.49

Schaffer

Full 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10
SD1 4.00 3.05 3.04 2.05 1.92 2.04 1.03 1.04 1.03 1.01
SD2 4.00 3.05 3.04 2.02 1.93 2.02 1.05 1.07 1.05 1.00
FD 4.00 3.05 3.05 1.99 1.95 1.98 1.05 1.09 1.06 1.02

highest level of accuracy, as was the case for the lower orders. What is interesting is the non-

Gaussian functions have different orders for the function reconstruction. It is unclear why this

difference exists, as the function should be unaffected by the diffusive derivatives, as is the case

with the Gaussian. This may warrant some further study, or it could be as simple as a truncation is-

sue when the orders were computed, which seems most likely the cause of the difference. It is also

constructive to look at the timing for the varying levels of diffusivity. Table 6.74 shows the timing

for the reconstruction of the Gaussian. As seen from Table 6.74, the reduction in computation time

is nearly two from full to semi-diffuse (with C), and from full to full-diffuse the reduction is nearly

four. Therefore, it is beneficial to use the diffuse derivatives when possible.
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Table 6.74: Timing on Unstructured Grids: 4th-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.835 0.917 0.607 0.510
64 8.268 4.060 2.721 2.305
128 33.992 16.719 11.104 9.388
256 139.593 71.298 45.362 39.004

6.4.2.3 Affine MLS

This subsection presents the diffuse derivatives on unstructured grids using Affine MLS with

anisotropic weights.

6.4.2.3.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The Affine MLS fully-diffuse derivatives re-

constructed with anisotropic weights are shown in Figure 6.60. From Figure 6.60, the function

is reconstructed approximately second-order, and the first derivatives are reconstructed approx-

imately first-order. Table 6.75 compares the computed order of accuracy for each equation on

unstructured grids using Affine MLS with anisotropic weights for the diffusivity of the derivatives.

The functions have the same accuracy for any of the derivative methods, as seen in Table 6.75. The

Table 6.75: Accuracy on Unstructured Grids: 2nd-Order Diffuse Affine MLS with Anisotropic
Weights. FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 2.00 0.94 0.92
FD 2.00 0.97 0.95

Kansa
Full 1.97 0.93 0.96
FD 1.97 0.91 0.93

Levi
Full 1.97 1.00 0.97
FD 1.97 1.02 0.93

Schaffer
Full 1.98 0.89 0.90
FD 1.98 0.89 0.90
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Figure 6.60: Error Norms on Unstructured Grids: 2nd-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.

first derivatives are generally better for the fully-diffuse derivatives. This is probably due to the

less accurate derivatives of C being neglected with the fully-diffuse method. It is also constructive

to look at the timing for the full and fully-diffuse derivatives. Table 6.76 shows the timing for the

reconstruction of the Gaussian. As seen from Table 6.76, the second-order fully-diffuse is only

slightly faster than the full reconstruction, so it is not overly beneficial to use the fully-diffuse from

a timing standpoint.

6.4.2.3.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The semi-diffuse derivatives

reconstructed with anisotropic weights are shown in Figure 6.61.
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Table 6.76: Timing on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic Weights, in
Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.054 0.052
64 0.241 0.133

128 0.994 0.906
256 4.027 3.577
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Figure 6.61: Error Norms on Unstructured Grids: 3rd-Order Semi-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.61 shows that the accuracy for the function is approximately third-order accurate, and
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the first-derivatives second-order accurate, and second-derivatives first-order accurate. The fully-

diffuse derivatives computed using Affine MLS with anisotropic weights are shown in Figure 6.62.
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Figure 6.62: Error Norms on Unstructured Grids: 3rd-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.62 shows that the accuracy for the function is approximately third-order accurate, and

the first-derivatives second-order accurate, and second-derivatives first-order accurate. Table 6.77

compares the computed order of accuracy for each equation on unstructured grids using Affine

MLS with anisotropic weights for the diffusivity of the derivatives. The functions have the same

accuracy for any of the derivative methods, and the full and semi-diffuse have the same first deriva-
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Table 6.77: Accuracy on Unstructured Grids: 3rd-Order Diffuse Affine MLS with Anisotropic
Weights. SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.05 2.00 1.99 1.00 1.11 1.03
SD 3.05 2.00 1.99 1.03 1.11 1.08
FD 3.05 2.01 2.00 1.11 1.14 1.14

Kansa
Full 3.01 1.97 2.00 1.02 1.05 0.97
SD 3.01 1.97 2.00 1.07 1.06 0.98
FD 3.01 1.95 2.00 1.11 1.07 0.99

Levi
Full 3.14 1.99 2.00 1.07 1.05 1.10
SD 3.14 1.99 2.00 1.15 1.01 1.16
FD 3.14 1.97 1.96 1.35 1.01 1.33

Schaffer
Full 2.97 1.98 1.99 0.94 0.96 0.98
SD 2.97 1.98 1.99 0.95 0.97 1.01
FD 2.97 1.95 1.95 0.98 0.98 1.00

tive accuracy as shown in Table 6.65. The fully-diffuse first derivatives are slightly better for the

Gaussian, but slightly worse for the other functions. The fully-diffuse second derivatives are more

accurate than the full derivatives. As with the second-order results, this is probably due to the less

accurate derivatives of C are not computed with the fully-diffuse method. It is also constructive

to look at the timing for the full and fully-diffuse derivatives. Table 6.78 shows the timing for the

reconstruction of the Gaussian. As seen from Table 6.78, the fully-diffuse is nearly twice as fast at

Table 6.78: Timing on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic Weights, in
Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.273 0.180 0.157
64 1.079 0.781 0.707
128 4.559 3.341 2.956
256 18.380 13.727 12.067
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the highest level of refinement. Considering the fully-diffuse as accurate as the full reconstruction,

it makes sense to use the fully-diffuse to reduce computational time for larger systems. Addition-

ally, the semi-diffuse is nearly as fast as the fully-diffuse, so the additional terms are not much

more expensive.

6.4.2.3.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The semi-diffuse derivatives, including the second-derivatives of C, recon-

structed with anisotropic weights are shown in Figure 6.63.
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Figure 6.63: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (1) Affine MLS with
Anisotropic Weights.
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Figure 6.63 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. The semi-diffuse derivatives, without the second-derivatives of C, recon-

structed with Affine MLS using anisotropic weights are shown in Figure 6.64.
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Figure 6.64: Error Norms on Unstructured Grids: 4th-Order Semi-Diffuse (2) Affine MLS with
Anisotropic Weights.

Figure 6.64 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate.The fully-diffuse derivatives reconstructed with Affine MLS using anisotropic
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weights are shown in Figure 6.65.
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Figure 6.65: Error Norms on Unstructured Grids: 4th-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.65 shows that the function is approximately fourth-order accurate, first-derivatives ap-

proximately third-order accurate, the second-derivatives second-order accurate, and third-derivatives

first-order accurate. Table 6.79 compares the computed order of accuracy for each equation on

unstructured grids using Affine MLS with anisotropic weights for each diffusivity level of the

derivatives. The results in Table 6.79 are similar to the third-order results in Table 6.77, where

the methods produce effectively the same accuracy except for the second and third derivatives. As
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Table 6.79: Accuracy on Unstructured Grids: 4th-Order Diffuse Affine MLS with Anisotropic
Weights.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
SD1 4.00 3.15 3.13 1.95 1.97 1.96 1.09 1.08 1.13 1.08
SD2 4.00 3.15 3.13 1.97 1.97 1.97 1.21 1.20 1.23 1.22
FD 4.00 3.17 3.15 1.99 1.98 1.98 1.36 1.26 1.28 1.36

Kansa

Full 3.93 3.07 3.05 2.06 1.99 2.04 1.03 1.09 1.00 1.08
SD1 3.94 3.08 3.06 2.03 1.95 2.00 1.09 1.05 0.98 1.04
SD2 3.94 3.08 3.06 2.00 1.96 1.99 1.24 1.09 1.04 1.06
FD 3.94 3.08 3.06 1.96 1.97 1.98 1.34 1.12 1.05 1.08

Levi

Full 3.94 3.21 3.14 2.09 2.05 2.12 1.47 1.34 1.20 1.30
SD1 3.96 3.15 3.12 2.03 1.97 2.06 1.15 1.11 1.08 1.16
SD2 3.96 3.15 3.12 2.00 1.95 2.03 1.22 1.12 1.15 1.24
FD 3.96 3.29 3.18 1.97 1.96 1.97 1.56 1.11 1.18 1.49

Schaffer

Full 3.98 3.05 3.04 2.12 1.96 2.11 1.06 1.10 1.08 1.10
SD1 4.00 3.05 3.04 2.05 1.92 2.04 1.03 1.04 1.03 1.01
SD2 4.00 3.05 3.04 2.02 1.93 2.02 1.05 1.07 1.05 1.00
FD 4.00 3.05 3.05 1.99 1.95 1.98 1.05 1.09 1.06 1.02

with the isotropic weighted results, the semi-diffuse (2) method does not produce better second

derivatives, as removing the second-derivatives of C is probably detrimental to the accuracy. The

fully-diffuse produces the highest level of accuracy, as was the case for the lower orders. Addi-

tionally, the Affine MLS reconstructions for the non-Gaussian functions is more accurate for the

function, which is as noted earlier probably a truncation issue when computing the error. Table 6.80

shows the timing for the reconstruction of the Gaussian. As seen from Table 6.80, the reduction in

computation time is nearly two from full to semi-diffuse (with C), and from full to full-diffuse the

reduction is nearly four. Therefore, it is beneficial to use the diffuse derivatives when possible.

6.4.3 Stretched Grids

This section presents the results of order of accuracy of the diffusive MLS derivatives on

stretched grids. First, the diffuse MLS derivatives using isotropic weights is presented. Next,
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Table 6.80: Timing on Unstructured Grids: 4th-Order Affine MLS with Anisotropic Weights, in
Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.835 0.945 0.642 0.555
64 8.265 4.193 2.817 2.435
128 35.241 17.737 11.877 10.686
256 143.068 71.096 46.561 40.553

the diffuse MLS derivatives using anisotropic weights are shown. The section concludes with the

diffuse Affine MLS derivatives using anisotropic weights.

6.4.3.1 Isotropic Weights

This subsection presents diffuse derivatives using isotropic weights on stretched grids.

6.4.3.1.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The fully-diffuse derivatives reconstructed with

isotropic weights are shown in Figure 6.66. Figure 6.66 shows that the reconstruction achieves

second-order accuracy for the function and first-derivatives. Table 6.81 compares the accuracy for

the different diffusivity levels. From Table 6.81, there is no difference in the accuracy of the func-

Table 6.81: Accuracy on Stretched Grids: 2nd-Order Fully-Diffuse MLS with Isotropic
Weights.FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 1.99 1.98 1.98
FD 1.99 1.99 1.99

Kansa
Full 2.01 2.02 2.01
FD 2.01 2.02 2.01

Levi
Full 2.00 1.92 1.90
FD 2.00 2.01 2.00

Schaffer
Full 2.01 1.88 1.88
FD 2.01 2.02 2.02
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Figure 6.66: Error Norms on Stretched Grids: 2nd-Order Fully-Diffuse MLS with Isotropic
Weights.

tion based on the diffusivity of the derivatives. The first derivatives are either the same or slightly

better when using the fully-diffuse derivatives. This is probably because the less accurate deriva-

tives of C are not computed with the fully-diffuse method. It is also constructive to look at the

timing for the full and fully-diffuse derivatives. Table 6.82 shows the timing for the reconstruction

of the Gaussian. As seen from Table 6.82, the second-order fully-diffuse is only slightly faster than

the full reconstruction, so it is not overly beneficial to use the fully-diffuse.

6.4.3.1.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The semi-diffuse derivatives

reconstructed with isotropic weights are shown in Figure 6.67.
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Table 6.82: Timing on Stretched Grids: 2nd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.068 0.061
64 0.262 0.253

128 1.023 0.933
256 4.051 3.747
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Figure 6.67: Error Norms on Stretched Grids: 3rd-Order Semi-Diffuse MLS with Isotropic
Weights.

Figure 6.67 shows that the accuracy for the function is approximately fourth-order accurate,

and the first- and second-order derivatives is second-order accurate. The fully-diffuse derivatives
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reconstructed with isotropic weights are shown in Figure 6.68.
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Figure 6.68: Error Norms on Stretched Grids: 3rd-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.68 shows that the accuracy for the function is approximately fourth-order accurate, and

the first- and second-order derivatives is second-order accurate. Table 6.83 compares the accuracy

for each of the diffusivity levels on stretched grids using isotropic weights. The functions have the

same accuracy for any of the derivative methods, and the full and semi-diffuse have the same first

derivative accuracy as shown in Table 6.83. The fully-diffuse first derivatives are slightly better

for the Gaussian, but slightly worse for the other functions. The fully-diffuse second derivatives
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Table 6.83: Accuracy on Stretched Grids: 3rd-Order Diffuse MLS with Isotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.97 1.95 1.95 1.97 1.98 1.97
SD 3.97 1.95 1.95 1.97 1.98 1.97
FD 3.97 1.97 1.97 1.96 1.98 1.96

Kansa
Full 4.05 1.98 1.98 2.10 1.83 2.11
SD 4.05 1.98 1.98 2.00 1.83 2.11
FD 4.05 2.02 2.01 2.09 2.02 2.12

Levi
Full 4.01 1.96 1.95 2.07 1.72 2.06
SD 4.01 1.96 1.95 2.05 1.72 2.06
FD 4.01 2.00 2.00 2.06 2.00 2.07

Schaffer
Full 4.18 1.98 1.98 2.13 1.86 2.13
SD 4.18 1.98 1.98 2.12 1.87 2.12
FD 4.18 2.02 2.02 2.20 2.05 2.20

are more accurate than the full derivatives. As with the second-order results, this is probably due

to the less accurate derivatives of C are not computed with the fully-diffuse method. It is also

constructive to look at the timing for the full and fully-diffuse derivatives. Table 6.84 shows the

timing for the reconstruction of the Gaussian. As seen from Table 6.84, the fully-diffuse is nearly

Table 6.84: Timing on Stretched Grids: 3rd-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.210 0.160 0.154
64 0.857 0.651 0.573

128 3.338 2.544 2.260
256 12.97 9.976 8.950

twice as fast at the highest level of refinement. Considering the fully-diffuse as accurate as the

full reconstruction, it makes sense to use the fully-diffuse to reduce computational time for larger

systems.
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6.4.3.1.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The semi-diffuse derivatives, including the second-derivatives of C, recon-

structed with isotropic weights are shown in Figure 6.69.
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Figure 6.69: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (1) MLS with Isotropic
Weights.

Figure 6.69 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. The semi-diffuse derivatives, without

the second-derivatives of C, reconstructed with isotropic weights are shown in Figure 6.70.
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Figure 6.70: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (2) MLS with Isotropic
Weights.

Figure 6.70 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. The fully-diffuse derivatives recon-

structed with isotropic weights are shown in Figure 6.71.
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Figure 6.71: Error Norms on Stretched Grids: 4th-Order Fully-Diffuse MLS with Isotropic
Weights.

Figure 6.71 shows that the function and first-derivatives is approximately fourth-order, and the

second- and third-derivatives is approximately second-order. Table 6.85 compares the accuracy

for each of the diffusivity levels. The results in Table 6.85 are similar to the third-order results

in Table 6.83, where the methods produce effectively the same accuracy except for the second

and third derivatives. The fully-diffuse produces the highest level of accuracy, as was the case for

the lower orders. It is also constructive to look at the timing for the varying levels of diffusivity.

Table 6.86 shows the timing for the reconstruction of the Gaussian. Note that in the table, semi-

diffuse (1) refers to the semi-diffuse results that include the second-derivative of C while semi-
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Table 6.85: Accuracy on Stretched Grids: 4th-Order Diffuse MLS with Isotropic Weights.
SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79
SD1 3.90 3.92 3.92 1.86 1.94 1.86 1.90 1.93 1.93 1.90
SD2 3.90 3.92 3.92 1.88 1.95 1.88 1.95 1.95 1.95 1.95
FD 3.90 3.91 3.91 1.92 1.95 1.92 1.93 1.95 1.95 1.93

Kansa

Full 3.99 4.11 4.06 1.90 1.98 2.02 1.57 2.16 2.16 1.84
SD1 3.99 4.11 4.06 1.90 1.98 2.02 1.80 2.18 2.17 1.84
SD2 3.99 4.11 4.06 1.94 1.98 2.02 1.94 2.18 2.18 1.84
FD 3.99 4.03 4.02 2.00 1.99 2.02 1.92 2.09 2.09 1.84

Levi

Full 3.94 4.04 4.05 1.91 1.99 1.95 1.62 2.12 2.11 1.71
SD1 3.94 4.04 4.05 1.91 1.99 1.95 1.78 2.13 2.12 1.78
SD2 3.94 4.04 4.05 1.94 1.99 1.97 1.80 2.15 2.13 1.78
FD 3.94 3.99 3.99 1.97 2.04 1.97 1.79 2.06 2.05 1.78

Schaffer

Full 4.02 4.16 4.16 2.00 2.00 2.00 1.69 2.25 2.25 1.69
SD1 4.02 4.16 4.16 2.00 2.00 2.00 1.87 2.27 2.27 1.87
SD2 4.02 4.16 4.16 2.03 2.00 2.03 1.90 2.29 2.29 1.90
FD 4.02 4.07 4.07 2.05 2.02 2.05 1.90 2.15 2.15 1.90

diffuse (2) does not include the second-derivative of C. As seen from Table 6.86, the reduction in

Table 6.86: Timing on Stretched Grids: 4th-Order MLS with Isotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.271 0.750 0.549 0.470
64 4.931 2.868 2.106 1.801

128 19.25 11.09 7.988 7.028
256 75.96 43.10 30.92 27.45

computation time is nearly two from full to semi-diffuse (with C), and from full to full-diffuse the

reduction is nearly three. Therefore, it is beneficial to use the diffuse derivatives when possible.
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6.4.3.2 Anisotropic Weights

This subsection presents diffuse derivatives using anisotropic weights on stretched grids.

6.4.3.2.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The fully-diffuse derivatives reconstructed with

anisotropic weights are shown in Figure 6.72.
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Figure 6.72: Error Norms on Stretched Grids: 2nd-Order Fully-Diffuse MLS with Anisotropic
Weights.

From Figure 6.72, the function and first derivatives are approximately second-order. Table 6.87
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compares the accuracy for each level of diffusivity. The functions have the same accuracy for any

Table 6.87: Accuracy on Stretched Grids: 2nd-Order Diffuse MLS with Anisotropic Weights.
FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 1.99 1.93 1.93
FD 1.99 1.99 1.99

Kansa
Full 2.01 1.73 1.71
FD 2.01 2.00 1.85

Levi
Full 1.99 1.73 1.70
FD 1.99 2.01 1.97

Schaffer
Full 2.01 1.72 1.72
FD 2.01 1.88 1.88

of the derivative methods, as seen in Table 6.87. The first derivatives are generally better for the

fully-diffuse derivatives. This is probably due to the less accurate derivatives of C being neglected

with the fully-diffuse method. It is also constructive to look at the timing for the full and fully-

diffuse derivatives. Table 6.88 shows the timing for the reconstruction of the Gaussian. As seen

Table 6.88: Timing on Stretched Grids: 2nd-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Full-Diffuse
32 0.065 0.061
64 0.257 0.239

128 1.028 0.940
256 4.150 3.750

from Table 6.88, the second-order fully-diffuse is only slightly faster than the full reconstruction,

so it is not overly beneficial to use the fully-diffuse from a timing standpoint.
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6.4.3.2.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The semi-diffuse derivatives

reconstructed with anisotropic weights are shown in Figure 6.73.
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Figure 6.73: Error Norms on Stretched Grids: 3rd-Order Semi-Diffuse MLS with Anisotropic
Weights.

Figure 6.73 shows that the accuracy for the function is approximately fourth-order accurate,

and the first- and second-derivatives are approximately second-order accurate. The fully-diffuse

derivatives reconstructed with anisotropic weights are shown in Figure 6.74.
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Figure 6.74: Error Norms on Stretched Grids: 3rd-Order Fully-Diffuse MLS with Anisotropic
Weights.

Figure 6.74 shows that the accuracy for the function is approximately fourth-order accurate, and

the first- and second-derivatives are approximately second-order accurate. Table 6.89 compares the

order of accuracy for each level of diffusivity. The functions have the same accuracy for any of the

derivative methods, and the full and semi-diffuse have the same first derivative accuracy as shown

in Table 6.83. The fully-diffuse first derivatives are slightly better for the Gaussian, but slightly

worse for the other functions. The fully-diffuse second derivatives are more accurate than the full

derivatives. As with the second-order results, this is probably due to the less accurate derivatives

of C are not computed with the fully-diffuse method. It is also constructive to look at the timing
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Table 6.89: Accuracy on Stretched Grids: 3rd-Order Diffuse MLS with Anisotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.98 1.94 1.94 1.99 1.99 1.99
SD 3.98 1.94 1.94 1.95 1.97 1.95
FD 3.98 1.97 1.97 1.97 1.98 1.97

Kansa
Full 4.06 1.98 1.98 1.95 2.29 1.95
SD 4.06 1.98 1.98 1.76 1.72 2.05
FD 4.06 2.01 2.01 2.14 2.11 2.13

Levi
Full 4.02 1.96 1.95 1.95 2.48 1.95
SD 4.02 1.96 1.95 2.06 1.63 2.16
FD 4.02 2.00 2.00 2.10 2.16 2.13

Schaffer
Full 4.30 1.99 1.99 1.94 2.06 1.94
SD 4.30 2.02 2.02 2.28 2.11 2.27
FD 4.30 2.02 2.02 2.28 2.11 2.27

for the full and fully-diffuse derivatives. Table 6.90 shows the timing for the reconstruction of the

Gaussian. As seen from Table 6.90, the fully-diffuse is nearly twice as fast at the highest level

Table 6.90: Timing on Stretched Grids: 3rd-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.216 0.161 0.151
64 0.841 0.654 0.584

128 3.290 2.567 2.276
256 13.10 10.01 9.002

of refinement. Considering the fully-diffuse as accurate as the full reconstruction, it makes sense

to use the fully-diffuse to reduce computational time for larger systems. Additionally, the semi-

diffuse is nearly as fast as the fully-diffuse, so the additional terms are not much more expensive.
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6.4.3.2.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The semi-diffuse derivatives, including the second-derivatives of C, recon-

structed with anisotropic weights are shown in Figure 6.75.
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Figure 6.75: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (1) MLS with Anisotropic
Weights.

Figure 6.75 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and second- and third-derivatives are approximately second-order accurate. Compared to the
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results for the full reconstruction shown in Figure 6.35, the third-derivatives now have decreas-

ing error as the mesh is refined, showing the higher-order derivatives of C are harder to model in

this case. The semi-diffuse derivatives, without the second-derivatives of C, reconstructed with

anisotropic weights are shown in Figure 6.76.
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Figure 6.76: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (2) MLS with Anisotropic
Weights.

Figure 6.76 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and second- and third-derivatives are approximately second-order accurate. The fully-diffuse

derivatives reconstructed with anisotropic weights are shown in Figure 6.77.
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Figure 6.77: Error Norms on Stretched Grids: 4th-Order Fully-Diffuse MLS with Anisotropic
Weights.

Figure 6.77 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and second- and third-derivatives are approximately second-order accurate. Table 6.91 com-

pares the computed order of accuracy for each level of diffusivity. The results in Table 6.91 are

similar to the third-order results in Table 6.89, where the methods produce effectively the same ac-

curacy except for the second and third derivatives. The semi-diffuse (1) method produces the same

level of accuracy as the full derivatives, while the semi-diffuse (2) and fully-diffuse derivatives

produce more accurate higher-derivatives. The fully-diffuse produces the best higher-derivatives,

most likely due to the elimination of the higher derivatives of C. Table 6.92 shows the timing for
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Table 6.91: Accuracy on Stretched Grids: 4th-Order Diffuse MLS with Anisotropic Weights.
SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 3.90 3.94 3.94 1.85 1.94 1.85 1.83 1.93 1.93 1.83
SD1 3.90 3.94 3.94 1.85 1.94 1.85 1.83 1.93 1.93 1.83
SD2 3.90 3.94 3.94 1.87 1.95 1.87 1.98 1.95 1.95 1.98
FD 3.90 3.92 3.92 1.92 1.95 1.92 1.94 1.95 1.95 1.94

Kansa

Full 3.99 4.12 3.94 1.89 1.98 1.90 0.96 1.87 1.85 0.60
SD1 3.99 4.12 3.94 1.89 1.98 1.90 0.96 1.87 1.85 0.60
SD2 3.99 4.12 3.94 1.93 1.98 1.97 1.39 2.17 2.19 1.36
FD 3.99 4.03 4.15 2.01 1.98 2.06 1.70 2.11 2.09 1.64

Levi

Full 3.95 4.07 4.06 1.87 2.00 1.89 0.73 1.83 1.84 0.72
SD1 3.95 4.07 4.06 1.87 2.00 1.89 0.73 1.83 1.84 0.72
SD2 3.95 4.07 4.06 1.90 2.00 1.91 1.30 2.15 2.14 1.29
FD 3.95 4.00 4.01 2.00 2.01 2.01 1.60 2.07 2.06 1.58

Schaffer

Full 4.03 4.29 4.29 1.91 2.00 1.91 0.66 1.85 1.85 0.66
SD1 4.03 4.29 4.29 1.91 2.00 1.91 0.66 1.85 1.85 0.66
SD2 4.03 4.29 4.29 1.94 2.01 1.94 1.41 2.31 2.31 1.41
FD 4.03 4.13 4.13 2.09 2.01 2.09 1.69 2.15 2.15 1.69

the reconstruction of the Gaussian. As seen from Table 6.92, the reduction in computation time is

Table 6.92: Timing on Stretched Grids: 4th-Order MLS with Anisotropic Weights, in Seconds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.281 0.751 0.546 0.483
64 4.985 2.830 2.075 1.805

128 19.22 11.00 8.035 6.991
256 75.96 42.25 31.09 27.003

nearly two from full to semi-diffuse (with C), and from full to full-diffuse the reduction is nearly

four. Therefore, it is beneficial to use the diffuse derivatives when possible.
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6.4.3.3 Affine MLS

This subsection presents the diffuse derivatives on stretched grids using Affine MLS with

anisotropic weights.

6.4.3.3.1 Second-Order The second-order MLS reconstruction of the derivatives can be in the

full form (5.47) or in the fully-diffuse form (5.72). The Affine MLS fully-diffuse derivatives re-

constructed with anisotropic weights are shown in Figure 6.78.
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Figure 6.78: Error Norms on Stretched Grids: 2nd-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.
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Table 6.93: Accuracy on Stretched Grids: 2nd-Order Diffuse Affine MLS with Anisotropic
Weights. FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

Gaussian
Full 1.99 1.93 1.93
FD 1.99 1.99 1.99

Kansa
Full 2.01 1.73 1.71
FD 2.01 2.00 1.85

Levi
Full 1.99 1.73 1.70
FD 1.99 2.01 1.97

Schaffer
Full 2.01 1.72 1.72
FD 2.01 1.99 1.99

From Figure 6.78, the function and first-derivatives are reconstructed approximately second-

order. Table 6.93 compares the accuracy for each level of diffusivity. The functions have the same

accuracy for any of the derivative methods, as seen in Table 6.93. The first derivatives are generally

better for the fully-diffuse derivatives. This is probably due to the less accurate derivatives of C

being neglected with the fully-diffuse method. It is also constructive to look at the timing for

the full and fully-diffuse derivatives. Table 6.94 shows the timing for the reconstruction of the

Gaussian. As seen from Table 6.94, the second-order fully-diffuse is only slightly faster than the

Table 6.94: Timing on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights, in Sec-
onds.

Mesh Size
Type

Full Full-Diffuse
32 0.071 0.064
64 0.284 0.258

128 1.108 1.013
256 4.417 4.094

full reconstruction, so it is not overly beneficial to use the fully-diffuse from a timing standpoint.
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6.4.3.3.2 Third-Order The third-order MLS reconstruction of the derivatives can be in the full

form (5.47), semi-diffuse (5.68), or in the fully-diffuse form (5.72). The full derivatives, using

Affine MLS reconstruction with anisotropic weights, were shown in Table 6.48. The semi-diffuse

derivatives reconstructed with anisotropic weights are shown in Figure 6.79.
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Figure 6.79: Error Norms on Stretched Grids: 3rd-Order Semi-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.79 shows that the accuracy for the function is approximately fourth-order accurate

while the first- and second-derivatives are second-order accurate. The fully-diffuse derivatives

computed using Affine MLS with anisotropic weights are shown in Figure 6.80.
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Figure 6.80: Error Norms on Stretched Grids: 3rd-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.80 shows that the accuracy for the function is approximately fourth-order accurate, and

the first- and second-derivatives are approximately second-order accurate. Table 6.95 compares

the accuracy for each level of diffusivity. The functions have the same accuracy for any of the

derivative methods, and the full and semi-diffuse have the same first derivative accuracy as shown

in Table 6.95. The fully-diffuse first derivatives are slightly better for the Gaussian, but slightly

worse for the other functions. The fully-diffuse second derivatives are more accurate than the full

derivatives. As with the second-order results, this is probably due to the less accurate derivatives of

C are not computed with the fully-diffuse method. The semi-diffuse second derivatives are the least

270



Table 6.95: Accuracy on Stretched Grids: 3rd-Order Diffuse Affine MLS with Anisotropic Weights.
SD=Semi-Diffuse, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Gaussian
Full 3.98 1.94 1.94 1.99 1.99 1.99
SD 3.98 1.94 1.94 1.95 1.97 1.95
FD 3.98 1.97 1.97 1.97 1.98 1.97

Kansa
Full 4.06 1.98 1.98 1.95 2.29 1.95
SD 4.06 1.98 1.98 1.76 1.72 2.05
FD 4.06 2.01 2.01 2.14 2.11 2.13

Levi
Full 4.02 1.96 1.95 1.95 2.48 1.95
SD 4.02 1.96 1.95 2.06 1.63 2.16
FD 4.02 2.00 2.00 2.10 2.16 2.13

Schaffer
Full 4.30 1.99 1.99 1.94 2.06 1.94
SD 4.30 1.99 1.99 1.75 1.72 1.75
FD 4.30 2.02 2.02 2.28 2.11 2.27

accurate for each function, which shows keeping intermediate terms can make the reconstruction

less accurate. It is also constructive to look at the timing for the full and fully-diffuse derivatives.

Table 6.96 shows the timing for the reconstruction of the Gaussian. As seen from Table 6.96,

Table 6.96: Timing on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights, in Sec-
onds.

Mesh Size
Type

Full Semi-Diffuse Full-Diffuse
32 0.231 0.179 0.163
64 0.930 0.729 0.658

128 3.591 2.851 2.596
256 14.12 11.17 10.05

the fully-diffuse is nearly twice as fast at the highest level of refinement. Considering the fully-

diffuse as accurate as the full reconstruction, it makes sense to use the fully-diffuse to reduce

computational time for larger systems. Additionally, the semi-diffuse is nearly as fast as the fully-
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diffuse, so the additional terms are not much more expensive.

6.4.3.3.3 Fourth-Order The fourth-order MLS reconstruction of the derivatives can be in the

full form (5.47), semi-diffuse (5.68) (with or without the second derivatives of C), or in the fully-

diffuse form (5.72). The semi-diffuse derivatives, including the second-derivatives of C, recon-

structed with anisotropic weights are shown in Figure 6.81.
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Figure 6.81: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (1) Affine MLS with
Anisotropic Weights.

Figure 6.81 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and the second- and third-derivatives are approximately second-order accurate. The semi-
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diffuse derivatives, without the second-derivatives of C, reconstructed with Affine MLS using

anisotropic weights are shown in Figure 6.82.
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Figure 6.82: Error Norms on Stretched Grids: 4th-Order Semi-Diffuse (2) Affine MLS with
Anisotropic Weights.

Figure 6.82 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and the second- and third-derivatives are approximately second-order accurate. The fully-

diffuse derivatives reconstructed with Affine MLS using anisotropic weights are shown in Fig-

ure 6.83.
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Figure 6.83: Error Norms on Stretched Grids: 4th-Order Fully-Diffuse Affine MLS with
Anisotropic Weights.

Figure 6.83 shows that the function and first-derivatives are approximately fourth-order accu-

rate, and the second- and third-derivatives are approximately second-order accurate. Table 6.97

compares the accuracy for the different diffusivity levels. The results in Table 6.97 are similar

to the third-order results in Table 6.95, where the methods produce effectively the same accuracy

except for the second and third derivatives. As with the isotropic weighted results, the semi-diffuse

(2) method does not produce better second derivatives, as removing the second-derivatives of C is

probably detrimental to the accuracy. The fully-diffuse produces the highest level of accuracy, as

was the case for the lower orders. The fully-diffuse first derivatives are the least accurate though,
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Table 6.97: Accuracy on Stretched Grids: 4th-Order Diffuse MLS with Anisotropic Weights.
SD1=Semi-Diffuse 1, SD2=Semi-Diffuse 2, FD=Fully-Diffuse.

Function

Equation Type q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Gaussian

Full 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
SD1 3.90 3.94 3.94 1.85 1.94 1.85 1.83 1.93 1.93 1.83
SD2 3.90 3.94 3.94 1.87 1.95 1.87 1.98 1.95 1.95 1.98
FD 3.90 3.92 3.92 1.92 1.95 1.92 1.94 1.95 1.95 1.94

Kansa

Full 3.99 4.12 3.94 1.89 1.98 1.90 0.76 1.78 1.75 0.63
SD1 3.99 4.12 3.94 1.89 1.98 1.90 0.96 1.87 1.85 0.60
SD2 3.99 4.12 3.94 1.93 1.98 1.97 1.39 2.17 2.19 1.36
FD 3.99 4.03 4.15 2.01 1.98 2.06 1.70 2.11 2.09 1.64

Levi

Full 3.95 4.07 4.06 1.87 2.00 1.89 0.65 1.73 1.73 0.65
SD1 3.95 4.07 4.06 1.87 2.00 1.89 0.73 1.83 1.84 0.72
SD2 3.95 4.07 4.06 1.90 2.00 1.91 1.30 2.15 2.14 1.29
FD 3.95 4.00 4.01 2.00 2.01 2.01 1.60 2.07 2.06 1.58

Schaffer

Full 4.03 4.29 4.29 1.91 2.00 1.91 0.65 1.72 1.72 0.65
SD1 4.03 4.29 4.29 1.91 2.00 1.91 0.66 1.85 1.85 0.66
SD2 4.03 4.29 4.29 1.94 2.01 1.94 1.41 2.31 2.31 1.41
FD 4.03 4.13 4.13 2.09 2.01 2.09 1.69 2.15 2.15 1.69

so excluding all of the derivatives of C may not be best. It is also constructive to look at the tim-

ing for the varying levels of diffusivity. Table 6.98 shows the timing for the reconstruction of the

Gaussian. As seen from Table 6.98, the reduction in computation time is nearly two from full to

semi-diffuse (with C), and from full to full-diffuse the reduction is nearly four. Therefore, it is

beneficial to use the diffuse derivatives when possible.

6.5 Comparison of Variable Scaling Parameter k

This section presents a detailed study on the effect of the scaling parameter k on the MLS

reconstruction on each of the grids. In this section, k is varied from 0.1-1.1 as shown in Table 6.99.

The basis used is the monomial basis. The Gaussian function is used in this study. Also, unlike the

previous studies, the log-log of the error for each gradient is plotted separately to better illustrate

the effect.
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Table 6.98: Timing on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights, in Sec-
onds.

Mesh Size
Type

Full Semi-Diffuse (1) Semi-Diffuse (2) Full-Diffuse
32 1.351 0.798 0.579 0.412
64 5.064 3.019 2.273 1.551

128 19.73 11.61 8.620 6.059
256 78.51 45.41 34.07 23.25

Table 6.99: Variation of Scaling Parameter k.

k 0.1 0.25 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.05 1.1

The inversion method of choice for this study is the Pivoting QR method, since it always

produced the minimum condition number for M for each of the grids, as shown in Section 6.2.

6.5.1 Structured Grids

This section presents the detailed study on the effect of the scaling parameter k on the MLS

reconstruction on structured grids. As observed earlier for structured grids, results obtained for the

anisotropic and Affine MLS would produce the same results, so they are not tested here.

6.5.1.1 Second-Order

The error for the reconstruction of the field using a second-order MLS reconstruction is shown

in Figure 6.84. At first, it would appear that the error for q for k ∈ [0.1 − 0.95] is effectively

the same. Figure 6.84(b) shows the error for these k only. Even from Figure 6.84(b), there is not

much variation for the error of q for different k, though the least error occurs when using k = 0.95,

which pushes the boundary of ΩxI close to the outlying nodes in the stencil. Additionally, when

looking at Figure 6.84 it would appear obvious that using k ∈ [1.0 − 1.1] should always be used,

since the error is on the order of 10−14 → 10−16. These values of k perform best, since they

effectively exclude the outlying nodes from the reconstruction and use only the central node xI .
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Figure 6.84: Error Norms for State on Structured Grids: 2nd-Order MLS with Isotropic Weights
Varying k.

Therefore, when choosing the scaling parameter k, some care has to be made to ensure the central

node is included in the stencil, otherwise, k ∈ [1.0 − 1.1] will give incorrect answers. The first

derivatives are shown in Figure 6.85. Examining both derivatives, it appears that the order of
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Figure 6.85: Error Norms for First Derivatives on Structured Grids: 2nd-Order MLS with Isotropic
Weights Varying k.

accuracy and overall error do not vary with k. To further determine if one exists, Table 6.100
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shows the computed order of accuracy for the varying k. From Table 6.100, the overall accuracy

Table 6.100: Accuracy on Structured Grids: 2nd-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

0.1 1.98 1.98 1.98
0.25 1.98 1.98 1.98
0.4 1.98 1.98 1.98
0.5 1.98 1.98 1.98
0.6 1.98 1.98 1.98

0.65 1.98 1.98 1.98
0.7 1.98 1.98 1.98

0.75 1.98 1.98 1.98
0.8 1.98 1.98 1.98

0.85 1.98 1.98 1.98
0.9 1.98 1.98 1.98

0.95 1.98 1.98 1.98
1.0 1.99 1.98 1.98

1.05 1.99 1.98 1.98
1.1 1.99 1.98 1.98

between any of the values k is effectively the same, with only slight improvement observed for

k ∈ [1.0− 1.1] for the Gaussian and its derivatives. Therefore, as long as the xI is included in the

stencil ΩxI , then k ∈ [1.0−1.1] should be used; otherwise, any k can be used in the reconstruction.

All variations of k achieve second-order accuracy for the function and first-order accuracy for the

first derivatives. Before determining which k might be best, the condition number of M should

be checked. Table 6.101 shows the condition numbers for each k. The condition numbers from

Table 6.101 show that while the order of accuracy may be ‘best’ for k ∈ [1.0− 1.1], by far those k

have the poorest condition number. The poor conditioning of the M is due to the extreme points in

the stencil ΩxI having weights near zero by virtue of exclusion from the choice in k. Generally, the

condition number decreases with increasing k for k < 1.0. Based upon this data, it would appear

better to use k < 1.0 for reconstructing the function and its derivatives.
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Table 6.101: Average Condition Number of M on Structured Grids: 2nd-Order MLS with Isotropic
Weights Varying k.

Mesh Size
k 32 64 128 256

0.1 15.85 15.82 15.82 15.82
0.25 6.36 6.35 6.35 6.35
0.4 3.99 3.98 3.98 3.98
0.5 3.19 3.19 3.19 3.19
0.6 2.67 2.66 2.66 2.66

0.65 2.47 2.46 2.46 2.46
0.7 2.30 2.29 2.29 2.29

0.75 2.16 2.15 2.15 2.15
0.8 2.04 2.04 2.04 2.04

0.85 1.95 1.95 1.95 1.95
0.9 1.91 1.91 1.91 1.91

0.95 2.00 2.00 2.00 2.00
1.0 7.08E5 7.07E5 7.07E5 7.07E5

1.05 6.74E5 6.74E5 6.74E5 6.74E5
1.1 6.43E5 6.43E5 6.43E5 6.43E5

6.5.1.2 Third-Order

The error for the reconstruction of the field using a third-order MLS reconstruction is shown in

Figure 6.86.
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Figure 6.86: Error Norms for State on Structured Grids: 3rd-Order MLS with Isotropic Weights
Varying k.
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Unlike the second-order approximation, there is more spread in the error as a function of k for

the reconstruction of the function. As k increases, the error drops in the reconstruction, with the

lowest error for k = 1.1. For k ∈ [1.0 − 1.1], the error is lowest since the ‘furthest’ stencil nodes

are effectively excluded from the approximation. Otherwise, there is no major difference in the

error for the reconstruction based on k for the function. The error for the reconstruction of the first

derivatives is shown in Figure 6.87
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Figure 6.87: Error Norms for First Derivatives on Structured Grids: 3rd-Order MLS with Isotropic
Weights Varying k.

Again, the lowest error is observed for k = [1.0 − 1.1]. However, unlike the second-order

reconstruction, the error increases with increasing k for k = [0.1 − 0.95], though there is no

significant difference in the error for k < 0.85. The error in the second-derivatives for varying k is

shown in Figure 6.88
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Figure 6.88: Error Norms for Second Derivatives on Structured Grids: 3rd-Order MLS with
Isotropic Weights Varying k.

As with the first-derivatives, the lowest error observed occurs when using k = [1.0 − 1.1],

with error decreasing as k increases from k = [0.1 − 0.85] for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no

observed variation in error with k for ∂2q
∂xy

. It is interesting to note that the largest error for ∂2q
∂x2 and

∂2q
∂y2 occurs with k = 0.95, and k = 0.9 has a larger error than would be expected considering the

other trends. As to why k = 0.95 produces the largest error, one could speculate that the value of

weight function for nodes near the stencil boundary is very small, which tends to produce poorer

conditioned moment matrices, thus increasing the error in the reconstruction. The overall accuracy

of the reconstruction for each k is presented in Table 6.102.
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Table 6.102: Accuracy on Structured Grids: 3rd-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.95 1.96 1.96 1.96 1.98 1.96

0.25 3.95 1.96 1.96 1.96 1.98 1.96

0.4 3.95 1.96 1.96 1.96 1.98 1.96

0.5 3.95 1.96 1.96 1.96 1.98 1.96

0.6 3.95 1.96 1.96 1.98 1.98 1.96

0.65 3.95 1.96 1.96 1.96 1.98 1.96

0.7 3.95 1.96 1.96 1.96 1.98 1.96

0.75 3.95 1.96 1.96 1.96 1.98 1.96

0.8 3.95 1.96 1.96 1.96 1.98 1.96

0.85 3.95 1.96 1.96 1.97 1.98 1.97

0.9 3.95 1.96 1.96 1.95 1.98 1.95

0.95 3.96 1.96 1.96 1.95 1.98 1.95

1.0 3.97 1.97 1.97 1.97 1.98 1.97

1.05 3.97 1.97 1.97 1.97 1.98 1.97

1.1 3.97 1.97 1.97 1.98 1.98 1.98

From Table 6.102, the overall accuracy between any of the values k is effectively the same,

with only slight improvement observed for k ∈ [1.0 − 1.1], and slightly lower accuracy observed

for k ∈ [0.9 − 0.95]. Overall, any k ∈ [0.1 − 0.85] would be a reasonable choice for the MLS

reconstruction, achieving nearly fourth-order accuracy for the function and second-order accuracy

for the first- and second-derivatives. However, before making a final determination, the condition

number of M should be checked. Table 6.109 shows the condition numbers for each k.
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Table 6.103: Average Condition Number of M on Structured Grids: 3rd-Order MLS with Isotropic
Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 725.58 725.00 724.86 724.82

0.25 119.16 119.05 119.02 119.01

0.4 48.63 48.58 48.56 48.56

0.5 32.24 32.20 32.19 32.19

0.6 23.21 23.18 23.17 23.17

0.65 20.11 20.09 20.08 20.08

0.7 17.61 17.59 17.58 17.58

0.75 15.54 15.52 15.52 15.52

0.8 13.82 13.79 13.79 13.78

0.85 12.35 12.32 12.32 12.32

0.9 11.12 11.10 11.09 11.09

0.95 10.93 10.90 10.89 10.89

1.0 10.82 10.80 10.79 10.79

1.05 10.09 10.07 10.06 10.06

1.1 9.50 9.47 9.47 9.47

The condition numbers from Table 6.103 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.102, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.1.3 Fourth-Order

The error for the reconstruction of the field using a fourth-order MLS reconstruction is shown

in Figure 6.89.
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Figure 6.89: Error Norms for State on Structured Grids: 4th-Order MLS with Isotropic Weights
Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.90
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Figure 6.90: Error Norms for First Derivatives on Structured Grids: 4th-Order MLS with Isotropic
Weights Varying k.

Again, the lowest error is observed for k = [1.0− 1.1]. The error also decreases as k increases,
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though there is little variation in the overall error for k ∈ [0.1 − 0.85]. The error in the second-

derivatives for varying k is shown in Figure 6.91
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Figure 6.91: Error Norms for Second Derivatives on Structured Grids: 4th-Order MLS with
Isotropic Weights Varying k.

The results in Figure 6.91 are similar to those observed in the third-order reconstruction of

the second-derivatives in Figure 6.88. As observed for the third-order reconstruction, the lowest

error observed occurs when using k = [1.0 − 1.1], with error decreasing as k increases from

k = [0.1− 0.85] for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no observed variation in error with k for ∂2q
∂xy

.

Also, as with the third-order reconstruction, the largest error for ∂2q
∂x2 and ∂2q

∂y2 occurs with k = 0.95,

285



and k = 0.9 has a larger error than would be expected considering the other trends. The error for

the third-derivatives with varying k is shown in Figure 6.92.
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Figure 6.92: Error Norms for Third Derivatives on Structured Grids: 4th-Order MLS with Isotropic
Weights Varying k.

The lowest error for the third-derivatives is observed for k ∈ [1.0− 1.1] for all derivatives. For

the intermediate derivatives, ∂3q
∂x2y

and ∂3q
∂xy2 , the largest error is observed for k ∈ [0.9− 0.95], while

the other k have effectively the same error. For ∂3q
∂x3 and ∂3q

∂y3 , the error increases with increasing k,

with the largest error observed for k = 0.95. The other values of k ∈ [0.1− 0.8] produce roughly
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the same amount of error. The overall accuracy of the reconstruction for each k is presented in

Table 6.102.

Table 6.104: Accuracy on Structured Grids: 4th-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 3.91 3.91 3.91 1.93 1.96 1.93 1.94 1.95 1.95 1.94

0.25 3.91 3.91 3.91 1.93 1.96 1.93 1.94 1.95 1.95 1.94

0.4 3.91 3.91 3.91 1.93 1.96 1.93 1.94 1.95 1.95 1.94

0.5 3.91 3.92 3.92 1.93 1.96 1.93 1.94 1.95 1.95 1.94

0.6 3.91 3.92 3.92 1.92 1.96 1.93 1.94 1.95 1.95 1.94

0.65 3.91 3.92 3.92 1.92 1.96 1.92 1.94 1.95 1.95 1.94

0.7 3.91 3.92 3.92 1.92 1.96 1.92 1.94 1.95 1.95 1.94

0.75 3.92 3.92 3.92 1.92 1.95 1.92 1.94 1.95 1.95 1.94

0.8 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

0.85 3.92 3.92 3.92 1.91 1.95 1.90 1.92 1.94 1.94 1.92

0.9 3.93 3.94 3.94 1.90 1.95 1.90 1.92 1.93 1.93 1.92

0.95 3.94 3.93 3.93 1.90 1.95 1.90 1.92 1.93 1.93 1.92

1.0 3.95 3.95 3.95 1.95 1.95 1.95 1.97 1.96 1.96 1.97

1.05 3.95 3.95 3.95 1.95 1.95 1.95 1.97 1.95 1.95 1.97

1.1 3.95 3.95 3.95 1.95 1.95 1.95 1.96 1.95 1.95 1.96

From Table 6.104, the overall accuracy between any of the values k is effectively the same,

with only slight improvement observed for k ∈ [1.0 − 1.1], and slightly lower accuracy observed

for k ∈ [0.9 − 0.95]. Overall, any k ∈ [0.1 − 0.85] would be a reasonable choice for the MLS

reconstruction. The accuracy associated with the derivatives is roughly second-order for second-
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and third-derivatives and fourth-order for the first-derivatives and function.Table 6.111 shows the

condition numbers for each k.

Table 6.105: Average Condition Number of M on Structured Grids: 4th-Order MLS with Isotropic
Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 22330 22265 22249 22245

0.25 1463.8 1459.2 1458.0 1457.7

0.4 372.45 371.20 370.88 370.79

0.5 197.47 196.77 196.59 196.54

0.6 118.76 118.33 118.21 118.18

0.65 95.29 94.93 94.83 94.81

0.7 77.81 77.52 77.44 77.42

0.75 64.51 64.26 64.19 64.18

0.8 54.17 53.95 53.89 53.88

0.85 46.02 45.83 45.77 45.76

0.9 39.55 39.38 39.33 39.32

0.95 34.51 34.35 34.31 34.30

1.0 30.73 30.57 30.54 30.53

1.05 27.83 27.69 27.65 27.64

1.1 25.69 25.57 25.54 25.53

The condition numbers from Table 6.105 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.104, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.
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6.5.2 Unstructured Grids

This section presents a detailed study on the effect of the scaling parameter k on the MLS

reconstruction on unstructured grids. For this study, the MLS reconstruction using anisotropic

weights and Affine MLS with anisotropic weights are used.

6.5.2.1 Anisotropic Weights

This subsection presents the results of varying the scaling parameter k when using anisotropic

weighting.

6.5.2.1.1 Second-Order The error for the reconstruction of the field using a second-order MLS

reconstruction is shown in Figure 6.93. From Figure 6.93, there is not much variation for the error
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Figure 6.93: Error Norms for State on Unstructured Grids: 2nd-Order MLS with Anisotropic
Weights Varying k.

of q for k ∈ [0.1 − 0.95], though the least error occurs when using k = 0.95, which pushes the

boundary of ΩxI close to the outlying nodes in the stencil. The lowest overall error of q is for

k ∈ [1.0− 1.1], though not as dramatically for the structured results shown in Figure 6.84. These

values of k perform best, since they effectively exclude the outlying nodes from the reconstruction

and use only the central node xI . Therefore, when choosing the scaling parameter k, some care

has to be made to ensure the central node is included in the stencil, otherwise, k ∈ [1.0− 1.1] will
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give incorrect answers. The first derivatives are shown in Figure 6.94. Examining both derivatives,
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Figure 6.94: Error Norms for First Derivatives on Unstructured Grids: 2nd-Order MLS with
Anisotropic Weights Varying k.

there is a broad variation with respect to k. The lowest error appears to be for k ∈ [1.0− 1.1], with

the worse error occurring with k = 0.95. Table 6.106 shows the computed order of accuracy for

the varying k. From Table 6.106, the accuracy of q decreases with increasing k, with the maximum

accuracy being observed when k < 0.7. For the derivatives, the error increases with increasing

k up to k = 0.75, then decreases again with a maximum accuracy for k = [1.0 − 1.1]. The

approximate accuracy for the function is second-order, and the accuracy for the first derivatives is

around first-order. As with the structured case, the error is lower for the function due to clipping

the extreme nodes in the stencil ΩxI for when k ∈ [1.0 − 1.1]. However, at these values of k,

the exclusion of the extreme nodes causes the accuracy to suffer for the first-derivatives. Before

determining which k might be best, the condition number of M should be checked. Table 6.107

shows the condition numbers for each k. The condition numbers from Table 6.107 show that while

the order of accuracy may be ‘best’ for k ∈ [1.0 − 1.1], by far those k have the poorest condition

number. Generally, the condition number decreases with increasing k for k < 1.0. Based upon

this data, it would appear better to use k < 1.0 for reconstructing the function and its derivatives.
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Table 6.106: Accuracy on Unstructured Grids: 2nd-Order MLS with Anisotropic Weights Varying
k.

Function

k q
∂q

∂x

∂q

∂y

0.1 2.01 0.97 0.94
0.25 2.01 0.97 0.94
0.4 2.01 0.96 0.94
0.5 2.01 0.96 0.94
0.6 2.01 0.95 0.93

0.65 2.01 0.95 0.92
0.7 2.00 0.94 0.92

0.75 2.00 0.94 0.91
0.8 2.00 0.94 0.92

0.85 2.00 0.96 0.93
0.9 1.99 0.98 0.96

0.95 1.97 1.01 0.99
1.0 1.89 1.42 1.42

1.05 1.89 1.42 1.42
1.1 1.89 1.42 1.42

6.5.2.1.2 Third-Order The error for the reconstruction of the field using a third-order MLS

reconstruction is shown in Figure 6.95.
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Figure 6.95: Error Norms for State on Unstructured Grids: 3rd-Order MLS with Anisotropic
Weights Varying k.
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Table 6.107: Average Condition Number of M on Unstructured Grids: 2nd-Order MLS with
Anisotropic Weights Varying k.

Mesh Size
k 32 64 128 256

0.1 20.10 21.03 21.71 21.74
0.25 8.92 8.59 8.88 8.90
0.4 5.52 5.48 5.68 5.69
0.5 4.23 4.45 4.60 4.62
0.6 3.57 3.75 3.89 3.90

0.65 3.32 3.49 3.61 3.63
0.7 3.10 3.26 3.38 3.40

0.75 2.91 3.06 3.18 3.19
0.8 2.75 2.89 2.99 3.01

0.85 2.62 2.75 2.84 2.85
0.9 2.52 2.62 2.71 2.71

0.95 2.51 2.58 2.64 2.62
1.0 5.21E5 4.27E5 3.71E5 3.09E5

1.05 4.96E5 4.07E5 3.53E5 2.95E5
1.1 4.74E5 3.88E5 3.37E5 2.81E5

As with the second-order approximation, there is only slight spread in the error as a function

of k for the reconstruction of the function. As k increases, the error drops in the reconstruction,

with the lowest error for k = 1.1. For k ∈ [1.0− 1.1], the error is lowest since the ‘furthest’ stencil

nodes are effectively excluded from the approximation. Otherwise, there is no major difference in

the error for the reconstruction based on k for the function. The error for the reconstruction of the

first derivatives is shown in Figure 6.96 Again, the lowest error is observed for k = [1.0 − 1.1].

However, unlike the second-order reconstruction, the error increases with increasing k for k =

[0.1 − 0.95], though there is no significant difference in the error for k < 0.85. The error in the

second-derivatives for varying k is shown in Figure 6.97

292



10 100 1000
10-4

10-3

10-2

10-1

2nd order
k = 0.1
k = 0.25
k = 0.4
k = 0.5
k = 0.6
k = 0.65
k = 0.7
k = 0.75
k = 0.8
k = 0.85
k = 0.9
k = 0.95
k = 1.0
k = 1.05
k = 1.1

Comparison of k for MLS Reconstruction: dQ/dx
L 2

 E
rro

r

No. of Nodes, n

(a) ∂q
∂x

10 100 1000
10-4

10-3

10-2

10-1

2nd order
k = 0.1
k = 0.25
k = 0.4
k = 0.5
k = 0.6
k = 0.65
k = 0.7
k = 0.75
k = 0.8
k = 0.85
k = 0.9
k = 0.95
k = 1.0
k = 1.05
k = 1.1

Comparison of k for MLS Reconstruction: dQ/dy

L 2
 E

rro
r

No. of Nodes, n

(b) ∂q
∂y

Figure 6.96: Error Norms for First Derivatives on Unstructured Grids: 3rd-Order MLS with
Anisotropic Weights Varying k.
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Figure 6.97: Error Norms for Second Derivatives on Unstructured Grids: 3rd-Order MLS with
Anisotropic Weights Varying k.
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Unlike with the first-derivatives, the highest error observed occurs when using k = [1.0− 1.1],

with error decreasing as k decreases for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no observed variation in

error with k for ∂2q
∂xy

except for k = 0.95 (highest) and k = [1.0 − 1.05] (lowest). The overall

accuracy of the reconstruction for each k is presented in Table 6.108.

Table 6.108: Accuracy on Unstructured Grids: 3rd-Order MLS with Anisotropic Weights Varying
k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.05 1.99 1.99 1.10 1.11 1.11

0.25 3.05 1.99 1.99 1.10 1.11 1.11

0.4 3.05 1.99 1.99 1.09 1.11 1.10

0.5 3.05 2.00 1.99 1.08 1.10 1.09

0.6 3.05 2.00 1.99 1.06 1.10 1.08

0.65 3.05 2.00 1.99 1.05 1.10 1.07

0.7 3.05 2.00 1.99 1.04 1.10 1.06

0.75 3.05 2.00 1.99 1.02 1.11 1.05

0.8 3.05 2.00 1.99 1.00 1.11 1.03

0.85 3.05 1.99 1.99 0.96 1.12 1.01

0.9 3.06 1.99 1.98 0.90 1.12 0.97

0.95 3.12 1.97 1.97 1.13 1.02 1.17

1.0 3.19 1.99 1.99 1.17 1.14 1.26

1.05 3.17 1.99 1.99 1.19 1.18 1.26

1.1 3.16 2.05 2.03 1.33 1.14 1.32

From Table 6.108, the overall accuracy between any of the values k is effectively the same.
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The accuracy for the function improves with increasing k up to k = 0.95, which has the highest

accuracy and begins to decrease as k increase beyond k = 1.0. The average accuracy for the

function for all k is third-order. For the first derivatives, all methods achieve second-order, so all

k would produce similar accuracy as the mesh is refined. The second derivatives show decreasing

accuracy as k is increased, with the minimum accuracy occurring with k = 1.1. Before determining

which k might be best, the condition number of M should be checked. Table 6.109 shows the

condition numbers for each k.

Table 6.109: Average Condition Number of M on Unstructured Grids: 3rd-Order MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 686.83 666.91 650.38 626.11

0.25 114.30 111.11 108.42 104.43

0.4 47.29 46.08 45.01 43.43

0.5 31.70 30.97 30.29 29.29

0.6 23.23 22.79 22.32 21.65

0.65 20.38 20.06 19.66 19.10

0.7 18.14 17.92 17.60 17.14

0.75 16.38 16.27 16.01 15.63

0.8 15.00 15.01 14.82 14.51

0.85 13.99 14.13 14.01 13.78

0.9 13.35 13.66 13.64 13.48

0.95 13.38 13.74 13.78 13.64

1.0 13.45 13.73 13.73 13.55

1.05 12.92 13.17 13.16 12.98

1.1 12.50 12.78 12.83 12.70
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The condition numbers from Table 6.109 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.108, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.2.1.3 Fourth-Order The error for the reconstruction of the field using a fourth-order MLS

reconstruction is shown in Figure 6.98.
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Figure 6.98: Error Norms for State on Unstructured Grids: 4th-Order MLS with Anisotropic
Weights Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.99 The lowest error is observed for k = [1.0− 1.1]. The error also decreases

as k increases, though there is little variation in the overall error for k ∈ [0.1− 0.85]. The error in

the second-derivatives for varying k is shown in Figure 6.100
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Figure 6.99: Error Norms for First Derivatives on Unstructured Grids: 4th-Order MLS with
Anisotropic Weights Varying k.
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Figure 6.100: Error Norms for Second Derivatives on Unstructured Grids: 4th-Order MLS with
Anisotropic Weights Varying k.
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The results in Figure 6.100 show that the highest error observed occurs when using k = [1.0−

1.1], with error decreasing as k decreases for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no observed variation

in error with k for ∂2q
∂xy

except for k = 0.95 (highest) and k = [1.0 − 1.05] (lowest). The error

for the third-derivatives with varying k is shown in Figure 6.101. Figure 6.101 shows a large
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Figure 6.101: Error Norms for Third Derivatives on Unstructured Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

spread in the error, with the general trend being increasing error as k increases. The highest error

observed occurs when using k = 1.1 and k = [0.95, 1.05], with another cluster of larger error for

k = 0.85 − 0.9, 1.0]. For the intermediate derivatives, ∂3q
∂x2y

and ∂3q
∂xy2 , the largest error is observed
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for k ∈ [0.95], with the same clusters as the other derivatives. Generally, the error increases with

increasing k for the third-derivatives, with the lowest error for k = [0.1 − 0.65]. The overall

accuracy of the reconstruction for each k is presented in Table 6.108.

Table 6.110: Accuracy on Unstructured Grids: 4th-Order MLS with Anisotropic Weights Varying
k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 4.00 3.14 3.12 1.98 1.98 1.97 1.29 1.22 1.25 1.28

0.25 4.00 3.14 3.12 1.98 1.98 1.97 1.29 1.22 1.24 1.28

0.4 4.00 3.14 3.11 1.98 1.97 1.97 1.28 1.21 1.24 1.27

0.5 4.00 3.14 3.11 1.98 1.97 1.97 1.26 1.20 1.23 1.25

0.6 4.00 3.14 3.12 1.97 1.97 1.97 1.24 1.18 1.21 1.23

0.65 4.00 3.14 3.12 1.97 1.97 1.97 1.21 1.16 1.19 1.21

0.7 4.00 3.14 3.12 1.97 1.97 1.97 1.18 1.13 1.16 1.17

0.75 4.00 3.14 3.12 1.96 1.97 1.97 1.13 1.09 1.13 1.13

0.8 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

0.85 4.00 3.16 3.14 1.94 1.96 1.96 1.02 0.99 1.03 1.01

0.9 4.01 3.19 3.17 1.90 1.96 1.94 0.93 0.96 1.00 0.94

0.95 4.02 3.22 3.19 1.84 1.96 1.91 0.77 0.94 0.98 0.84

1.0 4.04 3.24 3.20 1.93 1.98 1.95 1.09 1.06 1.02 1.12

1.05 4.05 3.24 3.16 1.95 1.99 1.95 0.83 1.09 1.08 1.00

1.1 4.06 3.18 3.09 2.01 1.97 2.01 0.99 1.21 1.23 1.00

From Table 6.110, the accuracy for the function increases as k increases, with maximum at

k = 1.1, but on average the order of accuracy is roughly fourth-order. For the first derivatives, the
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accuracy increases with increasing k up to k = 0.9, after which the accuracy decreases. Overall,

the accuracy for the first-derivatives is approximately third-order. For the second-derivatives, the

accuracy is approximately second-order, with the maximum obtained when k = 0.8, with slightly

lower accuracy for other values of k. For the third-derivatives, the accuracy decreases as k is

increased, with the minimum at k = 1.1, with a secondary maximum accuracy occurring for

k = 0.8. The average error for the third-derivatives is first-order. Table 6.111 shows the condition

numbers for each k.

Table 6.111: Average Condition Number of M on Unstructured Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 21663 20835 20583 19987

0.25 1437.6 1383.7 1366.7 1327.0

0.4 370.78 357.32 352.97 342.68

0.5 198.70 191.68 189.43 183.94

0.6 120.93 116.92 115.63 112.31

0.65 97.84 94.73 93.70 91.03

0.7 80.70 78.32 77.55 75.36

0.75 67.78 66.00 65.45 63.64

0.8 57.96 56.70 56.36 54.86

0.85 50.58 49.81 49.69 48.45

0.9 45.32 45.09 45.21 44.19

0.95 42.13 42.59 43.06 42.21

1.0 40.23 41.38 42.32 41.75

1.05 37.72 39.16 40.31 39.83

1.1 35.84 37.26 38.43 37.95
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The condition numbers from Table 6.111 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.110, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.2.2 Affine MLS

This subsection presents the results of varying the scaling parameter k with Affine MLS recon-

struction on unstructured grids using anisotropic weights.

6.5.2.2.1 Second-Order The error for the reconstruction of the field using a second-order MLS

reconstruction is shown in Figure 6.102. From Figure 6.102, there is not much variation for the
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Figure 6.102: Error Norms for State on Unstructured Grids: 2nd-Order Affine MLS with
Anisotropic Weights Varying k.

error of q for different k, though the least error occurs when using k = 0.95, which pushes the

boundary of ΩxI close to the outlying nodes in the stencil. The lowest overall error of q is for

k ∈ [1.0− 1.1], though not as dramatically for the structured results shown in Figure 6.84. These

values of k perform best, since they effectively exclude the outlying nodes from the reconstruction

and use only the central node xI . Therefore, when choosing the scaling parameter k, some care

has to be made to ensure the central node is included in the stencil, otherwise, k ∈ [1.0− 1.1] will

give incorrect answers. The first derivatives are shown in Figure 6.103.
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Figure 6.103: Error Norms for First Derivatives on Unstructured Grids: 2nd-Order Affine MLS
with Anisotropic Weights Varying k.

Examining both derivatives, there is a broad variation with respect to k. The lowest error

appears to be for k ∈ [1.0− 1.1], with the worse error occurring with k = 0.95. Table 6.112 shows

the computed order of accuracy for the varying k.
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Table 6.112: Accuracy on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic Weights
Varying k.

Function

k q
∂q

∂x

∂q

∂y

0.1 2.01 0.97 0.94

0.25 2.01 0.97 0.94

0.4 2.01 0.96 0.94

0.5 2.01 0.96 0.94

0.6 2.01 0.95 0.93

0.65 2.01 0.95 0.92

0.7 2.00 0.94 0.92

0.75 2.00 0.94 0.91

0.8 2.00 0.94 0.92

0.85 2.00 0.96 0.93

0.9 1.99 0.98 0.96

0.95 1.97 1.01 0.99

1.0 1.89 1.42 1.42

1.05 1.89 1.42 1.42

1.1 1.89 1.42 1.42

From Table 6.112, the overall accuracy between any of the values k is effectively the same,

with only slight improvement observed for k ∈ [1.0 − 1.1], with the accuracy just above second-

order for the function. For the first-derivatives, the accuracy decreases as k is increased, with the

minimum accuracy occurring for k = 1.05, though the average accuracy is still approximately

first-order. Table 6.113 shows the condition numbers for each k.
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Table 6.113: Average Condition Number of M on Unstructured Grids: 2nd-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 17.92 18.51 18.93 19.20

0.25 7.31 7.57 7.75 7.88

0.4 4.65 4.83 4.96 5.04

0.5 3.77 3.92 4.03 4.10

0.6 3.17 3.31 3.41 3.47

0.65 2.95 3.08 3.17 3.22

0.7 2.76 2.87 2.96 3.01

0.75 2.59 2.70 2.78 2.83

0.8 2.44 2.55 2.62 2.67

0.85 2.32 2.42 2.48 2.52

0.9 2.24 2.31 2.36 2.39

0.95 2.22 2.26 2.28 2.30

1.0 4.32E5 3.26E5 2.61E5 2.09E5

1.05 4.11E5 3.11E5 2.48E5 1.99E5

1.1 3.93E5 2.97E5 2.37E5 1.90E5

The condition numbers from Table 6.113 show that while the order of accuracy may be ‘best’

for k ∈ [1.0 − 1.1], by far those k have the poorest condition number. Generally, the condition

number decreases with increasing k for k < 1.0. Based upon this data, it would appear better to

use k < 1.0 for reconstructing the function and its derivatives.

6.5.2.2.2 Third-Order The error for the reconstruction of the field using a third-order Affine

MLS reconstruction is shown in Figure 6.104.
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Figure 6.104: Error Norms for State on Unstructured Grids: 3rd-Order Affine MLS with
Anisotropic Weights Varying k.

As with the second-order approximation, there is only slight spread in the error as a function

of k for the reconstruction of the function. As k increases, the error drops in the reconstruction,

with the lowest error for k = 1.1. For k ∈ [1.0− 1.1], the error is lowest since the ‘furthest’ stencil

nodes are effectively excluded from the approximation. Otherwise, there is no major difference in

the error for the reconstruction based on k for the function. The error for the reconstruction of the

first derivatives is shown in Figure 6.105
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Figure 6.105: Error Norms for First Derivatives on Unstructured Grids: 3rd-Order Affine MLS
with Anisotropic Weights Varying k.
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Again, the lowest error is observed for k = [1.0 − 1.1]. However, unlike the second-order

reconstruction, the error increases with increasing k for k = [0.1 − 0.95], though there is no

significant difference in the error for k < 0.85. The error in the second-derivatives for varying k is

shown in Figure 6.106
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Figure 6.106: Error Norms for Second Derivatives on Unstructured Grids: 3rd-Order Affine MLS
with Anisotropic Weights Varying k.

Unlike with the first-derivatives, the highest error observed occurs when using k = [1.0− 1.1],

with error decreasing as k decreases for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no observed variation in
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error with k for ∂2q
∂xy

except for k = 0.95 (highest) and k = [1.0 − 1.05] (lowest). The overall

accuracy of the reconstruction for each k is presented in Table 6.114.

Table 6.114: Accuracy on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic Weights
Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.05 1.99 1.99 1.10 1.11 1.11

0.25 3.05 1.99 1.99 1.10 1.11 1.11

0.4 3.05 1.99 1.99 1.09 1.11 1.10

0.5 3.05 2.00 1.99 1.08 1.10 1.09

0.6 3.05 2.00 1.99 1.06 1.10 1.08

0.65 3.05 2.00 1.99 1.05 1.10 1.07

0.7 3.05 2.00 1.99 1.04 1.11 1.06

0.75 3.05 2.00 1.99 1.02 1.11 1.05

0.8 3.05 2.00 1.99 1.00 1.11 1.03

0.85 3.05 1.99 1.99 0.96 1.12 1.01

0.9 3.06 1.99 1.98 0.90 1.12 0.97

0.95 3.12 1.97 1.97 1.13 1.02 1.17

1.0 3.19 1.99 1.99 1.17 1.14 1.26

1.05 3.17 1.99 1.99 1.19 1.18 1.26

1.1 3.16 2.05 2.03 1.33 1.14 1.32

From Table 6.114, the overall accuracy between any of the values k is effectively the same.

The accuracy for the function improves with increasing k up to k = 0.95, which has the highest

accuracy and begins to decrease as k increase beyond k = 1.0. The average accuracy for the
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function for all k is third-order. For the first derivatives, all methods achieve second-order, so all

k would produce similar accuracy as the mesh is refined. The second derivatives show decreasing

accuracy as k is increased, with the minimum accuracy occurring with k = 1.1. Table 6.115 shows

the condition numbers for each k.

Table 6.115: Average Condition Number of M on Unstructured Grids: 3rd-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 595.62 565.41 542.34 525.14

0.25 99.30 94.39 90.60 87.75

0.4 41.23 39.31 37.82 36.68

0.5 27.71 26.49 25.56 24.84

0.6 20.33 19.52 18.89 18.42

0.65 17.84 17.18 16.67 16.29

0.7 15.87 15.35 14.95 14.64

0.75 14.31 13.93 13.62 13.37

0.8 13.08 12.83 12.62 12.44

0.85 12.15 12.05 11.92 11.81

0.9 11.55 11.58 11.57 11.53

0.95 11.50 11.57 11.59 11.59

1.0 11.37 11.41 11.41 11.41

1.05 10.80 10.89 10.92 10.93

1.1 10.55 10.71 10.80 10.84

The condition numbers from Table 6.115 show that for increasing k, the condition number
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decreases. In conjunction with data in Table 6.114, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.2.2.3 Fourth-Order The error for the reconstruction of the field using a fourth-order Affine

MLS reconstruction is shown in Figure 6.107.
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Figure 6.107: Error Norms for State on Unstructured Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.108
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Figure 6.108: Error Norms for First Derivatives on Unstructured Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

The lowest error is observed for k = [1.0−1.1]. The error also decreases as k increases, though

there is little variation in the overall error for k ∈ [0.1− 0.85]. The error in the second-derivatives

for varying k is shown in Figure 6.109
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Figure 6.109: Error Norms for Second Derivatives on Unstructured Grids: 4th-Order Affine MLS
with Anisotropic Weights Varying k.

The results in Figure 6.109 show that the highest error observed occurs when using k = [1.0−

1.1], with error decreasing as k decreases for both ∂2q
∂x2 and ∂2q

∂y2 . There is also no observed variation

in error with k for ∂2q
∂xy

except for k = 0.95 (highest) and k = [1.0 − 1.05] (lowest). The error for

the third-derivatives with varying k is shown in Figure 6.110.
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Figure 6.110: Error Norms for Third Derivatives on Unstructured Grids: 4th-Order Affine MLS
with Anisotropic Weights Varying k.

Figure 6.110 shows a large spread in the error, with the general trend being increasing error

as k increases. The highest error observed occurs when using k = 1.1 and k = [0.95, 1.05], with

another cluster of larger error for k = 0.85 − 0.9, 1.0]. For the intermediate derivatives, ∂3q
∂x2y

and

∂3q
∂xy2 , the largest error is observed for k ∈ [0.95], with the same clusters as the other derivatives.

Generally, the error increases with increasing k for the third-derivatives, with the lowest error for

k = [0.1− 0.65]. The overall accuracy of the reconstruction for each k is presented in Table 6.114.
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Table 6.116: Accuracy on Unstructured Grids: 4th-Order Affine MLS with Anisotropic Weights
Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 4.00 3.14 3.12 1.98 1.98 1.97 1.29 1.22 1.25 1.28

0.25 4.00 3.14 3.12 1.98 1.98 1.97 1.29 1.22 1.24 1.28

0.4 4.00 3.14 3.11 1.98 1.97 1.97 1.28 1.21 1.24 1.27

0.5 4.00 3.14 3.11 1.98 1.97 1.97 1.26 1.20 1.23 1.25

0.6 4.00 3.14 3.12 1.97 1.97 1.97 1.24 1.18 1.21 1.23

0.65 4.00 3.14 3.12 1.97 1.97 1.97 1.21 1.16 1.19 1.21

0.7 4.00 3.14 3.12 1.97 1.97 1.97 1.18 1.13 1.16 1.17

0.75 4.00 3.14 3.12 1.96 1.97 1.97 1.13 1.09 1.13 1.13

0.8 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

0.85 4.00 3.16 3.14 1.94 1.96 1.96 1.02 0.99 1.03 1.01

0.9 4.01 3.19 3.17 1.90 1.96 1.94 0.93 0.96 1.00 0.94

0.95 4.02 3.22 3.19 1.84 1.96 1.91 0.77 0.94 0.98 0.84

1.0 4.04 3.24 3.20 1.93 1.98 1.95 1.09 1.06 1.02 1.12

1.05 4.05 3.24 3.16 1.95 1.99 1.95 0.83 1.09 1.08 1.00

1.1 4.06 3.18 3.09 2.01 1.97 2.01 0.99 1.21 1.23 1.00

From Table 6.116, the accuracy for the function increases as k increases, with maximum at

k = 1.1, but on average the order of accuracy is roughly fourth-order. For the first derivatives, the

accuracy increases with increasing k up to k = 0.9, after which the accuracy decreases. Overall,

the accuracy for the first-derivatives is approximately third-order. For the second-derivatives, the

accuracy is approximately second-order, with the maximum obtained when k = 0.8, with slightly

lower accuracy for other values of k. For the third-derivatives, the accuracy decreases as k is
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increased, with the minimum at k = 1.1, with a secondary maximum accuracy occurring for

k = 0.8. The average error for the third-derivatives is first-order. Table 6.117 shows the condition

numbers for each k.

Table 6.117: Average Condition Number of M on Unstructured Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 17737 16566 15920 15545

0.25 1178.7 1105.6 2059.8 1035.0

0.4 305.05 285.62 274.68 268.35

0.5 163.79 153.42 147.61 144.13

0.6 99.89 93.62 90.11 87.93

0.65 80.85 75.83 73.01 71.23

0.7 66.64 62.60 60.30 58.80

0.75 55.89 52.59 50.72 49.44

0.8 47.70 45.02 43.48 42.38

0.85 41.50 39.34 38.10 37.18

0.9 36.99 35.31 34.36 33.62

0.95 34.04 32.87 32.16 31.61

1.0 31.97 31.21 30.74 30.33

1.05 29.62 29.15 28.89 28.57

1.1 28.28 28.25 28.14 28.03

The condition numbers from Table 6.117 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.116, it is determined that choosing k ∈ [0.6 − 0.8]
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produces the best overall results for the reconstruction.

6.5.3 Stretched Grids

This section presents a detailed study on the effect of the scaling parameter k on the MLS recon-

struction on stretched grids. For this study, the MLS reconstruction using isotropic and anisotropic

weights and Affine MLS with anisotropic weights are used.

6.5.3.1 Isotropic Weights

This subsection presents the results of varying the scaling parameter k when using isotropic

weighting.

6.5.3.1.1 Second-Order The error for the reconstruction of the field using a second-order MLS

reconstruction is shown in Figure 6.111.
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Figure 6.111: Error Norms for State on Stretched Grids: 2nd-Order MLS with Isotropic Weights
Varying k.

From Figure 6.111, there is not much variation for the error of q for k ∈ [0.1 − 0.95], though

the least error occurs when using k = 0.95, which pushes the boundary of ΩxI close to the outlying

nodes in the stencil. The lowest overall error of q is for k ∈ [1.0 − 1.1], though not as dramati-

cally for the structured results shown in Figure 6.84. These values of k perform best, since they

effectively exclude the outlying nodes from the reconstruction and use only the central node xI .
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Therefore, when choosing the scaling parameter k, some care has to be made to ensure the central

node is included in the stencil, otherwise, k ∈ [1.0 − 1.1] will give incorrect answers. The first

derivatives are shown in Figure 6.112.
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Figure 6.112: Error Norms for First Derivatives on Stretched Grids: 2nd-Order MLS with Isotropic
Weights Varying k.

Examining both derivatives, there is a broad variation with respect to k. The largest error

appears to be for k ∈ [1.0 − 1.1], which is not the case for both the structured and unstructured

meshes. These large errors most likely results from the poor modeling of the derivatives of C.

Table 6.118 shows the computed order of accuracy for the varying k.
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Table 6.118: Accuracy on Stretched Grids: 2nd-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

0.1 1.99 1.99 1.99

0.25 1.99 1.99 1.99

0.4 1.99 1.99 1.99

0.5 1.99 1.99 1.99

0.6 1.99 1.99 1.99

0.65 1.99 1.99 1.99

0.7 1.99 1.99 1.99

0.75 1.99 1.99 1.99

0.8 1.99 1.98 1.98

0.85 1.99 1.97 1.97

0.9 1.99 1.94 1.94

0.95 1.99 1.89 1.89

1.0 1.99 0.77 0.77

1.05 1.99 1.25 1.25

1.1 1.97 0.90 0.90

From Table 6.118, the accuracy of q is the same for all k. For the derivatives, the error increases

with increasing k. The approximate accuracy for the function and first-derivatives is second-order,

except for k ∈ [1.0 − 1.1]. This case highlights the need to pick k < 1.0, since the exclusion of

the extreme nodes causes large errors in the derivatives. To further prove this point, the condition

numbers of M are shown in Table 6.119 for each k.
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Table 6.119: Average Condition Number of M on Stretched Grids: 2nd-Order MLS with Isotropic
Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 58.20 53.63 51.24 50.03

0.25 23.30 21.42 20.44 19.95

0.4 14.57 13.37 12.75 12.43

0.5 11.67 10.70 10.20 9.94

0.6 9.73 8.91 8.48 8.27

0.65 8.97 8.21 7.81 7.62

0.7 8.29 7.59 7.22 7.04

0.75 7.67 7.03 6.69 6.52

0.8 7.11 6.51 6.20 6.05

0.85 6.64 6.08 5.76 5.60

0.9 6.26 5.67 5.33 5.16

0.95 5.97 5.34 4.97 4.79

1.0 7.38E4 3.61E4 1.78E4 8888

1.05 1.99E5 4.03E5 8.94E5 1.10E6

1.1 4.18E5 8.22E5 1.05E6 1.03E6

The condition numbers from Table 6.119 clearly show that the condition numbers for k ≥ 1.0

produce the poor accuracy in the results. Generally, the condition number decreases with increas-

ing k for k < 1.0. Based upon this data, it would appear better to use k < 1.0 for reconstructing

the function and its derivatives.

6.5.3.1.2 Third-Order The error for the reconstruction of the field using a third-order MLS

reconstruction is shown in Figure 6.113.
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Figure 6.113: Error Norms for State on Stretched Grids: 3rd-Order MLS with Isotropic Weights
Varying k.

As with the second-order approximation, there is only slight spread in the error as a function

of k for the reconstruction of the function. As k increases, the error drops in the reconstruction,

with the lowest error for k = 1.1. For k ∈ [1.0− 1.1], the error is lowest since the ‘furthest’ stencil

nodes are effectively excluded from the approximation. Otherwise, there is no major difference in

the error for the reconstruction based on k for the function. The error for the reconstruction of the

first derivatives is shown in Figure 6.114
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Figure 6.114: Error Norms for First Derivatives on Stretched Grids: 3rd-Order MLS with Isotropic
Weights Varying k.
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Again, the lowest error is observed for k = [1.0 − 1.1]. However, unlike the second-order

reconstruction, the error increases with increasing k for k = [0.1 − 0.95], though there is no

significant difference in the error for k < 0.85. The error in the second-derivatives for varying k is

shown in Figure 6.115
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Figure 6.115: Error Norms for Second Derivatives on Stretched Grids: 3rd-Order MLS with
Isotropic Weights Varying k.

Unlike with the first-derivatives, the highest error observed occurs when using k = [0.95−1.1],

with error decreasing as k decreases. The overall accuracy of the reconstruction for each k is

presented in Table 6.120.
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Table 6.120: Accuracy on Stretched Grids: 3rd-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.96 1.96 1.96 1.96 1.99 1.96

0.25 3.96 1.96 1.96 1.96 1.99 1.96

0.4 3.96 1.96 1.96 1.96 1.98 1.96

0.5 3.96 1.95 1.95 1.96 1.98 1.96

0.6 3.96 1.95 1.95 1.96 1.98 1.96

0.65 3.96 1.95 1.95 1.96 1.98 1.96

0.7 3.97 1.95 1.95 1.96 1.98 1.96

0.75 3.97 1.95 1.95 1.97 1.98 1.97

0.8 3.97 1.95 1.95 1.97 1.98 1.97

0.85 3.98 1.94 1.94 2.00 1.98 2.00

0.9 3.97 1.94 1.94 1.69 1.96 1.69

0.95 3.95 1.94 1.94 1.69 1.78 1.69

1.0 4.03 1.98 1.98 0.98 1.74 0.98

1.05 3.98 2.00 2.00 1.33 1.85 1.33

1.1 3.96 1.97 1.97 1.44 1.74 1.44

From Table 6.120, the overall accuracy between any of the values k is effectively the same. The

accuracy for the function increases with increasing k, with an average accuracy of fourth-order. For

the first derivatives, all methods achieve nominal second-order accuracy, with the order decreasing

as k is increased up to k = 1.0, where the order of accuracy increases. The second derivatives show

decreasing accuracy as k is increased, with the minimum accuracy occurring with k = 1.1. Before

determining which k might be best, the condition number of M should be checked. Table 6.121

shows the condition numbers for each k.
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Table 6.121: Average Condition Number of M on Stretched Grids: 3rd-Order MLS with Isotropic
Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 7238 6541 6006 5690

0.25 1171 1056 969.7 918.3

0.4 463.7 418.1 383.6 363.2

0.5 299.2 269.7 247.4 234.4

0.6 208.8 188.3 172.8 163.7

0.65 178.1 160.6 147.4 139.7

0.7 153.6 138.6 127.2 120.5

0.75 134.0 120.8 110.8 104.9

0.8 118.0 116.2 97.26 92.00

0.85 104.9 94.09 86.02 81.32

0.9 93.90 83.99 76.72 72.52

0.95 84.79 75.66 69.13 65.42

1.0 76.97 68.64 62.84 59.58

1.05 69.93 62.41 57.25 54.29

1.1 63.82 57.03 52.36 49.66

The condition numbers from Table 6.121 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.120, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.3.1.3 Fourth-Order The error for the reconstruction of the field using a fourth-order MLS

reconstruction is shown in Figure 6.116.
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Figure 6.116: Error Norms for State on Stretched Grids: 4th-Order MLS with Isotropic Weights
Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.117
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Figure 6.117: Error Norms for First Derivatives on Stretched Grids: 4th-Order MLS with Isotropic
Weights Varying k.

The lowest error is observed for k = [1.0−1.1]. The error also decreases as k increases, though
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there is little variation in the overall error for k ∈ [0.1− 0.85]. The error in the second-derivatives

for varying k is shown in Figure 6.118
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Figure 6.118: Error Norms for Second Derivatives on Stretched Grids: 4th-Order MLS with
Isotropic Weights Varying k.

The results in Figure 6.118 show that the highest error observed occurs when using k = [0.95−

1.1]. The error for the third-derivatives with varying k is shown in Figure 6.119.
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Figure 6.119: Error Norms for Third Derivatives on Stretched Grids: 4th-Order MLS with Isotropic
Weights Varying k.

Figure 6.119 shows a large spread in the error, with the general trend being increasing error

as k increases. The highest error observed occurs when for k ∈ [0.9 − 1.1]. For the intermediate

derivatives, ∂3q
∂x2y

and ∂3q
∂xy2 , the largest error is observed for k ∈ [1.0 − 1.1], with the same clusters

as the other derivatives. Generally, the error increases with increasing k for the third-derivatives,

with the lowest error for k = [0.1− 0.65]. The overall accuracy of the reconstruction for each k is

presented in Table 6.120.
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Table 6.122: Accuracy on Stretched Grids: 4th-Order MLS with Isotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.25 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.4 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.5 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.6 3.89 3.90 3.90 1.89 1.95 1.89 1.93 1.95 1.95 1.93

0.65 3.89 3.90 3.90 1.89 1.95 1.89 1.92 1.95 1.95 1.92

0.7 3.89 3.91 3.91 1.88 1.95 1.88 1.91 1.94 1.94 1.91

0.75 3.90 3.91 3.91 1.87 1.95 1.87 1.87 1.94 1.94 1.87

0.8 3.90 3.92 3.92 1.86 1.94 1.86 1.79 1.92 1.92 1.79

0.85 3.91 3.94 3.94 1.84 1.94 1.84 1.71 1.87 1.87 1.71

0.9 3.93 3.87 3.87 1.83 1.93 1.83 1.69 1.81 1.81 1.69

0.95 3.95 3.71 3.71 1.82 1.91 1.82 1.82 2.00 2.00 1.82

1.0 3.96 3.57 3.57 1.63 1.93 1.63 0.98 0.74 0.74 0.98

1.05 3.96 3.40 3.40 1.83 1.95 1.83 1.28 0.92 0.92 1.28

1.1 3.96 3.67 3.67 2.01 1.92 2.01 1.43 0.98 0.98 1.43

From Table 6.122, the accuracy for the function increases as k increases, with maximum at

k = 1.1, but on average the order of accuracy is roughly fourth-order. For the first derivatives, the

accuracy increases with increasing k up to k = 0.85, after which the accuracy decreases. Over-

all, the accuracy for the first-derivatives is approximately fourth-order. For the second-derivatives,

the accuracy is approximately second-order, the order decreasing as k increases. For the third-

derivatives, the accuracy decreases as k is increased, with the minimum at k = 1.0. The average

error for the third-derivatives is second-order for k < 1.0. Table 6.123 shows the condition num-
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bers for each k.

Table 6.123: Average Condition Number of M on Stretched Grids: 4th-Order MLS with Isotropic
Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 9.88E5 1.02E6 9.69E5 8.96E5

0.25 6.39E4 6.62E4 6.19E4 5.77E4

0.4 1.58E4 1.63E4 1.52E4 1.42E4

0.5 8196 8456 7885 7355

0.6 4783 4926 4591 4281

0.65 3773 3883 3617 3373

0.7 3027 3112 2898 2702

0.75 2462 2529 2355 2196

0.8 2028 2082 1938 1806

0.85 1690 1734 1612 1500

0.9 1423 1458 1353 1258

0.95 1213 1237 1146 1064

1.0 1044 1059 978.6 909.3

1.05 903.4 912.9 843.5 784.6

1.1 786.8 792.9 732.6 681.4

The condition numbers from Table 6.123 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.122, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.
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6.5.3.2 Anisotropic Weights

This subsection presents the results of varying the scaling parameter k when using anisotropic

weighting.

6.5.3.2.1 Second-Order The error for the reconstruction of the field using a second-order MLS

reconstruction is shown in Figure 6.120.

10 100 1000
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

2nd order
k = 0.1
k = 0.25
k = 0.4
k = 0.5
k = 0.6
k = 0.65
k = 0.7
k = 0.75
k = 0.8
k = 0.85
k = 0.9
k = 0.95
k = 1.0
k = 1.05
k = 1.1

L 2
 E

rro
r

Comparison of k for MLS Reconstruction: Q

No. of Nodes, n

Figure 6.120: Error Norms for State on Stretched Grids: 2nd-Order MLS with Anisotropic Weights
Varying k.

From Figure 6.120, there is not much variation for the error of q for k ∈ [0.1 − 0.95], though

the least error occurs when using k = 0.95, which pushes the boundary of ΩxI close to the outlying

nodes in the stencil. The lowest overall error of q is for k ∈ [1.0− 1.1], showing similar results to

the structured results shown in Figure 6.84. These values of k perform best, since they effectively

exclude the outlying nodes from the reconstruction and use only the central node xI . Therefore,

when choosing the scaling parameter k, some care has to be made to ensure the central node is

included in the stencil, otherwise, k ∈ [1.0− 1.1] will give incorrect answers. The first derivatives

are shown in Figure 6.121.
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Figure 6.121: Error Norms for First Derivatives on Stretched Grids: 2nd-Order MLS with
Anisotropic Weights Varying k.

Examining both derivatives, there is a broad variation with respect to k. The lowest error

appears to be for k ∈ [1.05− 1.1], with the larger errors occurring for k ∈ [0.9− 1.0]. Table 6.124

shows the computed order of accuracy for the varying k.
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Table 6.124: Accuracy on Stretched Grids: 2nd-Order MLS with Anisotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

0.1 1.99 1.99 1.99

0.25 1.99 1.99 1.99

0.4 1.99 1.99 1.99

0.5 1.99 1.99 1.99

0.6 1.99 1.99 1.99

0.65 1.99 1.99 1.99

0.7 1.99 1.98 1.98

0.75 1.99 1.97 1.97

0.8 1.99 1.93 1.93

0.85 1.99 1.87 1.87

0.9 1.99 1.80 1.80

0.95 2.00 1.69 1.69

1.0 1.92 0.84 0.84

1.05 2.04 2.40 2.40

1.1 1.99 1.99 1.99

From Table 6.124, the accuracy of q is mostly constant until k = 0.95, after which there is high

variability in the accuracy occurs. For the derivatives, the error increases with increasing k, with

the exception of k = 1.05, which has the highest order of any k. The approximate accuracy for the

function is second-order, and the accuracy for the first derivatives is also second-order. As with the

structured case, the error is lower for the function due to clipping the extreme nodes in the stencil

ΩxI for when k ∈ [1.0− 1.1]. Before determining which k might be best, the condition number of

M should be checked. Table 6.125 shows the condition numbers for each k.
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Table 6.125: Average Condition Number of M on Stretched Grids: 2nd-Order MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 58.29 53.71 51.33 50.11

0.25 23.48 21.58 20.61 20.11

0.4 14.77 13.56 12.93 12.61

0.5 11.87 10.88 10.37 10.11

0.6 9.93 9.09 8.66 8.44

0.65 9.18 8.40 8.00 7.80

0.7 8.53 7.81 7.44 7.26

0.75 7.97 7.29 6.96 6.70

0.8 7.48 6.86 6.57 6.43

0.85 7.19 6.61 6.31 6.16

0.9 7.21 6.53 6.20 6.04

0.95 7.86 6.92 6.47 6.28

1.0 9.59E5 4.16E5 1.85E5 8.20E4

1.05 9.04E5 5.89E5 7.70E5 2.13E6

1.1 9.50E5 8.24E5 2.08E6 2.03E6

The condition numbers from Table 6.125 show that while the order of accuracy may be ‘best’

for k ∈ [1.0 − 1.1], by far those k have the poorest condition number. Generally, the condition

number decreases with increasing k for k < 1.0. Based upon this data, it would appear better to

use k < 1.0 for reconstructing the function and its derivatives.

6.5.3.2.2 Third-Order The error for the reconstruction of the field using a third-order MLS

reconstruction is shown in Figure 6.122.
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Figure 6.122: Error Norms for State on Stretched Grids: 3rd-Order MLS with Anisotropic Weights
Varying k.

As with the second-order approximation, there is only slight spread in the error as a function

of k for the reconstruction of the function. As k increases, the error drops in the reconstruction,

with the lowest error for k = 1.1. For k ∈ [1.0− 1.1], the error is lowest since the ‘furthest’ stencil

nodes are effectively excluded from the approximation. Otherwise, there is no major difference in

the error for the reconstruction based on k for the function. The error for the reconstruction of the

first derivatives is shown in Figure 6.123
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Figure 6.123: Error Norms for First Derivatives on Stretched Grids: 3rd-Order MLS with
Anisotropic Weights Varying k.
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Again, the lowest error is observed for k = [1.0 − 1.1]. However, unlike the second-order

reconstruction, the error increases with increasing k for k = [0.1 − 0.95], though there is no

significant difference in the error for k < 0.85. The error in the second-derivatives for varying k is

shown in Figure 6.124
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Figure 6.124: Error Norms for Second Derivatives on Stretched Grids: 3rd-Order MLS with
Anisotropic Weights Varying k.

Unlike with the first-derivatives, the highest error observed occurs when using k = [0.95−1.1].

The overall accuracy of the reconstruction for each k is presented in Table 6.126.
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Table 6.126: Accuracy on Stretched Grids: 3rd-Order MLS with Anisotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.96 1.96 1.96 1.96 1.99 1.96

0.25 3.96 1.96 1.96 1.96 1.99 1.96

0.4 3.96 1.96 1.96 1.96 1.98 1.96

0.5 3.96 1.95 1.95 1.96 1.98 1.96

0.6 3.97 1.95 1.95 1.96 1.98 1.96

0.65 3.97 1.95 1.95 1.96 1.98 1.96

0.7 3.97 1.95 1.95 1.97 1.98 1.97

0.75 3.97 1.95 1.95 1.97 1.98 1.97

0.8 3.98 1.94 1.94 1.99 1.99 1.99

0.85 3.98 1.94 1.94 2.05 1.99 2.05

0.9 3.95 1.93 1.93 1.41 1.93 1.41

0.95 3.90 1.94 1.94 1.51 1.62 1.51

1.0 4.21 2.12 2.12 0.51 1.57 0.51

1.05 4.13 1.98 1.98 3.62 2.47 3.62

1.1 4.01 1.97 1.97 3.79 2.04 3.79

From Table 6.126, the overall accuracy of the function is increases with increasing k, with the

average accuracy being roughly fourth-order. For the first derivatives, all methods achieve second-

order, so all k would produce similar accuracy as the mesh is refined. The second derivatives

show decreasing accuracy as k is increased, with the accuracy becoming questionable for k <

0.95. Before determining which k might be best, the condition number of M should be checked.

Table 6.127 shows the condition numbers for each k.
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Table 6.127: Average Condition Number of M on Stretched Grids: 3rd-Order MLS with
Anisotropic Weights.

Mesh Size

k 32 64 128 256

0.1 7252 6554 6019 5702

0.25 1186 1070 982.9 931.2

0.4 481.5 433.8 398.4 377.8

0.5 319.1 287.3 264.1 250.8

0.6 232.2 208.7 192.2 182.9

0.65 203.8 182.9 168.7 160.9

0.7 182.6 163.7 151.1 144.3

0.75 167.7 149.8 138.1 132.1

0.8 158.7 140.2 129.2 124.0

0.85 155.7 135.3 124.4 120.1

0.9 160.5 135.5 124.5 121.3

0.95 174.5 141.1 130.1 129.3

1.0 181.4 142.6 134.8 138.1

1.05 165.7 134.2 133.8 135.6

1.1 152.4 128.9 131.7 124.6

The condition numbers from Table 6.127 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.126, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.3.2.3 Fourth-Order The error for the reconstruction of the field using a fourth-order MLS

reconstruction is shown in Figure 6.125.
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Figure 6.125: Error Norms for State on Stretched Grids: 4th-Order MLS with Anisotropic Weights
Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.126
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Figure 6.126: Error Norms for First Derivatives on Stretched Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

The lowest error is observed for k = [1.0−1.1]. The error also decreases as k increases, though

336



there is little variation in the overall error for k ∈ [0.1− 0.85]. The error in the second-derivatives

for varying k is shown in Figure 6.127
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Figure 6.127: Error Norms for Second Derivatives on Stretched Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

The results in Figure 6.127 show that the highest error observed occurs when using k = [0.95−

1.1], with the lowest error occurring for k = 0.85. The error for the third-derivatives with varying

k is shown in Figure 6.128.
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Figure 6.128: Error Norms for Third Derivatives on Stretched Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

Figure 6.128 shows a large spread in the error, with the general trend being increasing error as

k increases. The highest error observed occurs when using k ∈ [0.85− 1.1]. The overall accuracy

of the reconstruction for each k is presented in Table 6.126.
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Table 6.128: Accuracy on Stretched Grids: 4th-Order MLS with Anisotropic Weights Varying k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.25 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.4 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.5 3.88 3.90 3.90 1.89 1.95 1.89 1.93 1.95 1.95 1.93

0.6 3.89 3.90 3.90 1.89 1.95 1.89 1.92 1.95 1.95 1.92

0.65 3.89 3.91 3.91 1.88 1.95 1.88 1.91 1.94 1.94 1.91

0.7 3.89 3.91 3.91 1.87 1.95 1.87 1.87 1.94 1.94 1.87

0.75 3.90 3.92 3.92 1.86 1.95 1.86 1.77 1.93 1.93 1.77

0.8 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

0.85 3.91 3.95 3.95 1.83 1.94 1.83 1.54 1.81 1.81 1.54

0.9 3.93 3.66 3.66 1.81 1.93 1.81 1.53 1.71 1.71 1.53

0.95 3.96 3.58 3.58 1.79 1.92 1.79 1.97 2.09 2.09 1.97

1.0 3.98 3.00 3.00 2.02 1.93 2.02 0.66 0.67 0.67 0.66

1.05 3.97 4.12 4.12 2.24 1.92 2.24 2.02 1.48 1.48 2.02

1.1 3.96 4.13 4.13 1.93 1.89 1.93 3.48 1.72 1.72 3.48

From Table 6.128, the accuracy for the function increases as k increases, with maximum at

k = 1.1, but on average the order of accuracy is roughly fourth-order. For the first derivatives, the

accuracy increases with increasing k up to k = 0.9, then decreases, though the maximum accuracy

is for k = [1.05 − 1.1]. Overall, the accuracy for the first-derivatives is approximately fourth-

order. For the second-derivatives, the accuracy is approximately second-order, with the accuracy

decreasing for increasing k. For the third-derivatives, the accuracy decreases as k is increased,

with the minimum at k = 1.1, with a secondary maximum accuracy occurring for k = 0.8. The
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average error for the third-derivatives is second-order. Table 6.129 shows the condition numbers

for each k.

Table 6.129: Average Condition Number of M on Stretched Grids: 4th-Order MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 9.89E5 1.02E6 9.61E5 8.98E5

0.25 6.45E4 6.69E4 6.25E4 5.83E4

0.4 1.62E4 1.68E4 1.57E4 1.46E4

0.5 8557 8854 7885 7355

0.6 5132 5306 4959 4643

0.65 4127 4266 3988 3737

0.7 3395 3506 3278 3077

0.75 2859 2949 2758 2594

0.8 2478 2549 2382 2244

0.85 2238 2285 2125 2007

0.9 2168 2162 1989 1883

0.95 2401 2227 1992 1895

1.0 2794 2291 2000 1952

1.05 2426 2014 1833 1886

1.1 2125 1801 1725 1739

The condition numbers from Table 6.129 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.128, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.
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6.5.3.3 Affine MLS

This subsection presents the results of varying the scaling parameter k with Affine MLS recon-

struction on stretched grids using anisotropic weights.

6.5.3.3.1 Second-Order The error for the reconstruction of the field using a second-order MLS

reconstruction is shown in Figure 6.129.
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Figure 6.129: Error Norms for State on Stretched Grids: 2nd-Order Affine MLS with Anisotropic
Weights Varying k.

From Figure 6.129,there is not much variation for the error of q for k ∈ [0.1−0.95], though the

least error occurs when using k = 0.95, which pushes the boundary of ΩxI close to the outlying

nodes in the stencil. The lowest overall error of q is for k ∈ [1.0− 1.1], showing similar results to

the structured results shown in Figure 6.84. These values of k perform best, since they effectively

exclude the outlying nodes from the reconstruction and use only the central node xI . Therefore,

when choosing the scaling parameter k, some care has to be made to ensure the central node is

included in the stencil, otherwise, k ∈ [1.0− 1.1] will give incorrect answers. The first derivatives

are shown in Figure 6.130.
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Figure 6.130: Error Norms for First Derivatives on Stretched Grids: 2nd-Order Affine MLS with
Anisotropic Weights Varying k.

Examining both derivatives, there is a broad variation with respect to k. The lowest error

appears to be for k ∈ [1.05− 1.1], with the larger errors occurring for k ∈ [0.9− 1.0]. Table 6.130

shows the computed order of accuracy for the varying k.
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Table 6.130: Accuracy on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights Vary-
ing k.

Function

k q
∂q

∂x

∂q

∂y

0.1 1.99 1.99 1.99

0.25 1.99 1.99 1.99

0.4 1.99 1.99 1.99

0.5 1.99 1.99 1.99

0.6 1.99 1.99 1.99

0.65 1.99 1.99 1.99

0.7 1.99 1.98 1.98

0.75 1.99 1.97 1.97

0.8 1.99 1.93 1.93

0.85 1.99 1.87 1.87

0.9 1.99 1.80 1.80

0.95 2.00 1.69 1.69

1.0 1.92 0.84 0.84

1.05 2.04 2.40 2.40

1.1 1.99 1.99 1.99

From Table 6.130, the accuracy of q is mostly constant until k = 0.95, after which there is high

variability in the accuracy occurs. For the derivatives, the error increases with increasing k, with

the exception of k = 1.05, which has the highest order of any k. The approximate accuracy for the

function is second-order, and the accuracy for the first derivatives is also second-order. As with the

structured case, the error is lower for the function due to clipping the extreme nodes in the stencil

ΩxI for when k ∈ [1.0− 1.1]. Before determining which k might be best, the condition number of
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M should be checked. Table 6.131 shows the condition numbers for each k.

Table 6.131: Average Condition Number of M on Stretched Grids: 2nd-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 17.46 16.64 16.23 16.23

0.25 7.06 6.70 6.52 6.44

0.4 4.46 4.22 4.10 4.04

0.5 3.77 3.92 4.03 4.10

0.6 3.01 2.83 2.74 2.70

0.65 2.78 2.62 2.54 2.50

0.7 2.58 2.43 2.36 2.32

0.75 2.40 2.27 2.20 2.17

0.8 2.24 2.12 2.08 2.06

0.85 2.14 2.06 2.02 1.98

0.9 2.19 2.09 2.02 1.97

0.95 2.50 2.34 2.21 2.12

1.0 2.50E5 9.59E4 4.30E4 1.90E4

1.05 3.01E5 3.65E5 5.76E5 6.81E5

1.1 4.61E5 5.67E5 6.58E5 6.50E5

The condition numbers from Table 6.131 show that while the order of accuracy may be ‘best’

for k ∈ [1.0 − 1.1], by far those k have the poorest condition number. Generally, the condition

number decreases with increasing k for k < 1.0. Based upon this data, it would appear better to

use k < 1.0 for reconstructing the function and its derivatives.
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6.5.3.3.2 Third-Order The error for the reconstruction of the field using a third-order Affine

MLS reconstruction is shown in Figure 6.131.
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Figure 6.131: Error Norms for State on Stretched Grids: 3rd-Order Affine MLS with Anisotropic
Weights Varying k.

As with the second-order approximation, there is only slight spread in the error as a function

of k for the reconstruction of the function. As k increases, the error drops in the reconstruction,

with the lowest error for k = 1.1. For k ∈ [1.0− 1.1], the error is lowest since the ‘furthest’ stencil

nodes are effectively excluded from the approximation. Otherwise, there is no major difference in

the error for the reconstruction based on k for the function. The error for the reconstruction of the

first derivatives is shown in Figure 6.132

345



10 100 1000
10-4

10-3

10-2

10-1

2nd order
k = 0.1
k = 0.25
k = 0.4
k = 0.5
k = 0.6
k = 0.65
k = 0.7
k = 0.75
k = 0.8
k = 0.85
k = 0.9
k = 0.95
k = 1.0
k = 1.05
k = 1.1

Comparison of k for MLS Reconstruction: dQ/dx
L 2

 E
rro

r

No. of Nodes, n

(a) ∂q
∂x

10 100 1000
10-4

10-3

10-2

10-1

2nd order
k = 0.1
k = 0.25
k = 0.4
k = 0.5
k = 0.6
k = 0.65
k = 0.7
k = 0.75
k = 0.8
k = 0.85
k = 0.9
k = 0.95
k = 1.0
k = 1.05
k = 1.1

Comparison of k for MLS Reconstruction: dQ/dy

L 2
 E

rro
r

No. of Nodes, n

(b) ∂q
∂y

Figure 6.132: Error Norms for First Derivatives on Stretched Grids: 3rd-Order Affine MLS with
Anisotropic Weights Varying k.

Again, the lowest error is observed for k = [1.0 − 1.1]. However, unlike the second-order

reconstruction, the error increases with increasing k for k = [0.1 − 0.95], though there is no

significant difference in the error for k < 0.85. The error in the second-derivatives for varying k is

shown in Figure 6.133
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Figure 6.133: Error Norms for Second Derivatives on Stretched Grids: 3rd-Order Affine MLS with
Anisotropic Weights Varying k.

Unlike with the first-derivatives, the highest error observed occurs when using k = [0.95−1.1].

The overall accuracy of the reconstruction for each k is presented in Table 6.132.
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Table 6.132: Accuracy on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights Vary-
ing k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

0.1 3.96 1.96 1.96 1.96 1.99 1.96

0.25 3.96 1.96 1.96 1.96 1.99 1.96

0.4 3.96 1.96 1.96 1.96 1.98 1.96

0.5 3.96 1.95 1.95 1.96 1.98 1.96

0.6 3.97 1.95 1.95 1.96 1.98 1.96

0.65 3.97 1.95 1.95 1.96 1.98 1.96

0.7 3.97 1.95 1.95 1.97 1.98 1.97

0.75 3.97 1.95 1.95 1.97 1.98 1.97

0.8 3.98 1.94 1.94 1.99 1.99 1.99

0.85 3.98 1.94 1.94 2.05 1.99 2.05

0.9 3.95 1.93 1.93 1.41 1.93 1.41

0.95 3.90 1.94 1.94 1.51 1.62 1.51

1.0 4.21 2.12 2.12 0.51 1.57 0.51

1.05 4.13 1.98 1.98 3.62 2.47 3.62

1.1 4.01 1.97 1.97 3.79 2.04 3.79

From Table 6.132, the overall accuracy of the function is increases with increasing k, with the

average accuracy being roughly fourth-order. For the first derivatives, all methods achieve second-

order, so all k would produce similar accuracy as the mesh is refined. The second derivatives

show decreasing accuracy as k is increased, with the accuracy becoming questionable for k <

0.95. Before determining which k might be best, the condition number of M should be checked.

Table 6.133 shows the condition numbers for each k.
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Table 6.133: Average Condition Number of M on Stretched Grids: 3rd-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 995.0 850.8 785.6 754.7

0.25 163.8 139.8 129.1 123.9

0.4 66.46 56.86 52.55 50.52

0.5 43.69 37.50 34.73 33.44

0.6 31.08 26.08 24.91 24.02

0.65 26.75 23.13 21.54 20.81

0.7 23.26 20.24 18.91 18.24

0.75 20.45 17.96 16.75 16.14

0.8 18.30 16.07 14.95 14.37

0.85 16.53 14.48 13.42 12.87

0.9 15.05 13.13 12.00 11.05

0.95 13.86 12.00 11.05 10.78

1.0 13.28 11.40 10.81 10.84

1.05 12.39 10.70 10.41 10.26

1.1 11.62 10.16 9.85 9.64

The condition numbers from Table 6.133 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.132, it is determined that choosing k ∈ [0.6 − 0.8]

produces the best overall results for the reconstruction.

6.5.3.3.3 Fourth-Order The error for the reconstruction of the field using a fourth-order Affine

MLS reconstruction is shown in Figure 6.134.
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Figure 6.134: Error Norms for State on Stretched Grids: 4th-Order Affine MLS with Anisotropic
Weights Varying k.

As with the third-order case, the fourth-order reconstruction has lower error as k is increased,

with lowest error observed with k = 1.1. Otherwise, there is no major difference in the error for the

reconstruction based on k for the function. The error for the reconstruction of the first derivatives

is shown in Figure 6.135
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Figure 6.135: Error Norms for First Derivatives on Stretched Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

The lowest error is observed for k = [1.0−1.1]. The error also decreases as k increases, though
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there is little variation in the overall error for k ∈ [0.1− 0.85]. The error in the second-derivatives

for varying k is shown in Figure 6.136
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Figure 6.136: Error Norms for Second Derivatives on Stretched Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

The results in Figure 6.127 show that the highest error observed occurs when using k = [0.95−

1.1], with the lowest error occurring for k = 0.85. The error for the third-derivatives with varying

k is shown in Figure 6.137.
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Figure 6.137: Error Norms for Third Derivatives on Stretched Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

Figure 6.137 shows a large spread in the error, with the general trend being increasing error as

k increases. The highest error observed occurs when using k ∈ [0.85− 1.1]. The overall accuracy

of the reconstruction for each k is presented in Table 6.132.
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Table 6.134: Accuracy on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights Vary-
ing k.

Function

k q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

0.1 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.25 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.4 3.88 3.90 3.90 1.90 1.95 1.90 1.93 1.95 1.95 1.93

0.5 3.88 3.90 3.90 1.89 1.95 1.89 1.93 1.95 1.95 1.93

0.6 3.89 3.90 3.90 1.89 1.95 1.89 1.92 1.95 1.95 1.92

0.65 3.89 3.91 3.91 1.88 1.95 1.88 1.91 1.94 1.94 1.91

0.7 3.89 3.91 3.91 1.87 1.95 1.87 1.87 1.94 1.94 1.87

0.75 3.90 3.92 3.92 1.86 1.95 1.86 1.77 1.93 1.93 1.77

0.8 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

0.85 3.91 3.95 3.95 1.83 1.94 1.83 1.54 1.81 1.81 1.54

0.9 3.93 3.66 3.66 1.81 1.93 1.81 1.53 1.71 1.71 1.53

0.95 3.96 3.58 3.58 1.79 1.92 1.79 1.97 2.09 2.09 1.97

1.0 3.98 3.00 3.00 2.02 1.93 2.02 0.66 0.67 0.67 0.66

1.05 3.97 4.12 4.12 2.24 1.92 2.24 2.02 1.48 1.48 2.02

1.1 3.96 4.13 4.13 1.93 1.89 1.93 3.48 1.72 1.72 3.48

From Table 6.134, the accuracy for the function increases as k increases, with maximum at

k = 1.1, but on average the order of accuracy is roughly fourth-order. For the first derivatives, the

accuracy increases with increasing k up to k = 0.9, then decreases, though the maximum accuracy

is for k = [1.05 − 1.1]. Overall, the accuracy for the first-derivatives is approximately fourth-

order. For the second-derivatives, the accuracy is approximately second-order, with the accuracy

decreasing for increasing k. For the third-derivatives, the accuracy decreases as k is increased,

353



with the minimum at k = 1.1, with a secondary maximum accuracy occurring for k = 0.8. The

average error for the third-derivatives is second-order. Table 6.135 shows the condition numbers

for each k.

Table 6.135: Average Condition Number of M on Stretched Grids: 4th-Order Affine MLS with
Anisotropic Weights Varying k.

Mesh Size

k 32 64 128 256

0.1 4.52E4 3.22E4 2.69E4 2.44E4

0.25 2979 2115 1763 1605

0.4 759.8 537.4 448.3 408.1

0.5 399.4 284.0 237.1 216.1

0.6 238.3 169.8 142.1 129.7

0.65 190.1 135.7 113.7 103.9

0.7 154.3 110.3 92.58 84.68

0.75 126.9 90.95 76.51 70.17

0.8 105.7 76.01 64.33 58.95

0.85 89.04 64.67 54.71 50.10

0.9 76.04 55.73 47.13 43.15

0.95 66.38 48.73 41.21 37.62

1.0 60.37 43.21 36.38 33.20

1.05 53.42 38.47 32.37 29.69

1.1 47.76 34.69 29.26 27.16

The condition numbers from Table 6.135 show that for increasing k, the condition number

decreases. In conjunction with data in Table 6.134, it is determined that choosing k ∈ [0.6 − 0.8]
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produces the best overall results for the reconstruction.

6.6 Comparison of Orthogonal Polynomials using Affine MLS

This section presents the results obtained by varying the polynomial basis used for the Affine

MLS reconstruction. Each of the grids are examined using the Gaussian function. The bases used

in the study are:

• Legendre

• Hermite

• Chebyshev of the First Kind

• Chebyshev of the Second Kind

• Zernike

• Gegenbauer

and their forms can be found in Abramowitz & Stegun [1], in addition to the references given in

Section 5.1.3.3. The scaling parameter is set to k = 0.8. The inversion method of choice for this

study is the Pivoting QR method, since it always produced the minimum condition number for M

for each of the grids, as shown in Section 6.2.

6.6.1 Structured Grids

This section presents the orthogonal basis studies on the structured grid.

6.6.1.1 Second-Order

For second-order reconstructions, only the Chebyshev of the Second Kind and Gegenbauer

polynomials differ from the basic monomial polynomial. The remaining bases will not have a

different reconstruction from the monomial. Figure 6.138 shows the order of accuracy results for

both the Chebyshev of the Second Kind and Gegenbauer polynomials.
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Figure 6.138: Error Norms on Structured Grids: 2nd-Order Affine MLS with Isotropic Weights
Using Orthogonal Bases.

From Figure 6.138, there is no noticeable difference between the two bases and the monomial

polynomial in Figure 6.18. Table 6.136 shows the computed order of accuracy for each basis. As

Table 6.136: Accuracy on Structured Grids: 2nd-Order Affine MLS with Isotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

Monomial 1.98 1.98 1.98
Chebyshev, 2nd Kind 1.98 1.98 1.98

Gegenbauer 1.98 1.98 1.98

expected, changing the basis does not affect the order of accuracy of the method. The function

and the first-derivative both are second-order accurate. It is also important to look at the average

condition number of the moment matrix M. Table 6.137 shows the average condition number for

each level of refinement of the various bases, including the general MLS reconstruction with both

weight regimes. A few observations can be made from Table 6.137. First, as the mesh is refined, the
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Table 6.137: Average Condition Number of M on Structured Grids: 2nd-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 2.04 2.04 2.04 2.04

Monomial, Anisotropic 2.04 2.04 2.04 2.04
Monomial, Affine 2.04 2.04 2.04 2.04

Chebyshev, 2nd Kind 1.02 1.02 1.02 1.02
Gegenbauer 1.97 1.97 1.97 1.97

condition number of moment matrix M tends to decrease, The worst condition system is on using

the monomial basis, which was to be expected. The best conditioned system for the structured

grid is Affine MLS case using the Chebyshev of the Second Kind basis, with the Gegenbauer basis

being the second best. Overall, though, the condition number of the moment matrix M is very

good, with the largest condition number only just over. Therefore, any of these bases could be

used to produce accurate reconstructions.

6.6.1.2 Third-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.139 shows the order of accuracy results for the orthogonal bases.
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Figure 6.139: Error Norms on Structured Grids: 3rd-Order Affine MLS with Isotropic Weights
Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.19. Table 6.138 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.138: Accuracy on Structured Grids: 3rd-Order Affine MLS with Isotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Monomial 3.95 1.96 1.96 1.96 1.98 1.96
Legendre 3.95 1.96 1.96 1.96 1.98 1.96
Hermite 3.95 1.96 1.96 1.96 1.98 1.96

Chebyshev, 1st Kind 3.95 1.96 1.96 1.96 1.98 1.96
Chebyshev, 2nd Kind 3.95 1.96 1.96 1.96 1.98 1.96

Zernike 3.95 1.96 1.96 1.96 1.98 1.96
Gegenbauer 3.95 1.96 1.96 1.96 1.98 1.96

the method. The function is determined to be fourth-order accurate, while the first- and second-

derivatives are just below second-order. As with the second-order, the condition number of the

system should be inspected to see how the basis change affects the moment matrix M. Table 6.139

shows the average condition number for each level of refinement of the various bases, including

the general MLS reconstruction with both weight regimes. Table 6.139 shows some interesting

results. As with the second-order reconstruction, the condition number of M tends to decrease as

the mesh is refined. The monomial basis has the median condition number of the system, with

some of the orthogonal bases performing worse: Legendre, Hermite, and Chebyshev of the First

Kind. The remaining bases have a much better conditioned system, with the ‘best’ basis being the

Gegenbauer, with a condition number just below three. The ’best’ bases are in the class of spherical

bases, so it makes sense that these (the Chebyshev of the Second Kind, Zernike, and Gegenbauer)

perform best for this test. However, all of the bases produce accurate reconstructions, and even

using the monomial basis is more than acceptable.
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Table 6.139: Average Condition Number of M on Structured Grids: 3rd-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 13.82 13.80 13.79 13.79

Monomial, Anisotropic 13.82 13.80 13.79 13.79
Monomial, Affine 13.82 13.80 13.79 13.79

Legendre 18.04 18.01 18.01 18.00
Hermite 40.72 40.66 40.64 40.64

Chebyshev, 1st Kind 27.74 27.70 27.69 27.69
Chebyshev, 2nd Kind 6.03 6.01 6.00 6.00

Zernike 4.29 4.28 4.27 4.27
Gegenbauer 2.86 2.85 2.85 2.85

6.6.1.3 Fourth-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.140 shows the order of accuracy results for the orthogonal bases.
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Figure 6.140: Error Norms on Structured Grids: 4th-Order Affine MLS with Isotropic Weights
Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.20. Table 6.140 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.140: Accuracy on Structured Grids: 4th-Order Affine MLS with Isotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Monomial 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93
Legendre 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93
Hermite 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Chebyshev, 1st Kind 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93
Chebyshev, 2nd Kind 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

Zernike 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93
Gegenbauer 3.92 3.92 3.92 1.91 1.95 1.91 1.93 1.95 1.95 1.93

the method. The function and first-derivatives are determined to be fourth-order accurate, while

the second- and third-derivatives are just below second-order. As with the second-order, the con-

dition number of the system should be inspected to see how the basis change affects the moment

matrix M. Table 6.141 shows the average condition number for each level of refinement of the

various bases, including the general isotropic and anisotropic weighed MLS. Table 6.141 shows

that the best performing bases are the ‘spherical’ bases. As with the third-order case, the condition

number of M tends to decrease as the mesh is refined. The monomial basis has the median con-

dition number of the system, with some of the orthogonal bases performing worse: Hermite and

Chebyshev of the First Kind. The remaining bases have a much better conditioned system, with the

‘best’ basis being the Gegenbauer, with a condition number just above five. Unlike the third-order

reconstruction, the second-best basis is the Chebyshev of the Second Kind. The worst basis by far

is the Hermite basis. Overall, any basis besides the Hermite would give accurate results, though it

would be best to use one of the ‘spherical’ bases when performing the reconstruction.
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Table 6.141: Average Condition Number of M on Structured Grids: 4th-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 54.17 53.95 53.90 53.88

Monomial, Anisotropic 54.17 53.95 53.90 53.88
Monomial, Affine 54.17 53.95 53.90 53.88

Legendre 48.35 48.13 48.07 48.05
Hermite 219.0 218.0 217.7 217.6

Chebyshev, 1st Kind 70.49 70.10 70.00 69.98
Chebyshev, 2nd Kind 14.97 14.86 14.83 14.83

Zernike 20.71 20.50 20.45 20.43
Gegenbauer 5.29 5.23 5.21 5.21

6.6.2 Unstructured Grids

This subsection presents the results obtained by varying the polynomial basis used for the

Affine MLS reconstruction on unstructured grids.

6.6.2.1 Second-Order

For second-order reconstructions, only the Chebyshev of the Second Kind and Gegenbauer

polynomials differ from the basic monomial polynomial. The remaining bases will not have a

different reconstruction from the monomial. Figure 6.141 shows the order of accuracy results for

both the Chebyshev of the Second Kind and Gegenbauer polynomials.

363



10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
1st order
2nd order
3rd order
4th orderL 2

 E
rro

r
L2 Error of MLS Reconstruction: Gaussian

No. of Nodes, n

(a) Chebyshev, 2nd Kind

10 100 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

q
dx
dy
1st order
2nd order
3rd order
4th orderL 2

 E
rro

r

L2 Error of MLS Reconstruction: Gaussian

No. of Nodes, n

(b) Gegenbauer

Figure 6.141: Error Norms on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic
Weights Using Orthogonal Bases.

From Figure 6.141, there is no noticeable difference between the two bases and the monomial

polynomial in Figure 6.27. Table 6.142 shows the computed order of accuracy for each basis. As

Table 6.142: Accuracy on Unstructured Grids: 2nd-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

Monomial 2.00 0.94 0.92
Chebyshev, 2nd Kind 2.00 0.94 0.92

Gegenbauer 2.00 0.94 0.92

expected, changing the basis does not affect the order of accuracy of the method. The function is

second-order accurate and the first-derivative both are first-order accurate. It is also important to

look at the average condition number of the moment matrix M. Table 6.143 shows the average

condition number for each level of refinement of the various bases, including the general MLS

reconstruction with both weight regimes. A few observations can be made from Table 6.137.
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Table 6.143: Average Condition Number of M on Unstructured Grids: 2nd-Order MLS with Dif-
ferent Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 2.34 2.35 2.36 2.37

Monomial, Anisotropic 2.42 2.43 2.46 2.47
Monomial, Affine 2.24 2.25 2.26 2.27

Chebyshev, 2nd Kind 1.19 1.20 1.22 1.22
Gegenbauer 2.13 2.15 2.16 2.16

First, as the mesh is refined, the condition number of moment matrix M tends to increase. This is

probably due to the change in stencil size. The worst condition system is on using the monomial

basis with anisotropic weighting. The best conditioned system for the structured grid is Affine

MLS case using the Chebyshev of the Second Kind basis, with the Gegenbauer basis being the

second best. Overall, though, the condition number of the moment matrix M is very good, with

the largest condition number only just over two. Therefore, any of these bases could be used to

produce accurate reconstructions.

6.6.2.2 Third-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.142 shows the order of accuracy results for the orthogonal bases.
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Figure 6.142: Error Norms on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic
Weights Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.28. Table 6.144 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.144: Accuracy on Unstructured Grids: 3rd-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Monomial 3.05 2.00 1.99 1.00 1.11 1.03
Legendre 3.05 2.00 1.99 1.00 1.11 1.03
Hermite 3.05 2.00 1.99 1.00 1.11 1.03

Chebyshev, 1st Kind 3.05 2.00 1.99 1.00 1.11 1.03
Chebyshev, 2nd Kind 3.05 2.00 1.99 1.00 1.11 1.03

Zernike 3.05 2.00 1.99 1.00 1.11 1.03
Gegenbauer 3.05 2.00 1.99 1.00 1.11 1.03

the method. The function is determined to be just over third-order accurate, the first-derivatives are

second-order accurate, and the second-derivatives are just above first-order. As with the second-

order, the condition number of the system should be inspected to see how the basis change affects

the moment matrix M. Table 6.145 shows the average condition number for each level of refine-

ment of the various bases including the general MLS reconstruction with both weight regimes.

Table 6.145 shows some interesting results. As with the second-order reconstruction, the condition

number of M tends to decrease as the mesh is refined, with the exception of the Zernike basis.

The monomial basis has the median condition number of the system, with the best conditioned of

the monomial systems being the Affine MLS. As with the structured cases, some of the orthogonal

bases perform worse than the monomial basis: Legendre, Hermite, and Chebyshev of the First

Kind. The worst basis is the Hermite, with a condition number near forty. The remaining bases

have a much better conditioned system, with the ‘best’ basis being the Gegenbauer, with a condi-

tion number just below three. The ’best’ bases are in the class of spherical bases, so it makes sense
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Table 6.145: Average Condition Number of M on Unstructured Grids: 3rd-Order MLS with Dif-
ferent Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 13.27 12.82 12.69 12.62

Monomial, Anisotropic 14.13 13.75 13.71 13.68
Monomial, Affine 12.40 11.90 11.71 11.60

Legendre 15.72 14.97 14.70 14.53
Hermite 42.34 41.64 41.72 41.64

Chebyshev, 1st Kind 24.02 22.88 22.48 22.23
Chebyshev, 2nd Kind 6.26 6.10 6.08 6.05

Zernike 4.71 4.73 4.75 4.76
Gegenbauer 2.91 2.86 2.84 2.84

that these (the Chebyshev of the Second Kind, Zernike, and Gegenbauer) perform best for this test.

However, all of the bases produce accurate reconstructions, and even using the monomial basis is

more than acceptable.

6.6.2.3 Fourth-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.143 shows the order of accuracy results for the orthogonal bases.
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Figure 6.143: Error Norms on Unstructured Grids: 4th-Order Affine MLS with Anisotropic
Weights Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.29. Table 6.146 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.146: Accuracy on Unstructured Grids: 4th-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Monomial 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Legendre 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Hermite 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

Chebyshev, 1st Kind 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Chebyshev, 2nd Kind 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

Zernike 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07
Gegenbauer 4.00 3.15 3.13 1.95 1.97 1.96 1.08 1.04 1.08 1.07

the method. The function is determined to be fourth-order accurate, the first-derivatives are over

third-order accurate, the second-derivatives are just below second-order, and the third-derivatives

are roughly first-order accurate. The condition number of the moment matrix M is inspected.

Table 6.147 shows the average condition number for each level of refinement of the various bases,

including the general isotropic and anisotropic weighed MLS. Table 6.147 shows that the best

performing bases are the ‘spherical’ bases. As with the third-order case, the condition number of

M tends to decrease as the mesh is refined, though with the spherical bases the condition number

increases slightly for the finest mesh. This is most likely due to a change in the stencil size. The

monomial basis has the median condition number of the system, with some of the orthogonal

bases performing worse: Hermite and Chebyshev of the First Kind. On those methods using

the monomial basis, the Affine MLS performs the best. The remaining bases have a much better

conditioned system, with the ‘best’ basis being the Gegenbauer, with a condition number just above

five. Unlike the third-order reconstruction, the second-best basis is the Chebyshev of the Second
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Table 6.147: Average Condition Number of M on Unstructured Grids: 4th-Order MLS with Dif-
ferent Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 51.13 48.05 47.19 46.75

Monomial, Anisotropic 55.52 51.56 51.11 50.81
Monomial, Affine 45.44 42.27 41.03 40.21

Legendre 39.95 36.80 35.66 34.85
Hermite 216.0 207.5 205.3 203.2

Chebyshev, 1st Kind 63.27 58.81 57.39 56.34
Chebyshev, 2nd Kind 13.82 12.77 12.45 14.83

Zernike 22.15 20.51 21.48 21.38
Gegenbauer 5.61 5.28 5.19 5.11

Kind. The worst basis by far is the Hermite basis. Overall, any basis besides the Hermite would

give accurate results, though it would be best to use one of the ‘spherical’ bases when performing

the reconstruction.

6.6.3 Stretched Grids

This subsection presents the results obtained by varying the polynomial basis used for the

Affine MLS reconstruction on stretched grids.

6.6.3.1 Second-Order

For second-order reconstructions, only the Chebyshev of the Second Kind and Gegenbauer

polynomials differ from the basic monomial polynomial. The remaining bases will not have a

different reconstruction from the monomial. Figure 6.144 shows the order of accuracy results for

both the Chebyshev of the Second Kind and Gegenbauer polynomials.
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Figure 6.144: Error Norms on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.

From Figure 6.144, there is no noticeable difference between the two bases and the monomial

polynomial in Figure 6.27. Table 6.148 shows the computed order of accuracy for each basis. As

Table 6.148: Accuracy on Stretched Grids: 2nd-Order Affine MLS with Anisotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

Monomial 1.99 1.93 1.93
Chebyshev, 2nd Kind 1.99 1.93 1.93

Gegenbauer 1.99 1.93 1.93

expected, changing the basis does not affect the order of accuracy of the method. The function is

second-order accurate and the first-derivative both are first-order accurate. It is also important to

look at the average condition number of the moment matrix M. Table 6.149 shows the average

condition number for each level of refinement of the various bases, including the general MLS

reconstruction with both weight regimes. A few observations can be made from Table 6.137.
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Table 6.149: Average Condition Number of M on Stretched Grids: 2nd-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 7.11 6.51 6.20 6.05

Monomial, Anisotropic 7.48 6.86 6.57 6.43
Monomial, Affine 2.24 2.12 2.08 2.06

Chebyshev, 2nd Kind 1.13 1.06 1.04 1.03
Gegenbauer 1.87 1.91 1.94 1.95

First, as the mesh is refined, the condition number of moment matrix M tends to increase. This is

probably due to the change in stencil size. The worst condition system is on using the monomial

basis with anisotropic weighting. The best conditioned system for the structured grid is Affine

MLS case using the Chebyshev of the Second Kind basis, with the Gegenbauer basis being the

second best. Overall, though, the condition number of the moment matrix M is very good, with

the largest condition number only just over two. Therefore, any of these bases could be used to

produce accurate reconstructions.

6.6.3.2 Third-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.145 shows the order of accuracy results for the orthogonal bases.
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Figure 6.145: Error Norms on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.28. Table 6.150 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.150: Accuracy on Stretched Grids: 3rd-Order Affine MLS with Anisotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

Monomial 3.98 1.94 1.94 1.99 1.99 1.99
Legendre 3.98 1.94 1.94 1.99 1.99 1.99
Hermite 3.98 1.94 1.94 1.99 1.99 1.99

Chebyshev, 1st Kind 3.98 1.94 1.94 1.99 1.99 1.99
Chebyshev, 2nd Kind 3.98 1.94 1.94 1.99 1.99 1.99

Zernike 3.98 1.94 1.94 1.99 1.99 1.99
Gegenbauer 3.98 1.94 1.94 1.99 1.99 1.99

the method. The function is determined to be just over third-order accurate, the first-derivatives are

second-order accurate, and the second-derivatives are just above first-order. As with the second-

order, the condition number of the system should be inspected to see how the basis change affects

the moment matrix M. Table 6.151 shows the average condition number for each level of refine-

ment of the various bases including the general MLS reconstruction with both weight regimes.

Table 6.151 shows some interesting results. As with the second-order reconstruction, the condition

number of M tends to decrease as the mesh is refined, with the exception of the Zernike basis.

The monomial basis has the median condition number of the system, with the best conditioned of

the monomial systems being the Affine MLS. As with the structured cases, some of the orthogonal

bases perform worse than the monomial basis: Legendre, Hermite, and Chebyshev of the First

Kind. The worst basis is the Hermite, with a condition number near forty. The remaining bases

have a much better conditioned system, with the ‘best’ basis being the Gegenbauer, with a condi-

tion number just below three. The ’best’ bases are in the class of spherical bases, so it makes sense
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Table 6.151: Average Condition Number of M on Stretched Grids: 3rd-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 118.0 116.2 97.26 92.00

Monomial, Anisotropic 158.7 140.2 129.2 124.0
Monomial, Affine 18.30 16.07 14.95 14.37

Legendre 26.05 21.78 19.82 18.89
Hermite 53.35 46.26 43.10 41.75

Chebyshev, 1st Kind 39.72 33.29 30.37 29.00
Chebyshev, 2nd Kind 9.10 7.39 6.62 6.29

Zernike 6.75 5.40 4.79 4.51
Gegenbauer 3.63 3.09 2.97 2.90

that these (the Chebyshev of the Second Kind, Zernike, and Gegenbauer) perform best for this test.

However, all of the bases produce accurate reconstructions, and even using the monomial basis is

more than acceptable.

6.6.3.3 Fourth-Order

For third-order reconstructions, all of the bases differ from the general monomial polynomial.

Figure 6.146 shows the order of accuracy results for the orthogonal bases.
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Figure 6.146: Error Norms on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights
Using Orthogonal Bases.
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As with the second-order reconstruction, there is not a discernible difference between any of

the bases and the monomial polynomial in Figure 6.29. Table 6.152 shows the computed order of

accuracy for each basis. As expected, changing the basis does not affect the order of accuracy of

Table 6.152: Accuracy on Stretched Grids: 4th-Order Affine MLS with Anisotropic Weights Using
Orthogonal Bases.

Function

Basis q
∂q

∂x

∂q

∂y

∂2q

∂x2

∂2q

∂xy

∂2q

∂y2

∂3q

∂x3

∂3q

∂x2y

∂3q

∂xy2

∂3q

∂y3

Monomial 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Legendre 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Hermite 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

Chebyshev, 1st Kind 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Chebyshev, 2nd Kind 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

Zernike 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63
Gegenbauer 3.90 3.94 3.94 1.85 1.94 1.85 1.63 1.90 1.90 1.63

the method. The function is determined to be fourth-order accurate, the first-derivatives are over

third-order accurate, the second-derivatives are just below second-order, and the third-derivatives

are roughly first-order accurate. The condition number of the moment matrix M is inspected.

Table 6.153 shows the average condition number for each level of refinement of the various bases,

including the general isotropic and anisotropic weighed MLS. Table 6.153 shows that the best

performing bases are the ‘spherical’ bases. As with the third-order case, the condition number of

M tends to decrease as the mesh is refined, though with the spherical bases the condition number

increases slightly for the finest mesh. This is most likely due to a change in the stencil size. The

monomial basis has the median condition number of the system, with some of the orthogonal

bases performing worse: Hermite and Chebyshev of the First Kind. On those methods using

the monomial basis, the Affine MLS performs the best. The remaining bases have a much better

conditioned system, with the ‘best’ basis being the Gegenbauer, with a condition number just above

five. Unlike the third-order reconstruction, the second-best basis is the Chebyshev of the Second
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Table 6.153: Average Condition Number of M on Stretched Grids: 4th-Order MLS with Different
Bases & Weights.

Basis
Mesh Size

32 64 128 256
Monomial, Isotropic 2028 2082 1938 1806

Monomial, Anisotropic 2478 2549 2382 2244
Monomial, Affine 105.7 76.01 64.33 58.95

Legendre 106.5 73.00 59.69 53.64
Hermite 441.5 316.4 264.3 240.0

Chebyshev, 1st Kind 154.5 106.0 86.58 77.88
Chebyshev, 2nd Kind 37.22 24.04 19.05 16.84

Zernike 61.84 35.61 25.88 22.43
Gegenbauer 18.29 10.80 7.48 6.03

Kind. The worst basis by far is the Hermite basis. Overall, any basis besides the Hermite would

give accurate results, though it would be best to use one of the ‘spherical’ bases when performing

the reconstruction.
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7. HIGHER-ORDER RESULTS

This chapter presents results of the implementation the higher-order unstructured CFD method.

First, a study on the condition of the moment matrix M needed for the MLS basis vector Ψ in the

MLS reconstruction (5.16) is presented for various grids. Next, a presentation of the new ghost

boundary conditions are presented. Finally, results for the Taylor–Green Vortex case for second-

through fourth-order are presented for coarse meshes. The chapter ends with a summary of the

results.

7.1 Condition of Moment Matrix M for 3D Grids

This section presents results studying the condition number of the moment matrix M on various

grids used later in this chapter for boundary conditions. For each set of grids presented, the scaling

parameter k is set to 0.8, since that proved to be a reasonable choice from Chapter 6. Additionally,

each method of matrix inversion is presented using the different weighting schemes. For the Affine

MLS, the method is also computed using the Chebyshev of the Second Kind and Gegenbauer

bases, which performed best in the two-dimensional cases. First, the condition number is accessed

on the cube domains used for the Taylor-Green Vortex cases. Two levels of refinement are used

in the TGV cases, a 173 and 333 [−π, π]3 cube, both with structured and unstructured grids. For

the unstructured meshes, the periodic boundaries are padded with hexagons to ensure periodicity

through the boundary. Figure 7.1 shows the structured grids and x = 0 slices for the unstructured

grids.
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Figure 7.1: Meshes Used for Taylor–Green Vortex Cases.

Results from the second-order study are presented in Table 7.1 for the general SPD inverse, QR

method, and Pivoting QR (PQR) method.
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Table 7.1: Average & Maximum Condition Number of M on TGV Grids: 2nd-Order MLS.

Method Weight

Mesh Type

Structured Unstructured

173 333 173 333

avg avg max avg max

SPD Iso. 924 924 544 1049 453 1049

SPD Ani. 924 924 638 2273 566 3330

SPD Affine 924 924 589 1531 506 1519

QR Iso. 30 30 20 40 18 40

QR Ani. 30 30 24 54 22 68

QR Affine 30 30 22 53 20 48

PQR Iso. 30 30 20 41 17 41

PQR Ani. 30 30 23 45 21 47

PQR Affine 30 30 22 41 20 41

PQR Affine, Ch2 15 15 11 22 10 23

PQR Affine, Geg 7 7 6 14 5 14

For the structured grids, the condition number does not change with the weight for each of the

methods. This follows from the two-dimensional studies, since the shape of the stencil ΩxI is the

same for each, and as the stencil is scaled, the ‘scaled’ stencils are effectively the same. Obviously,

the SPD method produces the poorest condition systems, on the order of thirty times worse. It is

note worthy that on structured grids it is beneficial to use the orthogonal bases, as the Gegenbauer

basis Affine MLS using Pivoting QR has a condition number four times lower than the regular

Affine MLS using Pivoting QR. Additionally, for each of the inversion methods, the isotropically

weighted stencils are slightly better for the unstructured grids but not enough to make a significant

difference. Overall, as was seen with the two-dimensional cases, the Pivoting QR based Affine
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MLS using the Gegenbauer basis is best. Table 7.2 shows the third-order MLS reconstruction

condition numbers for M.

Table 7.2: Average & Maximum Condition Number of M on TGV Grids: 3rd-Order MLS.

Method Weight

Mesh Type

Structured Unstructured

173 333 173 333

avg avg max avg max

SPD Iso. 1032 1032 1092 2648 18392 2.05E7

SPD Ani. 1032 1032 1827 12678 1.36E5 1.59E8

SPD Affine 1032 1032 1102 3528 1191 1.53E5

QR Iso. 33 33 35 61 39 5404

QR Ani. 33 33 43 142 56 12667

QR Affine 33 33 35 60 35 409

PQR Iso. 33 33 34 57 37 4405

PQR Ani. 33 33 41 103 52 12667

PQR Affine 33 33 34 57 34 396

PQR Affine, Ch2 39 39 46 76 33 357

PQR Affine, Geg 20 20 22 37 23 303

It is readily apparent from Table 7.2 that for unstructured grids, using the general matrix in-

verse is worthless, with maximum condition numbers exceeding 108 for the non-Affine MLS. The

Affine MLS does a reasonable job on average for the general inverse, but the maximum condition

number is 105, which is still rather large. For the decomposition methods, the Affine MLS has a

lower maximum condition number approximately ten times lower than the isotropically weighted

methods. Additionally, using the Gegenbauer basis reduces the average condition number about
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1.5 times the general monomial basis. Both unstructured grids, the QR and Pivoting QR inver-

sion methods do not show a significant difference in the average condition numbers; however, the

maximum condition number is lower for the Pivoting QR. It is important to point out and dis-

cuss the anisotropic weighted MLS results with the third-order case. The condition numbers for

these weighted methods are all the worst-performing of the methods, and this is most likely due

a mismatch of the weights with the polynomials. This is precisely why the Affine MLS method

was implemented, such that the condition of the moment matrix M for ellipsoidal distributions

could be restored. In fact, the condition number using the Affine MLS is improved. Therefore,

the Affine MLS should be the go-to method for computing gradients. Further improvement to the

system, which is not bad to begin with, can be had by using the Gegenbauer basis. Table 7.3 shows

the fourth-order MLS reconstruction condition numbers. Even more than the third-order results in

Table 7.3: Average & Maximum Condition Number of M on TGV Grids: 4th-Order MLS.

Method Weight

Mesh Type
Structured Unstructured

173 333 173 333

avg avg max avg max
SPD Iso. 40630 40630 6.73E6 4.47E9 2.61E8 3.22E11
SPD Ani. 40630 40630 1.79E7 1.67E10 6.26E8 1.22E12
SPD Affine 40630 40630 239160 1.94E8 1.44E6 4.78E9
QR Iso. 211 211 502 89325 1707 9.01E5
QR Ani. 211 211 756 2.30E5 2947 2.81E6
QR Affine 211 211 282 15725 322 96704

PQR Iso. 211 211 477 63522 1661 5.47E5
PQR Ani. 211 211 628 113988 2307 1.00E6
PQR Affine 211 211 244 10233 284 59811
PQR Affine, Ch2 102 102 132 10380 148 33992
PQR Affine, Geg 52 52 72 3924 79 16745

Table 7.2, it is abundantly clear that using a general matrix inverse is worthless on unstructured

grids. Using the matrix decomposition methods dramatically reduces the condition number of the

moment matrix M by as much as 848 times. Furthermore, the Pivoting QR method reduces the
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maximum condition number over the QR method by about 1.5 times. Using the orthogonal bases,

the condition number for the moment matrix M is reduced about 3.5 times over the general mono-

mial Affine MLS, and by over 6.5 times that of the isotropic weighted MLS using Pivoting QR.

The maximum condition number of the Affine MLS using Pivoting QR is six times smaller than

the isotropic weighted, and the Gegenbauer basis Affine MLS has a maximum condition number

an additional 2.6 times smaller. Reviewing all of the results from Tables 7.1-7.3, the Affine MLS

reconstruction method results in a major improvement to the condition number of the moment ma-

trix M over the standard method, and when combined with the Pivoting QR method, reduces the

maximum condition number of the mesh by a significant number as well. Using an orthogonal

basis, while not required, does represent an avenue for even further improvement of the condition

number of the moment matrix M, ensuring an accurate inverse and further cements confidence in

the MLS reconstructed gradients.

Next, the grids used in the non-reflecting boundary condition are investigated. More on the

case is given later, but the grids are 412 in the xy-plane for both the structured and unstructured

grids. The grid lies on [−0.0065, 0.0065]2 in the xy-plane. In the z−direction, there are 4, 6, and

8 nodes on [0, 1E−3] for the second-, third-, and fourth-order cases. Figure shows the grids.
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Figure 7.2: Meshes Used for Navier-Stokes Compatibility Boundary Conditions.

These grids have ghost nodes, so for each order and grid, the average and maximum condition
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number for the ghost nodes is also reported. The results for the condition number evaluation for

the second-order case in Table 7.4.

Table 7.4: Average & Maximum Condition Number of M on NSCBC Grids: 2nd-Order MLS.

Method Weight

Mesh Type

Structured Unstructured

Main Ghost Main Ghost

avg avg max avg max avg max

SPD Iso. 924 3572 3697 885 1624 3572 3696

SPD Ani. 924 3607 3692 1046 3305 3607 3692

SPD Affine 924 3602 3692 950 1266 3602 3692

QR Iso. 30 60 61 30 43 59 61

QR Ani. 31 60 61 33 64 60 61

QR Affine 30 60 61 31 41 60 61

PQR Iso. 30 60 61 30 42 60 61

PQR Ani. 31 60 61 33 54 60 61

PQR Affine 30 60 61 31 37 60 61

PQR Affine, Ch2 15 30 30 16 20 30 30

PQR Affine, Geg 8 15 15 8 12 15 15

As with the previous case, the second-order results show that there is little difference between

the QR and Pivoting QR results. Also, the orthogonal base results have a condition 2-4 times better

than the base monomial Affine MLS. Additionally, there is little difference between the different

weighing schemes, as seen in the previous results. The general method is thirty-times worse that

the decomposition methods. The third-order results are presented in Table 7.5.
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Table 7.5: Average & Maximum Condition Number of M on NSCBC Grids: 3rd-Order MLS.

Method Weight

Mesh Type

Structured Unstructured

Main Ghost Main Ghost

avg max avg max avg max avg max

SPD Iso. 1606 2495 2.06E5 2.18E5 1332 2965 2.06E5 2.18E5

SPD Ani. 2670 2670 1.99E5 2.10E5 3094 8778 1.99E5 2.10E5

SPD Affine 1034 1723 1.99E5 2.11E5 1024 2925 1.99E5 2.11E5

QR Iso. 42 56 460 482 39 62 461 482

QR Ani. 54 54 451 473 57 112 452 472

QR Affine 34 47 48 436 34 68 452 474

PQR Iso. 42 49 449 470 38 54 449 470

PQR Ani. 54 54 440 461 58 104 440 461

PQR Affine 33 41 368 435 33 49 440 461

PQR Affine, Ch2 39 44 427 448 43 62 427 448

PQR Affine, Geg 19 21 184 192 21 32 184 193

While the main mesh nodes have a respectable condition number for the general matrix inverse,

the condition number of M for the ghost nodes are too large to be considered useful. As for the

matrix decomposition methods, the Pivoting QR method is slightly better than the QR method. The

Affine MLS is also slightly better than the isotropically weighed MLS, but not enough to make a

difference. However, the Gegenbauer basis Affine MLS is about 1.7 times smaller than the general

monomial Affine MLS. These trends are the same for both the structured and unstructured grids.

Table 7.6 and 7.7 shows the fourth-order MLS reconstruction condition numbers for the structured

and unstructured meshes.
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Table 7.6: Average & Maximum Condition Number of M on NSCBC Grids: 4th-Order MLS,
Structured Mesh.

Method Weight
Main Ghost

avg max avg max

SPD Iso. 1.80E6 2.86E6 1.99E6 2.16E6

SPD Ani. 1.00E6 1.00E6 1.09E6 1.95E6

SPD Affine 40679 78494 1.04E6 1.84E6

QR Iso. 442 598 1340 1409

QR Ani. 993 998 1012 1356

QR Affine 212 328 1003 1716

PQR Iso. 442 530 1307 13811

PQR Ani. 993 998 980 1321

PQR Affine 212 290 947 1115

PQR Affine, Ch2 104 162 695 877

PQR Affine, Geg 53 85 379 438
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Table 7.7: Average & Maximum Condition Number of M on NSCBC Grids: 4th-Order MLS,
Unstructured Mesh.

Method Weight
Main Ghost

avg max avg max

SPD Iso. 1.72E5 5.01E5 1.99E6 2.16E6

SPD Ani. 1.03E6 3.81E6 1.09E6 1.95E6

SPD Affine 40415 78494 1.04E6 1.84E6

QR Iso. 412 771 1341 1409

QR Ani. 1004 1985 2287 2562

QR Affine 217 328 1002 1716

PQR Iso. 481 738 1306 1381

PQR Ani. 1004 1985 981 1321

PQR Affine 208 290 269 1115

PQR Affine, Ch2 105 163 695 877

PQR Affine, Geg 56 85 379 438

With the fourth-order results, the general matrix inversion methods results should not be trusted

with these condition numbers. Looking at the matrix decomposition methods, the Pivoting QR

method is slightly better than the QR, as with the third-order results in Table 7.5. The Affine

method bests the isotropic weighted method by having condition numbers half as large. Further-

more, the Gegenbauer basis Affine MLS condition number is four times smaller than the average

condition number of the general monomial Affine MLS. Reviewing all of the results from Ta-

bles 7.4-7.7, the Affine MLS reconstruction method results in a major improvement to the con-

dition number of the moment matrix M over the standard method, and when combined with the

Pivoting QR method, reduces the maximum condition number of the mesh by a significant number

as well. The isotropic weighted MLS results compare reasonably well to the Affine MLS results,
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so if the costs associated with building the Affine MLS are too much, then the isotropic results

using either QR method would be acceptable. As with the TGV grids, using an orthogonal basis is

beneficial to the condition of M.

Next the condition number of the moment matrix M on an inviscid grid used for a bump in

channel. The grid investigated is a medium and fine grid for each order. The grid in the x − y

plane is [x, y] = [33, 129] nodes for the medium grid , while the fine grid has [x, y] = [65, 257]

nodes in the x − y plane. In the z-direction, the grids have 4, 6, or 8 nodes for second-, third-, or

fourth-order. Figures 7.3 and 7.4 show the medium and fine meshes, respectively. .
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Figure 7.3: Medium Mesh for Bump-in-Channel Case.
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Figure 7.4: Fine Mesh for Bump-in-Channel Case.

Ghost node condition numbers are included as this is a bounded flow. Since these grids are

structured, it would be expected that all of the weighting methods should have roughly the same

performance. The condition number results for the second-order case 7.8.
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Table 7.8: Average & Maximum Condition Number of M on Bump-in-Channel Grids: 2nd-Order
MLS.

Method Weight

Mesh Type

Medium Fine

Main Ghost Main Ghost

avg max avg max avg max avg max

SPD Iso. 989 1456 3788 4627 2204 2493 6185 6277

SPD Ani. 1635 4648 3668 4560 6502 7488 12942 13365

SPD Affine 925 1241 3663 4564 925 1230 3670 3786

QR Iso. 31 36 61 62 47 50 79 79

QR Ani. 41 86 60 62 81 91 114 119

QR Affine 30 37 60 61 30 34 61 62

PQR Iso. 31 36 60 62 45 50 79 79

PQR Ani. 40 63 60 62 80 84 113 116

PQR Affine 30 33 60 61 30 32 61 62

PQR Affine, Ch2 15 17 30 31 15 17 30 31

PQR Affine, Geg 8 9 15 16 8 9 15 16

The second-order results in Table 7.8 show that all of the methods have acceptable condition

numbers for M. Both decomposition methods are effectively identical for both the medium and

fine grids. The Affine MLS method produces the best condition numbers, with the Gegenbauer

basis Affine MLS having average condition numbers about four times smaller than the general

monomial basis Affine MLS. For the fine grid, the Affine MLS has average condition numbers 1.5

times smaller than the isotropic weighted MLS. The third-order results are presented in Table 7.9
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Table 7.9: Average & Maximum Condition Number of M on Bump-in-Channel Grids: 3rd-Order
MLS.

Method Weight

Mesh Type

Medium Fine

Main Ghost Main Ghost

avg max avg max avg max avg max

SPD Iso. 1611 3001 2.27E5 3.26E5 1438 2372 2.09E5 2.22E5

SPD Ani. 4881 10038 3.53E5 3.79E5 3751 6189 2.95E5 3.04E5

SPD Affine 1042 1723 2.01E5 2.78E5 1038 1723 2.05E5 2.12E5

QR Iso. 42 63 489 590 40 57 469 490

QR Ani. 73 110 608 711 64 93 552 567

QR Affine 34 46 462 558 34 47 461 473

PQR Iso. 41 61 461 490 40 53 454 474

PQR Ani. 72 102 584 618 63 76 539 553

PQR Affine 33 43 442 468 34 42 450 463

PQR Affine, Ch2 39 47 429 456 40 49 437 448

PQR Affine, Geg 20 23 185 196 20 24 188 193

As with the previous cases, the third-order results show that the general matrix inversion condi-

tion numbers begin becoming poor for the ghost nodes. The main mesh condition numbers are still

reasonable, being less than 1E4. The decomposition methods have condition numbers thirty times

smaller than the general methods, and the Pivoting QR method is again slightly better than the QR

method. The Affine MLS condition numbers for both the medium and fine grids are about 1.25

times smaller than the isotropic weighted MLS. The Gegenbauer basis Affine MLS is about 1.5

times smaller than the general Affine MLS. The ghost node condition numbers for the Gegenbauer

basis Affine MLS are a about 2.5 times smaller than the general Affine MLS ghost node condition
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numbers. The fourth-order condition numbers are presented in Table 7.10 and 7.11.

Table 7.10: Average & Maximum Condition Number of M on Bump-in-Channel Grids: 4th-Order
MLS, Medium Mesh.

Method Weight
Main Ghost

avg max avg max

SPD Iso. 2.79E5 7.78E5 6.39E6 1.20E7

SPD Ani. 1.16E6 3.20E6 6.01E6 1.47E7

SPD Affine 41127 78494 5.72E6 1.19E7

QR Iso. 550 1011 2348 2976

QR Ani. 1049 1869 2267 317

QR Affine 213 328 2212 3387

PQR Iso. 542 819 2321 2956

PQR Ani. 1047 1756 2239 2819

PQR Affine 212 290 2179 2682

PQR Affine, Ch2 104 163 1459 1744

PQR Affine, Geg 53 92 795 942
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Table 7.11: Average & Maximum Condition Number of M on Bump-in-Channel Grids: 4th-Order
MLS, Fine Mesh.

Method Weight
Main Ghost

avg max avg max

SPD Iso. 72654 23519 2.91E5 1.39E6

SPD Ani. 98095 5.02E5 5.47E6 1.06E7

SPD Affine 40909 83442 96109 5.88E5

QR Iso. 284 543 561 1132

QR Ani. 351 845 2158 2590

QR Affine 213 334 2144 2384

PQR Iso. 278 450 2147 2272

PQR Ani. 319 696 2138 2359

PQR Affine 212 290 2123 2277

PQR Affine, Ch2 103 175 1422 1461

PQR Affine, Geg 53 95 776 798

As with the previous cases, the general method condition numbers are unacceptably large. The

decomposition method condition numbers are at best almost 200 times smaller than the general

decomposition methods. Both the QR and Pivoting QR methods produce similar condition num-

bers. The Affine MLS method has condition numbers half as large as the isotropically weighted

methods. The Gegenbauer basis Affine MLS is again the best, with a condition number 4 times

smaller than the monomial Affine MLS. The ghost node condition numbers for the Gegenbauer

basis Affine MLS are about 2.7 times smaller than the monomial Affine MLS. Reviewing all of

the results from Tables 7.8-7.11, the Affine MLS reconstruction method again has the best overall

results, with the lowest condition numbers of M. Using the orthogonal basis will result in the best

results. As with the NSCBC grids, the isotropic weighted MLS results compare reasonably well to
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the Affine MLS results, so if the costs associated with building the Affine MLS are too much, then

the isotropic results using either QR method would be acceptable. As with the TGV grids, using

an orthogonal basis is beneficial to the condition of M.

Finally, the grid used for a flat-plate case is investigated. This grid is structured, but unlike the

previous cases, the grid is refined near the wall and leading edge. The grid for the flat-plate case is

shown in Figure 7.5.
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Figure 7.5: Meshes Used for Laminar Flat Plate Case. Leading Edge is Highlighted Area of Main
Mesh.

The plate length is x = 0.025m. The y+ number near the leading-edge is approximately 1,

and the cells are grown at a rate of 1.2 from the wall. Cells are equally spaced normal to the

characteristic boundaries. In the z−direction, the grids have 4, 6, or 8 nodes for second-, third-, or

fourth-order over z = [0, 10−3] m. Ghost node condition numbers are included as this is a bounded

flow. Table 7.12 shows the computed condition numbers for the second-order flat plate grid.
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Table 7.12: Average & Maximum Condition Number of M on Laminar Flat Plate Grids: 2nd-Order
MLS.

Method Weight

Node

Main Ghost

avg max avg max

SPD Iso. 8.45E5 1.47E8 7.95E6 3.15E8

SPD Ani. 9.20E7 3.73E10 2.71E9 7.22E10

SPD Affine 944 977 3661 3779

QR Iso. 304 12166 1388 17747

QR Ani. 2407 1.94E5 24134 2.68E5

QR Affine 31 32 61 62

PQR Iso. 304 12166 1388 17747

PQR Ani. 2407 1.94E5 24134 2.68E5

PQR Affine 31 32 61 62

PQR Affine, Ch2 15 17 30 31

PQR Affine, Geg 8 9 15 16

The general matrix inversion method produces poor results at the outset, unlike the previous

cases. However, the Affine MLS general matrix inversion condition numbers are fairly reasonable.

The anisotropic weighted methods have large maximum condition numbers. Even the isotropic

weighed matrix decomposition maximum condition numbers are somewhat large. The Affine MLS

built with the matrix decomposition methods are the best, with the condition numbers thirty times

smaller than the general matrix inversion method. The Gegenbauer basis Affine MLS produces the

best results, as with the previous cases. The third-order grid results are presented in Table 7.13.
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Table 7.13: Average & Maximum Condition Number of M on Laminar Flat Plate Grids: 3rd-Order
MLS.

Method Weight

Node

Main Ghost

avg max avg max

SPD Iso. 1.28E14 5.63E16 1.15E16 2.56E17

SPD Ani. 7.92E14 4.36E17 1.31E16 2.77E18

SPD Affine 1263 1973 7.38E5 1.08E6

QR Iso. 1.77E6 3.24E8 5.69E6 5.49E8

QR Ani. 3.55E6 7.14E8 2.31E7 1.79E9

QR Affine 39 48 966 1356

PQR Iso. 1.34E6 2.40E8 4.86E6 5.15E8

PQR Ani. 3.25E6 6.73E8 2.08E7 1.70E8

PQR Affine 39 48 810 1003

PQR Affine, Ch2 46 54 773 949

PQR Affine, Geg 23 28 334 407

Using anything other than the Affine MLS method produces large condition numbers for M,

as shown in Table 7.13. Even when using the QR or Pivoting QR method, the usually reliable

isotropically weighted MLS has condition numbers over 108, at which point the inverse is most

likely useless. The condition number for the Affine MLS with QR or Pivoting QR are in the

30-40 range for the main nodes and less than 1000 for the ghost nodes. The Gegenbauer basis

Affine MLS again produces the lowest condition numbers. Table 7.14 presented the fourth-order

condition numbers of M.
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Table 7.14: Average & Maximum Condition Number of M on Laminar Flat Plate Grids: 4th-Order
MLS.

Method Weight

Node

Main Ghost

avg max avg max

SPD Iso. 2.42E22 1.45E25 3.54E23 7.89E25

SPD Ani. 2.61E23 1.46E26 4.16E24 5.72E26

SPD Affine 84320 1.48E5 5.43E6 9.28E6

QR Iso. 1.60E9 5.38E11 1.03E10 9.38E11

QR Ani. 4.75E9 1.44E12 4.13E10 2.86E12

QR Affine 309 430 2163 2994

PQR Iso. 1.27E10 3.86E12 8.25E10 9.08E12

PQR Ani. 4.15E9 1.24E13 3.73E11 2.46E13

PQR Affine 307 418 2111 2840

PQR Affine, Ch2 161 260 1290 1679

PQR Affine, Geg 92 157 764 966

The non-Affine MLS condition numbers are absolutely terrible, and in no way ever should

these methods be used for these types of grids. On the other hand, the Affine MLS methods have

condition numbers that are excellent, and are only 10 times larger than the third-order condition

numbers in Table 7.13. Reviewing all of the results from Tables 7.12-7.14, the Affine MLS recon-

struction method proves it is the only feasible method to reconstruct gradients on these types of

grids. The condition numbers for any of the other methods are so large the inverses computed from

them are worthless. Using the orthogonal basis generates lower condition numbers for M.

Overall, the Affine MLS method consistently produces the lowest condition number on all

the meshes presented. While the isotropically weighed MLS will sometimes produce comparable
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condition numbers, the Affine MLS should be used since it’s performance is mesh independent.

Also, using an orthogonal basis produces a lower condition number for M without any additional

cost. For the cases presented here, the QR and Pivoting QR method have similar condition num-

bers, though the Pivoting QR method always produces lower condition numbers, and should be

used when building the MLS system regardless of the method. Finally, as was shown here, a gen-

eral matrix inversion method should never be used, as it always produces the largest conditioned

systems.

7.2 Boundary Conditions

This section presents results for the boundary conditions discussed in Section 5.4. First, results

for the periodic boundary conditions presented in Section 7.2.1 are presented. Next, the implemen-

tation of Navier–Stokes Characteristic Boundary Conditions discussed in Sections 5.4.2.3-5.4.2.6.

The section concludes with applications on an inviscid bump-in-channel flow and a laminar flat-

plate.

7.2.1 Higher-Order Periodic Boundary Conditions

This section presents three cases highlighting the improved periodic boundary conditions of

presented herein. Good periodic boundaries should be Corder+1 continuous and not distort the flow.

The cases presented herein are:

• 2D TGV: 7.2.1.1

• Stationary Vortex: 7.2.1.2

As mentioned previously, these boundary conditions have been used and published in Freno et al.

[53], Freno et al. [54] and Krath et al. [93]. The results presented herein will focus on the differ-

ences between the original and new periodic boundaries with the 2D TGV case. Additionally, the

boundaries will be used to aid in showing the differing dissipation rates for a stationary vortex.
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7.2.1.1 2D Taylor–Green Vortex

This section presents the results for a two-dimensional Taylor–Green Vortex. The 2D TGV flow

is used to show the effectiveness of the new periodic boundaries, and compare the new paradigm

to the old periodic boundary description. The case is a good test for the periodic boundaries as

the classical Taylor–Green Vortex (TGV) problem described by the 4th International Workshop on

High-Order CFD Methods, requires Corder+1 continuous periodic boundaries for simulation. This

is a two-dimensional version of the flow, described by:

u = V0 sin
x

L
cos

y

L
(7.1)

v = −V0 cos
x

L
sin

y

L
(7.2)

w = 0 (7.3)

p = p0 +
ρ0V

2
0

16

((
cos

2x

L
+ cos

2y

L

))
(7.4)

where V0, p0, and ρ0 are the initial reference states and L is the length of the domain. The domain

is a periodic box defined as −πL ≤ x, y ≤ πL, where L is the characteristic length, and z =

[0− 0.001]m. The initial flow conditions are given in Table 7.15.

Table 7.15: Initial Conditions for 2D TGV Case.

Quantity Value Units

Freestream Mach No., M∞ 0.10 -

Reynold No., Re 1600 -

Characteristic Length, L 1 m

Freestream Temperature, T0 300 K

Dynamic Viscosity, µ 1.716× 10−5 kg/(m s)
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The Mach number is defined as

M0 =
V0

c0

(7.5)

where the sound speed c0 determined from the initial uniform temperature field T0. The meshes

used in this section are scaled versions of the NSCBC grids shown in Figure 7.2, but with all the

boundaries being periodic. The flow is simulated using a CFL = 0.25. The initial pressure field

with velocity vectors is shown in Figure 7.6.

Figure 7.6: Initial Pressure Contour and Velocity Vectors for the 2D TGV Case.

Figure 7.6 highlights the vortical structures, showing the periodic nature of the flow. As this is

only a case to highlight the improvements to the boundaries, and since the third- and fourth-order

results do not show any differences from the improved second-order results, only second-order

results for the old and new periodic boundaries are shown. Figure 7.7 shows the results after

10000 iterations.
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(a) Old Boundaries (b) New Boundaries

Figure 7.7: Comparison of Pressure Contours and Velocity Vectors for the 2D TGV Case with the
Old and New Periodic Boundaries.

Figure 7.7 clearly shows the distortions caused by the old periodic boundaries in the vortexes.

It is interesting that the velocity field appears unaffected, so for non-vortex dominated flows it is

possible the old boundaries might fair well. However, the issues with the old boundaries also affect

the time step. Since the volumes are approximately half (or a quarter for the corners) what they

should be, the time step for an unsteady case is incorrect when using the old boundary. What causes

the pressure rise or fall near the old periodic boundaries is primarily a due to the geometric issues

discussed in Section 5.4.1, namely the edge-based area. This error alone destroys the accuracy

of the fluxes at the boundaries, leading to the errors seen in Figure 7.7. The gradients not being

Corder+1 continuous does contribute to the error as well, but not as significantly as the geometric

problems. The new periodic boundaries, being Corder+1 continuous, represent a huge improvement

to the flow field and to the solver as a whole, allowing for complex periodic flows to be simulated

correctly.
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7.2.1.2 Stationary Vortex

This section presents the results of a stationary vortex using the Moving Least-Squares method-

ology to compute gradients. The vortex, in the absence of a background flow, should only degrade

due to numerical dissipation. Higher-order methods typically have much less numerical dissipa-

tion, and this case is designed to show the improvement due to the increased accuracy. The flow

was initialized by the vortex equations described by Balsara & Shu [7]. The equations are:

r =
√

(x− xc)2 + (yc − y)2

α = e1−r2

β =
β

2π
√
γ
e

1
2

(1−r2)

∆T = −αβ
2(γ − 1)

8γπ2
(7.6)

T = T0 + ∆T

u = u0 + β(yc − y)

v = v0 + β(x− xc)

ρ = e
lnT
γ−1

P =
eγ ln ρ

γ

where β is the vortex strength, (xc, yc) is the location of the vortex center. The initial Mach contours

are given in Figure 7.8.
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Figure 7.8: Initial Mach Contours of the Stationary Vortex Described by Balsara & Shu [7].

The case was simulated with β = 1, T0 = 1, and (u0, v0) = 0. The case was run steady

and inviscid for 1000 iterations. The case was simulated on two structured meshes, both of which

were [0 − 10]3 with nodal discretizations of 333 and 663 with all boundaries modeled as periodic.

Figures 7.9(a) and 7.9(b) show both of the meshes used in this case.
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Figure 7.9: Meshes Used for Stationary Vortex Case.
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Figures 7.10 show the resulting Mach contours after 1000 iterations on the 333 mesh.

(a) 1st Order (b) 2nd Order

(c) 3rd Order (d) 4th Order

Figure 7.10: 1st − 4th-Order Stationary Vortex Results.

Figure 7.10(d) clearly shows that the fourth-order simulation has the least numerical dissipa-

tion, while Figure 7.10(a) shows that the first-order simulation completely destroys the vortex. It is

much more difficult to discern differences between the second and third-order results, but they are
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certainly in between the first and fourth-order results. To gain a better perspective of the results,

the vortex decay rates for both meshes are examined using using (7.6). The vortex strength β is

computed as a function of the number of iterations, and these results are presented for each order

and mesh in Figures 7.11(a) and 7.11(b).
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Figure 7.11: Vortex Strength as a Function of Iterations for Stationary Vortex Case for Each Mesh.

As with the Mach contours, it is clear that the fourth-order code shows the least decay of the

vortex, while the first shows the most for both meshes. Surprisingly, the second-order code shows
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slightly less decay of the vortex than the third-order code. When further looking at the maximum

Mach numbers of the resulting flow, summarized in Table 7.16, we see that for the 333 mesh, the

second-order code has a higher maximum Mach number than the third-order code. However, as

one would expect, the third-order code has a higher maximum Mach number than the second-order

code on the 663 mesh. It is therefore a toss-up based on these results if the second or third-order

code is better, and this warrants further study. It is fair to conclude that the fourth-order code works

as advertised, producing the best results by far for the stationary vortex case. Further studies of the

true accuracy of the code are necessary to confirm the overall accuracy of the code for each of the

specified orders.

Table 7.16: Maximum Mach Number for the Stationary Vortex Case.

Mesh Size

Order 333 663

Max Mach No.

Exact .1347

1 .0365 .0592

2 .1038 .1318

3 .1023 .1323

4 .1226 .1345

7.2.2 Navier–Stokes Characteristic Boundary Conditions with Ghost Nodes

This section presents results for the Navier–Stokes Characteristic Boundary Condition. To

test the NSCBC, a vortex is convected out of the domain at speed M∞. This case was described

by Granet et al. [70], specifically case C. The vortex is defined using the stream function:

Ψ(x) = βe
(x−xc)2+(y−yc)2

2R2 (7.7)
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where (xc, yc) is the vortex center (defined here as (0, 0)), R is the radius of the vortex, and β is

the vortex strength. The velocity field is defined as:

u =
∂Ψ

∂y

v = −∂Ψ

∂x

Umax =
β

R
√
e

(7.8)

The pressure is defined as:

p = p∞ −
ρβ2

2R2
e

(x−xc)2+(y−yc)2

R2 (7.9)

where p∞ is the reference pressure. The grids used herein were shown in Figure 7.2. Unlike Granet

et al. [70], the top and bottom boundaries are not periodic, but instead the far-field boundaries

defined in Section 5.4.2.5, since the characteristic boundaries are coupled as described in Sec-

tion 5.4.2.6. The boundaries in the xy-plane are defined as periodic boundaries. The flow parame-

ters for this case are defined in Table 7.17

Table 7.17: Initial Conditions for NSCBC Case.

Quantity Value Units

Freestream Mach No., M∞ 0.28 -

Freestream Velocity, uo 10 m/s

Pressure, p∞ 101325 Pa

Vortex Strength, β 0.11 m2/s

Radius, R 0.005 m
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For each order and grid, the axial velocity and the normalized pressure:

p∗(x, t∗) =
p(x, t∗)− p∞
p(0, 0)− p∞

= −(p(x, t∗)− p∞)
2R2

ρΓ2
(7.10)

are plotted at the outlet x = L
2

at the non-dimensional time

t∗ =
t

τ
=

2uot

L
(7.11)

at t∗ = [1.25, 1.43, 1.5, 1.75]. The normalized pressure contours and velocity iso-contours are

also plotted at t∗ = [0, 0.45, 1.12, 1.43]. Three cases are presented: the full NSCBC, the NSCBC

without transverse terms, and the full NSCBC with fully-diffuse MLS derivatives. The results are

presented for second- through fourth-orders. First-order results are not shown as the flow is too

dissipative to correct translate the vortex out of the domain. When viewing the results, t∗ = 1.75

is considered the time when the vortex has completely left the domain.

7.2.2.1 Full Derivatives with Transverse Terms

The first set of cases compute the full MLS derivatives described in Section 5.1.5.1 and the

transverse terms in the NSCBC described in Sections 5.4.2.3- 5.4.2.6.

7.2.2.1.1 Second-Order Figure 7.12 shows the second-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.12: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order Full NSCBC on the Structured Mesh.

As the vortex leaves the domain, the velocity iso-contours do not appear to be distorted at
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all. The pressure field does appear to slightly amplify at the outlet and ‘slug’ downward in Fig-

ure 7.12(c) at t∗ = 1.12 within the ghost domain. However, by t∗ = 1.43 none of higher amplitude

information has traveled upstream and has disappeared from the ghost domain. This slugging is

effectively a numerical energy sink to keep reflections minimized. So while it may appear that

the vortex is amplified outside of the domain, this really is of little concern since the NSCBC

equations presented in Sections 5.4.2.3- 5.4.2.6 are designed this way. From here onward in the

NSCBC, when an amplification is seen in the ghost region (or the so-called slugging effect), it is

of no ill-concern but rather desired and expected. The pressure and velocity profiles at the outlet

are shown in Figures 7.13 and 7.14.
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Figure 7.13: Non-Dimensional Pressure at Outlet: 2nd-Order Full NSCBC on the Structured Mesh.
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Figure 7.14: Non-Dimensional Velocity Profiles at Outlet: 2nd-Order Full NSCBC on the Struc-
tured Mesh.

From Figure 7.13, the pressure at t∗ = 1.25 is non-symmetric. However, the remaining non-

dimensional pressure profiles are symmetric and decreasing with time to a ‘flat’ profile at t∗ =

1.75. The velocity profiles in Figure 7.14 are symmetric and centered at approximately y = 0, as

well as decreasing through the time period. Figure 7.15 shows the second-order unstructured mesh

results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.15: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order Full NSCBC on the Unstructured Mesh.

The unstructured mesh results appear qualitatively similar to the second-order structured re-
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sults, with the same ‘slugging’ at t∗ = 1.12 as the vortex exits the domain as shown in Fig-

ure 7.15(c). The velocity iso-contours remain intact and virtually non-distorted as the vortex exits

the domain. The pressure and velocity profiles at the outlet are shown in Figures 7.16 and 7.17.
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Figure 7.16: Non-Dimensional Pressure at Outlet: 2nd-Order Full NSCBC on the Unstructured
Mesh.
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Figure 7.17: Non-Dimensional Velocity Profiles at Outlet: 2nd-Order Full NSCBC on the Unstruc-
tured Mesh.

As with the structured mesh, Figure 7.16 shows that pressure at t∗ = 1.25 is non-symmetric.

However, the remaining non-dimensional pressure profiles are symmetric and decreasing with time

to a ‘flat’ profile at t∗ = 1.75. The velocity profiles in Figure 7.17 are symmetric and centered at

approximately y = 0, as well as decreasing through the time period.

It is also illustrative to compare the old boundary conditions described in Chapter 4 to the

NSCBC boundary conditions described in Sections 5.4.2.3-5.4.2.6 of Chapter 5. For results using

the numerical methods of Chapter 4, the inlet and outlet boundary conditions are nonreflecting

using Riemann invariants [12, Chapter 8], and the far-field boundary is effectively a symmetry

boundary. The gradients are computed using the LSQR method [91]. Figure 7.18 shows the

second-order structured mesh results with the boundary conditions of Chapter 4.

418



(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.18: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order Old Boundary Conditions on the Structured Mesh.

As the vortex attempts to leave the domain, the vortex effectively is ‘smashed’ into the outlet,
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reflecting back most of the information upstream rather than down. This is readily apparent in

Figure 7.18(c), where the velocity contours are stretched out along the boundary with large pressure

packets now present upstream of the outlet. The pressure and velocity profiles for each boundary

condition are compared in Figures 7.19 and 7.20.
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Figure 7.19: Non-Dimensional Pressure at Outlet: Comparison of 2nd-Order Boundary Conditions
on Structured Mesh.
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Figure 7.20: Non-Dimensional Velocity Profiles at Outlet: Comparison of 2nd-Order Boundary
Conditions on Structured Mesh.

If one where to examine Figure 7.19 only, the old boundaries would appear to be better than

the NSCBC in terms of outlet pressure magnitude. However, recalling that the vortex has not

fully left the domain until t∗ = 1.75, the velocity profiles from the old boundaries observed in

Figure 7.20 are clearly wrong, since the velocity is effectively the freestream. The pressures are

low at the outlet with the old boundaries since the information is mostly reflected back upstream.

Figure 7.12 clearly shows the effectiveness of using the NSCBC and improvement over the old

boundary conditions.

7.2.2.1.2 Third-Order Figure 7.21 shows the third-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.15 (d) t∗ = 1.43

Figure 7.21: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 3rd-Order Full NSCBC on the Structured Mesh.

The structured third-order results appear to produce similar results to the second-order results

422



shown previously in Figure 7.21. The slugging in the pressure field is still apparent at t∗ = 1.12, but

has disappeared at t∗ = 1.43. The velocity iso-contours remain fairly uniform as the vortex leaves

the domain. The energy increase observed in the ghost region in Figure 7.21 is what facilitates

the non-reflecting nature of the boundary conditions, acting as a energy sink. The pressure and

velocity profiles at the outlet are shown in Figures 7.22 and 7.23.
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Figure 7.22: Non-Dimensional Pressure at Outlet: 3rd-Order Full NSCBC on the Structured Mesh.
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Figure 7.23: Non-Dimensional Velocity Profiles at Outlet: 3rd-Order Full NSCBC on the Struc-
tured Mesh.

From Figure 7.22, the pressure at t∗ = 1.25 is non-symmetric. The pressure profiles for the

next two time periods are nearly identical, but the pressure profile at the end of the period is ’flat’.

The velocity profiles in Figure 7.23 are symmetric and centered at approximately y = 0, as well as

decreasing to nearly the freestream velocity at the end of the time period. Figure 7.24 shows the

third-order unstructured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.24: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 3rd-Order Full NSCBC on the Unstructured Mesh.

The unstructured mesh results are, as with the previous cases, nearly identical to the struc-
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tured results, with the pressure slugging at t∗ = 1.12. The pressure and velocity profiles for the

unstructured mesh are shown in Figures 7.25 and 7.26.
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Figure 7.25: Non-Dimensional Pressure at Outlet: 3rd-Order Full NSCBC on the Unstructured
Mesh.
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Figure 7.26: Non-Dimensional Velocity Profiles at Outlet: 3rd-Order Full NSCBC on the Unstruc-
tured Mesh.

The unstructured profiles in Figures 7.25 and 7.26 have the same trends as those seen on the

structured mesh results shown in Figures 7.22 and 7.23. Effectively, the results on the boundaries

only differ because of the internal unstructured mesh, which will add additional dissipation to the

simulation decreasing the strength of the vortex that actually reaches the boundary compared to

the structured mesh.

7.2.2.1.3 Fourth-Order Figure 7.27 shows the fourth-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.27: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 4th-Order Full NSCBC on the Structured Mesh.

For the fourth-order results, the non-dimensional pressure at t∗ = 1.12 is in the ghost region is
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large, approximately one. However, if these results are compared to second- and third-order results

in Figures 7.12 and 7.21, the non-dimensional pressure just inside the domain is qualitatively

similar for each case. As mentioned earlier, this increase in energy in the ghost region is what

facilitates the non-reflecting nature of the boundary conditions, as this acts as an energy sink.

Figures 7.28 and 7.29 show the pressure and velocity profiles at the outlet fourth-order structured

mesh.

-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
y [m]

-0.10

-0.05

0.00

0.05

0.10

p*
 [-

]

t* = 1.25
t* = 1.42
t* = 1.5
t* = 1.75

Non-Dimensional Pressure Profile at Outlet, 4th Order

Figure 7.28: Non-Dimensional Pressure at Outlet: 4th-Order Full NSCBC on the Structured Mesh.
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Figure 7.29: Non-Dimensional Velocity Profiles at Outlet: 4th-Order Full NSCBC on the Struc-
tured Mesh.

Figures 7.28 and 7.29 show that the fourth-order results are similar to the second- and third-

order results shown in Figures 7.13 and 7.14 and Figures 7.22 and 7.23. In addition to observing

all of the same trends as the third-order profiles shown in Figure 7.22, the magnitude of the peak

non-dimensional pressure is only about p∗ = 0.1 at the outlet. Furthermore, as with all the previous

cases, the outlet does not appear to send any large pressure waves upstream. The results verify that

the boundary conditions are not pushing excessive energy upstream. Additionally, the boundary

conditions are effective at maintaining the velocity profiles of the vortex as shown in Figure 7.29.

Figure 7.30 shows the fourth-order unstructured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.30: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 4th-Order Full NSCBC on the Unstructured Mesh.

These results are again similar to the structured results as shown in Figure 7.27, where as men-
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tioned earlier, the results only differ due to the added dissipation produced from the unstructured

mesh. Figures 7.31 and 7.32 show the pressure and velocity profiles for the unstructured mesh.
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Figure 7.31: Non-Dimensional Pressure at Outlet: 4th-Order Full NSCBC on the Unstructured
Mesh.
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Figure 7.32: Non-Dimensional Velocity Profiles at Outlet: 4th-Order Full NSCBC on the Unstruc-
tured Mesh.

The unstructured profiles in Figures 7.31 and 7.32 have the same trends as those seen on the

structured mesh results shown in Figures 7.28 and 7.29. Again, the results on the boundaries

only differ because of the internal unstructured mesh, which adds additional dissipation to the

simulation decreasing the strength of the vortex that actually reaches the boundary as compared

to the structured mesh. If there was any significant difference between the two results, it would

then be due to the internal scheme. As demonstrated by this section, the NSCBC produce low

reflections and allow for efficient information transfer out of the domain for any order, which is

necessary for accurate simulations.

7.2.2.2 Fully-Diffuse Derivatives with Transverse Terms

These cases testing the NSCBC include the transverse terms in the NSCBC, but use the fully-

diffuse MLS derivatives described in Section 5.1.5.3. Second- through fourth-order results are

presented. Results are shown on the structured and unstructured meshes, but as discussed in the

previous section, the results should be similar since the boundaries are effectively the same for

each mesh.
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7.2.2.2.1 Second-Order Figure 7.33 shows the second-order structured mesh results.

(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.33: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order Full NSCBC on the Structured Mesh with Diffuse Derivatives.
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The results presented in Figure 7.33 are very similar to those shown in Figure 7.12 for the full

derivatives. The pressure and velocity profiles are shown in Figure 7.34 and 7.35.
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Figure 7.34: Non-Dimensional Pressure at Outlet: 2nd-Order Full NSCBC on the Structured Mesh
with Diffuse Derivatives.
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Figure 7.35: Non-Dimensional Velocity Profiles at Outlet: 2nd-Order Full NSCBC on the Struc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.34 and 7.35 are qualitatively similar to the results using the

full derivatives, as shown in Figures 7.13 and 7.14. This shows that the use of diffuse derivatives

does not affect the flow field, as expected based on the results in Chapter 6. Figure 7.15 shows the

second-order unstructured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.36: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order Full NSCBC on the Unstructured Mesh with Diffuse Derivatives.

As with the structured meshes, the unstructured mesh results shown in Figure 7.36 are similar
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to those for the full derivatives shown in Figure 7.15. The pressure and velocity profiles are shown

in Figure 7.37 and 7.38.
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Figure 7.37: Non-Dimensional Pressure at Outlet: 2nd-Order Full NSCBC on the Unstructured
Mesh with Diffuse Derivatives.
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Figure 7.38: Non-Dimensional Velocity Profiles at Outlet: 2nd-Order Full NSCBC on the Unstruc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.37 and 7.38 are qualitatively similar to structured mesh results

shown in Figures 7.34 and 7.35. As with the full-derivative results in the previous section, the

differences between the structured and unstructured mesh are a result of the added dissipation

from the unstructured mesh.

7.2.2.2.2 Third-Order Figure 7.39 shows the third-order structured mesh results.

439



(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.15 (d) t∗ = 1.43

Figure 7.39: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 3rd-Order Full NSCBC on the Structured Mesh with Diffuse Derivatives.

The results presented in Figure 7.39 are qualitatively similar to those shown in Figure 7.21
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for the full derivatives, as expected based on the results in Chapter 6. The pressure and velocity

profiles are shown in Figures 7.40 and 7.41.
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Figure 7.40: Non-Dimensional Pressure at Outlet: 3rd-Order Full NSCBC on the Structured Mesh
with Diffuse Derivatives.
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Figure 7.41: Non-Dimensional Velocity Profiles at Outlet: 3rd-Order Full NSCBC on the Struc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.40 and 7.41 are qualitatively similar to the results using the

full derivatives, as shown in Figures 7.22 and 7.23. This shows that the use of diffuse derivatives

does not affect the flow field. Figure 7.42 shows the third-order unstructured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.42: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 3rd-Order Full NSCBC on the Unstructured Mesh with Diffuse Derivatives.

As with the structured meshes, the unstructured mesh results shown in Figure 7.42 are similar
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to those for the full derivatives shown in Figure 7.24. The pressure and velocity profiles are shown

in Figure 7.43 and 7.44.
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Figure 7.43: Non-Dimensional Pressure at Outlet: 3rd-Order Full NSCBC on the Unstructured
Mesh with Diffuse Derivatives.
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Figure 7.44: Non-Dimensional Velocity Profiles at Outlet: 3rd-Order Full NSCBC on the Unstruc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.43 and 7.44 are qualitatively similar to structured mesh re-

sults shown in Figures 7.40 and 7.41. As with second-order results, any difference between the

structured and unstructured mesh are a result of the added dissipation from the unstructured mesh.

7.2.2.2.3 Fourth-Order Figure 7.45 shows the fourth-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.45: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 4th-Order Full NSCBC on the Structured Mesh with Diffuse Derivatives.

The results presented in Figure 7.45 are qualitatively similar to those shown in Figure 7.27
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for the full derivatives, as expected based on the results in Chapter 6. The pressure and velocity

profiles are shown in Figures 7.46 and 7.47.
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Figure 7.46: Non-Dimensional Pressure at Outlet: 4th-Order Full NSCBC on the Structured Mesh
with Diffuse Derivatives.
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Figure 7.47: Non-Dimensional Velocity Profiles at Outlet: 4th-Order Full NSCBC on the Struc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.46 and 7.47 are qualitatively similar to the results using the

full derivatives, as shown in Figures 7.28 and 7.29. This shows that the use of diffuse derivatives

does not affect the flow field. Figure 7.48 shows the fourth-order unstructured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.48: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 4th-Order Full NSCBC on the Unstructured Mesh with Diffuse Derivatives.

As with the structured meshes, the unstructured mesh results shown in Figure 7.48 are similar

449



to those for the full derivatives shown in Figure 7.30. The pressure and velocity profiles are shown

in Figure 7.49 and 7.50.
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Figure 7.49: Non-Dimensional Pressure at Outlet: 4th-Order Full NSCBC on the Unstructured
Mesh with Diffuse Derivatives.
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Figure 7.50: Non-Dimensional Velocity Profiles at Outlet: 4th-Order Full NSCBC on the Unstruc-
tured Mesh with Diffuse Derivatives.

The profiles shown in Figures 7.49 and 7.50 are qualitatively similar to structured mesh results

shown in Figures 7.46 and 7.47. As with second- and third-order results, any difference between

the structured and unstructured mesh are a result of the added dissipation from the unstructured

mesh.

7.2.2.3 Full Derivatives without Transverse Terms

This section presents the results of the vortex exiting the domain using the NSCBC conditions

excluding the transverse terms. Second- through fourth-order results are presented, but unlike the

previous two sections, only the structured mesh results are presented. Unstructured mesh results

are omitted since the boundary conditions are the same for each, and therefore the results would

be redundant.

7.2.2.3.1 Second-Order Figure 7.51 shows the second-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.51: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 2nd-Order NSCBC without Transverse Terms on the Structured Mesh.

The second-order scheme has a more coherent vortex, which means it has more energy to send
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upstream into the domain when not using the transverse terms, as seen in Figure 7.51. Additionally,

at t∗ = 0.45 the outlet boundary ‘reaches out’ to the vortex and drags in toward the outlet. The

velocity iso-contours are also distorted at the outlet as the vortex passes through the domain. This

can be clearly seen in the velocity and pressure profiles shown in Figures 7.52 and 7.53.
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Figure 7.52: Non-Dimensional Pressure at Outlet: 2nd-Order NSCBC without Transverse Terms
on the Structured Mesh.
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Figure 7.53: Non-Dimensional Velocity Profiles at Outlet: 2nd-Order NSCBC without Transverse
Terms on the Structured Mesh.

The maximum peak non-dimensional pressure is approximately p∗ = 0.6 at t∗ = 1.25, seen

in Figure 7.52. Additionally, the pressure in the later time periods is largest near the edges of the

domain. The velocity profile at t∗ = 1.25 seen in Figure 7.53 also shows a double peak velocity

which is unphysical. Neglecting the transverse terms is extremely detrimental to the flow, and the

transverse terms must be included for vortex dominated flows.

7.2.2.3.2 Third-Order Figure 7.54 shows the third-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.15 (d) t∗ = 1.43

Figure 7.54: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 3rd-Order NSCBC without Transverse Terms on the Structured Mesh.

The third-order results without the transverse terms appears to generate a lobe of upstream
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traveling vorticity. The upward traveling lobe also appears to have a larger peak non-dimensional

pressure than the second-order results shown in Figure 7.51. The velocity and pressure profiles

shown in Figures 7.55 and 7.56 collaborate this observation.
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Figure 7.55: Non-Dimensional Pressure at Outlet: 3rd-Order NSCBC without Transverse Terms
on the Structured Mesh.
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Figure 7.56: Non-Dimensional Velocity Profiles at Outlet: 3rd-Order NSCBC without Transverse
Terms on the Structured Mesh.

As with the second-order results of Figure 7.52, the maximum peak non-dimensional pressure

is approximately p∗ = 0.6 at t∗ = 1.25 for the third-order results of Figure 7.55. Additionally,

the pressure in the later time periods is largest near the edges of the domain, where the vorticity

lobes have been forced toward the edges of the domain. The velocity profile at t∗ = 1.25 seen

in Figure 7.56 also shows a double peak velocity which is unphysical. The profiles are larger

for the third-order case, so by neglecting the transverse terms the detrimental effect is worse with

higher-order simulations.

7.2.2.3.3 Fourth-Order Figure 7.57 shows the fourth-order structured mesh results.
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(a) t∗ = 0 (b) t∗ = 0.45

(c) t∗ = 1.12 (d) t∗ = 1.43

Figure 7.57: Non-Dimensional Pressure Contours and Velocity Iso-Contours of Vortex Exiting
Domain: 4th-Order NSCBC without Transverse Terms on the Structured Mesh.

As with the fourth-order NSCBC including the transverse terms results shown in Figure 7.27,
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the non-dimensional pressure is largest for the fourth-order results. However, the highest-peak

pressure for these results is much larger than the peak pressure for the fourth-order results which

include transverse terms. A sizable upstream traveling lobe (p∗ ∈ [0.2 − 0.3]) is generated by the

outlet, and the upward traveling lobe is rather large. The velocity and pressure profiles shown in

Figures 7.58 and 7.59 collaborate this observation.
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Figure 7.58: Non-Dimensional Pressure at Outlet: 4th-Order NSCBC without Transverse Terms on
the Structured Mesh.
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Figure 7.59: Non-Dimensional Velocity Profiles at Outlet: 4th-Order NSCBC without Transverse
Terms on the Structured Mesh.

Examining the pressure profiles in Figure 7.58, the peak pressure is p∗ ≈ 0.7. Additionally, the

pressure in the later time periods is again largest near the edges of the domain, where the vorticity

lobes have been forced toward the edges of the domain. The velocity profile at t∗ = 1.25 seen in

Figure 7.59 also shows an unphysical double peak velocity. The profiles are similar to the third-

order case shown in Figure 7.56. Neglecting the transverse terms is again shown to be extremely

detrimental to the flow for higher-order simulations.

7.2.2.4 Section Review

This section reviews the results of the NSCBC boundary condition tests using the vortex de-

scribed by (7.8). Before diving into the results containing the transverse terms, the results presented

in Section 7.2.2.3 for the NSCBC excluding the transverse terms should be mentioned. For vor-

tex dominated flows, the transverse terms should always be included. As highlighted here, failing

to include the transverse terms will produce large upstream traveling lobes of vorticity that will

be detrimental to overall results. It should be mentioned that sometimes not including the trans-

verse terms may be preferred, but this is generally on a case-by-case basis. The NSCBC without
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transverse term results compare similarly to the results presented by Granet et al. [70] as BC1.

Comparing the results using the transverse terms, the full derivative MLS results presented

in Section 7.2.2.1 are not different than those obtained for the fully-diffuse MLS derivatives in

Section 7.2.2.2. This basically follows from the 2D MLS studies presented in Chapter 6. This

proves that if situation arises, such as a moving-mesh situation, the fully-diffuse MLS derivatives

will produce the same results as those obtained using the more expensive full MLS derivatives.

As far as the effectiveness of the NSCBC boundaries, the NSCBC presented here compare

favorably with those discussed by Granet et al. [70]. If comparing the results of Granet et al. [70],

which are third-order, to the third-order results herein, the peak pressures at the outlet appears to

be similar to Granet et al. [70] at t∗ = 1.75. For the earlier times, the peak pressure reported herein

is difficult to compare to that of Granet et al. [70] conditions BC2 and BC3, since the scale is not

discernible. For all of the results reported the ‘slugging’ is unique to the ghost node NSCBC. This

only happens within the ghost domain, so while this may be happening with the results of Granet

et al. [70], the ghosts visualize the exterior effect of the NSCBC. Interestingly, it does not affect

the upstream travel of information.

7.2.3 Bump in a Channel: Mach = 0.2

This section presents the results of subsonic flow over a bump in a channel with freestream

Mach numbers M = 0.2. The grid is structured, with the grid near the wall orthogonal to the

boundary. The grids used were shown in Figures 7.3 and 7.4. The flow parameters for this case are

defined in Table 7.18

Table 7.18: Initial Conditions for Bump-in-Channel M = 0.2 Case.

Quantity Value Units

Freestream Mach No., M∞ 0.2 -

Temperature, T∞ 288.15 K

Pressure, p∞ 101325 Pa
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The CFL for this case is 0.5, and the flows are run as close to convergence as possible. For

results using the numerical methods of Chapter 4, herein referred to as standard, the inlet and outlet

boundary conditions are nonreflecting using Riemann invariants [12, Chapter 8], and the far-field

boundary is effectively a symmetry boundary. The LSQR method is used for the gradients for the

standard boundary results [91]. For the results using the numerical method, including ghost nodes,

of Chapter 5, the inlet, outlet, and far-field boundary conditions are NSCBC boundary conditions

a described in Sections 5.4.2.3-5.4.2.6. Figures 7.60-7.64 show the contours for (ρ, u, v, p,M) of

both the ghost and standard boundary conditions for the medium meshes.

(a) Ghost

(b) Standard

Figure 7.60: u−Velocity Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2
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(a) Ghost

(b) Standard

Figure 7.61: v−Velocity Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2

463



(a) Ghost

(b) Standard

Figure 7.62: Mach Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2
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(a) Ghost

(b) Standard

Figure 7.63: Density Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2
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(a) Ghost

(b) Standard

Figure 7.64: Pressure Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2

On visual inspection, there appears to be only minor differences between the ghost results and

those with the standard boundary conditions. Some noticeable differences include the density and

pressure contours in Figures 7.63 and 7.64, where the standard far-field boundary tends to ‘pull’ the

field up to the boundary while the ghost boundary is more uniform. The remaining boundaries seem

similar for both cases, with the ghost boundary condition results not as strong as those produced

from the standard boundaries. The finer grid results are presented in Figures 7.65-7.69 to see if

results for the medium grids are similar to the finer grids.
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(a) Ghost

(b) Standard

Figure 7.65: u−Velocity Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.
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(a) Ghost

(b) Standard

Figure 7.66: v−Velocity Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.
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(a) Ghost

(b) Standard

Figure 7.67: Mach Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.
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(a) Ghost

(b) Standard

Figure 7.68: Density Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.
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(a) Ghost

(b) Standard

Figure 7.69: Pressure Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.

As with the medium grid results, the finer grid results do not appear significantly different. The

far-field boundary again ‘pulls’ the information up toward to boundary in the standard case, and

the ghost case has a more uniform field. The question should then be asked, is there any benefit to

using ghost nodes? The residual plots for the medium grid are shown in Figure 7.70.
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Figure 7.70: Residuals for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.

The ghost boundaries converge nearly ten times faster than the standard boundary condition.

Figure 7.71 shows the residuals for the finer mesh.
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Figure 7.71: Residuals for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.2.

The ghost boundaries converge at approximately one-hundred thousand iterations, while even

at nearly 1.5 million iterations, the standard boundaries have not converged. Why do the ghost

node boundaries converge so much better than the standard boundaries? The obvious place to

check first is the far-field boundaries. Figures 7.72 and 7.73 show the first 900 iterations of the

simulation on the fine mesh.
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Figure 7.72: Comparison of Initial Startup for Bump-in-Channel M = 0.2 Case: Iterations 0-400.
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Figure 7.73: Comparison of Initial Startup for Bump-in-Channel M = 0.2 Case: Iterations 500-
900.
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The initial field is uniform, and by iteration 100 large pressure waves have formed and are

moving away from the bump. The flow fields are similar up to iteration 300. At iteration 400, the

pressure waves have reached the far-field boundary. The ghost boundary has allowed the waves

to exit the boundary undisturbed. The standard boundaries, however, have generated a reflection

that will propagate downward into the domain. Viewing Figure 7.73, the ghost boundaries have

allowed the waves to travel relatively undisturbed for both iterations 500 and 600, such that the

downstream traveling wave has left the domain effectively undisturbed. The standard boundaries

at those times, however, have generated a large reflection at the outlet of the domain that now

begins to travel upstream and will interact with the waves generated from the far-field boundary.

For the remaining iterations (700-900) shown here, the standard boundary conditions bounce the

pressure waves around the domain. The ghost boundaries, however, nearly eliminate the initially

generated waves, though some are reflected back downstream from the inlet. This, though, is

expected and required to ensure the freestream conditions are maintained.

With the standard boundaries are so reflective, the large numerical waves initially generated

at the start of the simulation effectively are trapped in the domain and bounce around until they

dampen out, if they ever really do. If these boundaries were fixed in the standard configuration,

does the standard wall boundary out-perform the ghost wall boundary? Recall that at the wall

boundary, the wall normal pressure gradient should be 0 (5.165), except on a curved wall, where

the normal pressure gradient is a function of radius of curvature, as given by (5.167). Figure 7.74

shows a comparison of the wall normal pressure gradient for both the medium and fine cases for

each boundary type.
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Figure 7.74: Comparison of Wall-Normal Pressure Gradient for Bump-in-Channel Case: M = 0.2.

First, the on bump surface, both ghost boundary wall pressure gradients are the same, since

the boundary condition is prescribed by (5.167). The standard boundary wall normal pressures are

not, nor are they centered on the bump, which for this low speed should not be the case. There

appears to be a noticeable difference on the wall behind the bump as well. Figure 7.75 shows the

pressure on the back half of the domain.
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Figure 7.75: Comparison of Wall-Normal Pressure Gradient for Bump-in-Channel Case: M = 0.2,
Trailing Edge of Domain.

The ghost node boundary has a zero-gradient boundary, since it is prescribed. The standard

boundary condition never does for both the medium and fine case, which is incorrect. Near the

outlet of the domain, the standard boundary condition has an increase in the wall normal pressure.

This can be linked to the fact that the wall is not extended beyond the domain and that the outlet

does not account for the wall, leading to a mismatch at the intersection of the boundaries. From

this case, it is fairly clear the ghost node solutions is superior to the standard boundary solutions.
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7.2.4 Bump in a Channel: Mach = 0.6

This section presents the results of subsonic flow over a bump in a channel with freestream

Mach numbers M = 0.6. The grid is structured, with the grid near the wall orthogonal to the

boundary. The grids used were shown in Figures 7.3 and 7.4. The flow parameters for this case are

defined in Table 7.19

Table 7.19: Initial Conditions for Bump-in-Channel M = 0.6 Case.

Quantity Value Units

Freestream Mach No., M∞ 0.6 -

Temperature, T∞ 288.15 K

Pressure, p∞ 101325 Pa

The CFL for this case is 0.5, and the flows are run as close to convergence as possible. For

results using the numerical methods of Chapter 4, herein referred to as standard, the inlet and outlet

boundary conditions are nonreflecting using Riemann invariants [12, Chapter 8], and the far-field

boundary is effectively a symmetry boundary. The LSQR method is used for the gradients for the

standard boundary results [91]. For the results using the numerical method, including ghost nodes,

of Chapter 5, the inlet, outlet, and far-field boundary conditions are NSCBC boundary conditions

a described in Sections 5.4.2.3-5.4.2.6. Figures 7.76-7.80 show the contours for (ρ, u, v, p,M) of

both the ghost and standard boundary conditions for the medium meshes.
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(a) Ghost

(b) Standard

Figure 7.76: u−Velocity Contours for Medium Mesh Bump-in-Channel Case: 2nd-OrderM = 0.6.
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(a) Ghost

(b) Standard

Figure 7.77: v−Velocity Contours for Medium Mesh Bump-in-Channel Case: 2nd-OrderM = 0.6.

481



(a) Ghost

(b) Standard

Figure 7.78: Mach Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.79: Density Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.80: Pressure Contours for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.

On visual inspection, there appears to be only minor differences between the ghost results and

those with the standard boundary conditions. Some noticeable differences include the density and

pressure contours in Figures 7.63 and 7.64, where the standard far-field boundary tends to ‘pull’ the

field up to the boundary while the ghost boundary is more uniform. The remaining boundaries seem

similar for both cases, with the ghost boundary condition results not as strong as those produced

from the standard boundaries. The finer grid results are presented in Figures 7.81-7.85 to see if

results for the medium grids are similar to the finer grids.
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(a) Ghost

(b) Standard

Figure 7.81: u−Velocity Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.82: v−Velocity Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.83: Mach Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.84: Density Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.
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(a) Ghost

(b) Standard

Figure 7.85: Pressure Contours for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.

As with the medium grid results, the finer grid results do not appear significantly different. The

far-field boundary again ‘pulls’ the information up toward to boundary in the standard case, and

the ghost case has a more uniform field. The question should then be asked, is there any benefit to

using ghost nodes? The residual plots for the medium grid are shown in Figure 7.86.
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Figure 7.86: Residuals for Medium Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.

The ghost boundaries converge nearly ten times faster than the standard boundary condition.

Figure 7.87 shows the residuals for the finer mesh.
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Figure 7.87: Residuals for Fine Mesh Bump-in-Channel Case: 2nd-Order M = 0.6.

The ghost boundaries converge at approximately one-hundred thousand iterations, while even

at nearly 1.5 million iterations, the standard boundaries have not converged. Why do the ghost

node boundaries converge so much better than the standard boundaries? The obvious place to

check first is the far-field boundaries. Figures 7.88 show the first 400 iterations on the fine mesh.
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Figure 7.88: Comparison of Initial Startup for Bump-in-Channel M = 0.6 Case: Iterations 0-400.

For the first 400 iterations, there is no appreciable difference to the flows using the ghost or

standard boundaries, with the initial pressure waves generated by iteration 100. Figure 7.89 shows

iterations 500-900.
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Figure 7.89: Comparison of Initial Startup for Bump-in-Channel M = 0.6 Case: Iterations 500-
900.

At iteration 500, the waves have reached both the far-field and outlet boundary. The standard

boundary has generated a downward traveling wave in addition to an upstream traveling wave,

whereas the ghost boundary has allowed the wave to generally pass undisturbed. By iteration 900,

the upstream traveling wave has not yet reached the inlet. The standard boundary has amplified
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the upstream traveling waves, with the wave front nearly reaching the bump. Figure 7.90 shows

iterations 1000-1400.

Ghost Standard

1000

1100

1200

1300

1400

Figure 7.90: Comparison of Initial Startup for Bump-in-Channel M = 0.6 Case: Iterations 1000-
1400.

The leading upstream traveling pressure wave finally reaches the inlet boundary at approxi-
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mately iteration 1400. The ghost boundary produces some reflection at that point near the inlet, but

since the inlet is not a pure non-reflecting boundary, this is expected. As for the standard boundary

results, additional waves are generated and amplified as the various waves impact the boundaries

and intersect one another. By iteration 1400, the upstream traveling wave generated by the far-field

boundary at iteration 400 has finally reached the inlet. Figure 7.91 shows iterations 1400-1900. At

iteration 1500, the ghost boundary generates an increase in pressure at the inlet/far-field interface,

but that is washed out by iteration 1700 with only some information traveling downstream at the

end of the period. As for the standard boundary conditions, the upstream wave begins leaving the

inlet and is mostly gone by iteration 1800. However, the flow field is still very much plagued by

pressure waves throughout the domain. Overall, as with the slower Mach = 0.2 flow, the ghost

boundaries nearly eliminate the initially generated waves with some downstream reflection at the

inlet. The standard boundaries generate significant noise, which corrupts the solution and causes

convergence to take a much longer time.
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Figure 7.91: Comparison of Initial Startup for Bump-in-Channel M = 0.6 Case: Iterations 1400-
1900.
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The wall boundaries are inspected to see if the wall normal pressure gradient condition of (5.165)

and (5.167) is met in Figure 7.92 for each mesh.
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Figure 7.92: Comparison of Wall-Normal Pressure Gradient for Bump-in-Channel Case: M = 0.6.

As observed in Figure 7.74, the standard boundary condition has a non-zero pressure gradient

on the bottom of the channel, with the ghost boundaries maintaining the prescribed conditions.

Figure 7.93 shows the pressure on the back half of the domain.
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Figure 7.93: Comparison of Wall-Normal Pressure Gradient for Bump-in-Channel Case: M = 0.6
Trailing Edge of Domain.

The ghost node boundary has a zero-gradient boundary, since it is prescribed. The standard

boundary condition has a rather large normal pressure gradient at the end of the channel. As with

the Mach = 0.2 case, this error for the standard boundary condition is a result of the wall is not

extended beyond the domain and that the outlet does not account for the wall, leading to a mismatch

at the intersection of the boundaries. From this case, it is fairly clear the ghost node solutions is

superior to the standard boundary solutions.

7.2.5 Laminar Flat Plate

This section presents results comparing the standard boundary conditions described in Chap-

ter 4 to the ghost boundary conditions presented in Chapter 5 for adiabatic and isothermal wall

boundaries for a second-order simulation. Both wall boundaries use the mesh shown in Figure 7.5.

The flow parameters are given in Table 7.20.
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Table 7.20: Initial Conditions for Laminar Flat Plate Case.

Quantity Value Units

Freestream Mach No., M∞ 0.3 -

Temperature, T∞ 288.15 K

Pressure, p∞ 101325 Pa

Isothermal Wall Temperature, Twall 315 K

The flow is steady, and the CFL = 0.8. The Affine MLS method using k = 0.8 and a

monomial basis is utilized for the ghost boundaries, and the LSQR method is used for the standard

boundaries [91]. The grid used herein was shown in Figure 7.5, which has a y+ ≈ 1 at the leading-

edge of the plate and a cell-growth ratio of 1.2 normal to the plate. For results using the numerical

methods of Chapter 4, the inlet and outlet boundary conditions are nonreflecting using Riemann

invariants [12, Chapter 8], and the far-field boundary is effectively a symmetry boundary. For the

results using the numerical method, including ghost nodes, of Chapter 5, the inlet, outlet, and far-

field boundary conditions are NSCBC boundary conditions a described in Sections 5.4.2.3-5.4.2.6.

The results for all of the methods are compared to the exact solution of Blasius for a compressible

laminar flat plate [167, Chapter 7].

7.2.5.1 Adiabatic Laminar Flat Plate

This section presents the results comparing the standard and ghost boundary conditions for the

adiabatic wall boundary condition. The flow fields are compared at the leading edge of the plate

for the standard boundaries, ghost boundaries, and ghost boundaries using the viscous flux stencils

described in Section 5.3.2 (VF = 3). The u−velocity is presented in Figure 7.94
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Ghost Ghost: VF = 3 Standard

Figure 7.94: u−Velocity Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

Both ghost boundaries have a smaller region of slower flow leading up to the plate compared to

the standard boundary. Additionally, the flow field above the plate appears to reach the freestream

velocity sooner than the standard boundary. The v−velocity is shown next in Figure 7.95

Ghost Ghost: VF = 3 Standard

Figure 7.95: v−Velocity Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

The wall normal velocity is similar between both the ghost the standard boundary. The ghost

boundary using the viscous stencil has two noticeable features. First, the area of v− velocity is
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smaller than the other two cases. Additionally, there appears to be some disturbances coming from

the leading edge traveling upstream for this case. This is most likely due to the symmetry/wall

interface, which is an unphysical boundary. The higher-order viscous flux reconstruction is less

forgiving in this situations, and when performing third- or fourth-order simulations this interface

may best be avoided to circumvent numerical issues. Figure 7.96 shows the Mach contours.

Ghost Ghost: VF = 3 Standard

Figure 7.96: Mach Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

Both ghost boundaries slow the flow down less before reaching the plate compared to the stan-

dard boundary, with the VF = 3 ghost boundary results having the smallest slow down. Figure 7.97

compares the density contours.
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Ghost Ghost: VF = 3 Standard

Figure 7.97: Density Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

The density contours between both ghost methods are similar, with the standard boundary again

showing a larger impact on the flow at the leading edge. Figure 7.98 compares the temperatures at

the leading edge.

Ghost Ghost: VF = 3 Standard

Figure 7.98: Temperature Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

As with the density, the temperature field is near the leading edge is heated less with the ghost
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boundary results when compared to the standard boundary. Some instability near the leading edge

(non-smooth contour) is also present with the ghost results, but as stated earlier, this is probably

due to the unphysical interaction of the symmetry and wall boundaries. Figure 7.99 presents the

pressure contours.

Ghost Ghost: VF = 3 Standard

Figure 7.99: Pressure Contours at Leading-Edge of Laminar Adiabatic Flat Plate.

The instability caused by the unphysical symmetry/wall boundary interface is most apparent in

the pressure contours of the ghost boundaries. It would appear that the VF = 3 ghost results have

a smaller instability. The residuals should show the instability of the flow. Figure 7.100 shows the

residuals for each of the methods.
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Figure 7.100: Residuals for Laminar Adiabatic Flat Plate.

Rather interestingly, the methods all tend to converge at roughly the same rate. Some issues,

though, for the VF = 3 ghost results do appear, as the w− velocity stalls at only -11, which is

probably indicative of the instability. Figure 7.101 compares the axial boundary layer velocities

for each of the methods at x =2.39E-3 m
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Figure 7.101: Comparison of u−Velocity Boundary Layer Profile for the Laminar Adiabatic Flat
Plate.

First, the standard boundary least matches Blasius profile and fails to reach the predicted max-

imum velocity. The ghost boundary condition using the original viscous flux has a similar profile

to that of the standard boundary conditions, but does reach the maximum velocity predicted by

Blasius. The VF = 3 ghost boundary conditions match almost exactly the Blasius profile. This

leads the reader to draw the following conclusion: how the boundary is defined seems to have less

of an impact than the viscous flux reconstruction strategy. The obvious reason for this is that the

standard reconstruction method is less accurate, but it may also be more dissipative. This is hard

to prove here, but can be shown later when solving the TGV cases. The v−velocity profiles are

shown next in Figure 7.102.
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Figure 7.102: Comparison of v−Velocity Boundary Layer Profile for the Laminar Adiabatic Flat
Plate.

All of the methods do not accurately predict the wall normal velocity in the boundary layer.

Both the standard and ghost boundary over-predict the velocity, while the VF = 3 ghost boundary

results under-predict the velocity. This would point to a possible need to further study the enforce-

ment of wall-normal velocity. However, since the v− velocity is orders of magnitude smaller than

the u−velocity so the error should not have a sizable impact on the overall solution. Finally, the

thermal profiles are shown in Figure 7.103.
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Figure 7.103: Comparison of Thermal Boundary Layer Profile for the Laminar Adiabatic Flat
Plate.

As with the u−velocity profile, the ghost boundaries do a better job at modeling the thermal

profile in the boundary layer. Both ghost methods reach the freestream temperature, while the

standard boundary does not. The VF = 3 ghost boundary results actually does a respectable job of

following the Blasius solution. If the instability could be removed, that is the inlet is given a profile

and the symmetry boundary is removed, the VF = 3 ghost results would probably do even better at

modeling the thermal profile. The last thing to check is the wall-normal temperature gradient, dT
dn

.

Recall that for an adiabatic wall boundary, dT
dn

should be zero. Figure 7.104 compares the dT
dn

for

each boundary method.
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Figure 7.104: Comparison of Wall-Normal Temperature Gradient dT
dn

for the Laminar Adiabatic
Flat Plate Case.

The ghost boundary methods have temperature gradients on the order of 10−9, so still not quite

zero but reasonably close to it. The standard boundary condition, though, at best has a minimum

gradient on the order of 0.01. In fact, one could argue that the standard boundary condition does

not model an adiabatic wall. It may produce results that in some cases are similar to an adiabatic

wall, but as shown in Figure 7.104, it is not, so any convergence advantage it may have over the

ghost methods is moot. Overall, two things should be apparent from these results. First, the ghost

boundaries are true adiabatic conditions. Second, the higher-order viscous flux does a much better

job of modeling the near-wall flow than the viscous flux presented in Section 4.2.2.

7.2.5.2 Isothermal Laminar Flat Plate

This section presents the results comparing the standard and ghost boundary conditions for the

isothermal wall boundary condition with a wall temperature of Twall = 315K. The flow fields are
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compared at the leading edge of the plate for the standard boundaries, ghost boundaries, and ghost

boundaries using the viscous flux stencils described in Section 5.3.2 (VF = 3). The u−velocity is

presented in Figure 7.105

Ghost Ghost: VF = 3 Standard

Figure 7.105: u−Velocity Contours at Leading-Edge of Laminar Isothermal Flat Plate.

Both ghost boundaries have a smaller region of slower flow leading up to the plate compared to

the standard boundary. Additionally, the flow field above the plate appears to reach the freestream

velocity sooner than the standard boundary. The v−velocity is shown next in Figure 7.106

Ghost Ghost: VF = 3 Standard

Figure 7.106: v−Velocity Contours at Leading-Edge of Laminar Isothermal Flat Plate.
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The wall normal velocity is similar between both the ghost the standard boundary. The ghost

boundary using the viscous stencil has two noticeable features. First, the area of v− velocity is

smaller than the other two cases. Additionally, there appears to be some disturbances coming from

the leading edge traveling upstream for this case. This is most likely due to the symmetry/wall

interface, which is an unphysical boundary. The higher-order viscous flux reconstruction is less

forgiving in this situations, and when performing third- or fourth-order simulations this interface

may best be avoided to circumvent numerical issues. Figure 7.107 shows the Mach contours.

Ghost Ghost: VF = 3 Standard

Figure 7.107: Mach Contours at Leading-Edge of Laminar Isothermal Flat Plate.

Both ghost boundaries slow the flow down less before reaching the plate compared to the

standard boundary, with the VF = 3 ghost boundary results having the smallest slow down. Fig-

ure 7.108 compares the density contours.
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Ghost Ghost: VF = 3 Standard

Figure 7.108: Density Contours at Leading-Edge of Laminar Isothermal Flat Plate.

The density contours between both ghost methods are similar, with the standard boundary again

showing a larger impact on the flow at the leading edge. Figure 7.109 compares the temperatures

at the leading edge.

Ghost Ghost: VF = 3 Standard

Figure 7.109: Temperature Contours at Leading-Edge of Laminar Isothermal Flat Plate.

As with the density, the temperature field is near the leading edge is heated less with the ghost

boundary results when compared to the standard boundary. Some instability near the leading edge
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(non-smooth contour) is also present with the ghost results, but as stated earlier, this is probably

due to the unphysical interaction of the symmetry and wall boundaries. Figure 7.110 presents the

pressure contours.

Ghost Ghost: VF = 3 Standard

Figure 7.110: Pressure Contours at Leading-Edge of Laminar Isothermal Flat Plate.

Unlike the adiabatic results shown in Figure 7.99, there does not appear to be a noticeable dis-

turbance in the pressure field just above the wall for the ghost boundary results. That would point

to the isothermal boundaries being more stable than the adiabatic boundary conditions. This fol-

lows from the fact that the wall temperature is directly specified. Figure 7.111 shows the residuals

for each of the methods.
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Figure 7.111: Residuals for Laminar Isothermal Flat Plate.

Rather interestingly, the methods all tend to converge at roughly the same rate. As with the

adiabatic case, shown in Figure 7.100, w− velocity stalls at only -11 for the VF = 3 ghost boundary

results. This is again indicative of an underlying instability. Figure 7.112 compares the axial

boundary layer velocities for each of the methods at x = 2.39E-3 m. .
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Figure 7.112: Comparison of u−Velocity Boundary Layer Profile for the Laminar Isothermal Flat
Plate.

First, the standard boundary performs the worst of the three methods. However, unlike the

adiabatic case, the VF = 3 ghost boundary profile does not match the Blasius solution. It is the best

of the three methods, however. The ghost boundary condition using the original viscous flux has a

similar profile to that of the standard boundary conditions, but does reach the maximum velocity

predicted by Blasius. The v−velocity profiles are shown next in Figure 7.113.
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Figure 7.113: Comparison of v−Velocity Boundary Layer Profile for the Laminar Isothermal Flat
Plate.

All of the methods do not accurately predict the wall normal velocity in the boundary layer.

All of the methods under-predict the velocity. Also worth noting, the standard boundary condi-

tion shows a decreasing wall-normal velocity soon after reaching the maximum value, which is

incorrect. Overall, the v− velocity is orders of magnitude smaller than the u−velocity so the error

shown here should not have a sizable impact on the overall solution. Finally, the thermal profiles

are shown in Figure 7.114.
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Figure 7.114: Comparison of Thermal Boundary Layer Profile for the Laminar Isothermal Flat
Plate.

As with the u−velocity profile, the ghost boundaries do a better job at modeling the thermal

profile in the boundary layer. Both ghost methods reach the freestream temperature, while the

standard boundary comes just short. The VF = 3 ghost boundary results produces the best profile

compared to the Blasius solution. This may point to some additional work being required for the

isothermal wall, but it is difficult to determine the wall normal thermal gradient a priori. The last

thing to check and compare is the wall-normal temperature gradient, dT
dn

. Figure 7.115 compares

the dT
dn

for each boundary method.
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Figure 7.115: Comparison of Wall-Normal Temperature Gradient dT
dn

for the Laminar Isothermal
Flat Plate Case.

All three methods have similar wall-normal temperature gradients. The standard method has

the largest thermal gradient, while the ghost boundary methods slightly lower values. Both ghost

boundary results have the same thermal gradient near the leading edge of the plate, but diverge

from one another after about x = 0.002m. For isothermal walls, the ghost boundaries produce

overall better results than the standard boundaries, and using the higher-order viscous flux does a

much better job of modeling the near-wall flow than the viscous flux presented in Section 4.2.2, as

was the case for the adiabatic laminar flat plate.

7.3 Taylor–Green Vortex

This section presents the benchmarking results of the Implicit Large-Eddy Simulation model.

The classical Taylor–Green Vortex (TGV) problem described by the 4th International Workshop

on High-Order CFD Methods was used to benchmark to determine the performance characteristics
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of the ILES model [20]. The TGV flow field is described as:

u = V0 sin
x

L
cos

y

L
cos

z

L
(7.12)

v = −V0 cos
x

L
sin

y

L
cos

z

L
(7.13)

w = 0 (7.14)

p = p0 +
ρ0V

2
0

16

((
cos

2x

L
+ cos

2y

L

)(
cos

2z

L
+ 2

))
(7.15)

where V0, p0, and ρ0 are the initial reference states and L is the length of the domain. The domain

is a periodic square box defined as −πL ≤ x, y, z ≤ πL, where L = 1. The Reynolds number

for the TGV is Re = ρ0V0L
µ

= 1600. The Mach number is M0 = V0

c0
= 0.10, with a sound

speed c0 determined from the initial uniform temperature field T0 = 300 K. The dynamic viscosity

is µ = 1.716 × 10−5 kg
m s. The results presented herein where generated on meshes shown in

Figure 7.1 using a CFL = 0.25. The initial flow field is shown in Figure 7.116.
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Figure 7.116: Initial Flow Field for the Taylor–Green Vortex Case.
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The results are presented for second- through fourth-order comparing the turbulent kinetic

energy:

k =
1

ρ0Ω

∫
Ω

ρ
v · v

2
dΩ (7.16)

computed for each case to full resolution spectral results [20]. Figure 7.117 shows the second-order

results.

0 2 4 6 8 10
Non-dimensional Time, t [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Tu
rb

ul
en

t K
in

et
ic

 E
ne

rg
y, 

k 
[m

^2
/s

^2
]

Reference Data, 512^3 Spectral
17^3 Structured: VF 3
17^3 Structured: VF 2
17^3 Structured: VF 1
17^3 Unstructured: VF 3
17^3 Unstructured: VF 2
17^3 Unstructured: VF 1
33^3 Structured: VF 3
33^3 Structured: VF 2
33^3 Structured: VF 1
33^3 Unstructured: VF 3
33^3 Unstructured: VF 2
33^3 Unstructured: VF 1

Turbulent Kinetic Energy for Taylor—Green Vortex: 2nd Order

Figure 7.117: Comparison of the Turbulent Kinetic Energy for Coarse Meshes: 2nd-Order.

Even with the limited data available, some important conclusions can be drawn. First, it is read-

ily apparent that the baseline viscous flux reconstruction described in Section 4.2.2 is extremely

dissipative. In fact, the vortexes have fully dissipated within a few thousand iterations (or less than

t∗ = 0.25 for all of the meshes. This is more support for the dissipation hypothesis discussed

Section 7.2.5.1. As one would also expect, the finer case has less dissipation. Additionally, the
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unstructured mesh has more dissipation than the structured case, which is also to be expected.

Finally, both of the higher-order viscous flux reconstructions produce nearly the same level of dis-

sipation, which is good since the full reconstruction (VF = 3) is more expensive to compute than

the extrapolation method (VF = 2). Figure 7.118 shows the third-order results.
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Figure 7.118: Comparison of the Turbulent Kinetic Energy for Coarse Meshes: 3rd-Order.

Again, the baseline viscous flux reconstruction is overly dissipative and should not be used. The

full viscous flux reconstruction was not used here as the method is too slow to run sequentially.

As shown previously in Section 7.2.1.2, the third-order results tend to be more dissipative than the

second-order results. Though barely noticeable, the 333 results appear to produce less dissipation

than the 173 results. It should be noted that these results have been obtained after running for

several months, so it is clear that any further work on higher-order methods should be carried out
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after parallelizing the code. Figure 7.119 shows the fourth-order results.
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Figure 7.119: Comparison of the Turbulent Kinetic Energy for Coarse Meshes: 4th-Order.

Unfortunately, there is not much that can be gleamed from the fourth-order results alone. How-

ever, some conclusions can be drawn from Figure 7.120, which compares results for each order on

the 173 mesh.
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Figure 7.120: Comparison of the Turbulent Kinetic Energy for 173 Meshes.

As shown previously in Section 7.2.1.2, the fourth-order method is the least dissipative whereas

the third-order results are the most dissipative. The unstructured results also are more dissipative

than the structured results. For these simulations, the unstructured results take significantly longer

to acquire due to the smaller cell sizes. While it would be interesting to know how different the

results would be overall between the structured and unstructured meshes, this cannot be carried out

until the code is parallelized.

7.4 Summary

The focus of this chapter was on the usage of the MLS method to compute the gradients for

more practical three-dimensional meshes and the application of MLS with ghost nodes for the

boundary conditions. Reviewing Section 7.1, the results of Chapter 6 carry over. The results of

Section 7.1 show that the Pivoting QR method will generally produce the best conditioned system
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regardless of the weighting strategy. Additionally, the Affine MLS, when coupled with the Gegen-

bauer basis, will produce significantly better conditioned moment matrix M. This is especially true

for the laminar flat plate grids (or stretched grids) shown in Figure 7.5, where for any order over

second, only the Affine MLS strategy produced moment matrices M with condition numbers even

remotely acceptable. The other weighting strategies produce extremely ill-conditioned systems.

In fact, from these results, one could speculate that the Affine MLS could overcome most mesh

deficiencies, which arise from either user error in generating the mesh or from the requirements of

the geometry. Some additional work needs to be performed to see how much of a beneficial affect

the Affine MLS has on these types of mesh topologies.

The ghost node boundary conditions have a marked improvement on the flow, as shown in Sec-

tions 7.2.2, 7.2.3 7.2.4, and 7.2.5. In terms of the NSCBC ghost boundary results of Section 7.2.2,

the conditions perform well at convecting out the vortex, for any order. When compared to the

Riemann invariant based boundary conditions shown in Figures 7.15-7.17, the ghost boundary

conditions show their worth. Having the ghost node allows more control with the characteris-

tics than the Riemann invariants, which effectively smash the downstream traveling vortex and

throw the information upstream. The NSCBC results also show that using the diffuse derivatives

to compute the flow gradients have negligible differences between the full derivatives, as shown in

Section 7.2.2.2. This is a great result, as there are situations (moving meshes) when using diffuse

derivatives is beneficial to save computational time.

The ghost boundaries show their greatest benefit though for the bump-in-channel cases of Sec-

tions 7.2.3 and 7.2.4. The ghost boundary condition results converge significantly faster than the

standard boundary conditions due to the usage of the NSCBC significantly reducing the reflections

in the domain. Additionally, the ghost boundary conditions for the wall are actually zero-normal

pressure gradient, as shown in Figures 7.75 and 7.93. Having the ghost node allows the user to

correctly prescribe the boundaries, unlike the standard boundary conditions.

The laminar flat plate results of Section 7.2.5 also show how well the ghost boundary condi-

tions perform compared to the standard boundary conditions. Specifically, the adiabatic flat plate
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using ghost nodes correctly has a zero-normal thermal gradient, whereas the standard boundary

conditions are incorrect, as shown in Figure 7.104. For both the adiabatic and isothermal flat plate

cases with ghost nodes, the boundary layer profiles are closer to the Blasius solutions than the

standard boundary condition. The direct viscous flux computes the best results for either case. It is

speculated that the difference between the viscous fluxes is a result of excessive dissipation. This

is backed up by the results for the second-order TGV case in Section 7.3, which show the standard

viscous flux dissipating all of the turbulent kinetic energy soon after the simulation started. Finally,

the TGV case showed that the higher-order schemes produce lower dissipation than the second-

order scheme, but additional work in parallelizing the higher-order method needs to be performed

before extracting more significant information from the case.
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8. CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions from results obtained herein from this dissertation. This

chapter concludes with suggestions for future work based upon this dissertation.

8.1 Conclusions

In this dissertation, a higher-order unstructured finite volume computational fluid dynamics

model was implemented using Moving Least-Squares as the main backbone of the method. The

full method was developed in the historical context of the state-of-the-art CFD methods, and the

case was made for developing the higher-order method. Due to current limitations, the Moving

Least-Squares method was selected to overcome mesh topology limitations present in other meth-

ods. However, as it was shown herein, the Moving Least-Squares method as shown has it’s own

set of limitations. To this effect, the Affine MLS method was developed. The Affine MLS method,

as shown herein, produced significantly lower condition numbers for the MLS moment matrix

M. Without the Affine MLS method, computing accurate gradients would be impossible for some

mesh topologies. In conjunction with the Affine MLS method, an anisotropic weighting scheme

was developed using the MVEE algorithm. This weighting scheme does a better job at describing

the relative locations of nodes in stencils than the general isotropic weighting scheme. Finally, a

Pivoting QR method was implemented, which helped reduce the condition number of the MLS

systems.

The MLS method was analyzed using four analytic two-dimensional functions. Effectively,

the method produces accurate results on structured and unstructured meshes. On stretched grids,

the results were accurate for the Gaussian, but not for the other functions when performing a

fourth-order reconstruction. This is interesting because it gives a clear indication that the higher-

order derivatives of C can be detrimental to the accuracy of the reconstruction. So in addition to

being faster, the diffuse derivatives in may produce more accurate results, which was unexpected.

The scaling parameter tests were interesting as well. It was shown that in general, the scaling
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parameter k that produced the most accurate results generally had the worst conditioned moment

matrix M. The range of scaling parameters which gave the ‘best’ results (k ∈ [0.6 − 0.85]) were

the best comprise of the condition number and accuracy. The orthogonal bases helped further

improve the condition number of the system, with the super-spherical Gegenbauer basis producing

a significantly lower conditioned system compared to any other basis without any loss in accuracy.

The ghost boundary conditions generated herein are also a dramatic improvement to the stan-

dard boundary conditions. The ghost nodes are essential to the MLS method, since this radial

method (or any other method) cannot model information beyond the boundary accurately. The

ghost nodes are defined using finite differences that are coupled normal to the boundary, which

better enforces the gradient conditions. For example, the new ghost NSCBC allow information to

exit the domain with minimal disturbance, on par with the results reported by Granet et al. [70]

for each order. The ghost nodes can also dramatically improve the convergence of the solution,

as shown in Sections 7.2.3 and 7.2.4, on the order of ten or greater times faster. Also, the ghost

boundaries can better enforce the physical boundary conditions, such as the inviscid and viscous

walls. In fact, the ghost boundaries actually enforce the zero-pressure gradient boundary in the

inviscid case, and the zero-normal thermal gradient for the adiabatic case. For the laminar cases,

it was also interesting to see the effect of the viscous flux reconstruction methods. The standard

method is much too dissipative to accurately model the boundary layer. Finally, though the current

implementation is limited to sequential runs, effectively limiting the sizes of the cases that can be

run, the preliminary TGV cases show that the finer mesh and higher-order do have lower rates of

dissipation.

8.2 Future Work

This section presents possible future avenues of research and work that can build off of the

work presented herein.

First, while the periodic boundaries and MLS stencils are fully parallelized, none of the bound-

ary conditions nor the auxiliary stencils (image, intercept, ghost, and viscous flux) are. These are

difficult to parallelize with the current parallelization paradigm. The current paradigm takes geom-
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etry output from a grid generator, pre-processes it to generate mesh relations, stencils, and ghosts,

and splits the preprocessed mesh and auxiliary information for the number of processors desired.

This process is sufficient for smaller geometries; however, this process can become intractable as

the number of nodes grows, especially since the current methodology generates nvector size×nprocessor

arrays to build the parallel geometries, which severely limits the size or order of meshes that can be

parallelized. For example, when attempting to pre-process grids for the TGV case, a the 1283 case

takes approximately 3 days to pre-process on a supercomputer using 64 Gbs of memory. A 2563

case takes at least 7 days to pre-process, but since the limit of usage on the supercomputer for a

single processor job is 1 week, this case not could be generated. Additionally, all of the TGV cases

only have MLS stencils. One can only estimate that the addition of non-periodic conditions, and

all the auxiliary information required for higher-order methods, would limit the size of cases that

would be possible to run. To avoid this bottleneck, the parallelization paradigm must be changed.

The recommended approach would be to at least switch the splitting and preprocessor steps. Ef-

fectively, the splitting would reduce the amount of information that must be generated during the

preprocessor step. This would require parallelizing the preprocessor step, which would still be a

challenging undertaking but would allow for larger cases to be generated for running. Additionally,

parallelizing the preprocessor would allow for intermediate adjustments of certain grid parameters,

such as during mesh adaptation or mesh movement (with significant movement) during runtime.

This change would also make using viscous flux stencils much more feasible, since file size for

even small meshes is prohibitive for third- or higher-order cases. For example, the laminar flat

plate grid shown in Figure 7.5, has a reduced viscous stencil file (reduced means a second-order

stencil) of 2.7 Gigabytes, which is impossible to load on a single processor. The viscous flux sten-

cils have been shown to be very effective in the cases presented. Additional study should be made

into determining a minimum size and more efficient storage for the viscous flux stencils as well.

Next, the ghost node boundaries will need some additional work for usage in real flows. Paral-

lelizing the conditions should be a top priority. To parallelize the ghost node boundary conditions,

the interface for UMFpack/SuiteSparse [31] needs to be parallelized. While there is a deployment
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of a parallel UMFpack/SuiteSparse, this is only written in C/C++. In fact, even the sequential

UMFpack/SuiteSparse is written in C/C++. For this dissertation, a FORTRAN interface was writ-

ten for the sequential UMFpack/SuiteSparse. It is unclear how a parallel interface would work,

but it is necessary if the higher-order ghost boundary conditions are to be utilized in higher-order

methods. This is especially true for ‘real’ geometries, where corners and sharp edges are prevalent,

that will have coupling of the ghost node conditions.

Following the last point, the ghost node boundaries built here can handle corner topologies, but

a further study on how corner ghost nodes that are coupled to one another would need to be inves-

tigated. Some of this work has been performed in the literature in terms of the Immersed Boundary

Method, so that work could again be adapted into the current methodology. One thing that remains

unclear is if, or how, corners exterior to the domain should be defined. Obviously, the easiest

approach is to average the adjacent boundary conditions, as suggested by Blazek [12, Chapter 8].

This would be insufficient for the non-reflecting boundary conditions described in Sections 5.4.2.3-

5.4.2.6. Granet et al. [70] did not include nodes in the corner region when developing the boundary

condition, but as was done herein the corner conditions are coupled in Section 5.4.2.6. This may

not be sufficient for some flows, so some additional work could be done on this subject.

Once the code is parallelized, the RANS boundary conditions can be tested. The RANS bound-

ary conditions where discussed in Chapter 5, and these were implemented in the solver. However,

running even a turbulent flat plate case was intractable, as only a few hundred iterations could be

managed. This brings up the issue of testing boundary conditions. As it currently stands, the way

the boundary conditions (or any other issue in the code) are tested is with a full simulation. This

can quickly become an issue, such as turbulent flows. Implementing a Method of Manufactured

Solutions (MMS) [144] would help alleviate many of these issues. MMS will allow a much better

assessment of the flow solver accuracy and validity without the need to run more realistic test cases

to ‘shake’ out the code before full deployment. This also creates a numerical sandbox, where more

advanced and new methods can be tested. To wrap up discussion on the RANS method, the higher-

order inviscid and viscous fluxes were implemented. ? ] claimed that beyond first-order accuracy
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was not necessary for the SST model, and this has been accepted ever sense. With the work herein,

it would be worthwhile to see if first-order accuracy for the RANS model really is sufficient.

Geometric considerations must also be considered for future work. In general, curved bound-

aries present a problem for higher-order methods. The standard approach is to generate the geo-

metric description in a CAD software or similar and generate the mesh topology by approximating

surfaces with nodes. This process tends to provide an inexact description of the surface, which

then further provides inexact geometric quantities that lead to first-order errors on curved bound-

aries [113]. Researchers attempt to correct this error by generating approximating curves on the

surface to generate the more accurate geometric descriptions, such as cell-volumes, edge- and

surface-areas, and surface and nodal normals. This, however, may not be sufficient to fully over-

come the error on curved boundaries, since an additional error may be introduced when the surface

is refined, leading to different surface descriptions. In order to best reduce the errors caused by

surface approximations, analytic geometry must be used to describe a surface and related geomet-

ric quantities. This can either be done from the known description of the surface or from using

NURBS [128] or method to generate an analytic description of the surface. For either case, the an-

alytic geometry would eliminate a potential first-order source of error that undoubtedly reduces the

accuracy of the method. This potential future work becomes even more critical when considering

LES, especially ILES, where the grid provides the underlying sub-grid model. If the surface de-

scription is off, there is no hope for correctly modeling a flow with ILES using standard geometric

descriptions of the surface.

Additional work needs to be done with the higher-order method to allow for mesh movement,

which would be required for cases having mesh movement, especially those with aeroelasticity. It

is unclear if the relative locations in ΩxI would need to be redetermined, which is a complicated

process if periodicity is involved, or if the MLS basis functions can be ‘moved’ without a loss in

accuracy of the method. The generation of ghost meshes in these situations would also need to be

explored.

Finally, more extensive work into higher-order limiters needs to done. Though not shown
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herein, there are issues with using higher-order limiters on the cases presented. This is presumably

due to issues coupling the ghost fluxes and main fluxes. Additionally, there are limited options for

the higher-order limiter, as this is very much an active area of research. Furthermore, there are

limited discussions on how limiters are implemented at even standard boundaries, much less ghost

boundaries.
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APPENDIX A

MINIMUM VOLUME ENCLOSING ELLIPSOID FOR GRADIENTS

A.1 Introduction

This appendix presents the algorithm for determining the ellipsoidal coefficients for the stencil

scaling function s (5.6) used for anisotropic ΩxI . For an in-depth discussion on how optimal

ellipsoids can be generated from a convex hull of points, refer to [156], specifically Chapters 1

through 3. This appendix will summarize the main points and algorithms required to determine the

ellipsoidal coefficients from the Minimum Volume Enclosing Ellipsoid.

A.2 Definition

If the position of any point in ΩxI is defined as:

∆jIx = xj − xI , (A.1)

then the centered minimum-volume ellipsoid enclosing ΩxI is defined as:

min
H
− ln [det(H)]

∆jIx
TH∆jIx ≤ n, j = 1, 2, . . . ,m (A.2)

where n is the dimension of the problem and m is the total number of points in ΩxI . Although

n is not in general restricted, herein, n is either 2 or 3. The matrix H describes the shape of the

ellipsoid centered at xI :

E(H,xI) :=
{
x ∈ Rn : ∆jIx

TH∆jIx ≤ n, j = 1, 2, . . . ,m
}
. (A.3)

E(H,xI) is also known as the volume of the ellipsoid. H has the following properties:

548



• H is symmetric positive definite.

• H is of the order n.

• H = HT .

• vTHv > 0 for all v ∈ Rn.

It is important to note that H is not strictly optimized for a minimum volume, but is instead

designed to have a minimum volume for the convex hull derived from the design points ΩxI such

that both H and ∆jIx are jointly convex. The problem is convex because the objective function

constraints are linear in H, and the objective function itself is convex. To solve (A.2), both the

convex set of points from ΩxI and the convex H must be determined simultaneously. For the

general case of ΩxI presented herein, finding the optimal convex set of points is relatively simple

compared to finding the optimal minimum volume H for the optimal convex point set.

A.3 The Dual Problem

The problem (A.2) can be optimized (and solved) via a dual problem. This section describes the

dual problem, which is generally easier to solve than the main problem. Recall the problem (A.2)

min
H∈Sn

− ln [det(H)[

∆jIx
TH∆jIx ≤ n, j = 1, 2, . . . ,m (A.4)

where now explicitly H lies in the span of the data points ΩxI . Also, we assume that X has full

row rank, such that X is a matrix with columns containing all coordinates of points in ΩxI :

X = [x1I ,x2I , . . . ,xmI ] ∈ Rnxm. (A.5)

Using Lagrange multipliers uj for the constraints, where u ∈ Rm, a finite Lagrangian is obtained:

L(H,u) = − ln [det(H)] +
∑
j

uj(∆jIx
TH∆jIx− n) (A.6)
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for all positive definite H satisfying the constraints. Additionally, the Lagrangian is a strictly

convex function of H. Denoting

U = diag(u) ∈ Sm (A.7)

and using the unit vector e ∈ Rm, the Lagrangian is rewritten as:

L(H,u) = − ln [det(H)] + H ·XUXT − neTu. (A.8)

For any non-negative u and H that satisfies the constraints then

− ln [det(H)] ≥ min
H

L(H,u) (A.9)

which implies

v(E) ≥ min
H

L(H,u) (A.10)

where v(E) denotes the optimal solution to the ellipsoid problem E. The Lagrangian has the

derivative

∇HL(H,u) = −H−1 + XUXT (A.11)

and is minimized if and only if

H = (XUXT )−1 (A.12)

and XUXT is positive definite. If instead of being positive definite, XUXT is allowed to be

positive semidefinite. Let v ∈ Rn satisfy XUXTv = 0 with a unit norm, and consider H(λ) =

I + λvvT such that the Lagrangian becomes:

L(H(λ),u) = − ln
{

det[I + λvvT ]
}

+ (I + λvvT ) ·XUXT − neTu

= − ln (1 + λ) + Tr[XUXT ]− neTu. (A.13)
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Letting λ→∞, L(H(λ),u)→ −∞. From this, the minimum value of the Lagrangian is:

min
H

L(H,u) = − ln
{

det[(XUXT )−1]
}

+ (XUXT )−1 ·XUXT − neTu

= ln
{

det[XUXT ]
}

+ n− neTu. (A.14)

To bound the optimal solution v(E) (A.10), let u ∈ Rm
+ maximize the right-hand side of (A.14),

which will yield the first dual problem:

max
u∈Rm

− ln
{

det[XUXT ]
}

+ n− neTu : u ≥ 0 (A.15)

u is further constrained u such that eTu = 1. With any û ≥ 0 written as λu if λ ≥ 0, and if

eTu = 1 for u ≥ 0, then:

ln
{

det[XÛXT )]
}

+ n− neT û = ln
{

det[λXUXT )]
}

+ n− nλ

= n lnλ+ ln
{

det[XUXT )]
}

+ n− nλ (A.16)

which is at a maximum when λ = 1. The best bound for v(E) (A.10) is therefore determined from

the final dual problem:

max
u∈RM

g(u) = ln
{

det[XUXT ]
}

eTu = 1

u ≥ 0, (A.17)

therefore:

f(H) ≥ g(u). (A.18)

The result From the above equations is that the optimal problem (A.10) has a unique optimal

solution, the dual problem (A.17) has an optimal solution, and that between (A.10) and (A.17)
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there is no gap in duality. The lack of a duality gap and strong duality is not proven here, but the

reader is referred to Section 2.1 in [156].

From the strong duality of the problem, the following conditions are necessary and sufficient

for optimal solutions H and u, for v(E) (A.10) and the dual problem (A.17):

• eTu = 1, u ≥ 0, and ∆jIx
TH∆jIx ≤ n, j = 1, 2, . . . ,m

• H = (XUXT )−1

• ∆jIx
TH∆jIx = n if uj > 0, j = 1, 2, . . . ,m

Using item (2) from the conditions given above, the optimal conditions with respect to the dual

problem (A.17) and solution u are described if and only if:

• H(u) = (XUXT )−1 is a feasible for v(E)

• ∆jIx
TH(u)∆jIx = n if uj > 0, j = 1, 2, . . . ,m.

Finally, an approximate optimality condition is introduced as a condition for convergence in the

later algorithm to solve the dual problem such that u is ε-primal feasible. This optimality condition

holds if H(u) = (XUXT )−1 satisfies

∆jIx
TH(u)∆jIx ≤ (1 + ε)n, j = 1, 2, . . . ,m (A.19)

and

∆jIx
TH(u)∆jIx ≥ (1− ε)n if ui > 0, j = 1, 2, . . . ,m. (A.20)

The solution to the suboptimal problem is then within δ of being optimal if it is both feasible and

δ away of the optimal value. Using both (A.19) and (A.20), the suboptimal problem duality gap

is n ln(1 + ε), and the suboptimal ellipsoid is within (1 + ε)n/2 of the optimal minimum volume

ellipsoid [156].

552



A.4 Algorithm for Suboptimal Problem

This section presents the algorithm of the suboptimal ellipsoid problem defined by (A.19)

and (A.20), since we cannot directly solve the optimal (A.10) or dual problem (A.17). The al-

gorithm presented here is that presented in [156].

A.4.1 Initialization

The suboptimal ellipsoid algorithm begins with the initialization of u, or an approximation of

the volume of the minimum volume ellipsoid. There are two methods to determine the initial u:

1) Khachiyan [90] and 2) Kumar and Yildirim [94]. The Khachiyan algorithm applies a simple yet

quality initialization of u [156]. The Khachiyan algorithm is:

Algorithm A.1 Khachiyan Algorithm
Require: u to be equal for all points m in ΩxI

u =
1

m
1. (A.21)

The Khachiyan algorithm A.1 is first-order. The Kumar and Yildirim second-order algo-

rithm [94] uses a modified algorithm of Betke and Henk [10]. The Betke and Henk algorithm

is as follows:
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Algorithm A.2 Betke–Henk Algorithm
1: Choose an arbitrary direction in the set ΩxI and set the counter to j = 1.

2: Compute the absolute value didactic product of the j th column vector of orthogonal matrix Q.

j th columns of Q span the same space as the points in ΩxI , with all the points in ΩxI . The

maximum of this product is assigned umax dx = 1. If j = n, the algorithm is complete.

3: Project Q onto the y = ∆max dx,Ix:

z = QTy (A.22)

such that z̄j and zj both maximize and minimize the projection for all points in ΩxI . This is

done by computing the norm of z and modifying the zj:

zj = zj + sign(zj)||z|| (A.23)

for all zk for k = 1, . . . j − 1, zk = 0.

4: Update the Q with z:

Q = Q− 1

sign(zj)||z||zj
(Qz)TQz (A.24)

choose another arbitrary direction, j + 1, and go to step 1.

The Kumar–Yildirim algorithm is as follows:

Algorithm A.3 Kumar–Yildirim Algorithm
1: Run the Betke–Henk Algorithm A.2

2: Set initial u to

u =
1

d
uBH (A.25)

Kumar and Yildirim [94] use the u computed from the algorithm as the initialization. The
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default herein is the Kumar–Yildirim algorithm, though the Khachiyan algorithm is used for inter-

mediate updates within the primary algorithm, due to its lower cost.

A.4.2 Solution

This section describes the algorithm to solve the suboptimal problem. There are again two

options to solve the problem. The classical approach is attributed to Frank and Wolfe [52], though

a later update was made by Fedorov [45] and Wynn [174], which is commonly known as the

Frank–Wolfe algorithm. This algorithm is not described here as it is not the algorithm used in this

work, though the option is available; see [156] for implementation aspects and details. The second

algorithm, used herein, is attributed to Wolfe [173] and Atwood [6] (independent of Wolfe for the

dual problem). It is commonly known as the Wolfe–Atwood algorithm.

The Wolfe–Atwood algorithm is described by the following steps:
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Algorithm A.4 Wolfe–Atwood Algorithm
1: Initialize u using either the Khachiyan A.1 or Kumar–Yildirim A.3 algorithm.

2: Compute the variance ω(u) and a scaled Cholesky factorization of XUXT using u. The

scaled Cholesky factorization is:

XUXT = φ−1LL = RTR (A.26)

with φ = 1, and R determined from the QR decomposition

QR = diag(
√

u)XT (A.27)

An element of the variance is computed as:

ω(uj) =
∑
i

(R−TX)2
i,j (A.28)

3: Using the current iterate of u and its corresponding variance, compute the maximum and

minimum bounds. The maximum bound is :

ε+ = max
i

(ωi − n)/n, (A.29)

and the minimum bound is:

ε− = max
j

[(n− ωj)/n : uj > 0], (A.30)

where the indices i and j give the maximum bounds, respectively. If both bounds are less

than a specified tolerance, then u is suboptimal, and the MVEE is determined. Otherwise, the

algorithm goes to Step 4 to continue iterating.
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Algorithm A.4 Wolfe–Atwood Algorithm, Continued
4: Determine how the variance and scaled Cholesky factorization are updated based on the vari-

ance error. The variance error is determined by:

εω =
|εk − ε+,−|
max 1, ε+,−

(A.31)

where ε+,− is the maximum or minimum variance error determined in Step 3. If ε+ + ε− > 2d,

then ε+ is used and uk = ui, otherwise, ε− is used and uk = uj . εk is determined using the

partial Cholesky reconstruction at the k = (i, j) index:

εk = φ
(
R−T∆xkI

)2
. (A.32)

5: Set uk using

uk = max(uk + λ∗, 0) (A.33)

where λ∗ is the optimal step size computed using the variance from ε+:

λ∗ =
ωk − n

(n− 1)ωk
(A.34)

such that u is always positive. u is updated using:

u =
u + λ∗e

1 + λ∗
. (A.35)

6: If εω > ε, the variance and scaled Cholesky factorization are recomputed using the method in

Step 2, and Step 3 follows.
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Algorithm A.4 Wolfe–Atwood Algorithm, Continued
7: If εω ≤ ε, the scaled Cholesky factorization is updated or downdated first. The factorization

is updated if λ∗ < 0 and

Rup = RTR + vvT . (A.36)

v is the vector determining the rank-1 update. If λ∗ ≤ 0, the downdate is:

Rdn = RTR− vvT . (A.37)

Both the update and downdate are performed using the library qrupdate [76]. The scaled

Cholesky factor φ is updated also:

φ = (1 + λ∗)φ. (A.38)

The variance is recomputed using the updated scaled Cholesky factorization:

ωl = (1 + λ∗)(ωk −
λ∗

1 + λ∗ωk

∑
i

(φR−T (R−T∆kIx)X)2
i,l). (A.39)

The algorithm returns to Step 3.

The Wolfe–Atwood algorithm is modified in two key ways. First, the algorithm A.4 uses all the

points in ΩxI , though many of them may not be necessary to determine the suboptimal ellipsoid.

Within the algorithm, ΩxI is reduced using the Harman–Prozato algorithm [78]. The Harman–

Prozato algorithm is described as follows:
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Algorithm A.5 Harman–Prozato Algorithm
1: Compute the threshold for eliminating points, using the maximum variance ωi (from ε+) as:

Θ = n(1 + .5(ωi − n)−
√
.5(ωi − n)(4 + (ωi = n)− 4/n)) (A.40)

and mark points in ΩxI or the current reduced set (of size p), whose variances are greater than

the threshold or uj > 0. If the number of points marked is less than the current set, the current

algorithm continues. Otherwise, no points are eliminated and A.4 continues.

2: X is reduced to only contain p points from ΩxI . If p = n, both the scaled Cholesky factor-

ization and variance are updated as in step 4 of the main algorithm. If p > n, then only u is

updated and the variances are reduced to contain only p points.

3: For p > n, u is updated by summing u for the active p points and dividing u by this sum.

Algorithm A.4 continues using the reduced p set of points.

The Harman–Prozato algorithm is beneficial to use when ΩxI contains interior (non-convex)

points, which typically happens for third- and fourth-order stencils.

The second modification to A.4 is to recompute, rather than just update, the scaled Cholesky

factorization. This modification was suggested by [156]. This is an expensive process, but when

the recomputation of the scaled Cholesky factorization is done on a limited basis, the modification

has been shown to improve convergence [156]. The scaled Cholesky factorization is computed as

in Step 2 in the Wolfe–Atwood algorithm A.4. [156] also suggests updating the variance, if the L1

norm from the recomputed scaled Cholesky factorization versus the old Cholesky factorization is
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greater than a user-specified tolerance. The L1 norm of the difference is determined by:

M = φRT
recRrec −RTR

M =
1

φ||M||
M (A.41)

normM = ||M||

where Rrec is the rescaled Cholesky matrix.

With the two modifications suggested by [156], the Todd Algorithm for the MVEE problem is

then:

Algorithm A.6 Todd Algorithm for MVEE
1: Do steps 1 and 2 of the Wolfe–Atwood algorithm A.4.
2: Use the Harman–Prozato algorithm A.5 to determine p convex points from ΩxI . Update u

and the variance as needed.
3: Start the iteration for MVEE with step 3 of the Wolfe–Atwood algorithm A.4.
4: Perform Steps 4 and 5 of Wolfe–Atwood algorithm A.4.
5: If desired, recompute the scaled Cholesky factorization using Step 2 of the Wolfe–Atwood

algorithm A.4 and determined if the variance is to be updated using (A.41).
6: Perform either Step 6 or 7 of the Wolfe–Atwood algorithm A.4, but only return to Step 3 if a

point reduction is not desired.
7: If a point reduction is desired, attempt to reduce p using the Harman–Prozato algorithm A.5 to

determine p convex points from ΩxI . Update u and ω as needed and return to Step 3.

At the completion of Todd’s algorithm A.6, the covariance matrix M is determined:

M =
1

φ
RTR. (A.42)

Note that the Cholesky factor ¬�(φ = 1) at the end of A.6. Additionally, R could be either

the original Cholesky matrix or the rescaled Cholesky matrix Rrec, depending on the algorithmic

outcome. The ellipsoid matrix H(u) for the suboptimal problem is determined, from which the
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ellipsoid coefficients can be extracted:

H(u) =
1

n
M−1 (A.43)

Todd’s algorithm [? ] has linear convergence [2], and often can stall when the initial ellipsoid

is nearly the final ellipsoid. Since the use of the ellipsoid is to fit the data with some padding, a

truly optimal MVEE is not completely necessary. A sub-optimal MVEE can be obtained sooner if

an additional stopping criteria is applied. With this consideration, the rate change of the maximum

and minimum variances can be tracked over a few iterations:

εmaxω,i = ||maxωi −maxωi−2|−|maxωi−1 −maxωi−3|| (A.44)

εminω,i = ||minωi −minωi−2|−|minωi−1 −minωi−3|| (A.45)

If εmaxω,i or εminω,i are less than the given tolerance εδω, implying that the change in variance is

minimal, then the ellipsoid can be considered a sub-optimal MVEE. Typically, εδω = 1e−8.

A.4.3 Extracting Ellipsoid Coefficients

This section presents how the ellipsoidal coefficients from H(u) are determined. Recall that

the minimum volume ellipsoid satisfies:

XTH(u)X = 1 (A.46)

from the dual problem. To find the semi-axis lengths for the ellipsoid, a singular value decom-

position of H(u) is performed. Let H(u) = UΣVT . U is a symmetric matrix whose columns

represent the axes of the ellipsoid, V is the matrix containing the axis rotations, and Σ is a diag-

onal matrix with the diagonal equal to the inverse square of the semi-axis coefficients a, b, c, or

alternatively the eigenvalues of H(u). An element in Σ is:

Σi,i =
1

||ri||2
, (A.47)
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such that

||ri||2=
1

Σi,i

, (A.48)

and the maximum length rmax is

rmax =
√

max||ri||2. (A.49)

The ellipsoidal coefficients are extracted from H(u) as:

H(u) = UΣVT =


cx cxy cxz

cxy cy cyz

cxz cyz cz

 (A.50)

such that the ellipsoid describing ΩxI is:

cxx
2 + cyy

2 + czz
2 + cxyxy + cyzyz + cxzxz = 1. (A.51)

A.5 Example

This section provides an example of the minimum volume ellipsoid problem and the extraction

of the ellipsoid coefficients used for s (5.6). The problem consists of the following simple ΩxI :

ΩxI =



0 0 0

1 0 0

−1 0 0

0 2 0

0 −2 0

0 0 1.5

0 0 −1.5



(A.52)
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with k = .75, the ΩxI used for the problem is:

ΩxI =



0 0 0

1.3 0 0

−1.3 0 0

0 2.6 0

0 −2.6 0

0 0 2

0 0 −2



(A.53)

In the standard spherical case, the coefficients would be (cx, cy, cz) = .1406, with rmax = .375.

Using the Kumar–Yildirim algorithm A.3, u is

u =



0

1
3

0

1
3

0

1
3

0



. (A.54)
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The initial variance and Cholesky factorization (φ = 1) are (Step 2 of the Wolfe–Atwood algo-

rithm A.4):

ω =



0

3

3

3

3

3

3



(A.55)

and

R =


0.7698 0 0

0 1.5396 0

0 0 1.1547

 (A.56)

Points are removed in Step 2 of the Todd algorithm A.6 using Harman–Prozato algorithm A.5. In

this case, only the first node is removed from ΩxI , such that

ΩxI =



1.3 0 0

−1.3 0 0

0 2.6 0

0 −2.6 0

0 0 2

0 0 −2


(A.57)

The maximum and minimum variance are 3.. The initial error ε+ and ε− are 4.441e−16 and

−4.441e−16 as determined in Step 3 of the Todd algorithm A.6. If the initial tolerance is 1e−8,
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then the solution has converged without any iterations. H(u) for the suboptimal problem is

H(u) =


0.5625 0 0

0 0.1406 0

0 0 0.25

 . (A.58)

The maximum radii in this situation is rmax = 1.333, where the SVD yields Σ as:

Σ =


0.5625 0 0

0 0.25 0

0 0 0.1406

 . (A.59)

In Figure A.1, the ellipsoid described by the coefficients is shown. In Figure A.2, the sphere for

the isotropic weight is plotted over the ellipsoid. Note how much larger the sphere is, and how

well the ellipsoid tightly closes ΩxI . In the next appendix, the isotropic weighting and anisotropic

weighting will be compared to show the difference in the derivatives computed with MLS.
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Figure A.1: Ellipsoid Computed Using MVEE Algorithm.
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Figure A.2: Ellipsoid Computed Using MVEE Algorithm with Sphere Computed Using Isotropic
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APPENDIX B

MOVING LEAST-SQUARES EXAMPLES

B.1 Introduction

This appendix presents examples for computing gradients using Moving Least-Squares pre-

sented in Chapter 5. Two cases will be presented. The first will compute and compare the isotropic

and anisotropic MLS basis functions and derivatives for the points used in A.5. The second case

will compute and compare the isotropic and anisotropic MLS basis functions and derivatives for a

scattered (unstructured) data set.

B.2 Structured Data Set

This section computes and compares the MLS basis functions and derivatives for the points

used in A.5:

ΩxI =



0 0 0

1 0 0

−1 0 0

0 2 0

0 −2 0

0 0 1.5

0 0 −1.5



(B.1)

The radial coefficients for the isotropic and anisotropic MLS reconstruction are: Using (5.6), the

Table B.1: Quadratic Coefficients for Radial Location of Points in ΩxI .

Weight x2 y2 z2 xy xz yz
Isotropic 0.140625 0.140625 0.140625 0 0 0
Anisotropic 0.56250 0.140625 0.250000 0 0 0
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isotropic radii for the points in ΩxI are:

siso =



0

0.375

0.375

0.75

0.75

0.5625

0.5625



(B.2)

and the anisotropic radii are

sani =



0

0.75

0.75

0.75

0.75

0.75

0.75



. (B.3)

The weights, using the Wendland function (5.7), are:

wiso =



1

0.38147

0.38147

0.015625

0.015625

0.119068

0.119068



(B.4)
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and

wani =



1

0.015625

0.015625

0.015625

0.015625

0.015625

0.015625



. (B.5)

The derivatives of s for the isotropic and anisotropic weights are:

(
∂s

∂x

)
iso

=

(
∂s

∂x
,
∂s

∂y
,
∂s

∂z

)
=



0 0 0

0.375 0 0

−0.375 0 0

0 0.375 0

0 −0.375 0

0 0 0.375

0 0 −0.375



(B.6)

and

(
∂s

∂x

)
ani

=

(
∂s

∂x
,
∂s

∂y
,
∂s

∂z

)
=



0 0 0

0.75 0 0

−0.75 0 0

0 0.375 0

0 −0.375 0

0 0 0.5

0 0 −0.5



(B.7)
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The derivatives of the weights w are then:

(
∂w

∂x

)
iso

=

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
=



0 0 0

−0.686648 0 0

0.686646 0 0

0 −0.0878906 0

0 0.0878906 0

0 0 −0.353279

0 0 0.375279



(B.8)

and

(
∂w

∂x

)
ani

=

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
=



0 0 0

−0.175781 0 0

0.175781 0 0

0 −0.0878906 0

0 0.0878906 0

0 0 −0.117187

0 0 −0.117187



. (B.9)

The polynomial matrix P for both the isotropic and anisotropic cases are:

P =



1 1 1 1 1 1 1

0 0.75 −0.75 0 0 0 0

0 0 0 1.5 −1.5 0 0

0 0 0 0 0 1.125 −1.125


(B.10)

The polynomial and it’s derivatives at (0, 0, 0) for both cases are

p(0) =

(
1 0 0 0

)
, (B.11)
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∂p

∂x
(0) =

(
0 0.75 0 0

)
, (B.12)

∂p

∂y
(0) =

(
0 0 0.75 0

)
, (B.13)

and
∂p

∂z
(0) =

(
0 0 0 0.75

)
. (B.14)

With the necessary preliminary calculations complete, the matrices can now be determined. Using

the standard approach to compute C (5.20) and ∂C
∂x

(5.52) required for Ψ (5.19) and ∂Ψ
∂x

(5.47),

the moment matrix M (5.52) for the isotropic and anisotropic cases is:

Miso = PWisoP
T =



2.03233 0 0 0

0 0.429154 0 0

0 0 0.0703125 0

0 0 0 0.301391


(B.15)

and

Mani = PWaniP
T =



1.09375 0 0 0

0 0.0175781 0 0

0 0 0.0703125 0

0 0 0 0.0395508


. (B.16)

The inverse of the moment matrix M−1 for both cases is

M−1
iso =



0.492047 0 0 0

0 2.33017 0 0

0 0 14.2222 0

0 0 0 3.31794


(B.17)
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and

M−1
ani =



0.914286 0 0 0

0 56.8889 0 0

0 0 14.2222 0

0 0 0 25.2839


. (B.18)

C (5.20) for the isotropic and anisotropic case is:

Ciso = M−1
isoPWiso =

0.492047 0.187701 0.187701 0.00768824 0.00768824 0.0585871 0.058571

0 0.666667 −0.666667 0 0 0 0

0 0 0 0.333333 −0.333333 0 0

0 0 0 0 0 0.444444 −0.444444


and

Cani = M−1
aniPWani =

0.914286 0.0142857 0.0142857 0.0142857 0.0142857 0.0142857 0.0142857

0 0.666667 −0.666667 0 0 0 0

0 0 0 0.333333 −0.333333 0 0

0 0 0 0 0 0.444444 −0.444444


.
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The MLS basis vector Ψ (5.19) for the isotropic and anisotropic weights is:

Ψiso = p(0)Ciso =



0.492047

0.187701

0.187701

0.00768824

0.00768824

0.0585871

0.0585871



(B.19)

and

Ψani = p(0)Cani =



0.914286

0.0142857

0.0142857

0.0142857

0.0142857

0.0142857

0.0142857



. (B.20)

The isotropic MLS basis function Ψ (B.19) is very different from the anisotropic MLS basis func-

tion (B.20). This difference is directly attributed to the difference between the radii (and description

thereof) of the isotropic (B.28) and anisotropic (B.29). While
∑

j∈ΩxI
Ψj(xI) = 1 for both cases,

the anisotropic case is better at determining value at the node since it does not heavily weight the

connected nodes in ΩxI .
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The derivatives of C for the isotropic case are:

∂C

∂x iso
=



0 0 0 0 0 0 0

1.18091 −0.749517 −0.749517 0.0184518 0.0184518 0.140609 0.140609

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

∂C

∂y iso

=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

1.84518 0.703879 0.703879 −1.84617 −1.84617 0.219702 0.219702

0 0 0 0 0 0 0


,

and

∂C

∂z iso
=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1.29771 0.495036 0.0202767 0.0202767 −1.16417 −1.16417


The derivatives of C for the anisotropic case are:

∂C

∂x ani
=



0 0 0 0 0 0 0

13.7143 −7.28571 −7.28571 0.214286 0.214286 0.214286 0.214286

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

∂C

∂y ani

=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

3.42857 0.0535714 0.0535714 −1.82143 −1.82143 0.0535714 0.0535714

0 0 0 0 0 0 0


,
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and

∂C

∂z ani
=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

6.09524 0.0952381 0.0952381 0.0952381 0.0952381 −3.23809 −3.23809



The derivatives of the MLS basis function ∂Ψ
∂x

(5.47) for the isotropic case are:

∂Ψ

∂x iso
=
∂p T (0)

∂x
C + p T (0)

∂C

∂x
=



0

0.5

−0.5

0

0

0

0



(B.21)

∂Ψ

∂y iso

=
∂p T (0)

∂y
C + p T (0)

∂C

∂y
=



0

0

0

0.25

−0.25

0

0



, (B.22)
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and

∂Ψ

∂z iso
=
∂p T (0)

∂z
C + p T (0)

∂C

∂z
=



0

0

0

0

0

0.333333

−0.333333



(B.23)

The derivatives of the MLS basis function ∂Ψ
∂x

(5.47) for the anisotropic case are:

∂Ψ

∂x ani
=
∂p T (0)

∂x
C + p T (0)

∂C

∂x
=



0

0.5

−0.5

0

0

0

0



(B.24)

∂Ψ

∂y ani

=
∂p T (0)

∂y
C + p T (0)

∂C

∂y
=



0

0

0

0.25

−0.25

0

0



, (B.25)
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and

∂Ψ

∂z ani
=
∂p T (0)

∂z
C + p T (0)

∂C

∂z
=



0

0

0

0

0

0.333333

−0.333333



(B.26)

Unlike the MLS basis function Ψ, the derivatives of Ψ for the isotropic and anisotropic case are

equal, so there would be no difference in the derivatives computed using either method.
∑

j∈ΩxI

∂Ψj
∂x

=

0 for both cases.

B.3 Unstructured Data Set

This section computes and compares the MLS basis functions and derivatives for an scattered,

or unstructured data set that is more common in unstructured CFD grids. It may also be present in

boundary stencils that include ghost and image nodes. The collection of points ΩxI used here is:

ΩxI =



0 0 0

0 −4 0

−2 1.75 0

2 −1.75 0

0 0 −0.5

0 0 0.5

1.5 3.0 0

−3.0 −5.5 0

−1.5 3.0 0

3.0 5.5 0



(B.27)

The radial coefficients for the isotropic and anisotropic MLS reconstruction are:
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Table B.2: Quadratic Coefficients for Radial Location of Points in ΩxI .

Weight x2 y2 z2 xy xz yz
Isotropic 0.01433129 0.01433129 0.01433129 0 0 0
Anisotropic 0.07419659 0.02126654 2.25 -0.02268431 0 0

Using (5.6), the isotropic radii for the points in ΩxI are:

siso =



0

0.478852

0.318142

0.318142

0.0598565

0.0598565

0.40153

0.75

0.40153

0.75



(B.28)
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and the anisotropic radii are

sani =



0

0.583322

0.721599

0.721599

0.75

0.75

0.392661

0.75

0.75

0.75



. (B.29)

The weights, using the Wendland function (5.7), are for the isotropic case are:

wiso =



1

0.215052

0.491239

0.491239

0.968272

0.968272

0.334322

0.015625

0.334322

0.015625



(B.30)
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The anisotropic weights are:

wani =



1

0.100479

0.0233469

0.0233469

0.015625

0.015625

0.349758

0.015625

0.015625

0.015625



. (B.31)

The derivatives of s for the isotropic and anisotropic weights are:

(
∂s

∂x

)
iso

=

(
∂s

∂x
,
∂s

∂y
,
∂s

∂z

)
=



0 0 0

0 −0.119713 0

−0.0900932 0.0788316 0

0.0900932 −0.0788316 0

0 0 −0.11973

0 0 0.11973

0.0535373 0.107075 0

−0.0573248 −0.105096 0

−0.0535373 0.107075

0.0573248 0.105096



(B.32)
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and

(
∂s

∂x

)
ani

=

(
∂s

∂x
,
∂s

∂y
,
∂s

∂z

)
=



0 0 0

0.155553 −0.145831 0

−0.260658 0.114447 0

0.260658 −0.114447 0

0 0 −1.5

0 0 1.5

0.110126 0.0758241 0

−0.130435 −0.0652174 0

−0.23913 0.130435 0

0.130435 0.0652174 0



(B.33)

The derivatives of the weights w are

(
∂w

∂x

)
iso

=

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
=



0 0 0

0 0.162277 0

0.181729 −0.159013 0

−0.181729 0.159013 0

0 0 0.119087

0 0 −0.119087

−0.0921578 −0.184316 0

0.0134355 0.0246318 0

0.0921578 −0.184316 0

−0.0134355 −0.0246318 0



(B.34)
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for the isotropic case and

(
∂w

∂x

)
ani

=

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
=



0 0 0

−0.131286 0.12308 0

0.0811725 −0.0356404 0

−0.0811725 0.0356404 0

0 0 0.351562

0 0 −0.351562

−0.193745 −0.133398 0

0.0305707 0.0152853 0

0.0560462 −0.0305707 0

−0.0305707 −0.0152853 0



. (B.35)

for the anisotropic case. The polynomial matrix P for the isotropic and anisotropic cases is:

P =



1 1 1 1 1

0 0 −0.239426 0.239426 0

0 −0.478852 0.209498 −0.209498 0

0 0 0 0 −0.0598565

1 1 1 1 1

0 0.17957 −0.359139 −0.17957 0.359139

0 0.359139 −0.658422 0.359139 0.658422

0.0598565 0 0 0 0



(B.36)
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and

P =



1 1 1 1 1

0 0 −0.226937 0.226937 0

0 −0.453873 0.19857 −0.19857 0

0 0 0 0 −0.0567342

1 1 1 1 1

0 0.170203 −0.340405 −0.170203 0.340405

0 0.340405 −0.624076 0.340405 0.624076

0.0567342 0 0 0 0



(B.37)

The differences between the isotropic and anisotropic case in P is due to the difference in the

maximum radii computed by each method. The maximum radius for the isotropic case is rmax =

8.3533, whereas for the anisotropic case the maximum radius is rmax = 8.8130. It is this difference

that will attribute to differences in ∂Ψ
∂x

seen later on. The polynomial and it’s derivatives at (0, 0, 0)

for the isotropic case are

p(0) =

(
1 0 0 0

)
, (B.38)

∂p

∂x
(0) =

(
0 0.119713 0 0

)
, (B.39)

∂p

∂y
(0) =

(
0 0 0.119713 0

)
, (B.40)

and
∂p

∂z
(0) =

(
0 0 0 0.119713

)
. (B.41)

The polynomial and it’s derivatives at (0, 0, 0) for the anisotropic case are

p(0) =

(
1 0 0 0

)
, (B.42)
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∂p

∂x
(0) =

(
0 0.113468 0 0

)
, (B.43)

∂p

∂x
(0) =

(
0 0 0.113468 0

)
, (B.44)

and
∂p

∂x
(0) =

(
0 0 0 0.113468

)
. (B.45)

As in the previous section, the standard approach is used to compute C (5.20) and ∂C
∂x

(5.52) re-

quired for Ψ (5.19) and ∂Ψ
∂x

(5.47). The moment matrix M (5.52) for the isotropic and anisotropic

cases is:

Miso = PWisoP
T =



4.83397 0 0.137158 0

0 0.0819116 −0.0418908 0

0.137158 −0.0418908 0.192221 0

0 0 0 0.00693825


(B.46)

and

Mani = PWaniP
T =



1.57506 0.0568702 0.0787734 0

0.0568702 0.0166106 0.0238935 0

0.0787734 0.0238935 0.0770498 0

0 0 0 0.000100586


. (B.47)

The inverse of the moment matrix M−1 for the isotropic case is

M−1
iso =



0.211693 −0.0869398 −0.169999 0

−0.0869398 13.7753 3.06409 0

−0.169999 3.06409 5.9914 0

0 0 0 144.129


(B.48)
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and for the anisotropic,

M−1
ani =



0.724569 −2.55476 0.0514637 0

−2.55476 117.69 −33.8843 0

0.0514637 −33.8843 23.4337 0

0 0 0 9941.69


. (B.49)

C (5.20) for the isotropic and anisotropic case is:

Ciso = M−1
isoPWiso =



0.211693 0.0630311 0.0967222 0.111262 0.204976

−0.0869398 −0.334231 −1.34756 1.26214 −0.0841814

−0.169999 −0.653541 0.172701 −0.339721 −0.164605

0 0 0 0 −8.35331

0.204976 0.0451428 0.00554449 0.0555815 0.00107092

−0.0841814 1.16582 −0.110182 −0.488153 0.107465

−0.164605 0.84649 −0.081489 0.478591 0.0761766

8.35331 0 0 0 0


and

Cani = M−1
aniPWani =



0.724569 0.0704569 0.0306908 0.00314206 0.0113214

−2.55476 1.28858 −0.840287 0.720996 −0.0399181

0.0514637 −1.06351 0.289368 −0.286965 0.00080412

0 0 0 0 −8.81303

0.0113214 0.107467 0.0244079 0.0183893 −0.0017651

−0.0399181 2.07827 −0.33548 −0.53313 0.255644

0.00080412 0.790875 −0.0474771 0.215556 0.0490854

8.81303 0 0 0 0
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The MLS basis vector Ψ (5.19) for the isotropic and anisotropic weights is:

Ψiso = p(0)Ciso =



0.211693

0.0630311

0.0967222

0.111262

0.204976

0.204976

0.0451428

0.00554449

0.0555815

0.00107092



(B.50)

and

Ψani = p(0)Cani =



0.724569

0.0704569

0.0306908

0.00314206

0.0113214

0.0113214

0.107467

0.0244079

0.0183893

−0.0017651



. (B.51)

As with the previous case, the anisotropic MLS basis function Ψ (B.51) places more emphasis on

the center node in ΩxI . For the isotropic case, (B.50) places nearly equal weight on the fifth and

sixth nodes in ΩxI as it does the center node, which is not optimal. However, all Ψiso are positive,

while the last node in ΩxI has a negative MLS basis function. While it has never been reported,
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the theory of MLS does not preclude a negative basis function. It is still more appropriate to use

the MLS anisotropic basis function for fitting, though as in the previous case
∑

j∈ΩxI
Ψj(xI) = 1

for both cases.

The derivatives of C for the isotropic case are:

∂C

∂x iso
=



−0.000218299 0.000170961 −0.000960266 −0.00463291 −0.000211373

0.309625 −0.0173489 −0.34766 −0.313576 0.299801

−0.00211605 −0.0437377 0.0102404 0.177247 −0.00204891

0 0 0 0 0

−0.000211373 0.00581711 0.00304843 −0.00359373 0.000791445

0.299801 −0.0765371 −0.102351 0.0233666 −0.0751218

−0.00204891 −0.13465 −0.0790011 0.132753 −0.0566373

0 0 0 0 0


,

∂C

∂y iso

=



−0.010464 0.0101813 −0.00260924 −0.00296506 −0.010132

0.0107922 −0.30394 0.221541 0.633819 0.0104498

0.341152 −0.411525 0.0416867 0.127618 0.330328

0 0 0 0 0

−0.010132 0.0132233 0.00500673 0.00617251 0.00171855

0.0104498 −0.43625 −0.191998 0.195908 −0.150771

0.330328 −0.330752 −0.125251 −0.190948 −0.112637

0 0 0 0 0


,
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and

∂C

∂z iso
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.434974 0.129512 0.198739 0.228613 −0.606197

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−0.606197 0.0927567 0.0113925 0.0114205 0.00220045


.

The derivatives of C for the anisotropic case are:

∂C

∂x ani
=



−0.207795 0.0271745 0.040289 0.0457898 −0.0032468

8.93163 −1.52226 −2.26484 −2.74638 0.139557

−3.07232 0.859919 0.871297 0.989039 −0.048005

0 0 0 0 0

−0.0032468 0.0337003 0.0269607 0.0226206 0.0177537

0.139557 −0.300309 −0.299424 −1.49953 −0.578008

−0.048005 0.0249793 −0.273985 0.708035 −0.010952

0 0 0 0 0


,
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∂C

∂y ani

=



0.0182596 −0.0126146 −0.0179523 −0.0232499 0.000285306

−3.44084 1.16305 1.05436 1.16837 −0.0537631

2.2093 −0.752931 −0.431574 −0.345072 0.0345203

0 0 0 0 0

0.000285306 0.0236042 0.0209205 −0.0147922 0.00525409

−0.0537631 −0.0711793 −0.552584 0.919571 −0.133215

0.0345203 −0.293825 0.0500454 −0.429515 −0.0754681

0 0 0 0 0


,

and

∂C

∂z ani
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

287.354 27.9422 12.1716 1.2461 −193.803

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−193.803 42.6199 9.67983 7.29293 −0.700015


.
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The derivatives of the MLS basis function ∂Ψ
∂x

(5.47) for the isotropic case are:

∂Ψ

∂x iso
=
∂p T (0)

∂x
C + p T (0)

∂C

∂x
=



−0.0106261

−0.0398408

−0.162281

0.146462

−0.010289

−0.010289

0.145381

−0.0101418

−0.062032

0.0136564



, (B.52)

∂Ψ

∂y iso

=
∂p T (0)

∂y
C + p T (0)

∂C

∂y
=



−0.0308151

−0.0680561

0.0180654

−0.0436341

−0.0298373

−0.0298373

0.114559

−0.00474857

0.0634661

0.0108379



, (B.53)
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and

∂Ψ

∂z iso
=
∂p T (0)

∂z
C + p T (0)

∂C

∂z
=



0

0

0

0

−1

1

0

0

0

0



. (B.54)

The derivatives of the MLS basis function ∂Ψ
∂x

(5.47) for the anisotropic case are:

∂Ψ

∂x ani
=
∂p T (0)

∂x
C + p T (0)

∂C

∂x
=



−0.497679

0.173388

−0.055057

0.1276

−0.00777624

−0.00777624

0.269518

−0.0111056

−0.0378727

0.0467611



, (B.55)
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∂Ψ

∂y ani

=
∂p T (0)

∂y
C + p T (0)

∂C

∂y
=



0.0240991

−0.13329

0.0148818

−0.0558114

0.000376548

0.000376548

0.113344

0.0155334

0.00966663

0.0108237



, (B.56)

and

∂Ψ

∂z ani
=
∂p T (0)

∂z
C + p T (0)

∂C

∂z
=



0

0

0

0

−1

1

0

0

0

0



. (B.57)

Unlike the previous case, only Ψ
∂z iso

= Ψ
∂z ani

. The other derivatives Ψ are not. Ψ
∂x iso

and Ψ
∂y iso

place more weight to the fifth and sixth nodes in ΩxI than they should, since the isotropic radii for

these nodes is ’closer’ to the center node. Ψ
∂x ani

places a larger weight to the center node than any

other node in ΩxI , and this can be attributed to the center node not quite being in the ’center’ of

the collection of points in along the x-axis.
∑

j∈ΩxI

∂Ψj
∂x

= 0 for both cases, so both sets of Ψ
∂x

are

still valid.
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APPENDIX C

DERIVATIVES OF WEIGHT FUNCTIONS

This appendix presents the derivatives of the weighting functionW (s) in Cartesian coordinates

for both the isotropic and anisotropic spline representations of ΩxI . Recall the spline parameter is

s =

√
(∆jIx)2 + (∆jIy)2 + (∆jIz)2

rmax
(C.1)

for the isotropic (spherical) case or

s =

√√√√√√cx(∆jIx)2 + cy(∆jIy)2 + cz(∆jIz)2+

2(cyz∆jIy∆jIz + cxz∆jIx∆jIz + cxy∆jIx∆jIy)

(C.2)

for the anisotropic (ellipsoidal) case. The first derivatives of W (s) are then:

∂W

∂xi
=
∂W

∂s

∂s

∂xi
. (C.3)

The second derivatives of W (s) are:

∂2W

∂xi∂xj
=

∂s

∂xi

∂s

∂xj

∂2W

∂s2
+

∂2s

∂xi∂xj

∂W

∂s
. (C.4)

Finally, the third derivatives of W (s) are:

∂3W

∂xi∂xj∂xk
=

∂s

∂xi

∂s

∂xj

∂s

∂xk

∂3W

∂s3

+
∂2W

∂s2

(
∂2s

∂xi∂xk

∂s

∂xj
+

∂2s

∂xj∂xk

∂s

∂xi
+

∂2s

∂xi∂xj

∂s

∂xk

)
+
∂W

∂s

∂3s

∂xi∂xj∂xk
(C.5)
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The first derivatives of s are:

∂s

∂xi
=

1

s
(cixi + 2(cikxk + cijxj)) (C.6)

One should note that the trailing terms can be dropped to give the isotropic (spherical) first deriva-

tive. The second derivatives of s are:

∂2s

∂xi∂xj
=
ζij
s
− 1

s

∂s

∂xi

∂s

∂xj
(C.7)

where

ζij = ciδij + 2(cijδjj + cjkδki). (C.8)

The third derivatives of s are:

∂3s

∂xi∂xj∂xk
=

3

s2

∂s

∂xi

∂s

∂xj

∂s

∂xk
− 1

s2

(
ζij

∂s

∂xi
+ ζik

∂s

∂xj
+ ζjk

∂s

∂xk

)
(C.9)
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APPENDIX D

Affine Transformation for Image Nodes

D.1 Introduction

This appendix describes affine transformations [119], which are used when finding image nodes

and for computing velocities at ghost nodes for symmetry and wall boundaries. The chapter begins

with a quick definition of affine transformations. Next, an outline of how affine transformations

work, using image node generation as a working example, is presented. Finally, an algorithm for

affine transformations is given to generate image nodes.

D.2 Definition

Affine transformations are a class of transformations preserves points, lines, and planes through

the transformation. Affine transformations are reversible, and preserve both collinearity and ratios

of distances. This means that a point transformed through an affine transformation will lie on the

same line it after the transformation. Additionally, sets of parallel lines remain parallel through

the transformation. However, affine transforms do not necessarily preserve angles between lines

or planes or distances between points.

An affine transformation in Rn maps any entity Σ to Ξ (f : Σ→ Ξ) via a linear transformation

f(Σ) = AΣ + Ξ (D.1)

where A is the linear transformation of Rn. If the determinate of A is greater than zero, the trans-

formation is an orientation-preserving transformation; otherwise, the transformation is orientation-

reversing.

Common examples of affine transformations are translations, scalings, similarity transforma-

tions, reflections, rotations, and shears. For example, the affine rotation about the x−axis in three
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dimensions through the angle θx is

R(θx) =



1 0 0 0

0 cos θx sin θx 0

0 − sin θx cos θx 0

0 0 0 1


. (D.2)

The affine translation matrix a distance dx is:

T =



1 0 0 −dx

0 1 0 −dy

0 0 1 −dz

0 0 0 1


(D.3)

Finally, an affine reflection matrix about the y axis is of the point x:

Rref =



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


(D.4)

It is important to note the form of the affine matrices. Instead of being d x d, where d is the

dimension, an affine matrix is d+1 x d+1. Affine matrices are represented by augmented matrices

using homogeneous coordinates, where the linear transformation (translation, reflection, rotation,

etc.) is contained within a matrix padded with zeros and one in the lower right corner. Therefore,

a two-dimensional vector (x, y) is represented as (x, y, 1). This technique allows for the affine

transformation to be represented by a single matrix multiplication. Additionally, this means any

combination of transformations can be built into a single matrix transformation to create a unique

transformation matrix. For example, to combine a rotation, reflection, and translation into a single
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matrix would look something like:

A = T−1R(−θx)R(θz)RrefyR(−θz)R(θx)T (D.5)

where A is the combined affine transformation. In general, the method is not commutative, since

inverses are required, so ordering is important to build the proper transform.

D.3 Method

Affine transformations are used herein to generate image nodes. The particular transformation

used is a reflection. The ghost node is reflected about a plane into the interior to generate the

image node. In particular, an affine reflection works by rotating a vector through a plane. The

plane of reflection need not be one of the coordinate planes. However, the reflection plane will be

transformed into one of the coordinate planes, typically the xy−plane. The process of generating

an image node is illustrated in Figure D.1. To generate the image node, the ghost node xg and it’s

related boundary node xb are used to construct the vector

dxbg = xb − xg. (D.6)

Additionally, the nodal normal n at the boundary node is used to define the plane of reflection

(recall a normal and point are all that is required to define a plane). The boundary plane p in

Figure D.1 (a), can be described in normal-distance form as:

p(1)x+ p(2)y + p(3)z + p(4) = dxbg · x + dxbg · −xb = 0. (D.7)

where p = n. With the plane constructed, the next step to build the affine transformation is to

determine the rotation matrices. For the general boundary plane, the affine reflection requires two

rotations. In this dissertation, the rotations chosen to be about the x−axis and y−axis. The angles

of rotation, θx and θy, are determined from the position of the boundary point relative to origin.

Note that the boundary node xb is assumed to lie at the origin without any loss in generality, and
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Figure D.1: Process of Generating an Image Node Using an Affine Transformation.

this assumption comes from defining the vector (D.6) in relative terms. Using p, r1, r2, r3, and r

from Figure D.1 (a) are:

r1 =
√
p(2)2 + p(3)2

r2 =
√
p(1)2 + p(3)2

r3 =
√
p(1)2 + p(3)2 (D.8)

r =
√
p(1)2 + p(2)2 + p(3)2.
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The angle of rotation about the x-axis is then

θx = arcsin
p(2)

r1

, (D.9)

such that the components of R(θx) are:

sin θx =
p(2)

r1

(D.10)

cos θx =
p(3)

r1

.

However, if r1 = 0, then θx is zero and sin θx = 0 and cos θx = 1. R(θx) is defined as:

R(θx) =



1 0 0 0

0 cos θx sin θx 0

0 − sin θx cos θx 0

0 0 0 1


. (D.11)

In the same way, the angle of rotation about the y-axis is determined as

θy = arcsin
p(1)

r
, (D.12)

such that the components of R(θy) are

sin θy =
p(1)

r
(D.13)

cos θy =
r1

r
,
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and R(θy) is:

R(θy) =



cos θy 0 sin θy 0

0 1 0 0

− sin θy 0 cos θy 0

0 0 0 1


. (D.14)

The reflection about the z-axis is just a 1800 rotation:

R(θz) =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


. (D.15)

The composite rotation (forward and backward) is then:

Rrot = R(−θx)R(θy)R(θz)R(−θy)R(θx). (D.16)

Since the boundary point is assumed to be at the origin, the translation matrix (and it’s inverse) is

simply the identity matrix

T = I (D.17)

If the boundary point was not at the origin (or the assumption was not made), the translation matrix

would take the form

T =



1 0 0 −xb

0 1 0 −yb

0 0 1 −zb

0 0 0 1


(D.18)
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with an inverse

T−1 =



1 0 0 xb

0 1 0 yb

0 0 1 zb

0 0 0 1


. (D.19)

The full affine transformation matrix is then:

A = T−1RrotT. (D.20)

With the affine transformation defined, the image node is determined from



xim

yim

zim

1


= A



dxbg

dybg

dzbg

1


. (D.21)

The image location determined in (D.26) is in reference to the origin. To define the image globally,

the image location is shifted using the boundary node

xim = xim + xb (D.22)

If (D.19) is used, then (D.22) is unnecessary.

D.4 Algorithm for Generating Image Nodes via Affine Transform

The algorithm to generate the image node using an affine transform, using Figure D.1 as a

guide, is described by Algorithm D.1.
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Algorithm D.1 Affine Image Nodes
1: Generate the plane p passing through the boundary point b assumed to lie at the origin defined

by (D.7), using the boundary nodal normal n and boundary node xb to define the plane.

2: Rotate the plane p and xg about the x-axis using (D.11).

3: Rotate p and the points about the y-axis using (D.14).

4: Reflect g about the z-axis to generate the image node im using (D.15).

5: Perform the inverse rotations about the y- and x-axis to define the image node im in real space,

but in reference to the origin.

6: Using (D.22), translate the image node im from the origin to it’s real position relative to b and

g.

This process is applied to each ghost node to generate the image nodes.

D.5 Algorithm for the Velocity of Symmetry and Inviscid Wall Ghost Nodes

The algorithm to determine the velocity at a ghost node using an affine transform is described

in Algorithm D.2.

Algorithm D.2 Affine Velocity for Symmetry and Inviscid Wall Ghost Nodes
1: Generate the plane p passing through the boundary point b with the boundary nodal normal n.

Unlike the previous algorithm, velocity will not need to be translated, so the assumption of the

boundary node at the origin is not required.
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Algorithm D.2 Affine Velocity for Symmetry and Inviscid Wall Ghost Nodes, Continued
2: The velocity at the image node vim is determined by:

(a) An interior node, where i and im are collocated such that

vim = vi. (D.23)

(b) From exclusively interior nodes, where quantities at the image node are determined from

a MLS fitting using a stencil containing no ghost nodes:

vim =
∑

k∈Ωxim

Ψkqk (D.24)

(c) Using the higher-order boundary system described in 5.4.2.2. In this situation, the image

velocity is defined as:

vim =
∑

k∈Ωxim

Ψkqk, (D.25)

3: Follow steps 2 and 3 from Algorithm D.1 to generate the rotation matrices, and the reflection

matrix is A = Rrot.

4: The velocity at the ghost is determined then as the reflection of the image velocity:

 vg

1

 = A

 vim

1

 . (D.26)

This algorithm is applied to ghost nodes subject to symmetry or inviscid wall boundary condi-

tions.
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APPENDIX E

EXACT QUADRATURES FOR TRIANGLES AND QUADRILATERALS

This appendix provides the quadrature locations and weights for triangles and quadrilaterals.

Figure E.1 shows the location of the quadrature for a first- or second-order quadrature. The

η

ξ

Figure E.1: Quadrature Location for a 1st- and 2nd-Order Accurate Quadrature on a Quadrilateral.

quadrature for a first- or second-order quadrature requires only a single quadrature point located at

(0, 0) with a weight wq = 1.

Figure E.2 shows the location of the quadrature for a third- or fourth-order quadrature.

η

ξ

1 2

34

Figure E.2: Quadrature Location for a 3rd- and 4th-Order Accurate Quadrature on a Quadrilateral.

A third- and fourth-order accurate quadrature requires four quadrature nodes. The weights for

the quadratures are given in Table E.1.
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Table E.1: Quadrature Weights for a 3rd- and 4th-Order Accurate Quadrature for a Quadrilateral.

Coordinates, (ξ, η) Weight, wq
1 -0.577350269189625 -0.577350269189625 0.25
2 0.577350269189625 -0.577350269189625 0.25
3 0.577350269189625 0.577350269189625 0.25
4 -0.577350269189625 0.577350269189625 0.25

Figure E.3 shows the location of the quadrature for a fifth- or sixth-order quadrature. A fifth-

η

ξ

1 2 3

4 5 6

7 8 9

Figure E.3: Quadrature Location for a 5th- and 6th-Order Accurate Quadrature on a Quadrilateral.

and sixth-order accurate quadrature requires nine quadrature nodes. The weights for the quadra-

tures are given in Table E.2.
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Table E.2: Quadrature Weights for a 5th- and 6th-Order Accurate Quadrature for a Quadrilateral.

Coordinates, (ξ, η) Weight, 0.25wq
1 -0.774597 -0.774597 0.308641975308641
2 0 -0.774597 0.493827160493827
3 0.774597 -0.774597 0.308641975308641
4 -0.774597 0 0.493827160493827
5 0 0 0.790123456790123
6 0.774597 0 0.493827160493827
7 -0.774597 0.774597 0.308641975308641
8 0 0.774597 0.493827160493827
9 0.774597 0.774597 0.308641975308641
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APPENDIX F

OCTREE

F.1 Introduction

This Appendix describes the octree algorithm used to determine where in the main mesh an

image node is located. The octree algorithm is the three-dimensional version of a quadtree. Both

work on the principle of subdivision into smaller domains. Octrees and quadtrees are types of tree

data structures, where a tree is an abstract data type where the base reference is a root, and divi-

sions of the root (or lower levels) are referred to as children, where each child holds a unique set of

the root. In the case of an octree, each parent division has exactly 8 children. The octree has sev-

eral uses, such as representing hierarchical data, storing data for efficient searching, representing

sorted lists, routing algorithms, and compositing digital images for visual effects. The appendix

is outlined as follows. First, the general algorithm for developing the octree is presented. Next,

modifications for finding image nodes are given. The algorithm for transversing and searching the

octree is given. Finally, the algorithm for using the octree to find image nodes is given.

F.2 General Algorithm

This section presents the general algorithm for the octree. The ultimate goal for the octree

algorithm is to divide a given quantity into smaller, easier to handle groupings, or leaves. In terms

of this dissertation, the octree divides the mesh nodes via their coordinates into leaves such that

image and intercept nodes can be ’found’ within the physical domain.

The first step in the octree algorithm is to perform a sort of the coordinates of the nodes.

This sort could be performed with any sorting algorithm, but in this dissertation a heapsort [? ]

is used, which performs well when several quantities may be the same (such as a layer in the

mesh). The heapsort algorithm is O(n log n) in the worse case, which is faster than the quicksort
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algorithm [81]. Each coordinate direction is sorted and tracked, and all the sorted nodes are put

into the root.

The root is then split into child bins. First, the top, bottom, and median in each coordinate

direction for each child is determined. To find the median, the median is simply selected as the

middle of the list. The median is adjusted to make the top and bottom list equal in length. If the

median is close to the top or the bottom within a specified tolerance, and cannot be adjusted, the

root is flagged for to no division into further children in the coordinate direction. If the median is

far enough away from the top and bottom of the list, the root is available for splitting into further

children. Next, if the root is available for splitting, the nodes in the root are segregated into 8

children using the median in each direction as the splitting point. It is possible for a child to have

zero nodes, and in that case the root will have less than 8 children. Before further division, each

child’s bounds are determined. The child’s bounds are determined by:

lowbound = max(min(xfirst,xmedian − |xfirst − xmedian|),xfirst,parent)

upbound = min(max(xlast,xmedian + |xlast − xmedian|),xlast,parent). (F.1)

Each child is then split, with the previous process for the root applied to each child to determine

how or if the child is split. This recursiveness simplifies coding as well. The process of splitting

into smaller and smaller bins continues until either a user minimum number of nodes in a bin is

reached or if the child is determined to be unsplittable via the list size algorithm.

F.3 Algorithm Modifications for Locating Image Nodes

This section presents modifications made to the general octree algorithm. First, each child may

be padded to ensure that nodes in the domain fall fully within a child and not on a border between

children. Without the padding, nodes may not be correctly located in space via the transversal

algorithm.
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F.4 Octree Transversal Algorithm

Once the entire tree is built, the octree can be transversed to find whatever information is desired

by the user. A transversal is begun by selecting a location in space, be it a physical node in the

octree or a random location. To simplify the discussion, this node will be referred to as a flower.

First, the algorithm determines if the flower is located within the bounds of the tree. The bounds

of the tree, or each leaf (or child), is adjusted with a bin tolerance such that there is some padding

to the bin. This padding ensures the algorithm does not run into an interface between leafs. If the

flower is on the tree, then each child of the tree is checked to see if the flower is located on the leaf.

If the flower is not located within the bounds of the leaf, the next leaf is checked to see if the flower

is located within the leaf. This process continues until the top of the tree is reached and the leaf

has no more children. Once this happens, the flower has been located, and the tree is transversed.

F.5 Using the Octree

This section describes how the octree is used within this dissertation. The octree algorithm is

used herein to locate image and intercept nodes within the main or ghost domain. First, the tree

information for both the main and ghost domain are built. Next, the image and intercept nodes are

created as described in (reference). Once the image and intercept nodes are built, each image and

intercept node ’flower’ is pushed through the main tree to find the closet node using the transversal

algorithm. To find the closet node on the leaf to the flower, the flower coordinates are compared

to the coordinates of the nodes within the bounding leaf. The smallest difference is considered the

closest node:

dx = xflower − xleaf node

d = dx · dx

min
d

= min(min
d
, d) (F.2)
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If the flower is not on the main tree, then the ghost tree is checked. Once the closet node is found,

the stencils can be built for the image and intercept nodes, as described in Section 5.4.2.1.
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APPENDIX G

EQUIVALENCE OF CHOELSKY AND SVD DECOMPOSITION FOR A SYMMETRIC

POSITIVE DEFINITE MATRIX

This appendix shows the equivalence between the Cholesky and SVD Decomposition for a

symmetric positive definite (SPD) matrix. This is important for mapping an ellipsoid to the unit

sphere (or disk in two dimensions) [132]. For an SPD matrix, of which the quadratic form of the

ellipsoid, H, is (see A, there exists an SVD decomposition of the form:

A = UΣU∗ (G.1)

where U = V in the standard SVD decomposition and ()∗ is the conjugate transpose. If a QR

decomposition of the SVD system is performed, such that:

QR = U
√

Σ (G.2)

where Q is an unitary matrix and R upper right triangular, then:

A = QR(QR)∗ = LL∗ (G.3)

which is the Cholesky decomposition of A.

612


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Statement of the Problem
	Literature Review
	Original Contributions of Present Work
	Dissertation Outline

	Governing Equations
	Flow Model
	Direct Numerical Simulation
	Large-Eddy Simulation
	Reynolds-Averaged Navier–Stokes
	Similarities between RANS and LES
	Sub-grid Models for Large-Eddy Simulation

	Numerical Scheme and Discretization
	Spatial Discretization
	Flux Computation
	Convective Fluxes
	Viscous Fluxes
	Boundary Fluxes

	Temporal Discretization
	Implicit Residual Smoothing

	Higher-Order Methods
	Higher-Order Derivatives
	Overview
	Moving Least-Squares
	Stability of the Moving Least-Squares
	Scaled Polynomial Basis
	QR Decomposition
	Orthogonal Polynomial Basis
	Affine Moving Least-Squares

	Stencil Selection for MLS
	Periodic Boundary Stencils
	Non-Periodic Boundary Stencils

	Derivatives: Full, Semi-Diffuse, and Fully-Diffuse
	Full Derivatives
	Semi-Diffuse Derivatives
	Fully Diffuse Derivatives
	Derivatives of the Affine MLS


	Higher-Order Quadrature
	Higher-Order Fluxes
	Convective Fluxes
	Viscous Flux
	Leading-Edge Flux Modification

	Higher-Order Boundary Conditions
	Periodic Boundary Conditions
	Non-Periodic Boundaries
	Generation of Image and Intercept Nodes
	Building the Boundary System with Ghost, Image, & Intercept Nodes
	Inlet
	Outlet
	Far-Field
	Non-Reflecting Compatibility Boundaries
	Inflow/Wall or Symmetry and Outflow/Wall or Symmetry
	Symmetry and Inviscid Walls
	Viscous Walls
	Rotating Walls

	Boundary Fluxes

	Higher-Order Temporal Schemes

	Moving Least-Squares 2D Results
	Introduction
	Inverse of Moment Matrix M for 2D Meshes
	Structured Meshes
	Unstructured Meshes
	Stretched Meshes

	Order of Accuracy Study
	Structured Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS
	Summary

	Unstructured Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS
	Summary

	Stretched Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS: Isotropic Weights
	Affine MLS: Anisotropic Weights
	Summary


	MLS Diffusive Derivatives
	Structured Grids
	Second-Order
	Third-Order
	Fourth-Order

	Unstructured Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS

	Stretched Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS


	Comparison of Variable Scaling Parameter k
	Structured Grids
	Second-Order
	Third-Order
	Fourth-Order

	Unstructured Grids
	Anisotropic Weights
	Affine MLS

	Stretched Grids
	Isotropic Weights
	Anisotropic Weights
	Affine MLS


	Comparison of Orthogonal Polynomials using Affine MLS
	Structured Grids
	Second-Order
	Third-Order
	Fourth-Order

	Unstructured Grids
	Second-Order
	Third-Order
	Fourth-Order

	Stretched Grids
	Second-Order
	Third-Order
	Fourth-Order



	Higher-Order Results
	Condition of Moment Matrix M for 3D Grids
	Boundary Conditions
	Higher-Order Periodic Boundary Conditions
	2D Taylor–Green Vortex
	Stationary Vortex

	Navier–Stokes Characteristic Boundary Conditions with Ghost Nodes
	Full Derivatives with Transverse Terms
	Fully-Diffuse Derivatives with Transverse Terms
	Full Derivatives without Transverse Terms
	Section Review

	Bump in a Channel: Mach = 0.2
	Bump in a Channel: Mach = 0.6
	Laminar Flat Plate
	Adiabatic Laminar Flat Plate
	Isothermal Laminar Flat Plate


	Taylor–Green Vortex
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES
	APPENDIX Minimum Volume Enclosing Ellipsoid for Gradients
	Introduction
	Definition
	The Dual Problem
	Algorithm for Suboptimal Problem
	Initialization
	Solution
	Extracting Ellipsoid Coefficients

	Example

	APPENDIX Moving Least-Squares Examples
	Introduction
	Structured Data Set
	Unstructured Data Set

	APPENDIX Derivatives of Weight Functions
	APPENDIX Affine Transformation for Image Nodes
	Introduction
	Definition
	Method
	Algorithm for Generating Image Nodes via Affine Transform
	Algorithm for the Velocity of Symmetry and Inviscid Wall Ghost Nodes

	APPENDIX Exact Quadratures for Triangles and Quadrilaterals
	APPENDIX Octree
	Introduction
	General Algorithm
	Algorithm Modifications for Locating Image Nodes
	Octree Transversal Algorithm
	Using the Octree

	APPENDIX Equivalence of Choelsky and SVD Decomposition for a Symmetric Positive Definite Matrix

