
ar
X

iv
:c

on
d-

m
at

/0
10

62
81

v1
  [

co
nd

-m
at

.d
is

-n
n]

  1
4 

Ju
n 

20
01

Hysteretic dynamics of domain walls at finite temperatures
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Theory of domain wall motion in a random medium is extended to the case when the driving field
is below the zero-temperature depinning threshold and the creep of the domain wall is induced by
thermal fluctuations. Subject to an ac drive, the domain wall starts to move when the driving force
exceeds an effective threshold which is temperature and frequency-dependent. Similarly to the case
of zero-temperature, the hysteresis loop displays three dynamical phase transitions at increasing ac
field amplitude h0. The phase diagram in the 3-d space of temperature, driving force amplitude and
frequency is investigated.

Pinning dominated driven dynamics of elastic media
in random environment is a paradigm for a vast diversity
of physical systems. Examples include vortices in type II
superconductors, charge density waves (CDW) in solids,
stripe phases, Wigner crystals, dislocations in crystals,
domain walls in magnets and many others [1]. Having
appeared first in the context of dislocation dynamics [2],
the scaling theory of glassy dynamic state of random elas-
tic media came to fruition in the context of CDW [3] and
vortex lattices in high temperature superconductors [4,3],
and enjoyed an impressive success in explaining a wealth
of phenomenology of the low temperature vortex state
[5]. A closely related subject is the zero temperature
depinning transition first studied for CDWs [6,7] and do-
main walls [8,9]. Despite the significant recent progress,
several key questions specific to glassy dynamics are yet
poorly understood. One of such fundamental key issues,
although known and extensively studied for more than
hundred years in magnets, is hysteresis of interfaces sub-
ject to the applied ac drive and related aging and memory
effects. A quest for urgent progress in understanding hys-
teretic behavior of magnetic domain walls is motivated
also by emerging technological nano-scale magnetic sys-
tems whose ac properties are controlled by the hysteretic
dynamics of interfaces.
A step towards theoretical description of hysteretic be-

havior of disordered interfaces has been undertaken in
[10], where the cyclic motion of the domain wall at zero
temperature under the ac field was investigated and the
resulting magnetization hysteretic loop was described. A
finite temperature may change drastically the interface
dynamics: thermally activated creep motion becomes
possible at any small drive.
In this Letter we develop a unified description of ther-

mally activated and over-threshold domain wall dynam-
ics in impure magnets. We demonstrate that at finite
temperature new scales of length, activation energy and
force appear leading to emergence of a new, temperature

and frequency-dependent threshold field in the case of
ac drive. The latter is the first in a series of dynamical
phase transitions. To be specific, we will speak on mag-
netic domain walls. Accordingly we will be using either
of terms ”force” or ”field” equivalently.

Finite temperature dc dynamics The essential of the
zero-temperature dynamic behavior of an elastic medium
in a random environment is the existence of the finite
threshold depinning force hp, separating immobile at
h < hp and sliding at h > hp states of the system. Near
the threshold the sliding velocity v shows a critical be-
havior [6–9] v ∼ (h − hp)

β . At finite temperatures and
h ≪ hp thermally activated drift motion controlled by
the static rugged energy landscape occurs. The latter is
governed by the interface free energy

H =

∫

dDx

{

1

2
Γ(∇Z)2 + V (x, Z)− hZ(x)

}

(1)

where Γ is the interface stiffness, h is the external driving
force and V (x, Z) is the random impurity potential. D-
dimensional vector x is the coordinate along the inter-
face, and Z is the coordinate of the transverse interface
displacement. In the following we assume that the dis-
order average of the random potential vanishes. There
are two different types of impurities, random bond (RB)
and random field (RF) type in terms of magnetic models.
The RB potential obeys the Gaussian statistics with:

VRB(x, Z)VRB(0, 0) = v2lD+1 δ(x) δ(Z) (2)

where v2 = v20c. v0, c and l denote the strength, the con-
centration and the correlation length of the impurity po-

tential. In the RF case VRF (x, Z) =
Z
∫

0

h(x, Z ′) dZ ′ where

the RF h(x, Z) has properties similar to VRB(x, Z).

The static interface in a random environment becomes
rough. Its roughness obeys the scaling law [13]:
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w2(L) = (Z(x)− Z(0))
2
≈ l2

(

L

Lp

)2ζ

; L = |x| (3)

where the roughness exponent is ζ = 4−D
3 for RF and

ζ ≈ 0.2083(4−D) for 4−D ≪ 1 and ζ = 2/3 for D = 2,
for RB impurities, respectively [14,13]. The rough con-
figuration develops over length scales L ≥ Lp, where the
Larkin length Lp is a distance at which a typical fluc-
tuation of the pinning forces, balanced by elastic forces,
produces the transverse displacement w ∼ l:

Lp ≈ l (Γ/v)
2/(4−D)

. (4)

Note that the typical slopes w(L)/L of the wall vanish for
L ≫ Lp since ζ < 1. The energy barriers which must be
overcome to depin a segment of the wall with the linear
size L is [2]:

EB,0(L) ≈ Tp(L/Lp)
χ; χ = D − 2 + 2ζ. (5)

Here Tp ≡ EB,0(Lp) ≈ Γl2LD−2
p is a typical pinning en-

ergy on a scale Lp. At temperature T > Tp the effective
force necessary for depinning drops rapidly with the tem-
perature [2]. If an external driving force h is applied, the
total energy barrier EB(L) becomes

EB(L) ≈ EB,0(L)− hLDw(L)

≈ EB,0(L)
(

1− (L/Lh)
2−ζ
)

(6)

where Lh ≈ Lp(hp/h)
1/(2−ζ). The energy barrier reaches

its maximum EB,max at L ≈ ( χ
D+ζ )

1/(2−ζ)Lh which gives

EB,max ≈ Tp(hp/h)
µ and µ = χ/(2− ζ).

For completeness we note here that equilibrium RF
systems in d = D + 1 = 2 bulk dimensions have no long
range order at length scales L ≫ ξRF ≈ l exp c(Γ/v)4/3

[16]. For weak disorder ξRF is very large and can easily
exceed the system size. As soon as an external field is
applied such that Lh < ξRF , domain wall motion is dom-
inated by the forces on scales Lh and the absence of true
long range order can be ignored.
As first found by Middleton [17], close to hp the small-

est energy barrier vanishes as (h− hp)
θ with θ = 2. We

therefore get the effective energy barrier at h <
∼ hp if we

replace in the above expressions Tp by T̃p = Tp(
hp−h
hp

)θ.

The time scale to overcome this barrier is of the order
τ(Lh) ≈ τ0 exp

(

ẼB,max/T
)

, where τ0 is a microscopic

hopping time, which leads to an average velocity:

v(h) ≈ γh exp

[

−
Tp

T

(

hp − h

hp

)θ (
hp

h

)µ
]

(7)

where γ is the effective friction coefficient [2,3,15].
At low temperature T ≪ Tp the dynamic threshold hp

separates the creep regime from the active sliding regime.
As can be seen from (7) a characteristic crossover field
hT plays the role of the depinning force, where

hT

hp
=

(

T̃p(hT )

T

)1/µ

=

(

Tp

T
(1−

hT

hp
)θ
)1/µ

(8)

At h ≈ hT , the drift velocity increases rapidly and at
larger fields it displays almost linear behavior v ≈ γh.
Note that hT is a monotonously decreasing function of
temperature with a maximum hT = hp at T = 0.

In a close vicinity of the threshold field hp, the effec-
tive energy barrier becomes small and even small thermal
fluctuations may be sufficient to overcome it. At finite
temperatures and h <

∼ hp the wall moves via thermal ac-
tivation process with velocity given by eq. (7). Strictly
speaking, it means that at finite temperatures the critical
point shifts from h = hp to h = 0. Yet there remains a
memory of the critical behavior around h ≈ hp displaying
itself in a crossover behavior at finite but low tempera-
tures. The crossover is seen as a rounding of the h − v
characteristics v(h ≈ hp) ∼ T β/θ. We now can write an
interpolation formula for the velocity which is valid in a
wide range of variables:

v(h, T ) = γhF (x, y); x = h/hp; y = Tp/T, (9)

F (x, y) =
Θ(1− x)

1 + (yx−µ)β/θ
exp

[

−yx−µ (1− x)
θ
]

(10)

+Θ(x− 1)

[

1

1 + (yx−µ)β/θ
+

(

1−
1

x

)β
]

Here Θ(x) is the step function equal to zero at x < 0
and equal to 1 at positive x. The interpolation for-
mula (10) satisfies following requirements: (i) v(h, T ) =
γh at any fixed T and h ≫ hT ; (ii) v(h, T ) =

γh exp

[

−
Tp

T

(

hp−h
hp

)θ
]

for hp − h ≪ hp and T ≪ Tp;

(iii) v(h, T ) ≈ γh exp

[

−
Tp

T

(

hp

h

)µ]

for T ≪ Tp, h ≪ hp

and EB,max/T ≫ 1 ; (iv) v(h, T ) ≈ γhp(h/hp − 1)β

for (h/hp − 1) ≪ 1 and T ≪ Tp(h/hp − 1)θ; (v)
v(hp, T ) ≈ γhp(T/Tp)β/θ for T ≪ Tp.

So far we assumed that the propagating interface is
self-affine. This is confirmed by numerical simulations in
D > 1 interface dimensions for systems with weak disor-
der [18]. In D = 1 dimensions the situation is less trans-
parent: in simulations which use a bounded distribution
of random fields the interface appears to be self-affine
[19] or faceted [20] depending on whether lattice effects
are avoided or admitted, respectively. We ignore here the
possibility of faceted growth which occurs only in systems
with narrow magnetic domain walls. For an unbounded
distributions of random fields however a percolative self-
similar domain wall propagation was observed [21]. In
the following we will always assume, that the random
fields distribution is bounded such that the domain walls
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remain well defined. This is also confirmed by our earlier
simulation outside of the critical region [10].
Alternating fields. If the external drive is oscillating

with frequency ω, h = h0 sinωt, the barriers for which
ω τ(L) > 1 cannot be overcome during one cycle of the ac
field. From the condition ω τ = 1 we find a new frequency

and temperature dependentmagnetic field hω which obeys

hω

hp
=

(

Tp

TΛ
(1 −

hω

hp
)θ
)1/µ

(11)

where Λ = ln 1/(ωτ0). hω plays the role of the dynamic
threshold. At low fields h0 < hω there is no macroscopic
motion of the wall, its segments oscillate between the
metastable states with close energies giving rise to dis-
sipation [2]. Drift of the wall starts at h0 > hω. We
assume ωτ0 ≪ 1, so that hω < hT . Various regimes of
domain wall motion are summarized in Fig.1.
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linear  regime

FIG. 1. The phase diagram for the domain wall hystere-
sis at finite temperature and frequency. Solid and vertical
lines separate no sliding, thermal creep and mechanical drift
regimes. See also explanations in the text.

Having derived the domain wall velocity as a function
of the driving field in the different h− T -regions we con-
sider now the magnetic hysteresis following from the mo-
tion of a single wall under the influence of an oscillating
field. Since substantial length scales are larger than Lp,
where slopes are small, the domain wall will be considered
as a straight line (plane) characterized by one coordinate
Z [10]. Its dynamics is determined by equation of motion

Ż = v(h(t)) (12)

Z varies between limiting values 0 and L. Here L is the

linear size of the sample in the case of a single domain

wall or, in the multi-domain case, equal to the average

distance between expanding nuclei . For harmonically os-
cillating field h = h0 sinωt, equation (12) can be rewrit-
ten in terms of h only:

dZ

dh
=

v(h)

ω
√

h2
0 − h2

; Z(h = 0) = 0 (13)

Equations (12) and (13) are valid for h > hω. The field
region h < hω where the motion has zero drift velocity

will not be considered here. The value hω plays the same
role as the threshold field hp plays at zero temperature.
At h > hω the hysteresis is dominated by the activation
processes. In this respect it is similar to the nucleation
dominated hysteresis described in [10] with two essential
differences. First, the activation relates to the formation
of a nucleus on the interface, not in the bulk. Second,
the activation energy depends on the magnetic field as a
power function ∼ h−µ due to the distribution of barriers
depending on their length scale.

hc)

h
h

a)

.
hω

.
0

hr

hc

h

h0ω
h

h

h hω hr c= = h0
..

.
hω h h r h0

.
c

b)

d)

M M

MM

FIG. 2. Schematic pictures of hysteresis loops(HL). (a) In-
complete HL for h0 < ht1. (b) Symmetric HL for h0 = ht1.
(c) The HL for ht1 < h0 < ht2. (d) The HL for h0 > ht2.
The values hp, hc, hr and h0 are all marked in all figures

We start with large temperatures T > Tp at which the
zero-temperature threshold field hp plays no role (field
sweep (2) in Fig.1). In this case the motion of the do-
main wall is determined by equation ( 13) for h > hω.
As in the case of zero temperature [10] three dynamic
phase transitions take place when the amplitude h0 in-
creases gradually at a fixed value of frequency. These
transitions change the shape (symmetry) of the hystere-
sis loop. At the first of them proceeding at h0 = hω

the hysteresis loop first appears, at smaller amplitudes
h0 < hω the magnetization remains unchanged. The
hysteresis loop appearing at h0 > hω is characterized by
incomplete magnetization reversal and reflection symme-
try h → −h, M → M as shown in Fig. 2a. This symme-
try as well as incomplete magnetization reversal persists
until the next dynamic phase transition at h0 = ht1.
At h > ht1 the magnetization reversal becomes com-

plete and hysteresis loop symmetry changes to inversion
h → −h, M → −M (see Figs. 2b, 2c). The value ht1 is
determined by a requirement that the domain wall pro-
ceeds from one sample boundary to another for half a
period. At the next dynamic phase transition the sym-
metry of the hysteresis loop remains unchanged, but the
part of the cycle becomes reversible. Visually the hys-
teresis loop acquires characteristic ”whiskers” as shown
in Fig. 2d. The point of this transition ht2 is determined
by a requirement that the domain wall proceeds from one
sample boundary to another for quarter period.

3



Starting from the transition amplitude h0 = ht1 each
hysteresis loop goes through three important points. One
of them is hω, at which the motion of domain wall starts.
Two others the so-called coercive field hc and reversal
field hr. At coercive field the magnetization turns into
zero, at reversal field the magnetization becomes com-
pletely reversed (see Fig. 2b-2d). Note that for h0 = ht1

hr = hω and hc = h0; for h0 = ht2 hr = h0. All these
fields can be found in our case. Equations for ht1, ht2

are:

∫ htn

hω

v(h)dh
√

h2
tn − h2

=
nωL

2
, n = 1, 2 (14)

For the case T > Tp the equations (14) read:

g(xn) =
nωL

2γhT
, g(x) =

x
∫

xω

ye−y−µ

(x2 − y2)−1/2dx (15)

where xn = htn/hT , n = 1, 2; xω = hω/hT = 1/Λ1/µ.
Thus, x1, x2 are functions of a dimensionless parameter
u = ωL/γhT , where L is the size of the system or an av-
erage size of domains. Its asymptotic at small u results in
xn ≈ [ln(2/nu)]−1/µ. The fields ht1; ht2 are close in this
case: (ht2 − ht1)/ht1 ≈ ln 2/(µ lnu). The requirement
ht1 > hω is satisfied if γhT τ0 < L. The coercive field
hc and the reversal field hr are determined by equations:
M(hc) = 0; | M(hr) |= Ms.
A simple analysis at small u results in hc ≈ ht1; hr ≈

ht2. The area A of the hysteresis loop at u << 1 and
h0 > ht1 does not depend strongly on the amplitude h0

and becomes A ≈ 4hrMs. Fig.2 shows typical hysteresis
loops and illustrates the geometrical meaning of the field
hω, hc, hr. The dependence of magnetization on magnetic

field is given by equation: M(h) = Ms

(

2Z(h)
L − 1

)

.

Finally, in the range of moderately low temperature
T < Tp the more complete expression (10) and (11) have
to be used in integrating equation (14).
It interesting to note that the similar (dynamic) tran-

sition from incomplete to complete hysteresis was ob-
served even in a standard simplistic mean-field model for
pure magnets with the reaction described by the Bril-
loin function [12]. This suggests that this kind of dy-
namic transition we discuss, may be a generic property
of nonlinear systems. Another note is in order: hysteresis
in large multidomain magnet samples is a very complex
phenomenon and cannot be always reduced to motion of
a single domain wall (see for example numerical simula-
tions of random Ising model in [11], where hysteretic and
memory efects unlikely reducible to motion of a sible DW
were revealed).
In conclusion, we have investigated critical creep mo-

tion at low, T ≪ Tp, and at high, T > Tp, temperatures,
Tp being the depinning temperature, and constructed the
dynamic phase diagram. At low temperatures creep at

h ≈ hp retains features of the critical behavior and ex-
hibits the rounding of the h− v characteristic, according
to [17]. At finite frequencies ω, a new characteristic field
hω < hp comes into play, and the transition from the
sliding regime to pinning dominated activation motion is
shifted to hω.
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