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7r7r scattering amplitudes in the subthreshold region
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w7 scattering amplitudes inside the subthreshold triangle €83, 0<t<3, O<u<3=4u?) are studied
using interior dispersion relations. The dispersion integrals are evaluated above a center-of-mass energy
W...=0.6 GeV by using a standard phase shift analysis and from this value down to threshold by using unitary
models consistent with existing low-energy experimental data. It was found that by restrictisgiénes
scattering lengths to lie on a “universal curve” all crossing properties and appropriated threshold sum rules
were reasonably well satisfied. The invariant amplitudes are found to be in good qualitative agreement with the
predictions of Weinberg’'s chiral model and its corrections derived from chiral perturbation theory.
[S0556-28188)04602-0

PACS numbgs): 13.75.Lb, 11.55.Bq, 11.55.Fv, 11.30.Rd

[. INTRODUCTION grals above about 600 MeV. The low-energyr scattering
amplitudes are still not precisely known, although strides
The reactionmrm— 7 is theoretically the most elemen- have been made in that direction over the past few yi&¥rs
tary hadronic procesgl]. The simplicity of its kinematics BY choosing scattering lengtfag, anday, (a,5) within cur-
coupled with its beautiful crossing properties has intriguedently accepted bounds, we are able to find unitary param-
theorists for over 30 years. In addition to its intrinsic interest,etrizations which are consistent with the sparse low-energy
the process is an important building block in the theory ofPhase-shift dataW,,<600 MeV) and which join onto the
nuclear forces, neutron and proton form factors, and pioforé abundant higher-energy data. Two differemt re-
production reactions. Because of its unique role as théAt€d theoretical constraints are used to restrict the param-
pseudo-Goldstone boson of chiral symmetry, chiral model£ters in these fits. The first is to impose crossing symmetry,

[from current algebra and partially conserved axial vectotfgsduItthseoﬁﬁg':Svésr;%ggggcaerzciﬂn%’;':%g Zl;z]lgggi.oTahr?
current(PCACQC) of the 1960s to the more recent chiral per- y

turbation theoryare the theories of choice for understandingapprox'mate'y linear relation between the scattering lengths

. ) agp anda,g which closely resembles the well-knowmiver-
the low-energy dynamics of this system. These models pre-°? 20 y

: . . - sal curve[10]. Our choice of IDR automatically satisfies
dict the structure of ther# scattering amplitude withiand [10] y

: _ S« Uu crossing symmetry, bud—t andu«—t crossing sym-
somewhat beyondthe subthreshold triangle @7<X  etries for the calculated amplitudes are not automatic.

=4u? m=st,u, andpu is the pion mass It is the purpose  However, for each value afy, We were able, through judi-
of this article to use interior dispersion relatiol®R’s) [2],  ¢jous choice ofa,,, to accommodate crossing symmetry
experimental phase shifts, and crossing symmetry to explorguite satisfactorily throughout the triangle. Once the phase-
the invariant amplitudes throughout the subthreshold regiorshift parametrizations were chosen, we then were able to
The usefulness of IDR’s is due to the fact that they areperform the dispersion integrals and, by varying the path
written along paths(hyperbolag which run through the parameter, evaluate the amplitudes throughout most of the
physicals-channel region, the subthreshold triangle, and theubthreshold triangle. We conclude that the subthreshold am-
physicalt-channel region. If parametrizations of the experi- plitudes as revealed by the IDR analysis are in good agree-
mental phase shifts are used to construct the absorptive patisent with chiral models ofr 7 scattering amplitudes. A pre-
of the amplitudes in the- andt-channel dispersion integrals, liminary version of this work is found in Ref11].
then the IDR’s can be used to evaluate the invariant ampli- This article is organized as follows: Section Il introduces
tudes throughout most of the subthreshold triangle. Thushe IDR’s, and includes a discussion of the amplitudes, kine-
IDR’s represent an excellent tool to test the predictions oimatics, and the paths in the Mandelstam diagram along
chiral models provided that sufficient data exist to allow thewhich IDR’s are written. In this section we also demonstrate
evaluation of the dispersion integrals. that two familiar sum rules follow naturally from IDR’s.
Through a series of experiments and analyses, mostly i8ection Il is devoted to the parametrization of the low-
the 1970s, phase shifts and inelasticities forr scattering energy phase shifts through formulas that satisfy elastic uni-
have been determined indirectly through studies of pion protarity and correctly describe resonance contributions. The
duction and kaon decay up to a center-of-mass energy avaluation of the dispersion relations and their comparison
nearlyW,..=2 GeV[3-8]|. Aided by the rapid convergence with chiral models are given in Sec. IV. Further discussion
of our subtracted dispersion relations, these data are suffof interesting features of the phase-shift parametrizations is
ciently accurate to allow us to perform the dispersion intepresented in an appendix.
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where (a,t)=3—t+v» and (a,t)=2—t—v with v
=p(a,t)=/4at+ (S —t)%. In the above expression the left-
hand cut int has been transformed into an integral over the
physicals channeI.CISIt, is thest isospin-crossing matrikl],
and a sum ovet’ is implied. The threshold poirg=23., t
=0, is common to all curves. This fact will be exploited in
writing subtracted dispersion relations.

In the s-channel integral, fora<QO the cosine of the
center-of-mass scattering angtes= co,;=(a+s')/(a—¢s'), is
physical, i.e.,—1<z,<1. In thet channelz;=cos,=v/(t'
—3) is for a<0 unphysical only fort’ between andt,
=3 —2a++4a(a—2). In order to use partial-wave expan-
sions of the imaginary parts of the amplitudes occurring in

FIG. 1. Mandelstam plot forrm scattering. The solid, dot- the integrands, it is necessary to be sure #has inside the
dashed, long-dashed, and short-dashed curves correspaard to Lehmann ellipse determined by the boundary of the double
—12.4u?, —8u?, —0.752, and—0.25u2, respectively. The curve spectral functionpg;. In particular, one must demand that
a=0 lies along the curveu=0. Thus fora in the region |z?| <z%— 1 wherezg is the value ofz, at the boundary of
—12.44%<a<0 nearly all of the triangular region is accessible. pst- This results in—4a< VZB/t’ wherevyg is the value ofv

at the boundary ob;. Using the known boundary ¢f;; [1],
Il. DISPERSION RELATIONS one finds the minimum value af2/t’ to be approximately
A. Interior dispersion relations 12.45,. Consequently, only for- 12.4u?<a<0 is it certain
that a partial-wave expansion of the amplitude in the inte-
grand is convergent. The cunee= —12.4u? and others are
shown in Fig. 1, and it is clear that almost all of the sub-

Interior dispersion relationf2] can be written for ampli-
tudes that are symmetric unds#u crossing. In the vari-
ablesy=s—u andt, suitable amplitudes which must satisfy ;,+ashold triangle is accessile2].

A(=»,1)=A(»,1) can be easily constructed from the set of g racted IDR's are easily obtained by evaluating Eq.

t-channel invariant amplitudelsLoylyzin which | is the iso- (4) at the s-channel thresholdtE0, s=3 for all a) and
spin in thet channel. Theé-channel amplitudes have partial- subtracting it from Eq(4) at arbitraryt:
wave expansions
: - ~ t (=dt’Aj(a,t’
A=3 2/ + D) (DP(z), ) R(an)-&(a0 [ LA
Ty t'(t' 1)

fi,=(n €49 =1)l2ip, 2

ccp & [Fas 00
—_— S —_—
N

wherep=q/ g%+ 42, q is thet-channel center-of-mass pion v|
momentum, angk is the charged pion mass. Similar expres-
sions exist fors- and u-channel amplitudes. By Bose sym-
metry,/ is even ifl =0 or 2 and is odd if =1. Unders«u

crossingz,=cos,=v/(t—2) is odd, and so

s—3 u )
+ )
(s'=2)(s'—s) s'(s'—u)

where t(a,s')=—29%[1—z(a,s’)] and Aj(a0)
Al(v,H)=(=1)" Al(=p,t). (3)  =uC;la—o. This set of equations, which is more conver-
gent than Eq(4), is our major tool for determining the
Consequently su-even amplitudes suitable for IDR’s are amplitudes within the subthreshold region.
’A'BEAt Al =Al/v, and ’AEEAt . ie., K}=A}/ v, Where The convergence of the dispersion integrals in Gywas
vo,=1 andv,=v. first tested by comparison of its predictions along the right
'IDR’s are written by dispersing inalong curves of fixed Side of the subthreshold triangle with those of the more con-

path parametera= — ¢(s,t)/t> where ¢(s,t)=stu is the  Vvergent fixedu=0 dispersion relation:
Kibble boundary function and+t+u=23,. Typical curves 2 <o e
of constant path parameters are shown in Fig. 1, where they AU(p,) =AY+ vy~ J“ dv Aj(vy)
are seen to pass through both gieandt-channel physical o ! T Js (p2-32)(v'2—1?)]

. . . . u
regions, and the subthreshold triangle. It is this latter feature
that makes IDR’s attractive for this work. The IDR’s in their wherev,=s—t. The tilde represents division by, so that
unsubtracted form are these amplitudes are even undeércrossing. This dispersion
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FIG. 2. Convergence of the dispersion integrals. Bsthand TM: ;2/(2I +1)Cy, J'Ojfl/y 8
t-channel integrals were truncated at a center-of-mass enstrgy
The value at the left side of each graph corresponds to setting the tivelv. Subtracting th ¢ | ield
dispersion integrals to zero, the value at the right, the integral up tgeSpeC Ively. subtracling these two sum rules ylelds
W=2 GeV.(a) shows the/V dependence of the subtracted IORB),
that of the fixedu dispersion relation. Although the latter has better — 2_
convergence properties, both are seen to converge to the same vﬁlg 185147~ 28001 5320 1
ues. For this particular example= 2.16u? and v=1.04u?, but the
results are typical for other points within the triangle. 2 1dp(1— pz)
s [ et ©
relation has been subtracted at thehannel thresholdy,, p

=3, resulting inA/(2)=uC'a;/1o/%,. By comparing  The factor of (1 p?) in the last integral “pinches off” the

this integral to that of the once-subtracted IDR, it is seen thakigh-energy contributions, leading to improved convergence.

this integrand has an extra energy-squared factor to speéfthis sum rule is equivalent to one first proposed by Wanders

convergence. Once the amplitudes on the lire0 were [14]. This combination of scattering lengths vanishes in

determined, their values within the interior of the triangle Weinberg's chiral mode[15], and so it is expected to be

were found from strongly convergent dispersion relations obgquite small.

tained by subtracting Eq5) with generala from a similar

expression witha=0 and the same value of the subtrac- IIl. PARAMETRIZATION OF ## PARTIAL-WAVE

tion constan®A}(0,t) being obtained fromA'(v,) of Eq. (6) AMPLITUDES

by apphcahons of theu crossing matrix. To evaluate the dispersion integrals, it is necessary to
Flgure_2 compares the convergence of these two methoq§ave parametrizations of partial-wave amplitudBSVA's)

by showing the accumulative integrals for the Chew-

: . for each isospin state. For the low-energy regidhi=(+/s
Mandelstam amplitudes as functions of the cutoff ené\gy g Gev orp<0.93), we will use parametrizations for the

.e., the highest center-of-mass energy included in the integ 545 \wave amplitudes that correctly describe resonance
grals. In all cases, we have found convergence in the doubly,iripytions: They have resonance poles on the unphysical
subtracted method well below=2.0 GeV, the highest en-  gsheet, have correct threshold behavior, and are real below
ergy for which experimental phase shifts are availasie  threshold. As shown in the Appendix these parametrizations
Sec. ll)). The convergence is poorer, but still satisfactory forcan be used to generate solutions of partial-wave dispersion
evaulations using Eq(5). The two methods yield nearly relations and form factors. In the region above approximately
equal amplitudes, providing a good consistency check, beg.6 GeV and fod andf waves, we use the parametrization
cause they weigh the regions of integrations differently.  of Hyamset al. [6].
Effective-range parametrizations of PWA’s normally are
written as expansions of the formg?® *lcots, (q)
B. Threshold sum rules =3,c,q* where the series is truncated at a convenient
o ) ) ) point. For low-energyr scattering, we replacq in this
IDR’s simplify to boundary dispersion relationSl3]  expression by the variablp. The variablep is a natural
when they are evaluated at path parameter® wherez;  yariable in which to write resonance parametrizations that
=z,=—1. By its definition,A] includes an additional factor satisfy elastic unitarity and also, as seen in the previous sec-
of v~ 1=(2—1)"1, and thus its integrals converge as if they tion, to write dispersion relations. We will begin by listing
were subtracted. In its unsubtracted form, it can be written asimple parametrizations for the first few PWA's.
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A. s-wave partial-wave amplitudes 120 T T T T T T
Defining fo=ty/p=(Sy—1)/2i p, in the elastic region it
follows that 100 |
fo '=—ip+ pcotd, (10)

80

(isospin labels are omittedKeeping the first three terms of

\ eep CIRE)
an effectlve-range expansion gives

60 |

pCotsY) = Co+ Cop?+Cyp*, (11)
40

where the constanty, ¢c,, andc, are real. The constang is
the inverse of the scattering lengih in pion mass units, and
C, is twice the “effective-range” parameter for an expansion
in p2. This parametrization can give good fits to experimen-
tal data for a reasonable range @f=1/ua,. Substituting 0
Eq. (11) into Eq. (10) results in a polynomial irp whose 02 03 04 05 06 07 08 09
roots are poles of the PWA'’s. Resonance poles are the ones W(GeV)
which correspond te in the interval(0,1) with small nega- FIG. 3. s-wave isospin-0 phase shifl, vs W . Experimental
tive p. The model of Eq(11) does not describe two reso- phase shifts are from Refgs] and[7]. The three fits correspond to
nances; the right-hand side is finite, and hence the phase shjft, ;= 0.16 (short-dashed line 0.26 (long-dashed ling and 0.36
cannot pass through. Once the parametecs are found by  (solid line).
fitting phase-shift data, the roots tﬁl can be found and the
appropriate one inverted vis=3/(1—p2?)=M?—iMT to
give the mass and width of the resonance.

Although it will not be required in the low-energy regime,
where the previous fits are adequate, we could obtain
appropriate expression for two resonanges two bound
state$ by use of the well-known, crude, but unitary, model

r:SrlSrz' whereSri=1+2ipfri, to obtain

was fit to data below 0.9 GeV witty, as an input parameter.

The best-fit parameters for each choiceagf were found to

vary linearly in agol: C,=7.14-2.56(uagy) 1, c,=—8.10
aft 1.62(uagg) ~* for 0.10< wagy<0.35.(The coefficients are
given to three places to allow the reader to reproduce our
numbers. This parametrization has a “sigma meson” with
mass in the general region of 0.5 GeV and width of 0.7 GeV
for a broad range o0&y,. The fit is shown in Fig. 3. Devia-
tions from the data that begin ne#/=0.9 GeV are irrel-

2 evant as it is used only below 0.60 GeV.

N (C10%C12p?) (Cogt Coop?) —p

fo=—ip . (12 T :
Canct Con (Cant Coa) p2 o0 test the dependence of the eﬁectlve—rar]ge parameters
10 Co0t (€12 C22)p on the data set used to model the phase shift between 0.6
wheref~1= —ip+ci+Ci-02. A chanae of parameters may €V and 0.9 GeV, we have also obtained values,aindc,
fi . P %o HizP g P y by replacing the low-energy data of Rgb] by those of two
be made to yield others, with the following results: Ref[8], c,=5.08
_ . _ —2.58(uagy) 1, c,=—5.80+1.64(uayy) 1; Ref. [6], ¢
1_ 19 _ 27 2 00, 4 00, 2
for =—ip+(nao) *(1=p%pop) —6.28-2.52(udg) L, Cs=—7.00+1.57(uap) L. This
X(l—pz/piw/z)/(l—pzlpi). (13) should give some indication of the uncertainty of these pa-

rameters.

In all of our parametrizations, the predicted mass and
widths of the “sigma meson are fairly consistent. fhgjvist
and Roos have recently advocated the interpretation a$

For some values of the parametess (e.g., for two reso-
nancegthe constantp..,, p,,, andps,, are real. This form

. - 71_.
clearly illustrates the pole and zeros gfotd=f lp at s a real, physical particlgl6], and the resilience of the pole

=7 and 6= /2, 37/2, respectively. Once the four param- osition of our fits for severaadmittedly simple parametri-
eters are found by fitting phase-shift data, the roots of (]Eati:)Ins is inuag:eement\\//vitﬁ theilr viev>\//. implep !

—p?p2)f,* can be found as before to give the masses and
widths of the two resonances. The procedure is easily ex- 2. 85

tended to include additional resonances. To allow a variation ofa,g as used in the dispersion work

1 in the next section, a parametrization of the fopmots,
- oo =(pay) 1+cyp2+cyp* was fit to the data of Hoogland

For =0 amplitudes we have adopted the phase-shifet al.[4] for —0.20< pa,< —0.02. As functions of the scat-
analysis of Estabrooks and Martif] for the higher-energy tering length, the best-fit parameters were found taje
data and that of Rosselet al.[7] for the lower-energy data. —22.62-2.41(uay) > and c,=21.64+1.43(uay) >
The data of Rosseledt al. (below p?=0.5) have relatively Corresponding curves and the data are shown in Fig. 4.
large error bars, and so do not strongly constrain the fit in therhese fits are used only fWW<0.6 GeV.
low-energy region. A parametrization of the form
B. p-wave partial-wave amplitude &7,

pcotﬁg%)zi +eop?+cap? (14) Forl=1, the reduced PWA,=(S;;—1)/2 p:”. could be
Mago parametrized in the elastic region by using’cots,;
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0 02 04 0.6 0.8 1 1.2 14 16
W(GeV) -0.055
0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24
FIG. 4. s-wave isospin-2 phase shif,, vs W_.,.. Experimental a0
phase shifts are from Reff4]. The four fits correspond tpa,y= ] )
—0.02 (short-dashed line —0.04 (long-dashed ling —0.06 (dot- FIG. 5. “Universal curve.” The relation betweesin, and ao
dashed ling and —0.08 (solid line). which produces acceptable crossing symmetry. The contours corre-

spond to lines of constant 48. The jitter at the bottom of the

:(M3310_1+C2P2:(1—P2/pf,/2)/(,u3311)- Fitting this to trough is an artifact of the grid spacing.

the phase shifts of5] results in the resonance poIeSp:j
and p,=0.931-0.014 and a distant satellite pole at; Ay=3B+A+C, Aj=A-C, andA,=A+C. Inverting these
=31.64. The mass and width of the resonance pole areequations, we can determifg B, and C in terms of the
M,=751 MeV andl',=144 MeV. The scattering volume A[’s, which were previously calculated within the subthresh-
for this fit is u®a;;=0.036. old triangle.

To describe the contribution of two resonances vyhe_re the Because thé-channel invariant amplitudes ob&y(v,t)
phase can vary from zero ton2 a better parametrization =(—1)'A (= »,t) [see Eq(3)] undersu (i.e., v— — v), it

would be follows immediately that the resulting CM amplitudes ex-
p3cots2) = (ulasy) ~H(1—p?p2,) actly satisfy the desiredu crossing properties. On the other
hand, we have no assurance that the amplitudes generated
X (1—p?lp3 )1 (1—p?lp2). (150  from the IDR’s will possess the correct crossing properties

under the permutations—t andt<u, and in general they
Once the parameters are found from fitting data, the massef® not. If, for example, typical valuesyu=0.20 and
and widths of the resonances can be found from the roots of, = —0.10 of thes-wave scattering lengths are chosen,

hii'(p)=—ip*+p3cots;. the s—t relations are poorly satisfied. However, a rather
small modification of either scattering length can produce

IV. w7 SCATTERING AMPLITUDES amplitudes which do possess to a reasonable approximation

IN THE SUBTHRESHOLD TRIANGLE the desired crossing properties for pairs of points related by

st crossing. Consequently, to ensure a rather accurate
crossing symmetry within the subthreshold triangle, we
The next step is to insert the imaginary parts of thechose a uniform grid of points within the subthreshold tri-
partial-wave amplitudes into the subtracted IDR, E§), to  angle (“uniform” means equal spacing in the Dalitz vari-
evaluate the amplitudes! inside the subthreshold triangle. ablesx andy wherev= J3x andt=y). Points for whicha
For each choice of-wave scattering lengths, we evaluated <—8u? are eliminated so that the partial-wave expansions
them at a fine grid of pointsi{t) within the subthreshold of the t-channel amplitudes lie well within their ellipses of
triangle as described below. With this set of amplitudes, weconvergence, as was discussed in Sec. Il A. For the set of
were able to test the crossing symmetry. such pointsc=(v,t)=(s,t,u) we form the sum of the
The crossing properties of thew scattering amplitude squares of the difference of the CM amplitudessatt
are most simply and elegantly expressed in terms of the inerossing symmetric points throughout the right-hand half
variant amplitudes of Chew and Mandelstg@M) [17], (»>0) of the subthreshold triangle.g., all terms such as
which are defined by T(st,u)=5,50,5A(s,t,u)  [A(s,t,u)—B(t,s,u)]* and [C(s,t,u)—C(t,s,u)]% etc).
+ 84y 055B(8,1,U) + 8,504,C(s,t,u) in terms of Cartesian Using the automatis«—u crossing properties of the ampli-
isospin indices. The crossing properties of the CM ampli-tudes this sum can be written Xs=>_X., where
tudes are summarized as follows: underu, A(s,t,u) B ) ) ) )
=C(u,t,s) and B(s,t,u)=B(u,t,s); underst, A(s,t,u) Xc=(Ap=Ac) "+ (Bp—Cc) "+ (Cp—Be) "+ (Ag—Co)
=B(t,s,u) and C(s,t,u)=C(t,s,u); and under t-u, _ A2 _R2 _R.)2 A2
A(s,t,u)=A(s,u,t) and B(s,t,u)=C(s,u,t). The CM am- T (Bam AT (Cam B (Ag—Bp) "+ (B~ Ao)
plitudes are related to thiechannel invariant amplitudes, by +(Cy4—Cp)?, (16

A. Crossing, sum rules, and a universal curve
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FIG. 6. Contours ofB(s,t,u) throughout the subthreshold tri-
angle.(a), (b), and(c) correspond to the Weinberg amplitudé/y,
the amplitude of Gasser and Leutwyl&L), and the IDR result for
the caseuagy=0.20, uayy=—0.0325.

d=(u,s,t), b=(s,u,t), and c is restricted to lie in the
smaller triangle bounded hy=0, u=t ands=u. The same
expression results from summing ovwest crossing sym-
metric points. By constructionX vanishes for a fully

01 T S —
0.08 | /]
0.06
o.04:

0.02

-0.02 p

_0_047|www\.w.wlw.w.\..w.\.w.wlw...l..w.\.w..i

FIG. 7. B amplitude along the lin&i=0: B(t)=B(Z —t,t,0).
The three curves correspond to scattering lengtag,= 0.16 (solid
line), 0.20(long-dashed ling and 0.24(short-dashed line

ag0, We have selected the value af, which best minimizes

X. A plot of X as a function okyyanda, is given in Fig. 5.
The points preferred by crossing symmetry lie on the deep
trough seen in the figure. The valuesagf anda,, found in

this manner lie roughly along the “universal line”

ay=—0.09Qu "1+ 0.288. (17

This equation differs slightly from the result we presented in
Ref.[11] because an earlier version of the partial waves of
Estabrookset al. was used in that work and crossing sym-
metry was enforced on a more limited grid. If a fit to a
combination of the data of Rossekdtal. and the 15 lowest-
energy points of the data Hyaras al, the result is

ay0= —0.08% 1+ 0.275F,, (18)

in reasonable agreement with E@.7). A measure of the
excellent quality of crossing symmetry compliance is

X/9N~0.0002, whereN is the number of sample points,
usually taken to be 330, and 9 is included because there are
nine terms inX. This number is to be compared with the
sizes of the CM amplitudes, which lie approximately within
the interval (-0.02,0.08).

Next we test the consistency of the points on the “univer-

sal” curve with the sum rules, Eqé7) and(8) found in Sec.
I B. The sum rules were evaluated through the parametriza-
tions discussed in Sec. Ill. As an example we takg
=0.20u"1; the corresponding value @f,, chosen from the
“universal curve” is ay=—0.0325. " 1. The left-hand side
of Eq. (8) yields 2ay,— 5a,,=0.56u"* while evaluating the
right-hand side from the phase shifts yields 55%. With
this choice of scattering lengths then there is reasonable con-
sistency. Using the same choice of parametrization (Epg.
yields a;;=0.033. 3. The effective-range formuldSec.
IB) used to model the low-energy waves gives

crossing-symmetric set of CM amplitudes. For each value 00.036. 3. The right-hand side of the Wanders sum rule, Eq.
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(9), vyields (2a50—5a,0) u— 18a;,u°=0.554-0.589=
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6(b)]. In our calculation we have used the casgg(asg) u

—0.035, and so, as expected, the cancellation between the(0.20,-0.0325) which lies on the universal curve Eqg.

two contributions is quite strong.

B. Comparison to models with chiral symmetry

(17). The similarity of our contours to those predicted by
Weinberg’s model is evident. Closer inspection shows, how-
ever, that the contours are slightly bowed, implyings%a

2 . -
The study of low-energy pion processes leads naturally to" U~ O higher dependence, and are not equally spaced, im-
the realization that chiral symmetry is a good approximateply'”g at< or higher dependence qualitatively similar to the

symmetry of strong interactions. Low-energyr scattering

is an especially attractive process for testing chiral-

symmetry-breaking models. As early as 1966 Weinlh&H,

higher-order corrections of Refgl8,19.
As Fig. 7 shows more clearlB(s=2—t,t,u=0), (a) is
nearly linear int, (b) has a slope on the order of 1/(#6%),

employing current algebra and PCAC, derived the following@nd(c) has a null line at~ u? for agy~0.20u~*. The figure

approximate expression the CM amplitudle

B(s,t,u)=(t—u?)/(167f2), (19

also indicates that, to lowest order, variatiorag§ translates
the curves slightly irt.

A more sensitive test of the corrections to Weinberg's
amplitude is provided byr°#° elastic scattering, for which

where f~93y2 MeV is the pion decay constant. Corre- the amplitude isA+ B+ C. This amplitude is symmetric un-

sponding expressions for the amplitud®s@nd C are found

der any permutation o, t, andu. Weinberg’s amplitude for

by replacingt by s andu, respectively. This amplitude has this process is the constant/167f2~0.022, and so devia-

three distinct featuresa) It is a linear function ot alone,(b)
its slope is 1/(1Gf2), and(c) it has a null line att= u?.

tions from constancy are a direct measure of the correction
terms. Figure 8 compares the results of the chirally corrected

More recently, corrections to Weinberg's amplitude haveamplitude[19] with our result. The figure also includes a
been derived within the framework of chiral perturbation contour plot using an effective-range formula fit to the data
theory[18-21]. These corrections produce slight nonlineari- of [8] to show an indication of the our uncertainties. The
ties in the amplitudes which are interesting to compare withyalues ofa,, are different because the “universal” lines,

our results.
As was seen in Sec. IV A, the amplitud can be con-
structed from thet-channel isospin amplitudes, i.e.AY

imposed by crossing symmetry, are slightly different for the
two fits. All three plots show a minimum at the symmetry
point s=t=u=4u?/3, in accordance with a rigorous theo-

—A})/3, which have been evaluated via the dispersion relarem of A. Martin[22].
tions inside the subthreshold triangle. Figure 6 compares our As another example, Knecht al. [20] by including one-

contour plot of B [Fig. 6(c)] with the chiral amplitudes of

Weinberg [Fig. 6@] and of Gasser and LeutwyldFig.

4 1
167TB(S,t,U): ﬁ(t—§,u2 +§a,u2

KT 4 2 S 2
+J(s){ 8| B t—§,u +6a/,u,

9/ 4 2 2 2
+J(1); 3| B S_§/.L —Zan

KT 4 2 2 2
+J(u)i3|B8 U—§M —ga,u

WhereJ_(S)E[l—on(p)]/&-r2 and Q, is the zeroth-order
Legendre function of the second kind, i.e.,

| 1+p) .
n E |
sincep=0.

The first term dominates and, far=8=1, reproduces
Weinberg’'s result. Values of the four

1
Qo(p)= 3

model are indistinguishable from those shown in Fi(r)6

2 2 t 4 2 2 2
Blt=zu7 |~ zan

2
+BA(t—u)(t—4p?)

parameters
(a,B,\1,N,) can be found for which the contours for this

loop graphs in “generalized chiral perturbation theory” ob-
tain

/ F2 4+ [N g(t=20%) %+ No(s—2u) %+ N p(u—2u2)2)/ 5,

2

/ (12f7)
/ (12f7)
/(12ff;),

lengths are[agu=0.16: (0.409,0.938;0.0036,0.0115)
[agou=0.20: (1.246,0.947 0.0036,0.0117) and [agu
=0.24: (2.068,0.953;0.0039,0.0118) These may be com-
pared with the results of Kneclt al. [21], who give \;
=(—6.4+6.8)x10 3, \,=(10.8+1.2)x 10 3, «=2.6, and
B=1.19 as representative values.

2
+BA(t—s)(u—4u?)

C. Comparison of partial-wave amplitudes

Pennington and Protopopes¢®3] used the Roy equa-
tions[24] to evaluate the lowest partial waves in each of the

The parameter sets corresponding to three typical scatterirthree isospin channels in the subthreshold region. We have
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performed a partial—waye projection of our evalu_ation Qf the s (0 ds'f, /s’ s (=ds'f, /s’
full subthreshold amplitudes for comparison with their re- f, =f, (s=0)+ —J + —j .
sults. Our results are plotted in Fig. 9 and are in reasonable TS s'—s mlx s'—s
agreement with Ref[23] for the case dqp,a00) 1= (0.16, (A1)
—0.044). We also present the cases for whighu=0.20

and 0.24. For the first cagg, andf,, have zeros at approxi- If the variables is replaced byp=(1—-3/s)"? the right-
matelyt~0.7u? and 2.4, respectively. The corresponding hand cut corresponds togp=<1 and the left-hand cut to 1
points in the model of Weinberg are @5and 2.Qu2. fo(t)  <p<w, Yielding a single dispersion integral:

has a steep positive slope which leads to ldrged=0 am-

plitudes at a few hundred MeV even though the scattering = dp'?

length is itself rather smallf ,(t) has a shallower negative fi (p)=Fi ()= ;f ——fiAp"). (A2)
slope. The expansions of the partial-wave amplitudes in op P

powers ofq? are Ré o(t)u *=a,o+b,oq?+ - -- near the , _ , , o

t-channel threshold, whemg,, are the scattering lengths and 1 NiS form is particularly attractive, since it says that func-
b, are the slope parameters. The results corresponding #9NS that satisfy dispersion relations gnare also solutions

Fia. 9a) are ba=0.29."2 andb..= —0.07u"2. The scat- ©f the original dispersion relation is.
te?ing?( )\/olumgo for gﬁle p wa\ig is gi\ll/j;en by uaj; To illustrate the importance of this result, consider the

=Iimpﬂop_2f11=0.033. The corresponding numbers  in simple one-resonance parametrization for e 0 ampli-

Weinberg's model areby=2L~0.18u"%, by=—L~ tude:
—0.09 %, and %ay,= p3L/3~0.03.

flo=—ip+Co+Cap?. (A3)
V. SUMMARY AND CONCLUSIONS . .
The real constants, andc, are given by the condition that
We have used interior dispersion relatioi®R’s) to  the amplitude have a resonance polesatM?—iI'M, i.e.,
study them s scattering amplitudes within the subthresholdat p=p,=p(s,), c,= —co/|p;|?=(2p,) ~1. By writing f,'
region. Our conclusions _al(&) _that IDR’§ prowde; an excel- =c,y(p—py)(p+pF) itis seen that this function actually has
lent tool to evaluate the invariant amplitudes within the sub— pair of resonance poles @t and — p, , both located in the
threshold triangle using as input data within the physicalgwer half p plane, i.e., unphysica plane. The two reso-
region such as scattering lengths and phase shifts. Also, if5nce poles are complex conjugatés., s,, s*) and are

the case ofa=0, IDR’s lead naturally to the Olsson and o, on the unphysical sheet as appropriate for a resonance

Wanders sum rules. It_ was seen_that the resulting_amplitudet%(s]_ Thus f,, is a solution of the partial-wave dispersion
were particularly sensitive to the input parameters in the low-

X ; , . relation. It also satisfies elastic unitaritljo=p|f,o|%.
energy region and for various choices of input parameters Consequently, the expression foy, given by Eq.(A3)
did not always satisfy the expected crossing propertdt ’

was determined that all crossing properties were reasonab or real constants, andc, describes a resonance, satisfies
AP 9 prop astic unitarity, partial-wave dispersion relations, and is real
well satisfied if thes-wave scattering lengthay, and a,g

lated. i i o I 2 Th analytic; i.e., it is real between its cuts. If the prescription
were corre atg , 1€, lIe 0n a “universa curvc_a( .) €  used in Sec. Il A is used to create an amplitude appropriate
invariant amplitudes thus found are strikingly similar to the

. > X to describe two resonances, eg.andf, the resulting am-
Ch"t‘?‘l'lmOdEI preﬁltlc(t:jons oflt_Wefmber% anql other::,. ThI.GpIitude also has satisfies elastic unitarity, partial-wave dis-
F%r 1a -l\J/vzlive atlrr?p '# |ZS resu 'ng_thr(m" es$ E\van_an tamp I"yersion relations, and is real analytic. The obvious shortcom-

udes below threshoid agree wi ose of Fennington an g of this model forf,, is that it fails to include inelastic

Protopopescu for similar choices afy anday. effects
If for /=1 a resonance parametrization for the reduced
ACKNOWLEDGMENTS partial-wave amplitude is assumed to have the form
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~1_ _:o21+1 2_ 2+l
Fuchs, R. Jacob, and M. Scadron. h, 1p™ " "+ CiotCizp i1 (p—pm)s

where thep,,’s are the roots oh; *=0, then forh, to be real

APPENDIX: DISPERSION RELATIONS FOR PWA'S AND analytic, the constants,, andc;, must be real and can be
THEIR SOLUTIONS found by demanding that there be a resonance polg at
The partial-wave amplitudé, , and the reduced partial- =p(s;). h, also satisfies elastic unitarity. However, it can be
wave amplitudeh, , are defined by shown that at least one of the nonresonance pgless on

the physical sheet and consequently this parametrization
does not satisfy the appropriate dispersion relation. For a

— ; — 2/
fi =S, ~DI2ip)=p~h,, narrow width resonance such as fheneson this “satellite”
pole is far from the physical region.
whereS, , is the scattering matrix. A solutiond, of the subtracted dispersion relation can be

According to the Mandelstam representation, reducedound by assumingl,=h, along the cuts. Dropping the sub-
partial-wave amplitudes have a left- and right-hand cut andraction constants to avoid a polest 0 in f,, the solution
satisfy a dispersion relatidr25]. In its once-subtracted form, d, can be written as
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.2|+l . B p I 1+p -
dlzlmE:l Bm (pt+empm), (P)—; n 1-p X

where p2 B =1 +m(p3—p2,) and ep=sgn(oy), s=  a"d
+1 for the normalie convention. If one assumedi=h, 1+

. Pm Pm| .
only along the right-hand cut, then h(pm) = - In i) —iemm

m

21+1
h(p)—h(pm)
A== 3, L
P~ Pm

m=1

where

are the Chew-Mandelstam functions. This latter form is ap-
propriate for describing a resonance contribution to a form
factor and can be easily generalized to include more reso-
nance contributions.
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