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Abstract: Strong correlation of photons, particularly in the single-photon
regime, has recently been exploited for various applications in quantum
information processing. Existing correlation measurements, however, do
not fully characterize multi-photon correlation in a relevant context and may
pose limitations in practical situations. We propose a conceptually rigorous,
but easy-to-implement, criterion for detecting correlated multi-photon
emission out of a quantum optical system, drawn from the context of
wavefunction collapse. We illustrate the robustness of ourapproach against
experimental limitations by considering an anharmonic optical system.
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light on a chip via photon-induced tunnelling and blockade,” Nat. Phys.4, 859-863 (2008).
3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an

optical cavity with one trapped atom,” Nature436, 87-90 (2005).
4. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically

regulated by one atom,” Science319 1062-1065 (2008).
5. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of

cavities,” Nat. Phys.2, 849-855 (2006); M. J. Hartmann and M. B. Plenio, “Strong photon nonlinearities and
photonic Mott insulators,” Phys. Rev. Lett.99, 103601 (2007).

6. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys.
2, 856-861 (2006).

7. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in
coupled cavity arrays,” Phys. Rev. A76, 031805(R) (2007).

8. N. Na, S. Utsunomiya, L. Tian, and Y. Yamamoto, “Strongly correlated polaritons in a two-dimensional array of
photonic crystal microcavities,” Phys. Rev. A77, 031803(R) (2008).
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14. J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the Jaynes-
Cummings ladder and observing its

√
n nonlinearity in a cavity QED system,” Nature (London)454, 315-318

(2008).
15. L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf,

“Nonlinear response of the vacuum Rabi resonance,” Nat. Phys.5, 105-109 (2009).
16. L. Horvath, B. C. Sanders, and B. F. Wielinga, “Multiphoton coincidence spectroscopy,” J. Opt. B: Quantum

Semiclassic. Opt.1 446-451 (1999).
17. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev.130, 2529-2539 (1963).
18. C. T. Lee, “Higher-order criteria for nonclassical effects in photon statistics,” Phys. Rev. A41 1721-1723 (1990).
19. D. N. Klyshko, “Observable signs of nonclassical light ,” Phys. Lett. A,213 7-15 (1996).
20. H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity

QED,” Opt. Comm.82, 73-79 (1991).
21. R. Hanbury-Brown and R. Twiss, “Correlation between photons in two coherent beams of light,” Nature177,

27-29 (1956).
22. M. Aßmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semicon-

ductor microcavity,” Science325, 297-300 (2009).
23. Y.-T. Chough, H.-J. Moon, H. Nha, and K. An, “Single-atomlaser based on multiphoton resonances at far-off

resonance in the Jaynes-Cummings ladder,” Phys. Rev. A63, 013804 (2000).
24. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as

a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett.64, 2499-2502
(1990).

25. H. J. Carmichael, P. Kochan, and B. C. Sanders, “Photon correlation spectroscopy,” Phys. Rev. Lett.77, 631-634
(1996).

1. Introduction

Strong correlation of photons at the few quanta level can make possible a variety of nonlinear
optical devices useful for quantum information processing, such as single-photon transistors or
switching devices [1, 2] and the generation of single photons on demand [3, 4]. Furthermore, the
photon-photon correlation mediated by the emitters can also be employed to simulate quantum
many-body systems in a controllable way. For example, the effective on-site repulsion between
photons can be exploited to study quantum phase transitionssuch as the Mott-superfluid tran-
sition [5, 6, 7, 8] and the fermionization of bosons [9]. These applications are closely related
to a specific correlation effect, namely a single-photon blockade effect [2, 3, 10, 11] —Once
a system is excited by one photon, the abosorption of next photons is blocked, e.g., due to the
anharmonic energy level structure of the system.

Recently, interest in the correlation effect has also been extended to multi-photon level in
the context of multi-photon gateway, where a random (Poissonian) stream of photons can be
converted into a bunch of temporally correlatedn photons. In particular, Kubaneket al.demon-
strated the operation of two-photon gateway to some extent using an optical cavity QED system
[12]. In view of all these efforts, it seems very crucial to have a theoretical framework that can
appropriately characterize multi-photon correlations [13, 14, 15, 16], e.g.,n-photon blockade
effect, and desirably that can be efficiently tested in experiment.

Conventionally, correlation of photons is measured by thenth-order coherence functions
introduced by Glauber [17],g(n)(0) = 〈a†nan〉/〈a†a〉n, wherea (a†) is the annihilation (cre-
ation) operator of an optical field. However, it is noted in the recent experiments of cavity QED
[2, 3, 12] thatg(2)(0) is not effective to resolve the correlated two photon emission due to a
huge bunching at the atom-cavity bare resonance overshadowing the two-photon resonance.
Furthermore, asn goes beyond two,g(n)(0) or its simple variants [12] contain more peaks at
k = 1, · · · ,n−1 photon resonances, irrelevant to genuinen-photon correlation, as to be shown
below.



Instead one may taken-photon excitation peaks in〈a†nan〉 spectrum itself, e.g. in [12, 13, 14,
15, 16], as a confirming evidence ofn-photon correlations. Rigorously speaking, however, the
multi-photon resonant excitation peaks spectroscopically identified only uncover the energy-
level structure of the system. Whether each peak in the bare coincidence〈a†nan〉 indicates
relevant photon correlation must be checked very carefully. For example, the three-photon co-
incidence tends to increase in the spectrum without any correlation if the system possesses
two-photon correlation since an uncorrelated emission added to a correlated pair may register
another three-photon coincidence. Therefore, we need to consider a stricter physical context for
characterizing correlated emission ofn-photons. Although there have been several studies on
higher-order photon statistics in view of nonclassicality[18, 19], none of them carries a clear
interpretation as multiphoton correlation.

Here we propose a conceptually rigorous, but easy-to-implement, criterion for measuring
correlated multi-photon emissions out of a quantum opticalsystem. The criterion is derived
by considering wavefunction collapse related to sequential photo-detections [20] and has the
following merits. (i) It only detects highly-correlatedn-photon emissions with no classical ana-
logue, and (ii) can be tested by usual photon coincidence detections (no conditional measure-
ment) in a detector-efficiency insensitive form, and therefore, experimentally favorable. We
also introduce a quantitative measure ofn-photon correlation based on this criterion, which is
quite robust in addressing multi-photon correlations against experimental imperfections. This is
a practical merit of our approach made possible by the well-established correlation context. We
illustrate the power of our method in an optical cavity QED system, where genuinen-photon
correlated emissions can be efficiently verified in accordance with its anharmonic energy levels.

2. The criterion

In order to envision a generic, though not exhaustive, scenario where multiphoton correlations
may arise, let us compare two systems, one with harmonic and the other with anharmonic
level structure [Fig.1 (a)]. When a harmonic system with level spacingh̄ω0 is excited by an
external driving on resonance (ωL = ω0), all energy levels are equally accessible. On the other
hand, for an anharmonic system, if the external field isn-photon resonant with thenth level,
other levels thannth would not be substantially addressed by the external field. As a result,
the system could be excited to contain onlyn correlated quanta and further excitation would
be prohibited—n-quanta (photon) blockade effect. We will apply a similar line of reasoning to
emission, rather than excitation, process. Specifically, we construct a criterion to detect ‘pure’
n-photon correlated emission by incorporating two distinctfeatures, (i) surge or rapid emission
of photons up ton quanta and (ii) blockade beyondn, which can be applied to any quantum
optical systems, not necessarily anharmonic ones.

2.1. Photon surge

Generally, the photo-detection rateR is proportional to the intensity of the optical field un-
der consideration,R ∝ 〈Ê−Ê+〉, where the operatorŝE± correspond to the positive- and the
negative-frequency part of the field. Let us assume that a quantum system can be described by
a pure steady state|Ψ〉s for simplicity, but our argument applies equally well to mixed states. If

it has emittedn−1 quanta, the wavefunction is collapsed to|Ψ(n−1)
c 〉= Ê

n−1
+ |Ψ〉s conditioned

on these emissions. The detection rate for the succeedingnth photon is then given by

Rn ≡
〈Ψ(n−1)

c |Ê−Ê+|Ψ(n−1)
c 〉

〈Ψ(n−1)
c |Ψ(n−1)

c 〉
=

〈Ê n
−Ê n

+〉
〈Ê n−1

− Ê
n−1
+ 〉

(1)



after the normalization of the conditional state|Ψ(n−1)
c 〉. Specifically, if the emission out of

the system is a bunch of highly correlatedn-photons, the second photon will be emitted right
after the first photon and the third photon after the second, and so on. This idea can be used to
construct our criterion as follows.

The “bare” rate for the first emission is simply given by the intensity,R1 = 〈Ê−Ê+〉, which
only characterizes the signal strength and has little to do with correlation. Forn-photon correla-
tion (n> 1), once a photon is emitted, however, the next emission willimmediately follow, thus
the conditional rateR2 must be large enough. In particular, we requireR2 to be larger thanR1,

i.e. R2,1 ≡ R2
R1

=
〈Ê 2

−Ê 2
+〉

〈Ê−Ê+〉2
> 1, which is nothing but the bunching condition in the Glauberg(2)

function. Extending the requirement to next emissions sequentially, we derive a set ofsurge
conditions

Rk,k−1 ≡
Rk

Rk−1
=

〈Ê k
−Ê k

+〉〈Ê k−2
− Ê

k−2
+ 〉

〈Ê k−1
− Ê

k−1
+ 〉2

> 1, (k= 2, . . . ,n), (2)

which must be satisfied for eachk= 2, . . . ,n.

2.2. Photon blockade

However, the satisfaction of Eq. (2) for allk = 2, . . . ,n is not sufficient to ensuren-photon
correlation, and importantly, one must also look at the nextoccurrences carefully. After the
detection ofn photons, the succeeding emissions must be suppressed, which can be expressed
as

Rk,k−1 < 1, (k= n+1, · · ·). (3)

The fulfillment of all the surge and the blockade conditions in Eqs. (2) and (3) respectively
constitutes our criterion forn-photon correlated emission. Note that the condition (3) coincides
with the special case of the higher-order antibunching criteria introduced in [18] for the non-
classicality of photon statistics, rather than the correlation effect .

In our criterion, it is crucial to use theconditionalratesRk, rather than thebarerates〈Ê k
−Ê k

+〉,
as the former takes into account the correlation between adjacent emissions in a stronger sense.
However, the resulting criterion does not require any conditional measurements. Instead, the
quantities Rk,k−1 in Eqs. (2) and (3) simply involve various photon-coincidence rates and we
particularly note that the numerator and the denominator are in the same order of the field
strength. It is thus given in an experimentally desirable form, that is, insensitive to the quantum
efficiency of photodetectors.

2.3. Measure of multi-photon correlation

The conditions in Eqs. (2) and (3) may be used to define a quantitative measureMn of n-photon
correlation as

Mn ≡
n

∏
k=2

max{Rkk−1−1,0}
Ntr

∏
k=n+1

max{R−1
kk−1−1,0}, (4)

whereNtr is a truncated excitation number to be taken appropriate to agiven situation.Mn

quantifies the strength of then-photon correlation by measuring the deviation of Rk,k−1 from
unity in the surge and the blockade conditions of Eqs. (2) and(3), respectively, and returns a
nonzero value only when all those conditions are satisfied. To experimentally obtainMn for
a given system, one first measures the barek-photon coincidence rates〈Ê k

−Ê k
+〉 for all k =

1, . . . ,Ntr. Then, each conditional rate Rk,k−1 defined by Eq. (2) is evaluated and plugged in to
Eq. (4) to determine the value ofMn.



2.4. Remarks

(a) Conventionally, multi-photon correlations have been discussed in terms of the Glauber co-
herence functions

g(n) ≡ 〈Ê−(x1)Ê−(x2) · · · Ê−(xn)Ê+(xn) · · · Ê+(x2)Ê+(x1)〉
〈Ê−(x1)Ê+(x1)〉〈Ê−(x2)Ê+(x2)〉 · · · 〈Ê−(xn)Ê+(xn)〉

(xi : a general space-time point) [17]. The context of correlation ing(n) is, however, rather limited
and we particularly note thatg(n) compares then-photon coincidence rate (numerator) only
with the single-photon counting rates (denominator). Large (small) value ofg(n) characterizes
a bunching (antibunching) effect with no strictn-photon correlation that can emerge even in
a classical scattering system, e.g.g(n) = n! for a thermal light (Hanbury-Brown–Twiss effect
[21, 22]). Another example ofg(2) ≫ 1 with no rigorous two-photon correlation will be shown
below in Sec.3.

(b) It is, therefore, interesting to ask whether our criteria of n-photon correlation can be
fulfilled by a classical source. It turns out that, as mentioned in Sec. 2.2, the blockade condition
in Eq. (3) is related to the nonclassicality of light fields [18, 19]. Let us consider the single-
mode case in which the field amplitudeE+ (E−) may be replaced by the annihilation (creation)
operatora (a†). Then, as a special case of Ref. [18], one can show that, for aclassical source
represented by a positive-definite Glauber-P function,P(α)≥ 0, a Cauchy-Schwarz inequality
follows as

〈a†kak〉〈a†k−2ak−2〉=
∫

d2α|α|2kP(α)
∫

d2α|α|2k−4P(α)

≥
(

∫

d2α|α|2k−2P(α)

)2

= 〈a†k−1ak−1〉2. (5)

The violation of the above inequality, which is nothing but the blockade condition Rk,k−1 < 1
in Eq. (3), is thus a clear signature of nonclassicality. So our criteria of multiphoton correlation
can be fulfiled only by nonclassical sources. We emphasize that, in the so called multiphoton
antibunching criteria in [18, 19], the focus was made on how to reveal nonclassicality of the
field by a mathematical approach based on the positive Glauber-P function, thus lacking a clear
interpretation as multiphoton correlation.

3. Application: Cavity QED system

3.1. Model

To illustrate our criterion, we consider a cavity QED system—one of the well known anhar-
monic systems that can be implemented in various experimental platforms [2, 3, 4, 14]. A qubit
(two-state atom, quantum dot, etc.) is coupled to a single mode field driven by a classical field.
For simplicity we investigate the on-resonance case,ωA =ωC ≡ ω0, whereωA is the qubit tran-
sition frequency andωC the cavity resonance frequency. The qubit-cavity system atcoupling
strengthg is then described by the Hamiltonian

H = h̄ω0

(

a†a+
1
2

σz

)

+ ih̄g(a†σ−−aσ+), (6)

whereσ± andσz are the Pauli pseudospin operators. The composite system has the ground state
|0,g〉 with the energyE0 = 0 and the polaritonic excited states|Ψn

±〉 = 1√
2
(|n,g〉± |n−1,e〉)

with En,± = nh̄ω0± h̄g
√

n (n= 1,2. . .) [See Fig.1 (b)]. Therefore, when the system is driven
by an external field at frequencyωL, n-photon resonant absorption may occur [23] at

nh̄ωL = En,± = nh̄ω0± h̄g
√

n. (7)



Fig. 1. (a) Energy-level diagram for (i) harmonic and (ii) anharmonic system. (b) Energy
level structure for cavity QED system. (c) multiphoton coincidence rates〈a†nan〉 as a func-
tion of δ/g for 2κ/g= γ/g= 0.01 withE /κ = 0.1. The dotted vertical lines represent the
locations of the multiphoton resonances,δ =±g/

√
n throughout Figs. 1-3.

In practical situations, the qubit and the cavity field may interact with Markovian envi-
ronments, which causes dissipation and decoherence to the system. The global evolution is
then governed by the master equationρ̇ = 1

ih̄[HI ,ρ ] + γ(σ−ρσ+ − 1
2σ+σ−ρ − 1

2ρσ+σ−) +
κ(2aρa† − a†aρ − ρa†a), whereγ (2κ) is the qubit (cavity) decay rate and the interaction
HamiltonianHI = h̄δ

(

a†a+ 1
2σz

)

+ ih̄g(a†σ−−aσ+)+ ih̄E (a†−a), with the driving strength
E and the detuningδ ≡ ω0−ωL.

By measuring the cavity transmission as the driving frequency ωL scanned, one may identify
the energy-level structure of the cavity QED system. In Fig.1(c), we plot the baren-photon
coincidence rate,〈a†nan〉 as a function of the normalized detuningδ/g. In the weak-excitation
limit, these rates are related to then-excitation probabilityPn as〈a†nan〉 ≈ n!Pn. We see that
more resonant peaks are spectroscopically observed atδ = ±g/

√
n as the ordern is increased

in a very strong-coupling regime,γ/g= 2κ/g= 0.01. It is important to note that not all the
peaks innth order coincidence rate are relevant ton-photon correlation (e.g., the peak atδ =
±g in the two-photon coincidence), so the bare coincidence rates may not be used as such to
address genuine multiphoton correlation. To overcome thisdifficulty, for instance, one may
try to classify those peaks with a prior knowledge on the excitation paths [16]. However, in
realistic situations, the peaks become less resolved as thecoupling strength is reduced (not
shown). More importantly, these resonant peaks give information only on the level structure of
excitation and have a weak connection to correlated emissions.

3.2. Correlation measures

Instead, if one measures the Glauber coherence functiong(n) of the output, the result may char-
acterize the correlation of emitted photons to some extent,but not in a full rigorous sense.
In particular,g(n)(0) = 〈a†nan〉/〈a†a〉n in Fig. 2(a) shows a large bunching at zero detuning
δ = 0, which has nothing to do with genuinen-photon correlation as we will clearly show
below. Close inspection of photon statistics reveals that the system does exhibit some non-
classical behavior atδ = 0, e.g. the oscillation of conditional detection rateRk which peaks
at even number ofk, but it is not a rigorousn-photon correlation at any leveln in view of
our criterion. To get rid of this “cumbersome” resonance effect observed atδ = 0 that may
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Fig. 2. (a)-(c) The conventional correlation functionsg(n)(0) by Glauber andC(n)(0) by
Kubaneket al. [12]. (d)-(f) The quantitative measureMn together with conditional relative
rates Rk,k−1. The truncation numbers used are (d)Ntr = 4, (e) and (f)Ntr = 5. In all plots,
2κ/g= γ/g= E /κ = 0.1.

overwhelm the other resonance peaks, Kubaneket al. introduced the differential correlation
function,C(2)(0) = 〈a†2a2〉 − 〈a†a〉2, that measures theabsoluteoccurrence of two-photon
excitation with respect to the single-photon excitation [12]. The context in this correlation
function, however, is insufficient just likeg(2)(0) in general, although it was instrumental to
identify the second resonant peak in [12]. Furthermore, a generalization ton-photon level,
C(n)(0) = 〈a†nan〉− 〈a†a〉n for n≥ 3, becomes hardly effective in identifying the higher-order
peaks by the broadening effect in the realistic regime [Fig.2 (a)-(c)].

In contrast, our criterion not only detects correlated emission in a well-defined context, but
also provides a practical tool to identify the multi-photonresonance structure of a system in
realistic situations. In Figs. 2(d), 2(e), and 2(f), we plotthe quantitative measureMn of Eq. (4)
for n = 2,3, and 4 along with various rates Rk,k−1 which are ingredients for constructing the
correspondingMn. Remarkably,Mn yields a positive value only in the spectral vicinity of the
resonant peaksδ = ±g/

√
n. The “spurious” peak atδ = 0 disappears by our criterion, which

rigorously confirms that this seeming “resonance” indeed does not represent puren-photon
correlated emission.
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respectively. The driving intensity is rather high,E /κ = 1, with the coupling condition
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3.3. Large driving field

As we increase the pump strength to obtain more substantial signal, the coincidence spectrum
usually becomes difficult to resolve due to the saturation ofthe system. Our method is, how-
ever, still useful for moderately strong pumping owing to the rigorous context established in
it. To demonstrate this merit, we have considered the case ofa large driving fieldE /κ = 1 in
Fig. 3, together with the realistic couplingγ/g= 2κ/g= 0.1. Due to the intensity-dependent
broadening effect, the Glauber functiong(n)(0) no longer shows noticeable marks of resonance,
except for the peak atδ = 0 overwhelming the entire shape in the spectrum. On the otherhand,
our measureMn identifies a clear signature of multi-photon correlations under the same condi-
tion. This capability would allow one to increase the pump strength to some extent, and thereby
easing the difficulty of having to measure higher-order coincidence thann [i.e., blockade con-
ditions in Eq. (3)] to identifyn-photon correlation in our method. Furthermore, we have also
checked that other possible broadening effects, e.g. atomic motion in the cavity, do not de-
grade the capability of our criterion for characterizing multiphoton correlations. We attribute
this robustness against experimental imperfections to therigorous context established with the
measureMn.



4. Conclusion

In conclusion, we have devised an easy-to-implement criterion for detecting correlated multi-
photon emission, imposing surge and blockade requirementsin photoemission processes. A
quantitative measureMn has been derived from the correlation context between successive pho-
ton emissions in the framework of wavefunction collapse. Our criterion applies to any quantum
optical systems, including the ones with anharmonic structure (cavity QED systems, multi-level
atoms, etc.).

We have illustrated our method can efficiently detect multi-photon correlations at the reso-
nant peaks of the cavity QED system in contrast to the existing correlation functions. Note that
the anharmonic spectrum which scales as

√
n is a clear signature of quantum nature of light

field [24, 25], and it thus has been of considerable interest for long but experimentally verified
only recently [13, 14, 15]. In the optical cavity-QED system[3, 4, 12, 13], it becomes harder
to directly observe this anharmonicity in higher-orders due to less strong coupling than in the
microwave circuit QED system, but our method remarkably makes it possible to clearly pick
up the

√
n-dependence despite experimental limitations. We anticipate that our conceptually

rigorous approach can also be useful in addressing correlation effects in other quantum systems
beyond optics.
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