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Abstract. The Cinaruco River, a lowland floodplain river in the Venezuelan llanos, has a strongly seasonal
hydrology, low nutrient concentrations, and high fish diversity and abundance. Fish exclosure/enclosure
experiments were conducted in the littoral zone of the river channel and connected lagoons to examine
seasonal variation in the magnitude of fish effects on benthic organic matter and algal biomass. During the
dry season, large-fish exclosures in the channel accrued significantly more sediment, organic material, and
chlorophyll than control cages after 20 d. Grazing scars suggested the bocachico, Semaprochilodus kneri, was
a major consumer of organic-rich sediments. Further experiments were conducted to test the hypothesis
that the relative strength of top—down (grazer) control of organic matter in sediments varies according to
species, hydrologic period, and habitat. At flooding onset (May), S. kneri migrate to the Orinoco River to
reproduce and feed. Thus, their densities are extremely low in the Cinaruco during the interval when
nutrient inputs from newly flooded plains should be greatest, whereas densities are highest during the low-
water season. Experiments conducted during the low-water period in the river channel and floodplain
lagoons revealed significant treatment (large-fish exclosure, total fish exclosure, S. kneri enclosure, control)
effects for accumulation of sediment mass, organic material mass, and chlorophyll a on tiles after 8 d.
Chlorophyll a concentrations were significantly greater in lagoons than river-channel sites. Mean mass of
sediments and organic material matched our prediction of grazer control during the low-water season.
Experiments during the early rising-water period, when S. kneri emigrate from the Cinaruco, yielded no
significant habitat or treatment effects after 3 d. Overall, our results support a model predicting continuous,
gradual change in the magnitude of top—down effects of benthivorous grazing fishes on organic material on
sediments as a function of seasonal changes in water level.
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Intense interest in the relative effects of bottom—up
control (productivity or donor control) vs top—down
control (consumer control) on community structure
was stimulated by a provocative paper by Hairston et
al. (1960). Abundant evidence indicates that top—down
control occurs in many ecosystems, despite the many
factors that can preclude its development, including
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defended plants and omnivory (Strong 1992, Polis and
Strong 1996). A growing number of studies in fresh-
water lotic systems have demonstrated strong top—-
down control of benthic algae (e.g., Power et al. 1985,
1989, Power 1990, 1992, Flecker 1992, 1996, Gelwick
and Matthews 1992, Pringle et al. 1993, Pringle and
Hamazaki 1997, Nakano et al. 1999) even though
aquatic communities, including those with low species
diversity, generally have well-defended primary pro-
ducers (e.g., aquatic cyanobacteria) and highly retic-
ulate food webs with high incidences of omnivory
(Winemiller 1990). Top—down control in many systems
depends on spatial or temporal heterogeneity that
creates a foodweb subsidy allowing consumer biomass
to be maintained at levels capable of suppressing their
in situ resources (Persson et al. 1996, Polis et al. 1996,
1997, Persson 1999). Without such subsidies (yielding
unbalanced reciprocity), donor control should drive
the system to equilibrium with production attenuating
at successively higher trophic levels (Lindeman 1942)
and with resource competition occurring within
trophic levels (Tilman 1982).

A major challenge is to determine those factors that
control, under varying conditions, the strength of
interactions among trophic levels (Matson and Hunter
1992). In a recent review of bottom—up and top—down
control of autotrophic biomass in streams, Hillebrand
(2002) concluded “there is little consensus about the
relative importance of the two factors under varying
environmental conditions”. Few studies have demon-
strated how spatial and temporal heterogeneity
naturally create the kinds of subsidies that lead to
top—down control (Polis and Strong 1996, Polis et al.
1997, Huxel et al. 2004). Spatial subsidies (allochtho-
nous inputs) have tended to be easier to identify than
subsidies derived from temporal dynamics (e.g.,
asynchronous responses by consumers and resource
populations to environmental variation; see Sommer et
al. 1986, Roelke et al. 1997). Here, we examine the
relative strength of top—down control in a lowland
river ecosystem in a tropical savanna region with
strong wet—dry seasonality.

Annual floods of the Cinaruco River cause dilution
of dissolved nutrients and increases in water velocity,
both of which reduce water-column productivity
(Cotner et al. 2006, Montoya et al. 2006, Roelke et al.
2006). The magnitude of top—down (grazing) and
bottom—up (nutrient supply for primary production)
control should vary in a predictable manner in
response to the cyclic annual hydrologic regime of
this river. The per-unit-area density of benthivorous
fishes is greatest during the low-water period when
aquatic habitat is reduced, and densities are lowest
during the peak of the flood pulse when fishes are

dispersed in expanded aquatic habitats. At the onset of
flooding, the principal large grazing fish in the system,
the bocachico (Semaprochilodus kneri, Prochilodonti-
dae), migrates from the Cinaruco to the Orinoco River
where they spawn and feed. Thus, we predicted
negligible effects from large grazing fishes, and very
weak effects from small benthivorous fishes (e.g.,
omnivorous characids, anostomids and loricariids;
detritivorous curimatids and hemiodids) during the
flood period.

We proposed that benthic grazers, especially the
migratory bocachico, regulate levels of benthic algae
and fine particulate organic matter within sediments in
a manner similar to that demonstrated in an Andean
piedmont stream in Venezuela (Flecker 1992, 1996). We
further proposed that the magnitude of this top—down
effect of large benthic grazers would be greater during
the low-water phase than the flooding phase of the
annual flood cycle (see above), and might vary
according to habitat (Iotic channel vs lentic lagoon
sites). These hypotheses were tested using field
experiments designed to reveal impacts of large
grazing fishes and a diverse assemblage of small
detritivorous and herbivorous fishes on accumulation
of algae and organic matter.

Study area

The Cinaruco River, a clearwater river within
Venezuela’s Santos Luzardo National Park, Estado
Apure, has a drainage basin of ~10,000 km? and is a
major tributary of the Orinoco River, the world’s 3™
largest river according to annual discharge. The
Cinaruco has few suspended solids, low conductivity
(2-9 uS/cm), low pH (5.0-6.5), and low concentrations
of dissolved inorganic nutrients (detailed descriptions
appear in Cotner et al. 2006, Montoya et al. 2006,
Roelke et al. 2006). Tropical blackwater and clearwater
rivers often support little aquatic macrophyte growth
and planktonic primary productivity is low (Lewis
1988). Tropical river ecosystems with little apparent in
situ primary production can nevertheless support
impressive fish biomass and diversity. Over the past
10 y, >280 fish species have been documented in the
Cinaruco River (data archived in the Museo de
Ciencias Naturales, Guanare, Venezuela).

Secondary production is supported, to some degree,
by direct and indirect consumption of terrestrial
primary and secondary production (Layman et al
2005). Nonetheless, most of the fish biomass in
Neotropical rivers seems to be derived from aquatic
sources of primary production (Araujo-Lima et al.
1986, Hamilton et al. 1992, Forsberg et al. 1993, Lewis
et al. 2001), and stable isotope data from the Cinaruco
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support this view (Jepsen and Winemiller 2002, Lay-
man et al. 2005). In temperate blackwater rivers, the
microbial loop is especially significant and constitutes
an important energy link for consumers (Meyer 1990),
a situation also documented in wetlands and peat
lakes (Jones et al. 1999, Morales and Ward 2000).

Semaprochilodus kneri and other detritivorous fishes
that feed heavily on fine pariculate organic matter are
abundant in the Cinaruco (Winemiller and Jepsen
1998, 2004, Hoeinghaus et al. 2003, Layman and
Winemiller 2005). Prochilodontids possess fleshy lips
and tiny teeth that probably aid in dislodging
flocculent material from solid substrates. Fine inor-
ganic sediments, particulate organic matter, and
associated algae and other microorganisms are in-
gested via suction. A larger congeneric species
(sapuara, S. laticeps) is the only other prochilodontid
known to occur in the Cinaruco, but is uncommon in
gillnet and castnet samples (Layman and Winemiller
2005).

The Cinaruco has a strongly seasonal hydrograph
(Montoya et al. 2006), with rapid ascension from late
May to August, and gradual retreat of floodwaters
from September to May. Soluble reactive P, dissolved
inorganic N, and dissolved organic C enter the river
channel and lagoons from terrestrial sources via
hyporheic flow, sheet flooding (wet season), and an
extensive mosaic of lagoons and creeks draining the
floodplain. Initial findings indicate that water-column
production tends to be ~3X higher and more season-
ally variable than benthic primary production, and
water-column production also is higher in lagoons
than in the river channel (Cotner et al. 2006, Roelke et
al. 2006).

Methods
February 2002 (low-water) experiment

An initial cage experiment was conducted in the
main channel during February 2002 to determine if
large benthivorous fish are responsible for low stand-
ing mass of organic sediments in the Cinaruco during
the low-water period. Twelve blocks consisting of one
large-fish exclosure (LFE) (1.8 X 1.8 m cages with 2.5-
cm-mesh poultry wire) and one control (CTRL) (1.8 X
1.8 m area with only 2 sides having poultry wire) were
placed on 12 beaches. This mesh size (same mesh size
as in Layman and Winemiller 2004) allowed small
fishes to pass but effectively restricted passage by large
fishes, including all size classes of the abundant
bocachico (small juveniles of this migratory species
are only found in the Orinoco and its floodplains) and
adult size classes of other benthivorous characiforms
(e.g., Hemiodidae, Curimatidae). This mesh size is
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large enough to allow water to mix freely inside and
outside cages. Littoral habitats had low flow velocities
(0-0.20 m/s). Debris accumulation on cages was
minimal and was removed every 2™ d. A ceramic
brick (14 X 18.5 X 29 ¢cm) was placed inside each cage
to provide a uniform substrate on which to collect
organic sediments and algae. Experiments ran for 20 d,
after which each brick was removed, and sediment
samples were collected from 2 areas (each 29.5 cm?) on
the horizontal surface of the brick. One sample was
used for analysis of sediment mass and the other for
analysis of sediment chlorophyll a (CHLA). Sediment
samples were immediately frozen and stored in a
freezer before being transported, still frozen, to the US
for processing. Half the sediment samples were dried
and weighed to obtain total sediment dry mass (SDM),
and then were combusted (500°C) and weighed to give
sediment ash-free dry mass (SAFDM). Chlorophyll
was extracted from the remaining sediment samples
using 90% acetone, and CHLA concentrations were
estimated using spectrofluorometric and spectropho-
tometric methods (APHA 1998).

March (low-water) and May (rising-water) 2002
experiments

Additional experiments were conducted during
March 2002 (low water) and May 2002 (rising water)
to test our prediction that large grazing characiform
fishes, especially S. kneri, have a greater influence on
the benthic ecosystem than the species-rich guild of
small detritivorous and omnivorous fishes, and that
the magnitude of this effect varies according to the
stage of the annual hydrological cycle. During each
experiment, fish effects on SDM, SAFDM, and sedi-
ment CHLA on ceramic tiles placed in the plots were
estimated using fish enclosures/exclosures in a facto-
rial design (4 treatments X 2 habitats) with 3
randomized blocks within each habitat category
(channel vs lagoons). The CRTL treatment was a plot
surrounded on 3 sides by 25-cm-mesh poultry wire
that allowed all fishes to pass freely in and out. The
open side of the plot always was oriented toward
deeper water. The LFE treatment was a 4-sided cage
with 2.5-cm-mesh poultry wire that excluded large
fishes, including large benthic grazers, but allowed
small benthic feeding fishes and invertebrates to pass.
The total fish exclosure (TFE) treatment was a 4-sided
cage with 0.7-cm-mesh wire screen that excluded all
fishes. The S. kneri enclosure (SKE) treatment was a 4-
sided cage with 2.5-cm mesh that confined 2 adult S.
kneri within the experimental area (0.6 ind./m? and
allowed small fishes to pass. The precise per-unit-area
density of S. kneri in the river is impossible to know,
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but our cage density was <! standard deviation
above the mean catch per unit effort (CPUE, expressed
as ind./m?) estimated for S. kneri in the littoral zone of
lagoons during March (based on 95 throws of a
castnet, castnet area = 4.67 m? total area netted
targeting S. kneri = 443.6 m?®). Feeding by captive S.
kneri was verified by the presence of grazing scars on
tiles and examination of stomach contents of euthan-
ized specimens at the completion of trials.

During the low-water experiment, tiles with sedi-
ment samples were collected after 8 and 16 d. The
water level rose rapidly (1.5 m/d) during late May
when the high-water experiment was conducted.
Thus, to ensure that water did not completely
submerge cages, tiles were collected after 3 d. The
SKE treatment could not be created during the high-
water experiment because S. kneri had already initiated
their downstream migration to the Orinoco River
(mean CPUE of S. kneri based on 116 castnet throws =
0.0009 ind./m? during May).

Analyses

Each experiment tested the hypothesis that large
benthivorous fishes reduce sediments, organic matter,
and chlorophyll (sediment accumulation in CTRL <
LFE). In addition, the March 2002 and May 2002
experiments tested the hypothesis that small benthiv-
orous fishes remove additional sediment mass (sedi-
ment accumulation in LFE < TFE). The March 2002
experiment also examined the prediction that an
abundant large benthivorous species, S. kneri, is the
specific agent responsible for most of the sediment
removal in CTRL plots (SKE = CTRL). The null
hypothesis was that no significant differences were
observed among experimental treatments or habitats
for the response variables (SDM, SAFDM, CHLA on
tiles). Data were logjo(x + 1)-transformed to achieve
distributions suitable for parametric tests. The Febru-
ary 2002 experiment in the river channel compared
mean differences between the 2 treatment populations
using a Student’s t-test. For subsequent experiments
(March and May 2002), a factorial analysis of variance
(ANOVA) was used to examine treatment, habitat, and
interaction effects. Statistical significance of pairwise
mean differences among treatments and habitats were
tested using the Tukey—Kramer Honestly Significant
Difference (HSD) test. Results yielding p < 0.05 were
considered statistically significant.

November 2002 (falling-water) experiment

We were interested in comparing the magnitudes of
fish effects on sediment accrual, and findings based on
2-sided (February 2002) and 3-sided (March 2002)

CTRL plots differed for the low-water period. There-
fore, an additional experiment was conducted in
November 2002 (falling-water period) to examine the
influence of alternative CTRL plot designs on the
behavior of large benthivorous fish. We compared 1.8
X 1.8 m plots with 1 side (1-sided CTRL), 3 sides (3-
sided CTRL), and 4 sides (LFE). If 3-sided CTRL plots
were avoided by S. kneri, then organic matter accrual
should have been as follows: 4-sided LFE > 3-sided
CTRL > 1-sided CTRL. Large numbers of S. kneri had
already migrated into the system from the Orinoco
when this experiment was initiated. Seven experimen-
tal blocks were constructed in channel and lagoon sites
(yielding 14 blocks of 3 treatments each). This experi-
ment was terminated after 6 d because of rapidly
falling water levels.

Results
February 2002 (low-water) experiment

Results from the initial exclosure experiment were
consistent with the prediction that large benthivorous
fishes remove sediments, organic matter, and algae
(CHLA) from littoral habitats of the river channel
during the low-water period (Fig. 1). Each of the 3
response variables was significantly higher in LFE
plots than CTRL plots (tspy = 3.26, df =10, p = 0.008;
tSAFDM = 366, df= 10, p= 0004, tCHLA = 264, df= 11, p
= 0.023). The mean concentration of CHLA recorded
from sediments on ceramic bricks in CTRL plots was
almost identical to the mean concentration recorded
from natural sandy substrate at 5 channel sites during
the same period (Fig. 1). The surfaces of most ceramic
bricks from the CTRL plots had grazing scars that
were distinctive for feeding by prochilodontid fishes
(Fig. 2, see also fig. 1 in Flecker 1992).

March 2002 (low-water) experiment

Tiles sampled after 8 d in the March 2002 experiment
revealed a significant treatment effect on SAFDM (F3 16
=3.40, p=0.043; Fig. 3B), but not on SDM (F3,=1.57,
p = 0.235; Fig. 3A) or CHLA (F;31, = 2.42, p = 0.116;
Fig. 3C). The only significant habitat effect was on
CHLA (CHLA Fy3, = 5.80, p = 0.033; SDM and
SAFDM p > 0.38; Fig. 4A, B, C), and there were no
significant interactions between treatment and habitat
(all p > 0.15).

Treatments significantly affected all 3 response
variables for tiles collected after 16 d: SDM (F315 =
4.00, p=0.028; Fig. 3A), SAFDM (F5 15=>5.41, p=0.010;
Fig. 3B), and CHLA (F;;5 = 5.88, p = 0.007; Fig. 3C).
The only significant habitat effect was on CHLA
(CHLA: Fy ;5 = 6.00, p = 0.027, SDM and SAFDM: p
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Fic. 1. Comparison of mean (+1 SE) concentrations of
sediment dry mass (SDM) (A), sediment ash-free dry mass
(SAFDM) (B), and chlorophyll 2 (CHLA) (C) accumulated on
the surface of ceramic bricks in control (CTRL) and large-fish
exclosure (LFE) plots in the Cinaruco River channel after 20 d
during February 2002. Horizontal dashed line represents
mean concentration of CHLA in natural channel sediment
samples on 24 February 2002.
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> 0.10; Fig. 4A, B, C), and there were no significant
interactions between treatment and habitat (all p >
0.50). Mean values of all 3 response variables for tiles
collected after 16 d were significantly higher in TFE
and CTRL plots than in SKE plots (Tukey—Kramer
HSD, p < 0.05; Fig. 3A, B, C).

Thus, treatment effects were stronger after 16 d, and
results matched predictions of top—down control of
sediments, organic matter, and algae by benthivorous
fishes (predicted accumulated mass: TFE > LFE >
CTRL = SKE), except that values in CTRL plots
matched values in the LFE plots and contained more
sediments and organic matter than the SKE plots
(observed accumulated mass: TFE > LFE = CTRL >
SKE). The mean concentration of CHLA on natural
substrates at 5 channel sites surveyed on March 28 was
1.2 to 2.0 mg/m? below the means obtained for CTRL
plots but intermediate between mean values obtained
on days 8 and 16 for SKE plots (Fig. 3C). The mean
CHLA concentration from natural substrates at 5
lagoon sites on the same date was only slightly greater
than values from CTRL plots (difference <0.5 mg/m*
for day 8, <0.1 mg/m? for day 16; Fig. 3C).

The significant habitat effect observed for CHLA
concentration resulted from higher mean values for
tiles in lagoon plots relative to channel plots on both
days 8 and 16 (Fig. 4C). The mean CHLA concen-
tration on natural substrates at 5 channel sites on
March 28 was slightly lower than the means from all
experimental plots combined from the channel on day
8 (<0.4 mg/m? and day 16 (<0.1 mg/m?) (Fig. 4C).
The mean concentration of CHLA recorded from
natural substrates at 5 lagoon sites on March 28 was
lower than the mean obtained from all experimental
plots in lagoons on day 8 (0.9 mg/m?) and virtually
the same as the mean obtained from experimental
plots in lagoons on day 16 (Fig. 4C).

May 2002 (rising-water) experiment

This experiment was conducted during late May
and early June, a period that coincided with the first
heavy rains. Because the water level increased an
average of 0.3 m/d, tiles were sampled after 3 d. There
were no significant treatment effects (Fp13 < 1.65, p >
0.229), habitat effects (Fi13 < 1.19, p > 0.29), or
interactions between treatment and habitat (all p >
0.70) for any of the 3 response variables. Semaprochi-
lodus kneri undergo their annual spawning migration
at onset of flooding, so we had predicted no effect from
LFE and only a weak grazing effect from small grazers
that were dispersing within expanding aquatic hab-
itats (predicted accumulated mass: TFE > LFE =
CTRL). The results were statistically nonsignificant,
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Control

Fic. 2. Photograph of bricks removed from large-fish exclosure (left) and control (right) plots placed in the main channel of the
Cinaruco River during the low-water period (February 2002). Clean oval patches on the control brick probably were created by

suctorial feeding of the benthic detritivore Semaprochilodus kneri.

but mean values for SDM, SAFDM, and CHLA were
higher in TFE plots than in other treatments, and
means for CTRL plots and LFE plots were very similar
(Fig. 5A, B, C). The mean concentration of CHLA on
natural sediments at 10 channel and lagoon sites over
the same period of time was only slightly greater
(<0.1 mg/ m?) than the means obtained for the CTRL
and LFE plots (Fig. 5C).

November 2002 (falling-water) test of CTRL plots

If CTRL plots with 3 walls actually had been
avoided by some S. kneri during the low- and rising-
water experiments, then organic matter accrual should
have been as follows in our November experiment: 4-
sided LFE > 3-sided CTRL > 1-sided CTRL. Treat-
ments significantly affected SDM (p < 0.05), but
habitat did not, and no significant interaction effects
were found. Treatment (p < 0.01) and habitat (p =0.01)
significantly affected SAFDM and CHLA, but no
significant interactions were observed (p > 0.25). Mean
accrual of SDM after 6 d was significantly greater
(Tukey—Kramer HSD, p < 0.05) in 4-sided LFE plots
(1197.0 + 1422.7 mg/m?®) than 1-sided CTRL plots
(172.1 = 231.6 mg/m?), with 3-sided CRTL plots being
intermediate (321.0 = 519.1 mg/m?. SAFDM was
significantly greater in 4-sided LFE plots (18.67 g/m?)
than 3-sided CTRL plots (6.49 mg/m> +7.65) and 1-
sided CTRL plots (3.98 * 4.16 mg/m?). Mean CHLA

concentration in 1-sided CTRL plots (1.20 = 1.68 mg/
m?) was significantly lower than concentrations from
3-sided CTRL (2.24 *+ 1.90 mg/m?) and 4-sided LFE
plots (3.06 + 2.32 mg/m?), a result that supports the
hypothesis that 3-sided CTRL plots were avoided to
some degree by large grazers. Mean CHLA concen-
trations on tiles in 1-sided CTRL plots were only
slightly greater (difference <0.6 mg/m?) than mean
concentrations recorded on sandy substrates at 10
channel and lagoon sites during the same period.

Discussion
Importance of S. kneri grazing

Our experiments demonstrated effects of benthivo-
rous fishes on the quantity and nutritional quality
(organic matter and CHLA) of sediments in a flood-
plain river draining a nutrient-poor tropical landscape.
During the annual low-water period, top—down
effects of large fishes (i.e., those incapable of passing
through 2.5-cm mesh) on sediments were stronger
than those of small fishes. Grazing scars on bricks and
tiles strongly suggest that S. kneri is the most
important large grazer of organic sediments in this
system. CHLA of sediments from CTRL plots with 2
wire-mesh sides (February 2002 experiment) closely
matched the concentrations recorded from natural
sandy substrates in channel and lagoon littoral
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Fic. 3.  Comparison of mean (41 SE) concentrations of sediment dry mass (SDM) (A), sediment ash-free dry mass (SAFDM) (B),
and chlorophyll 2 (CHLA) (C) accumulated on ceramic tiles in control (CTRL), Semaprochilodus kneri enclosure (SKE), large-fish
exclosure (LFE), and total fish exclosure (TFE) plots in the Cinaruco River (channel and lagoon sites combined) after 8 d and 16 d
during the low-water period (March 2002). CHLA samples in natural channel and lagoon sediment samples were taken on 28

March 2002.
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habitats at the same depths. In the March low-water
experiment, 3-sided CTRL plots accumulated more
sediments, organic matter, and CHLA compared to
natural sediments and SKE plots containing 2 S. kneri.
Two explanations could account for this pattern. First,
S. kneri may have avoided 3-sided CTRL plots so that
these plots functioned more like our 4-sided LFE plots
(yielding CTRL = LFE). Second, the density of S. kneri
within enclosures could have been higher than natural
densities (yielding CTRL > SKE).

We experimentally tested the 1% hypothesis during
November 2002, and results supported the hypothesis
that 3-sided CTRL plots probably are avoided by at
least some S. kneri and perhaps by other large grazers.
Further evidence in support of using 1-sided and 2-
sided CTRL plots was provided by the similarity in
CHLA concentrations on tiles inside these CTRL plots
and on unmanipulated substrates in both river and
lagoon habitats during the same periods. With regard
to the 2™ hypothesis, SKE plots containing 2 S. kneri
yielded benthic CHLA concentrations similar to
values obtained from natural sediments in channel
sites during March 2002, but lower than values from
natural sediments from lagoon sites during that
period (Fig. 3C). Thus, S. kneri density in SKE plots
may have been higher than natural mean densities in
lagoons.

Top—down vs bottom—up effects

The top—down effect of benthivorous fishes ob-
served during the low-water period is consistent with
findings from similar experiments conducted in an
Andean piedmont stream by Flecker and colleagues
(Flecker 1992, 1996, 1997, Flecker et al. 2002). Rio Las
Marias is a whitewater river (high conductivity and
suspended sediment loads, neutral pH) draining
nutrient-rich landscapes of the Andean Cordillera in
western Venezuela. During the dry season, the
migratory coporo (Prochilodus mariae, Prochilodonti-
dae), a benthic detritivore/algivore with body size and
feeding habitats similar to S. kneri, migrates into Las
Marias from locations downstream. Exclosure/enclo-
sure experiments revealed strong effects of coporos on
benthic sediment mass, organic mass, algal assemblage
composition, aquatic insect abundance and diversity,
and nutrient dynamics. The mean sediment accrual in
large fish exclosures after 14 d in the Andean piedmont
river was nearly 2X as great as the mean accumulation
in our LFE plots after 16 d in March and similar to the
mean accumulation in LFE plots after 20 d in February
(~800 g/m?). The accumulation of organic matter was
~3 to 6X greater in the Andean river (Flecker 1996).

Like the Cinaruco (Cotner et al. 2006), Las Marias
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Fic. 4. Comparison of mean (+1 SE) concentrations of
sediment dry mass (SDM) (A), sediment ash-free dry mass
(SAFDM) (B), and chlorophyll 2 (CHLA) (C) accumulated on
ceramic tiles in sites in the littoral zone of the river channel vs
sites in lagoons (all experimental treatments combined) after
8 d and 16 d during the low-water period (March 2002).
CHLA samples in natural channel and lagoon sediment
samples were taken on 28 March 2002.
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appears to be a strongly N-limited system. Flecker et
al. (2002) found that both N addition and algivores
significantly affected algal standing biomass and
assemblage composition, but consumer limitation
was much stronger than nutrient limitation. This
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piedmont river experiences frequent abrupt and
catastrophic floods during the wet season, so exper-
imental research is nearly impossible and benthic
ecosystem dynamics for this part of the year remain
undocumented.

Unlike Rio Las Marias and tropical wet-forest
streams where similar studies have demonstrated
top—down effects of benthic grazers (e.g.,, Power
1990, Pringle and Hamazaki 1997), the Cinaruco, a
lowland floodplain river, undergoes fairly gradual and
predictable hydrologic dynamics. The Cinaruco also
tends to have lower water velocities than these other
tropical streams, especially during the dry season and
within lagoons. This lower velocity allows significant
phytoplankton production to occur. Primary produc-
tion seems to be greater in the water column than on
sediments during the low-water period (Cotner et al.
2006, Roelke et al. 2006). We hypothesize that the
chlorophyll that accumulates on tiles may be partially,
perhaps largely, derived from deposition of algal cells
from the water column. The fact that deposition on
tiles was always greater in lagoons compared with
channel sites supports this view. Lewis (1988) ob-
served that phytoplankton production in 3 Orinoco
tributary rivers was higher during the low-water
period, and that <1% of estimated annual phyto-
plankton production in floodplains was transported to
river channels. This result indicates that phytoplank-
ton are consumed in situ, either within the water
column or on sediments.

Production (P)/biomass (B) ratios (based on CHLA)
suggest that benthic algae turn over more rapidly than
phytoplankton (mean benthic P/B = 2.37, mean water
column P/B = 0.55). One explanation for higher
benthic turnover is direct losses to grazing or hydro-
logic disturbance (i.e., scouring flows). P/B ratios
indicate that algal biomass turned over more rapidly
during November (high water) than March (low
water), both in the sediments and water (Cotner et
al. 2006). This result suggests that scouring and
dilution losses that are important during high water
may have a greater effect than fish grazing during low
water on standing crops of periphyton. The relative

e

Fic. 5. Comparison of mean (+1 SE) concentrations of
sediment dry mass (SDM) (A), sediment ash-free dry mass
(SAFDM) (B), and chlorophyll 2 (CHLA) (C) accumulated on
ceramic tiles in control (CTRL), large-fish exclosure (LFE),
and total fish exclosure (TFE) plots in channel and lagoon
sites of the Cinaruco River after 3 d during the rising-water
period (May 2002). Horizontal dashed line represents mean
concentration of CHLA for 10 natural sediment samples
from channel and lagoon sites on 31 May 2002.
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Fic. 6. Conceptual model of continuous shifts in relative magnitudes of bottom—up (production) and top—down (consumption)
influences on sediment fine particulate organic matter and algal density during phases of the annual flood-pulse regime of a
tropical river. Strongest top—down effects from benthivorous fishes occur during the low-water phase when per-unit-area density of

fishes is at its peak.

contribution of periphyton growth is unknown, but
future research will examine algae taxonomic compo-
sition in these samples. Also, the roles played by S.
kneri and other large benthivorous fishes in the
resuspension of fine particulates and in excretion of
dissolved nutrients (Vanni et al. 2002) are currently
unknown. Highest dissolved nutrient concentrations
were recorded during the low-water phase (Cotner et
al. 2006, Montoya et al. 2006) when fish densities are
highest.

Seasonal variation in grazing pressure

Our experimental results are consistent with a
model of seasonal variation in grazing pressure on
organic sediments that is a function of changing fish
densities that, in turn, are a function of: 1) volume of
available aquatic habitat, 2) S. kneri migration, and 3)
resident fish population dynamics (Fig. 6). However,
the absence of statistically significant fish effects
during the rising-water period (May 2002 experiment)
probably was affected by large within-treatment
variation in response variables and especially by the
shorter duration (3 d) of these experiments that was
mandated by the rapid rise in water level. During the
low-water period when fixed plots could be moni-
tored for longer time periods, concentrations of
sediments and CHLA on tiles in TFE plots increased
on a daily basis as a sigmoidal function that reached
an asymptote at about day 10 (KOW, unpublished
data). We assume that organic matter would have

continued to accumulate during the rising-water
period at a comparatively greater rate within the
TFE plots than in other treatments had the experiment
extended over a longer time interval. Given the
problems discovered with the 3-sided CTRL plots
and the fact that mean values from CTRL plots and
LFEs were very similar on day 3 (Fig. 5), it is unclear if
a significant effect of large grazers could have been
detected over a longer time interval. Again, grazing
pressure should have been low during May because S.
kneri were emigrating and large resident grazers, such
as hemiodids, were dispersing within the expanding
aquatic habitat.

Future research to improve estimates of seasonal shifts in
controlling factors

Investigation of community trophic dynamics has
matured to the point that field experiments are
showing how spatial and temporal environmental
variation influences the relative magnitudes of bot-
tom—up and top—down effects on communities and
ecosystem attributes (e.g., Power 1990, Gelwick and
Matthews 1992, Carpenter and Kitchell 1993, Wootton
et al. 1996, McPeek 1998, Mulder and Ruess 1998,
Menge et al. 1999). The annual flood pulses of
tropical rivers provide outstanding opportunities for
research that identifies specific agents of control and
temporal shifts in their relative influence on ecosys-
tem components. Many key ecosystem features have
fairly predictable dynamics in response to seasonal
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hydrology. The low-water period in the Cinaruco
River is accompanied by reduction of aquatic habitat,
high water-column nutrient concentrations and pri-
mary productivity, high rates of particulate organic
matter sedimentation, and strong effects of grazing
by benthivorous fishes. Seasonal variation of N
limitation on phytoplankton and periphyton standing
crops should be tested experimentally to integrate
bottom—up control with our model of shifting
strengths of top—down effects in response to seasonal
hydrology.

Unlike small tropical streams (Pringle et al. 1993,
Crowl et al. 2006), the Cinaruco River contains a
relatively low abundance of grazing macroinverte-
brates, especially in the sandy littoral habitats that
dominate the river landscape. In the Cinaruco, shrimp
and aquatic insects are most common where there are
accumulations of leaf litter or coarse woody debris
(JVM and KOW, unpublished data), a situation that
parallels temperate blackwater rivers (Benke et al.
1984, 1985). Thus, we predict that fishes will have the
strongest effects on benthic ecology, and that inverte-
brate assemblages will respond largely to environ-
mental variation induced by fishes and abiotic factors.
This hypothesis could be tested with appropriately
designed experimental enclosures.

To increase precision and accuracy of our estimates
of the magnitude of grazer control in the Cinaruco
River, we recently repeated our experiments during
rising-, falling-, and low-water periods with greater
replication of experimental blocks in both habitats
(findings will appear in a future report). We are
interested in estimating temporal variation in the
magnitude of top—down control, so the new experi-
ments use 1-sided CTRL plots that more accurately
reflect natural conditions. We also are examining more
response variables associated with sediments, includ-
ing benthic production and respiration, algal assem-
blage composition, and meiofauna. This research is
particularly urgent given the severe and growing
negative impacts of fisheries and dams on stocks of
migratory prochilodontid fishes in Venezuela (Wine-
miller et al. 1996, Barbarino Duque et al. 1998). These
abundant fishes are ecosystem engineers (Flecker 1996,
1997), and they are important prey for piscivores
(Winemiller and Jepsen 2004). Some species or guilds
can have disproportionate effects on community
ecosystem dynamics (e.g., keystone species) even
within reticulate, species-rich food webs (Menge et
al. 1994, Power et al. 1996, Polis et al. 2000).
Prochilodontid fishes, which make up only a handful
of taxa within the species-rich Neotropical ichthyofau-
na, appear to have major effects on ecosystem
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dynamics via direct grazing and in the form of a
spatial subsidy for top predators.
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