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BASIC-LIVER, PANCREAS, AND BILIARY TRACT
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Background & Aims: We tested the hypothesis that dur-
ing bile duct obstruction, increased biliary bile acids
trigger cholangiocyte proliferation and secretion by a
phosphatidylinositol 3-kinase (PI3-K)-dependent path-
way. Methods: In bile duct-incannulated (BDI) rats, bile
duct obstruction present for 7 days was relieved for 24
hours by external bile drainage. During the 24-hour
drainage period, animals received either Krebs Ringer
Henseleit (the bile-depleted group), or sodium tauro-
cholate (the bile-depleted, taurocholate-infused group).
We evaluated cholangiocyte proliferation and secretin-
stimulated ductal secretion. Apical bile acid transporter
(ABAT) expression and bile acid transport activity was
determined. In pure preparations of cholangiocytes, we
examined the effect of taurocholate (in the absence or
presence of wortmannin or Pl 3,4-bisphosphate the lipid
product of PI3-K) on cholangiocyte proliferation and
secretin-stimulated cyclic adenosine 3’,5’-monophos-
phate (cAMP) levels. Results: Bile depletion reduced
cholangiocyte proliferation and secretin-stimulated duc-
tal secretion and ABAT expression and bile acid trans-
port activity compared with 1-week BDI control rats. In
bile-depleted, taurocholate-infused rats, cholangiocyte
proliferation and secretion and ABAT expression and bile
acid transport activity were maintained at levels similar
to those seen in BDI control rats. In vitro, taurocholate
stimulation of DNA replication and secretin-stimulated
cAMP levels was blocked by wortmannin. The inhibitory
effect of wortmannin on taurocholate stimulation of
cholangiocyte proliferation and secretion was prevented
by PI 3,4-bisphosphate. Conclusions: Bile acid uptake by
ABAT and the PI3-K pathway are important for bile acids
to signal cholangiocyte proliferation. In bile duct obstruc-
tion, increased biliary bile acid concentration and ABAT
expression initiate increased cholangiocyte proliferation
and secretion.

hysiologically, the intrahepatic biliary epithelium is
Pinvolved in the modification of canalicular bile'-*
before it reaches the small intestine.! Ductal secretion is
regulated by gastrointestinal hormones (e.g., secretin,
gastrin, bombesin, and somatostatin),-?>-8 nerves,? and
biliary constituents (e.g., alkaline phosphatase).'® Secre-
tin stimulates ductal secretion by interacting with recep-
tors expressed only by cholangiocytes in rat liver!!
through an increase in intracellular cyclic adenosine
3',5"-monophosphate (cAMP) synthesis.2>>~7 The in-
crease in cholangiocyte cAMP levels induces opening of
Cl™ channels® and activation of the CI7/HCO;™ ex-
changer,>*12 which leads to bicarbonate secretion in
bile.1-3
Pathologically, the biliary epithelium is the target for a
number of cholestatic liver diseases, including primary bil-
iary cirrhosis, primary sclerosing cholangitis, cystic fibrosis,
and idiopathic ductopenic disorders.® In normal rat liver,
cholangiocytes are mitotically quiescent,? but proliferate
markedly in response to a number of pathologic injuries/
toxins, including bile duct ligation (BDL),'* 70% hep-
atectomy,’ acute carbon tetrachloride administration,'?
or chronic bile salt feeding.' In these hyperplastic mod-
els, cholangiocyte proliferation is associated with in-

Abbreviations used in this paper: ABAT, apical bile acid transporter;
BDI, bile duct incannulation; BSA, bovine serum albumin; cAMP, aden-
osine 3’, 5’-monophosphate; GAPDH, glyceraldehyde-3-phosphate de-
hydrogenase; y-GT, gamma-glutamyltranspeptidase; HPLC, high-per-
formance liquid chromatography; KRH, Krebs Ringer Henseleit; PI3-K,
phosphatidylinositol 3-kinase.
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creased DNA synthesis, leading to increased intrahepatic
ductal mass! and increased basal and secretin-stimulated
ductal secretion.!=3711,14.15

A number of factors (including estrogens and bile
acids) have been shown to stimulate the proliferative
capacity of cholangiocytes both in vivo and in vitro.'4-17
For example, we have shown that the bile acid sodium
taurocholate increases cholangiocyte proliferation and se-
cretin-stimulated ductal secretion both in vitro in puri-
fied cholangiocytes and in vivo in the bile acid—fed rat
model.’*!> Because bile acids must be internalized into
cholangiocytes to alter their function,'” it has been pro-
posed that bile acid uptake by the Na*-dependent apical
bile acid transporter (ABAT) initiates the bile acid—
dependent changes in cholangiocyte proliferation and
secretion.

Although our previous studies'* showed that in-
creased biliary bile acids induced cholangiocyte hy-
perplasia, no previous study has tested whether in-
creased cholangiocyte proliferation is triggered by
increased biliary bile acids after bile duct obstruction.
Our overall strategy was to experimentally reduce
biliary bile acids by external bile fistula and to deter-
mine whether the effect of bile drainage on cholan-
giocytes was due specifically to reduced biliary bile
acids by infusing taurocholate in a second set of bile-
depleted rats. One-week bile duct—incannulated (BDI)
rats were depleted of endogenous bile acids by external
bile drainage and simultaneously infused with Krebs
Ringer Henseleit (KRH) for 24 hours. In another
group of animals, 1-week BDI rats were bile depleted
by external drainage and simultaneously infused with
taurocholate for 24 hours. In BDI control, bile-de-
pleted KRH-infused, and bile-depleted taurocholate-
infused rats, indices of cholangiocyte proliferation and
secretion, ABAT protein, bile acid transport activity,
and biliary bile acid composition were determined.

Finally, through in vitro studies in purified cholan-
giocytes, we determined the role of phosphatidylinositol
3-kinase (PI3-K), an enzyme that plays an important role
in control of cell growth and secretion,'® in bile acid
regulation of cholangiocyte proliferative and secretory
activity. We determined whether wortmannin (a specific
inhibitor of PI3-K!8) inhibits taurocholate-stimulated
cholangiocyte proliferation and secretion, and whether
the lipid products of PI3-K (PI 3,4-bisphosphate, a
molecule that has been shown to block the inhibitory
effects of wortmannin in hepatocytes'®) prevents wort-
mannin inhibition of bile acid—stimulated cholangiocyte
proliferation and secretion.
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Materials and Methods
Materials

Reagents were purchased from Sigma (St. Louis, MO)
unless otherwise indicated. Porcine secretin was purchased
from Peninsula (Belmont, CA); sodium taurocholate was pur-
chased from Calbiochem-Novabiochem (La Jolla, CA). The
substrate for y-glutamyltranspeptidase (y-GT), N-(y-L-glu-
tamyl)-4-methoxy-2-naphthylamide, was purchased form
Polysciences (Warrington, PA). 3H-taurocholate (3.47 Ci/
mmol) was purchased from New England Nuclear (Boston,
MA).

Animal Model

Male Fisher 344 rats (175-200 g) were purchased from
Charles River (Wilmington, MA), maintained in a tempera-
ture-controlled environment (20-22°C) with a 12-hour light/
dark cycle and fed ad libitum standard rat chow. Animals had
free access to water. In these studies we used 3 experimental
groups. The first experimental group comprised rats with
extrahepatic bile duct obstruction induced by BDI for 1 week
as controls. In the second group, 7 days after BDI, bile duct
obstruction was relieved by external bile drainage (the bile-
depleted group). During bile depletion, the rats were simul-
taneously infused for 24 hours with KRH. In the third group,
7 days after BDI, rats were infused with taurocholate (at 1
pmol/h/kg body weight) during the 24 hours of external
drainage (the bile-depleted, taurocholate-infused group). After
administration of isoforane/oxygen anesthesia, BDI was per-
formed as described previously.! Before each experimental
procedure (e.g., surgical preparation for bile collection, liver
perfusion for cell isolation), the animals were anesthetized with
sodium pentobarbital (50 mg/kg). Study protocols were per-

formed in compliance with institutional guidelines.

Assessment of Bile Acid Concentration and
Composition in Bile

Total bile salts were measured in bile by the 3 alpha-
hydroxysteroid dehydrogenase procedure®® through absorption
spectrophotometry using a commercially available kit (Wako
Chemicals USA, Richmond, VA). Aliquots of bile extracted
with 4 volumes of isopropanol were analyzed for individual
bile salt by reversed-phase high-performance liquid chroma-
tography (HPLC) using an acidic isocratic phosphate buffer.?!

Purification of Cholangiocytes

Pure cholangiocytes were obtained by immunoatfinity
separation®35-6:11.22 using an antibody to an unidentified an-
tigen expressed by all intrahepatic cholangiocytes.?? Purity
was assessed by histochemistry for y-GT,?? a specific marker of
cholangiocytes in rat liver.!?? Cell number and viability were
assessed by standard trypan blue exclusion. Cell viability al-
ways exceeded 97%.
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Measurement of Cholangiocyte Proliferative
Capacity

Cholangiocyte proliferative capacity was evaluated in
liver sections (z = 7) from normal BDI controls; BDI-bile
depleted, KRH infused; and BDI-depleted, taurocholate-in-
fused rats by quantitative localization of proliferating cellular
nuclear antigen (PCNA) in bile ducts.'3-24 Sections were coun-
terstained with hematoxylin and examined in a coded fashion
with a microscope (BX 40; Olympus Optical, Japan).

The expression of PCNA and H; histone mRNAs (2 mark-
ers of cell replication!>2%) in cholangiocytes (5.0X10°) from
the selected group of animals was determined by the lysate
RNase protection assay (Direct Protect Kit; Ambion, Austin,
TX).2315 The comparability of the cell lysate used was deter-
mined by hybridization with glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), the housekeeping gene.?>-7-1> Anti-
sense riboprobes were transcribed from linearized cDNA
templates with either T; or SPy RNA polymerase using
{alpha—3?P UTP} (800 Ci/mmol) (Amersham, Arlington
Heights, IL). After exposure for 1-2 days, autoradiograms were
quantified by densitometry. We used the following controls:
rat spleen (positive) and yeast-transfer RNA (negative) for both
PCNA and Hj; histone mRNAs. Rat kidney and yeast-transfer
RNA were the positive and negative controls, respectively, for
GAPDH mRNA.

The proliferative capacity of cholangiocytes (5X10°) from
the selected group of animals was also evaluated by immuno-
blots for PCNA as described previously.>4 The intensity of the
bands was determined by scanning video densitometry using
the Chemilmager 4000 low-light imaging system (Alpha In-
notech, San Leandro, CA).

Measurement of Cholangiocyte Secretory
Activity

Measurement of secretin receptor gene expres-
sion and basal and secretin-stimulated cAMP levels. In
pure cholangiocytes from the selected group of animals, secre-
tin receptor gene expression was assessed by lysate ribonuclease
protection assay (Direct Protect; Ambion) as previously de-
scribed.?:>11 A 318-bp riboprobe encoding the message for the
rat secretin receptor was transcribed from pGEMA4Z (a gift
from Dr. LaRusso, Mayo Clinic, Rochester, MN). The compa-
rability of the lysates was assessed by hybridization with
GAPDH, the housekeeping gene.>-'! Rat heart was used as the
positive control and rat kidney as the negative control.!!

Basal and secretin-induced intracellular cAMP levels in
cholangiocytes from the selected group of animals were mea-
sured by radioimmunoassay.?3>-7-1> After purification, cholan-
giocytes were incubated for 1 hour at 37°C to restore mem-
brane proteins damaged with proteolytic enzyme treatment?>
and stimulated for 5 minutes at 22°C235-7:15:25 with 0.2%
bovine serum albumin (BSA; control) or secretin (100 nmol/L)
in the presence of 0.2% BSA. Intracellular cAMP levels were
measured by a commercially available kit (Amersham) in
accordance with the vendor’s instructions.
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In vivo measurement of secretin-induced bicar-
bonate-rich choleresis. After anesthesia with sodium pen-
tobarbital (50 mg/kg body weight), the selected group of
animals was surgically prepared for bile collection.!-> When
steady-state bile flow was achieved, secretin (100 nmol/L) was
infused for 30 minutes, followed by a final infusion of KRH
solution for 30 minutes. Bile was collected every 10 minutes in
preweighed tubes and immediately stored at —20°C before
determination of bicarbonate or total bile salt concentration or
before HPLC analysis for evaluating bile salt composition. At
the end of each experiment, the animal was killed and the liver
removed and weighed. Bicarbonate concentration (measured as
total CO,) in bile was measured with a Natelson microgasom-
eter (Scientific Industries, Bohemia, NY).

Expression of ABAT and Bile Acid Transport
Activity in Purified Cholangiocytes

To determine whether the alterations in cholangiocyte
proliferative and secretory activity are dependent on changes in
the expression of cholangiocyte ABAT, we measured ABAT
gene and protein expression and bile acid transport activity in
cholangiocytes from the selected group of animals. Quantita-
tive ABAT gene expression was evaluated using the direct
lysate ribonuclease protection assay.?>!> The rat ABAT cDNA
clone?¢ was a gift from B. L. Shneider, Mount Sinai Medical
Center, New York. The comparability of the cholangio-
cyte lysates used was assessed by hybridization with
GAPDH.2>611.15 Rat ileum (positive) and yeast-transfer RNA
(negative) were the controls for ABAT mRNA; rat kidney
(positive) and yeast-transfer RNA (negative) were the controls
for the GAPDH gene. After exposure for 1-2 days, autoradio-
grams (» = 3) were quantified by densitometry.

Cholangiocyte ABAT protein expression was determined by
immunoblots using an anti-ABAT antibody (1:200) (a gift
from Dr. P. Dawson, Bowman Gray School of Medicine,
Winston-Salem, NC) as a primary antibody and anti-rabbit
IgG peroxidase conjugate (ECL Plus Kit, Amersham) diluted
1:50,000 with Tris-buffered saline Tween-20. The intensity of
the bands was determined by scanning video densitometry.

ABAT transport activity was determined by Na*-depen-
dent *H-taurocholate uptake in purified cholangiocytes as pre-
viously described by us.!” Results were expressed as picomoles
of taurocholate uptake per milligram of cholangiocyte protein.
All experiments were performed in triplicate. Estimate of K,
and V. were determined by a weighted least squares fit of the
sigmoidal curve according to the method of Vaughn et al.?”

Role of PI3-K in Bile Acid Modulation of
Cholangiocyte Proliferation and Secretion

In purified cholangiocytes from 1-week BDI rats, we
evaluated whether the PI3-K system plays a role in bile acid
modulation of cholangiocyte functions by determining the
effects of taurocholate on cholangiocyte proliferative and se-
cretin-stimulated cAMP levels in the presence or absence of
wortmannin, a specific PI3-K inhibitor'828; PI 3 4-bisphos-
phate, an active PI;'? or PI 4,5-bisphosphate, an inactive PI.1?
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Table 1. Bile Acid Composition in Bile From 1-Week BDI Rats and 1-Week BDI Bile-Depleted Rats Infused With Taurocholate

(1 wmol/h/kg body wt) for 24 Hours

Tauromuricholic acid

Taurocholic acid

Taurochenocholic acid Taurodeoxycholic acid

Treatment (mEq/L) (mEq/L) (mEq/L) (mEq/L)
BDI 1 week (control) 791 £1.21 1.57 £ 0.18 0.38 = 0.09 0.07 = 0.05
BDI 1 week (bile depleted +
KRH infusion) 0.16 = 0.0072 0.20 = 0.012 0.14 + 0.0182 Not detectable
BDI 1 week (bile depleted +
taurocholate infusion) 4.80 = 0.79 2.31 £ 0.53 Not detectable Not detectable

NOTE. Values are mean * SE for 4 rats and were obtained in the first 10 minutes of bile collection. Bile acid composition in bile samples from
the selected group of animals was measured by HPLC. The levels of total bile acids in bile were determined by the 3 alpha-hydroxysteroid

dehydrogenase procedure by a commercially available kit.
a P < 0.05 vs. corresponding value of 1 week BDI control rat.

Cholangiocyte proliferative capacity (PCNA pro-
tein expression). Pure cholangiocytes (5 X 109 from
1-week BDI rats were treated at 37°C with (1) 0.2% BSA
(basal value) for 60 minutes; (2) taurocholate (20 wmol) with
0.2% BSA for 60 minutes; (3) wortmannin (20 pmol for 20
minutes) + taurocholate (20 wmol for 60 minutes) in the
presence of 0.2% BSA; (4) PI 3,4-bisphosphate (1 mol for 20
minutes), or PI 4,5-bisphosphate (the inactive form of PI3-
K, 1 pmol for 20 minutes) + wortmannin (20 wmol for 20
minutes) + taurocholate (20 pmol for 60 minutes) with 0.2%
BSA; or (5) wortmannin, PI 3,4-bisphosphate, or PI 4,5-
bisphosphate for 20 minutes with 0.2% BSA. Subsequently,
we evaluated cholangiocyte DNA replication by Western blot
analysis for PCNA as previously described.?*

Measurement of basal and secretin-stimulated
cAMP levels. Ductal secretion was estimated by measure-
ment of basal and secretin-stimulated cAMP levels?3-7-11:15 (an
indirect index of cholangiocyte secretory capacity®>7) in pu-
rified cholangiocytes from 1-week BDI rats. After purification,
pure cholangiocytes (1X10°%) were incubated at room temper-
ature with (1) 0.2% BSA (basal value) for 5 minutes; (2)
secretin (100 nmol/L for 5 minutes) with 0.2% BSA; (3)
taurocholate (20 pmol for 10 minutes) in the absence or
presence of secretin (100 nmol/L for 5 minutes) with 0.2%
BSA; (4) wortmannin (20 wmol for 10 minutes) + tauro-
cholate (20 pmol for 10 minutes) in the absence or presence of
secretin (100 nmol/L) with 0.2% BSA; or (5) PI 3,4-bisphos-
phate or PI 4,5-bisphosphate (both at 1 pmol for 10 min-
utes) + wortmannin (20 pwmol for 10 minutes) + taurocholate
(20 pmol for 10 minutes) in the absence or presence of secretin
(100 nmol/L for 5 minutes) with 0.2% BSA. We also evaluated
the effects of wortmannin, PI 3,4-bisphosphate, and PI 4,5-
bisphosphate in the presence of 0.2% BSA on basal and
secretin-stimulated cholangiocyte cAMP levels. Subsequently,
intracellular cAMP levels were evaluated by radioimmunoas-

say.2:3:5-7:13,14,25
Statistical Analysis

All data are expressed as mean * standard error. The
differences between groups were analyzed by the Student

unpaired # test when 2 groups were analyzed or by analysis of
variance if more than 2 groups were analyzed.

Results

Assessment of Bile Acid Concentration and
Composition in Bile

Biliary bile acid composition from the selected
group of animals is shown in Table 1. We found a
significant (P < 0.001) decrease in total bile acid con-
centration in bile from BDI bile-depleted, KRH-infused
rats compared with BDI control rats. In BDI bile-de-
pleted, taurocholate-infused rats, bile acid levels were
significantly (P < 0.001) increased compared with BDI-
depleted rats and were comparable to that in BDI control
rats.

Measurement of Cholangiocyte Proliferative
Capacity

Liver sections from 1-week BDI rats exhibited a
marked increase in the number of PCNA-positive
cholangiocytes compared with the number of PCNA-
positive cholangiocytes observed in normal liver sections
(Figure 1). A significant (P < 0.05) decrease in the
number of PCNA-positive cholangiocytes was observed
in the portal areas of BDI bile-depleted, KRH-infused
rats compared with BDI control rats. The percentage of
PCNA-positive cholangiocytes was similar in 1-week
BDI control rats, in BDI bile-depleted rats, and tauro-
cholate-infused rats.

Expression of GAPDH mRNA was similar among
purified cholangiocytes from the different experimental
groups (Figure 2). The expression of both PCNA and H;
histone mRNAs was significantly decreased in cholan-
giocytes from BDI bile-depleted rats compared with
cholangiocytes from BDI control rats. In cholangiocytes
from BDI bile-depleted, taurocholate-infused rats, the
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Figure 1. Quantitative measurement of PCNA-positive cholangiocytes
in liver sections from normal rats, 1-week BDI control rats, and 1-week
BDI bile-depleted rats infused for 24 hours with KRH or taurocholate.
The number of PCNA-positive cholangiocytes increased markedly in
liver sections from BDI control rats compared with normal liver sec-
tions. A significant decrease in the number of PCNA-positive cholan-
giocytes was observed in liver sections from BDI bile-depleted rats
(infused with KRH) compared with those from BDI control rats. The
percentage of PCNA-positive cholangiocytes was comparable to that
of BDI control rats in BDI bile-depleted, taurocholate-infused rats.
*P =< 0.05 vs. normal rat liver section; # P < 0.05 vs. the number of
PCNA-positive cholangiocytes in liver sections from 1-week BDI rats
and 1-week BDI rats infused with KRH for 24 hours. Data are mean =
standard error of 7 experiments. (Original magnification 125X for the
normal liver section and 200X for the others.)

expression of both Hj histone and PCNA mRNA was
similar to that of BDI control rats.

We found a marked decrease in PCNA protein expres-
sion in cholangiocytes from BDI bile-depleted rats com-
pared with BDI control rats (Figure 3). Expression of
PCNA protein was similar to that of BDI control rats in
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cholangiocytes purified from BDI bile-depleted, tauro-
cholate-infused rats.

Measurement of Cholangiocyte Secretion

Secretin receptor gene expression and intracellu-
lar cAMP levels in purified cholangiocytes. There was a
significant decrease in secretin receptor gene expression
in cholangiocytes from BDI bile-depleted rats compared
with BDI control rats (Figure 4A). The expression of
secretin receptor mRNA was similar to that of BDI
control rats in cholangiocytes purified from BDI-de-
pleted, taurocholate-infused rats. Secretin significantly
(P < 0.05) increased cAMP levels in cholangiocytes from
BDI control rats (Figure 4B). In contrast, secretin did not
increase intracellular cAMP levels of cholangiocytes from
bile-depleted BDI rats. In BDI bile-depleted, tauro-
cholate-infused rats, basal and secretin-induced cAMP
levels were similar to that of BDI control rats.

Measurement of secretin-induced bicarbonate-
rich choleresis. Basal bile flow of BDI bile-depleted rats
was significantly (P < 0.05) reduced compared with BDI
controls, but was restored by taurocholate infusion (Ta-
ble 2). Compared with BDI control rats, both biliary
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Figure 2. Expression of PCNA (OJ) and Hs histone (@) mRNAs in pure
cholangiocytes from BDI control rats and BDI bile-depleted rats in-
fused with KRH or taurocholate for 24 hours. The expression of
selected messages was determined by direct RNase protection as-
say. The comparability of the RNA used was assessed by hybridization
for GAPDH. *P < 0.05 vs. BDI control rats. Autoradiograms (n = 4)
were quantified by densitometry.
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Figure 3. Immunodetection of PCNA in cholangiocytes from BDI con-
trol rats and BDI bile-depleted rats infused with KRH or taurocholate
for 24 hours. PCNA protein expression decreased in cholangiocytes
from BDI bile-depleted, KRH-infused rats compared with BDI control
rats. PCNA protein expression in cholangiocytes was similar to that of
BDI control rats when BDI-depleted rats were simultaneously rein-
fused with taurocholate. *P < 0.05 vs. BDI control rats. Autoradio-
grams (n = 6) were quantified by densitometry.

bicarbonate concentration and secretion were signifi-
cantly (P < 0.05) reduced in BDI bile-depleted rats.
However, when taurocholate was infused in BDI bile-
depleted rats, biliary bicarbonate was similar to that of
BDI control rats. Secretin significantly (P < 0.05) in-
creased bile flow and bicarbonate concentration and se-
cretion in BDI control rats. In contrast, secretin did not
induce changes in bile flow or bicarbonate concentration
or secretion in BDI bile-depleted rats. In BDI bile-
depleted, taurocholate-infused rats, secretin-stimulated
increases in bile flow or bicarbonate concentration or
secretion were comparable to those in BDI controls.

Expression of ABAT in Cholangiocytes

Reduction of biliary bile acid concentration in
bile-depleted rats markedly decreased the genetic expres-
sion of ABAT (expressed as a ratio to GAPDH gene
expression) in cholangiocytes compared with BDI con-
trols (Figure 5A). Taurocholate infusion in BDI bile-
depleted rats induced ABAT gene expression similar to
that of BDI control rats. Expression of GAPDH mRNA
was similar among cholangiocytes purified from the 3
groups of animals.

At the protein level, immunoblots showed signifi-
cantly decreased ABAT expression in cholangiocytes
from BDI bile-depleted rats compared with BDI control
rats (Figure 5B). ABAT protein expression in cholangio-
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cytes from BDI bile-depleted, taurocholate-infused rats
was similar to that of BDI control rats.

ABAT transport activity was determined from Na™-
dependent *H-taurocholate uptake in cholangiocytes iso-
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Figure 4. Measurement of secretin receptor gene expression (A) and
intracellular cAMP levels (B) in cholangiocytes from BDI control rats
and BDI bile-depleted rats infused with KRH or taurocholate. (A)
Secretin receptor gene expression was assessed by the lysate ribo-
nuclease protection assay using a 318-bp riboprobe encoding the
message for the rat secretin receptor. The comparability of the ly-
sates was assessed by hybridization with GAPDH. *P = 0.05 vs.
basal values. Data are mean = standard error under the mean of 3
experiments. (B) Cholangiocytes were incubated for 1 hour at 37°C
and subsequently stimulated at 22°C for 5 minutes with secretin (100
nmol/L). Intracellular cAMP levels were determined by radioimmuno-
assay. *P < 0.05 vs. basal values; #* P < 0.05 vs. secretin-induced
cAMP levels of BDI control rats and BDI control rats infused with
taurocholate. Data are mean * standard error under the mean of
3-15 experiments. (B) m, Basal; [1, secretin.
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Table 2. Bile Flow, Bicarbonate Concentration, and Secretion in BDI Control Rats and BDI Bile-Depleted Rats Infused With
KRH or Taurocholate (1 wmol/h/kg body wt) for 24 Hours

Bile flow Bicarbonate concentration Bicarbonate secretion
Basal Secretin Basal Secretion
(uL/min/kg (uL/min/kg Basal Secretion (wEq/min/kg (nEq/min/kg
Treatment body wt) body wt) (mEq/L) (mEq/L) body wt) body wt)
BDI controls 98.59 *+ 6.22 171.90 = 13.922 38.65 = 2.75 50.65 + 2.04b 3.87 = 0.42 7.51 + 0.52¢
BDI (bile depleted +
KRH infusion) 84.07 = 7.03 95.42 + 5.699 27.51 + 1.41¢9 26.60 + 1.949 2.28 + 0.109 2.50 + 0.127
BDI (bile depleted +
taurocholate infusion) 126.57 = 13.33 183.63 = 15.912 31.92 + 0.46 35.86 + 11.58° 3.96 + 0.41 6.56 = 0.62°

NOTE. Values are mean = SE of at least 6 values and were obtained at steady-state conditions of bile flow. After an equilibration period of 60
minutes with KRH solution, secretin was infused via a jugular vein for 30 minutes at 200 nmol/L. value of basal bile flow.

2 P < 0.05 vs. its corresponding value of basal bile flow.

b p < 0.05 vs. its corresponding value of basal bicarbonate concentration.

¢ P < 0.05 vs. its corresponding value of basal bicarbonate secretion.

9 P < 0.05 vs. its corresponding value of BDI depleted rats infused with KRH or taurocholate (1 wmol/min/kg body wt) for 24 hours.

lated from BDI control rats, BDI bile-depleted rats, and
BDI bile-depleted, taurocholate-infused rats. Na™*-de-
pendent uptake was decreased in cholangiocytes from
BDI bile-depleted rats compared with BDI control rats
(Vinax at 109 = 23 and 221 * 39 pmol/min/mg protein;
P < 0.05 compared with control). In BDI bile-depleted,
taurocholate-infused rats, ABAT transport activity was
similar to that of BDI control rats (V,, at 243 * 48 and
221 * 39 pmol/min/mg protein, respectively; P < 0.05
compared with control). The K,, for *H-taurocholate
uptake was similar in purified cholangiocytes from rats in
the 3 study groups (data not shown).

Role of PI3-K in Cholangiocyte Proliferation
and Basal and Secretin-Stimulated cAMP
Levels

Proliferative capacity. Similar to that shown in
normal cholangiocytes,'> taurocholate significantly (P <
0.05) increased PCNA protein expression in purified
cholangiocytes from BDI rats compared with cholangio-
cytes treated with 0.2% BSA (Figure 6). The increase in
cholangiocyte DNA synthesis (induced by in vitro tau-
rocholate treatment) was abolished when purified cholan-
giocytes were preincubated with wortmannin, a PI3-K
inhibitor.'® The inhibitory effect of wortmannin on a
taurocholate-induced increase in PCNA protein expres-
sion was abolished when purified cholangiocytes were
pretreated with the PI 3,4-bisphosphate (an active PI)
but not with PI 4,5-bisphosphate (an inactive PI). Wort-
mannin, PI 3,4-bisphosphate, or PI 4,5-bisphosphate did
not change cholangiocyte PCNA protein expression.

Measurement of basal and secretin-stimulated
cAMP levels. Basal cAMP levels of cholangiocytes from
1-week BDI rats were similar to those found in previous
studies? (Figure 7). Secretin significantly increased

cholangiocyte cAMP levels. Similar to its effect in not-
mal cholangiocytes,'> taurocholate significantly increased
both basal and secretin-stimulated cAMP levels, and
these increases were ablated when purified cholangiocytes
were pretreated with the PI3-K inhibitor wortmannin.
PI 3,4-bisphosphate (but not PI 4,5-bisphosphate, an
inactive PI) ablated the inhibitory effects of wortmannin
on taurocholate-induced increases in basal and secretin-
stimulated cAMP levels. Basal cAMP levels were not
altered by wortmannin (49.27 *= 9.86 vs. 40.38 * 4.48
[basal value} fmol/1X10° cells), PI 3,4-bisphosphate
(43.11 £ 7.89 vs. 40.38 * 4.48 [basal value} fmol/
1X10° cells), or PI 4,5-bisphosphate (50.38 * 14.12 vs.
40.38 = 4.48 [basal value} fmol/1 X10° cells). Similarly,
secretin-stimulated cAMP levels were not modified by
wortmannin (79.20 * 10.45 vs. 40.38 = 4.48 [basal
valuel fmol/1X10° cells; P < 0.05 vs. basal value), PI
3,4-bisphosphate (70.73 * 8.77 vs. 40.38 * 4.48 [basal
valuel fmol/1 X103 cells; P < 0.05 vs. basal value), or PI
4,5-bisphosphate (59.40 * 4.01 vs. 40.38 * 4.48 [basal
valuel fmol/1X10° cells; P < 0.05 vs. basal value).

Discussion

The studies showed that bile depletion for 24
hours in BDI rats reduced (1) biliary bile acid concen-
tration; (2) DNA replication and secretin-stimulated
cAMP levels in isolated cholangiocytes; (3) the number
of PCNA-positive cholangiocytes in liver sections; (4)
secretin-stimulated choleresis in vivo; and (5) ABAT
gene, protein, and transport activity. In BDI bile-de-
pleted, taurocholate-infused rats, biliary bile acid con-
centration, cholangiocyte proliferative and secretory ca-
pacity, and ABAT expression were similar to that of BDI
control rats. Moreover, taurocholate in vitro increased
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Figure 5. Measurement of ABAT gene (A) and protein (B) expression
in cholangiocytes purified from the selected group of animals. Note
that bile depletion markedly reduced both the genetic and protein
expression of ABAT in cholangiocytes. When BDI bile-depleted rats
were infused with taurocholate, ABAT gene and protein expression
was similar to that of BDI control rats. Gene expression of selected
messages was determined by lysate ribonuclease protection assay.
ABAT protein expression was evaluated by Western blot analysis.
Autoradiograms were quantified by densitometry. *P < 0.05 vs. the
ABAT gene (A) or protein (B) expression of cholangiocytes from BDI
control rats. Data are mean = standard error under the mean of 3
experiments.

DNA replication and secretin-stimulated cAMP levels,
and this increase was blocked by wortmannin. The in-
hibitory effect of wortmannin on taurocholate-induced
increases in cholangiocyte DNA replication and secretin-
stimulated cAMP levels was prevented by PI 34-
bisphosphate but not by PI 4,5-bisphosphate, the inac-
tive form of PI3-K.!1?
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Recent studies have demonstrated that conjugated bile
acids are transported by cholangiocytes through apical
and basolateral transporters identified as Na*-dependent
ABAT7-2? and an alternatively spliced Na*t-independent
form of ABAT,° respectively. The direction of bile acid
transport is from the apical to the basolateral pole of
cholangiocytes,!7-3%31 suggesting that a portion of con-
jugated bile acids secreted in bile by the hepatocytes is
reabsorbed into the intrahepatic biliary epithelium to
undergo cholehepatic shunting. The functional and bio-
logical significance of the reabsorption of conjugated bile
acids by the biliary epithelium is undefined, although
recent studies indicate that bile acids may act in cholan-
giocytes as signaling molecules, regulating the functions
of these cells.’>!7 Our previous studies!®!> have shown
that taurocholate increases cholangiocyte proliferation
and secretion in vitro in isolated cholangiocytes and in
vivo in the bile acid—fed rats. Furthermore, regulation of
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Figure 6. Measurement of PCNA protein expression (by Western blot
analysis) in pure cholangiocytes from 1-week BDI rats stimulated at
37°C with 0.2% BSA (basal value) for 60 minutes; taurocholate (20
pwmol) with 0.2% BSA for 60 minutes; wortmannin (20 wmol for 20
minutes) + taurocholate (20 wmol for 60 minutes) in the presence of
0.2% BSA; PI 3,4-bisphosphate or Pl 4,5-bisphosphate (both at 1
wmol for 20 minutes) + wortmannin (20 pwmol for 20 minutes) +
taurocholate (20 wmol for 60 minutes) with 0.2% BSA; or wortmannin
(20 pwmol for 20 minutes), Pl 3,4-bisphosphate or Pl 4,5-bisphosphate
(both at 1 wmol for 20 minutes) in the presence of 0.2% BSA. *P <
0.05 vs. BDI control rats. Autoradiograms (n = 10-15) were quanti-
fied by densitometry.
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Figure 7. Intracellular cAMP levels in cholangiocytes from 1-week BDI
rats stimulated at 37°C with 0.2% BSA (basal value) for 5 minutes;
secretin (100 nmol/L for 5 minutes); taurocholate (20 pwmol/L) with
0.2% BSA for 10 minutes in the absence or presence of secretin (100
nmol/L for 5 minutes); wortmannin (20 wmol/L for 10 minutes) +
taurocholate (20 wmol/L for 10 minutes) in the absence or presence
of secretin (100 nmol/L) with 0.2% BSA; or Pl 3,4-bisphosphate or PI
4,5-bisphosphate (control) (both at 1 pmol/L for 10 minutes) +
wortmannin (20 pwmol/L for 10 minutes) + taurocholate (20 pwmol/L
for 10 minutes) in the absence or presence of secretin (100 nmol/L
for 5 minutes). Cholangiocyte cAMP levels were measured by radio-
immunoassay using commercially available kits. *P < 0.05 vs. basal
values; #*P < 0.05 vs. secretin-stimulated cAMP levels. Data are
mean * standard error under the mean of at least 6 experiments.

ABAT expression may control cholangiocyte sensitivity
to bile acid signaling. Our preliminary data show that
experimental up- and down-regulation of cholangiocyte
ABAT results in equivalent changes in bile acid—stimu-
lated cholangiocyte proliferation (Alpini, Glaser, and
LeSage, unpublished observations, November 2001).

In the current study, we have addressed the following
question: During ductal hyperplasia, does elevated bili-
ary bile acid concentration or altered ABAT expression
trigger cholangiocyte proliferation? To determine
whether increased biliary bile acid concentration or
cholangiocyte ABAT expression initiates cholangiocyte
hyperplasia associated with bile duct obstruction, we
tested whether the manipulation of biliary bile acid

concentration (bile acid depletion/repletion) may affect

GASTROENTEROLOGY Vol. 123, No. 4

the proliferative and secretory properties of cholangio-
cytes of BDI rats. One-week BDI rats were submitted to
external bile drainage for 24 hours to decrease biliary bile
acid concentration (bile acid depletion) or to exogenous
infusion of taurocholate (bile acid repletion) to maintain
bile acid biliary concentration in bile similar to that of
BDI rats. The proliferative and secretory activities of
cholangiocytes were then evaluated in comparison to
control BDI rats without external bile drainage. We
measured the qualitative and quantitative bile acid bil-
iary composition to confirm the efficacy of 24-hour ex-
ternal bile drainage in inducing a marked depletion of
biliary bile acid concentration, which reflects exclusively
the hepatic bile acid synthesis.?? We also demonstrated
that taurocholate infusion (1 pmol/min/kg body weight)
was effective in restoring a total bile acid biliary concen-
tration similar to that of BDI control rats. In these 3
models, we demonstrated that ABAT expression and
activity in cholangiocytes was reduced when biliary bile
acid concentration was decreased by external bile drain-
age and maintained (similar to BDI control) by tauro-
cholate infusion. Bile acid depletion decreased cholan-
giocyte proliferation as evaluated in situ by PCNA
immunohistochemistry and in purified cholangiocytes by
PCNA and Hj histone expression. Bile acid depletion
reduced cholangiocyte secretory activities manifested by
the abolishment of secretin-stimulated choleresis and
secretin-induced intracellular cAMP levels. Bile acid re-
pletion by intravenous taurocholate administration re-
stored cholangiocyte proliferative and secretory activities
to levels similar to that observed in BDI rats.!:2! Taken
together, the findings indicate that the secretory and
proliferative activities of cholangiocytes are regulated by
changes of biliary bile acid concentration in bile duct
obstruction and are consistent with the hypothesis that
elevated biliary bile acids due to bile duct obstruction
initiates cholangiocyte proliferation. A number of effec-
tors (e.g., hormones, estrogens, cytokines, nerve input)
have been suggested to trigger cholangiocyte prolifera-
tion with bile duct obstruction.?? Bile acids are attractive
potential triggers, because they accumulate markedly in
cholestasis and are known to directly stimulate (similar
to estrogens'®) cholangiocyte proliferation.'®!> Further-
more, cholangiocyte proliferation is observed primarily
with obstruction of large intrahepatic bile ducts or ex-
trahepatic obstruction’ (when biliary bile acids are in-
creased) and is absent when cholestasis involves canalic-
ular dysfunction (when biliary bile acids are not
increased).?* Although depletion in the BDI model may
remove a number of potential cholangiocyte growth-
promoting factors that are secreted in bile, the findings
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that in BDI bile-depleted, taurocholate-infused rats in
which cholangiocyte proliferation and secretion are
maintained is a strong argument that bile acids may be
important triggering signals for cholangiocyte prolifera-
tion in the development of bile duct obstruction.

Increases or decreases of biliary bile acid concentra-
tions in BDI rats produced proportional changes in
cholangiocyte ABAT gene and protein expression and
bile acid transport activity. These findings suggest that
ligand concentration directly modulates ABAT expres-
sion in cholangiocytes. Although conflicting results have
been reported,?>=37 it has been shown that in the ileum,
activity and protein expression of the apical Na*-depen-
dent bile acid transporter (ASBT) displays similar regu-
lation to what is found in the intrahepatic biliary epi-
thelium. ASBT was down-regulated when intestinal bile
acids where lowered by extrahepatic cholestasis,?”
whereas it was induced in the ileum by bile acids, such
as cholate.>> These studies indicate that both in the
ileum and biliary epithelium, apical reabsorption of con-
jugated bile acids is increased proportionally to their
lumenal concentration and that this occurs through a
direct regulation of ABAT gene and protein expression
by bile acids. Up-regulation of cholangiocyte ABAT may
represent an important adaptation to bile duct obstruc-
tion. The increased number of bile ducts and ABAT with
bile duct obstruction may promote cholehepatic shunt-
ing of bile acids, thus providing a pathway for continued
flux of bile acid molecules within the hepatobiliary axis
and preventing toxicity due to intracellular accumulation
of bile acids. Bile acid signaling may not only trigger
cholangiocyte proliferation, but also permit regression of
bile duct hyperplasia after resolution of bile duct ob-
struction. Down-regulation of ABAT due to reversal of
bile duct obstruction and decreased biliary bile acid
concentration may reduce bile acid signaling of cholan-
giocyte proliferation, thus promoting regression of bili-
ary hyperplasia.

We then demonstrated that taurocholate directly
stimulates in vitro cholangiocyte proliferation (PCNA
protein expression) and secretin-stimulated cAMP levels
(an indirect index of ductal secretion) of purified cholan-
giocytes from BDI rats. The stimulatory effect of tauro-
cholate on basal and secretin-stimulated cAMP levels in
cholangiocytes from BDI rats, which confirmed our pre-
vious studies in normal cholangiocytes,'> is different
among the different cell types in the liver. In general,
bile acids have been shown to influence basal and ago-
nist-induced cAMP levels in different ways, depending
on the cell types and the hydrophobicity of the tested
bile acids.?® Whereas in the perfused colon taurodeoxy-
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cholic acid stimulates cAMP synthesis, in hepatocytes as
well as in dermal fibroblasts, endothelial cells, thyroid
cells, and gastric adenocarcinoma, bile acids inhibit ag-
onist-induced cAMP synthesis with no or little effect on
basal cAMP levels.?® Within the different liver cell
types, in hepatocytes bile acids exert strong inhibitory
effects on agonist-induced cAMP levels with a higher
potency for the hydrophilic ursodeoxycholic acid than for
hydrophobic bile acids.?8-4° Because bile acid uptake in
hepatocytes is increased by cAMP, the inhibitory effects
of bile acids on cAMP production has been suggested to
represent a protective mechanism against bile acid intra-
cellular accumulation during cholestasis.® In cholangio-
cytes, on the contrary, the stimulatory effect of bile acids
on basal and secretin-induced cAMP levels and choleresis
may have important physiologic implications. In fact,
through the modulation of cAMP synthesis, bile acids
may up-regulate biliary bicarbonate secretion in the in-
trahepatic biliary epithelium just when the need for
bicarbonate for digestive purpose is maximal (i.e., during
the postprandial phase), which corresponds to the max-
imal bile acid concentration in bile and reabsorption by
cholangiocytes.

Taurocholate stimulatory effects on basal and secretin-
induced cAMP levels required activation of PI3-K as an
upstream event, because these effects were abolished by
wortmannin. In addition, the effects of wortmannin were
abolished by PI 3,4-bisphosphate but not by PI 4,5-
bisphosphate (the inactive form of PI3-K'9), thus con-
firming the specificity of the effect of wortmannin. Our
findings indicate that activation of PI3-K is an early
event in bile acid modulation of cholangiocyte prolifer-
ation and secretion. PI3-K has been implicated in con-
trolling cell proliferation, actin cytoskeleton organiza-
tion, the regulation of vesicle trafficking between
intracellular organelles, and secretory processes in a num-
ber of cell types.'® In hepatocytes, PI3-K is activated by
bile acids and plays an important role in the choleretic
and antiapoptotic effects of hydrophilic bile acids.'9-41-43
In light of the present findings, further studies are
needed to evaluate the role of bile acids with different
hydrophobicity in the modulation of PI3-K and cAMP
in cholangiocytes in normal and pathologic conditions.

In conclusion, we have provided evidence that in a
model of bile duct obstruction, the increased prolifera-
tive and secretory activities of cholangiocytes is associ-
ated with high biliary bile acid concentration, a finding
suggesting that increased biliary bile acid concentration
triggers cholangiocyte proliferation. Down-regulation of
ABAT following resolution of bile duct obstruction may
promote regression of ductal hyperplasia due to a reduc-
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tion of bile acid signaling of proliferation and secretion.

The modulatory effects of bile acids on cholangiocyte

proliferation and secretion occur through intracellular

pathways involving both cAMP production and PI3-K

activity. These findings have important implications in

understanding the changes of proliferative and secretory

activities of cholangiocytes in human chronic cholestatic

liver diseases characterized by marked qualitative and

quantitative alterations of bile acid biliary composition.
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