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Abstract. This paper is concerned with the numerical simulation of a thermodynamically com-
patible viscoelastic shear-thinning fluid model, particularly well suited to describe the rheological
response of blood, under physiological conditions. Numerical simulations are performed in two
idealized three-dimensional geometries, a stenosis and a curved vessel, to investigate the combined
effects of flow inertia, viscosity and viscoelasticity in these geometries. The aim of this work is
to provide new insights into the modeling and simulation of homogeneous rheological models for
blood and a basis for further developments in modeling and prediction.
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1. Introduction
Blood is a complex mixture of several formed elements, red blood cells (RBCs or erythrocytes),
white blood cells (WBCs or leukocytes) and platelets (thrombocytes), in an aqueous polymeric
and ionic solution, the plasma, containing electrolytes, organic molecules and numerous proteins.
Despite being such a complicated mixture, it can be modeled in sufficiently large blood vessels as
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a single constituent fluid and, depending on the size of the blood vessels and the flow behvior, it is
approximated as a Navier-Stokes fluid or as a non-Newtonian fluid.

The presence of the formed elements in blood leads to some significant and fascinating changes
in its rheological properties and more experiments need to be performed, at the scale of the red
blood cells, to extend the existing models by including microstructural aspects of blood. Reliable
measurements of velocity and shear stress, as well as interactions between the cellular components
of blood and plasma are essential to develop these microstructural models, appropriate in smaller
vessels in which the cell and lumen sizes are comparable.

This paper concerns the flow of blood in vessels where it needs to be described by a non-
Newtonian fluid model. There is a large body of literature confirming that blood shear thins due
to the aggregation of the red blood cells, and the formation of rouleau 3D microstructures at low
shear rates and their deformability at high shear ([15, 16, 17, 18, 19]). There is also experimental
evidence that supports the fact that blood is capable of stress relaxation, see e.g. Thurston [30],
Quemada [27], Chien et al. [20]. Evans and Hochmuth [21] have found that the red blood cell
membrane, which is a component of blood, exhibits stress relaxation. Moreover, the experimental
results of Thurston [31] imply that the relaxation time depends on the shear rate. In view of the
available experimental evidence, it is reasonable to develop a non-Newtonian fluid model for blood
that is capable of shear-thinning and stress relaxation, with the relaxation time depending on the
shear rate. To date, very little is known concerning the response of such fluids.

Rajagopal and Srinivasa [28] have developed a thermodynamic framework within which one
could systematically develop rate type models to describe the viscoelastic response of fluids. The
framework is general enough to develop models wherein the relaxation time depends on the shear
rate. All that the thermodynamic framework requires is a knowledge of how the material stores
energy and how it produces entropy. The models that are developed, automatically satisfy the
second law of thermodynamics. In fact, the framework requires the rate of entropy production to
be non-negative. Moreover, from amongst the class of admissible constitutive relations meeting
the condition that the rate of entropy production is non-negative, this theory also requires that the
model should maximize the rate of entropy production. Based on [28], Anand et al. [1] introduced
a model that is suitable for describing the response characteristics of blood. This model contains
the Oldroyd-B model as a special sub-class.

The theory developed by Rajagopal and Srinivasa [28] makes use of the fact that the natural
configuration of the material changes as the body produces entropy, and also that one can unload
from the current configuration of the body to its natural configuration through an instantaneous
elastic response. As blood is modeled as a viscoelastic fluid capable of instantaneous elastic re-
sponse, the framework developed in [28] is particularly well suited to develop a model for blood.
This framework needs the specification of how the body stores and dissipates energy. The way in
which the body stores energy is usually provided by associating a specific Helmholtz potential with
the body, and how the body dissipates energy is given by a rate of dissipation function. However,
as shown recently in [29], not all viscoelastic fluids can be described within that earlier framework.
In fact, there are (rate type) viscoelastic fluids that cannot have a specific Helmholtz potential asso-
ciated with them. For certain viscoelastic fluids one cannot associate a specific Helmholtz potential
but only a Gibbs potential. Rate type fluids stemming from a Gibbs potential approach might be
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useful in describing the response of blood. In this paper we shall not pursue such models but re-
strict our attention to the model developed by Anand et al. [1] that has proven to be successful in
describing the response of blood.

Anand et al. [2], [3], [4] have also studied the problem of the formation and lysis of blood
clots, and more recently the problem of ATIII and protein C deficiency [5] within the context of
the above model. Due to the complexity of the model, their studies are based on simple geometries
and flow assumptions so that the problem under consideration can be reduced to a simple system
of equations in one spatial dimension. However, if the model is to be used to study realistic
problems with relevance to biomedicine, it is necessary to consider blood flow in more complex
geometries than those studied in the above referenced papers, and to perform three-dimensional
simulations. We address this issue in the present work. We consider the model described in [1] and
perform a numerical investigation of the combined effects of inertia, viscosity and viscoelasticity
of the fluid in two idealized three-dimensional geometries, a stenosis and a curved vessel. These
combined effects are observed by comparing the results of the axial velocity, radial velocity and
pressure contours for the new model with those obtained for classical blood flow models, namely
the Newtonian and the generalized (shear-thinning) Oldroyd-B models, as previously done in [10,
13, 14] (see also e.g. [24, 26, 23, 8]).

2. The mathematical model

2.1. Kinematics
In this section we provide the minimum kinematical definitions that will make this paper self-
contained. In order to understand the model that is being used in this work, it is necessary to define
some kinematical quantities. The notation introduced in Rajagopal and Srinivasa [28] is used here.
Let X ∈ κR denote a material point in the reference configuration κR of the body B (see Fig. 1),
and let x ∈ κt denote the same material point in the current configuration κt at time t. Let κp(t)

denote the natural configuration that can be accessed by instantaneously unloading the body which
is at the current configuration. As the body deforms, the underlying natural configuration κp(t)

changes. By the motion of a body we mean a one to one mapping χ(X, t), that assigns to each
point X ∈ κR a point x ∈ κt, for each t, i. e.,

χ : κR × R→ E , x := χ(X, t).

We will assume that the motion is invertible and sufficiently smooth, in such a way that all deriva-
tives that are taken make sense.

The deformation gradient FκR
is defined through

FκR
:=

∂χ

∂X
and the left and right Cauchy-Green stretch tensors BκR

and CκR
are defined through

BκR
:= FκR

F T
κR

, CκR
:= F T

κR
FκR

,
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Figure 1: Schematic of the natural configurations of a body B at time t.

where the superscript T denotes transpose. The deformation gradient and the Cauchy-Green stretch
tensors, with respect to the natural configuration, are defined by (see Fig. 1)

Fκp(t)
:=

∂χ

∂Xκp(t)

and

Bκp(t)
:= Fκp(t)

F T
κp(t)

, Cκp(t)
:= F T

κp(t)
Fκp(t)

,

respectively. The principal invariants of Bκp(t)
are given by

IBκp(t)
:= trBκp(t)

, IIBκp(t)
:=

1

2

[
(trBκp(t)

)2 − trB2
κp(t)

]
, IIIBκp(t)

:= detBκp(t)
.

The mapping G, that is a mapping from the reference configuration to the current natural
configuration is defined through

G := F−1
κp(t)

FκR
.

The velocity gradients L and Lκp(t)
, and their respective symmetric parts D and Dκp(t)

, are
defined through

L :=
d

dt
(FκR

)F−1
κR

, Lκp(t)
:=

dG

dt
G−1,
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D =:
1

2
(L + LT ), Dκp(t)

=:
1

2
(Lκp(t)

+ LT
κp(t)

).

where d
dt

denotes the usual material time derivative.
The upper–convected Oldroyd derivative of a tensor A is defined by

O
A=:

dA

dt
−LA−ALT . (2.1)

It then follows that

O
Bκp(t)

=
dBκp(t)

dt
−LBκp(t)

−Bκp(t)
LT = −2Fκp(t)

Dκp(t)
F T

κp(t)
. (2.2)

Since we shall model blood as an incompressible viscoelastic shear-thinning fluid, we shall require
that

trD = 0, trDκp(t)
= 0.

The above kinematic conditions suffice for our purpose.

2.2. A shear-thinning viscoelastic rate type fluid model for blood
For details of the development of rate type viscoelastic fluid models capable of instantaneous elas-
tic response, within the context of a specific Helmholtz potential and rate of dissipation, we refer
the reader to [28]. The theory requires the specification of a Helmholtz potential ψ and a rate of
dissipation ξ that satisfies

ξ = T .D − ρ
dψ

dt
(2.3)

where ρ denotes the fluid density and T is the stress tensor. The model is assumed to meet the
requirement that amongst all processes that are accessible to the body it chooses that which max-
imizes the rate of dissipation (in general, the rate of entropy production). In this study we are
assuming that the processes undergone by blood are isothermal, otherwise we will have to modify
equation (2.3).

We shall assume that the specific Helmholtz potential is given by

ψ =
µ

2

(
IBκp(t)

− 3
)

. (2.4)

Thus, we are assuming that the fluid (blood) stores energy like a neo-Hookean solid. The constant
µ that appears in the above equation is the shear modulus and it is non-negative (in fact, positive)
based on physical considerations.

Next, we assume that the rate of dissipation function is given by

ξ = α
(
Dκp(t)

.Bκp(t)
Dκp(t)

)γ

+ η1D.D. (2.5)
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where α, γ and η1 are material parameters. When γ = 0, the above model corresponds to the
rate of dissipation in a generalized Oldroyd-B fluid (see [28]) and when γ = 1 and η1 = 0, the
rate of dissipation corresponds to that of a generalized Maxwell fluid. On the basis of physical
considerations, we shall assume that α and η1 are non-negative.

A lengthy but straightforward procedure based on the maximization of the rate of dissipation
leads to (see Anand et al. [3])

T = −p1 + S (2.6)

S = µBκp(t)
+ η1D, (2.7)

O
Bκp(t)

= −2
(µ

α

)1+2n (
tr(Bκp(t)

)− 3λ
)n [

Bκp(t)
− λ1

]
, (2.8)

λ =
3

tr
(
B−1

κp(t)

) , (2.9)

n =
γ − 1

1− 2γ
(2.10)

In the above equations,
O
Bκp(t)

stands for the upper-convected Oldroyd derivative of tensor Bκp(t)

defined by (2.2), 1 is the unit (identity) tensor, p denotes the Lagrange multiplier that is a con-
sequence of the requirement of incompressibility and S is usually referred to as the extra stress
tensor, or the constitutively determined part of the tensor T .

2.2.1. Governing equations

Since blood is modeled as an incompressible fluid, all motions have to satisfy the balance of mass

div u = 0, (2.11)

and the balance of linear momentum

ρ
du

dt
= divT (2.12)

where u is the velocity field and ρ denotes the density of blood. These equations have to be solved
simultaneously with the constitutive relations (2.6) - (2.10) wherein the expression for the stress is
substituted into (2.12) to obtain the governing equation for the velocity field u.

The following parameters obtained from human blood [1] will be used in the numerical simu-
lations of this model:

η1 = 0.01 Pa · s; µ = 0.1611 N/m2; n = 0.5859; K =
(µ

α

)1+2n

= 58.0725 s−1 (2.13)

(n is positive to ensure shear-thinning behavior).
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Equation (2.8) can be rewritten in a more conventional form in terms of the material time-
derivative. Let us denote by

1

τ(Bκp(t)
)

= 2K
(
tr(Bκp(t)

)− 3λ
)n

where τ = τ(Bκp(t)
) has the dimension of time and plays a role similar to the relaxation time in

the classical Oldroyd-B (Maxwell) model [10]. Using this expression, equation (2.8) for the tensor
Bκp(t)

can be rewritten in the following way

O
Bκp(t)

= − 1

τ(Bκp(t)
)

[
Bκp(t)

− λ1
]

(2.14)

Using the definition of the upper-convected time derivative (2.1), the left-hand side takes the form

dBκp(t)

dt
−

[
LBκp(t)

+ Bκp(t)
LT

]
= − 1

τ(Bκp(t)
)

[
Bκp(t)

− λ1
]

(2.15)

Finally, expanding the material time-derivative on the left-hand side we end up with

∂Bκp(t)

∂t
+ (u ·∇) Bκp(t)

= −1

τ

[
Bκp(t)

− λ1
]

+
[
LBκp(t)

+ Bκp(t)
LT

]
(2.16)

where the coefficients λ and τ are scalar functions of the tensor Bκp(t)
and its invariants. It is in-

teresting to observe that the classical Oldroyd-B (upper-convected Maxwell) model takes a similar
form

∂T e

∂t
+ (u ·∇) T e =

2ηe

τ
D − 1

τ
T e +

[
LT e + T eL

T
]

(2.17)

T e being the extra stress, ηe the elastic viscosity coefficient and τ the (constant) relaxation time.

3. Numerical simulations
Some numerical experiments have been performed in order to check the functionality of the above
described shear-thinning viscoelastic fluid model for blood flow (further denoted as bNOB) and
compare its predictions with the classical Newtonian (NS) and generalized Oldroyd-B (GOB)
fluid models, under different flow conditions. The GOB model used here is obtained from the
Oldroyd-B model (2.17) (see [10] for details) replacing the total (constant) viscosity by the shear
dependent viscosity given by the generalized Cross function

η(γ̇)− η∞
η0 − η∞

=
1

(1 + (αγ̇)b)a (3.1)

where η0 and η∞ are the asymptotic viscosities at low and high shear rates and parameters α, a and
b are estimated by curve fitting of experimental data. These parameters of the GOB model have
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been taken from [10] (see also [26]), except for the asymptotic viscosities η0 and η∞, that have been
adjusted to fit the bNOB’s model parameters, namely η0 = 0.0736 Pa · s and η∞ = 0.005 Pa · s.

The main goal is to evaluate the hemodynamic and rheological characteristics of this new
bNOB model in two simple idealized three-dimensional geometries, based on previous works
dealing with similar test cases for simpler models as the generalized Newtonian or the classical
and generalized Oldroyd-B models [10, 13, 14].

3.1. Numerical method
The numerical method used to solve the governing equations is based on a spatial finite-volume
discretization on structured grids and an explicit Runge-Kutta time-stepping scheme, namely a
robust modified Runge-Kutta four-stage method [25]. The computational mesh is structured and
consists of hexahedral primary control volumes. To evaluate the viscous numerical fluxes also dual
finite volumes with octahedral shape and centered around the primary cell faces are used.

We look for steady solutions by a time-marching approach, which means that the unsteady
governing equations are solved with steady boundary conditions and steady solutions are recovered
when t →∞. An artificial compressibility formulation [33], often used in steady flow simulations,
is applied to obtain the pressure and to enforce the divergence-free constraint. The continuity
equation (2.11) is modified by adding the pressure time-derivative, properly scaled by the artificial
speed of sound c (equal to 1, for simplicity), as follows:

1

c2

∂p

∂t
+ div u = 0, (3.2)

A pressure stabilization technique has been used in the present simulations (see e. g. [33]) to
avoid numerical oscillations in the pressure mainly due to the presence of strong gradients. This
technique consists in adding a pressure dissipation term (Laplacian) into the right hand side of the
modified continuity equation (3.2) such that

∂p

∂t
+ c2div u = ε∆p, (3.3)

which, in particular, vanishes if the pressure is a linear function of the space coordinates.
The Reynolds number used in the simulations was quite low (of the order of 102) and thus

no additional stabilization was needed for the flow variables. The details of this approach can be
found in earlier papers [11, 12] and the references therein.

Numerical tests have been performed in two different geometries. The first computational
domain represents a non-symmetric (with respect to the bulk flow direction) cosine-shaped vessel
stenosis shown in Fig. 2. The stenosed vessel is three-dimensional, rotationally symmetric, with
diameter D = 2R = 6.2mm which reduces to its one half in the stenosed region. This leads to a
4 : 1 cross-sectional area reduction and thus to a significant local flow acceleration.

The second computational domain, is a curved 90◦ elbow shapped vessel with constant curva-
ture, as shown in Fig. 3. The curved vessel is three-dimensional with circular cross-section of the
same size as the above described stenosis. The length of the inflow and outflow straight sections
are Lin = Lout = 10R.
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Figure 2: Stenosed vessel
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Figure 3: Curved vessel (elbow)

3.1.1. Computational grid

The computational domain is discretized using a structured, wall fitted mesh with hexahedral cells
and non-uniform axial cell spacing. A multiblock mesh structure was adopted to avoid high distor-
tion of cells, see Fig. 4. The outer mesh block has 64×16×100 cells, while the central mesh block
has 16× 16× 100 control volumes. A similar grid structure was used in both test case geometries.

3.1.2. Boundary conditions

A parabolic velocity profile with given flow-rate Q is prescribed at the inlet of each domain, for
bNOB, GOB and NS models. Homogeneous Neumann conditions for the velocity components
are imposed at the outlet and no-slip conditions are prescribed at the wall. Pressure is fixed at
the outlet and extrapolated at the other boundaries. Moreover, homogeneous Neumann boundary
conditions are prescribed at all boundaries for the components of tensor Bκp(t). As an alterna-
tive, some simulations have been performed using a Dirichlet type boundary condition Bκp(t) = 1
prescribed at the inlet, but no significant impact on the solution has been found.
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Figure 4: Computational grid structure

3.2. Numerical Results
3.2.1. Stenosed vessel

The stenosed vessel has been chosen as a test case to study the behavior of the new blood model
bNOB in the presence of a high shear region. The sudden (but smooth) reduction of the cross-
sectional area generates jet-like flow patterns with significant recirculation zones downstream of
the stenosis. The sizes of the recirculation zones depend, for a given geometry, mainly on the flow
rate and the rheological model. Therefore, three different flow rates Q = 2.0, 1.0 and 0.5 cm3/s
were investigated in the simulations for the three considered models, using for the bNOB model
the blood flow parameters given by (2.13).

Flow field. The influence of the shear-thinning and viscoelastic effects on the qualitative behavior
of the flow field can be observed by comparing the results of the axial velocity, radial velocity and
pressure contours for both the Newtonian (NS) model (with viscosity η1 = 2η∞ = 0.01 Pa·s) and
the shear-thinning viscoelastic fluid model bNOB. Figures 5 and 6 show the axial velocity, radial
velocity and pressure contours † for the NS and bNOB models, with the flow rates Q = 2.0 cm3/s
and Q = 0.5 cm3/s, respectively.

As expected (see previous results in [10] and [14]) there are essentially two main differences
between the Newtonian (NS) model solution and the blood model (bNOB) solution.

i) The velocity profile obtained using the bNOB model is flatter in the central part of the
vessel, which corresponds to a reduced value of the maximum velocity. As a consequence,
the near wall flow is accelerated and thus the recirculation zones become shorter.

ii) The pressure drop is higher‡ for the bNOB flow model, due to the local increase of the
viscosity (with respect to the Newtonian flow reference viscosity η∞ = η1/2) in the low

†The color scale, with units in m/s (shown below in Fig. 7), is the same in both figures, to allow for a direct
comparison. Regions with negative axial velocity (i.e. reversal flow) are plotted in grey color.

‡The pressure is fixed at the outlet, with the same value for both cases. The resulting higher pressure at the inlet
indicates a higher pressure drop.
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shear regions, which leads to a higher pressure loss.

Both of these effects can be attributed to the combined shear-thinning and viscoelastic behavior
captured by the bNOB model. A better comparison can be done by directly observing figures (7 -
10) displaying the axial velocity and radial velocity contours for the NS, GOB and bNOB models
and both flow rates Q = 2.0 cm3/s and Q = 0.5 cm3/s.
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Figure 5: Axial velocity (top), radial velocity (middle) and pressure (bottom) contours, with flow
rate Q = 2.0 cm3/s, for the NS fluid (left) and bNOB fluid (right).
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Figure 6: Axial velocity (top), radial velocity (middle) and pressure (bottom) contours, with flow
rate Q = 0.5 cm3/s, for the NS fluid (left) and bNOB fluid (right).

A more detailed study of the rheological effects of the bNOB blood model on the axial veloc-
ity contours can be done by directly computing the differences between the NS and the bNOB
solutions or between the GOB and bNOB solutions. Figure 11 shows the normalized difference
between the NS and the bNOB solutions for different flow rates Q = 2.0, 1.0 and 0.5 cm3/s. It
is obvious that the velocity predicted by the bNOB blood model is lower in the central part of the

11



T. Bodnár et al. Simulation of the three-dimensional flow of blood

X

ZY

-0.06 -0.052 -0.044 -0.036 -0.028 -0.02 -0.012 -0.004 0.004 0.012 0.02 0.028 0.036 0.044 0.052 0.06

X

ZY

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

X

ZY

-0.06 -0.052 -0.044 -0.036 -0.028 -0.02 -0.012 -0.004 0.004 0.012 0.02 0.028 0.036 0.044 0.052 0.06

X

ZY

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

X

ZY

-0.06 -0.052 -0.044 -0.036 -0.028 -0.02 -0.012 -0.004 0.004 0.012 0.02 0.028 0.036 0.044 0.052 0.06

X

ZY

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Figure 7: Comparison of the axial velocity contours for Q = 2.0 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).
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Figure 8: Comparison of the radial velocity contours for Q = 2.0 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).

vessel than the one predicted by NS. This is compensated by a faster flow in the near-wall region.
This marked flattening of the velocity profile is a typical shear-thinning characteristic, not related
to the fluid viscoelasticity.

It is also interesting to observe that the magnitude of the axial velocity difference increases
with the reduction of the flow rate. This is a natural result, since the Newtonian (NS) solution is
computed using a lower viscosity η∞ and thus when the flow rate is reduced and, consequently, the
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Figure 9: Comparison of the axial velocity contours for Q = 0.5 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).
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Figure 10: Comparison of the radial velocity contours for Q = 0.5 cm3/s: NS fluid (top), GOB
model (middle) and bNOB blood model (bottom).

local shear-rate reduces as well, this leads to an increase of the local apparent viscosity. Therefore
the magnitude of the axial velocity differences is higher in this case. It is obvious that a different
choice of the reference viscosity for the NS model could lead to different results.

The normalized difference between the bNOB and GOB axial velocities, corresponding to the
three flow rates Q = 2.0, 1.0 and 0.5 cm3/s is shown in Figure 12. As expected, the impact of the
viscoelasticity on the flow behavior predicted by the bNOB blood model is less significant than
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the shear-thinning one shown in Figure 11.
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Figure 11: Relative difference of axial velocity (u
bNOB

− u
NS

)/U0 for flow rates Q =
2.0, 1.0 and 0.5 cm3/s (from top to bottom).
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Figure 12: Relative difference of axial velocity (u
bNOB

− u
GOB

)/U0 for flow rates Q =
2.0, 1.0 and 0.5 cm3/s (from top to bottom).

Forcing effects. The effects of the extra stress can be expressed in terms of the divergence of the
tensor Bκp(t)

The term div Bκp(t)
represents an additional force in the balance of linear momentum
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(2.12) related to the viscoelastic behavior predicted by the bNOB blood model. In the present test
case the most important component of this force is the axial one. Figure 13 shows the contours of
the axial component of div Bκp(t)

. The blue color represents a force acting against the main flow
and causing its deceleration, whose maximum value is attained at the axis of symmetry. This is
also a typical behavior captured by shear-thinning models, which has been previously observed in
[10] and [14] where the generalized (i.e. shear-thinning) Newtonian and generalized Oldroyd-B
models were compared with the classical Newtonian and Oldroyd-B models. Figure 14 shows

-2500 -1500 -500 500 1500 2500

-2500 -1500 -500 500 1500 2500

-2500 -1500 -500 500 1500 2500

Figure 13: Axial component of the divergence of the tensor Bκp(t)
for flow rates

Q = 2.0, 1.0 and 0.5 cm3/s (from top to bottom).

the contours of the six components of the extra stress tensor Bκp(t)
in the x − z plane, in some

cross-sections of the flow domain, for a flow rate Q = 2.0 cm3/s. The components bi of the tensor
Bκp(t)

are numbered according to the following scheme

Bκp(t)
=




b1 b2 b3

b2 b4 b5

b3 b5 b6




The contour color scale is the same for all these plots. It is clear that the diagonal components of
the tensor Bκp(t)

are dominant (in magnitude), so the whole tensor is a kind of perturbation of the
identity tensor 1 . The same has been observed for the lower flow rates.

3.3. Curved vessel
Flows in curved vessels are very challenging and considerably more complex than flows in straight
vessels. For inertial Newtonian flows it is well known that a slight curvature of the vessel axis
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Figure 14: Contours of the components of tensor Bκp(t)
for the flow rate Q = 2.0 cm3/s.

induces centrifugal forces on the fluid and, in addition to the primary initial flow, a secondary
motion appears, sending fluid outward along the symmetry axis and returning along the upper and
lower curved surfaces. This secondary motion is induced by an imbalance between the cross-
stream pressure gradient and the centrifugal forces developed at the curvature sites, and consists of
a pair of symmetrical counter-rotating vortices that is superposed to the axial Poiseuille flow. This
results in asymmetrical wall stresses with high shear and low pressure regions (see e.g. [9, 22, 6,
7]).

A 90◦ curved vessel (Fig. 3) has been chosen as a second test case to study the behavior
of the new blood model bNOB in the presence of high streamline curvature and non-negligible
secondary flows. Since the secondary flow pattern is more pronounced at higher flow rates, only
the flow rate Q = 2.0 cm3/s has been considered for the simulations in this geometry.

One of the important features of the flow predicted by the new blood model bNOB is related
to the axial velocity profile. This can clearly be observed in Fig. 15 showing, for the NS, GOB
and bNOB models, the plots of the axial velocity in three different sections placed at 30◦, 60◦

and 90◦ in the curved part of the vessel. In the case of the bNOB and GOB models flatter axial
velocity profiles are obtained when compared to the NS model. As in the case of the flow in
the stenosed vessel, this effect can be attributed to the shear-thinning behavior predicted by the
bNOB and GOB models where the low shear rates around the centerline of the vessel lead to
a local increase of the apparent viscosity. In this case, it is apparent that viscoelasticity of both
flows does not play a significant impact in their behavior, however other numerical experiments
should be done to prove this ansatz. Curvature effects can be observed in the contours of the axial
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velocity, which are shifted away from the central axis as the curvature of the vessel increases. This
is visible in Fig. 16 and, with more details in Fig. 17. Secondary flow streamlines have a similar
qualitative behavior for the NS, GOB and bNOB models, as shown in Fig. 16. More details and
differences are visible in the comparison of axial and radial velocity contours shown in figures 17
and 18, where the magnitude of the secondary flow velocities is clearly lower for the GOB and
bNOB models due to a higher apparent viscosity.

Figures 19 and 20 show the normalized solution differences between the new bNOB and the
classical NS and shear-thinning GOB models. The differences on the axial velocity between the
bNOB and the Newtonian model (Fig. 19, left) show the expected slow-down of the core flow
(caused by the shear-thinning behavior) in the straight inlet part of the vessel. This is compensated
by a faster near-wall flow. As soon as the flow reaches the bended part of the curved vessel, the
slow core of the flow is pushed towards the outer wall (see Fig. 20 for a more detailed view),
while close to the inner radius of the bend, the flow becomes faster. A similar (although weaker)
tendency of the flow behavior can also be seen for the difference between the bNOB and GOB
models (Fig. 19, right and Fig. 21). This is mainly due to the fact that both models have a shear-
thinning viscosity. In the bNOB model shear-thinning effects seem to be slightly more pronounced
than in the GOB model. This behavior needs further investigation in a future work.

4. Conclusions and remarks
Blood is a very complex multiconstituent material that, in intermediate sized vessels, can be mod-
eled as a single homogeneized continuum which exhibits non-Newtonian behavior. Such response
can be captured by the phenomenological shear-thinning viscoelastic constitutive model of Anand
and Rajagopal [1]. The present work was devoted to the numerical simulation of this model in two
idealized three-dimensional geometries, a stenosis and a curved vessel, to investigate the combined
rheological effects of inertia, shear-thinning viscosity and viscoelasticity, for steady flows.

Solutions for the new shear-thinning viscoelastic model (bNOB) have been compared to the
classical Navier-Stokes (NS) and generalized Oldroyd-B (GOB) solutions showing, as expected,
that the shear-thinning effects are dominant with respect to the viscoelastic ones in both geome-
tries [10, 13, 14]. In the case of the stenosed vessel, the shear-thinning effects are predominant
in the recirculation zone downstream the stenosis, increasing as the flow rate (and consequently
the shear rate) decreases. In the curved vessel we observed in particular that the axial velocity
profile is flatter for the bNOB and GOB models than for the NS model. In summary, we can
also conclude that results obtained with the new bNOB model are very similar to those obtained
with the classical GOB model, showing in particular that the bNOB model has been properly
adjusted and implemented. In addition, this blood rheological model has been created within the
novel thermodynamical framework developed by Rajagopal and Srinivasa [28] and the simulations
presented here are one of the first making use of that promising approach.

Future work will be devoted to an extension of this numerical study to unsteady flows in geome-
tries like stenosed vessels with different degrees of contraction and curved vessels with different
curvatures, to provide a deeper understanding of the significance of the non-Newtonian character-
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Figure 15: Axial velocity profiles for NS flows (top row), GOB flows (middle row) and bNOB
flows (bottom row) in the curved vessel.

istics of blood captured by the bNOB model and their correlation with arterial diseases.
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