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The aspect of conservation of spin polarization in electric-dipole transitions is addressed for hy-
drogenic ions in a nonrelativistic time-dependent perturbation theory. The results show that for
direct transitions the polarization is highly conserved. The depolarizing influence of the spin-orbit
interaction on the initial spin orientation is only of the order of (aZ)? or less for hydrogenic ions.

I. INTRODUCTION

The availability of highly charged ions of any Z (Ref.
1) is attracting more and more interest in scrutinizing the
predictions of relativistic and QED theories. So far,
QED claims an unprecedented understanding of the elec-
tromagnetic interaction. Indeed, the g factor of the free
electron? is one of the best known fundamental con-
stants:> Radiative corrections account for its value to a
precision of several parts in 10'2. In this context, some of
the challenging questions are: How does the vicinity of a
high charge influence the g factor of the electron, and can
QED and relativistic theory account for all possible
changes?

Answers to these questions could be expected from a
g —2 experiment on an electron bound to a high charge.
Such an experiment must be designed to be as simple as
possible in order not to obscure the result by additional
interactions. Therefore the hosting charge should be an
even-even nucleus. This avoids complications from
strong hyperfine structure interactions that can contrib-
ute spin-depolarizing features. Inescapable complications
arise from the fact that the electron is penetrating the nu-
cleus. Apart from these considerations, however, the
essential prerequisite for this type of experiment is that
the electron be prepared in the ion in a spin-polarized
state. With optical-pumping techniques*~® not available
in the x-ray range, the only way of obtaining a spin-
polarized state is to prepare the electronic spin orienta-
tion externally, for instance, before the electron is
transferred to the bare ion in a charge-transfer collision.

The following nonrelativistic study explores the suita-
bility of this process with respect to the preparation of a
spin-polarized final state in the ion. Its starting point is
based on the facts known so far about the process of
charge transfer,®”!7 which has been widely investigated
for highly to totally stripped projectiles of low velocity
and hydrogen atom targets. This is advantageous for our
study because hydrogen atoms can be spin-polarized very
effectively. '8 1°

In this article we will study only direct electric dipole
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transitions. In a forthcoming paper we plan to also ad-
dress the matter for cascading electric-dipole transitions.

II. THEORETICAL METHOD

A. Summary of facts known about charge-transfer collisions

With electron-transfer collisions being the key point
for an external preparation of spin polarization, we first
compile the essential facts about this process that have
been worked out during the past years, both theoretically
and experimentally.®”!7 In this field it is common
knowledge that electron capture from H atoms by highly
charged low-energy ions populates excited states prefer-
entially in a very n-selective way: At most, two principal
quantum numbers n are significantly participating. '’
Especially important for our study are the findings about
the / and m; distributions: Due to a postcollision Stark
effect by the residual-proton or, equivalently, from a
molecular-compound point of view, all possible states are
highly mixed in the ion?*?! and the alignment like (Stark
effect) m,; distribution shows a pronounced peak for
m;=0. This has also been confirmed experimentally.??
With the z axis being chosen to coincide with the velocity
vector of the impinging projectile, the predominant popu-
lation of m;=0 in a collision between H(ls) and a fully
stripped projectile is in agreement with the classical mod-
el: The relative angular momentum of the particles is a
constant of the motion, and thus can be defined at infinite
internuclear separation by the vector product between
the impact parameter b and the initial linear momentum
p of the projectile, L=bXp. b and p define the collision
plane to which L is necessarily perpendicular. Since the z
axis lies in this plane, L is also perpendicular to z, hence
m;=0.

For our purposes, however, the possible effects of the
collision on the orientation of the spin of the transferred
electron are of more concern. To our knowledge, there
are no studies that address this problem. With an initial-
ly bare ion and I =0, however, we may anticipate that
there are only small or even no effects at all since the in-
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teraction is purely electrostatic at the small velocities
considered. The choice of our initial wave function will
therefore be guided by the concept of undisturbed spin
transfer and the population of appropriate sublevels
lalm,;).

B. Choice of the initial wave function
and its time-evolution under spin-orbit interaction

Following the concept of undisturbed spin transfer we
postulate that our initial wave function at £=0 be

Y= 3 Bam lalmsm,) . (1

a,l,m,

This is a pure spin state. The absolute squares of the am-
plitudes represent the initial population of the (a,/,m;)
manifolds and are proportional to the cross sections:
oa,m[~|Ba,mI|2. Alternatively, expression (1) may be
transformed to the |alsJM ,) representation23

Y= 3 3 Bum(—1 TVITFI
al,m, LM,

I s J
m, m, —M, lalsIM; ) . 2)

N

This transformation does not change the wave function,
Eq. (1), in any way, especially not its main feature,
representing a pure spin state.

As soon as the electron starts orbiting about its new
host, spin-orbit interaction is present. The operator of
the spin-orbit interaction, however, is not diagonal in the
set of wave functions |alm ;sm;) that make up ¢, in Eq.
(1), except for the wave functions that represent the larg-
est unidirectional z components of the “stretched” state
with J =1 +s:

lal, +1;s,+s)=|als] =1 +s, M;=1+s)
or
lal, —1;s,—s)=|alsJ =1+s, M,;=—(l +s)) .

For a given spin orientation only one of these states can
be realized. All other states will be mixed by spin-orbit
interaction. At the same time the electron is exposed to
the interaction with the electromagnetic field because it
had been captured into an excited state. With no real
photons present this interaction is basically provided by
the statistic fluctuations of the photon vacuum which are
related to the zero point energy of the modes of the elec-
tromagnetic field and which eventually trigger the “spon-
taneous’ decay of the state.

Thus we have to investigate the simultaneous effects of
spin-orbit coupling and the interaction with the photon
vacuum on our wave function as the system evolves with
time. We do so by using time-dependent perturbation
theory in interaction representation.?*?> As is well
known, the perturbed wave function is expanded into the
complete series of eigenfunctions of the unperturbed sys-
tem which are independent of time in interaction repre-
sentation. The expansion coefficients are assumed to be
time-dependent,
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Y (r,0)= > a, (), (1), (3a)

where 9, (r) is the nth eigenfunction of the unperturbed
Hamiltonian H°, belonging to the eigenvalue E?,

H%,(r)=E%,(r), (3b)

and where ,(r,?)
Schrodinger equation

is to solve the time-dependent

H,’¢,(r,t)=iﬁ%¢,(r,t) , (4a)
with
H] = iH %t /Aigp, —iHt /% (4b)

being the perturbation operator in interaction representa-
tion.

In our case the set of wave functions |alm;sm,) are
the unperturbed eigenfunctions. The time-dependent am-
plitudes a,(t) can be determined by solving a system of
linear differential equations of first order

ifid,,(1)= 3 a,(t){m|H'|n Ye (O (5)

Here H' stands for one or more small perturbation opera-
tors which cause the change of the composition of the
wave function as the system evolves with time, and
@pm =(1/#)NEX—E2). Since the summation extends
over the whole spectrum of eigenvalues, it depends on the
properties of H' whether or not there is a diagonal matrix
element

ifia,,(t)=a,, (t){m|H'|m )
+ 3 a,(t){m|H'|n e lOmmt (5a)

n#m

One of the perturbation operators we have to deal with
is the spin-orbit operator of the electron that has been
transferred in the charge exchange collision

H,=H%*=g(ls) . (6)

Here g is the coupling strength on which we will ela-
borate later. The other perturbation operator describes
the interaction with the electromagnetic field

' yyr— e ikr
H,=H =———A4 p . 7
2 me ¢ €P (7a)

Here € is the unit vector of the polarization of the emit-
ted photon, c is the velocity of light, e = —|e| is the elec-
tric charge of the electron, m its mass, p its vector of
linear momentum, and r its position coordinate. k is the
wave vector of the emitted photon and A= A€ is the am-
plitude of the transverse vector potential that may be re-
lated to the number of photons in the quantized elec-
tromagnetic field. >

For wavelengths of the emitted light that are much
longer than a characteristic ionic diameter a, ka <<1, the
expansion of the exponential in Eq. (7a) can be truncated
behind the zeroth-order term. This is the electric-dipole
approximation in which the ion cannot tell into which
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direction but only with what polarization the photon has
been emitted. Additionally we note that the operator of
the electron’s linear momentum p is the electron mass m
times the time derivative of its position operator dr/dt
and that the latter can be expressed in interaction repre-
sentation by its commutator with the Hamiltonian H.

Thus
€

HI=—iﬁC Ae’[H,rI] > (7b)
where according to Eq. (4b)
= eth/ﬁre —iHt /% i (7¢)

The operators Egs. (6) and (7) have totally different selec-
tion rules. The most obvious difference manifests itself in
Eq. (7b), where the presence of r makes H/ an odd opera-
tor which cannot have any diagonal matrix element with
wave functions of definite parity. We now may specify
the general expression Eq. (5) for the system of linear
differential equations

ifia,, (t)=a,, (t){m|H*|m )

+ 3 a,(t){m|H®|n Ye '“mm!

n*m

+ S a(m|Hk)e " (8)
k#m

As far as the simultaneous treatment of both interac-
tions is concerned we note that their coupling strengths
are very different as long as only spontaneous radiative
J

(Bl'msm/|H*|alm;sm)=8,,8,,1#(Bl'lglal }(— y

1 1

’
-m q m

xz(—l)"[
q

As is obvious from the properties of the 3j symbols, 2’ the
sum of the z components is a constant: m;+m,=m|
+m,. According to Eq. (9), the spin-orbit interaction
mixes all states a and B within a term series of given /.
For the case s =1, we obtain from the general expression
Eq. (9) for the diagonal matrix element

HY, . ={(almim |H®|almim)
={allglal Y#*m;m, . (10)
For the same case the nondiagonal matrix elements read

Hpgm ={BIm[im/|H®|alm;im)

=6 8 1(Bllgla,1)#

ml',m[il m_‘_',ms Fi12

XV (I Fm)1tm,+1) . (11

Without loss of generality we confine ourselves to the set
of wave functions |alm;;1,+1) and |BIm,+1;1,—1)
which are mixed by spin-orbit interaction. In order to
avoid cumbersome strings of indices, we will characterize

.
m;

s 1 s
—m{ —q m
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transitions are involved. In this case, due to the statistic
character of the vacuum fluctuations, it takes on the
average the radiative lifetime until the excited state de-
cays. This time span is very long compared to the period
of the orbiting electron. Therefore the spin-orbit interac-
tion has established the appropriate composition of the
wave function long before the lifetime elapses. The
justification for this concept is given by the ratio of spin-
orbit splitting and natural linewidth which usually
amounts to many orders of magnitude. In this sense,
practically no error is introduced if we do not treat both
interactions simultaneously but as though they were
“switched on” consecutively.

Hence we start at Eq. (8) and ignore the electro-
magnetic-interaction term for the time being. This will
provide a wave function that is determined by spin-orbit
interaction alone, and which we will take for the zeroth-
order approximation when treating the influence of the
electromagnetic interaction on the system. Because of
later reference, this is why H instead of H® was tacitly en-
tered into Egs. (7b) and (7c). For a simultaneous treat-
ment H must be equal to H°+ H°. But for the following
consecutive treatment H will be set equal to H° in the
first step and then in the second step equal to
H°+H*+H?, where H? is the Hamiltonian of the free
electromagnetic field.

The matrix elements of the spin-orbit operator are easi-
ly calculated in the |Im;sm ) representation by express-
ing the scalar product in spherical components and mak-
ing use of the Wigner-Eckart theorem??

MBI F 12 T2V 35 (25 F 10025 72)

9)

these states by am and Bm + 1, respectively. For the ra-
dial integrals over the coupling constant the following
shorthand notation is introduced:

(allglal Y=g, (Bllglal)=gg, . (12)

Later we will need the sum and the difference of the diag-
onal matrix elements for one principal quantum number
a,

Hfzom,am _Hfzom +1l,am+1 = _%galﬁ2 ’ (13a)
Hflom.am +Hfzom +1,am +1=+%g01ﬁ2(2m +1) . (13b)

For the special case s = that we are investigating, the
system of linear differential equations of first order, as
exemplified in expression Eq. (8) with H"=0, can be set
up now. For any a there are two equations,

iﬁdam+l(t)=aam +l(t)Hfzom +1,am +1 +aam(t)Hft°m +1,am

i —iwp t
+ 2 aﬁm(t)Htslom+l,Bme pa ’
B+a

(14a)



2346

i#a ,,, (t)=a,, () HY,

am,am

SO
am( +aam +1(t) am,am +1

—iwﬁa(l)

+ 2 aBm +1(Z)Hfzom,/3m +1€ (14b)

B#a

Before proceeding further, we have to elaborate on the
coupling strength g of the spin-orbit interaction. At the
moment of capture which is the origin of our time scale,
the potential of the capturing ion is deformed very much
by the residual donor ion in a way that makes the depen-
dence of g on the space coordinates neither Coulombic
nor even central. In a classical picture, the radial motion
of the donor comes to a standstill at the moment of elec-
tron transfer. Once the electron has been caught by the
acceptor, the residual donor ion is being accelerated by
electrostatic repulsion thus gradually lifting the deforma-
tion it had imposed on the acceptor’s potential by its
close presence. This makes the coupling strength g in the
initial state depend on the internuclear separation and
thus on time in an unknown and certainly complicated
manner. Due to the mass ratio, however, the residual ion
recedes very slowly compared to the speed involved in
the motion of the orbing electron. In this concept, we
may assume that the dependence of H*® on the internu-
clear separation, which is an implicit dependence on
time, may be treated parametrically as it has been done
so successfully in the Born-Oppenheimer approximation
of the adiabatically adjusted motions of the electrons in a
molecule. Hence, with respect to the system of linear
differential equations, we can expect H*° to be practically
time independent. The outcome of our calculation will
then include a formal time average of g during the life-
time of the capturing state which is'the most affected one
at low energies.

Next, let us turn to another approximation that will al-
low for handling the systems of differential equations,
Egs. (14a) and (14b). As implied by the matrix element
Eq. (9), the spin-orbit interaction mixes all states within a
given term series. Although we do not know in detail for
the case of a noncentral potential what the ratio is for
matrix elements of the spin-orbit interaction that are di-
agonal and nondiagonal with respect to the principal
quantum number, respectively, we may assume it to be
large. But we do know that these possibly small nondiag-
onal matrix elements are associated with more or less
rapidly oscillating functions in the system of differential
equations (14a) and (14b). If we assume a,,(f) and
a4, +1(1) to be reasonably smooth functions of ¢, their
course will not be altered significantly by averaging over
small consecutive time intervals, the width of which
should be very small compared to the lifetime. An ap-
propriate choice for the width of a time increment would
be the period of the slowest of the rapid oscillations
T,=1/vyq+1=27/0, 4+, thereby averaging all oscilla-
tion exponentials to zero. This is as if we were looking at
the system with too small a time resolution to perceive
these rapid oscillations. Instead, we would only realize
the coarse time behavior of the amplitudes. In other
words, of the total solutions to Egs. (14a) and (14b), we
will only consider the leading lowest frequency com-
ponents which are directly and only related to the spin-
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orbit interaction in the capturing level. Thus, the system
of linear differential equations, Egs. (14a) and (14b),
reduces to two equations that hold true for the spin-orbit
interaction in an isolated level of principal quantum num-
ber a,

iﬁdam +1(t):aam +1(t)Hfzom +1l,am +1 +aam(t)H?10m +1l,am »
(15a)

iﬁdam(t):aam(t)Hfzom,am +aam +1(t) ?zom,am +1 - (15b)

These equations describe the balancing between the am-
plitudes. For both equations to hold simultaneously, we
have to transform the two linear differential equations of
first order into one linear differential equation of second
order. For this purpose we resolve Eq. (15b) with respect
to Aam +1 ( t),

1

S0
am,am +1

aam+1(t): [iﬁa'am(t)—-aam(t)Hfzom,am] ’

(15¢)

and differentiate with respect to ¢,
1

SO
am,am +1

Liidd 1y (8)— i g (VH S, o ] -

dam+1(1): am,am

(15d)

Substitution for the respective quantities in Eq. (15a)
yields

Ozdam(t)+é(H1510m,am +Hfzom +1l,am +1 )dam(t)

1 SO N9 SO 2
7F(Ham,am am+l,am+l_|Ham,am+l‘ )aam(t) .

(16)

Assuming the solution to be proportional to the exponen-
tial

a, (t)~e i, 17

am
we obtain a quadratic equation for the determination of
Q,

0=—0*+ L (HY

4 am,am

+H§10m +1,am +1 )Q

1

_Z{(H?Iom,amezom+l,am+l—}Hfzom,am+l|2) ’ (183.)

or with the quadratic extension

o= Q_L(HSO

so
2h am,am+Ham +1,am+l)

_HSO

1 N
[(H7, am +1,am +1)2+4|Hf1°m,am+1!2] .

- 4ﬁ2 am,am

(18b)

Inserting the expressions we had prepared in Egs. (13a)
and (13b) and the nondiagonal matrix element according
to Eq. (11), the results are
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0= 00ye =38 Hl— 11+ DI= T AEyy, . (19
where
AE ;. =1ig (19b)
AE,;_=—1g AU +1) (19¢)

are the energy shifts of the fine-structure levels associated
with J, =/+1 and J_=1—1, respectively, relative to
the common center of gravity, and g, is an appropriate
time average.

The fundamental system of solutions to Eq. (16) is
therefore

P L —
aalm;1/2,+1/2(”:Clevlﬂa]t‘*'cze Wt (20)

For determining the second amplitude a,, +.1,2,—1,2(?)
we take Eq. (20) and its time derivative to replace the
equivalent quantities in Eq. (15¢),

Aoim +1;172,—1,2(1)

1 —i}
= so [Cl(ﬁﬂ _szom am) !
am,am +1

+C, (A0, —H a2

amam)

With the help of Egs. (10), (11), and (19a) this reduces to

VIiem  -ioh
Aaim +1;172,—172(0)= 1—‘/—1—:'__:___:—1—
Vitm+1 -iag
—cz% 2 22

In order to satisfy the initial conditions, e.g.,

lalm ;1

Y()= 3 [@um:1,2, 12(0)

a,l,m

17
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Aoimsiy2,+1,208 =0)=Byp, ,
(23)
Qoim +1;172,—1,2(1 =0)=0,
we set up the following system of linear equations
Vi—m Vi+m+1
————— — — =0, (24a)
"Vitm+1 P Vi-m 2
Ci+C,=Bypy » (24b)
the determinant of which is
21 +1
D= . (25)
V(II—m)I+m+1)
Then
Bom VIi+m+1 _ Ban
Cy=— == +m +
TTD  Viem agpltm D, (26a)
Balm \/l-—m Balm
C,= —_— = I — . 26b
2D Viemaii a+1l ™ (265)

With this solution of the initial value problem the com-
plete amplitudes read

B .
oim:172,+172(00= 21(11 [({+m+1)e al!
—iQ it
+(—m)e ], (27a)
B
Aaim+1;172,—1,20)= 211”‘1‘/ (I=m)l+m+1)
_ia* e
X(e Pl arly (27b)

In our approximation the perturbed wave function of Eq.
(3a) with the electromagnetic interaction being switched
off is given by

+ L)t agm 10 -1 Olalm + 1,5, —1) 7. (28)

’7

Substitution of the amplitudes Egs. (27a) and (27b) and some minor rearrangements let us arrive at

Vi+dm+1 | Vi+m+1
U= 3 Bam | Tay | Tvarer 9
Vi—-m |VI—m
M M im L, 4L
Vit |varay ldmin s

VIi—m -
;)-!————‘/_2_1._] lalm +1;1,—1) |e !
Vi+m+1 —iQ 1
S L . 9y O P W | al
) V3T 1 lalm +1;4,—1) e (29)

When we compare the expressions in parentheses with the expressions for the transformation between the representa-

tions |alsJM; ) and |alm;sm,) (Ref. 23),

N

l—s
lalsIM;)=(—1) m, m,

N !
RSV E '

mp,mg
we find

Vi+m+1

1XJj, =]1+1
lalsd =143 M, V2I+1

=m+1)= lalm ;

1
2

_MJ

Ay

lalm;sm;) , (30)

\/l—m

YT (31a)
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lallJ_=1—1, M;=m +%)=—“;—;I—Z_:1i-|alm ;%,+%)+———“l/;_”’T’lLllalm +1;4,—1) . (31b)
Thus
(=S B, (%iﬂ|a1%J+M,=m +1)e” E—Ial‘] My=m+1)e Oa' (32)
o 21 +1 V2l +1
[
For t=0, expression Eq. (32) must transform into Eq. (1). E ,=E%+#Q,,; . (37

Since ¥,(t =0)=1(¢ =0)
Vitm+1
Yt=0)=3 By |—e—|allJ  M;=m+1)
a%,,, am | Va1 Y
T
VAT et M= m+%>],

and indeed, the inverse transformation of Eq. (30) which
we had already used in Eq. (2) (Ref. 23),

lalm;smg)=3 (‘-I)I—S+MJ\/2J+I
iM,

I s
m, mg

(33)

lalsIM, ) ,

yields for the specific initial conditions that we had
chosen in Eq. (23)

Vi+m+1
|alm;%,+%)=—#lal%]+,M,=m +1)
%l NI_,My=m—1), (34)
and thus
Wt =0)=g= S By lalm;i,+1) . (35)

a,l,m

Generalizing according to Eq. (33) and using Schrédinger
representation, our wave function Eq. (29) can be written
as

Y= 3 3 By (—1 TVITFI

a,I,m, J,MJ
I s
X
m; mg

—i(E gy /f)t
Xe @ ,

lalsJM; )

(36)
with

Equation (36) shows that with the approximations used
the time evolution of our initially pure spin state wave
function leads to a superposition of time-dependent wave
functions

—i(E,,, /fi)t
lalsIM; )e " Fau

which are true eigenfunctions of the full Hamiltonian, in-
cluding spin-orbit interaction: With H = H%+ H*® we get
in Schrodinger representation

—i(E gy /AN _ —i(E gy /A0

HlalsIM; )e ﬁgat—lalsJMJ)e

=(E%, +#Q,,)|alsJM, )

—i(E 4y /A

Xe (38)

Thus the system has fully adapted to the additional spin-
orbit interaction. This underscores the need of using this
kind of wave functions for the system at later times when
we have to consider the influence of the electromagnetic
interaction.

The presence of the electromagnetic interaction which
makes the capturing state a decaying one can be taken
into account by attaching the lifetime exponential to the
wave function (Ref. 25, p. 168)

S 3 Buw(—D'TVATFL

a,l,m; J M,
I s
X\, m, lalsIM, )
xe Vi Eay M+ oy /2) (39)

Thus, for >0, the wave function of the initial state turns
out to be of the form that we would have intuitively ex-
pected from expression Eq. (26). As the state decays, the
intensity of the emitted radiation is proportional to the
square of the transition matrix element,
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I~|{BI'sI'M)|H| (1)) |?
J 2
—(T_,,;/#)
=3 3By, I+ |, . _m l |(BI'sT' M| H"|alsIM, Y|%e """
a,l,m; M, ! ! s J
T+1—=2s+M,+M,, /"~ - = ..
+ 3333 BamBi,(—D TV I+ 12T +1)
alm,;x&dTﬁl,JMJ#&JMj
Los J ros d (Bl's]'M}|H'|alsJM, )
Xm[ m, _—Mj‘ffl[ m, —B, Bl'sl'M; alsJM,
X (Bl's) M| H'|aTsT B, Yo Coaisly WTar a2t (40)
[
The second series of sums with a=£a, [£1, m;5£m,, J£J, Dy =¢, b bn = 14, - (42)
A

and M,;s=M, gives rise to zero field quantum beats®?’

among states that can decay coherently like fine-structure
beats and appropriate /-] beats. Beats of either kind have
been observed experimentally after charge exchange. 2%
This supports the choice of our wave function. [In the
context of relation Eq. (40) we may note that whenever
the absolute square over sums has to be taken the indices
for the complex conjugate will be indicated by an addi-
tional tilde ( ~). ]

C. Direct electric dipole transitions

Once the spin-orbit interaction has determined the
character of the wave function, the fine-structure func-
tions |alsJM,) are the appropriate zeroth-order wave
functions in interaction representation. Using time-
dependent perturbation theory in interaction representa-
tion, we now calculate the probability amplitude for the
final spin-orbit state |Bl’sJ’M ). This state is generated
by the decay of the Schrodinger wave function, Eq. (39),
in which, however, the energy exponential has to be
skipped in order to hold in interaction representation.

The interaction with the electromagnetic field is de-
scribed correctly? if we take for the unperturbed Hamil-
tonian of Eq. (3b)

H°=H® +H?.

on

41)

(There had been objections to an earlier draft of our
manuscript regarding the necessity of a treatment that
goes beyond our initial semiclassical approximation. The
results, however, show that the general statements de-
duced from the present rigorous theory can—at least
qualitatively—also be obtained from the semiclassical ap-
proach.) HY and H? are the Hamiltonian operators for
the unperturbed ion and the free electromagnetic field, re-
spectively,

Hyn i =EMY; , (41a)
H)®,=E)(X)®, . (41b)

The wave functions ®, of the free electromagnetic field
comprise all independent modes A of the field as
represented by the harmonic oscillators with excitation
numbers n;

where the wave function qS,,}L of the individual mode A is
the eigenfunction of

HY$, =iy (ny+1)8, (42a)

and

S HS . (42b)

Hence, ) represents a special set of numbers n;
(ny,ny,...,n,,...) and the action on ®, of the radia-
tive time-evolution operator consists of generating prod-
ucts of Schrodinger-type functions, as usual,

—i(HO /%)t
e T ®,=exp

'2ng]{1¢
B et )
Y fi Pl

—i(HS /fit

=]Ie b
3 A
—iwy(n, +1/2)
=H¢"e llz)}Ln)L I. (43)
A
A
An equivalent relation holds true for the ionic part
—i(HY /%) —i(EP/#)
e e My =g Y (44)

In zeroth order, i.e., without interaction, the compound
system is described by
HY=(H?

on

+H)W=[EP+E0) 1P, . (45)

Equation (45) is equivalent to Eq. (3b), whereas the coun-
terpart to Eq. (3a) is

Y, (r,0=3 a (DY (DD, . (46)
Lx

Then, according to time-dependent perturbation theory

ifiap (D=3 ap (I’ |Hfllx) . (47
Lx

Using the transformations, Egs. (4b), (43), and (44), we
obtain from Eq. (47)
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ity ()= % a,X(t)<l', I} ¢, [H'IL, [AI ¢nk>

—iloy ptoyng, —n))l

Xe R (48)
where

w,,,,=%(E,°—E,9) . (48a)

The next step is to expand the interaction operator Eq.
(7a) with respect to the modes of the electromagnetic field

+ik, - —ik,-
H'==-—"3 (g e erptaidte " *etp).
A

(49)

The matrix elements of the creation and annihilation
operators ¢} and g,, respectively, are given by?*

# 172
(X"qx‘X>=“I;Ikﬁn;m#5n;,n+l T M|
(50a)
172
<x’lqk|x>=#1318,,;“"“8";“_, %n,\ (50b)

In our case only spontaneous transitions matter. Hence,
the initial state of the electromagnetic field is the photon
vacuum (all n, =0). In the final state, after the transition,
we have one specific photon A in the radiation field. We
take account of this situation by adopting a simpler nota-
tion,

X=(04,05, ...,0y,..
X’=(01,02, ..

=0,

. lk,ok+1,. . .)=1}L .

l—s+M, ———— l
¢1(t)=zak(t)lk>: 2 2 Balm,(_l) V2T +1 [

k a,l,m, J,MJ
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The matrix elements of Egs. (50a) and (50b) then simplify
to
172

(L,lqrl0)= , (50c)

A
20)}\.

(1,lg,l0)=0". (50d)

Now, having these tools handy, we incorporate Eq. (49)
into the matrix element of Eq. (48) and obtain for the
differential equation

172

iﬁd,:,lk(t): _% Eal‘o(t)
!

i

2(0A
;1 ik,

X (I'le €, pll)

Ai(w/’I.—w)\)r

Xe (51)

Here A is being taken to represent a real normalization
constant common to all modes, and €3 has been set equal
to €, without loss of generality. Confining our discussion
to the highest-order decay mode, the electric dipole ap-
proximation according to Eq. (7b), we approximate the
matrix element in Eq. (51) by

. eA < —ik,
c

l'|e e;\'p|l):i%a)ur(l'kk'r“) . (52)
Equation (52) provides the frequency dependence of the
matrix element which we need to know in a later integra-
tion.

The amplitudes of the initial modes of the electromag-
netic field are all well defined in the case of spontaneous
emission. Hence, we may drop the index O, and take a,(?)
as referring to the ionic amplitude only. We also know
the time evolution of the initial ionic state according to
Eq. (39) which in interaction representation reads

Therefore, with the help of Egs. (52) and (53), we obtain for the differential equation, Eq. (51),

(1)=—24

d ’ —_—
Bl'siI’'M;, 1
I0h CVZhwk a,l,m; JM,

X {BI'sT' M€ -rlalsiM, Ye ' asrs

Before the capture of the electron the final state |8I’sJ'M;) was unoccupied, a

of Eq. (54) which accounts for this initial condition is

eA
(t)y=——
C\/Z‘ﬁa.))L a,l,m; J,M,

oy
BI'sI'M}, 1,

S By (-1 VT

_ I
I—s+M st
2 Boim,(— 1) V2T +1 [mI

J —(T_,;/2#%)
m m, —M, |l@lsTM)e " (53)
I s J
m; m, —M, Daly,prry’
oy~ i(T gy 20 (54)

(t =0)=0. Hence, the solution

BlI'sI'M,1,
s J
m, —M, Doy, g1y

—[i@gyy gy — @)+ T gy /26 1t

X{Bl's]'M;l€, r|alsIM, ) 1,"e . (55)

H@gypry =)+ gy /2%

This is the time dependence of the probability amplitude for the special spontaneous-emission process in which the ion
undergoes an electric-dipole transition from a mixed state (superposition of |alsJM, ) states) into a fine-structure state
|BI'sJ'M; ) by emitting the special photon A whose frequency, polarization and direction of propagation are character-
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ized by A. The probability for this process to occur at time ¢ is given by the absolute square of Eq. (55). This expression
will contain exponentials With @, .77 =®ay,pr — ®477 g the beat frequencies, which we had encountered already in
Eq. (40). Thus the specific contribution to the population of the final state as described by the absolute square of Eq.
(55) shows the same modulations with time as does the corresponding spontaneous radiation. After a long enough time
(t— o), the exponentials have faded away due to I';; and I' 7, and we are left with the asymptotic contribution from
this specific decay channel to the final state’s population,

2
|aBI’xJ’MJ',1l( )|
2 42 .
_ e24 I+T—25+M,+ M,
~S S 3 S S BB, )
a,

hmya,lm M, T M,

T s J
m, mg, —M,

l s J

XV (2J +1)2T +1) m m. —M,

Oaly, 'y Pu17,p1'y

(Bl'sI'Mjl€, tlalsIM; ) {Bl's]'M;|e,-r|lals] M, )*

(56a)
I\aIJ
2%

Haogy,pgry—w))t allpry 2%

..,
i —w)+ "”]

For a=a, ! =I, m;=m,;,J =J, and M, =M, the familiar Lorentzian is obtained.
The following manipulations take advantage of the fact that Eq. (56a) must be real. To make the manipulations more
obvious, we write Eq. (56a) more explicitly,

2
|aﬁ1’sJ‘M_;,1A(°° )|

e?4?
c 22w,

I— Vi — =
X3 S S S (—)TTEMMY o nei+n
a,[,mla_f,ﬁ,[J,M‘,],Ml

' Il s J

m m, —M, @al), B3 P17,81'0

ffll mg —MJ

[Tsi

X[Re(B gy, 37@ (Bl'sI'Mj €, tlalsiM,; ) Bl's]'M;|€,-t|lals] M, )*)

+ilm(Bo,, By, (Bl'sI'M;|e-t|alsIM,; ){Bl'sJ]' M€, r|lals] M,)*)]

Cow | Fats .
2% — @y, g1y —@y) 2 +ilow, 77,51'1'_“"7»)
X 56b
| 5 T | 2 eo
2% gy, gry—wr) 2% +(o, TI,BI‘J’_w)»)

Since Eq. (56b) must hold true for any w,, we may investigate the summands of Eq. (56b) individually. For simplifying
the notation, we choose the following abbreviations:

M =By B}, (Bl'sI'Mj|€, tlalsIM; Y{Bl's]'M;|e, tlals] M,)* , (57a)
I-\al.l F&Tj

LY S , 57b

I 570)

a)ozo)au,ﬁ,:_,', E)0=CL)6 17,8177 W=, . (570)

With these shorthand notations we treat the relevant part of Eq. (56b) separately,
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YY Hwyg—o)@y—o)+i[v(dy—o)—F(wg—o)]
[V +H(wp—w)?][7 2+ (@) —w)*]
_ ReM[y7+(wy— 0@y~ )] —ImM [y(&y—0)— 7 (0~ )]
- [¥*+ (0= a)2[7 2+ (@~ o]
i ImM [v?7 Hog— o) @y— )]+ ReM [y (@y— o) —F(ws— )]
[7/2+ (0= )17 *+(@y— )]

(ReM +i ImM)

(58)

For this to be real, the imaginary part must vanish. This leads to a necessary relation between the real and imaginary
parts of M,

ReM[y By~ w)—F(wy—w)]
—ImM (59)
Y¥ +Hwy— ol @y—w)
Inserting this relation into Eq. (58) we obtain
—ilwg— ) ][V +i(®yg—w)
(ReM +i ImM) [Yz E 2][72 . 2]
[v*"Hwy— o) ][7 "+ (@y— )]
_ ReM [r7 +(w—w) (@ —w) ]2+[7/(&) —0)=7(wp—)]? (©0)
[¥?*+(wp—0)?][7 >+ (@~ )] Y7 (oo~ o) @y—w) '
By regrouping we see that
[+ (0g—0)?][7 *+H(@y— @) ]1=[y7 +(wy— o dg—0) >+ [7(@y—0) —7(wy—o)]* . 61)
Whereupon
—i(wg— o) [7 +i(®y—w)
(ReM +i ImM) [72 > 2][7/ — . ReM : (62)
[7"+H (wy— o) ][7 “+H(@y—w)] 77+ wy—o)d;—w)
For convenience in a later integration we rearrange the denominator of Eq. (62),
Wy— & o+ o
YY Hoyg—o)@y—w)=yy— 02 2 02 ? o (63)
After these manipulations we return to Eqgs. (56a) and (56b) and find
2
‘aﬁl’sJ’MJ',l)_( 2l
2A2 T— Y —_—m
=-£ S S S S (—0)TTEMTMY G e+
200, oo, ailom, M, T,
I s J I s J
XA\my mg —M, | |m, m, —51, |CwB7%arsper
Re(B oy B, (BU'sI'Mjle,tlalsiM; ) Bl's)'M; €, tlals] M;)*)
x 3 - . (64)
Faular; | @awprs —®a15,600 Darprrt Oary gy
a2 2 2 @x

As we have pointed out above, Egs. (56a), (56b), and (64) describe the probability that, after a sufficiently long time, we
find the ion in the final state, |B/'sJ’M}) and a specific photon A in the radiation field. Our main interest, however,
does not lie in such a specific emission process. Rather, we want to know the asymptotic probability that the ion has
definitely made the transition into the specified final state no matter by which photon. We attain this probability by
summing over all possible spontaneous-emission processes which include all possible frequencies, polarizations, and
directions of the photons. In doing so we must observe that the radiation modes are not evenly distributed over the fre-
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quency spectrum but have a density function which depends
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quadratically on the frequency. Assuming our normaliza-

tion volume to be sufficiently large, we can take the modes as being continuously spread over the total frequency range.

Hence, we can replace the summation over all modes A by an

1_ 1 ®
|aBI’sJ’MJ'(°o)| _§|aﬁl'sJ'M,',1l(°°H _zfﬂfo la

A
opag!
BIsJMJ,l)L (21TC)3

integration over w,,
2

(o0)? do,dQ . (65)

N

The factor of 2 accounts for the two orthogonal polariza-
tions per mode.

Using the abbreviations of Egs. (57a)—(57¢c), we have to
calculate the following integral:

foc wdw
2 3
o wy— B W+ @,
YY B 2 w
Wyt
200 L lde
_ 1 ® 2
+f : :
o wy— &g Wyt @
Yy — > + >
) (w0+5)0)dm
+%f ) )
o wy— By wot+ &
Yy — ) + 5

(66)

The integrand would be a superposition of a Lorentzian
and a dispersion curve, both centered at L(wy+@,) with
the width {y¥7 —[(wy—&¢/2)]?}'/?, provided 77
> [(wo—@y)/2]>. Unless wy=a,, this cannot be true
without contradicting our earlier assumption, made in
Sec. II B about the ratio of the fine-structure splitting
over the lifetime width by which the consecutive treat-
ment of the concurring spin-orbit and radiative interac-

tions had been justified. Therefore we have to investigate
the cases wy=a, and wy*d, separately. For w,=&,, the
integrand really is a superposition of a dispersion and a
Lorentzian curve centered at w, with a width y. Since
Y <<< wy, only a negligible error is admitted by extending
the lower integration limit to — o in order to overcome a
logarithmic divergence. Then the dispersion-type in-
tegrand is odd with respect to the center frequency w,
and the integral vanishes. The integral over the Lorentzi-
an generates an arctan which, at the upper and lower lim-
its, + oo, takes on /2, respectively. Hence for w,=&,

=J

For wysd,, either integrand has two singularities located
symmetrically to the left and right of the center of fre-
quency 1(wy+@,) at about w, and &, respectively. Far
away from these singularities both integrands tend to-
ward zero. Since w, and &, are transition frequencies be-
tween different electronic states, they are very high and,
hence, far away from zero. Therefore we can extend the
lower integration limit to — oo in this case as well
without inflicting any substantial error on our calcula-
tion. Then, as in the case before, the integrand of the first
integral in Eq. (66) is odd with respect to the center fre-
quency +(wy+@,) over the whole integration range and
the mtegral cannot contribute. The stem function of the
second integrand is arctanh which has the asymptotic
value *1 for = w0, respectively. Hence for wy~d,

. wodw wodw
2 0 67)

=T .

0 Y2+ (wy— o) —» Y2+ (wp—o)?

w o, do + oo o, do
fo — 2 _ 2“.{_ — 2 2
_ | @0~ ® w0+a)o_w | @D Wy + @, o
vy 2 2 vy 2 2
CL)0+E)O T
Wyt @ 2 @
= — 2 777 arctanh 2 172
5 wy— @ _ W~ W |
2 YY 2 144 .
0)0+&’)0
=— 2 77 - (68)
@y~ @ _
> Yy

As imposed by these two cases we have to split the summations with respect to identical and nonidentical sets of sum-

mation indexes, when we return to Egs. (64) and (65),
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2
|aBl’sJ’Mj'( o )|
2
_|eda | L
¢ #(2cme)?
20l —s+M,) ]
X E 2 !Balmzfz(_l) J(ZJ—f—I) ” -
a,l, m; J, Mj [
(Oouipr ) (BI's]'M] Y2dQ
ngl Bl's)'M;|e-t|lalsiM, )|

- 2 DY (_1)1+7725+MJ+A7!‘,
a,I,m,gjy*

M, M,

VI + 12T +1)
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J
__MJ

J
_.MJ

1 My

x I J Daly, pry P17, gy Caisprrt @415 gy
— 2
e My M, Palg,pr ™~ D17 g1y Toulyr; 2
2 4#?
><fQRe(Ba,mIB;m[</31’sJ’M,’\e-rlalsJMJ)(Bl'sJ’M,’Ie-rIEzZv.TMJ)*)dQ : (69)

The integration over the frequenies has brought us to a
point where the computational haze disappears and the
target of our study becomes clearly visible: To what ex-
tent does the original spin orientation determine the
asymptotic population of the final state?

For restoring the original spin orientation, the applica-
bility of Eq. (33) is a necessary condition. As a close look
at Eq. (69) shows, Eq. (33) cannot be applied, however,
because its use is being blocked by the dependences on J
and J of the frequencies and level widths. These depen-
dences are caused by the spin-orbit interaction in the first
place: According to Eq. (37)

Oy, pry=Qarpr+ Qo — Qg

Qal.l - Q/31'/'

1+ (70)

= Oqlpr

Way,pr

The difference of the fine-structure frequency shifts in the
initial and final states is much smaller than the transition
frequency between the multiplet centers: Using hydro-
genic relations for the energy of the multiplet centers and
for the fine-structure shifts,° the ratio in Eq. (70) can be
expressed by

S TS g G aa (71)

Oyrnr

where « is the fine-structure constant (not to be confused
with the hitherto used index «), Z is the atomic number
of the ion, and |F(yIJ,AlI'J')| <0.3 is a lengthy rational
expression of the quantum numbers involved. Since the
lifetime is practically equal for all members of a multi-
plet, the frequency over level width rational in Eq. (69)

[

(first part) can be approximated by

(@1 000) _ (@yg )
Ty /2f - Ty /2%

X[1+3aZP?F(LA'T )+ ---1. (72

Hence, if we neglect the part depending on J in Eq. (72),
we introduce an error of the order (aZ)? or less, but gain
the ability to apply Eq. (33) to the first part of Eq. (69).
Aiming at the same target, we now investigate the second
part of Eq. (69) where the sets of summation indexes must
not be identical. Apart from the nominator which can be
handled according to Egs. (70) and (71), we have a
denominator which consists of the square root of the
difference between the square of half of the difference of
transition frequencies into the same final state and the
product of lifetime widths of the excited levels involved.
When we apply Eq. (70) to the difference of frequencies,
we find by observing Eq. (37)

Oag,prd ™ Pa13 prr = Patar T Car = Lary - (73)

The smallest value of this expression is obtained for a =&
and / =1,

Daatg, prr Oty pra = Lats ™ gy = Bar - (74)

A, is the frequency equivalent of the fine-structure split-
ting in the state |al) which, according to Egs. (19a) and
(19b) does not depend on the total angular momentum.
One of our basic assumptions justifying the consecutive
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treatment of Sec. II B was that A, be large compared to
the lifetime widths. Under these provisions we admit
only a minor error when we omit the product of lifetime
widths under the root sign. This is even better justifiable
in the general case when the difference of transition fre-
quencies is larger due to @, 4770 because of al and & T
not being simultaneously equal. In this case we can ex-
pand 1/(@yy pry—®475 gpy) to first order in (Q,y
Q13 Ogpar

2 2
(@120 @y 17 305 T Oyt ara @y 13 50057)

2355
1
Do, pry— Pa13,807
1 Q IJ_Q F
= 1——=—2 |, gy
wal,&T wal,df

and apply Eq. (71).

Using Egs. (70) and (71) the nominator in the frequency
expression of the second part of Eq. (69) can be approxi-
mated by

@y a0y, {1 H(@QZP2F (LA )+ F (XTI AT ]+ - )

F oy oy ) {1 @ZPF (XLALT ) +2F (XTI AT+ - (76)

Hence, we obtain the following approximations for the frequency expression in the second part of Eq. (69): for =¥

and /=]
Oy1g, 17Oy 17 305\ Qytr iyt Oy 17 30050 oy
3 iVl
Qyarr Oy | Darlyrs By
2 4#%?

and for Y,/ and X,Tnot simultaneously equal

Oyig, a3 @y 17,305 Qs arrg T Oy 17 55
2
_ FXU Fx 1J

4%?

172
Oy AT~ Oyri 0y

2

2
(@yi ) @75,

Dyt x1

W (@
xLAl LAl
4 XA XLAL

Dy x1

Since the expressions F(ulJ,vI J) can be positive or nega-
tive depending on J and J with |F(ulJ,vIJ|<0.3, a
worst case scenario yields an error of 0.9(aZ)? for Eq.
(77a) and 1.2(aZ)* for Eq. (77b) if these expressions are
neglected.

With these results we are able to answer the rhetoric
question made in context with Eq. (69): The original spin
orientation determines the asymptotic population of the
final state to an extent of 1—(aZ)? or better. This is to
be understood in the following sense: Neglecting the J, J,
and J' dependences of the frequency expression in Eq.
(69), we can benefit from the applicability of Eq. (33) at
the expense of inflicting an error of (aZ)? or less on the
actual population of the final state. Dividing the total
population into a spin-orientation-conserving part

»? - .
(1+(aZ)’[F(xU,AI'J")+2F (x T T, M'J")—F (I, x T+ - - - }

)3 .
(1+3aZP[F (YW, AM'I)+F (T, AT+ -} (77a)

(14+(aZ)P[2F (YU, AT )+ F(x T T AT ) —F (xIL,x T)]+ -+ }

(77b)
[
c 2
|a31'sJ'M}( %)
and a nonconserving one
nc 2
laBI'sJ‘MJ' (o)
we have
2—|,C 2 2
|aB1':J'M,’(°°)| |a/31'sJ'MJ'(°°)| +Ia;;?,SJ,MJ.(oo)| , (78)
with
c 211 2 2
|aﬁ1'sJ'M,’(°°)| ~[1—(aZ) ]|aBI,SJ,MJ,(oo)! . (79)

and explicitly, by applying Eq. (33) to Eq. (69),
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2 3
c 2 eA 2 2 (wal,BI') ' rrag? 2
SIM! =\ | 73 B — I'sJ'M}|e-r|al Q
|aB’”Ml(OO)| ¢ | #(2me)? a,%n,l oim |7 Lo/t fﬂl(ﬁ s/'Mjle-xlalmism, )|*d
(wa1'31’)3 * ’ ’ '
- 3 2———A——Ref B oim,B 3 (Bl'sI'M;|e-talmsm,)
a,l,m,m, al Q@ !

X (Bl'sJ]'M;|e-r|alm;sm, )*dQ

2 2
_ 2 (wal,BI’) DOy1,61' + waI,BI’(waT,BI')
a,l,m

1alm, Dotat Durat

X RefQ B oim, ;7'7'1 (Bl'sI'Mj|e-r|lalm;sm, )

X{(Bl'sI'M;|e-tlal m;sm )*dQ |. (80)

Bearing in mind Eq. (30) to be applied to the wave function |BI’sJ’'M ) of the final state, we realize that only those com-
ponents in the final state’s wave function can emerge from the electric-dipole transition that have the original spin com-
ponent. This aspect is even more obvious for transitions into pure spin states like .S, , where |BOL LM, ) =|B00Lm, ),
i.e., M;=mg. In Secs. IIC1 and II C2 we will take a closer look at these cases.

1. Direct transitions into pure spin states

The form of Eq. (80) makes it particularly simple to calculate transitions between pure spin states. For the time being
we must postulate that the wave function of the final pure spin state to be an eigenfunction of the total ionic Hamiltoni-
an which includes spin-orbit interaction. Applying the Wigner-Eckart theorem?? we will find the matrix elements to be

of the following form:

o1
—mj g m

S (—ye_ (=)
q

(BI'mism/|e-r|alm;sm ) =8 .

sMs

‘(Bl'||r||a1) . (81)

In the most general case of products of matrix elements as encountered in the last part of Eq. (80) this leads to

fu(Bl’m,’sm;Ie-rlalm,sms Y BIU'msm/ler|al m;sm;)*dQ

ro1 T o1
== , —_ 1 +q , ’ ’ ~T\* *
Smsmx‘%( » —m] p '711| ‘_ml q m ](Bl lrllal Y<BI'||r||@T) fﬂ(e_p) €_,dQ
4w Lo T el B T (82)
=302 i g omy | |=mi g m | PNl Bl
because
[ e e ja0="Ts, . (83)
qtp’ Ca 3 pa
Substituting expressions like Eq. (82) for the matrix elements in Eq. (80) the conservation of spin orientation is obvious
from 8 . . The resulting expression becomes more handy if we do not ask for the individual but for the total popula-

tion in the state |8/'). This means summing over m; and m_ and applying one of the orthogonality relations for the 3 j
symbols, 23

(B'||rllal Y4 BI'||r||al ) *
o . (84

’ ’ ’ ’ ’ =~ T = 4
> fn(BI’m,smsle-rlalm,sms Y(BI'm[sm/|lexlal m;sm, )*dQ=Tﬁ8”8mlml

o
mym

With the help of Eq. (84) we obtain for the total population
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2 3 3
A 87 (@g1,) (@g1,p1) (B ||r ||l ) |?
|ac’ , ’(w)lzz € , - , B 2
m[%n' Bl'mjsmg c 34( 217'0)3 a’%nl Fal/ﬁ Aal | alm, | 21 +1
_ (a)al,ﬂl’ )zwal,ﬁ,, i waI,Bl'(wd[,ﬁI')Z
axalm, Dat,al Pal,al
(BI'||r|jd YBI'||r |l )*
XRe |B i, B 21, T : (85)

Equation (85) is the most suited relation to calculate the spin population in a final 2S, , state, bearing in mind that only
m,=my, is being population.

2. Direct transitions into fine-structure states

To avoid unnecessary summations and to be able to apply relations deduced in Sec. IIC 1 we represent the final fine-
structure state by a superposition of spin states according to Eq. (30). Then, we obtain for the matrix element with the
help of Eq. (81),

(Brsrledatmem ) (-1~ MvarEr s |L 0 T e -0
S, Jlerjalm;smg "'lz"q m,' m, —M} €4
o I (T (86)
’ r .
i g | (B

Using Eq. (83) we calculate for the counterpart of Eq. (82),
fQ(BI’sJ’the-rIalm,sms M BU'sI'M;lerlal msm,)*dQ
‘ I' s J'

m, mg —M;

" s J'
’ ’
m; m; —M;

=or+n 3 3

"
mymy 4

o1 1 o1 T
—m/ g m;||—m; q m

e
mp—m,

X (BI||rllal Y Bl T *(— 1) (87)

Following the same route as before we ask for the total population which we attain by summing over J' and M,. This

makes possible the application of the second orthogonality relation for the 3j symbols? to the first pair of 3j symbols

generating 8 ... Then, the remaining summation over m; and g in the second pair of 3 symbols is nothing other than
171

the other orthogonality relation for the 3j symbols that we used to arrive at Eq. (84), and hence

(BU|Irlle){BU|rlal)*
i 21 +1 :

S fn<Bl’sJ’M,'|e-r|alm,smS YBl'sI'M;l|er|al msm,)*dQ= —‘}3%7-8,78
J, My

(88)

This is exactly what we had found in Eq. (84) and shows (2). In setting up this superposition we have to bear in

that the part of the total asymptotic population that is
conserving the spin orientation is independent of the rep-
resentation

2
EI |a;l'sJ‘Ml'( o)|?=

2 c 2
|aBl'm;sm;(°°)| : (89)
J, My m),m

This can also be understood as a hint to look beyond indi-
vidual asymptotic amplitudes. Due to Eq. (89) expression
Eq. (85) reflects the asymptotic probability of finding the
fine-structure state |8I'sJ’M ) realized. The fact, howev-
er, that the spin orientation is preserved for this part in-
dicates that we must not look at the fine-structure states
separately. Rather, we have to view them as a superposi-
tion of fine-structure states that results from an un-
changed [to order of 1—(aZ)?] spin orientation as in Eq.

mind that we could only arrive at the equivalence Eq. (89)
by absolute squaring. This was possible at the expense of
the phase of the amplitudes. So we have to attach un-
known phases to the components of the superposition

o 1
¢31'lsms>=_ 2 [|ac, , :(00)!2]1/2
N Bl'sJ'M
J.M;

’¢ﬁI’J’M'

xe "TM|BISIMSY . (90)

1/N is the normalization factor where N2 is given by Eq.
(85). The relative phases can be found from orthogonali-
ty relations. From Eq. (89) we can directly infer another
equivalent representation
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" 1 c
¢ﬁl'1sms ) =N E‘ [laBl'mI'smx( *® )lz]l/z
m

i¢
xe ""Bl'm)sm,) . o1

Thus, obviously,
1 MBI’M'
b= Sllag,.,, )1'% “"BI'm;) . 02
ml'

As a result we can state that the initial superposition of
pure spin states |alm;sm,) is transformed in direct
electric-dipole transitions into a superposition of final
pure spin states |BI'm/sm,) with the spin orientation
conserved to order of 1 —(aZ)%

III. CONCLUSION

We have shown that in direct electric-dipole transitions
the conservation of spin orientation is violated by spin-
orbit interaction only to an extent of the order of (aZ)%.

Even this value, however, is only an upper limit for the
following reason: It has been determined by the demand
to fully restore the initial pure spin function. The omit-
ted terms, however, depend on J and J and involve ma-
trix elements that contain wave functions with either spin
orientation of which only the ‘“wrong” orientation
violates the conservation of spin orientation.

From these results we can expect that the initial spin
orientation will be largely conserved, even in moderate
cascades of not-too-heavy ions. This problem will be
dealt with in a forthcoming paper.
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