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Abstract

Interacting AdS4 higher spin gauge theories with N ≥ 1 supersymmetry so far
have been formulated as constrained systems of differential forms living in a twistor
extension of 4D spacetime. Here we formulate the minimal N = 1 theory in su-
perspace, leaving the internal twistor space intact. Remarkably, the superspace
constraints have the same form as those defining the theory in ordinary spacetime.
This construction generalizes straightforwardly to higher spin gauge theories N ≥ 2
supersymmetry.
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1 Introduction

The N = 8 massless higher spin (HS) gauge theory in D = 4 [1] is expected to
arise as a consistent truncation of M theory on AdS4 × S7 in an unbroken phase
describing the theory at high energies [2, 3]. Various N = 1, 2, 4 HS gauge theories
can arise in less symmetric compactifications of M theory [4]. In this paper we shall
only discuss massless HS gauge theories theories, though in general massive fields
are needed for embedding in M theory. From the 3d holographic point of view, the
unbroken phase of M theory on AdS4×S7 has been conjectured to correspond to an
SU(N) invariant free singleton theory [2, 3], and the massless sector to an O(N2−1)
vector model [5]. Similar ideas in the context of the Type IIB theory on AdS5 × S5

have been discussed in [6, 7, 8, 9, 3].

Interacting AdS4 HS gauge theories with N ≥ 1 supersymmetry so far have been
formulated as constrained systems of differential 0-forms and 1-forms living in the
product of 4D spacetime with an internal twistor space [1]. In this formulation the
local HS symmetries are realized as internal gauge symmetries, and spacetime dif-
feomorphisms are incorporated into the gauge group as local field dependent trans-
lations. By expanding in curvatures [10] it is possible to obtain the non-linear field
equations in a manifestly reparametrization invariant form [11]. For a better un-
derstanding of the geometrical structures underlying HS gauge theories it would be
desirable to extend the diffeomorphism symmetry as to include additional generators
of the HS symmetry algebra. A natural first step in this direction is to reformulate
the HS gauge theories in superspace with manifest superdiffeomorphism invariance.
The superspace formulation of free 4D conformal HS gauge theories with N ≥ 1
supersymmetry has been given in [8]. The superspace formulation of the linearized
AdS4 HS gauge theory based on a particular N = 2 algebra has been given in [12].

In this paper we extend the integrable systems describing interacting AdS4 HS gauge
theories, by replacing the 4D spacetime by a D = (4|4N ) superspace with 4N anti-
commuting θ-coordinates. This introduces extra spinorial directions in the 1-forms
as well as θ-dependence in all component fields. On the other hand, there are also
new constraints coming from projections of the differential form constraints in the
new spinorial directions. As a result, each supermultiplet in the spectrum is de-
scribed by a single constrained superfield, and we arrive at a superspace description
of AdS4 HS gauge theory which is equivalent to the formulation in ordinary space-
time. This equivalence exploits a basic property of integrable systems which ensures
that adding extra coordinates does not affect the basic dynamics described by the
system, as we shall discuss at the end of Section 2.1.

The structure of the paper is as follows: In Section 2, we formulate the minimal
hs(1|4) theory in the product of N = 1, D = 4 superspace with the internal twistor
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space. Furthermore, we eliminate the twistor variable using a curvature expansion.
In Section 3, we obtain the superspace constraints on the physical superfields, and
in particular show that they yield the correct spectrum of the theory. In Section 4,
we summarize our results, and comment on how to extend the formalism to N ≥ 2
theories in D = 4 and the N = 4 HS gauge theory in D = 5.

2 The hs(1|4) Gauge Theory in Superspace

In this section we first introduce the basic properties of the minimal N = 1, D =
4 HS gauge theory, namely the underlying HS symmetry algebra hs(1|4) and its
massless spectrum [13, 4]. Next we give the constraints which describe the full
equations of motion in superspace, and give a formal argument for their equivalence
to the formulation in ordinary spacetime. We then generalize the covariant curvature
expansion of the constraints [10, 11] to superspace.

The formulation of higher spin dynamics in ordinary 4D spacetime follows from
constraints on certain one-form and zero-form master fields which live in the product
of spacetime with an internal twistor space [1] (our starting point is summarized in
[4]). A key property of these constraints is that all curvature components with at
least one spacetime direction are set equal to zero. Hence the form of the constraints
do not depend on the details of the spacetime manifold. In fact, this implies that the
constraints equivalently can be formulated on extended spacetime manifolds with
extra coordinates, such as superspace.

2.1 The Closed Form of the Constraints

The minimal N = 1, D = 4 HS theory is based on the HS algebra hs(1|4) whose
maximal finite-dimensional subalgebra is OSp(1|4). The spectrum of massless phys-
ical fields of the hs(1|4) gauge theory is given by the symmetric product of two
OSp(1|4) singletons, which is given in Table 1. The spectrum is an UIR of hs(1|4)
and decomposes into a tower of OSp(1|4) multiplets labelled by a level index

(ℓ, j) =

{
ℓ = 0, 1, 2, . . . for j = 0

ℓ = −1, 0, 1, . . . for j = 1/2
, (2.1)

with maximal spin

smax = 2ℓ+ 2 + j . (2.2)
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In particular, the spectrum contains a scalar multiplet at level (−1, 1/2) and a
supergravity multiplet at level (0, 0).

To obtain an N = 1 superspace formulation of the hs(1|4) theory we start from the
formulation in ordinary 4D spacetime [1, 4] and make everywhere the replacement

xm → XM = (xm, θµ, θ̄µ̇) , m = 0, . . . , 3 , µ, µ̇ = 1, 2 . (2.3)

The resulting theory is described in terms of a master one-form

Â = dXMÂM (X,Z; Y, ξ, η) + dZαÂα(X,Z; Y, ξ, η) , (2.4)

and master zero-form

Φ̂ = Φ̂(X,Z; Y, ξ, η) , (2.5)

where Z stands for Zα = (zα, z̄α̇) and Y for Y α = (yα, ȳα̇), which are bosonic
oscillators that generate the following associative algebra of Weyl-ordered functions:

f̂(Z; Y ) ⋆ ĝ(Z; Y ) = f̂(Z; Y ) exp
(
i
←−
∂

(+)α−→
∂

(−)

α + i
←−
∂

(−)α̇−→
∂

(+)

α̇

)
ĝ(Z; Y ) ,

∂(±)
α = ∂/∂zα ± ∂/∂yα . (2.6)

The quantities ξ and η are fermionic oscillators obeying

ξ ⋆ ξ = 1 , ξ ⋆ η = ξη = −ηξ = η ⋆ ξ . η ⋆ η = 1 . (2.7)

The master fields have (Z; Y, ξ, η) expansions obeying the following conditions

τ(Â) = −Â , Â† = − Â , ǫ(Â) = 0 , (2.8)

τ(Φ̂) = π̄(Φ̂) , Φ̂† = π(Φ̂) ⋆ Γ , ǫ(Φ̂) = 0 , (2.9)

where Γ = iξη, ǫ denotes the Grassmann parity, and τ , π and π̄ are maps that
commute with the exterior derivative and act on functions of X and the oscillators
as follows
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τ(f̂(X, z, z̄; y, ȳ, ξ, η)) ≡ f̂(X,−iz,−iz̄; iy, iȳ, iξ,−iη) , (2.10)

π(f̂(X, z, z̄; y, ȳ, ξ, η)) ≡ f̂(X,−z, z̄;−y, ȳ, ξ, η) , (2.11)

π̄(f̂(X, z, z̄; y, ȳ, ξ, η)) ≡ f̂(X, z,−z̄; y,−ȳ, ξ, η) . (2.12)

The hs(1|4)-valued connection and its quasi-adjoint representation are obtained by
setting Z = 0 in (2.8) and (2.9), respectively.

We propose that the full N = 1 superspace formulation of the hs(1|4) theory is
given by the following curvature constraints:

D̂Φ̂ = 0 , (2.13)

F̂ = i
4
dzα ∧ dzαV(Φ̂ ⋆ κΓ) + i

4
dz̄α̇ ∧ dz̄α̇V(Φ̂ ⋆ κ†) , (2.14)

where

D̂Φ̂ ≡ dΦ̂ + Φ̂ ⋆ π̄(Â)− Â ⋆ Φ̂ , (2.15)

F̂ ≡ dÂ+ Â ⋆ Â , (2.16)

and

d = dXM∂M + dZα∂α . (2.17)

We stress that the pull-back of the constraints (2.13) and (2.14) from (X,Z)-space
to (x, Z)-space yields back the original formulation of the hs(1|4) theory [1, 4] (there

is a change of sign in V(Φ̂ ⋆ κ), and hence in Φ̂, due the change between left and
right acting exterior derivatives).

The basic properties of (2.13) and (2.14) are that they are integrable and consistent
with the τ and reality conditions on the master fields given in (2.8) and (2.9). The
integrability of the constraints implies their invariance under the following gauge
transformations:

δÂ = dǫ̂+ ǫ̂ ⋆ Â− Â ⋆ ǫ̂ , δΦ̂ = ǫ̂ ⋆ Φ̂− Φ̂ ⋆ π̄(ǫ̂) , (2.18)
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where the gauge parameter ǫ̂(X,Z; Y, ξ, η) obeys (2.8). A superdiffeomorphism with
parameter ξ = ξM(X)∂M is equivalent to a field dependent gauge transformations

with parameter ǫ̂ = iξÂ.

By fixing a gauge and making use of a subset of the constraints one can eliminate
the Z-dependence and thus reduce the constraints to an equivalent but smaller
set of constraints in superspace. This yields ordinary superspace constraints, from
which one can obtain the θ-expansions of the master fields, as we shall show in
Section 3. It is also possible to eliminate the X dependence, and thus obtain an
equivalent formulation entirely in Z-space [14]. This yields a non-standard form of
the dynamical field equations, that could be a convenient framework for obtaining
exact solutions.

The equivalences between the formulations in superspace, ordinary spacetime and
the Z-space, follow from the integrability which implies that given Φ̂(0, 0; Y, ξ, η) it

is possible to determine Φ̂ and Â for finite X and Z by making use of the constraints
and by fixing a gauge. Hence, the formulations in superspace, ordinary spacetime
as well as in Z-space are formulations on different slices of the full (X,Z)-space
obtained by various (partial) gauge fixings.

From the ordinary spacetime point of view, the quantity Φ̂(0, 0; Y, ξ, η) describes
all the dynamical fields as well as all of their spacetime derivatives that are non-
vanishing on-shell [14]. In going to the superspace formulation, the same quantity
describes all the dynamical superfields as well as all of their superderivatives that
are non-vanishing on-shell, implying that the two formulations are equivalent. As
we shall show, there will be one independent superfield for each multiplet in the
spectrum listed in Table 1.

2.2 Curvature Expansion of the Constraints

The Z-dependence of the master fields can be determined in terms of

Φ ≡ Φ̂
∣∣∣
Z=0

, AM ≡ ÂM

∣∣∣
Z=0

, (2.19)

by integrating the components of (2.13) and (2.14) that have at least one dzα or dz̄α̇

component. The solution can be given as a curvature expansion in powers of Φ :

Φ̂ =
∞∑

i=1

Φ̂(i) , Φ̂(i)
∣∣∣
Z=0

=

{
Φ , i = 1
0 , i = 2, 3, . . .

, (2.20)
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ÂM =
∞∑

i=0

Â
(i)
M , Â

(i)
M

∣∣∣
Z=0

=

{
AM , i = 0
0 , i = 1, 2, 3, . . .

, (2.21)

Âα =

∞∑

i=0

Â(i)
α , (2.22)

where Φ̂(i), Â
(i)
α and Â

(i)
M are ith order in Φ. The iterative formulae for Φ̂(i), Â

(i)
α and

Â
(i)
M are direct generalizations of those given in [11] in the case of ordinary spacetime.

In particular, the superspace one-form is given by

ÂM =
1

1 + L̂(1) + L̂(2) + L̂(3) + · · ·
AM , (2.23)

where the linear operators L̂(i) are given in [11]. The operator L̂(1), which will be
needed below, takes the form

L̂(1)(f̂) =
1

2

∫ 1

0

t′dt′dt

t

([
(Φ(−t′z, ȳ, ξ, η)κ(t′z, y)zα) ⋆ Γ ,

∂f̂

∂yα

]

⋆

−

[
Φ(y, t′z̄, ξ, η)κ̄(t′z̄, ȳ)z̄α̇ ,

∂f̂

∂ȳα̇

]

⋆

)

Z→tZ

. (2.24)

Upon inserting the expressions for Φ̂ and ÂM in terms of Φ and AM into the re-
maining components of (2.13) and (2.14), i.e. D̂M Φ̂ = 0 and F̂MN = 0, we obtain
curvature constraints in N = 1 superspace. To analyze these constraints we need
to convert the curved index M into the flat Lorentz index A, which can be decom-
posed covariantly into Lorentz vector and spinor indices. In order to do this, one
first identifies the exact form of the local Lorentz structure group [15]. Following
[11], we decompose AM as follows:

AM = EM + ΩM +WM +KM , (2.25)

where WM contains the higher spin gauge fields (see (3.3) below), and 1

1The notation here differs from that in [11] where E denotes the SO(3, 2) valued gauge field,
E = e+ω where e is the vierbein and ω the Lorentz connection, and Ω denotes the rigid SO(3, 2)
gauge field in the AdS4 background.
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EM = i(EM
αQα + EM

α̇Qα̇ + EM
αα̇Pαα̇) , (2.26)

ΩM = i
4
(ΩM

αβMαβ + ΩM
α̇β̇Mα̇β̇) . (2.27)

Here ΩM is the spin connection and EM define the supervielbein

EM
A = (EM

a, EM
α, EM

α̇) . (2.28)

In (2.25) we have also separated out

KM = −iΩM
αβ(Âα ⋆ Âβ)

∣∣∣
Z=0
− h.c. , (2.29)

which has the effect of making the constraints manifestly Lorentz covariant [15] (see
also [11]). As a result the dependence of the constraints on the spin connection is
through either the covariant derivative

∇ = dXM(∂M + ΩM) , (2.30)

or the Riemann curvature two-form R = dΩ + Ω ⋆ Ω. We further define the inverse
supervielbein EA

M by EA
MEM

B = δBA and use the notation

E = idXMEM
AQA = iEAQA , QA = (Pa, Qα, Qα̇) . (2.31)

The desired manifestly Lorentz invariant form of the superspace constraints read:

RAB + FAB = −2W[A ⋆ WB] + i
∞∑

i+j=2
i,j≥1

(
RAB

αβ(Â(i)
α ⋆ Â

(j)
β )
∣∣∣
Z=0

+ h.c.
)

−2
∞∑

i+j=1

(
(iQ̂ + Ŵ )

(i)
[A ⋆ (iQ̂ + Ŵ )

(j)
B]

)∣∣∣
Z=0

, (2.32)
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∇AΦ + iΦ ⋆ π̄(QA)− iQA ⋆ Φ = −
∞∑

i+j=2
i≥1

(
Φ̂(i) ⋆ π̄((iQ̂ + Ŵ )

(j)
A )− (iQ̂ + Ŵ )

(j)
A ⋆ Φ̂(i)

)∣∣∣
Z=0

,

(2.33)

where [AB] denotes graded symmetrization and we have made the following defini-
tions: the OSp(1|4) covariant gravitational curvature R is defined by

R ≡ d(E + Ω) + (E + Ω) ⋆ (E + Ω)

= ∇E + dΩ+ Ω ⋆ Ω + E ⋆ E

= i(RαQα +R
α̇Qα̇ +R

αα̇Pαα̇ +
1
4
RαβMαβ +

1
4
Rα̇β̇Mα̇β̇) , (2.34)

with components

Rα = T α + 2Eα̇ ∧ Eα̇
α , (2.35)

Rαα̇ = T αα̇ − i
2
Eα ∧ Eα̇ , (2.36)

Rαβ = Rαβ − iEα ∧ Eβ + 4Eαα̇ ∧ Eα̇
β , (2.37)

where the superspace torsion TA and Riemann curvature Rαβ are defined by

TA = ∇EA , (2.38)

Rαβ = dΩαβ + Ωαγ ∧ Ωγ
β . (2.39)

Rigid AdS4 superspace is obtained by setting R = 0. The OSp(1|4) covariant higher
spin curvature F is defined by

F = dW + (E + Ω) ⋆ W +W ⋆ (E + Ω)

= ∇W + E ⋆W +W ⋆ E , (2.40)

and has the following components

FAB = 2∇[AWB] + TAB
CWC − 2iQ[A ⋆ WB] − 2iW[A ⋆ QB] , (2.41)
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(ℓ,j)\s 0 1
2
1 3

2
2 5

2
3 7

2
4 9

2
5 · · ·

(−1, 1/2) 1+1̄ 1
(0, 0) 1 1
(0, 1/2) 1 1
(1, 0) 1 1
(1, 1/2) 1 1

...

Table 1: The spectrum of massless physical fields of the minimal N = 1, D = 4 higher

spin gauge theory arranged into levels of N = 1 supermultiplets labelled by (ℓ, j) and with

smax = 2ℓ+ 2 + j.

where [AB] denotes graded symmetrization. Finally, the quantity Âα in (2.32) is
defined in (2.4).

The constraints (2.32) and (2.33) are invariant under gauge transformations with
hs(1|4)-valued superfield parameters and under superspace diffeomorphisms. The
analysis of the symmetries is analogous to the case of ordinary spacetime; see, for
example, [11] for a discussion and the explicit form of the gauge transformations.

The constraints (2.32) and (2.33) define the full hs(1|4) gauge theory in superspace.
As explained in Section 2.1, this superspace formulation is equivalent to the formu-
lation in ordinary spacetime. To verify this directly, one begins with the restriction
of (2.32) and (2.33) to the bosonic submanifold, which, by construction, yields the
curvature constraints in ordinary spacetime described in [4]. Thus, in order to verify
the equivalence between the two formulations it suffices to show that the superspace
formulation does not contain any additional propagating degrees of freedom nor any
new constraints. This can be analyzed in a manifestly superspace covariant expan-
sion in which both Φ and the higher spin gauge fields WM are weak fields, while
the gauge fields of the supergravity multiplet are treated exactly [11]. If the leading
order does not yield any new degrees of freedom or constraints, then this must hold
to all orders in the weak field expansion. Indeed this will be shown to be the case
in the next section.
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3 Analysis of Superspace Constraints

In this section we analyze the superspace constraints (2.32) and (2.33) in the first
order in the weak field expansion, in which we treat Φ and WM as weak fields while
the supervielbein EM contains information of the full ordinary N = 1 supergravity
theory (without higher derivative corrections). Indeed, we will find the superspace
constraints that describe the ordinary on-shell N = 1, D = 4 supergravity with
cosmological constant. Moreover, we will find the constraints on the superfields
describing the scalar and the higher spin multiplets in the first order in the weak
fields.

3.1 Weak Field Expansion

Assuming that both Φ and the higher spin gauge fields WM are weak fields, the
leading contributions to the superspace constraints (2.32) and (2.33) are

R+ F (1) = −{E, Ê(1)}⋆

∣∣∣
Z=0

= {E, L̂(1)(E)}⋆

∣∣∣
Z=0

, (3.1)

= −

(
Eα̇ ∧ Eα̇

α ∂

∂yα
∂

∂ξ
+ iEαα̇ ∧ Eα̇

β ∂

∂yα
∂

∂yβ

)
Φ(y, 0, ξ, η)

−

(
Eα ∧ Eα

α̇ ∂

∂ȳα̇
∂

∂ξ
+ iEα̇α ∧ Eα

β̇ ∂

∂ȳα̇
∂

∂ȳβ̇

)
(Φ(0, ȳ, ξ, η) ⋆ Γ) ,

and

∇AΦ + iΦ ⋆ π̄(QA)− iQA ⋆ Φ = 0 , (3.2)

where the higher spin field strength F (1) is given by (2.41) with TAB
C set equal to

the rigid AdS4 superspace torsion and L̂(1) is defined in (2.24). The supervielbein
and the spin connection describe a curved superspace, which as we shall see is pure
supergravity in the leading order. The integrability of (3.1) and (3.2) holds modulo
terms which involve the supergravity field strengths, which are given in (3.16) and
(3.17) below, times other weak fields.

We proceed by decomposing WM and Φ into levels as follows [4]

WM = W
(0,1/2)
M +

∑

ℓ≥1

(W
(ℓ,0)
M +W

(ℓ,1/2)
M ) , (3.3)
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Φ = Φ(−1,1/2) +
∑

ℓ≥0

(Φ(ℓ,0) + Φ(ℓ,1/2)) , (3.4)

where

W
(ℓ,j)
M =

∑

p+q+r=4ℓ+2+2j

W
(ℓ,j)
M,r (p, q)ξ

rη2j , (3.5)

Φ(ℓ,j) = C(ℓ,j) + π
(
(C(ℓ,j))†

)
⋆ Γ , (3.6)

C(ℓ,j) =
∑

q−p−r
=4ℓ+3+2j

Φ(ℓ,j)
r (p, q)ξrη1−2j . (3.7)

and (p, q) refers to the y and ȳ expansion as defined in (A.11). Since the adjoint and
quasi-adjoint actions of QA on W (ℓ,j) and Φ(ℓ,j) preserve the level index, it follows
that the constraints (3.1) and (3.2) split into a separate set of constraints for each
level:

R = −

(
Eα̇ ∧ Eα̇

α ∂

∂yα
∂

∂ξ
+ iEαα̇ ∧ Eα̇

β ∂

∂yα
∂

∂yβ

)
Φ(0,0)(y, 0, ξ, η)− h.c. ,

(3.8)

F (1)(ℓ,j) = −

(
Eα̇ ∧ Eα̇

α ∂

∂yα
∂

∂ξ
+ iEαα̇ ∧ Eα̇

β ∂

∂yα
∂

∂yβ

)
Φ(ℓ,j)(y, 0, ξ, η)− h.c. ,

(3.9)

∇AΦ
(ℓ,j) + iΦ(ℓ,j) ⋆ π̄(QA)− iQA ⋆ Φ

(ℓ,j) = 0 , (3.10)

where the level decomposition of the higher spin field strength is given by

F = F (0,1/2) +
∞∑

ℓ=1

(F (ℓ,0) + F (ℓ,1/2)) , (3.11)

F (ℓ,j) = ∇W (ℓ,j) + E ⋆W (ℓ,j) +W (ℓ,j) ⋆ E (3.12)

and F (ℓ,j) has the same expansion in (y, ȳ, ξ, η) as in (3.5).
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3.2 The R-constraint

In this section we show that the OSp(1|4) valued curvature R subject to the con-
straint (3.8) describes the supergravity multiplet residing at level (0, 0).

From (3.8) and eqs. (2.35)–(2.37) it follows that up to first order in the weak field
expansion the superspace torsion and Riemann tensor are given by

T αα̇ = i
2
Eα ∧ Eα̇ , (3.13)

T α = −2Eα̇ ∧ Eα̇
α − 2Eβα̇ ∧ Eα̇

γΨα
βγ , (3.14)

Rαβ = iEα ∧ Eβ + 2iEα̇ ∧ Eα̇
γΨαβ

γ − 4Eαα̇ ∧ Eα̇
β − 2Eγα̇ ∧ Eα̇

δCαβ
γδ, (3.15)

where the gravitino curvature and Weyl tensor are defined by

Ψαβγ ≡
∂3

∂yα∂yβ∂yγ
∂

∂ξ
Φ
∣∣∣
Y=ξ=η=0

, (3.16)

Cαβγδ ≡
∂4

∂yα∂yβ∂yγ∂yδ
Φ
∣∣∣
Y=ξ=η=0

. (3.17)

The Weyl tensor is the spinor derivative of the gravitino curvature, as given in
(3.28). The constraints (3.13)–(3.15) describe the on-shell N = 1 pure supergravity
multiplet with cosmological constant. To see this, we note that (3.13) and (3.14)
contain the constraints:

Tαβ
c = −i(Γc)αβ , TAb

c = 0 , (3.18)

where α = (α, α̇), which describe the N = 1 off-shell supergravity multiplet in
superspace with auxiliary fields given by a complex scalar field S + iP and a real
vector [16] (see also [17]). The remaining constraints in (3.13)–(3.15) amount to
setting the auxiliary vector equal to zero and the pseudo-scalar P equal to a constant
(in units where the AdS4 radius is set equal to 1).

3.3 The F (1)-constraint

In this section we analyze the constraint (3.9) and show that their θ-expansion
contains the higher spin multiplets.
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The AB = αβ and AB = aβ components of (3.9) read

F (1)
αβ ≡ 2∇(αWβ) − i(Γ

c)αβWc − 2i{Q(α ,Wβ)}⋆ = 0 , (3.19)

and

F (1)
aβ ≡ ∇aWβ −∇βWa −

1
2
(σa)β

γ̇Wγ̇ − i[Pa,Wβ]⋆ + i[Qβ ,Wa]⋆

= −
1

4
(σa)β

γ̇ ∂

∂ȳγ̇
∂

∂ξ
Φ(0, ȳ, ξ, η) ⋆ Γ , (3.20)

where the level index (ℓ, j) has been suppressed. The structure of these constraints
is similar to that of ordinary Yang-Mills theory in N = 1 superspace, and we may
proceed in an analogous fashion in order to show that no new component fields arise
upon θ-expanding Wα and Wa.

First, from δWα = ∇αǫ, where ǫ is the hs(1|4) valued gauge parameter, it follows
that we can fix a gauge in which

Wα| = 0 . (3.21)

From (3.19) and (3.21) it follows that

∇(αWβ)| =
i
2
(Γc)αβWc| . (3.22)

By using the θ2-component of ǫ, i.e. (∇α∇β −∇β∇α)ǫ|, we can impose the further
gauge condition:

(∇αWβ −∇βWα)| = 0 . (3.23)

Hence the first non-trivial components in the θ-expansion of Wα are the leading
components of Wa, i.e. Wa|. We proceed by examining ∇αWb|. From (3.20) and
(3.21), (3.22) and (3.23) it follows that

∇αWb| = i[Qα,Wb| ]⋆ − iψb
β̇(σa)β̇αWa|+

1

4
(σb)α

β̇ ∂

∂ȳβ̇
∂

∂ξ
Φ(ℓ,j)(0, ȳ, ξ, η)

∣∣∣ ⋆ Γ , (3.24)
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where ψa
α = Ea

α|. In order to evaluate the last term in (3.24), we examine the AB =
ab component of (3.9). This constraint has the same form as in the formulation in
ordinary spacetime. The latter have been analyzed in detail in [18]. Using these
results we conclude that the last term in (3.24) can be written in terms of spacetime
derivatives of Wa|. More specifically, the gauge fields Wa,r(p, q) with |p − q| ≤ 1
are independent, while those with |p− q| ≥ 2 are auxiliary fields that are [1

2
|p− q|]

spacetime derivatives of the independent gauge fields. Moreover, it follows that the
spin s field strengths contained in Φ(ℓ,j)(0, ȳ, ξ, η) can be written as [s] spacetime
derivatives of the independent gauge fields. Combining the above results we deduce
that WA can be θ-expanded in terms of Wa| and its spacetime derivatives.

It is also possible to eliminate the auxiliary fields in a manifestly superspace covariant
manner. To this end, we first use (3.19) to solve for Wa in terms of Wα:

Wa =
i

2
(Γa)

αβ
(
∇αWβ − i{Qα ,Wβ}⋆

)
. (3.25)

Inserting this into (3.20) we then obtain

i[Pa,Wβ]⋆ −
i

2
(Γa)

γδ{Qβ, {Qγ,Wδ}⋆}⋆

= ∇aWβ −
i

2
(Γa)

γδ∇β

(
∇γWδ − i{Qγ ,Wδ}⋆

)
−

1

2
(Γa)

γδ{Qβ,∇γWδ}⋆

−
1

2
(σa)β

γ̇Wγ̇ +
1

4
(σa)β

γ̇ ∂

∂ȳγ̇
∂

∂ξ
Φ(ℓ,j)(0, ȳ, ξ, η) ⋆ Γ . (3.26)

Expanding in y and ȳ, the (m,n) component of the above equations are supposed
to be solved for Wβ(m + 1, n − 1) in terms of Wβ(m

′, n′) with |m′ − n′| < |m − n|
covered by various combinations of spinor and vector derivatives (the structure is
similar to that of the AB = ab components of (3.9)). Hence a subset of theWα(m,n)
are independent gauge superfields, and the remaining Wα(m,n) and all of Wa are
auxiliary superfields. The details of this, and in particular, the constraints obeyed
by the independent gauge superfields, remain to be worked out.

3.4 The Φ-constraint

In this section we show that the master field Φ subject to the constraint (3.10)
contains the physical scalar multiplet at level (−1, 1/2) and the field strengths (i.e.
the Weyl tensors) of the higher level physical gauge fields. The A = a component
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of (3.10) has the same structure as in the formulation in ordinary spacetime. Hence

the components Φ
(ℓ,j)
r (k, k+q) with k > 0 are auxiliary fields which can be expressed

as k bosonic derivatives of the components Φ
(ℓ,j)
r (0, q).

The field strength multiplets

Eq. (3.9) identifies Φ
(ℓ,j)
r (0, q) for ℓ ≥ 0, j = 0, 1/2, q = 4ℓ + 3 + 2j + r with the

non-vanishing spin s = q/2 field strengths discussed in Section 3.2 and 3.3.

It is remarkable that (3.10) also yields the on-shell constraints on the superfield

Φ
(ℓ,j)
0 α̇1...α̇2s

(s = 2ℓ + 3/2 + j) whose θ-expansion yields the level (ℓ, j) field strength
supermultiplet. We find these constraints to be:

∇βΦ
(ℓ,j)
0 α̇1...α̇2s

= 0 , (3.27)

∇β̇Φ
(ℓ,j)
0 α̇1...α̇2s

= (−1)2sΦ(ℓ,j)

1 β̇α̇1...α̇2s

, (3.28)

∇β̇Φ
(ℓ,j)
1 α̇1...α̇2s+1

= −i(−1)2s(2s+ 1)ǫβ̇(α̇1
Φ

(ℓ,j)
0 α̇2...α̇2s+1)

, (3.29)

where

Φ
(ℓ,j)
r α̇1...α̇q

=
∂q

∂ȳα̇1 · · ·∂ȳα̇q

Φ(ℓ,j)
r (0, q)|Y=0 . (3.30)

The independent superfield is evidently Φ
(ℓ,j)
0 α̇1...α̇2s

. Indeed we can eliminate Φ
(ℓ,j)
1 α̇1...α̇2s+1

from the symmetric part of (3.28). From (3.28) and (3.29) we then find

∇β̇Φ
(ℓ,j)

0 β̇α̇2...α̇2s

= 0 , (3.31)

∇β̇∇(α̇1
Φ

(ℓ,j)
0 α̇2...α̇2s+1)

= −i(2s + 1)ǫβ̇(α̇1
Φ

(ℓ,j)
0 α̇2...α̇2s+1)

. (3.32)

Hence the complete set of constraints on Φ
(ℓ,j)
0 α̇1...α̇2s

in the first order in the weak field
expansion are (3.27), (3.31) and (3.32).

The level (−1, 1/2) scalar multiplet

It remains to analyze Φ
(−1,1/2)
0 (0, 0) and Φ

(−1,1/2)
1 (0, 1) which contain the superfields
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φ ≡ Φ
∣∣∣
Y=ξ=η=0

, Ψα̇ ≡ −
∂

∂ξ

∂

∂ȳα̇
Φ
∣∣∣
Y=ξ=η=0

. (3.33)

From the A = a components of (3.10) it follows that the leading components φ = φ|
and ψα̇ = Ψα̇| obey physical field equations with masses m2

φ = −2 and mψ = 0. The
A = α and A = α̇ components of (3.10) yields

∇αφ = 0 , ∇α̇φ = Ψα̇ , ∇β̇∇α̇φ = −iǫβ̇α̇φ , (3.34)

which are the appropriate constraints for the on-shell scalar multiplet. Note that,
in the presence of cosmological constant, the quantity ∇α̇∇β̇φ, where φ is chiral,

can contain both φ and φ† terms.

In summary, the only physical superfield that arises in Φ is φ, which describes the
scalar multiplet residing at level (−1, 1/2) in Table 1.

4 Comments

In this paper we have given the N = 1 superspace formulation of the massless 4D
higher spin gauge theory based on the minimal N = 1 higher spin algebra hs(1|4).
The general arguments for the equivalence between the superspace formulation and
the formulation in ordinary spacetime are given at the end of Section 2.1, and
explicitly verified in Section 3.

In the first order in the weak field expansion (see Section 3.1), the resulting on-shell
constraints on the supergravity multiplet are given in (3.13), (3.14) and (3.15), those
on the higher spin field strengths in (3.27), (3.31) and (3.32), and those on the scalar
multiplet in (3.34). The supergravity constraints describe the pure supergravity field
equations without higher derivative corrections and with cosmological constant. The
corrections to these equations, including the stress-energy from the scalar and higher
spin multiplets as well as higher order curvature corrections, can be obtained order
by order in the covariant weak field expansion scheme, as discussed for example in
[11].

The master constraints (2.13) and (2.14) generalize straightforwardly to the super-
symmetric higher spin gauge theories based on the N ≥ 2 extended higher spin
algebras discussed in [4]. In all these algebras the scalar master field Φ̂ obeys a

reality condition of the form Φ̂† = π(Φ̂) ⋆ Γ, where Γ is a suitable operator formed
out of the fermionic oscillators used in the construction of the extended higher spin
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algebras. The equivalence between the resulting superspace formulations and the
previous formulations in bosonic spacetime follows from the general argument given
at the end of Section 2.1.

It is well-known that the N = 8 supergravities in D = 4 exhibit hidden symme-
tries. In the superspace formulation, these symmetries arise naturally as a result of
embedding the 28 vector fields into the composite SU(8) connection in superspace
[19, 20]. The required torsion constraints also arise in the leading order in the weak
field expansion of the N = 8 higher spin gauge theory, as a subset of the constraints
on the OSp(8|4) valued curvature R (see Section 3.2 for the analogous discussion in
the case of N = 1). There are, of course, corrections to the torsion constraints, and
it would be interesting to examine to what extent they affect the potential for the
70 supergravity scalars, φijkl. In principle, this potential can be computed directly
by evaluating the scalar field equation order by order by in the curvature expansion
scheme [11]. However, this procedure does not rely on the superspace formulation.
To make use of the superspace formulation, one should first find the manifestly
SL(2,C)× SU(8) covariant formulation, i.e. generalize the identification of the ex-
act spin connection ΩM in (2.25) to include also the SU(8)-connection, and then
examine the resulting corrected supergravity torsion constraints, in which terms de-
pending on the scalars φijkl (but not their derivatives) can give rise to corrections
to the potential. Modulo such corrections, the potential for φijkl in the higher spin
gauge theory is given by the scalar potential of the supergravity theory.

It is straightforward to generalize the formalism described in this paper to obtain
an N = 4, D = 5 superspace formulation of the 5D HS gauge theory based on the
hs(2, 2|4) algebra [21]. The massless spectrum consists of the supergravity multiplet
and a tower of smax = 4, 6, 8, . . . multiplets with spin range 4. The superspace
master fields are a zero-form Φ and a one-form AM which are expansions in terms of
bosonic oscillators yα and ȳα (α = 1, . . . , 4) and fermionic SU(4) oscillators ξi and
ξ̄i (i = 1, . . . , 4) governed by the same τ and hermicity conditions as in [21]. The
supertranslations, QA = (Pa, Q

i
α, Qαi) are given by Pa = (Γa)

αβyαȳβ, Q
i
α = ξiȳα and

Qαi = ξ̄iyα. Applying the superspace formalism described in this paper yields the
following linearized Φ-constraint:

∇AΦ+QA ⋆ Φ− Φ ⋆ π(QA) = 0 , (4.1)

where ∇A is the covariant derivative in the rigid AdS5 superspace obeying dΩ+Ω ⋆
Ω = 0 and π is defined in [21]. The above constraint is integrable and consistent
with the (y, ȳ, ξ, ξ̄)-expansion of Φ. As shown in [21], the A = a component of (4.1)
yields the correct linearized field equations for the hs(2, 2|4) theory. We expect that
the A = αi components of (4.1) contain the corresponding superspace constraints.
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Assuming that the hs(2, 2|4) theory is related to the 1/N2 expansion of the free
SU(N) SYM theory in N = 4, d = 4 superspace, the supergravity multiplet couples
to the superconformal current and the smax = 4, 6, . . .multiplets couple to the higher
spin supercurrents of the free SYM theory. Hence, the reduction of the Φ-constraint
to d = 4, N = 4 superspace must reproduce the constrained superfield strengths of
the prepotentials coupling to the currents of the free SYM theory.

The superspace formulation of ordinary supergravity is indispensable in their cou-
pling to extended objects, which are described by κ-symmetric brane actions. It
would be interesting to see if the superspace formulation of the HS gauge theories
presented in this paper could be utilized for their coupling to extended objects,
which in turn might provide a dual description of the spacetime physics at large
energies.

Finally, the general argument given at the end of Section 2.1 suggests further ex-
tensions of the 4D (super)spacetime by extra coordinates, possibly infinitely many,
corresponding to a suitable coset of the HS algebra and with the property that a
finite number of independent dynamical fields contain all component fields in the
master fields in their expansion in the extra coordinates. Free field constructions of
this type have been considered in [8, 22].
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A Notations and Conventions

We use the following notation for expanding functions of the oscillators y and ȳ:

f(y, ȳ) =

∞∑

m,n=0

f(m,n) ,

f(m,n) =
1

m!n!
fα1...αm,α̇1...α̇n

yα1 · · · yαm ȳα̇1 · · · ȳα̇n . (A.1)

Differentiation with respect to the fermionic oscillators is defined by

∂f̂

∂ξ
=

1

2
[ξ, f̂ ]⋆ . (A.2)

The van der Waerden symbols are defined by

(σaσ̄b)αβ = ηabǫαβ + (σab)αβ , (A.3)

1

2
ǫabcdσcd = iσab , (A.4)

(σ̄ab)α̇β̇ = ((σab)αβ)
† , (A.5)

where (σ̄a)α̇β = ((σa)αβ̇)
† = (σa)βα̇, ǫαβǫ

γδ = 2δγ[αδ
δ
β], ǫα̇β̇ = (ǫαβ)

†, and spinor
contractions are according to north-west-south-east rule. The completeness relations
are given by

(σa)αα̇(σa)ββ̇ = −2ǫαβǫα̇β̇ , (σab)αβ(σab)γδ = −8ǫα(γǫδ)β ,

(σa)αα̇(σb)αα̇ = −2ηab , (σab)αβ(σcd)αβ = 4δabcd − 2iǫabcd .
(A.6)

The OSp(1|4) generators in spinor basis are given by

Qα = 1
2
yαξ , Mαβ = yαyβ , Pαα̇ = yαȳα̇ , (A.7)

and they obey
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{Qα, Qβ} = 1
2
Mαβ , {Qα, Qα̇} = 1

2
Pαα̇ ,

[Qα,Mβγ ] = 4iǫα(βQγ) , [Qα, Pββ̇] = 2iǫαβQβ̇ ,

[Mαβ ,Mγδ] = 4i(ǫα(γMδ)β + ǫβ(γMδ)α) , [Pαα̇,Mβγ] = 4iǫα(βPγ)α̇ ,

[Pαα̇, Pββ̇] = 2i(ǫαβMα̇β̇ + ǫα̇β̇Mαβ) .

(A.8)

The SO(3, 2) commutation relations are [Mâb̂,Mĉd̂] = −i(ηb̂ĉMâd̂ + 3more), where
ηâb̂ = diag(−+++−) and

Mab = 1
8
(σab)

αβMαβ + h.c. , Pa = Ma5 =
1
4
(σa)

αα̇Pαα̇ ,

Mαβ = (σab)αβMab , Pαα̇ = −2(σa)αα̇Pa .
(A.9)

An SO(3, 2) valued element Λ is expanded as

Λ = 1
2
ΛabMab + ΛaPa =

1
4
ΛαβMαβ + h.c. + Λαα̇Pαα̇ , (A.10)

where

Λab = 1
2
(σab)

αβΛαβ + h.c. , Λa = −2(σa)αα̇Λαα̇ ,

Λαβ = 1
4
(σab)αβΛab , Λαα̇ = 1

4
(σa)αα̇Λa .

(A.11)

We use the following superspace conventions:

G =
1

p!
EA1 · · ·EApGAp...A1

=
1

p!
dXM1 · · · dXMpGMp...M1

, (A.12)

dG =
1

p!
dXM1 · · · dXMpdXN ∂

∂XN
GMp...M1

. (A.13)

The right-action of the exterior derivative implies that d(GH) = GdH+(−1)q(dG)H
for a p-form G and q-form H . The hermitian conjugation of GH is

(GH)† = (−1)pqH†G† = (−1)ǫ(G)ǫ(H)G†H† . (A.14)

The conversion between Lorentz and spinor indices for the vector components of a
one-form G = EAGA is given by
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Ea = −2(σa)αα̇E
αα̇ , Ga =

1
4
(σa)

αα̇Gαα̇ , (A.15)

Eαα̇ = 1
4
(σa)αα̇Ea , Gαα̇ = −2(σa)αα̇Ga . (A.16)

The Lorentz covariant derivatives are defined by:

∇V α = dV α + V βΩβ
α , (A.17)

∇V a = dV a + V bΩb
a , (A.18)

where Ωab and Ωαβ are related to each other as in (A.11). The graded commutator
of two covariant derivatives is given by

2∇[A∇B]V
C = (−1)D(A+B)V DRAB,D

C − TAB
D∇DV

C , (A.19)

and the torsion identity reads

∇[ATBC]
D + T[AB|

ETE|C]
D = R[AB,C]

D . (A.20)

The non-vanishing rigid AdS4 superspace torsions and curvatures are

Tαβ̇
c = −i(σc)αβ̇ , Taβ̇

γ = −1
2
(σa)β̇

γ , (A.21)

Rαβ
γδ = 2iδγ(αδ

δ
β) , Rab

γδ = 1
2
(σab)

γδ . (A.22)

Our conventions are such that a scalar field φ with mass m and AdS energy E obeys

(∇2 −m2)φ = 0 , E(E − 3) = m2R2 , (A.23)

where R is the AdS radius, which we have set equal to 1.
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