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ABSTRACT

The development of reliable methods for upscaling fine-
scale models of elastic media has long been an important topic
for rock physics and applied seismology. Several effective
medium theories have been developed to provide elastic
parameters for materials such as finely layered media or ran-
domly oriented or aligned fractures. In such cases, the analytic
solutions for upscaled properties can be used for accurate pre-
diction of wave propagation. However, such theories cannot be
applied directly to homogenize elastic media with more com-
plex, arbitrary spatial heterogeneity. Therefore, we have pro-
posed a numerical homogenization algorithm based on
multiscale finite-element methods for simulating elastic wave
propagation in heterogeneous, anisotropic elastic media. Spe-
cifically, our method used multiscale basis functions obtained

from a local linear elasticity problem with appropriately de-
fined boundary conditions. Homogenized, effective medium
parameters were then computed using these basis functions,
and the approach applied a numerical discretization that was
similar to the rotated staggered-grid finite-difference scheme.
Comparisons of the results from our method and from conven-
tional, analytical approaches for finely layered media showed
that the homogenization reliably estimated elastic parameters
for this simple geometry. Additional tests examined aniso-
tropic models with arbitrary spatial heterogeneity in which
the average size of the heterogeneities ranged from several cen-
timeters to several meters, and the ratio between the dominant
wavelength and the average size of the arbitrary hetero-
geneities ranged from 10 to 100. Comparisons to finite-differ-
ence simulations proved that the numerical homogenization
was equally accurate for these complex cases.

INTRODUCTION

Earth models for applications in seismic modeling or imaging in
oil and gas exploration are often simplified to represent complex
heterogeneity with smoothly changing physical properties, or some-
times layered media. A specific example in reservoir characteriza-
tion is the representation of fractured media as a combination of an
unfractured rock matrix and randomly or preferentially oriented
fractures. Such approximations and simplifications provide a useful
approach to include the influence of microscale heterogeneity in
analysis of macroscale earth media. One of the fundamental prob-
lems is then how to define a set of equivalent medium parameters
that can accurately reproduce the macroscale behavior of real

rocks, including such properties as seismic velocity, density, and
anisotropy, for instance.
Manymethods have been applied to this problem,most ofwhich are

based on a horizontal layering approximation of the earth. Backus
(1962) proposes an averaging method (Backus averaging) that aver-
ages the stress and displacement components in the vertical direction
to estimate the properties of an equivalent elastic medium. This
method has become themostwidely appliedmethod in practice. How-
ever, it considers only anisotropy up to transverse isotropy (TI) with a
vertical axis (VTI) or a horizontal axis (HTI), whereas real geologic
materials may exhibit more complicated anisotropy, such as TI with a
titled axis (TTI), ormonoclinic anisotropy (e.g., Tsvankin et al., 2010).
The Backus-averaging method is extended to include lower symmet-
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rical anisotropy by Helbig and Schoenberg (1987). Later, by applying
matrix and group theory, Schoenberg andMuir (1989) develop amore
general effectivemedium theory for horizontally aligned elastic layers,
with general anisotropy in which all 21 independent elasticity con-
stants might be nonzero in the elasticity matrix (we will refer to this
method as the Schoenberg-Muir theory). Carcione et al. (2012) verify
theSchoenberg-Muir theoryby comparing the analytical solutions and
the solutions calculated with a finite-difference method for the elastic
wave equation, and they find that the Schoenberg-Muir theory can ac-
curately determine effective elasticity parameters for finely layered
elastic VTI, HTI, and TTI media as well.
A limitation of Backus averaging and the Schoenberg-Muir

theory is that the fine-scale medium must be horizontally layered.
Researchers have made some attempts to extend upscaling for me-
dia with general heterogeneities on the fine scale. For example,
Rijpsma and Zijl (1998) and Zijl et al. (2002) propose a numerical
homogenization procedure for Hooke’s law, and they propose that
the upscaling can be implemented by displacement-stress averag-
ing, displacement-energy averaging, or stress-energy averaging.
Grechka (2003) demonstrates another numerical method with more
straightforward boundary conditions to solve the local problem. In
both of these two methods, they solve an appropriately defined local
problem, which is either the static or frequency-dependent equation
of motion in the elastic medium. Given the solution of the local
problem, the displacement, strain, or stress field can be averaged,
and the effective elasticity tensor can be defined by assuming that
the elastic wave equation has the same formulation on the coarse
scale as that on the fine scale. These approaches are similar to
Backus averaging, except that they are numerical; i.e., a local prob-
lem has to be solved numerically before the averaging.
Anisotropy of elastic properties can also come from preferen-

tially aligned fractures, and there have been corresponding effective
medium theories to quantitatively describe fractured rocks (e.g.,
Sayers and Kachanov, 1991; Schoenberg and Sayers, 1995; Sayers,
1996, 2002; Grechka and Kachanov, 2006; Tsvankin and Grechka,
2011). The overall properties of a cracked solid have also been stud-
ied by assuming circular or elliptic cracks (e.g., Budiansky and
O’Connell, 1976; Hudson, 1980; Kachanov, 1980, 1992). These
analysis approaches assume idealized geometries and orientations
of fractures, but in this paper, we concentrate on media that do
not require these assumptions and allow general distributions of
elastic constants and density. Therefore, there are fundamental
differences between these types of effective medium theories and
the numerical approach we investigate in this paper.
From the aspect of numerical simulation of seismic wave propa-

gation, the effective medium theory can be viewed as an approach to
reduce the computational costs for wave equation modeling because
the computational costs of various numerical methods for full-
wavefield modeling, such as the finite-difference method (e.g., Da-
blain, 1986; Virieux, 1986) and the finite-element method (FEM)
(e.g., Marfurt, 1984; Komatitsch et al., 1999; Käser and Dumbser,
2008), are directly proportional to the number of elements in the
geologic models, and effective medium theory can provide a set
of equivalent parameters that enables the simulations to be imple-
mented with coarser elements. This problem has also been ad-
dressed by the so-called multiscale method for wave equations
(Vdovina et al., 2005; Korostyshevskaya and Minkoff, 2006; Eng-
quist et al., 2007; Owhadi and Zhang, 2008; Vdovina and Minkoff,
2008, 2011; Abdulle and Grote, 2011; Chung et al., 2011b, 2013;

Fu et al., 2013; Gao et al., 2013; Gibson et al., 2014). These various
approaches to the multiscale problem can be quite different in their
underlying principles, but they tend to reach one specific goal, that
is, to solve the wave equations on a set of coarsely discretized mesh
to approximate the solutions of the wave equations on the finely
discretized mesh, and each coarse element may contain finer ele-
ments with highly heterogeneous medium properties in space.
Compared with the effective medium theories that are derived with
assumptions of idealized geometries (e.g., Backus, 1962), there are
no restrictions on subgrid medium parameter variations in the multi-
scale method, which means that the subgrid media can be arbitrarily
heterogeneous.
In this paper, we investigate a numerical homogenization ap-

proach to derive the effective medium parameters for arbitrarily
heterogeneous elastic media with general anisotropy based on
the multiscale method for wave equations (Chung et al., 2011a,
2011b; Gao et al., 2013; Gibson et al., 2014). We first define a local
problem to determine the multiscale basis functions, with boundary
conditions that favor the application of rotated staggered-grid
(RSG) finite-difference-like scheme (Saenger et al., 2000; Saenger
and Bohlen, 2004), and finally, we calculate the effective elasticity
parameters by using these multiscale basis functions. This numeri-
cal approach, a multiscale method, allows for arbitrary subgrid
medium parameter variations. We remark that the local problem
we solve to determine basis functions is essentially the same as that
applied by Zijl et al. (2002) and Grechka (2003). However, they
apply different boundary conditions, and their numerical procedures
are designed to compute parameters based on average stresses and
strains in a coarse block. In contrast, our method is based on a ro-
tated, staggered-grid finite-difference approach, and the boundary
conditions are designed to be consistent with this algorithm. Fur-
thermore, instead of computing average stress and strain, we com-
pute multiscale basis functions, and the numerical homogenized
effective parameters are based on appropriate summations of these
bases. Also, we solve the local problem only once, whereas in
Grechka (2003), the local problems have to be solved several times
with different boundary conditions, which makes our approach a
little more efficient. For these reasons, we call our derived effective
medium parameters the numerical homogenized effective medium
parameters, or simply, the homogenized parameters, to differentiate
them from the effective medium parameters calculated with either
an analytical approach or the stress-strain averaging approach.
Our paper will be organized as follows: We begin with the elastic

wave equation in stress-velocity form and use this form to define
the appropriate local problem and boundary conditions to obtain the
multiscale basis functions. We next show how to calculate the
homogenized medium parameters given these basis functions. In
the third part, we present several numerical experiments to verify
the effectiveness of our method. In addition, the appendices outline
how to calculate the multiscale basis functions with second-order
FEM, as well as 3D extensions of our method.

THEORY

Elastic wave equation

We start from the 2D elastic wave equation expressed in the
stress-velocity form (Carcione, 2007):

∂tσ ¼ CΛTv (1a)
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and

ρ∂tv ¼ Λσþ f; (1b)

where v ¼ vðx; tÞ ¼ ðv1; v3ÞT is the particle velocity vector,
σ ¼ σðx; tÞ ¼ ðσ11; σ33; σ13ÞT is the stress tensor, f ¼ fðx; tÞ ¼
ðf1; f3ÞT is the external source term, and

C ¼
0
@C11 C13 C15

C13 C33 C35

C15 C35 C55

1
A (2)

is the elasticity matrix in Voigt notation, and we write the differen-
tial operator Λ as

Λ ¼
�
∂1 0 ∂3
0 ∂3 ∂1

�
: (3)

Equation 1 can describe wave propagation in anisotropic elastic
media with symmetry up to hexagonal anisotropy with tilted sym-
metry axis in the x1 − x3-plane, i.e., TTI, and monoclinic anisotropy
(assuming the symmetry plane is the x1 − x3-plane), in which C15

and C35 are possibly nonzero. In the following analysis, we will
omit the source term f for convenience.

Multiscale basis function

We discretize the computational domain Ω with a set of coarse
mesh cellsQH indicated by the black lines and black dashed lines in
Figure 1. The support of σ is denoted by Kσ, and the support of v is
denoted by Kv. Each coarse element Kσ or Kv in QH may contain
finer elements, consisting of a finer discretization of Ω, say Qh in-
dicated by the gray lines in Figure 1.
The goal of our multiscale approach to solve the numerical

homogenization problem for arbitrary heterogeneous media is to
derive a finite-difference-like scheme that can solvewave equation 1
on the coarse meshQH. This allows us to get a set of coefficients for
the finite-difference terms that are equivalent to effective elastic
parameters of the coarse elements.
We first express the stress wavefield on QH as

σðx; tÞ ¼
X
i

ðp11;iϕ11;i; p33;iϕ33;i; p13;iϕ13;iÞ; (4)

where i represents the ith coarse cell, ϕkl;i is the spatial multiscale
basis function, and pkl;i is the temporal part of σklðx; tÞ in the coarse
cell. Rather than the conventional polynomial basis functions de-
fined for FEM (e.g., Hughes, 1987; Larson and Bengzon, 2013),
the multiscale basis functions here are determined through an ap-
propriately defined local problem, which we will discuss later.
We also define the particle velocity wavefield on QH as

vðx; tÞ ¼
X
i

ðq1;iψ1;i; q3;iψ3;iÞ; (5)

where we assume that the basis function ψk;i is constant within each
coarse cell, i.e., ðψ1;i;ψ3;iÞ ¼ ð1; 1Þ, and qk;i is the temporal part of
vkðx; tÞ in the coarse cell. We also assume that the particle velocity
components are weakly differentiable, so we can take ∂lvk as the
first-order weak derivative of vk along the xl-direction. This
assumption implies that vk can be integrated even though the deriva-
tive of the piecewise constant function is not well defined.

This meshQH is similar to grid point positions in the RSG finite-
difference scheme (Saenger et al., 2000; Saenger and Bohlen,
2004), in which the stress components are placed at the center
of a grid, occupying integer-grid positions along both axes, and
the velocity components are placed at the corners of a grid, occupy-
ing half-grid positions along both axes.
Now we define a local problem to calculate the multiscale basis

functions ϕiðxÞ, which is a linear elasticity extension of the multi-
scale basis functions in the so-called multiscale FEM (MsFEM)
method developed for the acoustic case (Efendiev and Hou,
2009; Chung et al., 2011a, 2011b; Gibson et al., 2014).
We know that Kσ ¼ ½i1 − 1∕2; i1 þ 1∕2� × ½i3 − 1∕2; i3 þ 1∕2�

for stress σði1; i3Þ is in fact also composed of four subrectangles,
which are parts of the support of vði1 − 1∕2; i3 − 1∕2Þ,
vði1þ1∕2;i3−1∕2Þ, vði1−1∕2;i3þ1∕2Þ, and vði1þ1∕2;i3þ1∕2Þ,
as indicated in Figure 1. When determining the multiscale basis func-
tions for σði1; i3Þ, we solve the following local static linear elasticity
problem in each of these four subrectangles:

σ ¼ CΛTu; −Λσ ¼ 0; (6)

under the boundary conditions

σ11 ¼ 1; on E1; σ33 ¼ 1; on E3;

σ13 ¼ 1; on E1 and E3; (7)

where E1 and E3 are the two vertical and horizontal edges of each of
the four subrectangles, respectively, and u is the displacement. The
local problem 6 along with the boundary conditions 7 can be solved
with the second-order FEM for the linear elasticity problem (e.g., Lar-
son and Bengzon, 2013). We present the necessary details for this sol-
ution inAppendix A. Solutions of σ11, σ33, and σ13, which are denoted
as ϕ11, ϕ33, and ϕ13, in each of these four rectangles, are joined in Kσ

and taken as the multiscale basis functions of σ11ði1; i3Þ, σ33ði1; i3Þ
and σ13ði1; i3Þ, respectively.

K

Kv

Kv

i1i1
1

2
i1

1

2

i3

i3
1

2

i3
1

2

Figure 1. The mesh discretization of domain Ω, where ▪ represents
σ ¼ ðσ11; σ33; σ13Þ, • represents v ¼ ðv1; v3Þ, the black line rectan-
gle Kσ represents the support of stress components, and the black
dashed line rectangle Kv represents the support of velocity compo-
nents.
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Homogenized medium parameters

We then transform equation 1a into an equivalent form as

S∂tσ ¼ ΛTv; (8)

where S ¼ C−1. Explicitly, it is,0
@ S11 S13 S15

S13 S33 S35
S15 S35 S55

1
A∂t

 σ11
σ33
σ13

!
¼
 ∂1v1

∂3v3
∂1v3 þ ∂3v1

!
: (9)

Beginning with the first equation 9, we write the stress as the
product of the spatial basis function and temporal function as de-
fined in equation 4, multiply both sides by a test function ϕ11, and
integrate over the support Kσ of stress components σði1; i3Þ to get�Z

Kσ

S11ϕ11ϕ11dx
Z
Kσ

S13ϕ33ϕ11dx
Z

Kσ

S15ϕ13ϕ11dx
�

×

0
B@

_p11

_p33

_p13

1
CA ¼

Z
Kσ

ϕ11∂1v1dx; (10)

where _pij ¼ dpij∕dt. To get the homogenized medium parameters
for Kσ, we need to eliminate the integral on both sides of the above
equation. For the right side of equation 10, we can integrate by
parts:Z
Kσ

ϕ11∂1v1dx ¼
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
ϕ11∂1v1dx1dx3

¼
�Z

i3þ1∕2

i3−1∕2
v1ϕ11dx3

�����i1þ1∕2

i1−1∕2

−
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v1∂1ϕ11dx1dx3: (11)

The above derivation applies the assumption that the velocity
component is weakly differentiable so that ∂1v1 can be integrated.
Next, we simplify the second part in the right side of equation 11.

Recall that the velocity component v1 is constant in each of the four
rectangles composing of Kσði1; i3Þ. Therefore,Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v1∂1ϕ11dx1dx3

¼
Z

i3

i3−1∕2

Z
i1

i1−1∕2
v1∂1ϕ11dx1dx3

þ
Z

i3

i3−1∕2

Z
i1þ1∕2

i1

v1∂1ϕ11dx1dx3

þ
Z

i3þ1∕2

i3

Z
i1

i1−1∕2
v1∂1ϕ11dx1dx3

þ
Z

i3þ1∕2

i3

Z
i1þ1∕2

i1

v1∂1ϕ11dx1dx3: (12)

Then, for each of the four rectangles, e.g., Kσ;1 ¼ ½i1 − 1∕2; i1� ×
½i3 − 1∕2; i3� because v1 is constant and ϕ11 ¼ 1 on two vertical
edges of Kσ;1, we have

Z
i3

i3−1∕2

Z
i1

i1−1∕2
v1∂1ϕ11dx1dx3

¼ v1

�
i1 −

1

2
; i3 −

1

2

�Z
i3

i3−1∕2

Z
i1

i1−1∕2
∂1ϕ11dx1dx3

¼ v1

�
i1 −

1

2
; i3 −

1

2

�Z
i3

i3−1∕2

Z
1

1

dϕ11dx3

¼ v1

�
i1 −

1

2
; i3 −

1

2

�
× 0

¼ 0: (13)

For the other three integrals in equation 12, we have the same
result, and thereforeZ

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v1∂1ϕ11dx1dx3 ¼ 0: (14)

For the first part in equation 11, we have�Z
i3þ1∕2

i3−1∕2
v1ϕ11dx3

�����i1þ1∕2

i1−1∕2

¼
�Z

i3

i3−1∕2
v1ϕ11dx3 þ

Z
i3þ1∕2

i3

v1ϕ11dx3

�����i1þ1∕2

i1−1∕2

¼
Z

i3

i3−1∕2

�
v1

�
i1 þ

1

2
; x3

�
− v1

�
i1 −

1

2
; x3

��
ϕ11dx3

þ
Z

i3þ1∕2

i3

�
v1

�
i1 þ

1

2
; x3

�
− v1

�
i1 −

1

2
; x3

��
ϕ11dx3

¼ Δx3
2

�
v1

�
i1 þ

1

2
; i3 þ

1

2

�
þ v1

�
i1 þ

1

2
; i3 −

1

2

�

−v1

�
i1 −

1

2
; i3 þ

1

2

�
− v1

�
i1 −

1

2
; i3 −

1

2

��

¼ Δr
2Δx1

1

Δr

��
v1

�
i1 þ

1

2
; i3 þ

1

2

�
− v1

�
i1 −

1

2
; i3 −

1

2

��

þ
�
v1

�
i1 þ

1

2
; i3 −

1

2

�
− v1

�
i1 −

1

2
; i3 þ

1

2

���
Δx1Δx3

≈
Δr
2Δx1

ðD3v1 þD1v1ÞΔx1Δx3; (15)

where Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx21 þ Δx23

p
; D1 and D3 are the partial derivatives

along the rotated axes, as defined in the RSG finite-difference
method (Saenger et al., 2000, 2007; Saenger and Bohlen, 2004);
and the last step in equation 15 uses the discrete finite-difference
term to approximate the continuous partial derivatives, and there-
fore Z

Kσ

ϕ11∂1v1dx ≈ Δx1Δx3∂1v1 ¼ SKσ
∂1v1; (16)

where SKσ
¼ Δx1Δx3 is the area of Kσ .

Meanwhile, for the left side of equation 10, because both Sij and
ϕst are discrete values on each fine grid within Kσ , we have, for
example, for rectangular grids inside the coarse cell,
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Z
Kσ

S11ϕ11ϕ11dx

≈
SKσ

n1n3

Xn1
j1¼1

Xn3
j3¼1

S11ðj1; j3Þϕ11ðj1; j3Þϕ11ðj1; j3Þ

¼ SKσ
~S11; (17)

where n1 and n3 represent the grid number in the x1- and x3-direc-
tions within Kσ , respectively. Essentially, ~S11 is the average of the
integral on the left side of equation 17.
With the above results, for the first equation, we finally have

ð ~S11 ~S33 ~S13 Þ
 

_p11

_p33

_p13

!
¼ ∂1v1; (18)

where ~Sij represents the homogenized compliance in Kσ , and it can
be calculated as shown in equation 17. Equation 18 is defined on
coarse mesh QH with effective elasticity parameters ~Sij.
We can repeat the same manipulation for the second equation in

equation 9. Based on the boundary conditions, we prescribe for ϕ33,
i.e., ϕ33 ¼ 1 on two horizontal edges of each of the four subrectan-
gles, we integrate both sides with a test function ϕ33 on both sides,
and then for the right side, we haveZ
Kσ

ϕ33∂3v3dx ¼
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
ϕ33∂3v3dx1dx3

¼
�Z

i1þ1∕2

i1−1∕2
v3ϕ33dx1

�����i3þ1∕2

i3−1∕2

−
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v3∂3ϕ33dx1dx3

≈ SKσ
∂3v3: (19)

Again, the terms on the light side can be calculated similar to
those in equation 17.
Finally, for the third equation in equation 9, we integrate both

sides with a test function ϕ13 in Kσ and obtain the right side asZ
Kσ

ϕ13ð∂1v3 þ ∂3v1Þdx

¼
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
ðϕ13∂1v3 þ ϕ13∂3v1Þdx1dx3

¼
�Z

i3þ1∕2

i3−1∕2
v3ϕ13dx3

�����i1þ1∕2

i1−1∕2

−
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v3∂1ϕ13dx1dx3

þ
�Z

i1þ1∕2

i1−1∕2
v1ϕ13dx1

�����i3þ1∕2

i3−1∕2

−
Z

i3þ1∕2

i3−1∕2

Z
i1þ1∕2

i1−1∕2
v1∂3ϕ13dx1dx3

≈ SKσ
ð∂1v3 þ ∂3v1Þ; (20)

and the left side can be obtained in a similar approach to that used
for equation 17.
Now, we examine equation 1b. We integrate the first equation

within 1b in the support of vði1 þ 1∕2; i3 þ 1∕2Þ and get

Z
i3þ1

i3

Z
i1þ1

i1

ρ∂tv1dx1dx3

¼
Z

i3þ1

i3

Z
i1þ1

i1

∂1σ11dx1dx3þ
Z

i3þ1

i3

Z
i1þ1

i1

∂3σ13dx1dx3

¼
Z

i3þ1

i3

Z
σ11ði1þ1;x3Þ

σ11ði1;x3Þ
dσ11dx3þ

Z
i1þ1

i1

Z
σ13ðx1;i3þ1Þ

σ13ðx1;i3Þ
dσ13dx1

¼
Z

i3þ1

i3

½σ11ði1þ 1; x3Þ− σ11ði1; x3Þ�dx3

þ
Z

i1þ1

i1

½σ13ðx1; i3þ 1Þ− σ13ðx1; i3Þ�dx1

¼
�Z

i3þ1∕2

i3

σ11ði1þ 1; x3Þdx3þ
Z

i3þ1

i3þ1∕2
σ11ði1þ 1; x3Þdx3

�

−
�Z

i3þ1∕2

i3

σ11ði1; x3Þdx3þ
Z

i3þ1

i3þ1∕2
σ11ði1; x3Þdx3

�

þ
�Z

i1þ1∕2

i1

σ13ðx1; i3þ 1Þdx1þ
Z

i1þ1

i1þ1∕2
σ13ðx1; i3þ 1Þdx1

�

−
�Z

i1þ1∕2

i1

σ13ðx1; i3Þdx1þ
Z

i1þ1

i1þ1∕2
σ13ðx1; i3Þdx1

�

¼Δx3
2

½σ11ði1þ 1; i3Þþ σ11ði1þ 1; i3þ 1Þ
− σ11ði1; i3Þ− σ11ði1; i3þ 1Þ�

þΔx1
2

½σ13ði1; i3þ 1Þþ σ13ði1þ 1; i3þ 1Þ
− σ13ði1; i3Þ− σ13ði1þ 1; i3Þ�: (21)

Recalling the manipulations in the development of equation 15, it
is straightforward to find that

Z
i3þ1

i3

Z
i1þ1

i1

ρ∂tv1dx1dx3

≈
Δr
2Δx1

ðD3σ11 þD1σ11ÞΔx1Δx3

þ Δr
2Δx3

ðD3σ13 −D1σ13ÞΔx1Δx3
¼ SKv

ð∂1σ11 þ ∂3σ13Þ; (22)

where SKv
is the area of the support of vði1 þ 1∕2; i3 þ 1∕2Þ. Fur-

thermore, for the left side of equation 22 because v1 is constant in
Kv, we then have

Z
i3þ1

i3

Z
i1þ1

i1

ρ∂tv1dx1dx3 ¼ ∂tv1
Z

i3þ1

i3

Z
i1þ1

i1

ρdx1dx3

≈ ∂tv1 ~ρSKv
; (23)

Numerical homogenization for elastic media D389

D
ow

nl
oa

de
d 

06
/0

9/
15

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



with

~ρ ¼ 1

m1m3

Xm1

j1¼1

Xm3

j3¼1

ρðj1; j3Þ: (24)

Again, ~ρ is the average of the integral on the right side of equa-
tion 24, which is similar to the homogenized compliance in equa-
tion 17. It is not surprising that the homogenized mass density is the
area average of individual density values in 2D, but this result shows
that the method is determining correct effective medium properties;
therefore,

~ρ∂tv1 ¼ ∂1σ11 þ ∂3σ13: (25)

Similarly, for the second equation 1b, we have

~ρ∂tv3 ¼ ∂1σ13 þ ∂3σ33 (26)

with ~ρ having exactly the same definition as that in equation 24.
We then arrive at the homogenized elastic wave equation on the

coarse mesh QH as follows:

∂tσ ¼ ~CΛTv (27)

and

~ρ∂tv ¼ Λσþ f; (28)

where the homogenized elasticity matrix ~C ¼ ~S−1, and

~S ¼
0
@ S11ϕ11ϕ11 S13ϕ33ϕ11 S15ϕ13ϕ11

S13ϕ11ϕ33 S33ϕ33ϕ33 S35ϕ13ϕ33

S15ϕ11ϕ13 S35ϕ33ϕ13 S55ϕ13ϕ13

1
A; (29)

where each of the elements in ~S is a summation of the product of
compliances and basis functions of all the fine elements within Kσ

given by

Sijϕstϕpq ¼
1

n1n3

Xn1
j1¼1

Xn3
j3¼1

Sijðj1; j3Þϕstðj1; j3Þϕpqðj1; j3Þ.

(30)

The homogenized density is computed with equation 24. The
above results are valid for rectangular fine grids within the coarse
cell. For fine elements with general shapes, the homogenized
parameters are the average of the corresponding integrals expressed
in equations 17 and 23.
Because each ~C is computed as a weighted average of compli-

ances, it can be interpreted as an effective property that is in some
ways analogous to Backus averaging. In our case, however, the
weight terms in the averaging are the basis function terms computed
numerically from the solution of the local elasticity problem.
This approach does not impose any restrictions on the geometry

or magnitude of subgrid medium variations, which therefore can be
arbitrary. In such cases, even for simple layered subgrid medium
property variations, there are no analytic results for ϕ11, ϕ33, or

ϕ13; i.e., they can be only determined numerically, and this is quite
different from previous theories such as Backus averaging or the
Schoenberg-Muir theory. Also, this method can be straightfor-
wardly extended to the 3D case (see Appendix B) in which
general anisotropy with all 21 independent elasticity constants is
addressed, and, again, the subgrid medium can be arbitrarily hetero-
geneous.

NUMERICAL RESULTS

We perform three kinds of numerical tests to verify the accuracy
of our proposed method. The test results are compared with those
obtained using Backus averaging and the Schoenberg-Muir theory,
as well as the results calculated with a finite-difference method for
elastic wave equations in which Backus averaging or the Schoen-
berg-Muir theory cannot be applied. For clarity, when we show the
elasticity matrices in the following text, we only write the upper
triangle part, noting here that they are all symmetric matrices.

Horizontally layered medium

In the first set of tests, we compare the results from Backus aver-
aging, the Schoenberg-Muir theory, and our multiscale method for
horizontally layered isotopic and anisotropic elastic media. It is im-
portant to note that the original version of Backus averaging method
is valid for describing the effective properties of media composed of
isotropic elastic layers, or elastic layers with anisotropy up to VTI
and HTI; i.e., C15 ¼ C35 ¼ 0. Schoenberg-Muir theory can de-
scribe the effective properties of media composed of layers with
generally anisotropic elastic properties, including TTI or triclinic
anisotropy in which all 21 independent elasticity constants are non-
zero. Here, we restrict our attention to anisotropy up to 2D TTI, so
that medium properties can be described by the elasticity matrix in
equation 2.
For simplicity, we take the two sets of test parameters presented

by Carcione et al. (2012). In their tests, they use the Schoenberg-
Muir theory to derive the effective medium parameters and verify
the accuracy by comparing the spatial wavefields calculated by the
Fourier pseudospectral method for the original layered medium and
the effective medium.
The first test is for a medium composed of VTI layers and

HTI layers, with elastic constants C11 ¼ 46.00, C13 ¼ 18.00,
C15 ¼ 0.00, C33 ¼ 30.00, C35 ¼ 0.00, and C55 ¼ 7.00 for the
VTI layers and C11 ¼ 30.00, C13 ¼ 18.00, C15 ¼ 0.00, C33 ¼
46.00, C35 ¼ 0.00, and C55 ¼ 7.00 for HTI layers. We assume that
the fine-grid model contains 1000 × 1000 grids, and we set the
coarsening to be 10 × 10, which means that in each coarse-grid
block, there are 10 × 10 fine grids. The size of the fine grid is
1 m in each direction, and in our test, we set the layer thickness
to 1 m as well.
The effective elasticity constants from Backus averaging or

Schoenberg-Muir theory are given as (Carcione et al., 2012)

CBackus ¼ CSchoenberg-Muir ¼
0
@ 38.00 18.00 0

36.30 0

7.00

1
A GPa;

(31)

and by our method, they are given as
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Cmultiscale ¼
0
@ 37.78 17.89 0

36.24 0

7.00

1
A GPa: (32)

Because Carcione et al. (2012) verify the results of the Schoen-
berg-Muir theory by means of wave equation modeling, we take the
results from Schoenberg-Muir theory to be the “true’’ solution. We
compare the results from Backus averaging, Schoenberg-Muir
theory, and our method, and we see that for such a layer compo-
sition, Backus averaging and Schoenberg-Muir theory give exactly
the same result, and due to the numerical solution nature of our
method, we obtain slightly different values. In fact, the relative
differences of the elasticity constants from our calculated parame-
ters, defined as e ¼ eij ¼ ðCij;multiscale − CijÞ∕Cij, with Cij being
the effective elasticity constants solved from Backus averaging
or the Schoenberg-Muir theory, are shown as

e ¼ −

 
0.57% 0.62% 0

0.15% 0

0

!
. (33)

In the second test, the medium is composed of horizontal VTI
and TTI layers. The layer thickness is again 1 m. The elasticity con-
stants are C11 ¼ 46.00, C13 ¼ 18.00, C15 ¼ 0.00, C33 ¼ 30.00,
C35 ¼ 0.00, and C55 ¼ 7.00 for the VTI medium and C11 ¼
35.00, C13 ¼ 21.00, C15 ¼ −4.00, C33 ¼ 35.00, C35 ¼ −4.00,
and C55 ¼ 10.00 for the TTI material, which has a symmetry axis
oriented at 45° with respect to the layering. In this case, we can only
compare the Schoenberg-Muir theory and our method to test results.
The Schoenberg-Muir solution is

CSchoenberg-Muir ¼
 
40.00 19 −1.6

31.90 −1.5
8.1

!
GPa; (34)

and our solution is

Cmultiscale ¼
 
39.83 18.85 −1.58

31.50 −1.43
8.11

!
GPa; (35)

with relative differences

e ¼ −

 
0.42% 0.80% 1.44%

1.26% 4.64%

−0.20%

!
: (36)

Except for C15, C33, and C35, the parameters have less than 1%
relative error. The difference for C35 between our approach and ana-
lytical result is relatively large compared with that of the other elas-
ticity constants, and it is not obvious why this constant is unique.
This might be due to numerical errors introduced when we solve the
local problem because we use only second-order FEM. By improv-
ing the accuracy of the scheme of solving the local problem, this
difference might be reduced.

Arbitrarily heterogeneous media

In the proceeding section, we compare our method with Backus
averaging and Schoenberg-Muir theory and see that our method can

be accurate. However, as we have discussed before, neither the
Backus method nor Schoenberg-Muir theory is directly applicable
to media that are arbitrarily heterogeneous, whereas there are no
such difficulties for our method. In the following, we will apply
our method to such a model, and because there is no independent
solution in this situation, we will compare the wave equation mod-
eling results from the fine-grid model and from the homogenized
medium. For both cases, we use the 20th-order RSG finite-differ-
ence method (see Appendix C) to simulate the elastic wavefield
propagation.
The first model is composed of 200 × 200 coarse elements, each

of which is composed of 20 × 20 fine elements, and each of the fine
elements has a size of 1 m × 1 m. Figure 2a–2f shows the elasticity
parameter variations within each coarse element. All elasticity con-
stants show some heterogeneities, including horizontal layering,
elliptic inclusions with different orientations, and random hetero-
geneities as well. Clearly, such a subgrid model cannot be treated
as a finely layered model, and therefore, Backus averaging or
Schoenberg-Muir theory cannot be directly used here. The elasticity
parameters for the numerical homogenized medium can be com-
puted using equation 29 giving

Cmultiscale ¼
 
38.96 20.40 −1.21

34.52 −0.96
8.92

!
GPa; (37)

which represents monoclinic anisotropy. We assume constant den-
sity for the model; i.e., ρ ¼ 2500 kg∕m3. Thus, the qP- and qSV-
wave velocities are about 3.95 × 103 and 1.88 × 103 m∕s along the
x1-axis, respectively, and 3.72 × 103 and 1.89 × 103 m∕s along the
x3-axis. This test is for a 2D case in which the subgrid variations of
elasticity parameters can be represented byCIJ with I; J ¼ 1; 3; 5. If
the model is 3D, all of the resulting 21 homogenized elasticity
parameters are very likely to be independent, which corresponds
to triclinic anisotropy.
The forward modeling in the original model and the homog-

enized model uses a Ricker wavelet with 7.5 Hz central frequency
as the source, which is located at the center of the model. Given the
qP- and qSV-wave velocities that we calculate above, for the coarse-
grid model, this corresponds to about 12 grid cells per dominant qS-
wavelength (approximately 252 m) and 26 grid cells per dominant
qP-wavelength (approximately 533 m). Because each coarse grid
contains 20 × 20 fine grids, these ratios are 20 times larger for
the fine-grid model. We choose this central frequency to ensure that
the error caused by numerical dispersion in the finite-difference
modeling is as small as possible. By choosing these parameters,
we also know that the dominant wavelength is approximately 25
times the size of the fine-grid heterogeneities for the qS-wave
and approximately 50 times for the qP-wave, assuming the average
size of the heterogeneities shown in Figure 2a–2f is approxi-
mately 10 m.
Figure 3a–3d compares the computed wavefield snapshots at

0.5 s from the two models. We see that the wavefields in the effec-
tive medium can accurately approximate the wavefields in the fine-
grid model. Furthermore, we compare directly the two wavefields at
this same time at a depth of 2400 m in the model. We plot the fine-
and coarse-grid wavefields as black curve and dots, respectively,
showing that they are in good agreement (Figure 4a and 4b). Be-
cause of the small grid size of the fine model, the modeling time
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Figure 2. Subgrid elasticity parameter models. Panels (a-f) represent C11, C13, C15, C33, C35, and C55, respectively. The grid size is 1 × 1 m.
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Figure 3. Comparisons of wavefields in the fine-
grid and effective media. Panels (a and b) are v1
and v3 wavefields from the fine-grid model, re-
spectively, and panels (c and d) are v1 and v3
wavefields from the effective model, respectively.
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step has to be quite small to ensure stability, 0.1 ms in our modeling,
whereas for the effective medium, we can safely use 1.0 ms. This
makes the ratio of computation time for the fine-grid homogenized
medium simulations to be approximately ð93303 sÞ∕ð9.13 sÞ, i.e.,
104, for the same total wave propagation time (0.5 s).
The second model is a random medium generated with the von

Kármán correlation function (Goff and Jordan, 1988; Klimeš,
2002), with correlation lengths of 30 m in the horizontal direction
and 5 m in the vertical direction, respectively, and there are three
horizontal reflectors within the model. The original model contains
2000 × 2000 grids, each 1 × 1 m in size. Figure 5a–5f shows the
elasticity constants in this model. We assume constant density of
1000 kg∕m3 for convenience. As in the previous example, such
a model does not satisfy the basic assumptions of Backus averaging
or the Schoenberg-Muir theory. We compute homogenized moduli
and density values using a coarse grid with 200 × 200 cells, each of
which is 10 × 10 m; i.e., each coarse grid contains 10 × 10 fine cells
from the original model. The source placed at (1000 and 40 m) is a
Ricker wavelet with a central frequency of 15 Hz. Because the elas-
ticity parameters correspond to phase velocities from approximately
1350 to 2850 m∕s for the qSV-wave and approximately 2250 to
4800 m∕s for the qP-wave, the dominant wavelength ranges from
approximately 90 to 190 m for the qSV-wave and approximately
150 to 320 m for the qP-wave. This also implies that the dominant
wavelength of the qSV-wave is at least 9 times the size of the coarse
block we use for the numerical homogenization, and at least 15
times this size for the qP-wave.

a)

b)

Figure 4. Comparison of (a) v1 and (b) v3 wavefields along a hori-
zontal line at a depth of 2400 m of the snapshots in Figure 3. The
black lines are the fine-grid solution, and the black dots are solu-
tions from the effective medium.
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Figure 5. Four-layer von Kármán correlation random medium model. Panels (a-f) represent C11, C13, C15, C33, C35, and C55, respectively. The
model contains 2000 × 2000 grids, each 1 × 1 m in size.
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The receivers are at a depth of 40 m, with horizontal coordinates
ranging from 0 to 2000 m with an interval of 10 m. We compare the
wavefield snapshots and the seismograms calculated using the 20th-
order RSG. Figure 6a–6d is the wavefield snapshots of v1 and v3
components at 0.4 s. We again take a depth slice at 400 m from the
wavefield snapshots and plot the fine- and coarse-grid wavefields as
black curve and dots, respectively and they are in good agreement
(Figure 7a and 7b). This visual comparison shows that the wave-
fields in our homogenized medium can well approximate the wave-
field in the original random medium. Furthermore, Figures 8 and 9
show the seismograms that are clipped to display the reflections and
scattered wavefields from the reflectors and heterogeneities in the
model. The fine-grid model solution is plotted as blue wiggles, and
our homogenized medium solution is plotted as red wiggles. There
are only some inconsistencies in the seismogram at approximately
0.7 s in v1 seismogram and at approximately 0.4–0.5 s in v3 seismo-
gram. For the other parts, our homogenized medium solution has
very good consistency with the reference solution and can be con-
sidered as a satisfactory approximation of the original solution.

Fractured medium

We further verify our method by investigating a fractured
medium. Sizes of natural fractures in rocks may range from several
centimeters to hundreds of meters (Hobday and Worthington,
2012), and their alignment with preferred orientation in space
may bring anisotropy (Tsvankin, 2005). In our test, we set up a
fine-grid model that is composed of 60 × 50 coarse grids, and each
coarse grid contains approximately 300 vertically oriented fractures
that are randomly distributed in space as shown in Figure 10. Each
coarse grid is discretized into 200 × 200 fine grids, leading to a total
of 12;000 × 10;000 fine grids in the finely discretized model. The

size of the fine grid is 0.01 × 0.01 m. The width of each fracture is 1
fine grid, i.e., 1 cm, and the length is 10 fine grids, or 10 cm. We
assume that the fractures are filled with a soft, isotropic medium
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Figure 6. Comparisons of wavefield snapshots at
0.4 s. Panels (a and b) are v1 and v3 wavefields
from the fine-grid model, respectively, and panels
(c) and (d) are v1 and v3 wavefields from our
homogenized parameter model, respectively.

a)

b)

–
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–

–

Figure 7. Comparison of (a) v1 and (b) v3 wavefields along a hori-
zontal line at a depth of 400 m of the snapshots in Figure 6. The
black lines are the fine-grid solution, and the black dots are solu-
tions from our homogenized medium.
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with C11 ¼ 0.667 GPa and C55 ¼ 0.357 GPa. The model has an
isotropic, homogeneous background with C11 ¼ 9.0 GPa and
C55 ¼ 4.0 GPa. We again solve the elastic wave equation numeri-
cally with the RSG finite-difference method on the fine-grid model.
Considering the size and medium properties of the fine grid, we use
a Ricker wavelet with f0 ¼ 250 Hz central frequency as the source,
which is placed at the center (50 and 60 m) of the model. The
homogenized effective medium parameters from our multiscale ba-
sis function method are

Cmultiscale ¼
 
3.6687 0.2862 0

6.0283 0

2.0312

!
GPa; (38)

with homogeneous density of ρ ¼ 1000 kg∕m3. This indicates that
the homogenized effective medium is TI with HTI. The group
velocity along the x1-axis is approximately 1915 and 2455 m∕s
along the x3-axis, and the Thomsen parameters (Thomsen, 1986)
are ϵ ≈ 0.322 and δ ≈ −0.030. Such anisotropy is consistent with
our expectation because the effective compliance theory for frac-
tured rocks (e.g., Sayers and Kachanov, 1995; Sayers, 2002,
2006) tells us that a set of vertically aligned fractures is likely to
result in HTI anisotropy. We then compare the results from fi-
nite-difference method with our homogenized solution. Figure 11a
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)
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Distance (m) Figure 8. Comparisons of seismograms showing

v1 components for the original fine-grid solution
(blue) and the solution with homogenized param-
eters (red). We clip the seismograms so that the
waveforms of reflections and scattered fields have
amplitudes large enough to be seen.
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Distance (m) Figure 9. Comparisons of seismograms of show-

ing v3 component for the original fine-grid solu-
tion (blue) and the solution with homogenized
parameters (red). The seismograms are clipped
to exaggerate reflected and scattered waves as in
Figure 8.
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Figure 10. A coarse-grid model that is discretized with 200 × 200
fine grids. The fine grid size is 1 cm in both directions. The black
lines represent randomly distributed vertical fractures, with width of
1 fine grid (1 cm) and length of 10 fine grids (10 cm). Our fine-grid
model is composed of 60 × 50 such coarse grids.
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and 11b shows the wavefield snapshots of the v1 and v3 components
at 0.0250 s after source excitation, respectively. We also calculated
the group velocity curves of qP- and qSV-waves based on our result
in equation 38 with the method described in Carcione (2007). In
Figure 11a and 11b, the blue dashed curve is the group velocity
curve for the qP-wave and red is for the qSV-wave. We remark that
in the modeling, the source wavelet is shifted by 1.25∕f0 ¼ 0.005 s

in time to make sure that the wavelet is almost zero at t ¼ 0, and
therefore, the group velocity curves are calculated at t ¼ 0.02 s, so
that they represent the position of peak amplitude of qP- and qSV-
wavefronts. It is obvious that these curves are in good consistency
with the finite-difference modeling results on the fine grid, except

that the predicted qP-wave group velocity along x3-axis is a little
slower than the peak amplitude position in the finite-difference
modeling results. This might result from inaccuracies when solving
the local problems with the second-order FEM because there are
large property contrasts between the background medium and
the fracture. This consistency demonstrates the accuracy of our cal-
culated homogenized effective parameters. Note that in this exam-
ple, the dominant wavelength is approximately 10 m, which is
about 100 times of the fracture’s length. This test shows that our
multiscale method can give a good estimation of the elastic proper-
ties of the fractured medium with fracture sizes on the order of
centimeters.

CONCLUSIONS

We have provided a numerical homogenization method for aniso-
tropic elastic media. This method is constructed based on the multi-
scale theory previously developed for reducing the computation
cost of wave equation modeling. Specifically, we have defined a
local linear elasticity problem with appropriate boundary condi-
tions, from which we can obtain multiscale basis functions for stress
components. The coefficients for the finite-difference-like terms
based on these multiscale basis functions can be considered as
the numerical homogenized effective medium parameters. Our
method is applicable to calculate the homogenized medium param-
eters for arbitrary subgrid medium property variations in which the
ratio between the dominant wavelength and the average size of the
arbitrary heterogeneities ranges from 10 to 100. We have used sev-
eral numerical examples, including horizontally layered media, me-
dia with arbitrarily heterogeneous subgrid variations, as well as a
fractured medium with vertically aligned fractures, to demonstrate
the effectiveness of our method, and we found that our method
could give a good estimation of the effective medium parameters
for anisotropic, heterogeneous media.
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APPENDIX A

LOCAL STATIC LINEAR ELASTICITY PROBLEM
SOLVED WITH SECOND-ORDER

FINITE-ELEMENT METHOD

The local problem in equation 6 with boundary conditions 7 can
be solved with the standard continuous Galerkin FEM (e.g., Larson
and Bengzon, 2013). Here, we present some details to illustrate the
procedure.
First, we transform equation 6 into the form that is more com-

monly used in FEM with fourth-order elasticity tensor c ¼ cijkl:
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Figure 11. Comparison between the wavefield solutions on the fine
mesh calculated with the RSG finite-difference method (the gray-
scale plots) and the group velocity curves predicted based on the
homogenized effective medium parameters from our numerical
homogenization method (the blue and red dashed curves). Panel
(a) is the v1 component wavefield snapshot whereas panel (b) is
the v3 component snapshot at 0.0250 s. In panels (a and b), the blue
dashed curve represents the qP-wave group velocity and the red
dashed curve represents the qSV-wave group velocity.
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−∇ · σ ¼ 0; σ ¼ c∶ε; ε ¼ 1

2
½∇uþ ð∇uÞT�; (A-1)

where ε is the strain tensor. For the boundary conditions 7, it is easy
to show that they are equivalent to the following Neumann boun-
dary conditions:

σ · nþ1 ¼ ðσ11; σ13Þ ¼ ð1; 1Þ;
σ · n−1 ¼ ð−σ11;−σ13Þ ¼ ð−1;−1Þ;
σ · nþ3 ¼ ðσ13; σ33Þ ¼ ð1; 1Þ; and
σ · n−3 ¼ ð−σ13;−σ33Þ ¼ ð−1;−1Þ; (A-2)

where nþ1 ¼ ð1; 0Þ is the outward-pointed normal of the right ver-
tical boundary, n−1 ¼ ð−1; 0Þ is the outward-pointed normal of the
left vertical boundary, nþ3 ¼ ð0; 1Þ is the outward-pointed normal of
the bottom horizontal boundary, and n−3 ¼ ð0;−1Þ is the outward-
pointed normal of the top horizontal boundary.
The elasticity problem must be solved in each of the four sub-

rectangles within the support Kσ for the stress variables (Figure 1),
and we assume that each subrectangle is composed of r1r3 finer
elements. The elastic parameters c are homogeneous on a fine
element but generally heterogeneous within the rectangle; the dis-
cretization is shown in Figure A-1.
The above problem and discretization results in the following

weak form: Z
K
σðuÞ∶εðuÞdx ¼

Z
∂K

σðuÞ · nds; (A-3)

with n being the outward pointed normal on each edge of K. We
further have the discrete form:

AU ¼ B; (A-4)

where we assemble A and B with second-order finite-element basis
functions (e.g., Larson and Bengzon, 2013). Given the analytic
expressions for the basis functions and the discretization in
Figure A-1, we then develop exact expressions for A and B for
a fine element Kh using Mathematica to complete the algebra:

AKh
¼

0
BBBBBBBBBB@

A11 A12 A13 A14 A15 A16 A17 A18

A22 A23 A24 A25 A26 A27 A28

A33 A34 A35 A36 A37 A38

A44 A45 A46 A47 A48

A55 A56 A57 A58

A66 A67 A68

A77 A78

A88

1
CCCCCCCCCCA
;

(A-5)

where

A11 ¼
1

6
ðð2C11Δx3Þ∕Δx1 þ 3C15 þ ð2C55Δx1Þ∕Δx3Þ;

(A-6)

A12 ¼
1

12
ð3ðC13 þ C55Þ þ ð4C35Δx1Þ∕Δx3

þ ð4C15Δx3Þ∕Δx1Þ; (A-7)

A13 ¼ ðC55Δx1Þ∕ð6Δx3Þ − ðC11Δx3Þ∕ð3Δx1Þ; (A-8)

A14 ¼
1

12
ð3C13 − 3C55 þ ð2C35Δx1Þ∕Δx3

− ð4C15Δx3Þ∕Δx1Þ; (A-9)

A15 ¼
1

6
ð−3C15 − ðC55Δx1Þ∕Δx3 − ðC11Δx3Þ∕Δx1Þ;

(A-10)

A16 ¼
1

12
ð−3ðC13 þ C55Þ − ð2C35Δx1Þ∕Δx3

− ð2C15Δx3Þ∕Δx1Þ; (A-11)

A17 ¼ −ððC55Δx1Þ∕ð3Δx3ÞÞ þ ðC11Δx3Þ∕ð6Δx1Þ; (A-12)

A18 ¼
1

12
ð−3C13 þ 3C55 − ð4C35Δx1Þ∕Δx3

þ ð2C15Δx3Þ∕Δx1Þ; (A-13)

Figure A-1. A sketch of the fine mesh discretization for the local
problem. To solve the local problem with the FEM, we compute
displacement u at the locations •, and after the calculation of u,
we can obtain the stress for a fine element at the center of a fine
element at locations ▪.
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A22 ¼
1

6
ð3C35 þ ð2C33Δx1Þ∕Δx3 þ ð2C55Δx3Þ∕Δx1Þ;

(A-14)

A23 ¼
1

12
ð−3C13 þ 3C55 þ ð2C35Δx1Þ∕Δx3

− ð4C15Δx3Þ∕Δx1Þ; (A-15)

A24 ¼ ðC33Δx1Þ∕ð6Δx3Þ − ðC55Δx3Þ∕ð3Δx1Þ; (A-16)

A25 ¼
1

12
ð−3ðC13 þ C55Þ − ð2C35Δx1Þ∕Δx3

− ð2C15Δx3Þ∕Δx1Þ; (A-17)

A26 ¼
1

6
ð−3C35 − ðC33Δx1Þ∕Δx3 − ðC55Δx3Þ∕Δx1Þ;

(A-18)

A27 ¼
1

12
ð3C13 − 3C55 − ð4C35Δx1Þ∕Δx3

þ ð2C15Δx3Þ∕Δx1Þ; (A-19)

A28 ¼ −ððC33Δx1Þ∕ð3Δx3ÞÞ þ ðC55Δx3Þ∕ð6Δx1Þ; (A-20)

A33 ¼
1

6
ð−3C15 þ ð2C55Δx1Þ∕Δx3 þ ð2C11Δx3Þ∕Δx1Þ;

(A-21)

A34 ¼
1

12
ð−3ðC13 þ C55Þ þ ð4C35Δx1Þ∕Δx3

þ ð4C15Δx3Þ∕Δx1Þ; (A-22)

A35 ¼ −ððC55Δx1Þ∕ð3Δx3ÞÞ þ ðC11Δx3Þ∕ð6Δx1Þ; (A-23)

A36 ¼
1

12
ð3C13 − 3C55 − ð4C35Δx1Þ∕Δx3

þ ð2C15Δx3Þ∕Δx1Þ; (A-24)

A37 ¼
1

6
ð3C15 − ðC55Δx1Þ∕Δx3 − ðC11Δx3Þ∕Δx1Þ;

(A-25)

A38 ¼
1

12
ð3ðC13 þ C55Þ − ð2C35Δx1Þ∕Δx3

− ð2C15Δx3Þ∕Δx1Þ; (A-26)

A44 ¼
1

6
ð−3C35 þ ð2C33Δx1Þ∕Δx3 þ ð2C55Δx3Þ∕Δx1Þ;

(A-27)

A45 ¼
1

12
ð−3C13 þ 3C55 − ð4C35Δx1Þ∕Δx3

þ ð2C15Δx3Þ∕Δx1Þ; (A-28)

A46 ¼ −ððC33Δx1Þ∕ð3Δx3ÞÞ þ ðC55Δx3Þ∕ð6Δx1Þ; (A-29)

A47 ¼
1

12
ð3ðC13 þ C55Þ − ð2C35Δx1Þ∕Δx3

− ð2C15Δx3Þ∕Δx1Þ; (A-30)

A48 ¼
1

6
ð3C35 − ðC33Δx1Þ∕Δx3 − ðC55Δx3Þ∕Δx1Þ;

(A-31)

A55 ¼
1

6
ð3C15 þ ð2C55Δx1Þ∕Δx3 þ ð2C11Δx3Þ∕Δx1Þ;

(A-32)

A56 ¼
1

12
ð3ðC13 þ C55Þ þ ð4C35Δx1Þ∕Δx3

þ ð4C15Δx3Þ∕Δx1Þ; (A-33)

A57 ¼ ðC55Δx1Þ∕ð6Δx3Þ − ðC11Δx3Þ∕ð3Δx1Þ; (A-34)

A58 ¼
1

12
ð3C13 − 3C55 þ ð2C35Δx1Þ∕Δx3

− ð4C15Δx3Þ∕Δx1Þ; (A-35)

A66 ¼
1

6
ð3C35 þ ð2C33Δx1Þ∕Δx3 þ ð2C55Δx3Þ∕Δx1Þ;

(A-36)

A67 ¼
1

12
ð−3C13 þ 3C55 þ ð2C35Δx1Þ∕Δx3

− ð4C15Δx3Þ∕Δx1Þ; (A-37)
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A68 ¼ ðC33Δx1Þ∕ð6Δx3Þ − ðC55Δx3Þ∕ð3Δx1Þ; (A-38)

A77 ¼
1

6
ð−3C15 þ ð2C55Δx1Þ∕Δx3 þ ð2C11Δx3Þ∕Δx1Þ;

(A-39)

A78 ¼
1

12
ð−3ðC13 þ C55Þ þ ð4C35Δx1Þ∕Δx3

þ ð4C15Δx3Þ∕Δx1Þ; (A-40)

and

A88 ¼
1

6
ð−3C35 þ ð2C33Δx1Þ∕Δx3 þ ð2C55Δx3Þ∕Δx1Þ;

(A-41)

with Δx1 being the fine-element edge length in the x1-direction;
Δx3 being the fine-element edge length in the x3-direction; and
Cij are elasticity constants of the element Kh, which is assumed
to be constant within Kh but generally heterogeneous in a coarse
element. If using higher order finite elements, Cij should be inter-
polated with some appropriate interpolation rules. Note that we only
show the upper triangle part of A in equation A-5, and A is a sym-
metric matrix. For matrix B, which is related to the boundary con-
ditions, we have the element matrix BKh

for the fine element Kh on
left, right, top, and boundaries as

BKh
jleft boundary ¼ −

1

2
ðΔx3;Δx3; 0; 0; 0; 0;Δx3;Δx3ÞT;

(A-42)

BKh
jright boundary ¼

1

2
ð0; 0;Δx3;Δx3;Δx3;Δx3; 0; 0ÞT;

(A-43)

BKh
jtop boundary ¼ −

1

2
ðΔx1;Δx1;Δx1;Δx1; 0; 0; 0; 0ÞT;

(A-44)

BKh
jbottom boundary ¼

1

2
ð0; 0; 0; 0;Δx1;Δx1;Δx1;Δx1ÞT;

(A-45)

which again are calculated with exact integration rules.
The above system has 2ðr1 þ 1Þðr3 þ 1Þ degrees of freedom for

u (including u1 and u3). In Larson and Bengzon (2013), the stress
tensors on triangular elements can be obtained with the gradients of
u calculated using the MATLAB built-in partial differential equation
(PDE) function pdegrad. Because we have used rectangular ele-
ments, we calculate the stress tensor at the center of each fine
element with the definition of equation A-1 using the RSG fi-
nite-difference scheme (Saenger et al., 2000). For example, for
σ11 at the ðj1; j3Þth fine element, we have

σ11ðj1;j3Þ

¼C11ðj1;j3Þ
1

2Δx1

��
u1

�
j1þ

1

2
;j3þ

1

2

�
−u1

�
j1−

1

2
;j3−

1

2

��

þ
�
u1

�
j1þ

1

2
;j3−

1

2

�
−u1

�
j1−

1

2
;j3þ

1

2

���

þC13ðj1;j3Þ
1

2Δx3

��
u3

�
j1þ

1

2
;j3þ

1

2

�
−u3

�
j1−

1

2
;j3−

1

2

��
:

−
�
u3

�
j1þ

1

2
;j3−

1

2

�
−u3

�
j1−

1

2
;j3þ

1

2

���

þC15ðj1;j3Þ
1

2Δx1

��
u3

�
j1þ

1

2
;j3þ

1

2

�
−u3

�
j1−

1

2
;j3−

1

2

��
:

þ
�
u3

�
j1þ

1

2
;j3−

1

2

�
−u3

�
j1−

1

2
;j3þ

1

2

���

þC15ðj1;j3Þ
1

2Δx3

��
u1

�
j1þ

1

2
;j3þ

1

2

�
−u1

�
j1−

1

2
;j3−

1

2

��
:

−
�
u1

�
j1þ

1

2
;j3−

1

2

�
−u1

�
j1−

1

2
;j3þ

1

2

���
; (A-46)

where Δx1 and Δx3 are the lengths of the vertical and horizontal
edges of the fine element, respectively. This solution, along with
the solutions in the other three blocks, is further taken as the multi-
scale basis function ϕ11 of stress component σ11, as described in the
text. Multiscale basis functions for the other stress components can
be calculated in the same way.

APPENDIX B

NUMERICAL HOMOGENIZATION FOR 3D
HETEROGENEOUS, GENERALLY

ANISOTROPIC MEDIA

For 3D heterogeneous, anisotropic elastic media, we decompose
the support of σ with eight cubic blocks, and in each of the blocks,
we assume that a local linear elasticity problem similar to equation 6
is satisfied. We can define boundary conditions similar to those in
the 2D case. If we denote the two faces of a cubic block that are
perpendicular to the xi-axis with F i, the boundary conditions for
each stress component will be

σ11 ¼ 1 on F 1; (B-1)

σ22 ¼ 1 on F 2; (B-2)

σ33 ¼ 1 on F 3; (B-3)

σ23 ¼ 1 on F 2 and F 3; (B-4)

σ13 ¼ 1 on F 1 and F 3; (B-5)

σ12 ¼ 1 on F 1 and F 2: (B-6)
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This local problem can also be solved with the FEM, which is
similar to the approach in Appendix A. After solving the local prob-
lems in each of the eight cubic blocks, we join them together to form
the basis functions of σ in Kσ .
With algebraic manipulations similar to those for the 2D case, we

finally have the 3D effective compliance matrix as

~S¼

0
BBBBBB@

S11ϕ11ϕ11 S12ϕ22ϕ11 S13ϕ33ϕ11 S14ϕ23ϕ11 S15ϕ13ϕ11 S16ϕ12ϕ11

S12ϕ11ϕ22 S22ϕ22ϕ22 S23ϕ33ϕ22 S24ϕ23ϕ22 S25ϕ13ϕ22 S26ϕ12ϕ22

S13ϕ11ϕ33 S23ϕ22ϕ33 S33ϕ33ϕ33 S34ϕ23ϕ33 S35ϕ13ϕ33 S36ϕ12ϕ33

S14ϕ11ϕ23 S24ϕ22ϕ23 S34ϕ33ϕ23 S44ϕ23ϕ23 S45ϕ13ϕ23 S46ϕ12ϕ23

S15ϕ11ϕ13 S25ϕ22ϕ13 S35ϕ33ϕ13 S45ϕ23ϕ13 S55ϕ13ϕ13 S56ϕ12ϕ13

S16ϕ11ϕ12 S26ϕ22ϕ12 S36ϕ33ϕ12 S46ϕ23ϕ12 S56ϕ13ϕ12 S66ϕ12ϕ12

1
CCCCCCA
;

(B-7)

where, for quadrilateral elements,

Sijϕstϕpq ¼
1

n1n2n3

Xn1
j1¼1

Xn2
j2¼1

Xn3
j3¼1

Sijðj1; j2; j3Þ

× ϕstðj1; j2; j3Þϕpqðj1; j2; j3Þ (B-8)

is a summation over all fine elements within Kσ ; ni is the number of
fine elements along the ith axis, with i ¼ 1; 2; 3; and ϕij are the
multiscale basis functions solved from local problem for σij. The
effective elasticity matrix for a coarse block Kσ is

~C ¼ ~S−1: (B-9)

Finally, for the density, we have

~ρ ¼ 1

n1n2n3

Xm1

j1¼1

Xn2
j2¼1

Xn3
j3¼1

ρðj1; j2; j3Þ: (B-10)

APPENDIX C

2LTH-ORDER ROTATED STAGGERED-GRID FI-
NITE-DIFFERENCE SCHEME

Throughout the numerical experiments to compare the wavefield
in fine-scale media and in the effective media, we solve the aniso-
tropic wave equation using the high-order RSG finite-difference
method. Because the RSG finite-difference method for wave equa-
tions has already been described in previous work (e.g., Saenger
et al., 2000; Saenger and Bohlen, 2004), here we only provide some
of the key results. In RSG, the derivatives of a field variable u de-
fined at integer position ði1; i3Þ are expressed as the summation or
difference of the derivatives along rotated axes (Saenger et al.,
2000); i.e.,

∂1u ¼ Δr
2Δx1

ðD3uþD1uÞ;

∂3u ¼ Δr
2Δx3

ðD3u −D1uÞ; (C-1)

with the conventional staggered-grid derivatives D1 and D3 along
rotated axes expressed as

D1 ¼
1

Δr

XL
m¼1

cm½uði1 þm−; i3 −m−Þ

− uði1 −m−; i3 þm−Þ�;

D3 ¼
1

Δr

XL
m¼1

cm½uði1 þm−; i3 þm−Þ

− uði1 −m−; i3 −m−Þ�;

(C-2)

wherem− ¼ m − 1∕2, Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx21 þ Δx23

p
, L is half of the order of

spatial accuracy, i1 and i3 are the integers along the x1- and x3-axes,
respectively, and the staggered-grid coefficients can be calculated as
(Fornberg, 1990)

cm ¼ ð−1ÞLþ1
Q

L
n¼1;n≠m ð2n − 1Þ2

ð2m − 1ÞQL
n¼1;n≠m½ð2m − 1Þ2 − ð2n − 1Þ2� : (C-3)

In our numerical tests, we use 20th-order spatial accuracy, i.e.,
L ¼ 10, to calculate the spatial differential operators in the aniso-
tropic elastic wave equation, and the finite-difference coefficients
are listed in Table C-1.
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