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There has been considerable progress in the design and construction of quantum annealing devices. However,
a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite
multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on
insights from the study of spin glasses—the archetypal random benchmark problem for novel algorithms and
optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing
machines to state-of-the-art classical codes with an approach that compares the performance of different algo-
rithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances.
The advantage of such an approach lies in having to compare only the performance hit felt by a given algo-
rithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology
that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum
annealing has a “quantum advantage” over corresponding classical algorithms like simulated annealing. Our
results on a 496-qubit D-Wave Two quantum annealing device are compared to recently used state-of-the-art
thermal simulated annealing codes.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 03.67.Lx

I. INTRODUCTION

Optimization plays an integral role across disciplines. Not
only does modern manufacturing and transport heavily de-
pend on efficient optimization methods to reduce cost and
emissions, many fields of research depend on a multitude
of optimization techniques to solve a wide variety of prob-
lems. Similarly, the ever-increasing amount of data avail-
able to mankind means an urgent need for more efficient ap-
proaches in querying, parsing, and mining data, approaches
that often depend on optimization techniques. Within physics-
related disciplines alone, optimization is needed to solve many
difficult problems ranging from frustrated spin systems [1–
3] to novel approaches in material discovery, as well as the
efficient parsing of high-energy event data or astrophysical
spectra. As such, the search for more efficient optimization
approaches is of great importance. Because the speedup of
current silicon-based computing technologies is slowly com-
ing to an end mostly due to manufacturing and material con-
straints [4], interest in developing faster optimization methods
has shifted to the development of new state-of-the-art algo-
rithms, as well as novel computing paradigms, e.g., based on
quantum architectures.

Quantum computing [5, 6] and, in particular, adiabatic
quantum optimization [7–18] has gained increased momen-
tum since D-Wave Systems Inc. introduced the D-Wave Two
(DW2) quantum annealing device [19]. Inspired by the work
of Santoro et al. [12], multiple teams have attempted to
demonstrate that quantum adiabatic optimization—or quan-
tum annealing (QA) [20–23]—has advantages over conven-
tional thermal optimization techniques, such as, for example,
simulated annealing (SA) [24]. The idea behind QA is to adia-
batically quench quantum fluctuations to optimize a cost func-

tion (Hamiltonian) of a given complex optimization problem.
Potentially, the wave function of the problem might be able
to quantum tunnel through barriers in the free-energy land-
scape, i.e., QA might be able to outperform other approaches
like SA where temperature fluctuations are slowly reduced to
find the optimum. Towards the end of the annealing sched-
ule in SA, when these temperature fluctuations are small, the
system is unable to overcome free-energy barriers and, espe-
cially for problems with rough energy landscapes such as in
spin glasses [25, 26] and related problems, it might become
trapped in metastable states, thus missing the true optimum of
the problem.

The fact that a broad range of hallmark optimization prob-
lems, such as the satisfiability problem (k-SAT), the num-
ber partitioning problem, vertex covers, knapsack problems,
coloring problems, the traveling salesman problem, etc. can
be mapped onto quadratic unconstrained binary optimization
problems [27], means that devices that are tailored to solve
these, such as the DW2, could revolutionize today’s optimiza-
tion efforts. Although not a fully programmable universal
quantum computer, the D-Wave device represents a sizable
advance in (quantum) computing.

The seminal work of Rønnow et al. [28] took great care and
detail in defining the notion of quantum speedup. While at
the moment the demonstration of strong quantum speedup re-
mains a distant goal, the detection of limited quantum speedup
[29]—a speedup relative to a given corresponding classical al-
gorithm such as SA—seems more graspable. The number of
studies (see, for example, Refs. [28, 30–33, 33]) attempting
to detect quantum speedup is growing at a fast pace; however,
the definite detection of quantum speedup remains elusive. So
why, despite these large efforts, does quantum speedup re-
main to be demonstrated? Potentially, there are many reasons

ar
X

iv
:1

50
5.

01
54

5v
2 

 [
qu

an
t-

ph
] 

 2
 S

ep
 2

01
5



2

why this might be the case. On one hand the complex cir-
cuitry, combined with the extreme fragility of quantum states
to perturbations might be a source of decoherence and thus
loss of any advantage over conventional techniques. On the
other hand, the systems currently available (maximally 512
qubits on DW2, soon up to ∼ 1000) might be too small for
the benchmarks to be in the asymptotic scaling regime. How-
ever, a more mundane reason that is relatively easy to fix is the
choice of the wrong benchmark problem. In Ref. [34], Katz-
graber et al. demonstrated that the native benchmark to search
for quantum speedup on a device like the DW2—an Ising spin
glass with discrete uncorrelated disorder—is likely a problem
that not only might be too easy to detect any speedup (think
of two world-class skiers on a bunny slope), but the energy
landscape of a spin glass on the DW2 Chimera topology [35]
might actually favor thermal approaches like SA, simply be-
cause the spin-glass state exists only at zero temperature. Fur-
thermore, the use of either bimodal or uniform range-k dis-
order [28, 31–33, 33] creates an energy landscape that has a
huge number of configurations that minimize the cost func-
tion. As such, any method like SA run with multiple restarts
will naturally excel in optimizing such a problem. Attempts
to mitigate this issue by planting solutions [36] delivers prob-
lem instances that might not be challenging enough for both
classical algorithms and quantum devices alike.

To overcome the limitations imposed by the small size of
current devices, it is imperative to use a native benchmark
problem that uses as many qubits N as possible on the de-
vice. Any embedding of a potentially harder problem [37]
will further reduce the number of logical qubits, thus pushing
the asymptotic regime farther away. Furthermore, it is hard
to mitigate the effects of noise on both qubits and couplers
without improving manufacturing. However, it is consider-
ably easier to design hard benchmark instances that attempt
to work around the flaws and limitations of the DW2 archi-
tecture. Reference [38] focuses on designing instance prob-
lems that are affected as little as possible by the chip’s in-
trinsic noise. Here, we present a simple road map that uses
insights from the study of spin glasses to design hard, as well
as tunable, benchmark instances.

In addition, we propose to search for quantum advantages
over classical architectures not only by comparing to state-of-
the-art classical algorithms [39], but by studying the effects
of tuning the instance complexity for a given type of disor-
der on both classical and quantum approaches. By studying
the performance hit felt by the different approaches on care-
fully tailored problems with a free-energy landscape that is
either dominated by large barriers or is reminiscent of a ferro-
magnetic system, further insights into the nature of quantum
annealing devices can be gained. To perform a fair compari-
son across instances, here we fix the ground-state degeneracy
(ideally) to 1 (or as low as possible) and vary the complex-
ity of the free-energy landscape by using the spin-glass order
parameter distribution as a proxy to the dominant features of
the landscape [40, 41]. We show that, indeed, the spin-glass
order parameter distribution produces tunable instances, and
that predictions from the study of spin glasses on the complex-
ity of the energy landscape allows us to produce problems on

average considerably harder than any previous study.
We emphasize that we are not attempting to perform a scal-

ing analysis as done in previous studies, simply because we
believe that the currently accessible system sizes of up to 512
qubits are too small to be in the asymptotic limit [42]. We base
this statement on previous simulations of two-dimensional
Ising spin glasses on a square lattice at zero temperature with
discrete disorder [43] where corrections to scaling due to the
finite system sizes were very strong for systems with ∼ 103

spins.
Our results show that the DW2 device is outperformed at

finding the ground state by classical state-of-the-art optimiza-
tion algorithms. However, there is a potential signature that
the DW2 device might be able to optimize certain classes of
carefully designed native spin-glass problems more efficiently
than the classical counterpart SA, especially if noise is re-
duced. This suggests that the DW2 device potentially has a
“quantum advantage” over corresponding classical algorithms
like SA for certain problems. In addition, there are signs that
the DW2 device might in some cases be more effective at gen-
erating low-lying states, as opposed to strict ground states than
SA. Finally, our results suggest that “classical computational
hardness” in spin glasses seems to carry over to quantum an-
nealing devices, therefore facilitating the design of spin-glass-
based instances. The day that quantum annealing machines
have lower noise levels, higher connectivity to enable the sim-
ple embedding of spin-glass problems with, e.g., a finite tran-
sition temperature [34, 37], or a larger numbers of qubits,
a combination of the approach presented in Ref. [28], with
error-correction techniques [31, 44], and designer instances
described in this work will likely show if quantum speedup is
myth or reality.

The paper is structured as follows. In Sec. II, we introduce
the native benchmark problem, followed by a detailed descrip-
tion of the limitations of current approaches as well as how
we design hard instance problems in Sec. III. Section IV sum-
marizes results on both the DW2 device, as well as classical
simulation codes, followed by a discussion and summary. Ap-
pendix A outlines our experimental methodology on the DW2
device housed at D-Wave Systems Inc., followed by simula-
tion details in Appendix B and numerical results in Appendix
C. Appendix D summarizes less fruitful efforts experimenting
with other instance classes.

II. NATIVE BENCHMARK: SPIN GLASSES

We illustrate our benchmarking ideas using the D-Wave
Systems, Inc., D-Wave Two quantum annealing machine [45].
The native benchmark problem for the DW2 device is an Ising
spin glass [6, 25–27] defined on the Chimera topology of the
system [35],

H = −
∑
{i,j}∈V

JijS
z
i S

z
j −

∑
i∈V

Szi hi . (1)

The N Ising spins Szi ∈ {±1} are defined on the vertices
V of the Chimera lattice (see Fig. 7) and can be coupled to
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a (local) field hi. The sum is over all edges E connecting
vertices {i, j} ∈ V . In this study we set hi = 0 ∀i.

We emphasize that it is of paramount importance to study
native problems that use as many qubits as possible to prevent
overhead that might yield smaller embedded problems. At the
moment, with approximately 500 (soon 1000) qubits at hand,
it will be difficult to detect any quantum speedup. As such,
our focus does not lie in performing a detailed scaling analy-
sis with the problem sizeN , but to show how to select tunable
hard problems that have the same disorder distribution, i.e.,
have the same strengths or weaknesses with respect to the in-
trinsic noise found in these devices. Tuning the complexity
of the problem instances will then allow for a systematic test-
ing of any potential advantages or disadvantages that the DW2
device might have over other architectures and/or simulation
approaches. Note that in this study we disregard the effects
of noise on the couplers and qubits and will report on these
in a subsequent publication with strategies on how to mitigate
the effects of perturbed problem Hamiltonians [38]. However,
for the generated problems, the resilience to noise (robustness
to perturbations) on the qubits and couplers is roughly similar
and mostly agrees within error bars for the different instance
subclasses that use interactions based on Sidon sets [46]; see
Sec. III B for details. This means that the noise of the DW2
does not affect our results.

III. DESIGNING HARD INSTANCES

We start by describing the shortcomings of previous in-
stances to detect quantum speedup and then outline our ap-
proach to produce tunable, hard instances.

In Ref. [34] it was shown that a spin glass on the Chimera
topology has a zero-temperature phase transition. Although
the worst case complexity of finding a ground state of an Ising
spin glass on the Chimera graph falls into the NP hard class,
performing any minimization of the energy based on any an-
nealing approach will likely have a rather simple phase space
to traverse for small system sizes because dominant barriers
will not be as pronounced. Embedding problems that have
a finite-temperature spin-glass transition is difficult, mainly
due to the large overhead; i.e., only systems with few logi-
cal qubits can be studied because many physical qubits are
needed to emulate long-range interactions. Because the result-
ing systems are small, the problems are far from the asymp-
totic regime to detect any quantum speedup in a scaling anal-
ysis.

A more promising route is thus to use insights from the
study of spin glasses and carefully design the interactions be-
tween the qubits on the native Chimera graph, such that the
problems are as hard as possible in order to challenge any op-
timization approach.

A. Problems with current approaches

In addition to a restrictive geometry, the D-Wave hardware
has clear restrictions as to what values the interactions be-

tween the spins can have. This is rather limiting and, as such,
only discrete and well-separated values of the couplers can be
set. The simplest approach used in previous studies [28, 31–
33, 33] is to select the disorder from a bimodal distribution,
i.e., Jij ∈ {±1} (we shall refer to these as U1), followed by
uniform range-k problems where the interactions Jij are cho-
sen from the integer set {±1,±2, . . . ,±k}. We refer to the
latter as Uk. The problem with these choices for systems up
to N = 512 variables is the huge degeneracy of the ground
states that yields again benchmarks too simple to challenge
any optimization approach (see Sec. IV). A simple analogy to
this problem is a game of golf where the green has, for exam-
ple, 107 holes. Hitting a hole in one is a trivial task! However,
having a course with only one hole makes the sport truly chal-
lenging. As such, we design herein problems that—within the
hardware restrictions of the machine—have a unique configu-
ration that minimizes the Hamiltonian in Eq. (1).

Other approaches [36, 47] using planted solutions suffer
from similar problems: While the instances are harder than
for the problems in the Uk class, they often still have a large
degeneracy and their complexity is not high enough for the
current available systems of up to ∼ 103 qubits. In particu-
lar, the very careful work presented in Ref. [36] shows a clear
easy-hard-easy transition of the planted k-SAT solutions that
could be exploited to generate hard instances. However, one
problem that these instances have is that the disorder is not
drawn from a particular distribution; i.e., two different planted
k-SAT instances will likely have a very different (classical)
energy spectrum and thus also be differently susceptible to the
intrinsic noise found in the DW2 device [48]. Furthermore,
we perform experiments with planted k-SAT solutions as pre-
sented in Ref. [36] using the benchmark codes in Ref. [39] and
find that these instances are at times easier than the ones in the
U1 class. The authors of Ref. [36] do emphasize that harder
problems must be designed to allow for the optimization of
the annealing time, as well as the need to find problems where
the benefits of quantum annealing can be assessed ahead of
time.

Finally, setting the spin-spin interactions within the K4,4

unit cell of Chimera (see Fig. 7) to be of larger magnitude
than those between the cells (often referred to as “cluster prob-
lems”) has given DW2 an advantage over classical codes in a
scaling analysis [49] when cluster Monte Carlo updates are
not allowed. However, by design, simulated annealing (and
any other Monte Carlo-like simple-sampling variation) will
have a large disadvantage. The addition of simple clusterlike
moves would again give classical approaches the upper hand
and, as such, these approaches are not a viable route to detect
any speedup, especially because they are unphysical.

B. Designing tunable hard instances

Our approach to generate hard instances capitalizes on the
similarity between classical hardness of spin-glass-like prob-
lems and quantum hardness. In Fig. 6 of Ref. [40], it was
shown in detail how the “mixing” or “autocorrelation” time
strongly correlates to the complexity of the spin-glass order
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parameter distribution while performing the simulations with
state-of-the-art parallel tempering Monte Carlo methods [50–
52]. Autocorrelation times uniquely characterize the time a
classical algorithm needs to completely decorrelate the sys-
tem. As such, the time can be used as an indirect proxy of the
time complexity of a particular disorder instance.

In spin glasses, order is measured by comparing two copies
of the system with the same disorder [25]. For simplicity, we
set Szi ≡ Si, because we are studying the system classically.
In that case, the overlap between two replicas α and β with the
same disorderJ but independent Markov chains is defined via

q =
1

N

N∑
i=1

Sαi S
β
i , (2)

where the sum is over all spins N . One can then study the
distribution of the order parameter P (q) which characterizes
a given disorder instance J . After a disorder average [· · · ]av
over many instances P(q) = [P (q)]av displays a single peak
around q ∼ 0 for high temperatures. For T → 0 two peaks
at ±qEA emerge [53, 54], a characteristic signature of a bro-
ken symmetry. However, for a given instance the structure
of the distribution P (q) can be rather complex and can have
multiple peaks at different values of q in addition to the two
dominant peaks at ±qEA. Individual peaks can be identified
with pairs of dominant valleys in the (free-) energy landscape
[26]. When these peaks are close to q ≈ 0, one can assume
that a thick barrier separates these valleys, whereas when the
peaks are close the barriers are typically thin.

Reference [40] showed that when the distribution P (q) has
large support for an area close to q = 0, then the autocorrela-
tion times were typically larger than when the support around
q = 0 is close to zero. As such, by measuring the distri-
bution function P (q), we can predict approximately the time
complexity of a particular disorder instance [41]. This is illus-
trated in the main panel (bottom left) of Fig. 1. There, three
characteristic instances are shown (color coded). An instance
with many peaks close to q = 0 will typically be computa-
tionally harder than one that has only two peaks at q ∼ 1 (red
line). Our experiments (shown herein) on the DW2 device
show that, indeed, the complexity of an instance can be tuned
by studying the structure of P (q) where the distance between
two dominant peaks corresponds roughly to the barrier thick-
ness in phase space and the relative depth between the peaks
and maxima can be interpreted approximately as the barrier
depth. While we are confident that there is a clear correlation
between the distance ∆q of two well-defined peaks and the
thickness of barriers in the energy landscape, the correlation
of the depth between the peaks and the height of the barriers
remains to be tested experimentally by a more precise min-
ing of the data. However, if the depth between the peaks is
nonzero, then it is safe to assume that there is some relatively
trivial path that connects the valleys [55].

In addition to selecting instances according to the complex-
ity of the phase space by studying the behavior of the spin-
glass order parameter distribution, we estimate the number of
configurations for a given instance that minimize the Hamil-
tonian in Eq. (1). The goal is to make the problem as difficult

as possible by restricting the number of minimizing configura-
tions ideally to one, i.e., a unique ground state. To estimate the
number of ground-state configurations a given instance has,
we use the method pioneered in Refs. [56, 57] where states
at very low temperatures are sampled with parallel temper-
ing Monte Carlo techniques. Once the ground-state energy
is found, a histogram with minimizing configurations is cre-
ated (indexed by translating the binary configuration string to
a number) and sampled until every bin has at least 50 hits.
We make sure that we find the true ground-state energy by
studying every instance with different simulational heuristics.
However, we cannot be completely certain that we have found
all configurations that minimize the Hamiltonian, simply be-
cause in some cases this number can be huge (in the worst case
2N ). Having exactly one ground state is not a necessary con-
dition to generate a hard problem. However, if our efficient
low-temperature search is unable to find more states that min-
imize the cost function, it will be unlikely that other methods
will.

A large source of degeneracy in an Ising Hamiltonian is due
to zero local fields. The Hamiltonian in Eq. (1) can be written
as a single-spin expression, namely,

H =

N∑
i∈V
FiSi, (3)

where the local fields Fi are given by

Fi = −
∑
j 6=i

JijSj − hi. (4)

Whenever for a given disorder Fi = 0, spin Si can take any
value without influencing the energy of the system. There-
fore, if a given disorder instance has k spins where Fi = 0,
the degeneracy of the ground state will grow by a factor 2k.
To prevent this from happening, we need to choose the dis-
order from a distribution that—within the restrictions of the
device—minimizes the cases where the local fields are zero.
The most convenient choice is thus to select the values of |Jij |
from a Sidon set [46]. In a Sidon set, the sum of two members
of the set gives a number that is not part of the set. For exam-
ple, the set {2, 5, 10} is a Sidon set because the pairwise sum
of members of the set never adds up to a member of the set.
This is not the case for {2, 5, 7}, where 2 + 5 = 7.

To illustrate our ideas, we choose the interactions between
the spins from the Sidon set S28

Jij ∈ {±8/28,±13/28,±19/28,±28/28}, (5)

where we normalize the interactions to be restricted between
±1 [58]. To select instances with particular properties, we can
therefore generate large numbers of random problems using
different disorder distributions and then mine the data. We
first fix the number of ground-state configurations to 1, and
then we divide the instances into subclasses by studying the
(normalized) overlap distribution P (q) for each instance. For
example, we define the following classes:

(a) Hard instances with thick barriers: These are instances
where P (q) > 5 for |q| ≤ 0.75. See Fig. 1, main panel.
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We are interested in instances that have dominant peaks
in the central (blue/dark) window. Based on classical
simulations, we expect these instances to be on average
among the hardest. In particular, we expect that both
simulated, as well as quantum annealing will have trou-
ble finding the optimum – see Fig. 1(a).

(b) Hard instances with thin barriers: These are instances
where P (q) ≈ 0 for |q| ≤ 0.50 and where P (q) > 2.5
for |q| ≥ 0.5 with at least two peaks in the range |q| ∈
[0.5, 1.0]. See Fig. 1, main panel. We are interested
in instances that have dominant peaks that are close to
each other in the gray boxes close to |q| > 0.5. Based
on classical simulations, we expect these instances to be
on average hard, however, not as hard as the instances
with a thick barrier. We expect that while simulated
annealing will have similar problems than with the in-
stances with a thick barrier, quantum annealing might
show an enhanced performance if the device has some
quantum advantage over classical codes – see Fig. 1(b).

(c) (Hard) instances with small barriers: These are in-
stances where P (q) < 0.1 for |q| ≤ 0.75. The over-
lap distribution is reminiscent of a ferromagnet at low
temperature. In this case no peaks are allowed in the
large central (red/light) box of Fig. 1, main panel. In
these instances we expect one dominant energy valley
(up to smaller wiggles), i.e., these should be the easiest
instances on average for any annealing approach. See
Fig. 1(c).

Note that the individual windows we use are tuned such that
from 105 randomly simulated instances approximately 5000
match the aforementioned criteria. After filtering the in-
stances that have more than one minimizing configuration, we
obtain approximately 2500 instances to experiment with. The
detailed simulation strategy, as well as simulation parameters,
are listed in Appendix B.

Noise on the DW2 device is approximately 5% of a par-
ticular external field (qubit noise) h and 3.5% of a spin-spin
interaction (coupler) Jij . For the instances in S28, the smallest
classical energy gap is ∆E = 2/28, i.e., slightly larger than
the noise found on the DW2 device. While this will affect the
success probabilities, it will affect all instances, either easy
or hard, approximately the same way. To verify this, we per-
form detailed simulations where we compute the ground-state
energy and configuration of a given instance with no degen-
eracy, perturb the couplers and qubits with Gaussian random
noise of a typical strength found in the current DW2 device,
and recompute the ground-state configuration. We apply 10
noise gauges and compute how stable the different instance
subclasses defined below are on average. Our results show
that all Sidon-set-based instance subclasses with different bar-
rier thicknesses are affected similarly by the intrinsic noise of
the device (not shown). As such, when comparing instance
classes, on average a fair comparison is performed.

-1 -0.5 0 0.5 1q

no peaks allowed

QASAQASA

SA/QA

(a) (b)

(c)

P (q)

FIG. 1: Main panel: Overlap distribution P (q) for three characteris-
tic disorder instances. For the hard instances with thick barriers, we
choose instances in the central [blue (dark)] box that have features
that extend outside this domain. Based on classical simulations, we
expect these instances to be on average among the hardest. In (a),
we show the expected outcome of experiments with both simulated
annealing (SA) and quantum annealing on the DW2 device (QA).
Because the barriers are large and thick, we expect both classical
and quantum approaches to have difficulties. In (b), we illustrate the
expected behavior when the barriers are thin, i.e., double peaks (or
more) that protrude from the dark boxes in the region |q| > 0.5.
The features in the energy landscape of these hard instances with
thin barriers are still very pronounced, but we expect the barriers to
be thinner than in (a). While SA should show little to no advantage
when the barriers remain high but are thinner, if the DW2 device has
any quantum advantage, it might be able to overcome these barriers.
Finally, we study instances that have no features for |q| < 0.75 (large
red box in the main panel) and only have a single peak at ±qEA.
These (hard) instances with small barriers have the simplest energy
landscape (c) with mostly only one dominant feature. As such, we
expect any annealing approach to efficiently find the optimum of the
problem (on average). Note that these are cartoons intended to illus-
trate the different instance classes and do not represent actual data.

IV. RESULTS

A detailed list of the average success probabilities is given
in Appendix C. To make sure that an approximately fair com-
parison with a known baseline study is performed, we tune the
number of sweeps for the SA codes [39] such that the average
success probabilities for SA and the DW2 device are approx-
imately the same for bimodal disorder. This is the case for
Nsw = 900 sweeps. Note also that below we quote mainly
average success probabilities. The reason is that for the hard-
est instance classes the DW2 device is often unable to mini-
mize the cost function for the number of runs performed; i.e.,
a median would be zero and thus deliver no useful informa-
tion. Because probabilities are restricted to be in the interval
[0, 1], an average is well defined.
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A. The ugly—D-Wave Two fails often

Figure 2 shows sorted success probabilities p for SA (left)
and the DW2 device (right) and different instance classes nor-
malized by the number of samples Nsa studied. We compare
classes S28 with thick, thin, and small barriers with uniform
range-4 (U4) instances and bimodal disorder (U1) used in pre-
vious studies [28]. The data for the DW2 device show a clear
progression in complexity and, in particular, that the device is
unable to solve many of the harder problems (success prob-
abilities below 10−4). The SA simulations using the codes
of Ref. [39] show that bimodal disorder is considerably easier
than all other instance classes. Furthermore, for the number
of sweeps used, the complexity of U4 is similar to S28 with
small (“none”) barriers. Interestingly, the SA codes do not
distinguish between S28 instances with thin and thick barri-
ers. Note that this is not the case for the DW2 device.

Furthermore, SA can solve a much wider range of in-
stances, as can be seen by the distributions dropping to zero
only close to n → Nsa. This means that while the typical
(median) probability to solve a problem is finite for the SA
codes, for the hardest instance classes the median is zero for
the DW2 device. A double-peaked success behavior of the
quantum annealer is consistent with what has been reported in
Refs. [28, 32], who present it as evidence of quantum behav-
ior, although the hypothesis has been subsequently challenged
by studies of quasiclassical models [59, 60]. Finally, we em-
phasize that by optimizing the number of sweeps in the SA
codes these can be tuned to outperform the DW2 device for
all disorder classes studied.

B. The bad—Previous instance classes are too easy

Figure 3 shows averaged (and gauge-averaged) success
probabilities in logarithmic scale for both DW2 and SA for
different instance classes. The data clearly illustrate that the
average success probabilities for bimodal disorder are approx-
imately 1 order of magnitude larger than any other type of dis-
order studied. Note that we choose the number of sweeps for
SA such that the average success probability in the bimodal
class is comparable to the DW2 device. For the DW2 device,
one can clearly see a progression in difficulty between U1, U4,
as well as the Sidon set S28 with small barriers, followed by
the Sidon sets with thin and thick barriers. For the choice of
sweeps in SA, U4 is comparable to S28 with no dominant bar-
riers, and the S28 instances with thick and thin barriers have
approximately the same average success probabilities. For all
Sidon instance classes studied, the classical SA simulations
outperform DW2 based on raw success probabilities. This is
seen in more quantitative detail in Fig. 4, which shows the ra-
tio of the average success probability for SA divided by the
average success probability for DW2 for each instance class.
To establish any quantum speedup, a system-size scaling is
needed. However, the fact that the average success probabil-
ities for the bimodal disorder for DW2 and the classical SA
codes are much larger than for all other problems suggests
that bimodal disorder (or, more generally, highly degenerate

10−4

10−3

10−2

10−1

100

0 0.25 0.50 0.75 1

SA

0 0.25 0.50 0.75 1

DW2
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FIG. 2: Sorted success probabilities p (after a gauge average) in
percent SA (left) and the DW2 device (right) and different instance
classes. The instance index n is normalized by the number of in-
stancesNsa per class for better viewing. For both cases, bimodal dis-
order (U1) is the easiest problem class to solve. Although the shape
of these functions is different, the number of sweeps in SA are chosen
such that on average the success probabilities for the U1 are similar
using SA and the DW2. Using SA, uniform range-4 (U4) instances
are comparable to Sidon instances S28 with small (“none”) barriers.
Furthermore, SA does not distinguish between S28 instances with
thin and thick barriers. There is a clear progression in complexity
for the different instance classes on the DW2 device. In particular,
while SA can solve almost all instances studied, this is not the case
for the DW2. The median success probability for the hardest instance
classes (S28) is zero on the DW2 for the number of runs performed;
i.e., the machine would need many more runs to be able to find the
optimum of hard native problems. Error bars are omitted for better
viewing.

random problems) is too easy a problem to detect any quan-
tum speedup. Running any classical SA code in repetition
mode with highly degenerate problems potentially represents
an advantage over any quantum annealing scheme. Overall,
DW2 has far lower average success probabilities on the Sidon
sets. This can be explained by the inherent noise present in
the device. In the Sidon sets the gap to the first excited state
is considerably smaller than for, e.g., bimodal disorder. As
such, solving a Hamiltonian that is not the target Hamiltonian
due to noise-induced perturbations is likely. Therefore, in an
attempt to filter out these effects, we study relative probabil-
ities between instance classes and not between optimization
techniques. Because the problem instances are randomly gen-
erated, one can expect that within a given instance type, e.g.,
S28, the noise affects all instance classes in a similar fashion
[58], as we see in our simulations. This means also that the
difference in the performance of DW2 for S28 instances with
thick and thin barriers is likely not an artifact of the chosen
values for the couplers.
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FIG. 3: Average success probabilities pav (after a gauge average) for
DW2 and SA using different types of disorder. In all Sidon instance
classes (S28) the classical codes outperform DW2. Furthermore, suc-
cess probabilities for bimodal disorder (U1) are much larger than
for any other instance class, therefore suggesting that the degener-
acy produced by bimodal disorder makes this instance class too easy
to detect quantum speedup. Note also that the classical codes, on av-
erage, do not seem to distinguish between instances with thick and
thin barriers. Labels are from left to right.
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C. The good—Evidence of a quantum advantage?

Figure 3 suggests that—at least with the choice of anneal-
ing parameters made—in the Sidon instance class the classi-
cal codes do not seem to differentiate between thin and thick
barriers on average, whereas DW2 does seem to show an im-
provement in the average success probabilities when the bar-
rier thickness is decreased.

Given the stochastic nature of the classical algorithms, the
thickness of a barrier should have a much weaker effect on the

algorithmic efficiency than its height. We have selected the
instances in such a way that barriers are predominantly tall.
Although we have no exact control at the moment as to how
tall these barriers are, we can expect them to be on average
of similar height for both Sidon sets with thin and thick barri-
ers. However, by selecting instances with peaks in the overlap
distribution at a given distance from each other, we have good
control over the barrier thickness. Figure 5 shows the ratio of
average success probabilities when reducing the barrier thick-
ness (left) and removing dominant barriers (right) for both SA
and DW2. While reducing the barrier thickness has no ef-
fect on average on the classical algorithms, DW2 experiences
a performance increase. To make sure this is not an artifact
of our choice of simulation parameters, we run the SA codes
with bothNsw = 900 and 2000 sweeps obtaining qualitatively
the same results. Furthermore, we find no correlation between
the barrier thickness and the effects noisy couplers and qubits
have on the success probabilities for both instance classes.
When removing dominant barriers altogether, both classical
and quantum algorithms show a noticeable performance in-
crease. One can, therefore, surmise that when the barriers
are thin enough (and tall) the DW2 device might experience a
quantum advantage over classical approaches. However, a far
more careful and systematic study must be performed before
strong conclusions can be drawn.
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FIG. 5: Average success probability increase when reducing the bar-
rier thickness (ratio between the average success probabilities for S28

thick and S28 thin) and removing the barriers (ratio between the av-
erage success probabilities for S28 thick and S28 none). While in the
latter case both classical algorithms and the quantum annealer show
a performance boost on average, in the former only the quantum an-
nealer shows improvement.

To gain a deeper understanding of the noise effects that af-
fect the DW2 device, we relax our criterion for a successful
optimization run by allowing the k lowest excited states to
count towards a “successful” run in the Sidon sets. In this
case, the smallest classical energy gap when flipping a spin
is ∆E = 2/28 ≈ 0.0714. This should be compared with
the disorder-averaged ground state energy of the system, i.e,
[E0]av ≈= −551. We compute the success probabilities for
energies in the interval [E0, E0 + k∆E] for different instance
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classes using SA and the DW2. Figure 6 shows the average
success probabilities as a function of the number of energy
levels k. Although we only fix the average success probabili-
ties for the U1 class to be similar for DW2 (full symbols) and
SA (empty symbols) and k = 0, it seems this result holds
for at least the first 10 excited states. As can be seen, aver-
age success probabilities increase with an increased inclusion
of low-lying energy levels for all instance classes. The trend
is far more pronounced for the DW2 device than for SA in
the case of the Sidon sets S28, indicating that noise clearly
affects the ability of the machine to detect ground states. Fur-
thermore, note that allowing for the lowest 10 energy levels
in the S28 class corresponds to an increase in less than 1% in
the overall energy of the system. Averaging over gauges (i.e.,
different instances of noise terms in the Hamiltonian) does
help the DW2 device, thus illustrating that an increased per-
formance strongly depends on reducing noise, and also per-
forming multiple quenches.

Is the DW2 device of any use then? For problems affected
by noise due to device restrictions, the DW2 thus might effi-
ciently deliver low-lying energy states. This is of particular
relevance to problem domains such as machine learning [61]
and Bayesian statistical analysis [62].

For optimization, the data suggest that error-correction
strategies [31] that enhance robustness to noise should be ex-
plored in greater depth. Combined with a hybrid approach
that either breaks up the problem into smaller groups that are
easier to tackle [63–65], or uses other efficient computing ar-
chitectures [66] to complement the minimization, the DW2
device (or any other quantum annealing machine) might be an
efficient optimization tool one day.

V. DISCUSSION

We illustrate that a careful design of the benchmark in-
stances is key when attempting to detect quantum speedup.
In particular, using insights from the study of spin glasses can
help in designing benchmark problems that are considerably
harder than previous attempts, and are tunable. Noise levels
combined with the small number of qubits on the DW2 device
make it difficult to detect any quantum speedup at the moment.
Below, we attempt to discuss sources of the poor performance
of the device as seen from the spin-glass perspective.

Disordered frustrated binary systems are the native, likely
hardest, as well as simplest benchmark problems for any new
(quantum) computing paradigm. It is important to consider
some of the hallmark properties of spin glasses that could
make it extremely difficult to detect any (quantum) speedup
in the presence of coupler, as well as local-field qubit noise.

A. Effects of coupler noise

The extreme fragility of the spin-glass state was predicted
a long time ago [67, 68] and analyzed on the basis of scal-
ing arguments [69, 70]. These scaling arguments predict that
the configurations that dominate the partition function change
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FIG. 6: Average success probabilities pav (after a gauge average) for
both DW2 and SA as a function of the number k of low-lying energy
levels above the ground state for different instance classes. The top
panel shows data for the U1 and U4 instance classes, whereas the
bottom panel shows data for the S28 class. Both panels have the
same horizontal axis; we split up the data for better viewing. The
trend displayed by DW2 compared to the SA codes for the S28 class
suggests that noise might be the dominant source of the overall poor
performance of the DW2 device.

drastically and randomly when temperature, local fields, or the
interactions between the spins are modified. There is strong
(numerical) evidence of disorder chaos (coupler noise) in spin
glasses [71–78]. Therefore, small perturbations of the cou-
plers due to noise might lead to the destruction of the spin-
glass state, as well as to a change of the problem to be solved.
The latter can be alleviated slightly by performing multiple
gauges. However, the weak chaos regime is dominated by
rare events that can flip large spin domains that can directly
affect experimental results [77]. Increasing the classical en-
ergy gap beyond the noise level of the machine can partially
reduce these effects, however at the cost of producing consid-
erably easier benchmark instances [38].

One might argue that the minimum classical gap of the
Sidon instances (∆E = 2/28) is too small compared to the
machine restrictions when encoding problems. However, we
perform tests with a different instance class with a larger clas-
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sical energy gap and where the couplers are drawn from the
Sidon set {±5,±6,±7}, finding qualitatively similar results.

B. Effects of local-field noise

In mean-field theory [79], an Ising spin-glass system has a
line of transitions in a field [80], known as the de Almeida-
Thouless line that separates the paramagnetic phase at high
temperatures and fields from the spin-glass phase at lower
temperatures and fields [81–86]. Although the existence of a
de Almeida-Thouless line for short-range spin glasses is still
under some debate (see, for example, Refs. [87–89]), there is
vast numerical evidence for a multitude of geometries and, in
particular, low-dimensional systems that the spin-glass state is
strongly affected by any longitudinal (random) fields [90–93].
As for the case of disorder chaos in spin glasses, the spin-glass
state can be easily affected by the intrinsic qubit noise of the
DW2 device. Therefore, it might be plausible that, again, the
high levels of noise might reduce the success probabilities be-
cause the studied system is perturbed and dominant barriers
are affected.

VI. SUMMARY AND CONCLUSIONS

We find that for most disorder types studied, DW2 is sys-
tematically slower at finding the ground state than the state-
of-the-art classical SA codes developed by Isakov et al. [39].
Note that, by optimizing the number of sweeps in the SA
codes, these can be tuned to outperform the DW2 device for
all disorder classes studied. Although this might be discour-
aging at first, we argue that an improved machine calibration
[94], noise reduction [95], and the ability to likewise optimize
the quantum annealing schedule combined with larger system
sizes and tailored spin-glass problems might help in the quest
for quantum speedup. We also show that a “classically com-
putationally hard” problem seems to typically also be a hard
problem for the quantum annealing device. However, it could
also be that the DW2 device is a thermal annealer [59, 60, 96–
99] in disguise.

For the hardest Sidon instances the DW2 device does show
a promising trend when the success constraints are relaxed.
Furthermore, reducing the thickness between barriers in the
free-energy landscapes suggests that for the large Sidon in-
stances studied some quantum advantage might be present.
However, this would not be enough to deem the hardware
to be efficient, especially because it is unclear if this effect
persists for larger problem sizes. We conclude by stressing
that a careful design of benchmark instances is key to detect-
ing quantum speedup [28] or any quantum advantage a novel
quantum annealing device might have. We thus expect that a
combination of the methodologies outlined in this work with
the approach outlined in Ref. [28] that defines the notion of
“quantum speedup” in detail, combined with better hardware
(and maybe quantum error correction [31, 44]), will finally
show whether or not quantum annealing has an advantage over
classical thermal annealing.
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Appendix A: D-Wave Two quantum annealer description

The D-Wave device implements the quantum annealing al-
gorithm via superconducting compound Josephson junction
flux qubits [19]. The objective is to find the ground state of
the Ising problem Hamiltonian HP presented in Eq. (1) de-
fined on the D-Wave Chimera graph; see Fig. 7. This is at-
tempted by applying and slowly removing a transverse field.
The time-dependent Hamiltonian is thus given by

H(s) = A(s)HD +B(s)HP, (A1)

where the driver Hamiltonian HD =
∑
i σ

x
i , s ∈ [0, 1], and

A(s), B(s), which control the relative magnitudes of driver
and problem Hamiltonians are, respectively, decreasing and
increasing in s. Plots of A(s) and B(s) are shown in Fig. 8.
The parameter s can be translated to time t via the relation
t = stf , where tf is the annealing time.
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FIG. 7: Adjacency matrix of the D-Wave Two chip used in this
study. Circles represent the individual qubits and lines the cou-
plers. White circles represent fully functional qubits, whereas light
gray circles represent working qubits with missing couplers. Broken
qubits are represented by dark circles (16). This means that the total
number of working qubits is 496.

1. D-Wave Two Methodology

An annealing time of 20µs is used for all experimental
runs on the DW2 processor, which is cooled to a tempera-
ture of 18mK. Each problem instance is run NR = 104 times
in NG = 10 batches of randomly-chosen gauge transforma-
tions in order to provide protection against parameter noise
and control errors. To generate a gauge transformation, a set
of N random variables {ti}, with ti ∈ {−1, 1}, is sampled
uniformly, and the transformation

h′i ← hiti J ′ij ← Jijtitj (A2)

is made. In principle, this procedure does not fundamentally
change the problem, but due to parameter noise on the physi-
cal device, each gauge transformation of a given instance will,
in reality, correspond to a different Hamiltonian.

Following the analysis performed in Ref. [33], an instance’s
success probability across gauges is derived from the geomet-
ric mean of the gauges’ failure rates. If pg is the observed
success probability of a gauge g, then

p̄ = 1−
NG∏
g=1

(1− pg)1/NG . (A3)
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FIG. 8: (Color online) Quantum annealing schedules employed by
the D-Wave processor, where s = t/tf .

A “success” is defined as the occurrence of a state meeting a
criterion, for example, of having ground-state energy E0, or
with energy lying in a range [E0, E0 + ∆], ∆ > 0, of the
minimum.

The DW2 device is run in the so-called “autoscaling” mode
for all problems, which adjusts the nominally specified J and
h parameters to fully use the range allowed by the device.

2. Simulated annealing methodology

For the software-based simulated annealing experiments,
we use the codes developed by Isakov et al. [39] to ensure
a fair comparison with previous studies. The authors present
a variant of SA that exploits the bipartite nature of topologies
such as the Chimera graph’s in order to halve the number of
variables being simulated. This optimization results in con-
siderably improved performance over plain SA. In this study
we use the an ss ge nf bp vdeg routine.

All instances are simulatedNR = 104 times forNsw = 900
Monte Carlo sweeps each; clearly, no advantage would be
gained from gauge transformations in the software case. The
default geometric annealing schedule described in Ref. [39]
was adequate for our purposes, but the (inverse) temperature
scales were appropriately adjusted for each instance class.
The parameters of the simulation are listed in Table I.

Note that we choose Nsw = 900, such that the average
success probabilities for the DW2 device agree with the SA
simulations for the commonly studied bimodal (U1) disorder.
We choose this approach to provide a baseline for all other in-
stance classes. Simulations with Nsw = 2000 sweeps showed
qualitatively similar results.
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TABLE I: Simulated annealing parameters used for the different in-
stance classes. For each type of disorder class Jij , Nsw Monte Carlo
sweeps are performed on an annealing schedule from βi to βf .

Class Jij Nsw βi βf
U1 {±1} 900 0.1000 3.000
U4 {±1,±2,±3,±4} 900 0.2500 7.500
S28 {±8,±13,±19,±28} 900 0.0357 1.071

TABLE II: Raw results of the experiments on the DW2 device and
the simulated annealing (SA) codes for the different instance classes
we study. Listed are average success probabilities (pav) in percent,
as well as the number of disorder instances Nsa studied.

Class Nsa pav(%) [DW2] pav(%) [SA]
S28 (thick barriers) 2239 0.032(2) 0.141(3)
S28 (thin barriers) 1816 0.054(4) 0.140(3)
S28 (small barriers) 2637 0.095(4) 0.246(5)
U4 2000 0.50(3) 0.243(5)
U1 2000 7.24(26) 7.49(14)

Appendix B: Parallel tempering Monte Carlo simulation details

To compute the overlap distributionP (q) we perform finite-
temperature parallel tempering Monte Carlo simulations [50–
52] combined with isoenergetic cluster moves [102] to speed
up the simulations. We choose a temperature set with 30 tem-
peratures and the lowest temperature Tmin = 0.212 is cho-
sen such that thermalization can be completed in a meaning-
ful time and features in the overlap distribution are well de-
fined. Two replicas with N = 496 spins and the same disor-
der are thermalized for 223 Monte Carlo sweeps and P (q) is
measured over an additional 223 Monte Carlo sweeps to ob-
tain high-resolution data. We compute 105 randomly chosen
disorder instances for each problem class. The data are then
mined according to predefined criteria (see Sec. III B).

Appendix C: Experimental Results

Table II lists the numerical values of the average success
probabilities for the different instance classes we study either
on the DW2 device or with SA codes. All numbers are av-
eraged via a jackknife procedure over Nsa instances of the
disorder.

Appendix D: Other Instance Classes Studied

We also perform other experiments with different instance
classes. However, these are either too easy or it is extremely
difficult to obtain unique ground-state instances. Note that for
the J4 instances [34], where the interactions are bimodally dis-
tributed and the bonds in the K4,4 cells are a 1/4, as well as
the S1,3,7 small Sidon instances, we limit the number of con-
figurations that minimize the Hamiltonian to less than 32 be-
cause too few unique ground states could be found. As such,

TABLE III: Raw results of the experiments on the DW2 device and
the SA codes for additional instance classes we study. Listed are
average success probabilities (pav) in percent, as well as the number
of disorder instances Nsa studied.

Class Nsa pav(%) [DW2] pav(%) [SA]
J4 (thick barriers) 1250 0.50(3) 4.1(1)
J4 (small barriers) 2035 1.96(6) 13.3(2)
S1,3,7 (thick barriers) 1615 0.063(4) 0.59(1)
S1,3,7 (small barriers) 1582 0.22(1) 1.14(2)

we are merely mentioning here the results to prevent other re-
searchers from attempting to study these systems. Average
success probabilities are listed in Table III.
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A. Muñoz-Sudupe, et al., Simulating spin systems on IANUS,
an FPGA-based computer, Comp. Phys. Comm. 178, 208
(2008).

[67] S. R. McKay, A. N. Berker, and S. Kirkpatrick, Spin-
Glass Behavior in Frustrated Ising Models with Chaotic
Renormalization-Group Trajectories, Phys. Rev. Lett. 48, 767
(1982).

[68] G. Parisi, Spin glasses and replicas, Physica A 124, 523
(1984).

[69] D. S. Fisher and D. A. Huse, Ordered phase of short-range
Ising spin-glasses, Phys. Rev. Lett. 56, 1601 (1986).

[70] A. J. Bray and M. A. Moore, Chaotic Nature of the Spin-Glass
Phase, Phys. Rev. Lett. 58, 57 (1987).

[71] I. Kondor, On chaos in spin glasses, J. Phys. A 22, L163
(1989).

[72] M. Ney-Nifle and A. P. Young, Chaos in a two-dimensional
Ising spin glass, J. Phys. A 30, 5311 (1997).

[73] M. Ney-Nifle, Chaos and universality in a four-dimensional

spin glass, Phys. Rev. B 57, 492 (1998).
[74] A. Billoire and E. Marinari, Evidence against temperature

chaos in mean-field and realistic spin glasses, J. Phys. A 33,
L265 (2000).

[75] A. Billoire and E. Marinari, Overlap among states at different
temperatures in the SK model, Europhys. Lett. 60, 775 (2002).

[76] M. Sasaki, K. Hukushima, H. Yoshino, and H. Takayama,
Temperature Chaos and Bond Chaos in Edwards-Anderson
Ising Spin Glasses: Domain-Wall Free-Energy Measurements,
Phys. Rev. Lett. 95, 267203 (2005).

[77] H. G. Katzgraber and F. Krzakala, Temperature and Disorder
Chaos in Three-Dimensional Ising Spin Glasses, Phys. Rev.
Lett. 98, 017201 (2007).

[78] In fact, a recent study similar to our preliminary results
(see, e.g., https://youtu.be/C8fSpHW9XHk) attempts to de-
sign harder benchmark instances by exploiting the chaotic ef-
fects in spin-glass systems [108].

[79] G. Parisi, The order parameter for spin glasses: a function on
the interval 0–1, J. Phys. A 13, 1101 (1980).

[80] J. R. L. de Almeida and D. J. Thouless, Stability of the
Sherrington-Kirkpatrick solution of a spin glass model, J.
Phys. A 11, 983 (1978).

[81] R. N. Bhatt and A. P. Young, Search for a transition in the
three-dimensional ±J Ising spin-glass, Phys. Rev. Lett. 54,
924 (1985).

[82] A. Billoire and B. Coluzzi, Numerical study of the
Sherrington-Kirkpatrick model in a magnetic field, Phys. Rev.
E 68, 026131 (2003).

[83] A. Barrat and L. Berthier, Real-space application of the mean-
field description of spin-glass dynamics, Phys. Rev. Lett. 87,
087204 (2001).

[84] H. Takayama and K. Hukushima, Field-shift aging protocol on
the 3D Ising spin-glass model: dynamical crossover between
the spin-glass and paramagnetic states, J. Phys. Soc. Jpn. 73,
2077 (2004).

[85] J. Houdayer and O. C. Martin, Ising spin glasses in a magnetic
field, Phys. Rev. Lett. 82, 4934 (1999).

[86] F. Krzakala, J. Houdayer, E. Marinari, O. C. Martin, and
G. Parisi, Zero-temperature responses of a 3D spin glass in
a field, Phys. Rev. Lett. 87, 197204 (2001).

[87] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-
Lorenzo, Ising Spin-Glass Transition in a Magnetic Field Out-
side the Limit of Validity of Mean-Field Theory, Phys. Rev.
Lett. 103, 267201 (2009).

[88] R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion,
A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano,
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