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Abstract: We study interaction of counterpropagating beams in truncated
two-dimensional photonic lattices induced optically in photorefractive
crystals, and demonstrate the existence of counterpropagating surface
solitons localized in the lattice corners and at the edges. We display
intriguing dynamical properties of such composite opticalbeams and reveal
that the lattice surface provides a strong stabilization effect on the beam
propagation. We also observe dynamical instabilities for stronger coupling
and longer propagation distances in the form of beam splitting. No such
instabilities exist in the single beam surface propagation.
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1. Introduction

Spatial surface solitons propagating in waveguide arrays and two-dimensional (2D) photonic
lattices have attracted considerable attention recently for their potential in all-optical photonic
applications [1, 2]. Most of attention has been focused on the single propagating beams [3,
4], even though such periodic structures tend to spontaneously produce backward propagating
components [5]. Nonetheless, mutual interaction of two counterpropagating (CP) optical beams
in a nonlinear medium is one of the simplest, yet very important nonlinear process in optics.
Such seemingly simple geometry can give rise to complicatedand sometimes counterintuitive
beam dynamics, including both mutual and self trapping, andthe formation of stationary states
and spatiotemporal instabilities [6].

Fig. 1. (a) Problem geometry with the forward (F) and the backward (B) beams. (b,c)
Sketches of the surface modes localized in the lattice corner or at the edge, respectively.

Interaction between solitons that propagate in the opposite directions enable mutual focus-
ing, resulting from the interaction between the beams. The solitons interfere and give rise to an
effective grating. Mutual trapping of two CP optical beams was shown to lead to the formation
of a novel type of vector (or bimodal) solitons [7, 8], for both coherent and incoherent inter-
actions. A more detailed analysis [9] revealed that these CPsolitons may display a variety of
instabilities accompanied by nontrivial temporal and spatial dynamics, and many subsequent
theoretical and experimental studies were devoted to this subject [10].

The study of interaction of CP solitons in 1D [11] and 2D [12] nonlinear photonic lattices
revealed the existence ofthree different regimes: stable propagation of vector solitons at low
power, instability for intermediate powers, with a transverse shift of the solitons, and an irreg-
ular dynamical behavior of the two beams at high input powers. Nevertheless, both theoretical
and experimental results suggest that spatiotemporal soliton instabilities are suppressed with
the increasing strength of the optical lattice [11, 12].

In this paper we study the interaction of CP beams near the surface of a truncated 2D photonic
lattice optically induced in a photorefractive crystal, and describe novel types of CP solitons,
the so-calledcounterpropagating surface solitons, localized in the lattice corners or at its edges
(see Fig. 1). We also study extensively the dynamical properties of such composite solitons
and demonstrate that the lattice surface produces a strong stabilizing effect on such vectorial
solitons.
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2. Model and basic equations

To study the CP surface solitons in optically-induced photonic lattices [3] in the geometry
shown in Fig. 1(a), we consider a time-dependent model [9, 13] based on the theory of photore-
fractive effect. The model consists of the wave equations inthe paraxial approximation for the
propagation of mutually incoherent CP beams and a relaxation equation for the generation of
the space charge field (SCF) in the photorefractive crystal,

i
∂F
∂ z

= −∆F + ΓEF, −i
∂B
∂ z

= −∆B + ΓEB, (1)

τ
∂E
∂ t

+ E = − I
(1+ I)

, (2)

whereF andB are the forward and backward propagating beam envelopes,∆ is the transverse
Laplacian,Γ is the dimensionless coupling constant, andE is the homogenous part of SCF. The
relaxation time of the crystalτ also depends on the total intensity,τ = τ0(1+ I)−1. The total
intensity I = |F |2 + |B|2 is measured in units of the background intensity. A scalingx/x0 →
x, y/x0 → y, z/LD → z, is utilized for the dimensionless equations, wherex0 is the typical
FWHM beam waist andLD is the diffraction length. We assume that mutually incoherent CP
components interact through the intensity-dependent saturable SCF.

When the propagation in photonic lattices is considered, Eq. (2) is modified to include the
transverse intensity distribution of the lattice arrayIg, optically induced in the crystal

τ
∂E
∂ t

+ E = − (I + Ig)

(1+ I + Ig)
. (2a)

The form of Ig depends on the type of photonic lattice. For the square lattice, it is given by
Ig = I0sin2[π(x + y)/(d

√
2)]sin2[π(x− y)/(d

√
2)], whered is the lattice spacing. The propaga-

tion equations are solved numerically, concurrently with the temporal equation, in the manner
described in Ref. [14]. The dynamics is such that the SCF builds up towards the steady state,
which depends on the light distribution, which in turn is slaved to the change in SCF. In general,
we found that the presence of photonic lattice exerts a stabilizing effect on the propagation of
CP beams, as compared to the propagation in bulk. In our simulations we utilize experimental
data from Ref. [3], and vary the coupling constantΓ, the propagation distanceL, and the lattice
and beam intensities. However, we confine our attention hereto the cases with fixed lattice and
input beam intensities. We choose the lattice intensity comparable but stronger than the beam
intensities, in accordance with the experiment [3]. To check our numerics, we also simulated
the cases of single beam propagation, to find steady surface states very similar to the ones found
in experiment [3]. As compared to CP surface solitons, for identical other parameters the single
beam surface solitons require slightly higherΓ to form, but display no instabilities.

3. Spatially localized surface states

First, we consider thecorner states. Two mutually incoherent Gaussian beams of the same
intensity are launched head-on from the opposite faces of a photorefractive crystal, in which
an optically induced 2D photonic lattice is established [see Fig. 1(a)]. The beams are launched
in the center of the corner unit cell. Some characteristic outcomes of the surface modes are
presented in Fig. 2, after steady state is reached. The upperrow in the figure displays intensity
distributions of the forward beam at the exit face of the crystal. Insets depict the same situation
in the inverse space; added squares mark the first Brillouin zone (BZ) of the full lattice. It is seen
that with the increasing coupling constant, the beams focusinto well defined CP solitons, close
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Fig. 2. Corner surface modes, for different coupling constants. Top row: Intensity distribu-
tions of the forward field at its output face in the direct space and in the inverse space
(insets). The layout of the lattice beams is only shown in thelast figure. Bottom row: The
same intensity distributions in 3D. The propagation distance isL = 2.5LD = 10mm. FWHM
= 14 µm of the input Gaussian beams, lattice spacingd = 23 µm, |F0|2 = |BL|2 = 1, the
maximum lattice intensityI0 = 3.

to the corner lattice site. As they focus in the direct space (the bottom row), they spread in the
inverse space, spilling over the first BZ (insets). For larger Γ, the influence of the neighboring
sites on the beam distribution is lost.

An example of the surface mode structure that is not localized is the diffraction mode for
small coupling constant (up toΓ ≈ 5). Incident beams, in the form of narrow Gaussians, spread
upon propagation, and the part of each beam is captured by thenearest lattice sites in the direct
space. In the inverse space, the beams stay localized insidethe first BZ. By increasing the cou-
pling constant, the beams tightly overlap and the trapping becomes clearly visible; stable corner
surface solitons form, and are observed betweenΓ ≈ 7.5 andΓ ≈ 15. By further increasing the
coupling constant, instabilities take place. Upon propagation the incident beams mix and inter-
act, and start repelling each other. After an initial transient they form a long-lived quasi-stable
partly overlapping Gaussian-like mode; that is, a meta-stable 2D spatial vector soliton. In our
earlier papers [9, 13, 14], even without the optical lattices, we observed a similar ejection phe-
nomenon, and termed it thesplitup transition. Here it appears in the localized modes in the
corner of photonic lattice, and represents the simplest form of the dynamical beam instability.
Such instabilities cannot occur in the single beam surface states.

The caseΓ = 20 in Fig. 2 belongs to the unstable states; the splitup transition occurs there
very fast during time evolution, and after that the steady state is reached. For this value ofΓ only
the steady state is presented, in which the Gaussian beams are slightly displaced after the splitup
transition, but still strongly pinned to the lattice site. The splitup transition is easily identified in
the inverse space; when it occurs, the beam crosses the edge of the first BZ; afterwards most of
it focuses back inside and the steady state is reached. In theend, the beams loose their regular
Gaussian shape along the propagation direction. Both CP beams execute the same behavior,
being mirror-images of each other. Some cases from Fig. 2 arepresented in Fig. 5 as movies.

Figure 3 summarize our results in the form of a phase diagram in the plane of control pa-
rametersL andΓ. The input intensities are kept fixed, as in Fig. 2. Three regions are visible
in the diagram. For small coupling constants there exists a narrow region where no conversion
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Fig. 3. Typical behavior of corner surface solitons. Symbols in the inset present possible
outcomes. Blue dots denote the stable corner solitons, red triangles represent the diffracting
modes, and green lozenges stand for the unstable modes.

to trapped surface modes is observed. We term these states the diffraction modes. The beams
spread upon propagation, and overlap with the neighboring lattice sites (cf. Fig. 5). This regime
is similar to the single beam experimental results at low bias field [3]. For higher values ofΓ
andL the region of stable corner solitons is observed. For still higher values of the parameters,
the region of unstable modes is reached.

Similar results hold for the surface modes localized at the edge of photonic lattice. They are
presented in Fig. 4. Again, only the cases when the coupling constant is varied are shown. For
small coupling constants no strong localization at the edgeis observed. Compared with the cor-
ner mode, the edge mode has different shape, because of different positions of the neighboring
lattice sites; however, it again appears similar to the experimental results [3].

Fig. 4. Edge surface modes, as the coupling constant is increased. The figure layout is as
in Fig. 2. The parameters are also as in Fig. 2.

For higher values of the coupling, highly localized stable trapped edge surface solitons are
observed, for values of the coupling constant similar to those of the corner surface solitons.
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Similarly, for still higher values ofΓ andL, we observe the development of instabilities, in the
form of one or two subsequent splitup transitions. After the splitup transitions, the intertwined
Gaussian-like beams are again strongly pinned to the lattice site. Characteristic cases from Fig.
4 are also presented as movies in the lower part of Fig. 5.

Fig. 5. Dynamical behavior of surface modes in two-dimensional lattice. Upper row: cor-
ner beams. Lower row: edge beams. Movies of the intensity distributions of both forward
and backward fields are shown along the propagation direction, in time: (a) (Media1), (b)
(Media2), (c) (Media3), (d) (Media4), (e) (Media5), (f) (Media6), (g) (Media7),
(h)(Media8), for different coupling constantsΓ. The cases (a) and (e) are zoomed, to display more
clearly the diffraction of beams. Other parameters are as in Fig. 2.

4. Soliton instabilities

The most illustrative cases depicted in Figs. 2 and 4 are shown again in Fig. 5, but now as
3D movies along the photorefractive crystal. Both forward and backward beams are presented,
depicted in blue and red. We observe that the stable corner [see Fig. 5(a)] and the edge [see
Fig. 5(e)] surface states forΓ = 5 are not focused; they spread across the neighboring lattice
sites. The cases forΓ = 10 form the stable surface solitons during time, but slightly change
the transverse profile along the crystal; they represent breathing surface solitons. The cases for
Γ = 25 are unstable (Media3andMedia6); splitup transitions are visible there. The examples
with rich dynamics forΓ = 30 and the corresponding movies (Media4andMedia8) represent
behavior with two consecutive splitup transitions. After those transitions the steady state is
reached, but the beams display regular intertwined spiraling shapes along the crystal.

5. Conclusion

We have studied the interaction of CP optical beams in truncated 2D photorefractive photonic
lattices and revealed the existence of novel types of CP optical surface solitons, localized in
the lattice corners or at the edges. Beside stable bimodal surface modes, we have observed
the development of transverse symmetry-breaking split-up instabilities of CP surface solitons.
We have identified threshold conditions for such dynamical instabilities, and demonstrated that
they occur for stronger couplings and longer propagation distances. Such instabilities are not
possible in the surface states of single propagating beams. In general, the lattice provides a
strong stabilization effect on the CP solitons, pinning them strongly to the lattice sites.
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