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ABSTRACT

We compute the one-loop beta functions of the cosmological constant, Newton’s

constant and the topological mass in topologically massive supergravity in three di-

mensions. We use a variant of the proper time method supplemented by a simple choice

of cutoff function. We find that the dimensionless coefficient of the Chern-Simons term,

ν, has vanishing beta function. The flow of the cosmological constant and Newton’s

constant depends on ν; we study analytically the structure of the flow and its fixed

points in the limits of small and large ν.
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1 Introduction

Topologically massive gravity (TMG) [1] is described by a Lagrangian in three dimen-

sions consisting of the Einstein-Hilbert term, cosmological term and Lorentz Chern-

Simons term. Positivity of the energy for the black hole solution requires that Newton’s

constant G be positive. However, in this case a negative mass graviton solution arises

assuming standard boundary conditions. It was observed in [2] that if the topological

mass µ is related to the cosmological constant Λ by µ =
√
−Λ, and suitable bound-

ary conditions are imposed, then this negative mass graviton mode can be confined

to propagate only on the boundary.1 It would be interesting to study the properties

of chiral TMG at the quantum level. This is complicated by the fact that there is

an enhancement of the local symmetries at the chiral point [4]. One can ask instead

whether a generic TMG, upon quantization, flows to the chiral point. To this effect

the one-loop beta functions for the dimensionless couplings G̃ = Gk, Λ̃ = Λ/k2 and

µ̃ = µ/k, where k is the cut-off parameter, have been computed in [5] for generic values

of the couplings. It was found that the one-loop beta function for ν ≡ µG = µ̃G̃ (the

coefficient of the Chern-Simons term) vanishes. Then the RG flow occurs in the Λ̃-G̃

plane with ν held constant. This two-dimensional flow was shown not to preserve the

ratio µ2/Λ = µ̃2/Λ̃2.

In this paper we shall study the one-loop beta functions in the locally supersym-

metric version of TMG, which we shall refer to as TMSG. Our principal motivations

for doing so are as follows. Firstly, the determination of whether local supersymmetry

helps in making the chiral point condition robust upon the running of the coupling

constants.

Another motivation comes from studies of the renormalization group for gravity

[6], mostly with the aim of supporting the hypothesis of asymptotic safety [7, 8]. Most

of this work has been done in gravity, possibly coupled to ordinary matter, in four

dimensions. 2 In this work we shall extend this approach to supergravity, also taking

into account the gravitational Chern-Simons term, with the attendant subtleties due

to the odd number of derivatives in the field equation.

Finally, we wish to develop methods to deal with the renormalization group analysis

in three-dimensional supergravities, which apparently have not been addressed so far

in the literature. There are a number of subtleties having to do with the fact that the

Chern-Simons term has an odd number of derivatives, with the dependence on gauge

conditions and on cut-off schemes. Here we have developed methods which can be

applied in a wider class of theories. In particular, we use the proper time flow equation

[10], combined with a simple choice of cutoff, to express the beta functions directly in

1There has also been an alternative approach in which the bulk graviton is maintained but the

negative energy black hole solution is viewed as being possibly irrelevant by imposing a suitable

superselection rule [3].
2In the so-called Einstein-Hilbert truncation the results seems to be relatively independent of

dimension, but when one looks in detail at the the physical mechanism underlying the existence of

the nontrivial fixed point there are interesting differences above and below three dimensions [9].
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terms of the heat kernels of appropriate wave operators.

Our main finding with regard to the fate of the chirality condition is that local

supersymmetry does not qualitatively change the conclusion reached in the purely

bosonic TMG. The general structure of the flow is not altered significantly by the pres-

ence of the fermionic fields: for fixed ν the flow in the Λ̃-G̃ plane has a Gaussian fixed

point (at vanishing couplings) with one UV-attractive and one repulsive direction, and

a non-Gaussian fixed point with positive G̃ which is UV-attractive in both directions.

The paper is organized as follows. In section 2 we describe the theory. In section

3 we describe the method used to compute the beta functions. In section 4 we give

the expansion of the action to second order in fluctuations. In section 5 we give the

calculation of the beta functions for pure supergravity, i.e. in the absence of Chern-

Simons term. The calculation of the beta functions for TMSG is given in section 6 and

the corresponding flows are described in section 7. Section 8 contains final comments

and conclusions. Several helpful formulae and computations have been relegated to

appendices A-F.

2 Topologically Massive Supergravity

The action for topologically massive off-shell N = 1 supergravity is given by3

e−1L = Z[R− 2S2 − 4mS − 2εµνρψ̄µDν(ω)ψρ −mψ̄µγ
µνψν

−1
4
µ−1 εµνρ

(
Rµν

abωρab +
2
3
ωabµ ωνb

cωρca
)
− µ−1R̄µγνγµR

ν ] , (2.1)

where Z = 1
16πG

, m =
√
−Λ and the curvatures are given by

Rµν
ab = ∂µω

ab
ν + ωacµ ωνc

b − (µ↔ ν) , (2.2)

Rµ = εµνρDν(ω)ψρ . (2.3)

The real scalar S is the auxiliary field and the covariant derivative of the gravitino in

(2.6) is defined as D[µ(ω)ψν] = ∂[µψν] +
1
4
ω[µ

abγ|ab|ψν]. The spin connection is not an

independent field, but rather it is given by

ωµab = ωµab(e) +
1
2

(
ψ̄µγaψb − ψ̄µγbψa + ψ̄aγµψb

)
, (2.4)

where ωµab(e) is the spin connection that solves the vanishing torsion equation dea +

ωab ∧ eb = 0. The action is invariant under the local supersymmetry transformations

[15]

δeaµ = ǭγaψµ ,

δψµ = Dµ(ω)ǫ+
1
2
Sγµǫ ,

δS =
1

2
ǭγµRµ −

1

2
ǭγµψµS . (2.5)

3This is a straightforward generalisation [11] of the on-shell model of Deser and Kay [12], and its

extension by Deser [13] to include the cosmological constant. The pure off-shell supergravity with

cosmological constant was constructed in superspace in [14].
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The field equation for S gives S = −m. Substituting this back into the action yield

the on-shell theory with the Lagrangian [12, 13]

e−1L = Z[R + 2m2 − 2εµνρψ̄µDν(ω)ψρ −mψ̄µγ
µνψν

−1
4
µ−1 εµνρ

(
Rµν

abωρab +
2
3
ωabµ ωνb

cωρca
)
− µ−1R̄µγνγµR

ν ] , (2.6)

and supersymmetry transformations

δeaµ = ǭγaψµ ,

δψµ = Dµ(ω)ǫ− 1
2
mγµǫ . (2.7)

The maximally supersymmetric vacuum solution is given by the AdS3 metric ḡµν with

curvature scalar R̄ = −6m2.

3 The Method For Computing the Beta Functions

3.1 Proper Time Representation of the Beta Functions

In this section we describe the general idea behind the calculational method we shall

use. The one-loop effective action can be written formally as4

Γ = S +
1

2
tr log(∆) , (3.1)

where S is the classical action and ∆ = δ2S
δφ2

, the inverse propagator, is a differential

operator of dimension5 ω with eigenvalues λn and multiplicities dn. We implicitly

assume that spacetime is compact without boundary. The trace of the logarithm can

be written, again formally, in the proper time representation

tr log(∆) = log det∆ = −
∫ ∞

0

dt

t
Y (t) , (3.2)

where

Y (t) =
∑

n

dne
−tλn (3.3)

is the trace of the heat kernel of ∆. Note that the dimension of t is −ω. The lower

end of the integration corresponds to the UV, the upper end to the IR. One can make

sense of this expression by cutting off the integral over small t. We also cut-off the

integral for large t, thereby eliminating any spurious IR divergences. Ignoring the UV

problems for a moment, we define the Wilsonian one-loop effective action Γk as 6

Γk = S − 1

2

∫ ∞

0

dt

t
Y (t)Ck(t) . (3.4)

4For fermions the formula is Γ = S − tr log(∆F ).
5Usually ω is also equal to the order of the differential operator, but in this paper we will need to

distinguish the two notions.
6Due to the presence of the cut-off function, Γk is no longer a product or ratio of determinants, as

explained in appendix E.
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Here Ck(t) is a dimensionless cutoff function which can be written as Ck(t) = C̃(t̃),

where t̃ = tkω and C̃ itself does not depend on k. The function C̃ is required to be

monotonically decreasing; to go rapidly to zero for t̃ ≫ 1; and for t̃ ≪ 1 C̃ should to

go sufficiently rapidly to one [10]. The functional Γk contains the contribution of all

quantum fluctuations with momenta larger than k, and therefore it can be regarded as

a realization of the Wilsonian prescription for an “effective action” at scale k. We can

define a “beta function” of the theory as the logarithmic derivative of Γk:

β = k
dΓk
dk

= −1

2

∫ ∞

0

dt

t
Y (t) k

dCk(t)

dk
. (3.5)

Owing to the fall-off properties of Ck, this “proper time beta function” is automatically

UV convergent, even though the functional Γk itself is ill-defined in the UV. In fact,

the integral receives its main contribution from momenta of order k. One can therefore

take the view that β is the basic object and that Γk can be obtained by integrating the

flow defined by β.

The beta functions of individual couplings in Γk can be obtained as the coefficients

of the respective operators in the functional β. The common way of calculating ap-

proximate beta functions is to truncate the effective action to contain only the terms

of interest. For example, to obtain the beta functions of Λ, G and µ one can assume

that the effective action has the form (2.6) and use it to calculate the r.h.s. of (3.5).

The beta functions obtained in this way will generally depend on the choice of the

cutoff function Ck(t). We shall refer to this as scheme dependence. However, the beta

functions of the dimensionless couplings are scheme-independent. This can be seen as

follows. Let Yn be the coefficient of tn in the series expansion of Y . In particular Y0, the

t-independent term, is dimensionless, so its coefficient in the action is a dimensionless

coupling. Using the homogeneity and the boundary conditions of C̃ we have

− 1

2

∫ ∞

0

dt

t
Y0 k

dCk(t)

dk
= −1

2
ω Y0

∫ ∞

0

dt̃
dC̃

dt̃
=

1

2
ω Y0 . (3.6)

Thus we see that the beta functions of dimensionless couplings are actually “universal”

in the sense that they do not depend on the choice of cutoff function. When the flow

equation is integrated, these couplings run logarithmically, and in the limit k → ∞
they correspond to logarithmic divergences in Γk. On the other hand, the beta function

of the coupling that multiplies the term Yn (n 6= 0) will be scheme dependent. It will

scale as k−nω and therefore, for n < 0, corresponds to a power law divergence. These

beta functions coincide with those that one would obtain as the coefficients of divergent

terms in Γ.

3.2 Theta Function Cutoff

Let us consider the cutoff

C̃(t̃) = θ(1− at̃) , (3.7)
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where θ is the Heaviside step function, a is a constant parameter we have introduced,

and we recall that t̃ = tkω. Then

k
dCk(t)

dk
= −aωt̃ δ(1− at̃) = −ωt δ

(
k−ω

a
− t

)
. (3.8)

When we insert this in (3.5) we get simply

β ≡ k
dΓk
dk

=
1

2
ω Y

(
k−ω

a

)
. (3.9)

In this regularization scheme the one loop beta functions of the individual couplings

can be simply obtained from the small-t expansion of the heat kernel Y (t), for which

much information is available in the literature. An alternative choice of cutoff that also

allows an explicit evaluation of the beta functions is discussed in appendix B.

3.3 The Evaluation of the Heat Kernel

In this paper we will have to evaluate the heat kernel for differential operators ∆1,∆2

and ∆3 of order 1, 2 and 3 respectively. Assuming that the coefficients of the highest

order terms are dimensionless, the corresponding kernels are

Y1(u) = tr e−u∆1 , Y2(t) = tr e−t∆2 ; Y3(s) = tr e−s∆3 , (3.10)

where u, t and s are real parameters of dimension L, L2 and L3, respectively. In the

following, we will encounter situations where the highest order part of the operator is

multiplied by 1/µ. By expanding the exponential for small or large µ, we will reduce

the calculation to the evaluation of traces of the form given above with insertions of

operators coming from the µ expansions. Such traces will be dealt with in the same

way as we shall now describe.

The evaluation of the sums Y (t) =
∑

n dne
−tλn can be conveniently carried out by

using the Euler-Maclaurin formula,

∞∑

n=n0

F (n, t) =

∫ ∞

n0

F (x, t) dx−
∑

k≥0

Bk+1

(k + 1)!
F (k)(n0, t) , (3.11)

where F (x, t) = dxe
−tλx and Bk is the k’th Bernoulli number. Note that since we

need only the terms in the small-t expansion of Y (t) up to and including the t0 term,

only the first few terms in the summations involving the Bernoulli numbers will be

required. Since the terms in the summation can only contribute non-negative powers

of t, in our calculation they only appear in the t-independent terms. The integral has

the asymptotic expansion

∫ ∞

n0

F (x, t)dx = I−3/2 t
−3/2 + I−1 t

−1 + I−1/2 t
−1/2 + I0 +O(t1/2) . (3.12)
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The resulting spectral sums can be expanded in powers of Ricci scalar R. The leading

terms are R-independent and they are given by

Y (1)(u) =
V N1

π2u3
, Y (2)(t) =

V N2

(4πt)3/2
, Y (3)(s) =

V N3

6π2s
, (3.13)

where Ni are the numbers of independent components of the field on which the op-

erators act. The beta functions will consist of appropriately weighted sums of the

heat kernels. There is freedom in introducing a suitable proportionality factor in the

relations between u, t, s and k. This can be viewed as another instance of scheme-

dependence. We will choose

t = u2π1/3/4 , s = u3/6 , (3.14)

in such a way that the denominators in (3.13) become equal so that Y (i)(t) = NiV/(4πt)
3/2.

We show in appendix D that these choices are natural, since they imply that the lead-

ing terms are the same when the beta functions are computed directly from the heat

kernel of the Dirac operator or from the heat kernel of its square.

3.4 Beta Function Definitions for Topologically Massive

Supergravity

The beta function of the theory, being expressible in terms of heat kernels, will have the

same general structure as the heat kernels themselves. When evaluated on a Euclidean

AdS (i.e. S3; see appendix C) background, it will have the form

k
dΓk
dk

=
V k3

16π

[
A(Λ̃, µ̃) +B(Λ̃, µ̃)R̃ + C(Λ̃, µ̃)R̃3/2 +O(R̃2)

]
, (3.15)

where we have inserted powers of k such that the coefficients A,B and C, and the

tilded quantities

Λ̃ =
Λ

k2
, µ̃ =

µ

k
, R̃ =

R

k2
(3.16)

are dimensionless. The prefactor 1/(16π) is conventional and is useful to simplify the

form of the beta functions. The volume of S3 with radius ℓ is V (S3) = 2π2ℓ3 with

ℓ =
√

6
R
.

Evaluating the Euclidean version of the renormalized TMSG action (2.6) on the S3

background, it can be written in the form

Γk = V

(
2Λ

16πG
− 1

16πG
R +

1

12
√
6πGµ

R3/2 +O(R2)

)
, (3.17)

where we have used that the integral of the CS term on S3 is given by
∫
tr(ωdω+ 2

3
ω3) =

32π2. The couplings Λ, G, µ are now renormalized couplings evaluated at scale k. In

addition, rescaling the coupling constant G as

G = G̃k−1 , (3.18)
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so as to make G̃ dimensionless, and comparing the t-derivative of (3.17) with (3.15),

we obtain:

k
dΛ̃

dk
− k

dG̃

dk

G̃

Λ̃
= −3Λ̃ +

1

2
AG̃ , (3.19)

k
dG̃

dk
= G̃+BG̃2 , (3.20)

1

µ̃G̃

(
k
dG̃

dk
G̃−1 + k

dµ̃

dk
µ̃−1

)
= −3

√
3

2
√
2
C , (3.21)

From the first two equations one obtains the one-loop beta functions of G̃ and Λ̃:

k
dG̃

dk
= G̃+B G̃2 ,

k
dΛ̃

dk
= −2Λ̃ +

1

2
AG̃ +BG̃Λ̃ . (3.22)

These equations have exactly the same form as in pure gravity with cosmological con-

stant, except that the coefficients A and B will depend on µ̃. From equation (3.21)

one can determine the running of µ.

4 The Quadratic Action and Spectra

The approach we shall take is to Euclideanize the theory, and consider the special

case of a 3-sphere background [18]. (The rules for Euclideanization are summarized in

appendix C.) In this background, we can write down the eigenvalues of all the relevant

operators describing the quadratic fluctuations of the action, and then perform the

sums in (3.3). By making use of the Euler-Maclaurin summation formula, we are able

to obtain asymptotic expansions for the Y (t) functions for the various operators.

4.1 The Bosonic Sector

The first step is to calculate the operator O that describes the quadratic fluctuations

of the action:

S
(2)
h =

Z

4

∫
d3x

√−g hµν Oµν,ρσ hρσ . (4.1)

In the metric formalism, it can be read off from eq. (3.7) of ref. [5]. Since we are

considering a theory that contains spinor fields we must work in dreibein formalism,

and this gives rise to a new contribution to O, which can be understood as follows.

The first variation of the action in the metric formalism is of the form δgµνE
µν , where

Eµν = Gµν + Λgµν + 1
µ
Cµν , Gµν being the Einstein tensor and Cµν the Cotton tensor.

The second variation is then obtained by varying Eµν . In the dreibein formalism

the first variation is ηabδe
a
(µe

b
ν)E

µν . The second variation contains, in addition to the

variation of Eµν also a term ηabδe
a
(µδe

b
ν)E

µν . This term vanishes on shell, but since

9



we are calculating the beta functions off shell, it has to be retained [16, 17]. Since

the Cotton tensor is proportional to covariant derivatives of the Ricci tensor and Ricci

scalar, it vanishes for the metric of the sphere. Therefore the additional terms in the

second variation are just

Z

24

∫
d3x

√−g (6Λ− R)hµνh
µν , (4.2)

where hµν = 2eaµδe
a
ν .

Since AdS3 (and S
3) have no moduli, the resulting operator O has zero modes only

corresponding to infinitesimal coordinate transformations and local Lorentz transfor-

mations. To make it invertible, one adds the coordinate gauge fixing term

SBGF = − Z

2α

∫
d3x

√−ḡGµḡ
µνGν , (4.3)

where7

Gν = ∇µh
µ
ν −

β + 1

4
∂νh (4.4)

Then one has to add the ghost action

SBgh =

∫
d3x

√−g C̄µ

(
−δνµ�− 1− β

2
∇µ∇ν −Rµ

ν

)
Cν , (4.5)

where Cµ is an anticommuting complex vector. A standard gauge condition to fix

the local Lorentz symmetry is to set the antisymmetric part of the dreibein equal to

zero [24]. This leads to a ghost Lagrangian of the form C̄ab(C
ab +DaCb) where Ca =

Cµē
µ
a is the ghost associated with the general coordinate transformations. Redefining

Cab +DaCb = C ′ab we see that the ghost C ′ab does not propagate and hence it will be

neglected.

In order to extract the eigenvalues of the operator O it is convenient to decompose

the graviton field hµν into its irreducible parts: the spin-2 transverse traceless part

hTTµν , the spin-1 transverse vector ξTµ, the spin-0 components σ and h:

hµν = hTTµν +∇µξ
T
ν +∇νξ

T
µ +∇µ∇νσ − 1

3
gµν�σ +

1

3
gµνh . (4.6)

Similarly, the ghost is decomposed into a spin-1 transverse vector V and a scalar S:

Cµ = Vµ +∇µS . (4.7)

It is also convenient to define
√

−�− R

3
ξTµ = ξ′Tµ ,

√

(−�)

(
−�− R

2

)
σ = σ′ ,

√
−�S = S ′ (4.8)

The Jacobian of this field redefinition cancels the one of (4.6).

7We use the convention that Dµ is the covariant derivative using the spin connection whereas ∇µ

means covariant derivative using the Christoffel symbol.
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4.1.1 The Diagonal Gauge

In the following we restrict ourselves to the “diagonal” gauge

β =
(2α + 1)

3
(4.9)

which will ensure that there is no mixing between σ and h. At this point we pass to the

Euclidean theory (see appendix C). The quadratic part of the Euclideanized bosonic

action reads

S(2)+SBGF =
Z

4

∫
d3x

√
g
[
hTTµν∆(hTT )µν

ρσhTTρσ + cξξ
′Tµ∆(ξT )µ

νξ′Tν + cσσ
′∆(σ)σ

′ + chh∆(h)h
]
,

(4.10)

and the ghost action reads

SBghost =

∫
d3x

√
g
[
V̄ µ∆(V )µ

νVν + cSS̄ ′∆(S)S
′] , (4.11)

where we have defined the operators [5]8

∆(hTT )µν
ρσ =

(
−�+

R

2
− Λ

)
δ
(ρ
(µδ

σ)
ν) +

1

µ
ε(µ

λ(ρδ
σ)
ν)∇λ

(
�− R

3

)
,

∆(ξT )µ
ν =

(
−�− 3α− 2

6
R− 3αΛ

)
δνµ ,

∆(σ) = −�− R

2
− 3αΛ

2(4− α)
,

∆(h) = −�− 12Λ

4− α
,

∆(V )µ
ν =

(
−�− R

3

)
δνµ ,

∆(S) = −�− 2

4− α
R , (4.12)

and coefficients

cξ =
2

α
, cσ =

2(4− α)

9α
, ch = −4− α

18
, cS =

4− α

3
. (4.13)

Using the results of [5], the eigenvalues of these operators are found to be

λh
TT±

n = ρ2(n2 + 2n+ 1)− Λ± ρ3

µ
n(n + 1)(n+ 2) , n ≥ 2 ,

λξ
T

n = ρ2
(
n2 + 2n− 3 + 3α

)
− 3αΛ , n ≥ 2 ,

8In comparing with [5], one needs to take into account the new contribution (4.2) which arises due

to the use of the dreibein formalism.
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λσn = ρ2
(
n2 + 2n− 3

)
− 3αΛ

4− α
, n ≥ 2 ,

λhn = ρ2
(
n2 + 2n

)
− 12Λ

4− α
, n ≥ 0 ,

λVn = ρ2
(
n2 + 2n− 3

)
, n ≥ 1 ,

λSn = ρ2
(
n2 + 2n− 12

4− α

)
, n ≥ 1 , (4.14)

where we have defined

ρ ≡
√
R

6
(4.15)

and the multiplicities are

dT+n = dT−n = n2 + 2n− 3 ,

dξn = dVn = 2(n2 + 2n) ,

dσn = dhn = dSn = n2 + 2n+ 1 . (4.16)

Requiring positivity of the Euclideanized version of the gauge fixing action (4.3),

and staying on one side of the singular point α = 4, we are led to impose the condition

0 ≤ α < 4 . (4.17)

Then, ch < 0 and the operator O acting on the trace h is negative. This corresponds

to the well-known conformal factor problem [19]. The α = 0 case is special and it will

be discussed next.

4.1.2 The Physical Gauge

It is sometimes convenient to use a slightly different approach to quantisation, in which

one works in a physical gauge rather than integrating also over the gauge degrees of

freedom. In the present context, this amounts to setting to zero, as a physical gauge

choice, the longitudinal part of the metric fluctuations, which correspond to general

coordinate transformations. In our notation, this means that ξTµ and σ should be set

to zero. This can be accomplished as follows. Setting α = 0 implies that the gauge

condition ∇µh
µ
ν − β+1

4
∂νh = 0 is to be imposed strongly in the sense that it can be

used in the action. Substituting for hµν

hµν = hTTµν +∇µξν +∇νξµ +
1

3
gµνh

′ . (4.18)

where ξµ is no longer divergence-free and h′ is no longer the trace of hµν , and choosing

β = 1/3, the gauge condition becomes

∇µ(∇µξν +∇νξµ)−
2

3
∇ν∇µξ

µ = 0 . (4.19)
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Multiplying this equation by −ξν and integrating over the Euclidean-signature compact

manifold without boundary gives

1

2

∫ √
g d3x (∇µξν +∇νξµ − 2

3
gµν∇ρξ

ρ)2 = 0 , (4.20)

which shows that the kernel of the operator in (4.19) is the conformal Killing vectors,

which satisfy

∇µξν +∇νξµ − 2
3
gµν∇ρξ

ρ = 0 . (4.21)

There are in total ten conformal Killing vectors, of which six are Killing vectors, on

S3. We can therefore set ξµ = 0 in the action, and take account of the ten zero modes

later, in the computation of the heat kernel. This means setting ξTµ = 0, σ = 0 and

h′ = h. Since in this gauge one deals only with the physical degrees of freedom hTTµν
and h, we shall call this the “physical gauge”. Thus, in the physical gauge the action

(4.10) becomes

S(2) + SBGF =
Z

4

∫
d3x

√
g
{
hTTµν∆(hTT )µν

ρσhTTρσ +
2

9
h(�+ 3Λ)h

}
. (4.22)

Regarding the ghost action, however, setting α = 0 in (4.11) does not produce the cor-

rect answer. Instead, one needs to consider the Jacobian associated with the changing

of the path integral measure, namely

Dhµν = ZghDhTTµν DξµDh′ , (4.23)

where [20, 21, 22]

Zgh =

√

det1

(
�+

R

3

)
det0

(
�+

R

2

)
. (4.24)

The Jacobian Zgh can be represented in the path integral by using

√

det1

(
�+

R

3

)
= det1

(
�+

R

3

)(
det1

(
�+

R

3

))−1/2

=

∫
DuµDvµ exp

{∫
d3x

[
uµ⋆
(
�+

R

3

)
uµ + vµ

(
�+

R

3

)
vµ

]}
, (4.25)

and similarly

√

det0

(
�+

R

2

)
= det1

(
�+

R

2

)(
det0

(
�+

R

2

))−1/2

=

∫
DuDv exp

{∫
d3x

[
u∗
(
�+

R

3

)
u+ v

(
�+

R

3

)
v

]}
, (4.26)

where (uµ, u) are anticommuting complex vector and scalar fields and (vµ, v) are com-

muting real vector and scalar fields. These are Nielsen-Kallosh type ghost fields [23].
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4.2 The Fermionic Sector

We now repeat the steps of the preceding section for the fermions. The first variation

of the fermionic part of the action is given by

S
(1)
F = −4Z

∫
d3x

√−gδψ̄µ
(
Rµ +

1

2
γµνψν +

1

2µ
Cµ

)
, (4.27)

where the “Cottino” vector-spinor is given by

Cµ = γργµν∇νRρ − εµνρ
(
Rρσ − 1

4
gρσR

)
γσψν , (4.28)

Next we perform the second variation, denoting by ψµ the fluctuation of the gravitino

field without using the background field equations but rather the supersymmetric back-

ground given by the AdS3 metric whose inverse radius ℓ−1 is not identified with m, so

as to remain off-shell. Furthermore, decomposing the gravitino field as

ψµ = φµ +

(
Dµ −

1

3
γµ /D

)
χ +

1

3
γµψ , (4.29)

Dµφµ = 0 , γµφµ = 0 , (4.30)

we find that

S
(2)
F =

∫
d3x

√−g
{
2φ̄µ

[
− /D +

1

2
m+

1

µ

(
−�+

3

8
R

)]
φµ

+
4

9
χ̄

(
�+

1

8
R

)(
/D − 3

2
m

)
χ+

4

9
ψ̄

(
/D +

3

2
m

)
ψ − 8

9
ψ̄

(
�+

1

8
R

)
χ
}
.(4.31)

4.2.1 The Diagonal Gauge

It is convenient to choose a gauge condition that eliminates the mixing between ψ and

χ. This is achieved by the gauge fixing term [24]

SFGF =
4

9α′

∫
d3x

√−g F̄OnkF , (4.32)

where α′ is a dimensionless gauge fixing parameter,

Onk = /D − 3

2
ρ , (4.33)

and

F = α′ψ +

(
/D +

3

2
ρ

)
χ . (4.34)

The cancellation of the cross term can be seen by noting that acting on a spin-1
2
field

we have
(
/D + 3

2
ρ
) (

/D − 3
2
ρ
)
=
(
�+ 1

8
R
)
. Performing the decomposition (4.29) of

the transformation (2.5) and taking the γ-trace and the divergence, one finds δψ =

14



(
/D + 3

2
ρ
)
ǫ and

(
�+ 1

8
R
)
(δχ− ǫ) = 0. Therefore, the fermionic ghost action is given

by

SFgh =

∫
d3x

√−g η̄
[
α′
(
/D − 3

2
m

)
+

(
/D +

3

2
ρ

)]
η . (4.35)

Given that the gauge fixing involves the operator Onk a factor det(Onk)
−1/2 has to

be included in the path integral measure to ensure on-shell gauge independence. This

can be represented as a Gaussian integration over Nielsen-Kallosh ghost fields [23],

comprising commuting Dirac spinor ω and an anticommuting Majorana spinor γ, with

action

SNK =

∫
d3x

√−g [ω̄Onkω + γ̄Onkγ] , (4.36)

At this point it is convenient to perform the redefinition

χ′ =

√
�+

1

8
R χ . (4.37)

whose Jacobian cancels that of the transformation (4.29). The total quadratic fermionic

action including the gauge fixing and ghost terms become

S
(2)
F + SFGF + SFgh =

∫
d3x

√−g
[
cφφ̄µ∆(φ)φµ + cχχ̄

′D(χ)χ
′ + cψψ̄D(ψ)ψ + cηη̄D(η)η

]
,

(4.38)

where

∆(φ) = /D − 1

2
m− 1

µ

(
�− 3

8
R

)
,

D(χ) = /D +
3(ρ− α′m)

2(1 + α′)
,

D(ψ) = /D +
3(m− α′ρ)

2(1 + α′)
,

D(η) = /D +
3(ρ− α′m)

2(1 + α′)
, (4.39)

and

cφ = −2 ; cχ = cψ =
4(1 + α′)

9α′ ; cη = 1 + α′ . (4.40)

Note also that the value α′ = −1 is singular. Thus we shall restrict α′ to obey

α′ > −1 , (4.41)

which can be seen to be an acceptable range.

Next, we continue from AdS3 to S3 as explained in appendix C, and perform har-

monic expansions on S3. The eigenvalues of the Dirac and Laplace operators on the

appropriate spinor harmonics on S3 are

i /DY (ℓ,±3/2)
a = ±ρ(ℓ+ 1)Y (ℓ,±3/2) , ℓ = 3

2
, 5
2
, ...
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−�Y (ℓ,±3/2)
a = ρ2

[
ℓ(ℓ+ 2)− 3

2

]
Y (ℓ,±3/2)
a , ℓ = 3

2
, 5
2
, ...

i /DY (ℓ,±1/2) = ±ρ(ℓ+ 1)Y (ℓ,±1/2) , ℓ = 1
2
, 3
2
...

−�Y (ℓ,±1/2) = ρ2
[
ℓ(ℓ+ 2)− 1

2

]
Y (ℓ,±1/2) , ℓ = 1

2
, 3
2
... (4.42)

with multiplicities ℓ(ℓ + 2) − 5
4
for spin 3/2 and ℓ(ℓ + 2) + 3

4
for spin 1/2. Using the

formula (4.42) we find, after defining ℓ = n − 1
2
, that the eigenvalues of the operators

listed in (4.39) and (4.33) are

λφ±n = ±ρ(n + 5
2
)− 1

2
m+

ρ2

µ
(n + 2)(n+ 3) , n = 0, 1, ...

λχ
′±
n = ±ρ(n + 3

2
) +

3(ρ− α′m)

2(1 + α′)
, n = 1, 2, ...

λψ±n = ±ρ(n + 3
2
) +

3(m− α′ρ)

2(1 + α′)
, n = 0, 1, ...

λη±n = ±ρ(n + 3
2
) +

3(ρ− α′m)

2(1 + α′)
, n = 0, 1, ...

λNK±
n = ±ρ(n + 3

2
)− 3

2
ρ , n = 0, 1, ... (4.43)

with multiplicities

d(n,3/2) = (n + 1)(n+ 4) ,

d(n,1/2) = (n + 1)(n+ 2) . (4.44)

Note that for λχ
′±
n we leave out the eigenvalues n = 0 which correspond to Killing

spinors and do not contribute to ψµ.

4.2.2 The Physical Gauge

Letting α′ → 0 implies that the gauge condition (4.34) is to be strongly imposed in

the sense that it is to be used in the action. This implies that ( /D + 3
2
ρ)χ = 0, and

consequently, χ = 0 except for those that are Killing spinors. Next, it is convenient to

decompose ψµ as

ψµ = φµ +

(
Dµ −

1

2
mγµ

)
ζ +

1

3
γµψ

′ , (4.45)

since ζ will not appear in the action due to the fact that the ζ dependent term in (4.45)

is a supersymmetry transformation. Comparing the trace of ψµ using (4.29) and (4.45)

we find that
(
�+

R

8

)
(χ− ζ) = 0 , (4.46)

ψ − ψ′ =

(
/D − 3

2
m

)
ζ . (4.47)
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From (4.46) it follows that χ = ζ up to linear combination of conformal Killing spinors.

This can be seen by noting that, acting on a spinor, �+ R
8
= ( /D− 3

2
ρ)( /D+ 3

2
ρ). Thus

the physical gauge χ = 0 implies that ζ = 0 modulo the four conformal Killing spinors

of S3, and ψ = ψ′. Consequently, in the physical gauge we get

S
(2)
F + SFGF =

∫
d3x

√−g
[
−2φ̄µ∆(φ)φµ +

4

9
ψ̄

(
/D +

3

2
m

)
ψ

]
. (4.48)

In the ghost sector, the correct result is not simply SFgh + SNK with α′ set to zero.

Rather, we need to consider the Jacobian associated with the changing of the path

integral measure as

Dψµ = ZghDφµDζDψ′ , (4.49)

where [25]

Zgh =

[
det 1

2

(
�+

R

8

)]−1

. (4.50)

This admits a path integral representation by using

[
det1

2

(
�+

R

8

)]−1

=

∫
Dκ exp

{∫
d3x

[
κ̄

(
�+

R

8
κ

)]}
, (4.51)

where κ is commuting Dirac spinor field.

5 The Beta Functions of Pure Supergravity

The Chern-Simons term in topologically massive supergravity gives rise to a third-

order operator and thus leads to certain complications when calculating the heat-kernel

expansions. In this section we shall therefore begin by turning off the Chern-Simons

term and its superpartners, and consider just three-dimensional supergravity with a

cosmological term.

We have seen in section 3.3 that the beta function of a coupling can be expressed

directly in terms of the heat kernel. In our specific case, each spin component of the

graviton and gravitino has a separate heat kernel and we have to specify the way

in which these individual contributions are assembled. For the special case of pure

Einstein theory on S3, we show in appendix D that the heat kernel of the complete

wave operator O acting on hµν is reproduced by simply summing the heat kernels of

the individual spin components, each normalized so that the coefficient of −� is unity.

The same holds for the ghosts and gravitino, so for each of these fields the contributions

of its spin components will have the same weight. The bosonic ghosts contribute with

a factor −2 relative to the graviton, the gravitino with a factor −1, the fermionic ghost

with a factor 2 and the Nielsen-Kallosh ghost with a factor 1. It remains to fix the

identification of the spectral parameter with the cutoff. As in section 3.2, for dimension

two operators we will identify t = k−2. For dimension one and three operators, by the
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argument explained in section 3.3, we will identify u = 2π−1/6k−1 and s = 4
3
√
π
k−3. In

this way, the beta function reads

β = Y∆
hTT

(
1

k2

)
+ Y∆

ξT

(
1

k2

)
+ Y∆σ

(
1

k2

)
+ Y∆h

(
1

k2

)
− 2Y∆V

(
1

k2

)
− 2Y∆S

(
1

k2

)

−Y∆(φ)

(
2

π1/6k

)
− Y∆(χ)

(
2

π1/6k

)
− Y∆(ψ)

(
2

π1/6k

)
+ 2Y∆(η)

(
2

π1/6k

)
+ Y∆NK

(
2

π1/6k

)
. (5.1)

We will now use this formula to obtain the beta function of pure supergravity.

Using (3.11), (4.14) and (4.16), the first few terms in the heat kernel expansions for

each bosonic spin operator are given by

Y∆
(hTT )

(t) =
V

(4πt)3/2

(
2− 8

3
R t+ 2Λ t

)
+ 10 + . . .

Y∆
(ξT )

(t) =
V

(4πt)3/2

(
2 +

2− 3α

3
R t + 6αΛ t

)
− 5 + . . .

Y∆(σ)
(t) =

V

(4πt)3/2

(
1 +

2

3
R t +

3α

4− α
Λ t

)
− 5 + . . .

Y∆(h)
(t) =

V

(4πt)3/2

(
1 +

1

6
R t +

12Λ

4− α

)
+ . . .

Y∆(V )
(t) =

V

(4πt)3/2

(
2 +

2

3
R t

)
+ 1 + . . . ,

Y∆(S)
(t) =

V

(4πt)3/2

(
1 +

16− α

6(4− α)
R t

)
− 1 + . . . (5.2)

The terms I−1 in (3.12) are all zero on account of the fact that the coefficient of n

is twice the coefficient of n2 in all the sets of eigenvalues. The ellipses stand for terms

with positive powers of t.

Next, we list the results for the heat kernels for the fermions. They are

Y∆(φ)
(u) =

V

π2u3
[
2−

(
3
8
R− 1

4
Λ
)
u2
]
+ 4 + . . .

Y∆(χ)
(u) =

V

π2u3

(
2 +

(8− 2α′ − α′2)R− 18α′√6ΛR+ 54Λα′2

24(1 + α′)2
u2

)
− 4 + . . .

Y∆(ψ)
(u) =

V

π2u3

(
2− (1 + 2α′ − 8α′2)R + 18α′√6ΛR− 54Λ

24(1 + α′)2
u2

)
+ . . .

Y∆(η)
(u) =

V

π2u3

(
2 +

(8− 2α′ − α′2)R− 18α′√6ΛR+ 54Λα′2

24(1 + α′)2
u2

)
+ . . .

Y∆NK (u) =
V

π2u3
(
2 + 1

3
Ru2

)
+ . . . (5.3)

Using the formula (5.1) we obtain the total beta function

βSUGRA =
V k3

(4π)3/2

[(
20 + 25α− 6α2

4− α
− 2

π1/3

5− 4α′

1 + α′

)
Λ̃
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−1

6

(
92 + 7α− 6α2

4− α
− 2

π1/3

13 + 4α′

1 + α′

)
R̃ +O(R̃2)

]
. (5.4)

A number of remarkable cancellations have occurred in obtaining (5.4). The Y0
terms, which correspond to the integers outside the brackets in (5.2) and (5.3), can-

cel separately for the trace and tracefree parts of hµν , for the bosonic ghost, for the

γ-trace and γ-tracefree part of ψµ and for the fermionic and Nielsen-Kallosh ghosts.

Furthermore, the Y−3/2 terms also cancel exactly, for the bosons and fermions sepa-

rately. This is related to the fact that the coefficient Y−3/2 of each spin is proportional

to the number of corresponding degrees of freedom, and in this theory there are no

physical propagating degrees of freedom. We shall discuss the consequences of these

cancellations later on.

The expression (5.4) has a well-defined limit for α → 0 and α′ → 0. There is

a subtlety if one tries to evaluate the beta function directly with α = 0 and α′ = 0,

because the unphysical fields ξTµ , σ and χ are not present in this gauge and the constant

terms +10 and +4 in Y∆T and Y∆φ seem to remain uncancelled. In this gauge these

terms are canceled in another way. If one looks at the eigenvalues (4.14) in the gauge

α = 0 one sees that λξn = λVn and λσn = λSn , but in the spectrum of V the six zero modes

with n = 1 (i.e. the Killing vectors) are retained, while in the spectrum of ξ they are

absent. As a consequence, Y∆ξ = Y∆V − 6, and similarly Y∆σ = Y∆S − 4. Therefore,

the bosonic contribution to (5.1) is

Y∆
(hTT )

(
1

k2

)
+ Y∆(h)

(
1

k2

)
− Y∆(V )

(
1

k2

)
− Y∆(S)

(
1

k2

)
− 10 . (5.5)

The last term removes the constant term from the spin two sector. In a similar way,

in the fermionic sector Y∆ξ = Y∆η − 4, where the four modes correspond to conformal

Killing spinors, of which two are Killing spinors. So the fermionic contribution to (5.1)

is

− Y∆(φ)

(
2

π1/6k

)
− Y∆(ψ)

(
2

π1/6k

)
+ Y∆(η)

(
2

π1/6k

)
+ Y∆NK

(
2

π1/6k

)
− 4 . (5.6)

The result is the same as taking the limit in (5.4).

We note that the effective action in physical gauge can be derived directly from a

change of variables in the functional integral, bypassing the standard Faddeev–Popov

construction [21]. This procedure has recently been applied to three–dimensional grav-

ity in [22] by using the results given in sections 4.1.2 and 4.2.2.

As discussed in section 3.3, by comparing (5.4) with (3.15) we read off the coeffi-

cients A, B and C as follows:

A =
2√
π

(
20 + 25α− 6α2

4− α
− 2

π1/3

5− 4α′

1 + α′

)
Λ̃ , (5.7)

B = − 1

3
√
π

(
92 + 7α− 6α2

4− α
− 2

π1/3

13 + 4α′

1 + α′

)
, (5.8)

C = 0 . (5.9)
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The beta functions of Λ̃, G̃ and µ̃ are given in (3.22) with the above values A, B and

C. The vanishing of C follows from the cancellation of the Y0 terms. It implies that

a Chern-Simons term is not generated by quantum corrections at one loop. Due to

the cancellation of the leading terms Y−3/2, the beta function of Λ̃ is proportional to

Λ itself. As a result, Λ̃ = 0 is a fixed point. This is the same as in bosonic three-

dimensional Einstein gravity [5]. The existence of a fixed point in the beta function

for G̃ requires B to be negative. This is true for any value of α and α′ in the ranges

specified earlier in (4.17) and (4.41). Then the fixed point is at G̃ = −1/B. In the

gauge α = 0, α′ = 0 the numerical position of the fixed point is (Λ̃, G̃) = (0, 1.013);

it is attractive in both directions, with scaling exponents −1 in the G̃ direction and

−4.045 in the Λ̃ direction. The flow of pure supergravity is depicted in figure 1, left

panel.

We also observe that on shell, i.e. for R = 6Λ, the whole beta function becomes

independent of the gauge parameters α and α′, as expected:

βon−shellSUGRA =
2V k3

(4π)3/2

(
8

π1/3
− 9

)
Λ̃ . (5.10)

6 The Beta Functions of Topologically Massive

Supergravity

From (4.12) and (4.39) we see that the Chern-Simons term and its superpartner con-

tribute to the wave operators of the spin-2 and spin-3/2 fields only. The computations

for the lower-spin sectors of the preceding section will not be affected. Therefore, in

this section we will focus on the heat kernels of the spin-2 and spin-3/2 operators in

the presence of the Chern-Simons term proportional to µ−1. The eigenvalues for the

spin-2 field are now third-order polynomials in n, and the Euler-Maclaurin integrals

of the form
∫
dxdxe

−λx (see (3.3) and (3.11)) cannot be computed in closed form. In

what follows, we shall compute these integrals for the two cases of large µ̃, and small

µ̃, separately, where µ̃ = µ/k.

6.1 The Large µ̃ Limit

In this limit, we can treat the contribution of the Chern-Simons term as a small per-

turbation of the results for pure supergravity discussed above. For the bosons, using

the eigenvalues and multiplicities in (4.14), (4.16), the integral term in (3.11) can be

expanded in ρ/µ, yielding for the two polarization states

∫ ∞

2

dx(x2 + 2x− 3)e−t(ρ
2(x2+2x+1)−Λ)

[
1∓ tρ3

µ
x(x+ 1)(x+ 2) + . . .

]
. (6.1)

Summing the contributions of the positive and negative spin-2 polarizations, including

also the Bernoulli sums in (3.11), the odd powers of 1/µ cancel and to order 1/µ2 this
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leads to the result

Y∆
(hTT )

(t) =
V

(4πt)3/2

(
2− 8

3
R t+ 2Λ t+

105

8µ2t
− 15R

4µ2
+

105Λ

8µ2

)
+ 10 + . . . (6.2)

The ellipses refer to terms that contain increasing powers of t but also 1/t, the latter

coming from the increasing powers of x in the integral. One should obviously not

regard this as an expansion for arbitrarily small t, rather, the expansion is valid for
1
µ2

≪ t≪ 1
R
.

Similarly, for the fermions, using the eigenvalues and multiplicities given in (4.43)

and (4.44), and expanding the integrand occurring in (3.11) in ρ/µ, we get

∫ ∞

0

dx (x+ 1)(x+ 4)e−u[ρ(x+
5
2
)∓ 1

2
m]

[
1∓ uρ2

µ
(x+ 2)(x+ 3) + . . .

]
. (6.3)

Note that convergence for positive u requires that the eigenvalues should tend to +∞
for large n. In the case of the eigenvalues λ

(φ)−
n , which tend to −∞, we have reversed

their overall sign. (Since we are interested in the scaling behaviour of the (regularised)

determinant
∏

n λn, an overall sign reversal of the λn has no material effect.) This

leads to the result

Y∆(φ)
(u) =

V

π2u3

[
2−

(
3

8
R − 1

4
Λ

)
u2 +

√
Λ

µ

(
−12 +

5

12
Ru2 − 1

2
Λu2

)

+
1

µ2

(
−11

2
R + 45Λ +

360

u2

)]
+ 4 + . . . (6.4)

Thus, the µ-dependent contribution to the beta function, to order 1/µ̃, is

∆βµ =
V k3

(4π)3/2

[
4
√

Λ̃

π1/3µ̃

(
3π1/3 + 1

2
Λ̃− 5

12
R̃
)
+O

(
1

µ̃2

)]
. (6.5)

Notice that the inverse powers of t and u in (6.2) and (6.4) have become positive powers

of k which combine with powers of 1/µ to produce an expansion in 1/µ̃. The total beta

function for topologically massive supergravity in the large µ̃ limit is

βTMSG = βSUGRA +∆βµ

=
V k3

(4π)3/2

{(
(20 + 25α− 6α2)

4− α
− 2

π1/3

5− 4α′

1 + α′

)
Λ̃ +

1

µ̃

(
12Λ̃1/2 +

2

π1/3
Λ̃3/2

)

+

[
−92 + 7α− 6α2

6(4− α)
+

1

3π1/3

13 + 4α′

1 + α′ − 5

3π1/3

Λ̃1/2

µ̃

]
R̃

}
. (6.6)

For µ̃ → ∞, this agrees with (5.4). Regarding on-shell gauge-parameter indepen-

dence, we observe that this had already been shown for βSUGRA and that the correction

terms ∆βµ, are gauge parameter-independent even off-shell, since they derive entirely

from the spin-2 and spin-3/2 contributions.
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6.2 The Small µ̃ Limit

In the regime where µ is small relative to k, the cubic term in the spin-2 wave operator

is dominant and we can consider the quadratic term as a small perturbation. Likewise,

for the spin-3/2 operator the quadratic term is dominant. We therefore replace the

operators ∆(hTT ) and ∆(φ) by µ∆(hTT ) and µ∆(φ) respectively, so that the leading-order

terms have dimensionless coefficients. Correspondingly, we use the spectral parameter

s, which has dimension L3, for the spin-2 operator, and t, with dimension L2, for the

spin-3/2 operator. Thus, to evaluate the heat kernel for spin-2, in the integral in (3.11)

we expand the eigenvalues in the exponential and obtain
∫ ∞

2

dx(x2 + 2x− 3)e−sρ
3x(x+1)(x+2)

[
1∓ sµ(ρ2(x2 + 2x+ 1)− Λ) + . . .

]
. (6.7)

Note that, following the same logic as in (6.3), for convergence we have changed the

overall sign of the eigenvalue when summing over λh
TT−
n . Summing the contributions of

the positive and negative spin-2 polarizations the odd powers of µ cancel and keeping

terms up to order µ2 one obtains 9

Y∆
(hTT )

(s) =
V

6π2s

(
2 +

1

3
Γ(4

3
)
(
4µ2 − 11R

)
s2/3
)
+ 10 + . . . (6.8)

Similarly for the fermions, using the eigenvalues in (4.43) and expanding the integrand

occurring in (3.11), we obtain
∫ ∞

0

dx (x+ 1)(x+ 4)e−tρ
2(x+2)(x+3)

[
1− tµ

(
±ρ
(
x+ 5

2

)
− 1

2
m
)
+ . . .

]
. (6.9)

The sum of the positive and negative spin 3/2 polarizations gives

Y∆(φ)
(t) =

V

(4πt)3/2

(
2 +

1

12

(
−17R + 6µ(2

√
Λ + 3µ)

)
t+ . . .

)
+ 4 . (6.10)

With the use of s and t, as opposed to t and u, as the spectral parameters, the formula

(5.1) for the total beta function is now replaced by

β = Y∆
hTT

(
4

3
√
πk3

)
+ Y∆

ξT

(
1

k2

)
+ Y∆σ

(
1

k2

)
+ Y∆h

(
1

k2

)
− 2Y∆V

(
1

k2

)
− 2Y∆S

(
1

k2

)

−Y∆(φ)

(
1

k2

)
− Y∆(χ)

(
2

π1/6k

)
− Y∆(ψ)

(
2

π1/6k

)
+ 2Y∆(η)

(
2

π1/6k

)
+ Y∆NK

(
2

π1/6k

)
. (6.11)

Putting together the above results in the formula (6.11), we obtain the total beta

function

βTMSG =
V k3

(4π)3/2

[
− µ̃

√
Λ̃ +

(
3(4 + 9α− 2α2)

4− α
− 9

π1/3

1− α′

1 + α′

)
Λ̃ (6.12)

+

(
4− 21α + 4α2

4(4− α)
+

1

6π1/3

1− 17α′

1 + α′ − 44 Γ
(
4
3

)

3π1/362/3

)
R̃ +O(µ̃2)

]

9In practice the integral with a cubic polynomial in the exponent is still too hard. We get around

this difficulty by keeping only the cubic term in the exponential and Taylor expanding the exponential

of the quadratic and linear term.
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Note that the limit µ̃→ 0 can be taken without difficulty. We observe that the leading,

curvature-independent, term is no longer proportional to Λ̃. On-shell, the beta function

is again gauge-parameter independent:

βon shellTMSG =
V k3

(4π)3/2

[
− µ̃

√
Λ̃ +

(
9

2
− 88 Γ(4

3
)

π1/362/3
+

8

π1/3

)
Λ̃ +O(µ̃2)

]
. (6.13)

7 The RG Flows

Comparing the results (6.6) and (6.13) with (3.15), one can read off the coefficients

A, B and C, and write out the beta functions as in (3.22). It turns out that A and

B are functions of µ̃ and Λ̃. Due to the cancellation of the Y0 terms (separately for

bosons and fermions), the coefficient C is zero. This result is independent of the shape

of the cutoff and is therefore a truly universal feature of the theory. It implies that the

dimensionless combination

ν ≡ µG (7.1)

has vanishing beta function. Since ν does not run, in equations (3.22) we can replace

µ̃ by ν/G̃, with ν constant. The beta functions for G̃ and Λ̃ thus have the form

k
dG̃

dk
= G̃+B(Λ̃, ν/G̃)G̃2 ,

k
dΛ̃

dk
= −2Λ̃ +

1

2
A(Λ̃, ν/G̃)G̃+B(Λ̃, ν/G̃)G̃Λ̃ . (7.2)

This system describes a flow in the Λ̃-G̃ plane, depending on the fixed external param-

eter ν, as well as the gauge parameters α and α′. We shall now analyse these flows in

the large and small ν approximations, using the beta functions presented above.

7.1 The Large ν Limit

Since ν = µ̃G̃, for any fixed finite G̃ the large µ̃ expansion is also a large ν expansion.

Conversely, for ν ≫ 1 we can use the results of subsection 6.1 to gain information on

the flow in the Λ̃-G̃ plane for G̃ of order one or smaller. From equations (3.15) and

(6.6) we read off

A =
2√
π

(
20 + 25α− 6α2

4− α
− 2

π1/3

5− 4α′

1 + α′

)
Λ̃ +

4

π5/6ν
G̃
√
Λ̃(Λ̃ + 6π1/3) , (7.3)

B = − 1

3
√
π

(
92 + 7α− 6α2

4− α
− 2

π1/3

13 + 4α′

1 + α′

)
+

20

3πν
G̃
√

Λ̃ , (7.4)

C = 0 , (7.5)
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Figure 1: Position of the fixed points in the large ν approximation. The red, green, blue

continuous curves give the value of G̃∗ for the three solutions, the dashed curves give the

corresponding values of Λ̃∗. Only the blue solution is reliable, the remaining two are artifacts

of the approximation.

where we have kept only the leading term in 1/ν. Up to this order we see that the

coefficient A vanishes for Λ̃ = 0, so any fixed point in the Λ̃-G̃ plane will be at Λ̃ = 0.

From (6.6), we see, however, that at order 1/ν2 this property generically does not hold.

For ν → ∞, the results go over to those of pure supergravity with cosmological

constant which we discussed in section 5.2. A new feature that arises for finite but

nonvanishing values of ν is that the flow equation for G̃ now depends on Λ̃. For ν−1 6= 0,

the fixed point of pure supergravity gets shifted by a small amount in the negative Λ̃

direction.

Since A and B contain terms proportional to G̃, the fixed point equations are cubic

(see (7.5)) and will generically admit three solutions. The position of these solutions is

plotted in figure 1. The continuous and dashed blue curves give the values of Λ̃ and G̃

for the solution that asymptotes to the SUGRA solution. For ν > 3.7 the additional

two solutions are real, one (red) with positive, and one (green) with negative G̃. For

these solutions |G̃| grows linearly with ν with a coefficient of order one, therefore µ̃ ≈ 1

and they occur outside the domain where the approximation is reliable. For ν ≈ 3.7 one

of these solutions merges with the one that asymptotes to SUGRA, and they become

complex, but at this low value of ν the approximation is unreliable even for G̃ of order

one. A picture of the flow for ν → ∞ (pure supergravity) and ν = 10, in the region of

the plane where the approximation is reliable, is shown in figure 2.

7.2 The Small ν Limit

Since ν = µ̃G̃, for finite G̃ the small µ̃ expansion is also a small ν expansion. Conversely,

for ν ≪ 1 we can use the results of subsection 6.1 to gain information on the flow in

the Λ̃-G̃ plane for G̃ of order one or larger. From equations (3.15) and (6.13) we read
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Figure 2: Flows in the Λ̃-G̃ plane in the gauge α = 0, α′ = 0, and large ν. Left: pure

SUGRA (ν → ∞); right: ν = 10.

off

A =
2√
π

[
3(4 + 9α− 2α2)

4− α
− 9

π1/3

1− α′

1 + α′

]
Λ̃− 2ν√

π

√
Λ̃

G̃
,

B =
2√
π

[
4− 21α+ 4α2

4(4− α)
+

1

6π1/3

1− 17α′

1 + α′ − 44 Γ
(
4
3

)

3π1/362/3

]
,

C = 0 . (7.6)

We have kept only the leading term in ν. Even though there is just one term arising

in A that depends on ν, it should be stressed that the ν-independent parts are not

those of pure supergravity with cosmological constant, and their form depend on the

Chern-Simons term.

The limit ν → 0 can be taken without difficulty and results in a flow with two

fixed points: the usual Gaussian fixed point and a non-Gaussian one. In any gauge,

the Gaussian fixed point, which is at the origin, has scaling exponents equal to the

canonical dimensions: 1 in the G̃ direction and −1 in the Λ̃ direction. In the gauge

α = 0 and α′ = 0 the non-Gaussian fixed point occurs at Λ̃ = 0, G̃ = 1.692 and it has

scaling exponents −1 in the G̃ direction and −6.003 in the Λ̃ direction.

For ν 6= 0 the flow develops a singularity for G̃ → 0 and the Gaussian fixed point

seems to disappear, but we recall that the picture of the flow is not reliable in this

limit. A picture of the flow for ν = 0 and for ν = 0.1 is given in figure 2.

8 Conclusions

We have calculated the renormalization group beta functions for topologically massive

supergravity in three dimensions. Logarithmic divergences in four dimensional super-

gravities have been computed previously using heat kernel methods for example in

[26, 20, 27]. However, these calculations were limited to second order wave operators
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Figure 3: Flows in the Λ̃-G̃ plane in the gauge α = 0, α′ = 0, for ν = 0 (left) and ν = 0.1

(middle). The shift of the nontrivial fixed point is too small to be seen on this scale, but

one notices a different behavior near the origin. An enlargement of this area (right panel)

reveals that the Gaussian fixed point is absent for ν = 0.1. In fact, the beta functions become

singular on the Λ̃ axis. This, however, is an artifact of the approximation, which breaks down

when G̃ becomes too small, in this case of order 0.01.

of Laplace type. Here we have been able to deal with a third order operator for which

the heat kernel coefficients are not available and in addition we have calculated also

the power law divergences. We have found that, as expected, ν, the coefficient of the

Chern-Simons term, does not get renormalized. This accords with the notion that

the coefficient of the Chern–Simons term is quantized, at least for suitable boundary

conditions. 10 The flow of the cosmological constant and Newton’s constant depends

parametrically on ν. We have studied their behavior in the limit of ν very large or

very small. The qualitative picture of the flow is similar to that encountered in TMG

[5], having both a Gaussian and a non-Gaussian fixed point. The latter occurs for

vanishing cosmological constant and positive Newton’s constant in both limits.

We now return to the question raised in the introduction, namely whether the

generic theory flows to the chiral point. With the quantization procedure described

here, which makes sense for generic values of the couplings, we find that the ratio

µ/
√
Λ = 1 is not preserved by the flow. It would be interesting to quantize the

chiral TMG (or TMSG) and to determine whether its RG flow preserves the chirality

condition.

It has been argued [29, 30, 31] that TMG is renormalizable. In this case there

must be a neighborhood of the origin in the Λ-G plane where the picture of the flow

given in figure 2 is correct to all orders. However, perturbative renormalizability is not

sufficient to guarantee the existence of the theory: only asymptotically free theories

can be proven to exist by perturbative methods. In the present case, a glance at figure

10It has been argued in [28] that ν need not be quantized on the three-sphere, but unless the

topology is fixed a priori, it is enough to find one topology where large gauge transformations exist to

impose quantization of ν.
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2 shows that in the neighborhood of the Gaussian fixed point, the G-direction is not

asymptotically free. Thus, if one starts anywhere with G̃ > 0, G̃ will grow. The

question is whether this growth leads the theory outside the domain of perturbation

theory or not. Our calculations seem to imply that the theory tends to a non-Gaussian

fixed point, and that the growth of G̃ ceases.

It would be interesting to extend our results to other three-dimensional models

that contain higher-order curvatures [32], as well as the conformally-invariant model

discussed in [33, 34], where only the Chern-Simons term survives. In this latter case

one cannot simply take the µ → 0 limit of our results for the beta function, since the

additional local Weyl symmetry would have to be built into the quantisation procedure

from the outset.

There are a number of issues related to background supersymmetry and various

scheme dependences in the calculation of the beta functions. Firstly, in the off-shell

computations, by which we mean those in which the on-shell equation R = 6Λ is not

used, the total quadratic action including the gauge fixing and ghost actions is clearly

not invariant under the rigid background supersymmetry transformations (F.1). In

view of the results of appendix F, this symmetry cannot be present on-shell either.

This is not a problem, however, since the symmetry in question is a rigid one. This

state of affairs arises in all quantum supergravity computations performed in their

component formulations; see, for example [35]. The study of this issue by means of

the background field method in curved superspace, and in backgrounds that are not

purely bosonic, is beyond the scope of this paper.

Secondly, the beta functions of G and Λ depend on the choice of cutoff profile

function, which we have chosen to be simply a Heaviside theta function. To compare

with approaches adopted in the literature, we note that in the context of beta functions

in N = 4, D = 4 gauged supergravity, ζ-function regularization has been used in

[35, 36], and the method of modifying the kinetic term by the introduction of a suitable

term in the total quadratic action has been used in [37]. As is well known in the case

of ζ-function regularization, only the logarithmic divergences can be probed, and it is

not useful for the computation of the beta functions for dimensionful couplings.

Thirdly, there is a choice to be made in relating the spectral parameters s, t and

u (3.10) to the cutoff k. We have made a natural choice such that the contributions

to the beta function of the cosmological constant (which is proportional to the leading

terms of the heat kernels) are proportional to the number of degrees of freedom of each

field.

Finally, dependence of the beta functions on the choice of gauge parameters in

the gauge fixed action is to be expected off-shell, but we have shown that there is no

dependence on shell. We refer the reader to ref. [35] for a discussion of various issues

that arise in the context of the expected gauge dependence.

Of course, all these arbitrary choices must become immaterial when one calculates a

physical observable, but the quantities whose beta functions have been calculated here

are not sufficient. The reason is simply that in the calculation of a typical field theoretic
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observable, even to lowest order in perturbation theory, there are contributions from

terms in the effective action that are not accounted for here. For example, to calculate

a typical n-point function at one loop it is enough to know the effective action to

n-th order in the field, but one has to retain the full momentum dependence. By

contrast, in our calculation we are retaining the full field dependence but we truncate

the momentum dependence to the third order. For a discussion of the difficulties that

arise when one tries to convert the cutoff dependence of couplings into momentum

dependence of physical observables, see [38].
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A Variational Formulae

The first variation of the Einstein-Hilbert action in d-dimensional spacetime, up to

total derivative terms assumed to integrate to zero, is given by

δ

∫
ddx

√−gR =

∫
ddx

√−g
(
−Rµν +

1

2
gµνR +∇µ∇ν + gµν�

)
δgµν

=

∫
ddx

√−g (−2Rµν + gµνR) eµ
aδeνa . (A.1)

The second variation, for an arbitrary background and up to total derivative terms,

assumed to integrate to zero, and using the notation δgµν = hµν , yields

δ2
∫
ddx

√−gR =

∫
ddx

√−g
[
(−2Rµν + gµνR) δeµ

aδeνa

−1

2
hµν∇Lhµν + (∇σhµσ)

2 + h∇µ∇νhµν −
1

2
h�h

]

−hRµνhµν −
1

2
Rhµνhµν +

1

4
Rh2 + 2Rµνh

µαhνα

]
, (A.2)

where hµν = 2e(µ
aδeν)a and hµν = gµρgνσhρσ and

∇Lhµν = −�hµν − 2Rµρνσh
ρσ +Rµρh

ρ
ν +Rνρh

ρ
µ . (A.3)
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B Exponential Cutoff

An alternative choice is to use a smooth cutoff rather than a step function. A natu-

ral possibility that one might consider is the exponential function, C̃(t̃) = e−t̃, since

this indeed tends rapidly to zero at large t̃, and it approaches 1 as t̃ tends to zero.

Unfortunately e−t̃ does not approach 1 sufficiently rapidly at small t̃. For our present

purposes, it turns out that C̃(t̃) = e−t̃
2

will work. In order to encompass more general

situations, we shall start by considering

C̃(t̃) = e−t̃
p

, (B.1)

where p is allowed to be an arbitrary positive real constant. This also has the properties

that it approaches 1 for small t̃, and it goes rapidly to zero at large t̃. Indeed, it clearly

ensures that the integration is convergent at large t. With this exponential choice for

the cutoff, we have

k
dCk(t)

dk
= −pω tp kpω e−tpkpω , (B.2)

and so if we plug this and the asymptotic expansion for Y (t), namely

Y (t) ∼
∑

n

Yn t
n , (B.3)

into (3.5), we get

β = 1
2
pω kpω

∑

n

Yn

∫ ∞

0

tp+n−1 e−t
pkpω dt ,

= 1
2
ω
∑

n

k−nω Yn

∫ ∞

0

un/p e−u du ,

= 1
2
ω
∑

n

Yn k
−nω Γ

(n
p
+ 1
)
. (B.4)

Recalling that the asymptotic expansion (B.3) for Y (t) runs over a discrete semi-

infinite set of values for n, with n ≥ n0 where n0 is some negative number, we see

that in order to get UV convergence of all the integrals in (B.4), we must choose the

constant p in the cutoff function (B.1) such that

p > |n0| . (B.5)

In our case, the most negative n0 that we encounter in any of the heat kernel expansions

is n0 = −3/2, and so for our purposes it suffices to take p = 2.

It is interesting to compare the expansion for the beta function obtained in the last

line of (B.4) with the one for the step-function cutoff, which follows from (3.9):

β = 1
2
ω
∑

n

Yn k
−nω . (B.6)

29



Unsurprisingly, the terms with n 6= 0 (which are scheme dependent) differ when differ-

ent cutoffs are chosen. Note, however, that the Y0 term in (B.6) is identical to the Y0
term in (B.4), for any non-zero choice of p. One advantage of the theta-function cutoff

is that the β-function can be given, as in (3.9), as a closed-form expression in terms of

Y (t).

C Euclideanization Rules

For the details of the continuation of AdS3 to S3 and harmonic expansions on S3, see

[18].

The AdS3 metric is

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2 . (C.1)

Our rule for Euclideanization is ρ 7→ iρ, which gives

ds2 7→ −(cos2 ρdt2 + dρ2 + sin2 ρdφ2) = −ds2(E) , (C.2)

which is locally the metric of the three-sphere with negative-definite signature. The

Ricci scalar of AdS3 is equal to minus the Ricci scalar of the standard positive-definite

metric on the three-sphere. Therefore, the rules for transforming equations on the

AdS3 background to equations valid on the three-sphere background are

gAdSµν 7→ −gS3

µν ; RAdS 7→ −RS3

; Λ 7→ −Λ . (C.3)

The Dirac equation for a Majorana spinor on AdS3 is ( /D+m)Ψ = 0. The Euclidean

continuation of the (flat space) Dirac matrices is

γ0 7→ iγ0(E) , γ1 7→ γ1(E) , γ2 7→ γ2(E) . (C.4)

At the same time, for the dreibein components

e0t 7→ e
(E)0
t , e1ρ 7→ ie(E)1

ρ , e2φ 7→ ie
(E)2
φ . (C.5)

where e(E) are the dreibein for the standard Euclidean-signature metric on S3. These

transformations together imply the rule /D 7→ i /D
(E)

. Because the metric we use on S3

is positive definite, we can no longer have Majorana spinors. However, as usual, we use

the Euclidean signature only to compute determinants in spacetime, without doubling

the degrees of freedom.

D Some Heat Kernel Checks

In this appendix all calculations are performed directly in the Euclidean signature.

Consider the contribution of a fermion field to the beta function. It can be computed
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in either of two ways: from the heat kernel of the Dirac operator, or from the heat

kernel of its square

∆ = /D
2
= −�+

R

4
(D.1)

The former has eigenvalues ±ρ(n+ 3
2
) and multiplicity (n+1)(n+2), the latter ρ2(n+ 3

2
)2

and multiplicity 2(n+ 1)(n+ 2), with n = 0, 1, . . . in both cases. The heat kernels can

be computed as spectral sums, along the lines of section 3.1. From the spectral sums

of the Dirac operator one finds

Y /D(u) =
V

π2u3
(2 + . . .) (D.2)

whereas from the spectral sum of the eigenvalues of the squared Dirac operator one

gets

Y∆(t) =
V

(4πt)3/2
(2 + . . .) (D.3)

The two results agree if we make the identification t = π1/3u2/4. 11

Next we check that the correct way of summing the contributions of different spin

components to the beta functions is to sum the heat kernels of the respective operators,

with coefficient one for the highest order part, i.e. the coefficients given in (4.13) and

(4.40) do not play a role. We check this in the case of pure bosonic gravity in the gauge

α = 1, in which case the operator acting on metric fluctuations is equal to [39]

∆h = (1−P)

(
−�+

2

3
R− 2Λ

)
− 1

2
P

(
−�− 1

3
R− 2Λ

)
, (D.4)

where P µνρσ = 1
3
gµνgρσ projects on the trace and 1 − P on the tracefree part of hµν .

The heat kernel of an operator of the form −�+E can be computed from the standard

formula

Y (t) =
1

(4πt)3/2

∫
d3x

√
g tr

[
b0 + b2t + b4t

2 + . . .
]

(D.5)

with

b0 = 1 (D.6)

b2 =
R

6
1− E (D.7)

From here one finds

Ytrace(t) =
V

(4πt)3/2

[
1 +

(
1

2
R + 2Λ

)
t+ . . .

]
, (D.8)

Ytracefree(t) =
V

(4πt)3/2

[
5 +

(
−15

6
R + 10Λ

)
t+ . . .

]
. (D.9)

11There are significant differences in the next term of the expansion, and it has been argued in [17]

that only the former procedure is correct.
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The result for Ytrace agrees with Y∆(h)
(t), evaluated in the gauge α = 1, while Ytracefree(t)

agrees with the sum Y∆
(hTT )

(t) +Y∆
(ξT )

(t) +Y∆(σ)
(t). Note in particular that when one

adds up the heat kernels of the differentially constrained fields hTT , ξT and σ the terms

with half-odd powers of t cancel out. (The trace and tracefree parts are defined by

purely algebraic conditions.)

E Properties of Γk

The computation of the β-functions require only the logarithmic derivative of Γk with

respect to k. Nonetheless it is useful to examine the effect of the cut-off procedure

described above in the computation of Γk itself. While Γk is a divergent, and thus

ill-defined quantity, the following formulae make sense after taking their k-derivatives.

With the theta-function cutoff, the representation (3.4) becomes

Γk = S − 1

2

∫ 1/(akω)

0

dt

t
Y (t) . (E.1)

By adding and subtracting a constant for each mode, we can rewrite this as

Γk = S − 1

2

[∫ 1/(akω)

0

dt

t

∑

n

(
1− e−tλn

)
−
∫ 1/(akω)

0

dt

t

∑

n

1

]
. (E.2)

The sum in the second integral can be interpreted as ζ∆(0), where ζ∆(s) ≡
∑

n λ
−s
n is

the zeta function of the operator ∆, and the first integral can be performed explicitly

in terms of the exponential integral Ein(x) ≡
∫ x
0
(1− e−t)t−1dt:

Γk = S − 1

2

∑

n

Ein(λn/(ak
ω))− γ(k) , (E.3)

where γ(k) = ζ(0)
∫ 1/(akω)

0
t−1dt and ζ(s) is the standard Riemann zeta function, ζ(s) =∑

n≥1 n
−s. For k → 0, Ein(λn/(ak

ω)) → log(λn/(ak
ω)), so this reduces to the standard

determinant formula with eigenvalues measured in units of akω, modulo the irrelevant

infinite constant γ(0). For k > 0, however, Γk is not given as the logarithm of a

determinant any more, but writing Ein(λn/(ak
ω)) = log(λn/(ak

ω)F (λn/(ak
ω))), where

F tends to one when k → 0, we can still interpret Γk as the logarithm of a determinant,

but now of a modified wave operator ∆̃, where the eigenvalues are weighted by the

function F (λn/(ak
ω)). Note that the term γ(k) contributes an infinite constant to the

beta function which is cancelled by a contribution of opposite sign coming from the

second term in (E.3).

F Quasi-supersymmetry of Gauge Fixing Conditions

Th gauge fixing conditions (4.4) and (4.34) are motivated by the property that they

eliminate the mixing terms between lower spin components of the fluctuation fields.
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Here we study their behavior under the rigid supersymmetry transformations that leave

the background invariant and act on the fluctuation fields as

δhµν = ǭγ(µψν) ,

δψµ = −1
4
(∇ρhσµγ

ρσ +mhµνγ
ν) ǫ , (F.1)

where ǫ is understood to be a Killing spinor. Varying the bosonic gauge condition (4.4)

under these transformations gives

δGµ = ǭFµ , (F.2)

where Fµ = ǭ( /D − 5
2
m)φµ + · · ·, with ellipses denoting terms depending on χ, ψ and

their derivatives. A gauge condition that preserves supersymmetry about the super-

symmetric background would require that δGµ be proportional to ǭγµF . This is not

the case here due to the presence of the φµ dependent terms, which are nonvanishing

on-shell as well. Nonetheless, we find that

γµFµ = −α
3

(
/D − 3

2
m

)
ψ +

10

3

(
�+

R

8

)
χ . (F.3)

Comparing this result with the action of Onk on the gauge condition F which gives

OnkF =
1

α′
(
/D − 3

2
ρ
)
ψ +

(
�+

R

8

)
χ , (F.4)

we see that on shell, for which ρ = m, we have the relation

γµFµ = −10

3
αOnkF . (F.5)

provided that we choose

α = −10α′ . (F.6)

A similar phenomenon has been encountered in [40], where 3D supergravity was quan-

tized around Minkowski spacetime.
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