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Nonlinear dynamics in a single mode three-level laser without inversion
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We characterize analytically the nature of the lasing solutions of a laser operating without population
inversion. We consider models involving three-level media interacting with a strong driving field and a lasing
field in the vicinity of the lasing threshold. We assess the influence of different relaxation and pumping
schemes on the dynamics of these lasers. We use the atom-field detuning, the cavity detuning, and the linear
gain as bifurcation parameters. Depending on their values, the stable lasing solution is shown to be cw or
self-pulsing. We show that the optimal lasing operation is achieved if both the driving field frequency and the
cavity frequency are out of resonance with the atomic frequencies. Physically, the lasing regimes arise from
nonlinearly interacting sidebands induced in the lasing medium by atomic interference.
[S1063-651%98)07201-9

PACS numbeps): 05.45+b, 42.50--p, 42.55-f

I. INTRODUCTION from that of ordinary laser systems. The coherently prepared

active media possesses typically a fairly complicated re-

It is by now generally recognized that atomic coherencesponse that must affect the dynamical behavior of the inver-
and interference effects can be used to modify dramaticallgionless laser oscillators.

the response of coherently prepared atomic sysfam#m- Secondly, we are specifically interested in regimes of in-
plification and lasing without inversiofi WI) are among the versionless lasing in which coherent preparation is achieved
most interesting applications of these effects. on slowly decaying, weakly allowed transitions. As was

The key mechanism for LWI, proposed theoretically by shown recently14], these regimes are of considerable prac-
several authors at the end of the 198Rs4] is the cancel- tical interest when there is a large frequency up-conversion.
lation of atomic absorption due to quantum interference. InThe linear susceptibility spectrum for such systems often dis-
this case the absorption and emission profiles become noplays amplification in several separate frequency domains,
reciprocal and light amplification is possible even if thewhich can lead to generation at several different frequencies
population of the upper levels is less than that of the groundimultaneously and thus produce an unstable intensity out-
state. The interest in inversionless amplification and lasing iput. In fact, recent studigd7,1§ indicate that in a similar
stimulated by possible applications, which include the gensystem laser oscillation can occur via a Hopf bifurcation,
eration of coherent radiation in the UV and x-ray spectralwhich can result in self-pulsing intensity. The stability of the
regions, where population inversion is very hard or even imvarious lasing regimeéuch as cw and self-pulsed, for in-
possible to achieve. stance and the possibility to control them are therefore im-

The first proposals on LWI were followed by a large num- portant practical considerations in the up-conversion regime
ber of theoretical publications on the subjggt7] in which ~ of LWI at least for certain schemes. Similarly, the optimal
different schemes and different aspects of inversionless gailomain of parameters such as drive field strength and detun-
were studied. Relatively recently, experimental evidence foing yielding maximal intensity output is often not obvious
inversionless amplification and lasing was obtaif@d13.  for such schemes and requires special consideration.

The experimental and theoretical efforts are presently di- The present paper introduces a general formalism and in-
rected towards the demonstration the inversionless lasing inestigates the dynamics of single-mode inversionless lasers.
a frequency up-conversion regim#4]. We start by outlining the formalism applicable to any single-

Up to now the major part of the theoretical literature onmode laser with a lasing medium consisting of nearly reso-
the subject of LWI was devoted to the analysis of the lineamant three-level atoms at or near laser threshold. We inves-
gain properties of the different amplifiers. Very few paperstigate the character and stability of the emerging solutions.
have dealt with nonlinear dynamical analyses of the lasing We first consider the case of zero detunings: a cavity
regimes[15—-18. The subject of the present paper is to pro-eigenfrequency coincides with the atomic transition fre-
vide an in-depth analysis of the nonlinear dynamical properguency coupled by the lasing field and the driving field is
ties of inversionless laser oscillators. resonant with the driven transition. It was showr 17] that

We are motivated by the following considerations. Firstfor this scheme both steady and Hopf bifurcations of the
of all, from a general viewpoint it is clear that inversionlesstrivial solution are possible. We find that the Hopf bifurca-
lasers can exhibit dynamical behavior that is very differenttion is actually a codimension-two degenerate Hopf bifurca-
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tion that cannot be fully described with the real equations
used in[17]. In particular, using the normal form method, we
study in detail the solutions emerging from the degenerate
Hopf bifurcation. Our analysis shows that even in the case of
zero detunings the solution emerging from this bifurcation
can lead to either a time-independent or a time-periodic in-
tensity.

We point out that LWI via Hopf bifurcation occurs in the
regime where the polarization decay rate of the driven tran-
sition is slower than the polarization decay rate of the lasing
transition, a regime interesting for LWI with frequency up-
conversion[14]. It was shown in[14] that the domain of
inversionless gain as well as the value of gain itself can be
increased by detuning the laser cavity or the driving field
from atomic resonance. We find that detuning can indeed
substantially increase the domain of LWI oscillation. Fur-
thermore, in the domain that is interesting for the experimen-
tal realization of frequency up-conversion, we find that the
stability and character of the lasing field can be controlled by
properly tuning the laser cavity and driving field. We show
that for the general case of nonzero detunings, the trivial
solution undergoes a bifurcation leading to cw laser opera- g1 1. Three-level LWI scheme&) h (V) schemel(b) p (A)
tion. The emerging solution with time-independent intensityscheme(c) Lower-ladderscheme(d) Upper-ladderscheme(e) h
may or may not undergo a secondary Hopf bifurcation forscheme for frequency up-conversion with driving field applied to
larger values of laser gain. the weakly allowed transition <% 2.

In the conclusion, we discuss the physical origin of the
different LWI regimes described in the present paper.

where

Il. LASER MODEL AND LINEAR STABILITY ANALYSIS (Rl) _ ( P Q)(Pu) (WIS) @

A. Basic equations Ro) \R  S/\p2a) |Was

We consider the general model of a ring single mode laser
consisting of three-level atoms. A lasing field with complex
Rabi frequencya couples one of the atomic transitions
(3<1). An external driving field with real Rabi frequency
Q is tuned close to the resonance with another atomic trarHere the complex variablesg;=ips;, X3=ps3p, and
sition (2—1). Driving and lasing fields can interact via the x,,= —ip%, are proportional to the off-diagonal elements of
coherence generated on the remaining uncoupled transitiafe density matriX pi}. p11 andp,, are the populations of
32 (Fig. 1. the levels 1 and 2. The population of the level 3 is

The equations describing this mod&b-21 can be writ-  p..=1—p,;— p,,. The coefficieny is defined through
ten in the following form:

P=— (W51 + W3+ Wi3), Q=Wq,—Wj3,

R=W5;—Woy3, S=—(Wqy+Wg+Wys). 3

da g=2miNawcui’lcie ki,

E=—Ka+gsx31,

whereN is the number of atomsy. is the cavity eigenfre-
quency closest to the lasing atomic transition frequepgy,

dxgy _ is the dipole matrix element excited by the lasing fieid,
Tt -~ (Yam1Aa)Xart a(l=p2—2p10) + OXa, ande, are the speed of light and the dielectric permittivity at
the lasing field frequency.
dx All the parameters in Eqgl) are real. These equations
82 — (Y= 1A g+iAg)Xay— aXor— OXay describe all possible three-level syste(Rgy. 1) interacting
dt @ ’ 1) with a single mode lasing field and a single frequency driv-
ing field.s=1 in the case oh orV [Figs. 1a) and Xe)] and
dx,, lower-ladder{Fig. 1(c)] schemes and= —1 in the case of

a9t (7t iAg)Xo1— Q(p11—p2d) + a* X3,

d

%— - R1+ Q(Xz]_"f‘ X;l) + axgl-i— a* X31,
dp2y
T Ro— Q(Xo1+ X3y,

or A [Fig. 1(b)] andupper-ladder{Fig. 1(d)] schemes. Cav-

ity and driving field detunings are defined A§= w.— w33
andA = wy— wyq, respectively, wherey; is the atomic fre-
quency of thei—j transition andwy is the driving field
frequency .« is the cavity damping ratéW,. ,} in Eq. (2) is

the matrix describing incoherent pumping and population re-
laxation processes. It depends upon the particular choice of
three-level systenfsee Fig. 1 and will be specified later.



57 NONLINEAR DYNAMICS IN A SINGLE MODE THREE . .. 1501

Finally, the atomic polarization damping rates are defined Ag=1,
by

nrd A2:K+Fa+rb,
Ya=Ya T (Wai+Wig+WostWy)/2,

A=x([,4+T)+T. T+ Q%24+ gsn,,
o= Y (Wapt Wogh Wt Wep)i2,  (4) 1= x(Tar o) Tl ot 05 gom,

2

T Nt an13)- (13)
d

’yd:’}/grd+(W21+W12+W31+W32)/2, Ao:K(QZ+Fan)+gS
where Y2,y and y' describe the effect of phase-

destroying processes. The radiative limit is defined by th Here Ta=7y,~14a, Tp=y,—idatidg, and Ty=y,

e+iAd. In what follows we label the characteristic roéis}

conditions such that R&;=Re\,---=Re\g. Thus the trivial solution
ord nrd nrd (6) becomes unstable when Re=0. We will in the follow-
Ya =% =7Yd =0 ()  inguseA,, Ay, andg as bifurcation parameters.
The nonlasing steady-state solution of E@$) corre- 1. The resonant case

sponding to laser below threshold is given by ) ) i
Let us first consider the case of zero detunings

(A,=A4=0) so thatP,(N\)=P5,(\) are real. For this case,
bifurcations of the nonlasing solution of the real E¢®)
were described in detdil7]. The steady bifurcation point of
Eq. (6) is given by

@=X31=X3,=0, Xp1=X%=—-——(p%—p2,),
31~ X32 21= X921 7d+|Ad(p22 P11

Here pJ, are the atomic populations in the absence of the Aa=A4=0, g=0o=
lasing field (@=0)

kY% yarn)
S(Q%N21+ Nigypya)

(12)

At this point, the characteristic equatigh0) has two zero
eigenvalues. The solutioff) is stable(unstable for g<<gg
(g>gp). This bifurcation leads to a regime with stationary
intensity appearing at the lasing transition frequency. Since
Jo in Eq. (12) should be positive, a necessary condition for

P21 =[202(Wi3+Wag) + Y4(QWo3— SWi3) /D,

p2,=[202(W,3+ Wag) + Y4(RWiz— PWo3)1/D,  (7)

P3=1= P22 P3s: the steady-state bifurcation is
where
S(Q%N;1+ Ny3ypyq) <O.
D=-20%P+Q+R+9S)+754(PS—QR),
The inversionless condition implies;3>0 for the h and
Ya= 7d+A§/7d- (8) lower-ladder schemes andh;;=—n.3>0 for the p and. _
upper-ladderschemes. Therefore, the necessary condition
In the following, the population differences defined by for the steady-state bifurcation in a perfectly tuned laser is
o o Nn,1<0 (n1,<0) fors=1 (s=—1). It is easy to check that
Nij = pii — pjj (9)  this also means that in the absence of the driving field the
_ population of level 1 should be greatemalle) than that of
will be used. the level 2 fors=1 (s=—1) [21,17.
It was shown if17] that when both detuning parameters
B. Linear stability analysis are equal to zero the nonlasing solution can also exhibit a

We now proceed with the linear stability analysis of the HOPf bifurcation. This Hopf bifurcation is defined by
trivial solution (6). The system(1) is linearized about the

solutions (6). The resulting Jacobian matrix has a block- Ya(Yat Yo) [ Q2+ (Yat €)(vp+ k)]
diagonal form with two blockd ; andL, (see Appendix ~ Aa=A4q¢=0, g=go= T2 Niave (K F 7]

The stability of the steady-state solutig®) depends on the 21 Tasvd 2 (13
eigenvalues of the complex matrix;. The characteristic

equation is given by In our analysis the variables, x3;, X35, andx,, are com-

plex, so that we have a codimension-two degenerate Hopf
bifurcation instead of the generic codimension-one bifurca-
tion, which takes place in the real laser equations used in
[17]. This means that the characteristic equation has a pair of
pure imaginary rootsigg, —iwg), which is doubly degen-
erate: bothP,(\) and P,(\) have the same pair of roots
whereAy is the complex conjugate df,, and (iwg,—iwg), Wherewg is defined by

P1(N)P2(N)=0, (10)

3 3
Pi(M)=2 N"A,, Py(\)=2 \"A%,
n=0 n=0
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N Q% k(Yat ¥o) + YaYol + N1a¥d Q3(Ya+t ) + ¥E(k+ ¥a)]

2_ 2
wr=0+
0 Q%ny—Nyzyg( K+ v,)

(14)

The degenerate Hopf bifurcation d@t3) is the intersection At order zero inA, andAy, the instability point is given by
of two codimension-one surfaces in parameter space. Each &fg. (13). We know that at the bifurcation point has to be
these surfaces corresponds to a generic Hopf bifurcation arglrely imaginary. Therefore, only thi,- or A4- dependent

is associated with a sideband instability leading to a timepart of A can contribute to its real part. Solving Re=0, we
periodic solution of Eq(1), which, however, corresponds to determine the first order correction to the critical value of the
a cw laser operation. The degenerate Hopf bifurcation takesoupling constang. Since there are two solutions of the
place when instabilities on both sidebands occur simultacharacteristic equation in the resonant casg,= *iwg,

neously. there are two solutions for the linear partgf
For positive values of, in Eqg. (13) the nonlasing solu-
tion (6) is unstable forg>g,. If go defined by Eq(13) is g=go*Ag,

negative then the Hopf bifurcation is impossible. Hence, the
necessary condition for the degenerate Hopf bifurcafid 1
s given by 9 P Ag= 5 {8ard (0% yoya) (vat o 1)~ 0]

Do=s[Q%ny—Ny3y4(x+ ¥a)]>0. (15 —Adl(vat Yo+ ) (Q%(vp+ Ya— k) +(vat k)

For the h and lower-ladder schemes(p and upper-ladder X(@5+ Yo+ Yo ¥d) — @5 ¥d( vaT €)1}, (18
schemesshown in Figs. 1), 1(c), and 1e) [Figs. 1b) and
1(d)] this condition takes the fornf)?n,;—nig3yq(k+ va)
>0 [Q2n,— g yg(k+ ¥,)<0] and, hence, the degenerat
Hopf bifurcation (13) is possible only fom,;>0 (n;,>0)

wheregg, wy, andDy are defined by Eqg.13), (14), and
e (15), respectively. Each of these two solutions corresponds
to a simple Hopf bifurcation. Thus for nonzero detunings the

[21,17). Thus, the Hopf bifurcation requires a positirega- degenerate Hopf bifurcation obtained on resonance splits
tive) population difference between the levels 2 and 1 forMt0 two generic Hopf bifurcations. For small, andA, the
s=1 (s=—1) and it is incompatible with the steady-state fir'St Of these two bifurcations occurs for=go—|Ag|<do
bifurcation (15) [17]. Note that the threshold valug, de- Whereas the second one occurs dor go+|Ag|>go. Thus
fined by Eq.(13) does not vanish fok—0 as it does in the € instability threshold=g,— |Ag| is lowered in a slightly
case of the steady-state bifurcatiét®). As shown below detuned laser. The codimension-two degenerate Hopf bifur-
this results from the finite amount of atomic dispersion re-cation takes place when both the Hopf bifurcations take
quired to compensate cavity resonances and to allow foplace simultaneously. This condition can be satisfied not

sidebands to oscillate even in the limit of a perfect cavity®!y for Aa=A4=0, but also in the case of small detunings
(k—0). whenAg=0 in Eq. (18). This gives a relation betweeh,

and A4, which together withg=g, determines the linear
2. The case of small detunings approximation to a codimension-two bifurcation set corre-
sponding to a degenerate Hopf bifurcation. Note that«or
Y,0 and Yat vp> 74 the detuning parameters, and A
should have the same sign in order to satisfy the degenerate
Blopf bifurcation conditiomAg=0.

We first seek a steady-state bifurcation that is defined b
A1=0. This meansA,=0 in Eg. (11), and therefore also
A»,=0. In this case a cw field emerges in resonance with on
of the cavity eigenfrequencies.

If we redefineA=N—iA with arbitrary A, the charac- IIl. DEGENERATE HOPE BIFURCATION

terisitc Eq.(10) becomes
Bifurcation phenomena near the degenerate Hopf bifurca-

P.(N—iA)Py(X+iA)=0. (16)  tion point (13) can be described using the normal form
_ method[22—24. The truncated normal form equations for
In order to find a solutiol. =0 we have to solve this bifurcation are, in general, given phg5]
Ap=iA3—A,A2—iA;A+A,=0 (17) z,=7,(B+6-Cy|z, |2~ C,lz_]?), 19
for A and the couplingg. We find with X;,=0 a simple z_=z_(B—86—Cq|z_|>—Cylz,]?.

Hopf bifurcation\; ;= *iA, leading to a cw laser output

with detuningA relative to the cavity resonance. It becomesHere the complex variables andz_ are the slowly varying
clear that the cas@;,=0 is just a special solution with in time envelopes of the two sideban@®e Appendix The
A=0. In the general case, the analysis of Etp) requires complex parameterg and § describe the small deviation of
the explicit solution of an irreducible third order polynomial. the parametera,, Ay, andg from the degenerate Hopf
Therefore, we confine our analytical consideration to thebifurcation point(13). The outline of the procedure used to
limit of small cavity and drive detunings. In this limit, the derive Eqgs.(19) and the explicit form of the parametefs
characteristic equatiofl0) can be linearized A4 andA . and é are given in Appendix A.
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(a) Red (b) Red laser intensity is stable for R&0 (Re§<0) only outside
the domain(20) where the stable solutioR exists. The so-
lution P bifurcates directly from the nonlasing solution only
in the case R&=0. If Re §#0 but small enough, the solu-
Rep tion S, (or S_) appears first. Increasing, it undergoes a
secondary bifurcation giving rise to the solutiBrwith time-
periodic intensity. For negative values of Reg{C,) the
cross saturation for the sidebands is stronger than the self-
FIG. 2. Bifurcation diagrams for the normal form equations saturation. Therefore the laser cannot operate on two side-
(19). ReC;>0 and ReC,>0 for both diagrams. The time-periodic pands simultaneously and the solutiBris unstable. In this
solutionS, (S_) of Eq.(19) corresponds to cw laser operation and case we have bistability betwe&n andS_ in the parameter
exists abovebelow the lines, (s.). Itis stable abovébelow) the  yegion where both these solutions coexist with the unstable
line p, (p-). (@ ReC,>ReC,. The stable quasiperiodic solution gq|ytion P. Outside of this region but still above the thresh-
|P of Eq. (13) exis_;f]_in thle vertically dasf(;ed Wedg?f befwe;:l theold there is only one stable solution with nonzero time-
Inesp, anap_. IS solution corresponas to a se -pulsed laser; : :
output. (b) ReC;<ReC,. In the horizontally dashed wedge the Ind_?ﬁﬁgdtehr: Isisll?tri(;gfr\)\i’lﬁ]ﬁgefr(i)(;dai(?I(;saerrlc:r?t:ar:(s)irtyé;g).asso—
solutionP is unstable. Two solutions with cw laser outg8t. and ciated V\’/ith the degenerate Hopf bifurcatiét®). They can
S_) are bistable in this wedge. . . ; X . o
exist only if the gain of both sidebands is sufficiently large,
so that both of them are involved in the radiation generation.
In particular, the sidebands appear simultaneously at the de-
generate Hopf bifurcation point. Therefore, the soluti®n
always exists near this point. However, even if it exists it is
unstable if ReC;—C,)>0. The instability of the solution
with time-periodic intensity results from nonsymmetric per-
turbationsész, # 5z_ of the variables of Eq419). This type
of phase instability does not appear[iti7] where Eqgs.(1)
are studied with all variables real, so that one always has
z.=z_in Eq.(19).

laser off

[

The codimension-two bifurcation point of Eq$19)
Re f=Re 6=0 corresponds to the degenerate Hopf bifurca
tion of Egs.(1) and it lies on the intersection of the two Hopf
bifurcation lines RgB=Re § and ReB=—Reé. In the par-
ticular cased ;= A4=0, we have ImB=Re §=0 in Eq.(19).
The type of the bifurcation diagram associated with EfjS)
depends on the real parts of the coefficie@ts and C,,
which can be calculated foA,=A4=0. Since for the
schemes under consideration we have not found situations

which either ReC,=0 or Re€y+C,)<0, we consider only In order to check whether there exist any parameter val-
the case where both Rg and ReC, +Cy) are positive. Then e ek 2 stable solution with time-periodic laser in-

all the branches of solutions bifurcating from the non—lasingtensit can be found near the degenerate Hoof bifurcation
solution (6) are supercriticali.e., they exist above the insta- . y gener P .
point (13) we need to evaluate explicitly the expression

bility threshold and the bifurcation diagram for Eq§19) .
: : : Re(C,—C,). We have calculated the expressions for the co-
g?gpeznds on the sign of the quantity Ret C,), as shown in efficientsC,; andC, analytically with the help of a symbolic
i algebra software. Since they are extremely cumbersome, we

The steady-state, =z_=0 of Eq. (19) corresponds to f N i nd present onlv numerical result
the nonlasing solutiori6) and it is stable below the lasing OCUS On Specific cases and present only humerical resuits
obtained using the analytical expressions @qr,.

thresholdRe 3<0, |Re §<|Re ). Above this threshold and In what follows we first consider the model used[iv].

for sufficiently small detunings We show that for this model there exists a parameter domain

Re B3>0, |Res/Re(C;—C,)|<ReB/RgCy+Cy), in which the solution with periodic intensity is unstable and
(20) above the Hopf bifurcation the laser exhibitgly cw re-
gimes. A second case considered corresponds to the model

there exists a stable quasiperiodic solutiBnof Eq. (19)  used in[14], which was proposed for the realization of LWI

with |z;|°=Res&/Re(C;+Cy)+RedRe(C;—Cy) and |z_|>  in a frequency up-conversion regime.

=Re p/Re(C;+C,)—Re 8/Re(C;—C,). This solution corre-

sponds to a laser output with the intensity oscillating in time

at a frequency close to the frequensy defined by Eq(14). IV. ANALYSIS OF SPECIFIC MODELS

There are also two periodic solutions of EG9) that cor- OF THE LASING MEDIUM

respond to laser operation with stationary intensi8 )
[|z+|2=Re(ﬁ+5)/(ReC1)2, |Z,|2=0] and S_ [|Z+|2:0’ A. Models of three-level medium
|z_|?=Re(B—9)/(ReCy)?]. The solutionS, (S_) exists for We now specify the particular pumping and relaxation

Re3>—Red (Re>Re ) and it corresponds to the cw la- models, and determine the domain of lasing and the stability
ser output with a frequency shifted from the resonance freef self-pulsed solutions. First, we would like here to make a
guency of the lasing transition by an amount approximatelytonnection with the results of Ref17] and, therefore, use
equal towg (— wp). Note that the solutionS, andS_ do  the same model in which it is assumed that detailed balance

not exist in the real equations studied[i]. holds. In this case the matr{}V;._;} is defined by{7,19-2]
If the self-saturation coefficient Rg, in Eq. (19 is
greater than the cross saturation coefficient(Rethen the Wio=N3/To, Wpu=Np/Ty, Wis=Ny /Ty, (21)

guasiperiodic solutiorP is stable. This means that the two
sidebands lock in to produce a regime with time-periodic
intensity. The solutior5, (S_) corresponding to stationary W3=N3/T31, Wy=Ny/T3,, W;3,=N3/Tg,
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whereN;, N,, andN3;=1—N;—N,, are the populations of 0.7
the levels 1, 2, and 3 in the absence of the lasing and the 0.6 F
driving fields andT;, are the longitudinal relaxation times. 05 g
Substituting Eq(21) into Eq. (2) we get 04
R.— (N2+N1+N3 +N(1 1) +N1 03
1 Ty Tar P11 1 Ty Ta P22 T 0.2 E
(22 0.1 f
11 N, Ny+Ng N, R —
Ry=N,| =— — —| pyy— | =— + Pt —. 0.00 005 010 015 020 025 030 035
T Tg T T3 T3 xT21
The steady-state populations and polarization of the 0.3
driven transition corresponding to the trivial solutias=0 i (b)
follow directly from Egs.(6) and (7). 02 L Re(C»)

The second specific model used here corresponds to the
scheme described ifl4] for inversionless frequency up-
conversion. It is similar to the usudl (or V) system with
s=+1 in Eqg. (1), but with the driving field applied to a
weakly allowed transition between the levels 1 anfis@e

Fig. 1(e)]. In this casgW,_,} is given by -0.1 ) I . ! . |
Wore 0. Wore O W 0.036 0.040 0.044 0.048
12=0, 21=0U, 13= V31> 23) /Y32
Wai=r, Wys=1vy3z, Ws=0.. 0.05
o . 0.04
In order to distinguish easily between the two groups of i
models, we adopt the follwoing convention. For the four 0.03 ¢
schemes of Figs.(&)—-1(d), we use decay timeg; while for 0.02 f
the scheme of Fig. (&), we use decay rateg; . Therefore, o001 F
we have Tk
0.00 F
Ri=—(y31t1)p11— ¥31022F Y31, (24) 001 B | . | . !
Ry=— Yasfi11— YasPoa™ Yaz- 0.00 0.01 0.02 0.03 0.04
Since the relaxation matri23) is not a particular case of Eq. Y.

(21)'_ the scheme shown in Fig(e) r_equires S(_eparate consid- FIG. 3. Real parts of the normal form coefficier@g and C,

eratlon. The steady-state populatidi@ for this scheme are o qjuated at the degenerate Hopf bifurcation poia8). If

given by ReC,>ReC, (ReC,;<ReC,), a stable(unstabl¢ solution with
P21= 2(22()/32+ y31)ID, time-periodic laser output exists near the Hopf bifurcation. The

point T indicates the LWI domain boundarya) Dependence of
nrd_ _nrd_

0 _ 2 = ReC, and ReC, on the cavity decay rat = =M=,
P22~ (207 (vazt 7a) +1732al/D, @ = 1 Ty 10Tar, Topm 1OOT22/, leyo.zz?yNaZ:oy.g, lelfrﬂ.
pgsz 20%r/D, (b) Dependence of R€; and ReC, on the incoherent pumping rate
for the scheme shown in Fig.(d: y3"=""=+y""=0, «
where =(1/3)10 %v35, ¥31=(2/3)y32, Q=10y3,3. (0) Depen((:ljencedof
L~ 2 ReC; and ReC, on the phase-destroying rateyy “=yy'
D=r1vy3yq+2Q7r +2(ys+ y31 |- — Y= =10 2y, y31= 10 Lysy, 1= ys, Q=1CPys,.
Here’y, is defined by Eq(8). It is easy to check that there is
no inversion forae=0 in this scheme p(‘fl— p23> 0) if the  results are shown in Figs(@-3(c). Figure 3a) was calcu-
incoherent pump parameter does not exceed the sum of thated in the radiative limit5) with the help of the relaxation
population relaxation ratas< y;,+ y3; [14]. It follows from  matrix defined by Eq(21). It represents the dependence of
Eq. (25) thatn,, is always positive. Hence, the instability at ReC, and ReC, on the cavity damping rate. In this figure
line center(12) is impossible for this scheme if the driving the solution with time-periodic laser intensity is stable only
field is in exact resonance with the atomic transition. Thefor sufficiently large x. On the other hand, if the cavity
bifurcation conditions can now be easily calculated from thedamping rate is small enough, the self-pulsed solution is un-
general formulas of Sec. Il. stable and the laser exhibits only a cw regime. Hence, for
Stable solution with time-periodic lasing intensity exists certain parameter values the Hopf bifurcation described in
near the degenerate Hopf bifurcatiofl3) only if [17] results in a cw laser operation instead of self-pulsing.
ReC,;>ReC, in Eq. (19). Using the procedure outlined in The other two graphs in Fig. 3 correspond to the scheme
the Appendix we have calculated the coefficie@jsandC,. shown in Fig. 1e). Figure 3b) was calculated in the radia-
These coefficients have been evaluated numerically and théve limit and represents the dependence of the real parts of
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FIG. 4. Bifurcation diagram for Eqs(1)—(5) and (22). The 005 [
curvess, ands_ indicate the bifurcations of the nonlasing solution T
leading to the solutions with cw laser output. The cupesandp_ o0 Lo w0 1 b 1 b
correspond to the bifurcation leading to the solut®rwith self- 0.0 0.2 0.4 0.6 0.8 1.0 12
pulsed output.(@) Stable solutionP exists in the dashed area. QT

-1 e _ 2 _ _
il_— Olég—NO-i%frlzl(,bg ;: 3'34|1§T2}3’ T3.1_t 181-?1.’ T32_t 1b(I)OT'21ih FIG. 5. Branches of the solutions of Eq&)—(5) and(22) with
1=0.38,N;=0.1. (b) The solutionP exists but is unstable in the self-pulsed and cw laser output fadr,=A4=0. Solutions corre-

dashed area where two solutions with cw output are bistable, . : - ; .
$ponding to cw(time-periodi¢ laser intensity are labele8(P).
s=—1, k=0.015Tp;, g=8.41572,, Toy=10Tp;, Tep=100T5;,  ohoro'd (time-periodig y (P)

N.=0.42 Noe 0.1 Stable(unstablé solutions are indicated by a solidasheglline. (a)
1= ae 2 The parameter values are the same as in H@. 4b) The param-
o ) ) eters are the same as in Fig(bg (c) s=—1, k=0.15T,,
the normal form coefficients on the incoherent pumping raty=11.722812%,, T3=10T,, T4=100T,;, N;=0.42, N,=0.1,
r. In Fig. 3b) the solution with time-periodic intensity is (=1/T,,.
stable only for sufficiently small values of. Figure 3c) _ . _
corresponds to the cagd'= yid= yrd=ynrd \yhere,'d  aries for a laser withh ;= A4=0. These two solutions corre-
is the contribution of the phase destroying processes to thePond to the degenerate Hopf bifurcation points labeled by
decay rates. Here we also have either stable or unstable sefta andH, in Fig. 4. In Fig. 4b) we have Re;—~Cp)<0
pulsed solution. Note that in all three graphs of Fig. 3 theand, hence, the solutioR corresponding to time-periodic
parameter region where the solution with time-periodic lasef@ser output is unstable. The solutign (S_) corresponding

intensity is stable lies near the LWI domain boundary la-t0 cw laser output exists inside the closed cusve(s_) and
belledT. it is stable abovébelow) the curvep, (p_). The bistability

domain for the cw solution$S, andS_) is dashed. It lies

between the curvgs, andp_ where the unstable solutid®

exists. Figure &) is similar to Fig. 4b) but represents only
To verify the predictions of normal form analysis we havethe region of small cavity detunings. Unlike Fig(a# we

studied the bifurcations of Eq§l) numerically. The results have ReC,;—C,)>0 for the codimension-two pointd; and

of our calculations appear to be in good agreement witiH, shown in Fig. 4b). In this case we have a stable solution

those obtained by the normal form method. In Fig. 4 bifur-with time-periodic laser output that exists in the dashed area

B. Bifurcation diagrams

cation curves of Eq91)—(5) and(22) in the (0,A,) plane
are shown. In the case of finite cavity decay rate>Q)
LWI can exist only in a finite range of the driving field
intensities. In particular, solving the last equation(1:3) for

02 we get two positive solutions determining LWI bound-

between the curveg, andp_. The solutionS, (S_) with
stationary laser intensity exists above the cusyg(s_) and

it is stable abovébelow) the curvep, (p_). Figure 5 rep-
resents the dependence of the laser field intensity on the driv-
ing field amplitude() for the case whem\,=A,;=0. The
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two points H; and H,. Note that the fact that the
codimension-two points in Fig. 6 occur far,A4>0 agrees
with the analytic result obtained for small detuning at the end
of Sec. II B 2.

laser off

cw operation

C. Instability threshold for the case of nonzero cavity
detuning

Advn
[

It follows from Fig. 4 and was already mentiongti4]

that in some cases LWI can be more easily achieved in a

detuned laser. Let us discuss in more detail the question of

whether for given parameter values LWI can appear for any

: L : ' detuning. First consider the case where the cavity eigenfre-

guency is detuned from resonande, ¢ 0) whereas the driv-
Adtz ing field is on resonance\(;=0). In this case the necessary

FIG. 6. Bifurcation diagram for Eqs(1)(5) and (24) and sufficient conditions of sideband instability are given by

9=50y3,, k=10 335, ¥31= y32, r=0.1yz;, Q=13,. gDo_KYd(')’g"‘ ’)’g_ZQZ)>O, (26)

cw operation

time-periodic operation

laser off

curve S corresponds to the solutior®s. that have equal in-
tensities in this case. The cun represent the averaged  [9Do— &k ¥a(YaT ¥b) 212 = 4K ¥3(Yat ¥b)(Ya¥ot+ Q)
intensity of the solution with time-periodic output. The aver-
aging was performed over a period of intensity oscillations. X[gsmzt k(yat y)]1>0, (27)
The parameter values for Fi Fig. 5(b)] are the same as . . . .
for FIiDg. 4(a) [Fig. 4(b)]. Hencge(fﬁﬁge gollst(lti)glﬁ’ is stable(un- whgrepo 1S defined by .Eq(15)..l_n particular, in the perfect
stablg in Fig. 5(@) [Fig. 5(b)]. Figure Jc) corresponds to the cavity "T“" (K_’O.) the mequhﬂee{ZG) an_d (27) are tra_ns-
situation when the codimension-two poiitts andH., are of formed into the single conditioby>0, wh|ch was obtained
different types. The stabl@instabl¢ self-pulsed solutiorP ~ [0f the case wher,=A4=0. However, unlike the case of
bifurcates from the nonlasing solution at the pdiht (H»). zero detunmgs, the f[hreshold value of the paramgtele-
Between these points the solutioRsand S.. interchange fined by the |nequal|t|e$2_6)_and (27) tends to zero ax
their stability properties. According to the bifurcation theory —0. Thus, the LW do”.‘a'” In thg laser parameter space can
there should be some other solutions with time-periodic Iasel?e enlarg_ed by the cavity detuning. -
intensity that appear at the points whdteand S.. become . _In particular, for the scheme shown in Figellthe con-
unstable. However, since the domain of their existence ig't'on (15 takes the form
very narrow these solutions are not shown.

Figure 6 corresponds to the case where the degenerate r— Yart V32 0. (28)
Hopf bifurcations labeled by, andH, take place for non- 1+ 322y,
zero values of the detuning parametéss,, Ay4#0). The
solution S, (S.) exists abovebelow) the curves, (s_)  Sincey,=(ya+ yatr)2+ 2™, it follows from Eq.(28)
and it is stable abovébelow) the curvep, (p_). A stable that the threshold value of the pump parameter increases
self-pulsed regime exists between the curpesandp_. As  with increasingygrd. Let k=0 andA,—<. The eigenvalue
in Fig. 4b), the regimes with time-periodic intensity exist determining the stability of the nonlasing soluti) can be
only in the narrow strip situated between the codimensionwritten in the form

Ay

g0 . r(v32t27a) = 27al yart 732)} ( 1)
- H(yart veem 1)+ +0| /.
A[207(r + 2731+ 2750 +T a27p] (Yot 732~ ") A, A3

a

Therefore, Eq(28) means that the real part af; is positive  losses(A,=0, k=0). For A;>1 we get the following ex-
for sufficiently largeA,. In the radiative limit(5) the in-  pression for the eigenvalue with the largest real part:

equality (28) coincides with that derived in Ref14]: )
N :9Q [r(ys2t27v4) = 2y4(ya1t ¥32)] N

O _
F2+1 y3— (ya1+ ¥32)*>0. ! AZr 3274 (AS’

) For sufficiently largeAy this eigenvalue is positive if the

D. The case of off-resonantly driven laser inequality
Since the situatiol\ 3#0 is much more complicated to

analyze we confine our analytical consideration to the case of M (29)

the scheme shown in Fig(é) with zero cavity detuning and 1+ y32yq
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0.40 (Az,Ay) plane is situated between the sideband gain
035 [ maxima, these maxima occur far,A 4<0.
0.30 Figure 7b) represents the shift between of the lasing field
“'f:““: - r frequency and the cavity eigenfrequency for the regimes
= 025 i shown in Fig. Ta).
S o2}
015 [ E. Physical interpretation of the bifurcation diagrams
0.10 i In this section, we consider the nonlinear dynamical prop-
0.05 - erties of the laser close to its threshold from an alternative
0.00 viewpoint. This allows us to illustrate the physical origin of
t the lasing regimes. We focus on the specific model of a
system based on Fig(é). The starting point of our analysis
006 is a Fourier transform of the first equation of systé&in
o oosh —iwa(0)= ~Kka(w)+gXay®). (30)
o 0.05 -
2 omkb In a case of a weak lasing field, the atomic polarization
= 0.03 : can be expressed in terms of linear susceptibility
o i
% 0.02 _ gX31(w) =1 VOX(w)a(w)1
f-; 0.0l £ where v, is optical frequency. Assuming(w)#0 we can
& : i
S ool rewrite Eq.(30) as
-0.01 L k==vgo Im x(w), (32)
1
w=—vy Re x(w). (32

Adlys2
FIG. 7. Dependence of the intensitg) and the frequency shift These equations have a form similar to that of the threshold

(b) of the laser output field on the driving field detuning /3, for condition and the frequency pulling equation of the usual
different values of the cavity detuningi,/ys,. Calculations were ~L@mb semiclassical laser theory. We note, however, that no

performed with Egs(1)—(5) and (24). Parameters arg=y%,,  adiabatic approximation was made in derivating E@)

k=0.02y35, ¥31=0.2y3,, 1=0.75y3,, Q=27s,. The values of and(32). These equations are valid only in the vicinity of the

A, /73, corresponding to the various curves are shown in the figurePoint where the trivial solution becomes unstable and finding

their solution(for g and w) is equivalent to carrying out the

is fulfilled. Thus, the conditior{29) is sufficient for the in-  linear stability analysis of the nonlasing steady-state solution

stability. In the radiative limit(5) the inequality(29) be-  (6).

comes The complex susceptibility can be calculated from the

- equations describing the evolution of the density matix

F=7vs1 Under the most general conditions it takes the following

which coincides with the necessary condition for LWI ob- form (see, e.g.{14]):

tained in[14] for an off-resonantly driven laser. It follows (%= P+ (p%— p) Q[T p(w)T 4]
from our consideration that the inequalit®9) is the neces- x(w)=—ig (@) L Q2T (o) ,
sary and sufficient condition for the appearance of an insta- é (33

bility at some drive detuning\y. Note that here, as in Sec.
C, the instability occurs for arbitrarily small values of the Where I'y(w)=7ya—i(Aatw), Tp(w)=r,—i(Aa—Aqg
parameterg provided the cavity losses are negligible ( +®), ['q=7v4+iAq, andp] are the populations of the lev-
—0). els calculated to the zeroth order in probe field. In this ex-
In Fig. 7 the results of numerical simulations of Eqg—  Pression one can identify two contributions from the atomic
(5) and (24) with nonzero values of cavity and driving field coherencé11]. Dynamic Stark shift and splitting are repre-
detuning parameters are presented. The dependence of tp@nted by the term proportional to the in the denominator
laser output intensity on the driving field detunidg, is  of Eq. (33), whereas the term proportional £ in the nu-
shown in Fig. 7a) for different values of the cavity detuning merator reflects the contribution of quantum interference. It
parameterA,. This figure corresponds to a situation whereis clear that at any given point in a spectrum, the constructive
LWI is impossible in a resonantly driven laser. However, if or desctructive character of the latter contribution depends,
the driving field is properly detuned the laser can oscillate orthough not exclusively, on the sign of the population differ-
one of the two sidebands. It follows from Fig. 7 that thereencep(fl— pgz.
exist some optimal values of the detuning paramesgrand Let us now consider several specific cases. First, we focus
A, for which the output laser intensity has a maximum. Inon the case of resonant drive and lasing fielig€ A;=0).
Fig. 7 these optimal values have opposite signs. This resuubstituting Eq(33) into the threshold conditiof81) shows
agrees with the information displayed in Fig. 6 in which thethat the necessary condition for lasing without inversion on
degenerate Hopf bifurcation points occur fioyA ,>0. Since  the line center ¢=0) is the absence of inversion on the
the line connecting the two Hopf bifurcation points in the driven transition p9,>p3,). The reason is if there is an in-
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nance conditior{32) has to be fulfilled for the two sidebands

g with unequal gain coefficien{d=ig. 8(c)]. Thus, only one of
e the sidebands crosses the threshold at a time leading to cw
' output intensity close to the bifurcation point. One should
note at this point that an instability arising in the system in
the case of zero cavity detuning{=0) is in a sense arti-
ficial. It occurs because of the “improper” tuning of the
laser cavity exactly between of two amplification peaks in
the gain spectrum. The cw laser operation is achieved when
the laser cavity is tuned to one of the gain peaks rather than
to the atomic line center.

Detuning of the driving field can have an even more pro-
found effect on the properties of the three-level amplifiers
-10 5 0 5 1o -0 5 0 5 10 displaying sideband gaifil4]. The resulting susceptibility

ofy oy spectrum is, in general, asymmetfigig. 8(d)] and, what is
more important, often displays more gain than the corre-
single photon absorptiofdashed lingand interference termglot- sponding system driven on resonance. Thu§, In general, a
ted line separately. The resulting gain is drawn with the solid Iine.fStabl_e cw solution should emerge from the blfurcathn point
(b) Graphical solution of Eq431) and(32) for the case of perfectly [N this case. The degenerate Hopf bifurcation leading to a
resonant driving field and cavity. Generation occurs on symmetridime-periodic intensity is, however, possible for certain val-
sidebands at the frequencies marked by cird@sSame agb) but ~ Ues of cavity detuning. It occurs for sufficiently small detun-
with cavity detuning from atomic resonande) Same agb) but  ings Aq when two amplification regions separated by the
with driving field detuned from resonance. In both latter cases gen@bsorption domain still exist in gain spectrum. In such a case
eration occurs at a single frequency leading to cw output intensityit iS possible to find a cavity detuning such that the two
sidebands cross the threshold simultaneously. Finally we
version,pd,< p%, the contribution of interference to the gain POINt out that in the optimal regime of lasing operation, the
at a line center is destructive, resulting in increased absorg:2Vity detuning is in general different from the drive field
tion. This is illustrated in Fig. &), where the contributions detl_mlng, and the laser frequency is slightly shifted from the
of the first and second terms of E3) are plotted sepa- Cavity frequency.
rately. The remarkable feature of the interference contribu-
tion is that it changes sign for sufficiently large frequencies
|o|. Thus, even though the interference leads to increased
absorption on line center, it reduces absorption off resonance We have studied the nonlinear regimes in a three-level
and can still result in amplification of the sidebands. ring laser without population inversion in the parameter do-

In general, however, amplification is not sufficient for las- main where it exhibits the so-called sideband instabfty].
ing. The reason is that the second oscillation condit@®)  Very recently it was proposed to use this type of instability
is automatically fulfilled for arbitrary coupling only for to achieve an effective inversionless frequency up-
w=0. Out of resonance a finite amount of atomic dispersiorconversion in the scheme with driving field applied to a
is always required to compensate the cavity dispersion. It isveakly allowed transition[14]. The sideband instability
the reason why the occurrence of a Hopf bifurcation requirefeads to the appearance of a lasing field with a frequency
a nonvanishingy, even in the perfect cavity limit—0). shifted from the line center of the lasing transition even if the
This situation is illustrated in Fig.(8), where solutions of cavity and the driving field detunings vanish. For zero detun-
Egs.(31) and(32) are found graphically. Clearly, because in ings the sideband instability was shown to produce a self-
the resonant case both equati¢d$) and(32) are symmetric  pulsed solution$17]. However, as we have shown, the sta-
under the transformatiom— — w, the sideband solutions bility of these solutions and, hence, the problem of their
appear always in pair with frequenciess + wy Wwherewg is  experimental observation cannot be adequately investigated
given by Eq.(14). The oscillation conditions for both side- within the framework of the model used [17]. Here we
bands are identical. The competition between these sidgresent a more complete analysis of the self-pulsed regimes
bands and thus the character of the output intensity are déa inversionless lasers.
termined by the nonlinear interaction between the sidebands, We found that when both sidebands are above the linear
studied in Sec. lll, and depends upon the relation betweethreshold, their interaction can lead to different kinds of dy-
self- and cross-stauration. Depending on this relation, botimamical behavior. If the self-saturation for the sidebands is
stationary and time-periodic output intensities are possiblestronger than the cross saturation, then they can lock in to
corresponding to oscillations at either one or both sidebandgroduce a stable self-pulsed output. This self-pulsed regime
respectively. bifurcates from the nonlasing solution only if the instability

Let us now turn to the situation of arbitrary cavity detun- thresholds are the same for both sidebands. Otherwise, if
ing (A,#0) whereas driving field is still resonamA{=0).  there is an asymmetry between the sidebands, one of them
From Eq.(393) it follows that including cavity detunings just appears first and gives rise to a cw operation. If the asym-
shifts the linear susceptibility spectrum by the amahgt In - metry is small enough, this regime can undergo a secondary
such case, the systef81) and(32) is no longer symmetric bifurcation leading to a self-pulsed operation.
with respect to changing the sign ef Specifically, the reso- In the opposite situation of a cross-saturation stronger

-Im(y) (arb.units)

(@

Re(yx) and

FIG. 8. (a) Contribution to the gain-absorption spectrum from

V. CONCLUSION
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than the self-saturation, the solution with time-periodic las- L *
ing intensity is unstable. This means that the sizebands can- y=Lay+Na(6x®), (A2)
not be generated.3|multaneously an_d the laser can exh'%here the complex vector=1{a,xa;, x5 T and the real vec-
only cw output with a frequency shifted from the atomic _ 0 0 0 01T
resonance. tor y={Re1—X31),IM(X1—X31) ,p11~ P11,P22— P2of are€
We have derived the normal form equations governing th®0th equal to zero for the steady-state solutid@). The
evolution of the sidebands near the point of the Hopf bifur-nonlinear partsN; andN,, contain only second order non-
cation, which is actually a codimension-two degenerate Hopfinearities. At the bifurcation poinf13) the matrixL, has
bifurcation. These equations contain coefficients that depen@vo purely imaginary eigenvalues; =iwo andA,= —iw,.
on the parameters of the original laser equations. We hav&he third eigenvalue ot ,, and all the eigenvalues of the
calculated these coefficients for two different models of thematrix L, have negative real parts and we will assume that
lasing medium. It follows from our calculations that the sta-they are well separated from the imaginary axis in the com-
bility of the self-pulsed regime can be controlled by moni- Plex plane. In are vicinity of the bifurcation point(13) we
toring the laser parameters. Therefore, depending on the pfave N1=¢€(B+d)+tiwy and Ay=e(B—6)~iwo. The
rameter values, either a stable self-pulsed regime or a stabfsiantitiesg and 6 will be evaluated at the end of this Ap-
cw regime bifurcates from the nonlasing solution at the defendix.
generate Hopf bifurcation point. We have also found that We seek the solution of EqgAl), (A2) in the form
under certain conditions the sideband interaction can lead to

more complicated periodic and aperiodic regimes which will x=€e"x4(t,7) + exs(t, 1)+ O(€?)], (A3)
be described in a subsequent paper.
Even in the limit of zero cavity losses the self-pulsed y=€[Y(t,7)+0(€)]. (A4)

regimes arise above the threshgld g, defined by Eq(13)

and they exist only in the narrow strip between the two dewhere 7 is the slow timer= et [26]. Substituting Eq(A3)
generate Hopf bifurcation points in which both sidebandsinto Eq. (A1) and equating the terms of ordet’? we have
can be generated simultaneously. On the other hand, LWI ithe following equation:

a properly tuned laser with only one exited sideband can be

achieved under much more restrictive conditions. Therefore, dx; /dt=L4(0)xq, (A5)
the presence of a Hopf bifurcation of the nonlasing solution

indicates that the LWI threshold can be lowered with thewith the adjoint equation

help of detunings. We have shown that the most favorable

conditions for LWI can be achieved with only one of the dxt, /dt= LI(O)le_ (A6)
sidebands above the linear threshold. In particular, there ex-

ists a parameter domain for which LWI with zero cavity and L,(0) is the matrix_, evaluated at the bifurcation poift3)
driving field detunings is impossible, but it can appear in acorresponding ta=0.

properly detuned laser on the side of the lasing transition. | ot Vs (VD be the eigenvector of the matrik;(0)

We have analyzed analytically and numerically the 3T : :
" ; ; " transposed matrix.;(0)] corresponding to the eigenvalue
threshold conditions for the sideband instability for the cases _ . P : 1( .)] P g g 9
1=iwg. This vector is normalized aéVv,,V;)=1. Then

where the cavity and the driving field frequencies are de- .
tuned from the corresponding atomic transitions. We havéhe solution of Eq(A5) has the form
shown that the most favorable conditions for the laser opera-
tion in the frequency up-conversion regime are achieved if

both cavity and driving field frequencies are shifted from .
resonance. wherez, (1) andz_( ) are the slowly varying envelopes for

the sidebands. Substituting this solution into E42) and
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The solvability condition for Eq(A7) requires the orthogo-
APPENDIX: DERIVATION OF THE NORMAL FORM nality of its right hand side to the solutions of E&6). This
Equations(1) can be written in the form allows one to avoid in the solution terms that diverget as
' —oo. Applying the orthogonality conditions we obtain the
X=L X+ Ny (X,X*,y), (A1) following equations for the slow envelopes of the sidebands:
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27l wg . ‘ These equations can be easily transformed into Et,
dz, /dr=(B+ 5)Z++fo (N1(X1,X7,Y2), V1) taking into account the symmetry of Eq&1) and (A2)
. under the transformatior— x exp(¢) with abitrary ¢,
Xexp —iwgt)dt, - . .
The quantitieseB and €6 are linear inA,, Ay, and

27l wg . . - .
dz /dr=(8—8)z + N X y,) VI g—do, Which describe the small deviations of the bifurca-
z-ldr=(p=0)z fo (N1 X5 Y2).V1") tion parameters from the bifurcation poifi3). They are
X expiwgt)dt. given by

1

B )2]{(9/90—1)7d[(7a+ Yo) ( Q2+ (yat ©) (Yot €)1 +iA gy 05+ (Yat Yot k)2 + Q2

" 2yl @it (Yat ypt K
+(Yat ) (Yot ©) 1= 1AL (yat+ K05+ Ya(Yat Yot K) + Yo( Yot Ya) + Q%(yo+ va— x)1},

1
 2yqwol 0§+ (yat Yot €)%

X (w§+ Yo+ Yp¥d) — 05¥a( Yat €)1=i1(9/90— 1) vl (Yat Yot ©)(k(Q2+ Yayp) — 05(Yat Yot &))

+ w05(Q%+ yayp+ k(yat vo) — 051},

€d {=Aavdl (Ya+ Yo+ ) (Q%+ yayp) — k5] + Adl (Yat Yo+ ©)(Q%(Yo+ Ya— &)+ (Vat k)

whereg, and w, are defined by Eqg413) and (14), respectively.
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