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Nonlinear dynamics in a single mode three-level laser without inversion
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We characterize analytically the nature of the lasing solutions of a laser operating without population
inversion. We consider models involving three-level media interacting with a strong driving field and a lasing
field in the vicinity of the lasing threshold. We assess the influence of different relaxation and pumping
schemes on the dynamics of these lasers. We use the atom-field detuning, the cavity detuning, and the linear
gain as bifurcation parameters. Depending on their values, the stable lasing solution is shown to be cw or
self-pulsing. We show that the optimal lasing operation is achieved if both the driving field frequency and the
cavity frequency are out of resonance with the atomic frequencies. Physically, the lasing regimes arise from
nonlinearly interacting sidebands induced in the lasing medium by atomic interference.
@S1063-651X~98!07201-8#

PACS number~s!: 05.45.1b, 42.50.2p, 42.55.2f
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I. INTRODUCTION

It is by now generally recognized that atomic coheren
and interference effects can be used to modify dramatic
the response of coherently prepared atomic systems@1#. Am-
plification and lasing without inversion~LWI ! are among the
most interesting applications of these effects.

The key mechanism for LWI, proposed theoretically
several authors at the end of the 1980s@2–4# is the cancel-
lation of atomic absorption due to quantum interference
this case the absorption and emission profiles become
reciprocal and light amplification is possible even if t
population of the upper levels is less than that of the gro
state. The interest in inversionless amplification and lasin
stimulated by possible applications, which include the g
eration of coherent radiation in the UV and x-ray spect
regions, where population inversion is very hard or even
possible to achieve.

The first proposals on LWI were followed by a large num
ber of theoretical publications on the subject@5–7# in which
different schemes and different aspects of inversionless
were studied. Relatively recently, experimental evidence
inversionless amplification and lasing was obtained@8–13#.
The experimental and theoretical efforts are presently
rected towards the demonstration the inversionless lasin
a frequency up-conversion regime@14#.

Up to now the major part of the theoretical literature
the subject of LWI was devoted to the analysis of the lin
gain properties of the different amplifiers. Very few pape
have dealt with nonlinear dynamical analyses of the las
regimes@15–18#. The subject of the present paper is to pr
vide an in-depth analysis of the nonlinear dynamical prop
ties of inversionless laser oscillators.

We are motivated by the following considerations. Fi
of all, from a general viewpoint it is clear that inversionle
lasers can exhibit dynamical behavior that is very differ
571063-651X/98/57~2!/1499~12!/$15.00
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from that of ordinary laser systems. The coherently prepa
active media possesses typically a fairly complicated
sponse that must affect the dynamical behavior of the inv
sionless laser oscillators.

Secondly, we are specifically interested in regimes of
versionless lasing in which coherent preparation is achie
on slowly decaying, weakly allowed transitions. As w
shown recently@14#, these regimes are of considerable pra
tical interest when there is a large frequency up-convers
The linear susceptibility spectrum for such systems often
plays amplification in several separate frequency doma
which can lead to generation at several different frequen
simultaneously and thus produce an unstable intensity
put. In fact, recent studies@17,18# indicate that in a similar
system laser oscillation can occur via a Hopf bifurcatio
which can result in self-pulsing intensity. The stability of th
various lasing regimes~such as cw and self-pulsed, for in
stance! and the possibility to control them are therefore im
portant practical considerations in the up-conversion reg
of LWI at least for certain schemes. Similarly, the optim
domain of parameters such as drive field strength and de
ing yielding maximal intensity output is often not obviou
for such schemes and requires special consideration.

The present paper introduces a general formalism and
vestigates the dynamics of single-mode inversionless las
We start by outlining the formalism applicable to any sing
mode laser with a lasing medium consisting of nearly re
nant three-level atoms at or near laser threshold. We inv
tigate the character and stability of the emerging solution

We first consider the case of zero detunings: a cav
eigenfrequency coincides with the atomic transition f
quency coupled by the lasing field and the driving field
resonant with the driven transition. It was shown in@17# that
for this scheme both steady and Hopf bifurcations of
trivial solution are possible. We find that the Hopf bifurc
tion is actually a codimension-two degenerate Hopf bifur
1499 © 1998 The American Physical Society
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tion that cannot be fully described with the real equatio
used in@17#. In particular, using the normal form method, w
study in detail the solutions emerging from the degene
Hopf bifurcation. Our analysis shows that even in the cas
zero detunings the solution emerging from this bifurcat
can lead to either a time-independent or a time-periodic
tensity.

We point out that LWI via Hopf bifurcation occurs in th
regime where the polarization decay rate of the driven tr
sition is slower than the polarization decay rate of the las
transition, a regime interesting for LWI with frequency u
conversion@14#. It was shown in@14# that the domain of
inversionless gain as well as the value of gain itself can
increased by detuning the laser cavity or the driving fi
from atomic resonance. We find that detuning can ind
substantially increase the domain of LWI oscillation. Fu
thermore, in the domain that is interesting for the experim
tal realization of frequency up-conversion, we find that t
stability and character of the lasing field can be controlled
properly tuning the laser cavity and driving field. We sho
that for the general case of nonzero detunings, the tri
solution undergoes a bifurcation leading to cw laser ope
tion. The emerging solution with time-independent intens
may or may not undergo a secondary Hopf bifurcation
larger values of laser gain.

In the conclusion, we discuss the physical origin of t
different LWI regimes described in the present paper.

II. LASER MODEL AND LINEAR STABILITY ANALYSIS

A. Basic equations

We consider the general model of a ring single mode la
consisting of three-level atoms. A lasing field with compl
Rabi frequencya couples one of the atomic transition
(3↔1). An external driving field with real Rabi frequenc
V is tuned close to the resonance with another atomic t
sition (2↔1). Driving and lasing fields can interact via th
coherence generated on the remaining uncoupled trans
3↔2 ~Fig. 1!.

The equations describing this model@19–21# can be writ-
ten in the following form:

da

dt
52ka1gsx31,

dx31

dt
52~ga2 iDa!x311a~12r2222r11!1Vx32,

dx32

dt
52~gb2 iDa1 iDd!x322ax212Vx31,

~1!

dx21

dt
52~gd1 iDd!x212V~r112r22!1a* x32,

dr11

dt
5R11V~x211x21* !1ax31* 1a* x31,

dr22

dt
5R22V~x211x21* !,
s
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where

S R1

R2
D5S P Q

R SD S r11

r22
D1S W13

W23
D , ~2!

P52~W211W311W13!, Q5W122W13,

R5W212W23, S52~W121W321W23!. ~3!

Here the complex variablesx315 ir31, x325r32, and
x2152 ir21* are proportional to the off-diagonal elements
the density matrix$r ik%. r11 andr22 are the populations o
the levels 1 and 2. The population of the level 3
r33512r112r22. The coefficientg is defined through

g52p iNvcum12u2/cl« l\,

whereN is the number of atoms,vc is the cavity eigenfre-
quency closest to the lasing atomic transition frequency,m12
is the dipole matrix element excited by the lasing field,cl
and« l are the speed of light and the dielectric permittivity
the lasing field frequency.

All the parameters in Eqs.~1! are real. These equation
describe all possible three-level systems~Fig. 1! interacting
with a single mode lasing field and a single frequency dr
ing field. s51 in the case ofh or V @Figs. 1~a! and 1~e!# and
lower-ladder@Fig. 1~c!# schemes ands521 in the case ofp
or L @Fig. 1~b!# andupper-ladder@Fig. 1~d!# schemes. Cav-
ity and driving field detunings are defined asDa5vc2v31
andDd5vd2v21, respectively, wherev i j is the atomic fre-
quency of thei→ j transition andvd is the driving field
frequency.k is the cavity damping rate.$Wi←k% in Eq. ~2! is
the matrix describing incoherent pumping and population
laxation processes. It depends upon the particular choic
three-level system~see Fig. 1! and will be specified later.

FIG. 1. Three-level LWI schemes.~a! h (V) scheme.~b! p ~L!
scheme.~c! Lower-ladderscheme.~d! Upper-ladderscheme.~e! h
scheme for frequency up-conversion with driving field applied
the weakly allowed transition 1↔2.
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57 1501NONLINEAR DYNAMICS IN A SINGLE MODE THREE- . . .
Finally, the atomic polarization damping rates are defin
by

ga5ga
nrd1~W311W131W231W21!/2,

gb5gb
nrd1~W321W231W131W12!/2, ~4!

gd5gd
nrd1~W211W121W311W32!/2,

where ga
nrd , gb

nrd , and gd
nrd describe the effect of phase

destroying processes. The radiative limit is defined by
conditions

ga
nrd5gb

nrd5gd
nrd50. ~5!

The nonlasing steady-state solution of Eqs.~1! corre-
sponding to laser below threshold is given by

a5x315x3250, x215x21
0 5

V

gd1 iDd
~r22

0 2r11
0 !,

rkk5rkk
0 , ~k51,2,3!. ~6!

Here rkk
0 are the atomic populations in the absence of

lasing field (a50)

r11
0 5@2V2~W131W23!1 g̃d~QW232SW13!#/D,

r22
0 5@2V2~W131W23!1 g̃d~RW132PW23!#/D, ~7!

r33
0 512r22

0 2r33
0 ,

where

D522V2~P1Q1R1S!1 g̃d~PS2QR!,

g̃d5gd1Dd
2/gd . ~8!

In the following, the population differences defined by

ni j 5r i i
0 2r j j

0 ~9!

will be used.

B. Linear stability analysis

We now proceed with the linear stability analysis of t
trivial solution ~6!. The system~1! is linearized about the
solutions ~6!. The resulting Jacobian matrix has a bloc
diagonal form with two blocksL1 and L2 ~see Appendix!.
The stability of the steady-state solution~6! depends on the
eigenvalues of the complex matrixL1 . The characteristic
equation is given by

P1~l!P2~l!50, ~10!

P1~l!5 (
n50

3

lnAn , P2~l!5 (
n50

3

lnAn* ,

whereAn* is the complex conjugate ofAn , and
d

e

e

A351,

A25k1Ga1Gb ,

A15k~Ga1Gb!1GaGb1V21gsn13,

A05k~V21GaGb!1gsS V2

Gd
n211Gbn13D . ~11!

Here Ga5ga2 iDa , Gb5gb2 iDa1 iDd , and Gd5gd
1 iDd . In what follows we label the characteristic roots$l i%
such that Rel1>Rel2•••>Rel6. Thus the trivial solution
~6! becomes unstable when Rel150. We will in the follow-
ing useDa , Dd , andg as bifurcation parameters.

1. The resonant case

Let us first consider the case of zero detunin
(Da5Dd50) so thatP1(l)5P2(l) are real. For this case
bifurcations of the nonlasing solution of the real Eqs.~1!
were described in detail@17#. The steady bifurcation point o
Eq. ~6! is given by

Da5Dd50, g5g052
kgd~V21gagb!

s~V2n211n13gbgd!
. ~12!

At this point, the characteristic equation~10! has two zero
eigenvalues. The solution~6! is stable~unstable! for g,g0
(g.g0). This bifurcation leads to a regime with stationa
intensity appearing at the lasing transition frequency. Si
g0 in Eq. ~12! should be positive, a necessary condition f
the steady-state bifurcation is

s~V2n211n13gbgd!,0.

The inversionless condition impliesn13.0 for the h and
lower-ladder schemes andn3152n13.0 for the p and
upper-ladderschemes. Therefore, the necessary condit
for the steady-state bifurcation in a perfectly tuned lase
n21,0 (n12,0) for s51 (s521). It is easy to check tha
this also means that in the absence of the driving field
population of level 1 should be greater~smaller! than that of
the level 2 fors51 (s521) @21,17#.

It was shown in@17# that when both detuning paramete
are equal to zero the nonlasing solution can also exhib
Hopf bifurcation. This Hopf bifurcation is defined by

Da5Dd50, g5g05
gd~ga1gb!@V21~ga1k!~gb1k!#

s@V2n212n13gd~k1ga!#
.

~13!

In our analysis the variablesa, x31, x32, andx21 are com-
plex, so that we have a codimension-two degenerate H
bifurcation instead of the generic codimension-one bifur
tion, which takes place in the real laser equations used
@17#. This means that the characteristic equation has a pa
pure imaginary roots (iv0 ,2 iv0), which is doubly degen-
erate: bothP1(l) and P2(l) have the same pair of root
( iv0 ,2 iv0), wherev0 is defined by
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v0
25V21

n21V
2@k~ga1gb!1gagb#1n13gd@V2~ga1gb!1gb

2~k1ga!#

V2n212n13gd~k1ga!
. ~14!
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The degenerate Hopf bifurcation set~13! is the intersection
of two codimension-one surfaces in parameter space. Eac
these surfaces corresponds to a generic Hopf bifurcation
is associated with a sideband instability leading to a tim
periodic solution of Eq.~1!, which, however, corresponds t
a cw laser operation. The degenerate Hopf bifurcation ta
place when instabilities on both sidebands occur simu
neously.

For positive values ofg0 in Eq. ~13! the nonlasing solu-
tion ~6! is unstable forg.g0 . If g0 defined by Eq.~13! is
negative then the Hopf bifurcation is impossible. Hence,
necessary condition for the degenerate Hopf bifurcation~13!
is given by

D0[s@V2n212n13gd~k1ga!#.0. ~15!

For the h and lower-ladder schemes~p and upper-ladder
schemes! shown in Figs. 1~a!, 1~c!, and 1~e! @Figs. 1~b! and
1~d!# this condition takes the formV2n212n13gd(k1ga)
.0 @V2n122n31gd(k1ga),0# and, hence, the degenera
Hopf bifurcation ~13! is possible only forn21.0 (n12.0)
@21,17#. Thus, the Hopf bifurcation requires a positive~nega-
tive! population difference between the levels 2 and 1
s51 (s521) and it is incompatible with the steady-sta
bifurcation ~15! @17#. Note that the threshold valueg0 de-
fined by Eq.~13! does not vanish fork→0 as it does in the
case of the steady-state bifurcation~12!. As shown below,
this results from the finite amount of atomic dispersion
quired to compensate cavity resonances and to allow
sidebands to oscillate even in the limit of a perfect cav
(k→0).

2. The case of small detunings

We first seek a steady-state bifurcation that is defined
l150. This meansA050 in Eq. ~11!, and therefore also
l250. In this case a cw field emerges in resonance with
of the cavity eigenfrequencies.

If we redefinel[l̃2 iD with arbitrary D, the charac-
terisitc Eq.~10! becomes

P1~ l̃2 iD!P2~ l̃1 iD!50. ~16!

In order to find a solutionl̃50 we have to solve

Ã05 iD32A2D22 iA1D1A050 ~17!

for D and the couplingg. We find with l̃1,250 a simple
Hopf bifurcation l1,256 iD, leading to a cw laser outpu
with detuningD relative to the cavity resonance. It becom
clear that the casel1,250 is just a special solution with
D50. In the general case, the analysis of Eq.~16! requires
the explicit solution of an irreducible third order polynomia
Therefore, we confine our analytical consideration to
limit of small cavity and drive detunings. In this limit, th
characteristic equation~10! can be linearized inDd andDa .
of
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At order zero inDa andDd , the instability point is given by
Eq. ~13!. We know that at the bifurcation pointl has to be
purely imaginary. Therefore, only theDa- or Dd- dependent
part of l can contribute to its real part. Solving Rel50, we
determine the first order correction to the critical value of t
coupling constantg. Since there are two solutions of th
characteristic equation in the resonant case,l1,256 iv0 ,
there are two solutions for the linear part ofg

g5g06Dg,

Dg5
1

v0D0
$Dagd@~V21gbga!~ga1gb1k!2kv0

2#

2Dd@~ga1gb1k!~V2~gb1gd2k!1~ga1k!

3~v0
21gb

21gbgd!!2v0
2gd~ga1k!#%, ~18!

whereg0 , v0 , and D0 are defined by Eqs.~13!, ~14!, and
~15!, respectively. Each of these two solutions correspo
to a simple Hopf bifurcation. Thus for nonzero detunings t
degenerate Hopf bifurcation obtained on resonance s
into two generic Hopf bifurcations. For smallDa andDd the
first of these two bifurcations occurs forg5g02uDgu,g0
whereas the second one occurs forg5g01uDgu.g0 . Thus
the instability thresholdg5g02uDgu is lowered in a slightly
detuned laser. The codimension-two degenerate Hopf bi
cation takes place when both the Hopf bifurcations ta
place simultaneously. This condition can be satisfied
only for Da5Dd50, but also in the case of small detuning
when Dg50 in Eq. ~18!. This gives a relation betweenDa
and Dd , which together withg5g0 determines the linea
approximation to a codimension-two bifurcation set cor
sponding to a degenerate Hopf bifurcation. Note that fok
→0 and ga1gb.gd the detuning parametersDa and Dd
should have the same sign in order to satisfy the degene
Hopf bifurcation conditionDg50.

III. DEGENERATE HOPF BIFURCATION

Bifurcation phenomena near the degenerate Hopf bifur
tion point ~13! can be described using the normal for
method@22–24#. The truncated normal form equations fo
this bifurcation are, in general, given by@25#

ż15z1~b1d2C1uz1u22C2uz2u2!,
~19!

ż25z2~b2d2C1uz2u22C2uz1u2!.

Here the complex variablesz1 andz2 are the slowly varying
in time envelopes of the two sidebands~see Appendix!. The
complex parametersb andd describe the small deviation o
the parametersDa , Dd , and g from the degenerate Hop
bifurcation point~13!. The outline of the procedure used
derive Eqs.~19! and the explicit form of the parametersb
andd are given in Appendix A.
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The codimension-two bifurcation point of Eqs.~19!
Reb5Red50 corresponds to the degenerate Hopf bifur
tion of Eqs.~1! and it lies on the intersection of the two Hop
bifurcation lines Reb5Red and Reb52Red. In the par-
ticular caseDa5Dd50, we have Imb5Red50 in Eq.~19!.
The type of the bifurcation diagram associated with Eqs.~19!
depends on the real parts of the coefficientsC1 and C2 ,
which can be calculated forDa5Dd50. Since for the
schemes under consideration we have not found situation
which either ReC1,0 or Re(C11C2),0, we consider only
the case where both ReC1 and Re(C11C2) are positive. Then
all the branches of solutions bifurcating from the non-las
solution~6! are supercritical~i.e., they exist above the insta
bility threshold! and the bifurcation diagram for Eqs.~19!
depends on the sign of the quantity Re(C12C2), as shown in
Fig. 2.

The steady-statez15z250 of Eq. ~19! corresponds to
the nonlasing solution~6! and it is stable below the lasin
threshold~Reb,0, uRedu,uRebu!. Above this threshold and
for sufficiently small detunings

Re b.0, uRe d/Re~C12C2!u,Re b/Re~C11C2!,
~20!

there exists a stable quasiperiodic solutionP of Eq. ~19!
with uz1u25Re«/Re(C11C2)1Red/Re(C12C2) and uz2u2

5Reb/Re(C11C2)2Red/Re(C12C2). This solution corre-
sponds to a laser output with the intensity oscillating in tim
at a frequency close to the frequencyv0 defined by Eq.~14!.
There are also two periodic solutions of Eq.~19! that cor-
respond to laser operation with stationary intensity:S1

@ uz1u25Re(b1d)/(ReC1)
2, uz2u250# and S2 @uz1u250,

uz2u25Re(b2d)/(ReC1)
2#. The solutionS1 (S2) exists for

Reb.2Red (Reb.Red) and it corresponds to the cw la
ser output with a frequency shifted from the resonance
quency of the lasing transition by an amount approximat
equal tov0 (2v0). Note that the solutionsS1 and S2 do
not exist in the real equations studied in@17#.

If the self-saturation coefficient ReC1 in Eq. ~19! is
greater than the cross saturation coefficient ReC2, then the
quasiperiodic solutionP is stable. This means that the tw
sidebands lock in to produce a regime with time-perio
intensity. The solutionS1 (S2) corresponding to stationar

FIG. 2. Bifurcation diagrams for the normal form equatio
~19!. ReC1.0 and ReC2.0 for both diagrams. The time-periodi
solutionS1 (S2) of Eq. ~19! corresponds to cw laser operation a
exists above~below! the lines1 (s2). It is stable above~below! the
line p1 (p2). ~a! ReC1.ReC2. The stable quasiperiodic solutio
P of Eq. ~19! exists in the vertically dashed wedge between
lines p1 and p2 . This solution corresponds to a self-pulsed las
output. ~b! ReC1,ReC2. In the horizontally dashed wedge th
solutionP is unstable. Two solutions with cw laser output~S1 and
S2! are bistable in this wedge.
-

in

g

-
y

c

laser intensity is stable for Red.0 (Red,0) only outside
the domain~20! where the stable solutionP exists. The so-
lution P bifurcates directly from the nonlasing solution on
in the case Red50. If RedÞ0 but small enough, the solu
tion S1 ~or S2! appears first. Increasingg, it undergoes a
secondary bifurcation giving rise to the solutionP with time-
periodic intensity. For negative values of Re(C12C2) the
cross saturation for the sidebands is stronger than the
saturation. Therefore the laser cannot operate on two s
bands simultaneously and the solutionP is unstable. In this
case we have bistability betweenS1 andS2 in the parameter
region where both these solutions coexist with the unsta
solutionP. Outside of this region but still above the thres
old there is only one stable solution with nonzero tim
independent laser intensity~S1 for d.0 andS2 for d,0!.

Thus, the solutions with periodic laser intensity are as
ciated with the degenerate Hopf bifurcation~13!. They can
exist only if the gain of both sidebands is sufficiently larg
so that both of them are involved in the radiation generati
In particular, the sidebands appear simultaneously at the
generate Hopf bifurcation point. Therefore, the solutionP
always exists near this point. However, even if it exists it
unstable if Re(C12C2).0. The instability of the solution
with time-periodic intensity results from nonsymmetric pe
turbationsdz1Þdz2 of the variables of Eqs.~19!. This type
of phase instability does not appear in@17# where Eqs.~1!
are studied with all variables real, so that one always
z15z2 in Eq. ~19!.

In order to check whether there exist any parameter v
ues for which a stable solution with time-periodic laser
tensity can be found near the degenerate Hopf bifurca
point ~13! we need to evaluate explicitly the expressi
Re(C12C2). We have calculated the expressions for the
efficientsC1 andC2 analytically with the help of a symbolic
algebra software. Since they are extremely cumbersome
focus on specific cases and present only numerical res
obtained using the analytical expressions forC1,2.

In what follows we first consider the model used in@17#.
We show that for this model there exists a parameter dom
in which the solution with periodic intensity is unstable a
above the Hopf bifurcation the laser exhibitsonly cw re-
gimes. A second case considered corresponds to the m
used in@14#, which was proposed for the realization of LW
in a frequency up-conversion regime.

IV. ANALYSIS OF SPECIFIC MODELS
OF THE LASING MEDIUM

A. Models of three-level medium

We now specify the particular pumping and relaxati
models, and determine the domain of lasing and the stab
of self-pulsed solutions. First, we would like here to make
connection with the results of Ref.@17# and, therefore, use
the same model in which it is assumed that detailed bala
holds. In this case the matrix$Wi← j% is defined by@7,19–21#

W125N1 /T21, W215N2 /T21, W135N1 /T31,
~21!

W315N3 /T31, W235N2 /T32, W325N3 /T32,

e
r
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whereN1 , N2 , andN3512N12N2 , are the populations o
the levels 1, 2, and 3 in the absence of the lasing and
driving fields andTik are the longitudinal relaxation times.

Substituting Eq.~21! into Eq. ~2! we get

R152S N2

T21
1

N11N3

T31
D r111N1S 1

T21
2

1

T31
D r221

N1

T31
,

~22!

R25N2S 1

T21
2

1

T32
D r112S N1

T21
1

N21N3

T32
D r221

N2

T32
.

The steady-state populations and polarization of
driven transition corresponding to the trivial solutiona50
follow directly from Eqs.~6! and ~7!.

The second specific model used here corresponds to
scheme described in@14# for inversionless frequency up
conversion. It is similar to the usualh ~or V! system with
s511 in Eq. ~1!, but with the driving field applied to a
weakly allowed transition between the levels 1 and 2@see
Fig. 1~e!#. In this case$Wi←k% is given by

W1250, W2150, W135g31,
~23!

W315r , W235g32, W3250..

In order to distinguish easily between the two groups
models, we adopt the follwoing convention. For the fo
schemes of Figs. 1~a!–1~d!, we use decay timesTi j while for
the scheme of Fig. 1~e!, we use decay ratesg i j . Therefore,
we have

R152~g311r !r112g31r221g31,
~24!

R252g32r112g32r221g32.

Since the relaxation matrix~23! is not a particular case of Eq
~21!, the scheme shown in Fig. 1~e! requires separate consid
eration. The steady-state populations~7! for this scheme are
given by

r11
0 52V2~g321g31!/D,

r22
0 5@2V2~g321g31!1rg32g̃d#/D, ~25!

r33
0 52V2r /D,

where

D5rg32g̃d12V2@r 12~g321g31!#.

Hereg̃d is defined by Eq.~8!. It is easy to check that there i
no inversion fora50 in this scheme (r11

0 2r33
0 .0) if the

incoherent pump parameter does not exceed the sum o
population relaxation ratesr ,g321g31 @14#. It follows from
Eq. ~25! that n21 is always positive. Hence, the instability
line center~12! is impossible for this scheme if the drivin
field is in exact resonance with the atomic transition. T
bifurcation conditions can now be easily calculated from
general formulas of Sec. II.

Stable solution with time-periodic lasing intensity exis
near the degenerate Hopf bifurcation~13! only if
ReC1.ReC2 in Eq. ~19!. Using the procedure outlined i
the Appendix we have calculated the coefficientsC1 andC2 .
These coefficients have been evaluated numerically and
he

e

he

f
r

the

e
e

he

results are shown in Figs. 3~a!–3~c!. Figure 3~a! was calcu-
lated in the radiative limit~5! with the help of the relaxation
matrix defined by Eq.~21!. It represents the dependence
ReC1 and ReC2 on the cavity damping ratek. In this figure
the solution with time-periodic laser intensity is stable on
for sufficiently largek. On the other hand, if the cavity
damping rate is small enough, the self-pulsed solution is
stable and the laser exhibits only a cw regime. Hence,
certain parameter values the Hopf bifurcation described
@17# results in a cw laser operation instead of self-pulsin
The other two graphs in Fig. 3 correspond to the sche
shown in Fig. 1~e!. Figure 3~b! was calculated in the radia
tive limit and represents the dependence of the real part

FIG. 3. Real parts of the normal form coefficientsC1 and C2

evaluated at the degenerate Hopf bifurcation point~13!. If
ReC1.ReC2 (ReC1,ReC2), a stable~unstable! solution with
time-periodic laser output exists near the Hopf bifurcation. T
point T indicates the LWI domain boundary.~a! Dependence of
ReC1 and ReC2 on the cavity decay rate:ga

nrd5gb
nrd5gp

nrd50,
s51, T31510T21, T325100T21, N150.22, N250.6, V51/T21.
~b! Dependence of ReC1 and ReC2 on the incoherent pumping rat
for the scheme shown in Fig. 1~e!: ga

nrd5gb
nrd5gp

nrd50, k
5(1/3)1022g32, g315(2/3)g32, V510g32/3. ~c! Dependence of
ReC1 and ReC2 on the phase-destroying rate:ga

nrd5gb
nrd

5gp
nrd5gnrd, k51022g32, g3151021g32, r 5g32, V5102g32.
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the normal form coefficients on the incoherent pumping r
r . In Fig. 3~b! the solution with time-periodic intensity i
stable only for sufficiently small values ofr . Figure 3~c!
corresponds to the casega

nrd5gb
nrd5gd

nrd5gnrd, wheregnrd

is the contribution of the phase destroying processes to
decay rates. Here we also have either stable or unstable
pulsed solution. Note that in all three graphs of Fig. 3
parameter region where the solution with time-periodic la
intensity is stable lies near the LWI domain boundary
belledT.

B. Bifurcation diagrams

To verify the predictions of normal form analysis we ha
studied the bifurcations of Eqs.~1! numerically. The results
of our calculations appear to be in good agreement w
those obtained by the normal form method. In Fig. 4 bif
cation curves of Eqs.~1!–~5! and ~22! in the (V,Da) plane
are shown. In the case of finite cavity decay rate (k.0)
LWI can exist only in a finite range of the driving fiel
intensities. In particular, solving the last equation in~13! for
V2 we get two positive solutions determining LWI boun

FIG. 4. Bifurcation diagram for Eqs.~1!–~5! and ~22!. The
curvess1 ands2 indicate the bifurcations of the nonlasing solutio
leading to the solutions with cw laser output. The curvesp1 andp2

correspond to the bifurcation leading to the solutionP with self-
pulsed output.~a! Stable solutionP exists in the dashed area
s521, k50.15/T21, g553.3416/T21

2 , T31510T21, T325100T21,
N150.38, N250.1. ~b! The solutionP exists but is unstable in the
dashed area where two solutions with cw output are bista
s521, k50.015/T21, g58.4157/T21

2 , T31510T21, T325100T21,
N150.42, N250.1.
e

he
elf-
e
r

-

h
-

aries for a laser withDa5Dd50. These two solutions corre
spond to the degenerate Hopf bifurcation points labeled
H1 and H2 in Fig. 4. In Fig. 4~b! we have Re(C12C2),0
and, hence, the solutionP corresponding to time-periodic
laser output is unstable. The solutionS1 (S2) corresponding
to cw laser output exists inside the closed curves1 (s2) and
it is stable above~below! the curvep1 (p2). The bistability
domain for the cw solutions~S1 and S2! is dashed. It lies
between the curvesp1 andp2 where the unstable solutionP
exists. Figure 4~a! is similar to Fig. 4~b! but represents only
the region of small cavity detunings. Unlike Fig. 4~a!, we
have Re(C12C2).0 for the codimension-two pointsH1 and
H2 shown in Fig. 4~b!. In this case we have a stable solutio
with time-periodic laser output that exists in the dashed a
between the curvesp1 andp2 . The solutionS1 (S2) with
stationary laser intensity exists above the curves1 (s2) and
it is stable above~below! the curvep1 (p2). Figure 5 rep-
resents the dependence of the laser field intensity on the d
ing field amplitudeV for the case whenDa5Dd50. The

e.

FIG. 5. Branches of the solutions of Eqs.~1!–~5! and~22! with
self-pulsed and cw laser output forDa5Dd50. Solutions corre-
sponding to cw~time-periodic! laser intensity are labeledS(P).
Stable~unstable! solutions are indicated by a solid~dashed! line. ~a!
The parameter values are the same as in Fig. 4~a!. ~b! The param-
eters are the same as in Fig. 4~b!. ~c! s521, k50.15/T21,
g511.7228/T21

2 , T31510T21, T325100T21, N150.42, N250.1,
V51/T21.
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1506 57VLADIMIROV, MANDEL, YELIN, LUKIN, AND SCULLY
curveS corresponds to the solutionsS6 that have equal in-
tensities in this case. The curveP represent the average
intensity of the solution with time-periodic output. The ave
aging was performed over a period of intensity oscillatio
The parameter values for Fig. 5~a! @Fig. 5~b!# are the same a
for Fig. 4~a! @Fig. 4~b!#. Hence, the solutionP is stable~un-
stable! in Fig. 5~a! @Fig. 5~b!#. Figure 5~c! corresponds to the
situation when the codimension-two pointsH1 andH2 are of
different types. The stable~unstable! self-pulsed solutionP
bifurcates from the nonlasing solution at the pointH1 (H2).
Between these points the solutionsP and S6 interchange
their stability properties. According to the bifurcation theo
there should be some other solutions with time-periodic la
intensity that appear at the points whereP and S6 become
unstable. However, since the domain of their existence
very narrow these solutions are not shown.

Figure 6 corresponds to the case where the degene
Hopf bifurcations labeled byH1 andH2 take place for non-
zero values of the detuning parameters~Da , DdÞ0!. The
solution S1 (S2) exists above~below! the curves1 (s2)
and it is stable above~below! the curvep1 (p2). A stable
self-pulsed regime exists between the curvesp1 andp2 . As
in Fig. 4~b!, the regimes with time-periodic intensity exi
only in the narrow strip situated between the codimensi

FIG. 6. Bifurcation diagram for Eqs.~1!–~5! and ~24!.
g550g32

2 , k51023g32, g315g32, r 50.1g32, V5g32.
o
e

.

er

is

ate

-

two points H1 and H2 . Note that the fact that the
codimension-two points in Fig. 6 occur forDaDd.0 agrees
with the analytic result obtained for small detuning at the e
of Sec. II B 2.

C. Instability threshold for the case of nonzero cavity
detuning

It follows from Fig. 4 and was already mentioned@14#
that in some cases LWI can be more easily achieved i
detuned laser. Let us discuss in more detail the questio
whether for given parameter values LWI can appear for a
detuning. First consider the case where the cavity eigen
quency is detuned from resonance (DaÞ0) whereas the driv-
ing field is on resonance (Dd50). In this case the necessa
and sufficient conditions of sideband instability are given

gD02kgd~ga
21gb

222V2!.0, ~26!

@gD02kgd~ga1gb!2#224kgd
2~ga1gb!~gagb1V2!

3@gsn131k~ga1gb!#.0, ~27!

whereD0 is defined by Eq.~15!. In particular, in the perfect
cavity limit (k→0) the inequalities~26! and ~27! are trans-
formed into the single conditionD0.0, which was obtained
for the case whenDa5Dd50. However, unlike the case o
zero detunings, the threshold value of the parameterg de-
fined by the inequalities~26! and ~27! tends to zero ask
→0. Thus, the LWI domain in the laser parameter space
be enlarged by the cavity detuning.

In particular, for the scheme shown in Fig. 1~e! the con-
dition ~15! takes the form

r 2
g311g32

11g32/2ga
.0. ~28!

Sincega5(g311g321r )/21ga
nrd , it follows from Eq. ~28!

that the threshold value of the pump parameter increa
with increasingga

nrd . Let k50 andDa→`. The eigenvalue
determining the stability of the nonlasing solution~6! can be
written in the form
l15
gV2

Da@2V2~r 12g3112g32!1rg32gp# F i ~g311g322r !1
r ~g3212ga!22ga~g311g32!

Da
G1OS 1

Da
3D .
Therefore, Eq.~28! means that the real part ofl1 is positive
for sufficiently largeDa . In the radiative limit~5! the in-
equality ~28! coincides with that derived in Ref.@14#:

r 21rg322~g311g32!
2.0.

D. The case of off-resonantly driven laser

Since the situationDdÞ0 is much more complicated t
analyze we confine our analytical consideration to the cas
the scheme shown in Fig. 1~e! with zero cavity detuning and
of

losses~Da50, k50!. For Dd@1 we get the following ex-
pression for the eigenvalue with the largest real part:

l15
gV2@r ~g3212gd!22gd~g311g32!#

Dd
2rg32gd

1OS 1

Dd
3D .

For sufficiently largeDd this eigenvalue is positive if the
inequality

r 2
g311g32

11g32/2gd
.0 ~29!
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is fulfilled. Thus, the condition~29! is sufficient for the in-
stability. In the radiative limit~5! the inequality~29! be-
comes

r .g31,

which coincides with the necessary condition for LWI o
tained in @14# for an off-resonantly driven laser. It follow
from our consideration that the inequality~29! is the neces-
sary and sufficient condition for the appearance of an in
bility at some drive detuningDd . Note that here, as in Sec
C, the instability occurs for arbitrarily small values of th
parameterg provided the cavity losses are negligible (k
→0).

In Fig. 7 the results of numerical simulations of Eqs.~1!–
~5! and ~24! with nonzero values of cavity and driving fiel
detuning parameters are presented. The dependence o
laser output intensity on the driving field detuningDd is
shown in Fig. 7~a! for different values of the cavity detunin
parameterDa . This figure corresponds to a situation whe
LWI is impossible in a resonantly driven laser. However,
the driving field is properly detuned the laser can oscillate
one of the two sidebands. It follows from Fig. 7 that the
exist some optimal values of the detuning parametersDd and
Da for which the output laser intensity has a maximum.
Fig. 7 these optimal values have opposite signs. This re
agrees with the information displayed in Fig. 6 in which t
degenerate Hopf bifurcation points occur forDaDd.0. Since
the line connecting the two Hopf bifurcation points in th

FIG. 7. Dependence of the intensity~a! and the frequency shif
~b! of the laser output field on the driving field detuningDd /g32 for
different values of the cavity detuningDa /g32. Calculations were
performed with Eqs.~1!–~5! and ~24!. Parameters areg5g32

2 ,
k50.02g32, g3150.2g32, r 50.75g32, V52g32. The values of
Da /g32 corresponding to the various curves are shown in the fig
a-

the

n

lt

(Da ,Dd) plane is situated between the sideband g
maxima, these maxima occur forDaDd,0.

Figure 7~b! represents the shift between of the lasing fie
frequency and the cavity eigenfrequency for the regim
shown in Fig. 7~a!.

E. Physical interpretation of the bifurcation diagrams

In this section, we consider the nonlinear dynamical pro
erties of the laser close to its threshold from an alterna
viewpoint. This allows us to illustrate the physical origin
the lasing regimes. We focus on the specific model o
system based on Fig. 1~e!. The starting point of our analysi
is a Fourier transform of the first equation of system~1!

2 iva~v!52ka~v!1gx31~v!. ~30!

In a case of a weak lasing field, the atomic polarizati
can be expressed in terms of linear susceptibility

gx31~v!5 in0x~v!a~v!,

wheren0 is optical frequency. Assuminga(v)Þ0 we can
rewrite Eq.~30! as

k52n0 Im x~v!, ~31!

v52n0 Re x~v!. ~32!

These equations have a form similar to that of the thresh
condition and the frequency pulling equation of the us
Lamb semiclassical laser theory. We note, however, tha
adiabatic approximation was made in derivating Eqs.~31!
and~32!. These equations are valid only in the vicinity of th
point where the trivial solution becomes unstable and find
their solution~for g andv! is equivalent to carrying out the
linear stability analysis of the nonlasing steady-state solu
~6!.

The complex susceptibility can be calculated from t
equations describing the evolution of the density matrix~1!.
Under the most general conditions it takes the followi
form ~see, e.g.,@14#!:

x~v!52 ig
~r33

0 2r11
0 !1~r11

0 2r22
0 !V2/@Gb~v!Gd#

Ga~v!1V2/Gb~v!
,

~33!

where Ga(v)5ga2 i (Da1v), Gb(v)5gb2 i (Da2Dd

1v), Gd5gd1 iDd , andr i i
0 are the populations of the lev

els calculated to the zeroth order in probe field. In this e
pression one can identify two contributions from the atom
coherence@11#. Dynamic Stark shift and splitting are repre
sented by the term proportional to theV2 in the denominator
of Eq. ~33!, whereas the term proportional toV2 in the nu-
merator reflects the contribution of quantum interference
is clear that at any given point in a spectrum, the construc
or desctructive character of the latter contribution depen
though not exclusively, on the sign of the population diffe
encer11

0 2r22
0 .

Let us now consider several specific cases. First, we fo
on the case of resonant drive and lasing fields (Da5Dd50).
Substituting Eq.~33! into the threshold condition~31! shows
that the necessary condition for lasing without inversion
the line center (v50) is the absence of inversion on th
driven transition (r11

0 .r22
0 ). The reason is if there is an in

e.
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version,r11
0 ,r22

0 , the contribution of interference to the ga
at a line center is destructive, resulting in increased abs
tion. This is illustrated in Fig. 8~a!, where the contributions
of the first and second terms of Eq.~33! are plotted sepa-
rately. The remarkable feature of the interference contri
tion is that it changes sign for sufficiently large frequenc
uvu. Thus, even though the interference leads to increa
absorption on line center, it reduces absorption off resona
and can still result in amplification of the sidebands.

In general, however, amplification is not sufficient for la
ing. The reason is that the second oscillation condition~32!
is automatically fulfilled for arbitrary coupling only for
v50. Out of resonance a finite amount of atomic dispers
is always required to compensate the cavity dispersion.
the reason why the occurrence of a Hopf bifurcation requi
a nonvanishingg, even in the perfect cavity limit (k→0).
This situation is illustrated in Fig. 8~b!, where solutions of
Eqs.~31! and~32! are found graphically. Clearly, because
the resonant case both equations~31! and~32! are symmetric
under the transformationv→2v, the sideband solutions
appear always in pair with frequenciesv56v0 wherev0 is
given by Eq.~14!. The oscillation conditions for both side
bands are identical. The competition between these s
bands and thus the character of the output intensity are
termined by the nonlinear interaction between the sideba
studied in Sec. III, and depends upon the relation betw
self- and cross-stauration. Depending on this relation, b
stationary and time-periodic output intensities are possi
corresponding to oscillations at either one or both sideban
respectively.

Let us now turn to the situation of arbitrary cavity detu
ing (DaÞ0) whereas driving field is still resonant (Dd50).
From Eq.~33! it follows that including cavity detunings jus
shifts the linear susceptibility spectrum by the amountDa . In
such case, the system~31! and ~32! is no longer symmetric
with respect to changing the sign ofv. Specifically, the reso-

FIG. 8. ~a! Contribution to the gain-absorption spectrum fro
single photon absorption~dashed line! and interference terms~dot-
ted line! separately. The resulting gain is drawn with the solid lin
~b! Graphical solution of Eqs.~31! and~32! for the case of perfectly
resonant driving field and cavity. Generation occurs on symme
sidebands at the frequencies marked by circles.~c! Same as~b! but
with cavity detuning from atomic resonance.~d! Same as~b! but
with driving field detuned from resonance. In both latter cases g
eration occurs at a single frequency leading to cw output intens
p-

-
s
ed
ce

n
is
s

e-
e-
s,
n

th
e,
s,

nance condition~32! has to be fulfilled for the two sideband
with unequal gain coefficients@Fig. 8~c!#. Thus, only one of
the sidebands crosses the threshold at a time leading to
output intensity close to the bifurcation point. One shou
note at this point that an instability arising in the system
the case of zero cavity detuning (Da50) is in a sense arti-
ficial. It occurs because of the ‘‘improper’’ tuning of th
laser cavity exactly between of two amplification peaks
the gain spectrum. The cw laser operation is achieved w
the laser cavity is tuned to one of the gain peaks rather t
to the atomic line center.

Detuning of the driving field can have an even more p
found effect on the properties of the three-level amplifie
displaying sideband gain@14#. The resulting susceptibility
spectrum is, in general, asymmetric@Fig. 8~d!# and, what is
more important, often displays more gain than the cor
sponding system driven on resonance. Thus, in genera
stable cw solution should emerge from the bifurcation po
in this case. The degenerate Hopf bifurcation leading t
time-periodic intensity is, however, possible for certain v
ues of cavity detuning. It occurs for sufficiently small detu
ings Dd when two amplification regions separated by t
absorption domain still exist in gain spectrum. In such a c
it is possible to find a cavity detuning such that the tw
sidebands cross the threshold simultaneously. Finally
point out that in the optimal regime of lasing operation, t
cavity detuning is in general different from the drive fie
detuning, and the laser frequency is slightly shifted from
cavity frequency.

V. CONCLUSION

We have studied the nonlinear regimes in a three-le
ring laser without population inversion in the parameter d
main where it exhibits the so-called sideband instability@21#.
Very recently it was proposed to use this type of instabil
to achieve an effective inversionless frequency u
conversion in the scheme with driving field applied to
weakly allowed transition@14#. The sideband instability
leads to the appearance of a lasing field with a freque
shifted from the line center of the lasing transition even if t
cavity and the driving field detunings vanish. For zero detu
ings the sideband instability was shown to produce a s
pulsed solutions@17#. However, as we have shown, the st
bility of these solutions and, hence, the problem of th
experimental observation cannot be adequately investig
within the framework of the model used in@17#. Here we
present a more complete analysis of the self-pulsed regi
in inversionless lasers.

We found that when both sidebands are above the lin
threshold, their interaction can lead to different kinds of d
namical behavior. If the self-saturation for the sidebands
stronger than the cross saturation, then they can lock in
produce a stable self-pulsed output. This self-pulsed reg
bifurcates from the nonlasing solution only if the instabili
thresholds are the same for both sidebands. Otherwis
there is an asymmetry between the sidebands, one of t
appears first and gives rise to a cw operation. If the asy
metry is small enough, this regime can undergo a second
bifurcation leading to a self-pulsed operation.

In the opposite situation of a cross-saturation stron
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than the self-saturation, the solution with time-periodic la
ing intensity is unstable. This means that the sidebands
not be generated simultaneously and the laser can ex
only cw output with a frequency shifted from the atom
resonance.

We have derived the normal form equations governing
evolution of the sidebands near the point of the Hopf bif
cation, which is actually a codimension-two degenerate H
bifurcation. These equations contain coefficients that dep
on the parameters of the original laser equations. We h
calculated these coefficients for two different models of
lasing medium. It follows from our calculations that the s
bility of the self-pulsed regime can be controlled by mo
toring the laser parameters. Therefore, depending on the
rameter values, either a stable self-pulsed regime or a st
cw regime bifurcates from the nonlasing solution at the
generate Hopf bifurcation point. We have also found t
under certain conditions the sideband interaction can lea
more complicated periodic and aperiodic regimes which w
be described in a subsequent paper.

Even in the limit of zero cavity losses the self-puls
regimes arise above the thresholdg5g0 defined by Eq.~13!
and they exist only in the narrow strip between the two
generate Hopf bifurcation points in which both sideban
can be generated simultaneously. On the other hand, LW
a properly tuned laser with only one exited sideband can
achieved under much more restrictive conditions. Theref
the presence of a Hopf bifurcation of the nonlasing solut
indicates that the LWI threshold can be lowered with t
help of detunings. We have shown that the most favora
conditions for LWI can be achieved with only one of th
sidebands above the linear threshold. In particular, there
ists a parameter domain for which LWI with zero cavity a
driving field detunings is impossible, but it can appear in
properly detuned laser on the side of the lasing transition

We have analyzed analytically and numerically t
threshold conditions for the sideband instability for the ca
where the cavity and the driving field frequencies are
tuned from the corresponding atomic transitions. We h
shown that the most favorable conditions for the laser op
tion in the frequency up-conversion regime are achieve
both cavity and driving field frequencies are shifted fro
resonance.
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APPENDIX: DERIVATION OF THE NORMAL FORM

Equations~1! can be written in the form

ẋ5L1x1N1~x,x* ,y!, ~A1!
-
n-
bit

e
-
f

nd
ve
e
-

a-
ble
-
t
to
ll

-
s
in
e

e,
n

le

x-

a

s
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e
a-
if

a-
-
a

a-
ro-
h
n
e

ẏ5L2y1N2~x,x* !, ~A2!

where the complex vectorx5$a,x31,x32%
T and the real vec-

tor y5$Re(x212x21
0 ),Im(x212x21

0 ),r112r11
0 ,r222r22

0 %T are
both equal to zero for the steady-state solution~12!. The
nonlinear parts,N1 andN2 , contain only second order non
linearities. At the bifurcation point~13! the matrix L1 has
two purely imaginary eigenvaluesl15 iv0 andl252 iv0 .
The third eigenvalue ofL1 , and all the eigenvalues of th
matrix L2 , have negative real parts and we will assume t
they are well separated from the imaginary axis in the co
plex plane. In ane vicinity of the bifurcation point~13! we
have l15e(b1d)1 iv0 and l25e(b2d)2 iv0 . The
quantitiesb and d will be evaluated at the end of this Ap
pendix.

We seek the solution of Eqs.~A1!, ~A2! in the form

x5e1/2@x1~ t,t!1ex3~ t,t!1O~e2!#, ~A3!

y5e@y2~ t,t!1O~e!#. ~A4!

wheret is the slow timet5et @26#. Substituting Eq.~A3!
into Eq. ~A1! and equating the terms of ordere1/2 we have
the following equation:

dx1 /dt5L1~0!x1 , ~A5!

with the adjoint equation

dx†
1 /dt5L1

T~0!x†
1 . ~A6!

L1(0) is the matrixL1 evaluated at the bifurcation point~13!
corresponding toe50.

Let V1 (V1
†) be the eigenvector of the matrixL1(0)

@transposed matrixL1
T(0)# corresponding to the eigenvalu

l15 iv0 . This vector is normalized aŝV1 ,V1
†&51. Then

the solution of Eq.~A5! has the form

x15z1~t!V1 exp~ iv0t !1z2~t!V1* exp~2 iv0t !,

wherez1(t) andz2(t) are the slowly varying envelopes fo
the sidebands. Substituting this solution into Eq.~A2! and
equating the terms of ordere we get the equation
L2(0)y21N2(x1 ,x1* )50. The solutiony2 has terms propor-
tional to exp(0t), exp(2iv0t), and exp(22iv0t) and it is a
second order polynomial inz1 , z2 , z1* , andz2* .

Finally, we equate the terms of ordere3/2. Then we get

L1~0!x35@2dz1 /dt1~b1d!z1#V1 exp~ iv0t !

1@2dz2 /dt1~b2d!z2#V1* exp~2 iv0t !

1N1~x1 ,x1* ,y2!. ~A7!

N1 includes only third order terms inz1 , z2 , z1* , andz2* .
The solvability condition for Eq.~A7! requires the orthogo-
nality of its right hand side to the solutions of Eq.~A6!. This
allows one to avoid in the solution terms that diverge at
→`. Applying the orthogonality conditions we obtain th
following equations for the slow envelopes of the sideban
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dz1 /dt5~b1d!z11E
0

2p/v0

^N1~x1 ,x1* ,y2!,V1
†&

3exp~2 iv0t !dt,

dz2 /dt5~b2d!z21E
0

2p/v0

^N1~x1 ,x1* ,y2!,V1
†* &

3exp~ iv0t !dt.
or

tt.

.
,

v.

. E
These equations can be easily transformed into Eqs.~19!,
taking into account the symmetry of Eqs.~A1! and ~A2!
under the transformationx→x exp(iw) with abitraryw,

The quantitieseb and ed are linear in Da , Dd , and
g2g0 , which describe the small deviations of the bifurc
tion parameters from the bifurcation point~13!. They are
given by
eb5
1

2gd@v0
21~ga1gb1k!2#

$~g/g021!gd@~ga1gb!~V21~ga1k!~gb1k!!#1 iDagd@v0
21~ga1gb1k!21V2

1~ga1k!~gb1k!#2 iDd@~ga1k!~v0
21gd~ga1gb1k!1gb~gb1gd!!1V2~gb1gd2k!#%,

ed5
1

2gdv0@v0
21~ga1gb1k!2#

$2Dagd@~ga1gb1k!~V21gagb!2kv0
2#1Dd@~ga1gb1k!~V2~gb1gd2k!1~ga1k!

3~v0
21gb

21gbgd!!2v0
2gd~ga1k!#2 i ~g/g021!gd@~ga1gb1k!~k~V21gagb!2v0

2~ga1gb1k!!

1v0
2~V21gagb1k~ga1gb!2v0

2!#%,

whereg0 andv0 are defined by Eqs.~13! and ~14!, respectively.
n.

ys.

y
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