
ar
X

iv
:n

uc
l-

th
/0

20
60

45
v1

  1
9 

Ju
n 

20
02

Isospin-rich nuclei in neutron star matter

Tapas Sil1, J. N. De2, S. K. Samaddar1, X. Viñas3, M. Centelles3,
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Abstract

Stability of nuclei beyond the drip lines in the presence of an envelop-

ing gas of nucleons and electrons, as prevailing in the inner crust of a

neutron star, is studied in the temperature-dependent Thomas-Fermi

framework. A limiting asymmetry in the isospin space beyond which

nuclei cannot exist emerges from the calculations. The ambient con-

ditions like temperature, baryon density and neutrino concentration

under which these exotic nuclear systems can be formed are studied in

some detail.
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I. INTRODUCTION

In the outer region of the core of a neutron star, at densities ∼ 1.5× 1014 g/cm3

or more, nucleons are distributed uniformly forming a homogeneous system [1–4].

At lower densities, in the inner crust of the star, inhomogeneities appear and then

the positive charges get concentrated in individual nuclei of charge Z which are

embedded in a sea of neutrons, electrons and possibly neutrinos, the whole system

being charge neutral. The nuclei arrange themselves in a periodic lattice [5] due to

the electrostatic interaction. In the typical conditions prevailing in the neutron star

interior, the nuclei are in complete thermodynamic equilibrium with the environment

and are assumed to be in β-equilibrium. They may well be beyond the neutron drip

line [1,6] known for laboratory nuclei with (N − Z)/A ≤ 0.35. The excess neutrons

of the very neutron rich nuclei present in the inner neutron star crust, which would

otherwise decay under terrestrial conditions, are held together in stable equilibrium

by the pressure exerted by the surrounding neutron sea.

The properties of the isospin-rich nuclei may be quite different from those of the

terrestrial nuclei. For example, with increasing density, the nuclei may pass through

different exotic shapes, namely from spheres to cylinders, slabs, cylindrical holes and

spherical bubbles [7,8]. The presence of nonspherical nuclei could affect significantly

the pinning of vortices and neutrino emission from neutron stars [9]. The existence

of these exotic-shaped nuclei is, however, model-dependent [3,10]. The external gas

surrounding the nuclei may also influence the density distribution of these nuclei

and thus may modify their size [1].

The nuclear equation of state (EOS) plays the pivotal role in determining the

macroscopic properties of a neutron star, such as its mass, radius and moment

of inertia [11]. In this context, the presence of different nuclear species in the

outer and inner crustal regions provides the starting point for the consideration of
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some important aspects, such as its superfluid and elastic properties. On the other

hand, for nuclei immersed in a nucleonic gas there are two basic concerns from

a microscopic viewpoint. One, a thermodynamically consistent treatment of the

coexistence of the two phases of nuclear matter (namely, the nuclear liquid and the

surrounding gas) [12–14], the other, a plausible description of the interface between

the liquid and the gas [15–17]. It has been shown that this problem can be taken

care of by solving the density profile in the subtraction procedure of Bonche, Levit

and Vautherin (BLV) [18,19]. In this method, the density profile of the liquid-

plus-gas system and that of the gas are solved in a self-consistent procedure and

then the extensive observables referring to the liquid are obtained as the difference

between those of the two solutions. The influence of the surrounding gas on the

surface energy is then automatically taken into account. The same concept can

be applied to situations at zero temperature where drip nucleons occur and the

system coexists with an outer nucleonic phase, as shown for very asymmetric cold

semi-infinite nuclear matter in Ref. [17].

In this paper we focus on the effect of the external gas on the structure and

stability of finite nuclei with large neutron excess, to have a broader understand-

ing of the conditions under which these nuclei may exist in neutron star matter.

A preliminary study for isolated nuclei immersed in a nucleonic gas at zero tem-

perature has been done recently [20]; in the present work we extend these ideas in

the appropriate astrophysical context. We also extend the calculations to non-zero

temperature which is relevant at the formation stage of the neutron stars.

We assume that in the nuclear matter at sub-nuclear density the nuclei are

located in a lattice. In order to simplify our calculation, the Wigner-Seitz approx-

imation [5] is applied, where each lattice volume is replaced by a spherical cell of

radius Rc, the nucleus being located at its centre. The matter in each cell is taken

to be charge neutral, ie, the number of electrons is equal to the number of protons
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in the cell. The neutrino density in this cell is determined from the β-equilibrium

condition. For a given average density of nuclear matter with a certain proton con-

centration, the density distribution is solved self-consistently. The calculations are

performed in the finite temperature Thomas-Fermi formalism. The matter in the

cell in which the protons and neutrons coexist does not define the nucleus itself,

the nucleus is identified after subtraction of the gas part generated self-consistently,

as in previous investigations of excited nuclei or asymmetric semi-infinite matter

[17–19].

In Section II, the model employed in the calculations is introduceed. The results

and discussions are presented in Section III. Section IV contains the concluding

remarks.

II. MODEL

In the inner region of the crust of a neutron star, we consider a mixture of

neutrons, protons (some of which may exist as bound nuclear clusters), electrons

and neutrinos in thermodynamic equilibrium. We contemplate both cold matter

as well as matter at a finite temperature. We ignore the contributions from alpha

particles and also from photons. We further ignore the plasma effects. All these

effects are known to be rather small [21]. The nuclear clusters are assumed to be

arranged in a body-centered cubic lattice which we approximate by Wigner-Seitz

(WS) cells defined as spheres with radius Rc. Each cell is assumed to be electrically

neutral and interactions among the cells are neglected. At the densities that we

are interested in, the Fermi momenta of the electrons are much larger than their

rest mass, the electrons are then extremely relativistic and can be assumed to be

uniformly distributed in the cell. We assume the matter to be in β-equilibrium, ie,

the chemical potentials of the considered species fulfil
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µn = µp + µe − µν. (1)

At a fixed temperature, under the condition of charge neutrality, the variables

in the problem are the average baryon density 〈ρ〉, the proton fraction Yp = Ye (the

electron fraction), the neutrino fraction Yν and the lattice radius Rc. With the β-

equilibrium condition given by Eq. (1), if µn, µp and µe are known, then µν can be

determined which in turn yields ρν when the neutrinos are taken to be a degenerate

Fermi gas. Then only three of the variables are left independent. The condition of

β-equilibrium of the baryons with the electrons and neutrinos guarantees that the

system has the minimum free energy. If one imposes further the constraint that the

lattice sites contain a particular nuclear species with a given charge Zcl and baryon

number Acl (immersed in a nucleonic gas or not), then there is only one independent

variable.

To obtain the thermodynamic properties of the system of baryons, electrons

and neutrinos, we minimize the free energy of the system in the WS cell with the

constraint of number conservation of the individual species. Under the conditions

of charge neutrality and β-equilibrium, the relevant grand potential is given by

Ω = F −
∑

q

µqAq, (2)

where F is the free energy and the index q = (n, p) refers to neutrons and protons.

The free energy has the following expression:

F(〈ρ〉, Yp, Yν, T ) =
∫

[H(r)− Ts(r) + Ec(r) + fe(ρe) + fν(ρν)] dr. (3)

In Eq. (3) the integration is over the volume of the WS cell. Here H refers to the

baryonic energy density excluding the Coulomb energy, s is the entropy density

of the baryons, Ec the Coulomb energy density of the system and fν , fe are the

free energy densities of the neutrinos and of the electrons (Coulomb interaction

excluded).
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For the nuclear energy density, we use the Skyrme energy density functional. It

is written as

H(r) =
h̄2

2m∗

n

τn +
h̄2

2m∗

p

τp +
1

2
t0

[(

1 +
x0

2

)

ρ2 −
(

x0 +
1

2

)

(

ρ2n + ρ2p
)

]

−
1

16

[

t2

(

1 +
x2

2

)

− 3t1

(

1 +
x1

2

)]

(∇ρ)2

−
1

16

[

3t1

(

x1 +
1

2

)

+ t2

(

x2 +
1

2

)]

[

(∇ρn)
2 + (∇ρp)

2
]

+
1

12
t3ρ

α
[(

1 +
x3

2

)

ρ2 −
(

x3 +
1

2

)

(

ρ2n + ρ2p
)

]

, (4)

where ρ = ρn + ρp and the effective mass of the nucleons m∗

q is defined through

m

m∗

q(r)
= 1 +

m

2h̄2

{[

t1

(

1 +
x1

2

)

+ t2

(

1 +
x2

2

)]

ρ

+
[

t2

(

x2 +
1

2

)

− t1

(

x1 +
1

2

)]

ρq

}

. (5)

In the numerical calculations we shall employ the SKM* interaction, whose param-

eters can be found in Ref. [22]. In the Thomas-Fermi approximation the kinetic

energy density τq is given by

τq(r) =
3

5
(3π2)2/3ρ5/3q at T = 0, (6)

τq(r) =
1

2π2

(

2m∗

qT

h̄2

)5/2

J3/2(ηq) at T 6= 0. (7)

The fugacity ηq is obtained as

ηq(r) = (µq − Vq(r))/T, (8)

where Vq is the single-particle potential experienced by nucleons (including the

Coulomb part for the protons). The nucleonic density ρq is related to ηq by

ρq(r) =
1

2π2

(

2m∗

qT

h̄2

)3/2

J1/2(ηq). (9)

The functions Jk(ηq) in Eqs. (7) and (9) are the standard Fermi integrals.
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For the entropy density of the nucleons one has

s(r) =
∑

q

[(5/3)J3/2(ηq)/J1/2(ηq)− ηq] ρq. (10)

The direct part Ed
c of the Coulomb energy density Ec of the charged particles is

Ed
c (r) =

1

2
(ρp(r)− ρe)

∫

(ρp(r
′)− ρe)

e2

| r− r′ |
dr′, (11)

while the exchange part is computed in the Slater approximation:

Eex
c (r) = −

3

4

(

3

π

)1/3

e2(ρ4/3p (r) + ρ4/3e ). (12)

For fe and fν we use the standard expressions [23]. For the minimisation pro-

cedure, we take recourse to the finite temperature Thomas-Fermi approximation

which yields Eq. (8). This equation is solved self-consistently leading to the density

distributions of neutrons and protons in the spherical WS cell.

Under the conditions of interest here, the baryonic fluid in the WS cell can

congregate into nuclei (we consider only the spherical shapes) located at the centre

of the cell and may be embedded in a low density gas of nucleons. Near the edge of

the cell, for hot or for isospin rich systems beyond the drip line, the baryon density

profile is found to be practically uniform which is identified as the low density gas.

To delineate the nucleus from the embedding low-density environment, we follow the

BLV procedure which has been used earlier in the Hartee-Fock (HF) framework [18]

as well as in a Thomas-Fermi (TF) scheme [19] for a hot nucleus in coexistence with

the vapour surrounding it. The method is based on the existence of two solutions to

the HF or TF equations, one corresponding to the liquid phase with the surrounding

gas (LG) and the other corresponding to the gas (G) alone.

For an isolated hot nucleus in equilibrium with the gas surrounding it, in the

absence of Coulomb forces, the densities ρqLG and the gas density ρqG can be obtained

from the variational equations
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δΩN
LG

δρqLG
= 0 (13)

δΩN
G

δρqG
= 0 (14)

where ΩN
LG and ΩN

G are the grand potentials of the respective systems with the same

chemical potential. In our procedure, the solution for ρL = ρLG− ρG, which may be

called the liquid profile, is independent of the box volume in which the calculation

is done. In the presence of the Coulomb force, however, the Coulomb repulsion

increases with the box size, driving the protons to the edge of the box and leading

ultimately to a divergence problem. In order to work out a convergent prescription,

Bonche et al. [18] calculated the Coulomb energy Ec from the subtracted proton

density ρpLG−ρpG and obtained the density profile from the variation of the subtracted

grand potential Ω̄ = ΩN
LG − ΩN

G + Ec with respect to both ρqLG and ρqG.

In the astrophysical context, the situation is however different due to the presence

of electrons. The Coulomb energies for the LG and G phases are

Ec
LG =

1

2

∫

(ρpLG(r
′)− ρe)

e2

| r− r′ |
(ρpLG(r)− ρe)drdr

′, (15)

Ec
G =

1

2

∫

(ρpG(r
′)− ρe)

e2

| r− r′ |
(ρpG(r)− ρe)drdr

′

+
∫

ρpL(r
′)

e2

| r− r′ |
(ρpG(r)− ρe)drdr

′. (16)

The direct part of the single-particle Coulomb potentials (δEc
LG/δρ

p
LG and δEc

G/δρ
p
G)

for the LG are the G solutions is the same. It is given by

V d
c (r) =

∫

(ρpLG(r
′)− ρe)

e2

| r− r′ |
dr′. (17)

Since the system is charge neutral, the divergence problem does not arise. The

solutions to the density profiles can be directly obtained from the variations of the

total (with Coulomb) grand potentials ΩLG for the liquid-plus-gas phase and ΩG

for the gas phase with respect to ρqLG and ρqG, respectively. The resulting coupled

equations are
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TηqLG(r) + V q
LG + V c

LG(ρ
p
LG, ρe) = µq, (18)

TηqG(r) + V q
G + V c

G(ρ
p
LG, ρ

p
G, ρe) = µq. (19)

At zero temperature they reduce to

(3π2)2/3
h̄2

2m∗

q

(ρqLG)
2/3 + V q

LG + V c
LG(ρ

p
LG, ρe) = µq, (20)

(3π2)2/3
h̄2

2m∗

q

(ρqG)
2/3 + V q

G + V c
G(ρ

p
LG, ρ

p
G, ρe) = µq. (21)

In Eqs. (18)–(21), V q
LG and V q

G refer to the nuclear part of the single-particle potential

corresponding to the liquid-plus-gas and the gas solutions. V c
LG (V c

G) is the sum of

the direct part of the Coulomb single-particle potential given by Eq. (17) and the

exchange term −e2(3/π)1/3(ρpLG(G))
1/3 for the protons in the LG (G) phase. At zero

temperature, if the cluster is within the drip lines, the cell does not contain any

nucleonic gas. Equations (20)–(21) then automatically lead to a gas solution which

is zero throughout.

The nucleonic chemical potential is determined from the constraint of nucleon

number conservation. In the case of a given nuclear cluster with neutron number

Ncl and proton number Zcl embedded in a nucleonic gas, the conservation of the

number of nucleons in the cluster requires [from Eqs. (18) and (19)]

µq =
1

Aq

{
∫

[TηqLG(r) + V q
LG(r) + V c

LG(r)] ρ
q
LG(r)dr

−
∫

[TηqG(r) + V q
G(r) + V c

G(r)] ρ
q
G(r)dr

}

. (22)

Here Aq refers to Ncl or Zcl. An equation similar to (22) follows from Eqs. (20) and

(21) at zero temperature.

On the other hand, when 〈ρ〉 is given in a WS cell with a given proton concen-

tration, the total number of neutrons N and protons Z in the cell is defined. Then,

the chemical potential is obtained as
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µq =
1

Aq

∫

[TηqLG(r) + V q
LG(r) + V c

LG(r)] ρ
q
LG(r)dr, (23)

where now Aq refers to N or Z.

III. RESULTS AND DISCUSSION

In an earlier paper by some of the present authors [20], calculations at zero

temperature on some structural properties of isolated nuclei much beyond the drip

line were reported. In that case, the excess pressure exerted by the enveloping gas

stabilises the nucleus even beyond the nominal drip lines (which are defined by

µn = 0 or µp = 0 in the Thomas-Fermi approach). We now place these calculations

in a broader context related to the environment existing in the inner crust of a

neutron star. We take cognizance of the presence of electrons and neutrinos existing

in β-equilibrium with the neutrons and protons. We extend the calculations also

at finite temperature. As mentioned earlier, the calculations are performed in the

finite temperature Thomas-Fermi framework in a Wigner-Seitz lattice employing the

SKM* interaction. For completeness, we also discuss the situation for the proton-

rich nuclei though they may not exist in the crustal matter of the neutron stars.

In the calculations on asymmetric infinite and semi-infinite nuclear matter in

equilibrium with a drip phase, it was observed [12,16,17] that the neutron-proton

asymmetry could be increased arbitrarily till the two phases merge into a uniform

system when the densities and the asymmetries of both phases become equal. On the

contrary, in the self-consistent TF calculation for isolated finite nuclei, it was found

that one cannot add or remove neutrons from nuclei arbitrarily [20]. There exists

a limiting neutron-proton asymmetry I = (Ncl − Zcl)/Acl beyond which the system

becomes thermodynamically unstable; establishing chemical equilibrium between

the nuclear phase and the gas phase further becomes impossible.

In the realistic conditions considered in the present investigation, including the
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lattice effects, we calculate the stability limits at T = 0 as shown in the upper

panel of Fig. 1. We find that both the limiting asymmetry (full line) and the

drip asymmetry (dashed line) are not very sensitive to the atomic number Zcl of

the nucleus. The influence of the lattice electrons on both the drip lines and the

limiting lines for neutrons and protons is manifested in the lower panel of Fig. 1.

The neutron lines are nearly unaffected. The proton lines are however influenced

significantly, particularly for the heavier clusters. Both the proton drip and limiting

lines get extended with inclusion of the lattice effects because of the dilution of the

Coulomb force in the presence of electrons. The calculations are done in a lattice

size Rc = 15 fm. The results are found to be rather insensitive to the size of the

lattice.

The influence of temperature on the drip and limiting lines, taking into account

the lattice effects, is displayed in Fig. 2. There, we compare the results obtained at

T = 0 and at T = 6 MeV. Both the neutron and proton drip lines are extended at

finite temperature as found earlier in calculations for isolated nuclei [24,25]. On the

other hand, the neutron limiting line shrinks with temperature, whereas the proton

limiting line remains essentially unaffected.

In Fig. 3 we present the density profile of neutrons (left panel) and protons

(right panel) for an extremely neutron-rich nucleus 330Pb (the neutron drip line is

located at 276Pb). We display calculations for both the case with lattice and the

case without lattice (isolated nuclei) at T = 0. At a finite temperature T = 6 MeV

we show the calculations only with lattice effects. The total density profile ρqLG of

the liquid-plus-gas phase is shown in the upper panels. For neutron-rich nuclei the

influence of the electrons in the lattice is found to have only a nominal effect on the

density distributions. The finite neutron density at the cell boundary even at T = 0

reflects the presence of the neutron gas for a nucleus beyond the neutron drip line.

With increasing temperature, the central density is depleted with the appearance
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of a thickening tail. The gas densities ρqG are shown in the bottom panels and the

liquid densities ρqL obtained as the difference between ρqLG and ρqG are shown in the

central panels.

The density profile ρqL of the isolated cluster 330Pb is found to be independent of

the size of the box. However, in a lattice, because of the modification of the Coulomb

force in the presence of the electrons, the nucleonic densities in the cluster are box-

size dependent, though weakly. The liquid density vanishes at a distance r < Rc

even at T = 6 MeV. The neutron gas density is found to be practically constant

throughout the box; at finite temperature, the gas density is larger as expected.

For this neutron-rich system, at T = 0, the proton gas does not exist; however, at

finite temperature (T = 6 MeV), a few protons are present in the gaseous state. In

finite temperature calculations for isolated nuclei, the proton gas density profile is

strongly polarised [18] due to the repulsion from the nuclear core. In the presence

of the lattice electrons, the density polarisation exists only in the vicinity of the

core, at further distances the proton gas density is found to attain a nearly constant

value.

The density distributions for an extremely proton-rich isotope 140Pb are shown

in Fig. 4. The proton and neutron distributions at T = 0 (both with and without

lattice contributions) and at T = 6 MeV with lattice effects are displayed in the

left and right panels, respectively. The electrons in the lattice dilute the Coulomb

repulsion thereby lowering the proton chemical potential, particularly for proton-

rich heavy nuclei, as an effect of which the proton drip line is extended. For instance,

for an isolated Pb nucleus the proton drip line is located at 182Pb; the influence of

the lattice electrons pushes it to 143Pb. The total (LG) proton density distribution

for the isolated 140Pb nucleus at zero temperature indicates the presence of a proton

gaseous phase. This proton gas is strongly polarised as is clear from the proton

gas density distribution shown in the bottom panel. With inclusion of the lattice
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electrons, since the 140Pb nucleus is just beyond the modified drip line, the proton

gas density is extremely dilute as is evident from the bottom left panel. The central

panel of Fig. 4 indicates that the liquid density profiles with and without lattice

corrections at T = 0 are not much different. The influence of the lattice electrons

on the neutron density distribution is negligible as displayed in the right panel. For

the present system, there is no neutron gas at zero temperature. The characteristics

of the density distributions at finite temperature are found to be basically the same

as discussed in the context of a neutron-rich nucleus in Fig. 3.

All of the subsequent calculations we shall present are performed including the

influence of the lattice electrons. In Fig. 5, the rms neutron and proton radii of the

lead isotopes are displayed for T = 0 as well as for T = 6 MeV. At zero temper-

ature, except at the edges of limiting asymmetry, the rms radius changes almost

linearly with the mass number. The faster change in radius near the edges points

to the onset of instability. Similar observations were also noted in the calculations

without lattice effects [20]. Temperature increases the rms radii, its effect being

more pronounced near the stability limit. By comparing the upper and lower panels

of Fig. 5 (neutrons and protons), one observes the growth of the neutron or proton

skins with positive or negative asymmetry, the effect being more noticeable at zero

than at finite temperature.

We now explore the ambient conditions in which a particular nucleus can exist

at a certain temperature in the inner crust of the neutron star. For this purpose,

we have chosen 80Ca and 170Sn as representative systems. The nucleus 80Ca is well

beyond the Thomas-Fermi drip line (68Ca being on the drip line) whereas 170Sn is

just at the drip boundary. As mentioned in Sec. II, among the four variables 〈ρ〉, Yp,

Yν and Rc, only one is independent once the Ncl and Zcl values of the nucleus are

constrained and β-equilibrium assumed. For the existence of the particular isotope

the values of the rest of the variables are then fixed. The correlations among 〈ρ〉,
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Yp and Rc are displayed in Fig. 6 for the aforementioned two isotopes at T = 0,

3 and 6 MeV. The filled circles correspond to different values of Rc at which the

calculations have been performed. The values of Rc range from 12 fm to 30 fm at a

step of 3 fm, increasing with decreasing 〈ρ〉 for all the cases shown. The nucleus 80Ca

is beyond the neutron drip line, it is hence embedded in a neutron sea even at zero

temperature. For the isolated nucleus, the density of the neutron gas is independent

of the box size. Even in calculations with inclusion of effects from lattice electrons,

the neutron chemical potential µn and hence ρnG change very little with the cell size.

This explains the gradual fall of 〈ρ〉 and Yp with increasing Rc. For
170Sn, since the

nucleus is at the neutron drip boundary, the fall of 〈ρ〉 with increasing Rc is vertical

at T = 0 as there is no neutron gas in the cell. At finite temperature, however, the

cluster becomes embedded in a nucleonic gas of mostly neutrons and some protons

causing a reduction in 〈ρ〉 and Yp with increasing Rc.

The ambient conditions for stability are investigated further for Pb isotopes

ranging from Acl = 110 to Acl = 330 at the same three temperatures mentioned

for 80Ca and 170Sn. The calculations for Pb have been performed at a the value of

cell size Rc = 15 fm. The results are displayed in Fig. 7. The proton drip point for

lead at T = 0 is at Acl = 143, while the neutron drip point is at Acl = 276. These

points are indicated by the vertical arrows in the figure. In the upper panel of this

figure, the average density 〈ρ〉 is plotted against mass number Acl. The curve for the

zero temperature case has a minimum at Acl ∼ 143 which is the proton drip point.

Between the drip points (Acl = 143 to 276), since there is no nucleonic gas around

at T = 0, the average density 〈ρ〉 within the WS cell increases linearly with mass

number. Beyond the drip points, the nuclei are surrounded by a nucleonic gas for

their stability, 〈ρ〉 therefore increases faster. For a hot nucleus there are evaporated

nucleons in the cell and the average density is larger.

The proton fraction Yp as a function of the mass number is shown in the middle
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panel of Fig. 7. A kink is seen to occur at Acl = 143, the proton drip point below

which Yp rises faster because of the presence of the proton gas. For Acl > 143, the

charge Zcl is fixed. Hence, with increase of mass number, Yp decreases linearly up

to the neutron drip point beyond which the slope of the curve changes as neutrons

appear in the drip phase. With temperature, because of evaporation of nucleons tak-

ing place, the kinks smoothen out, but the overall qualitative features are the same.

The lower values of Yp at finite temperature reflect the predominance of neutrons

in the gas for isotopes that are not very proton-rich. The variation of the neutrino

fraction Yν (= ρν/〈ρ〉) with the isotope mass is displayed in the bottom panel. With

increasing mass number, it is found to decrease. The effect of temperature on Yν

is very weak. Inspection of Fig. 7 reveals that for a particular 〈ρ〉, Acl is generally

double-valued. If the isotope is proton-rich, Yp is necessarily large and Yν also comes

out to be large. For the same value of 〈ρ〉, the neutron-rich isotope is formed when

Yν is small.

So far our calculations have been done by fixing a given cluster (Ncl, Zcl), which

yields various sets of values for the parameters of the problem. A common practice

is, however, to fix the parameters like 〈ρ〉 and Yp and study the change in the internal

structure of neutron star matter. When β-equilibrium is assumed, for a given value

of 〈ρ〉 and Yp, the free energy density (equivalent to free energy per baryon in the

present case) in the system of nucleons, electrons and neutrinos is a minimum in

any given cell size Rc. The cell size sets the periodicity in the neutron star matter;

it is not a priori known and therefore is taken as a parameter. Even for given values

of 〈ρ〉 and Yp, the neutrino concentration Yν (under β-equilibrium conditions) would

be different for different values of Rc. One may look for a global minimum in the

free energy density by varying Yν (through variation of Rc). This is displayed in

Fig. 8 for T = 0 and for three values of densities keeping the proton concentration

Yp fixed at 0.3. The minima in the free energy density are marked by arrows. With
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decreasing density, the cell size corresponding to the global minimum increases.

To understand the origin of the minimum in the free energy profile presented in

Fig. 8, the variation of its different components with lattice size for two values of

〈ρ〉 = 0.001 (left panel) and 0.01 fm−3 (right panel) are shown in Fig. 9. Here Yp is

fixed at 0.3. Since these calculations are carried out at zero temperature, the total

energy per baryon etot = F/A is given by

F/A = eN + elat + ee + eν . (24)

The different contributions eN , elat, ee and eν are the nuclear energy including

the Coulomb interaction among the protons, the lattice energy (ie, the Coulomb

interaction energy due to the presence of the electrons), the electron kinetic energy

and the neutrino energy per baryon, respectively. It is seen that eN has a minimum

at a lattice radius Rc somewhat smaller compared to Rmin
c , the value of Rc at which

F/A is minimum in Fig. 8 at the corresponding 〈ρ〉. This may be understood from

the variation of the cluster size Acl with Rc as shown in the middle panels of the

figure. The cluster size increases monotonically with Rc and for these neutron-

rich clusters the minimum binding energy per nucleon occurs at around Acl ∼ 100

(for nuclei on the β-stability line, this occurs for 56Fe). The lattice energy elat

decreases monotonically with Rc. This is because for given Yp, the proton number

and hence the electron number increases with increasing lattice size keeping the

electron density constant, as a result of which elat ∼ −A2/3 [5]. The electron kinetic

energy per baryon ee is a constant for a given density and Yp and therefore is not

shown in the figure. The neutrino energy eν passes through a minimum at a value of

Rc somewhat smaller than Rmin
c where the neutrino fraction Yν is also a minimum

(shown in the bottom panel). The competition between elat and the rising parts of

(eN + eν) determines the location of the minimum in the total free energy at T = 0.

In Fig. 10, we display the thermal evolution of the cluster composition (Acl, Zcl)
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at different fixed densities, at a particular value of Yp = 0.3 and for a lattice size

Rc = 15 fm. The number of neutrons and protons in the WS cell is then fixed. The

full lines correspond to the mass number Acl of the cluster and the dotted lines refer

to its charge. For the chosen conditions, the clusters formed at zero temperature

in the WS cell comprise all the nucleons without any gas. As the temperature

rises, the cluster size shrinks and becomes surrounded by the gas of the evaporated

nucleons, the nuclear liquid and the gas being in thermodynamic equilibrium. The

cluster evaporates completely at a particular temperature depending on the chosen

density, and then the cell contains only the gas of nucleons and the leptons. We

call it the boiling temperature TB. As the density 〈ρ〉 is decreased, the temperature

TB falls down. A similar situation was observed in the context of the liquid-gas

phase transition in finite nuclei, where the phase transition temperature was found

to decrease [26] with an increase in the so-called freeze-out volume or a lowered

average density 〈ρ〉. Figure 10 also tells us about the appearance of different nuclear

clusters as the neutron star evolves in the formation stage. Initially, the temperature

T may be as high as ∼ 10 MeV and then all the nucleons will likely be in the gas

phase. As time flows by, the system cools down and seeds of nuclei with increasing

size start appearing from the gas.

IV. CONCLUSIONS

We have investigated the structural properties of nuclei and nuclear matter as

can be found in the environment of the inner crust of a neutron star. These nuclei

are dipped in a sea of electrons, neutrinos and of low-density nucleons. Because

of the pressure exerted by the surrounding nucleonic gas, nuclei may exist even far

beyond the nominal nuclear drip line. Following the BLV subtraction procedure,

we give a prescription in a Thomas-Fermi framework to properly isolate the nucleus
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from its environment. This is extremely helpful in further exploring the limits of

stability.

From our calculations, a limiting asymmetry in the neutron-protron concentra-

tion emerges beyond which a nucleus even within the gaseous environment ceases to

exist. A delicate balance between the Coulomb force and the diluted surface tension

with increasing asymmetry and increasing density of the environment possibly plays

a pivotal role here. We also investigate the ambient conditions, namely the average

density, electron or proton fraction and the neutrino concentration, under which

nuclei of a particular species can be formed at different temperatures in the stellar

matter. We furthermore study the thermal evolution of the nuclear clusters at dif-

ferent densities, which may serve as a guide to understand the nucleation process of

different species of nuclear clusters from the nucleonic sea as the neutron star cools

down in the earlier stages of its formation.

We have left our calculations on a simple pedestal. That is, we have not included

the extension of the Thomas-Fermi framework, we have not taken the shell-effects

into account, possible plasma effects have been ignored and, similarly, the presence

of α-particles at low densities has not been taken into consideration. We have worked

with the SKM* interaction; at large asymmetry, its validity is not unquestionable.

Sophistications in the approach or the use of more suitable interactions may change

the results somewhat, but the qualitative features that emerge from our calculations,

we believe, will remain mostly unchanged.
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[18] P. Bonche, S. Levit, and D Vautherin, Nucl. Phys. A 427, 278 (1984); Nucl.

Phys. A 436, 265 (1985).

[19] E. Suraud, Nucl. Phys. A 462, 109 (1987).
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Figure Captions

Fig. 1 The upper panel shows the drip line asymmetry and the limiting asymmetry

as a function of the charge Zcl of the nuclear cluster in a lattice of size Rc = 15

fm at T = 0. The lower panel displays the same quantities in the Ncl − Zcl

plane with and without inclusion of lattice effects.

Fig. 2 The drip and the limiting asymmetries in the Ncl − Zcl plane at T = 0 and 6

MeV in a lattice of Rc = 15 fm. The limiting proton asymmetry coincides at

both temperatures.

Fig. 3 The neutron (left panel) and proton (right panel) density profiles correspond-

ing to the nuclear cluster 330Pb are shown with inclusion of lattice effects at

T = 0 MeV (open circles joined by dotted lines) and at T = 6 MeV (dashed

line). The full line corresponds to calculations for the isolated nucleus (with-

out lattice) at T = 0. The upper panels refer to the liquid-plus-gas density

(LG) and the central panels correspond to the liquid density (L). The lower

panels show the gas density (G).

Fig. 4 Same as in Fig. 3 for 140Pb. Here the left panel corresponds to protons and

the right panel refers to neutrons.

Fig. 5 The neutron (top panel) and proton (bottom panel) rms radii at T = 0 and 6

MeV calculated in a lattice cell of size Rc = 15 fm for Pb isotopes.

Fig. 6 The average density and proton fraction of the nuclear matter in the Wigner-

Seitz cell calculated for the nuclear clusters 80Ca and 170Sn. The size Rc of the

cell is varied from 12 fm to 30 fm at a step of 3 fm, as marked by the filled

circles. The calculations are done for temperatures T = 0, 3 and 6 MeV. The

full lines are drawn to guide the eye.

21



Fig. 7 The variation of the average density 〈ρ〉, the proton fraction Yp and the neu-

trino fraction Yν as a function of the mass number Acl of the Pb isotopes

calculated in a Wigner-Seitz cell of size 15 fm. The calculations are done at

T = 0, 3 and 6 MeV. The vertical arrows indicate the proton and neutron

drip points.

Fig. 8 The variation of the free energy per baryon F/A with the cell size at average

densities 〈ρ〉 = 0.001, 0.005 and 0.01 fm−3, the proton fraction being fixed at

Yp = 0.3. The calculations correspond to T = 0. The vertical arrows refer to

the minima in F/A.

Fig. 9 The different components of the free energy per nucleon as a function of Rc

are shown in the upper panel for two different values of 〈ρ〉, at Yp = 0.3 and

T = 0. The middle panels show the growth of the nuclear cluster with cell

size. The bottom panels display the variation of Yν as a function of Rc. The

numbers on the left bottom panel are to be scaled down by a factor of two.

Fig. 10 Thermal evolution of the cluster sizes for average densities 〈ρ〉 = 0.001, 0.005

and 0.01 fm−3. The full lines correspond to the mass number Acl and the

dotted lines refer to the atomic number Zcl. The calculations are performed

with a fixed proton fraction Yp = 0.3 and a cell size Rc = 15 fm.
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