
ar
X

iv
:1

00
2.

13
49

v2
  [

he
p-

th
] 

 9
 A

pr
 2

01
0

MIFP-10-04

The Entropy for General Extremal Black Holes

Jianwei Mei

George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,

Texas A&M University, College Station, TX 77843, USA

ABSTRACT

We use the Kerr/CFT correspondence to calculate the entropy for all known extremal

stationary and axisymmetric black holes. This is done with the help of two ansatzs that are

general enough to cover all such known solutions. Considering only the contribution from

the Einstein-Hilbert action to the central charge(s), we find that the entropy obtained by

using Cardy’s formula exactly matches with the Bekenstein-Hawking entropy.
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1 Introduction

To successfully calculate the entropy for black holes is a challenge for all candidates of the

quantum gravity theory. In reverse, helpful insight to quantum gravity may be obtained if

one can find a general way to calculate the black hole entropy.

The Kerr/CFT correspondence [1, 2] has been quite successful with calculating the

entropy for extremal black holes. The basic idea is to discuss dynamics on the near-horizon

metric of the black holes. With appropriate boundary conditions, the corresponding phase

space can be identified with that of a two dimensional conformal field theory. The entropy

of the black hole can then be calculated from the corresponding central charge(s) by using

Cardy’s formula. After it was first proposed in [1], the method has been found to work for all

the cases that have been checked (for refs, see [3]). It was suggested in [2] that the extremal

condition may be at the heart of the correspondence. So the Kerr/CFT correspondence is

also called the Extremal Black Hole/CFT correspondence.
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In hindsight, several important points have also been raised in [2]. The first is related

to the matter field contribution to the central charges of the dual CFTs. It was found in [2]

that the gauge field does not contribute to the central charge for solutions in the Einstein-

Maxwell system in four dimensions. This result was echoed in [4, 5], where it was shown by

using examples in four and five dimensions that non-gravitational fields such as the scalar

field, the Abelian gauge field and the antisymmetric tensor field do not contribute to the

central charge(s). The second point is that the success of the Kerr/CFT calculation may

partially due to the possibility that all near-horizon metrics share a particular common

structure. The near-horizon metrics for some extremal black holes have been studied in

[13, 14] in a different context. In four dimensions, the near-horizon metrics are found to be

of the form

ds24 = f(θ)
[
− r2dt2 +

dr2

r2
+ α(θ)dθ2

]
+ γ(θ)(dφ+ krdt)2 , (1.1)

while in higher dimensions they are found to be of the form

ds2d = f(θi)
[
− r2dt2 +

dr2

r2

]
+ αi(θ

j)dθi2 + γab(θ
i)(dφa + kardt)(dφ

b + kbrdt) (1.2)

for a certain class of solutions, where k and ka are constants while all the functions depend

on θi’s only. It was then shown in [6] that (1.2) indeed plays a significant role when the

Kerr/CFT correspondence is applied to various solutions in (gauged) supergravity theories.

Further examples were also presented in [7]. Lastly, it was speculated in [2] that the Frolov-

Thorne temperature may be of the general form TL = 1
2πk in four dimensions. This was

then generalized to higher dimensions in [6],

T aL =
1

2πka
, (1.3)

based on all the examples that have been studied. This result also plays a crucial role in

applying the Kerr/CFT correspondence to various black hole solutions [6, 7].

In this paper, we present two ansatzs that are general enough to cover all known sta-

tionary and axisymmetric black holes. Extra constraints can be obtained by noticing that

black hole horizons are intrinsically regular. We then show that (1.2) can be derived as soon

as the near-horizon limit is taken for extremal black holes. As a result, (1.2) is valid for all

known extremal stationary and axisymmetric black holes. The Frolov-Thorne temperature

of the form (1.3) is also derived in a straight forward manor. Then we explicitly calculate

the central charge(s) related to (1.2). When the microscopic entropy is calculated by using

Cardy’s formula, we find that the result exactly matches with the Bekenstein-Hawking en-

tropy. In this way, we demonstrate in a general fashion that the Kerr/CFT correspondence
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is applicable to all known extremal stationary and axisymmetric black holes. What’s more,

empirical results such as (1.3) can also be derived without making extra assumptions.

Note earlier works have largely demonstrated the general applicability of the Kerr/CFT

correspondence (see, e.g. [8, 6, 7]). So it is not our intention here to show this again.

Rather, we are most interested to see to what extent can the calculation be carried out in

a general fashion.

For practical reasons, we have only considered the contribution from the Einstein-Hilbert

action to the central charge(s). The fact that the resulted microscopic entropy matches

with the Bekenstein-Hawking entropy implies that the non-gravitational contributions to

the central charge(s) are zero, which is consistent with the results found in [2, 4, 5]. One can

certainly try to repeat the same process for more complicated theories. For example, it has

been shown in [9] (See also [10] for an earlier work) that in a theory with higher-derivative

corrections in the gravitational sector, the higher-derivative terms also contribute to the

central charge(s) and the correct entropy is the one constructed by Iyer and Wald [11, 12].

However, it is obvious that a similar calculation will be extremely difficult.

The plan of the paper is as following. In section 2, we will present the two ansatzs for

all known stationary and axisymmetric black holes. The near-horizon metric for extremal

black holes will then be derived in section 3. The central charges will be calculated in

section 4, but most of the extra detail will be contained in Appendix A. The microscopic

entropy from the CFT side is then calculated in section 5. A summary will be given in

section 6.

To make the whole calculation more accessible to most readers, we have included an

introduction to the treatment of asymptotic symmetries by using the covariance phase space

method in Appendix B. We will also revisit most of the examples studied in [8, 6, 7] in

Appendix C, by using the new perspective that we gain from the present work.

2 Two General Ansatzs for Stationary and Axisymmetric

Black Holes

The basics of the Kerr/CFT correspondence has been explained in [1] in much detail. Here

we will go directly to the general case we want to study.

We will start with presenting two general ansatzs that cover all known stationary and ax-

isymmetric black hole solutions. The construction will be partially based on our experience

with all the solutions that are known.
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Stationary and axisymmetric black hole solutions share some common features:

• By using the term “stationary and axisymmetric”, one assumes that (i) a coordinate

system exists where some of the coordinates can be identified with the asymptotic

time direction t̂ and the azimuthal directions φ̂a, and (ii) the metric does not depend

on t̂ nor φ̂a.

• Among the rest of the coordinates, one coordinate can be singled out as describing

the radial direction r̂. For all known solutions, the position of the black hole horizon

(r̂ = rH) is determined by a single function of r̂ : ∆(rH) = 0.

• All other coordinates are then related to the latitudinal angles θi. For a black hole in d-

dimensional spacetime, there can be [d−1
2 ] independent rotations. So a = 1, · · · , [d−1

2 ]

and i = 1, · · · , [d2 ]− 1.

• For all known solutions, one can always chose the coordinate systems so that the

metrics do not have any cross terms involving dr̂ or dθi.

• Near the black hole horizon, it can either be a term like dt̂ + fa(r̂, θ
i)dφ̂a or a term

like fa(r̂, θ
i)dφ̂a playing the role of time.

Metrics reflecting such features can always be written as

ds2d = −∆

ft

[
dt̂+ fadφ̂

a
]2

+
fr
∆
dr̂2 + gijdθ

idθj + ds̄2φ , (2.1)

or

ds2d = −∆

ft

[
fadφ̂

a
]2

+
fr
∆
dr̂2 + gijdθ

idθj + ds̄2φ , (2.2)

with

ds̄2φ = gab(dφ̂
a − χadt̂)(dφ̂

b − χbdt̂) + fttdt̂
2 . (2.3)

Note all the functions depend on r̂ and θi’s only, while ∆ will be the function determining

the location of the horizon and so it depends on r̂ only. We have allowed dθi’s to mix among

themselves in (2.1) and (2.2), so both ansatzs can describe possibly slightly more general

cases than listed above. We have also included the fttdt̂
2 term in (2.3) to make (2.1) and

(2.2) as general as possible. The assumption on ftt is that it should not play any significant

role near the horizon. As we will see below, this means ftt ∼ ∆2 as r̂ → rH . As far as

we can tell, all known stationary and axisymmetric black holes can either be written in the

form of (2.1) or in the form of (2.2). We also notice that the two ansatz are actually general

enough to go beyond black holes and cover objects such as the black ring [15].
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Some extra constraints can be obtained for the functions in (2.1), (2.2) and (2.3) by

noticing that black hole horizons are intrinsically regular. A regular horizon means that the

metric (and the matter fields) should be manifestly regular on the horizon if the coordinate

system is chosen appropriately.

To see how this can help us, note that the first two terms in (2.1) can be written as

∆

ft

(
−
[
dt̂+ fa dφ̂

a
]2

+
ftfr
∆2

dr̂2
)

= −∆

ft
A2 + 2

√
fr/ft dr̂A , (2.4)

where

A = dt̂+ fa dφ̂
a +

√
ftfr
∆

dr̂ . (2.5)

The superficial singularity near the horizon comes solely from ∆(rH) = 0. To make the

metric regular on the horizon, one can try to make A regular first. This can be achieved

if there exist functions hv = hv(r̂), ha = ha(r̂) and hA = hA(r̂, θ
i) being regular on the

horizon and satisfying
√
ftfr = hv + faha + hA∆+O(∆2) . (2.6)

In this case one can write A = dv + fa dψ
a + hAdr̂ +O(∆) by using the coordinate trans-

formation

dv = dt̂+
hv(r̂)

∆(r̂)
dr̂ , dψa = dφ̂a +

ha(r̂)

∆(r̂)
dr̂ . (2.7)

We find that this process is possible for all know examples. For (2.3),

ds̄2φ = gab

(
dψa − χadv −

ha − χahv
∆

dr̂
)(
dψb − χbdv −

hb − χbhv
∆

dr̂
)

+ftt

(
dv − hv

∆
dr̂
)2
. (2.8)

To make ds̄2φ regular on the horizon, one must have

χa =
ha + haχ∆

hv
+O(∆2) , ftt = htt∆

2 +O(∆3) . (2.9)

Again haχ = haχ(r̂, θ
i) and htt = htt(r̂, θ

i) must be regular on the horizon. Using these results

and keeping only leading order corrections, one has for (2.1) at r̂ → rH ,

ds2d ≈ fr

{
−∆

(dt̂+ fadφ̂
a)2

(hv + faha + hA∆)2
+
dr̂2

∆

}
+ gijdθ

idθj + htt∆
2dt̂2

+gab

(
dφ̂a −

ha + haχ∆

hv
dt̂
)(
dφ̂b −

hb + hbχ∆

hv
dt̂
)
. (2.10)

If the same process is repeated for (2.2), one can find that when r̂ → rH ,

ds2d ≈ fr

{
−∆

(fadφ̂
a)2

(faha + hA∆)2
+
dr̂2

∆

}
+ gijdθ

idθj + htt∆
2dt̂2
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+gab

(
dφ̂a −

ha + haχ∆

hv
dt̂
)(
dφ̂b −

hb + hbχ∆

hv
dt̂
)
. (2.11)

As we will show in Appendix C, (2.10) with hA = haχ = htt = 0 is in fact exact (i.e., not an

approximation) for a surprisingly large number of solutions.

Strictly speaking, our derivation of (2.10) and (2.11) is by no means the most general

one. The whole process rests upon using the coordinate transformation (2.7) to render both

A and ds̄2φ finite on the horizon separately. One may as well try to think of other ways to

make the whole metric (2.1) finite on the horizon all together. Since we have made no effort

trying in such a direction, we will have nothing to say about this point. For the purpose

of the paper, it is important to notice that (2.10) and (2.11) already appear to be general

enough to cover all known stationary and axisymmetric black hole solutions.

For later convenience, lets calculate the black hole temperature for (2.10) and (2.11).

For that purpose, we choose a static coordinate system with both t̂ and φ̂a canonically

normalized. The surface gravity is calculated with the particular Killing vector,

ξ = ∂t̂ +Ωa∂φ̂a . (2.12)

Here the constants Ωa’s are chosen to make ξ null on the (outer) horizon. They are inter-

preted as the angular velocities corresponding to the azimuthal angles φ̂a. To see how Ωa’s

can be calculated, note that for (2.10),

ξ2 =
−fr∆ · (1 + faΩa)

2

(hv + faha + hA∆)2
+ gab

(
Ωa −

ha + haχ∆

hv

)(
Ωb −

hb + hbχ∆

hv

)
+ htt∆

2 , (2.13)

and for (2.11),

ξ2 =
−fr∆ · (faΩa)2
(faha + hA∆)2

+ gab

(
Ωa −

ha + haχ∆

hv

)(
Ωb −

hb + hbχ∆

hv

)
+ htt∆

2 . (2.14)

For both cases, to make ξ vanish on the horizon one must have

Ωa =
h0a
h0v

, h0a = ha(rH) , h0v = hv(rH) . (2.15)

Including corrections to the leading order, one has

ha
hv

= Ωa +Ω′
a · (r̂ − rH) +O(r̂ − rH)

2 , Ω′
a ≡

(ha
hv

)′∣∣∣
r̂=rH

. (2.16)

The surface gravity on the horizon can be calculated by using

κ2 =
(∂λ)2

4λ

∣∣∣
r̂=rH

, λ = −ξ2 . (2.17)
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For non-extremal solutions, ∆(r̂) = ∆′
0 · (r̂ − rH) + O(r̂ − rH)

2 with ∆′
0 = ∆′(rH). So to

leading order,

λ =
f0r
h02v

∆′
0 · (r̂ − rH) +O(r̂ − rH)

2 , (2.18)

where f0r = fr(rH , θ
i). The surface gravity (2.17) is then given by

κ2 =
grr∂r̂λ∂r̂λ

4λ

∣∣∣
H

=
∆′2

0

4h02v
. (2.19)

So the temperature of the black hole is given by

TH =
κ

2π
=

∆′
0

4πh0v
. (2.20)

For an extremal solution, ∆ = 1
2∆

′′
0 · (r̂ − rH)

2 +O(r̂ − rH)
3 with ∆′′

0 = ∆′′(rH). One can

find that TH = 0. An easy way to see this is to start from (2.20) and then take the extremal

limit

∆′
0 → 0 =⇒ TH → 0 . (2.21)

Note all the results starting from (2.15) are valid for both (2.10) and (2.11).

3 The Near-Horizon Metric for Extremal Black Holes

To get the near-horizon metric for an extremal black hole, one follows [16, 1, 6] and let

r̂ = rH + yλ rH , t̂ =
2h0v

λ rH∆
′′
0

t̃ , φ̂a = φa +Ωat̂ . (3.1)

Using ∆ = 1
2∆

′′
0 · (r̂ − rH)

2 +O(r̂ − rH)
3 and after sending λ → 0, one has for both (2.10)

and (2.11),

ds2 =
2f0r
∆′′

0

(
− y2dt̃2 +

dy2

y2

)
+ g0ijdθ

idθj

+g0ab(dφ
a + kaydt̃)(dφb + kbydt̃) , (3.2)

where g0ij = gij(rH , θ
i), and we have used (2.16) and have defined

ka = −2h0vΩ
′
a

∆′′
0

. (3.3)

One can see that (3.2) is exactly of the form (1.2). Based on the argument made in the

previous section, (3.2) is valid for all extremal stationary and axisymmetric black holes.

To get to the global coordinates, let

y = r +
√

1 + r2 cos t , t̃ =

√
1 + r2 sin t

y
. (3.4)
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Then

− y2dt̃2 +
dy2

y2
= −(1 + r2)dt2 +

dr2

1 + r2
,

ydt̃ = rdt+ d ln
(1 +

√
1 + r2 sin t

cos t+ r sin t

)
. (3.5)

So by letting

φa → φa − ka ln
(1 +

√
1 + r2 sin t

cos t+ r sin t

)
, (3.6)

one can rewrite the near-horizon metric (3.2) as

ds2 =
2f0r
∆′′

0

[
− (1 + r2)dt2 +

dr2

1 + r2

]
+ g0ijdθ

idθj

+g0ab(dφ
a + kardt)(dφb + kbrdt) . (3.7)

The significance of this form of the near-horizon metric in the context of the Kerr/CFT

correspondence was first noticed in [2], then the importance was stressed upon again in [6]

for black hole solutions in higher dimensions. More examples were then provided in [7].

4 The Central Charge(s) of the Dual CFT(s)

Following [1] one can try to calculate the black hole entropy by studying dynamics on the

near-horizon metric (3.7), with the help of appropriate boundary conditions. The symme-

tries of the corresponding phase space are generated by [d−1
2 ] commuting generators [6],

namely

ξam = −e−imφa ∂φa − imre−imφ
a

∂r , a = 1 , · · · , [d− 1

2
] . (4.1)

It is easy to check that

i[ξam , ξ
a
n] = (m− n)ξam+n . (4.2)

These transformations generate [d−1
2 ] commuting Virasoro algebras. For each Virasoro

algebra, the phase space can be identified with that of a two-dimensional conformal field

theory. The classical version of the charge Qξam is defined in (B.31). To get the quantum

version of the charge, we write

Qξam = Lam − αδm , (4.3)

with α being some constant. From (B.31) and (B.47), it is easy to see that if ξam is scaled by

a factor, the right hand side of (4.3) also needs to be scaled by the same factor. Especially,

one has

Q[ξam,ξ
a
n]

= Q−i(m−n)ξam+n
= −i(m− n)

(
Lam+n − αδm+n

)
. (4.4)
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So from (B.33),

[Lam , L
a
n] = i

{
Qξam , Qξan

}
P.B.

= i
(
Q[ξam,ξ

a
n]
+K[ξam, ξ

a
n]
)

= (m− n)Lm+n − 2mαδm+n + iK[ξam, ξ
a
n] . (4.5)

Comparing this with the usual relation,

[Lam , L
a
n] = (m− n)Lam+n +

ca

12
m(m2 − 1)δm+n , (4.6)

one gets

K[ξam, ξ
a
n] = −i c

a

12
m
(
m2 − 1 +

24α

ca

)
δm+n . (4.7)

So the central charge ca is determined by the coefficient of the m3 term in K[ξam, ξ
a
n]. The

term linear in m is not so important because α is a free parameter.

The central term K[ξam, ξ
a
n] corresponding to the near-horizon metric (3.7) is calculated

in (A.12),

K[ξam, ξ
a
n] = − i(m− n)n2ka

16π
δm+nArea , (4.8)

with Area being the horizon area for either (2.10) or (2.11). Comparing this result with

(4.7), one has

ca =
3ka

2π
Area . (4.9)

Note this result only contains the contribution from the Einstein-Hilbert action.

5 The Entropy

In the following, we shall try to relate the central charge to the entropy by using Cardy’s

formula. Again following [1], one can adopt the Frolov-Thorne vacuum [17] to provide a

definition of the vacuum state for the extremal metric. One important task here is to derive

the left-moving and right-moving temperatures. We will do it by starting with non-extremal

metrics and then take the extremal limit.

Quantum fields for the general (non-extremal) metrics (2.1) and (2.2) can be expanded in

eigenstates with asymptotic energy ω and angular momentumma, with t̂ and φ̂
a dependence

e−iωt̂+imaφ̂a . In terms of the redefined t̃ and φa coordinates of the extremal near-horizon

limit, given by (3.1), we have

e−iωt̂+imaφ̂a = e−inR t̃+in
a
L
φa , (5.1)

9



with1

naL = ma , nR =
2h̃0v

∆̃′′
0rHλ

(w −maΩ̃a) . (5.2)

The left-moving and right-moving temperatures TL and TR are then defined by writing the

Boltzmann factor as

e−(ω−maΩa)/TH = e−n
a
L
/Ta

L
−nR/TR . (5.3)

As a result,

T aL =
TH

Ω̃a − Ωa
, TR =

2h̃0v
∆̃′′

0rHλ
TH . (5.4)

In a black hole solution, there should always be a parameter corresponding to each global

charge that the solution may have. For a rotation Ωa, the corresponding global charge is

angular momentum, and let’s suppose the corresponding parameter in the solution is given

by ℓa. To obtain the extremal limit for the temperatures, one can take ℓa to its extremal

value ℓ̃a. On the horizon,

∆(rH) = 0 =⇒ 0 =
d∆(rH)

dℓa
=
∂∆(rH)

∂ℓa
+
∂∆(rH)

∂rH

drH
dℓa

. (5.5)

Because ∂∆(rH)/∂ℓa is finite2, one has in the extremal limit

∂∆(rH)

∂rH
−→ 0 =⇒ drH

dℓa
= −∂∆(rH)

∂ℓa

/∂∆(rH)

∂rH
−→ ∞ . (5.6)

So in the extremal limit, TR = 0 and

T aL =
TH

Ω̃a − Ωa

∣∣∣
ℓa→ℓ̃a

= −
(dTH
dℓa

/dΩa
dℓa

)∣∣∣
ℓa→ℓ̃a

= −
(∂TH
∂ℓa

+
∂TH
∂rH

drH
dℓa

)/(∂Ωa
∂ℓa

+
∂Ωa
∂rH

drH
dℓa

)∣∣∣
ℓa→ℓ̃a

= −
(∂TH
∂rH

/∂Ωa
∂rH

)∣∣∣
ℓa→ℓ̃a

= − T̃
′
H(rH)

Ω̃′
a

= − ∆̃′′
0

4πΩ̃′
ah̃

0
v

=
1

2πka
, (5.7)

where we have used (3.3). The result (5.7) was first speculated to be true for general

extremal black holes in four dimensions in [2]. It was then generalized to solutions in

arbitrary dimensions in [6] based on all the examples that are studied. Here we have shown

that (5.7) is true for all known extremal stationary and axisymmetric black holes.

1From now on until (5.7), any quantity from the extremal solution will be distinguished with a tilde. For

example, Ω̃a is an angular velocity for the extremal solution, while Ωa is its counterpart for the non-extremal

solution.
2Note ∂∆(rH)/∂ℓa = 0 corresponds to the case where ∆(r) does not contain the parameter ℓa, which in

turn means that rH is independent of ℓa. This is unlikely to happen.
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Now by using (4.9), (5.7) and Cardy’s formula for the entropy of a unitary conformal field

theory at temperature TL, we find that the microscopic entropy is given by (no summation

over a)

S =
1

3
π2 caL T

a
L =

Area

4
, (5.8)

where we have identified caL with ca. We see that this result exactly matches with the

Bekenstein-Hawking entropy.

Since the central charge ca in (4.9) only contains the contribution from the gravitational

field, the fact that (5.8) matches with the Bekenstein-Hawking entropy implies that the

non-gravitational contributions to the central charge(s) are zero. This is consistent with

the results found in [2, 4, 5].

6 Summary

In this paper, we have calculated the microscopic entropy for all known extremal stationary

and axisymmetric black holes by using the Kerr/CFT correspondence.

We started by presenting two ansatzs (2.1) and (2.2) that are general enough to cover all

known stationary and axisymmetric black holes. Then more constraints on the metrics are

introduced from the fact that the black hole horizons are regular. A common form of the

near-horizon metric (3.7) can be derived when the near-horizon limit is taken for extremal

black holes. By using this near-horizon metric, we explicitly show that the microscopic

entropy calculated by using Cardy’s formula exactly matches with the Bekenstein-Hawking

entropy. In this way, we have shown that the Kerr/CFT correspondence is applicable to all

known extremal stationary and axisymmetric black holes.

For practical reasons, we have only considered the contribution from the Einstein-Hilbert

action to the central charges. And the match of the microscopic and the macroscopic en-

tropies indicates that the non-gravitational fields do not contribute to the central charge(s).

Although one can certainly try to repeat the same process for more complicated theories,

such as what has been done in [9], the calculation will be much more complicated.

Finally, being able to calculate the entropy for a large class of black holes by using a

general method is an encouraging progress. We hope that the result obtained in this work

can help lead to some true understanding of the microscopic origin of the black hole entropy.
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A Calculating the Central Term K[ξ, ζ]

The central term K[ξam, ξ
a
n] for (3.7) can be calculated by using (B.36) and (B.47), which

are derived by using the Einstein-Hilbert action alone.

Lets first write down the non-vanishing metric elements in (3.7),3

Gtt = −A(1 + r2) + k2r2 ,

Gat = Gta = kar ,

Gab = g0ab ,

Gij = g0ij ,

Grr =
A

1 + r2
, (A.1)

where ka = g0abk
b, k2 = g0abk

akb and A = 2f0r /∆
′′
0 . Note f0r = fr(rH , θ

i), g0ij = gij(rH , θ
i)

and g0ab = gab(rH , θ
i) are functions of θi’s only, while ∆′′

0 = ∆′′(rH) and k
a’s are constant.

Let (g0ab) be the inverse of (g0ab), and (g0ij) be the inverse of (g0ij), one has

Gtt = − 1

A(1 + r2)
,

Gat = Gta =
kar

A(1 + r2)
,

Gab = g0ab − kakbr2

A(1 + r2)
,

Gij = g0ij ,

Grr =
1 + r2

A
. (A.2)

For later convenience, note that

Γtra = − 1

2A(1 + r2)
ka ,

Γtrt =
r

1 + r2
− k2r

2A(1 + r2)
,

3In this section, we shall use the capital letter G to denote the full metric (3.7), in order to distinguish

it from the elements g0ij and g0ab.
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Γrrr = − r

1 + r2
,

Γarb =
r

2A(1 + r2)
kakb ,

Γirj = 0 ,

Γtrr = 0 ,

Γart =
1− r2

2(1 + r2)
ka +

k2r2

2A(1 + r2)
ka . (A.3)

Given a particular azimuthal angle φā, and the Killing vector

ξn = −e−inφā ∂φā − inre−inφ
ā

∂r , (A.4)

the nontrivial elements of

hµν(ξn) = LξnGµν = ξρn∂ρGµν +Gµρ∂νξ
ρ
n +Gρν∂µξ

ρ
n (A.5)

are given by

hrr = ξrn∂rGrr + 2Grr∂rξ
r
n = −2ine−inφ

ā
A

(1 + r2)2
,

hra = Grr∂aξ
r
n = −n

2re−inφ
ā
A

1 + r2
δaā ,

htt = ξrn∂rGtt = 2inr2e−inφ
ā

(A− k2) ,

hta = ξrn∂rGta +Gtb∂aξ
b
n = −inre−inφā(ka − kāδāa) ,

hab = Gac∂bξ
c
n +Gcb∂aξ

c
n = ine−inφ

ā

(g0aāδāb + g0bāδāa) . (A.6)

As a result, h = 0 and

hrr = GrrGrrhrr = −2ine−inφ
ā

A
,

hra = GrrGabhrb = −n2re−inφā
(
g0aā − r2kakā

A(1 + r2)

)
,

hrt = GrrGtahra = −n
2r2e−inφ

ā

A(1 + r2)
kā ,

htt = GttGtthtt + 2GttGtahta +GtaGtbhab =
2inr2e−inφ

ā

A(1 + r2)2
,

hta = GttGathtt + (GttGab +GtbGat)htb +GtbGachbc

=
inre−inφ

ā

A(1 + r2)

(1− r2

1 + r2
ka + kāδāa

)
,

hab = GatGbthtt + (GatGbc +GacGbt)htc +GacGbdhcd

= ine−inφ
ā
[
δaāg0bā + δbāg0aā − 2r2kakb

A(1 + r2)2

13



−r
2kā(δaākb + δbāka)

A(1 + r2)

]
. (A.7)

From (B.47), one has

krt = ξtm∇rh− ξtm∇ρh
rρ +

h

2
∇tξrm − htρ∇ρξ

r
m + ξmρ∇thrρ

−ξrm∇th+ ξrm∇ρh
tρ − h

2
∇rξtm + hrρ∇ρξ

t
m − ξmρ∇rhtρ . (A.8)

We are only interested in terms that will lead to m3 when m+ n = 0 is applied,

ξrm∇ρh
tρ = ξrm(∂ρh

tρ + Γtρσh
σρ + Γρρσh

tσ)

≈ ξrm(∂āh
tā + ∂rh

tr + 2Γtrah
ra + 2Γtrth

rt + Γρρrh
tr) ,

=
imn2r2e−i(m+n)φā

2A(1 + r2)

(2r2 − 2

1 + r2

)
kā ,

−htρ∇ρξ
r
m = −htρ(∂ρξrm + Γrρσξ

σ
m)

≈ −htā∂āξrm − htr(∂rξ
r
m + Γrrrξ

r
m)

=
imn2r2e−i(m+n)φā

2A(1 + r2)

(4m/n− 2

1 + r2

)
kā ,

hrρ∇ρξ
t
m = hrρ(∂ρξ

t
m + Γtρσξ

σ
m)

≈ (hraΓtar + hrtΓttr)ξ
r
m

=
imn2r2e−i(m+n)φā

2A(1 + r2)

(r2 − 1

1 + r2

)
kā ,

ξmρ∇thrρ = ξρmG
rr(Gtt∇thrρ +Gta∇ahrρ)

= ξρmG
rrGtt(∂thrρ − Γσtrhσρ − Γσtρhrσ)

+ξρmG
rrGta(∂ahrρ − Γσarhσρ − Γσaρhrσ)

≈ ξrmG
rrGtt(−Γātrhār − Γātrhrā)

+ξāmG
rrGtā∂āhrā + ξrmG

rrGtā∂āhrr

+ξrmG
rrGta(−Γāarhār − Γāarhrā)

=
imn2r2e−i(m+n)φā

2A(1 + r2)

(6− 2r2

1 + r2
− 2n

m

)
kā ,

−ξmρ∇rhtρ = −ξmρGrr(∂rhtρ + Γtrσh
σρ + Γρrσh

tσ)

≈ −ξmrGrr(∂rhtr + Γtrth
tr + Γtrāh

ār + Γrrrh
tr)

=
imn2r2e−i(m+n)φā

2A(1 + r2)

(
1− 4

1 + r2

)
kā , (A.9)

where “≈” means only terms contributing to m3 are preserved. The integral in (B.36) is

done at r → +∞. In this limit, we have from (A.8) and (A.9),

krt =
i(m− n)n2e−i(m+n)φā

A
kā . (A.10)
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Now using (B.36) and (B.47), and noticing that

∮
(dd−2x)µνk

µν =

∮
2(dd−2x)rtk

rt , (dd−2x)rt =
1

2
A
√

|g0ij |
√
|g0ab|

∏

i

dθi
∏

a

dφa , (A.11)

one has

K[ξām, ξ
ā
n] = − i(m− n)n2kā

16π

∮ √
|g0ij |

√
|g0ab|

∏

i

dθi
∏

a

dφae−i(m+n)φā

= − i(m− n)n2kā

16π
δm+nArea . (A.12)

Note Area =
∮ √

|g0ij |
√

|g0ab|
∏
i dθ

i
∏
a dφ

a is the horizon area for both (2.10) and (2.11).

B The Asymptotic Symmetry Group

Asymptotic symmetries are transformations that leave the metric invariant up to what is

allowed by given boundary conditions. One convenient way to treat asymptotic symmetries

is the covariant phase space method as in [12, 18], which is also good for exact symmetries.

The formalism was first used to calculate the central charge of conformal symmetries related

to a black hole horizon in [19]. After that, there have been a lot of further developments.

Some examples can be found in [20, 21, 22, 23].

To motivate for the covariant phase space method, one starts with the classical mechanics

(see, e.g.[24]). The Lagrangian is given by L = L(q, q̇), where q = q(t) describes the classical

trajectory of a particle. For a small variation of the path,

δL =
(∂L
∂q

− d

dt

∂L

∂q̇

)
δq +

d

dt

(∂L
∂q̇
δq
)
. (B.1)

The equation of motion is given by

E =
∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (B.2)

When this is linearized, one has

δE =
∂2L

∂q2
δq +

∂2L

∂q̇∂q
δq̇ − δṗ = 0 , p =

∂L

∂q̇
. (B.3)

From the boundary term in (B.1), one can define Θ(q, δ) = pδq and

Ω(q; δ1, δ2) = δ1Θ(q, δ2)− δ2Θ(q, δ1)

= δ1pδ2q − δ2pδ1q , (B.4)
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where δ1 and δ2 stands for two independent variations. Notice that Ω(q; δ1, δ2) is time

independent if both δ1q and δ2q satisfy (B.3),

dΩ(q; δ1, δ2)

dt
= δ1ṗδ2q + δ1pδ2q̇ − δ2ṗδ1q − δ2pδ1q̇ = 0 . (B.5)

The Hamiltonian of the system can now be defined as

δH = Ω
(
q; δ,

d

dt

)
= δΘ

(
q,
d

dt

)
− d

dt
Θ(q, δ) = δpq̇ − ṗδq . (B.6)

Here we have taken the liberty to generalize δ to other possible operators, such as d/dt. In

the case of a curved spacetime, one might also use the Lie derivative Lξ. It follows that

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (B.7)

Using generalized coordinates, φa = {q, p} , a = 1, 2, one can write

Ω(φa; δ1, δ2) = Ωabδ1φ
aδ2φ

b , (Ωab) =


 −1

1


 . (B.8)

Let (Ωab) be the inverse of (Ωab),

(Ωab) =


 1

−1


 , (B.9)

the Poisson bracket of any two functions is then given by

{
f , g

}
P.B.

= Ωab∂af∂bg =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (B.10)

A special example is that, for f = f(q, p),

df

dt
=
∂f

∂q
q̇ +

∂f

∂p
ṗ =

∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
=
{
f , H

}
P.B.

. (B.11)

For a more general system, there can be more coordinates than just {q, p} and Ωab can

be more complicated than in (B.8). By analogy to (B.6), one can try to construct a charge

Qξ corresponding to any symmetric transformation δξ,

δQξ = Ω(φa; δ, δξ) = Ωabδφ
aδξφ

b . (B.12)

To make Qξ a physically meaningful charge, the variation (B.12) needs to be integrable and

Ω(φa; δ, δξ) needs to be constant in time. This will put extra constraints on δφa and δξφ
a,

just as in the case above. Given two charges as defined in (B.12), the Poisson bracket is

{
Qξ , Qζ

}
P.B.

= Ωab
δQξ
δφa

δQζ
δφb

= Ω(φa; δζ , δξ) . (B.13)
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This result will play a central role in the treatment that follows.

Now consider a system with the Lagrangian density L = L(φa, ∂µφa, ∂µ∂νφa, · · · ). The

actions is

S =

∫

M

L , L = L
√
|g| dnx = L ∗ 1 . (B.14)

A symmetric transformation should leave the integrand L invariant or up to a total deriva-

tive which integrates to zero,

δǫL = dMǫ , δS =

∫

M

dMǫ =

∮

∂M
Mǫ = 0 . (B.15)

On the other hand,

δǫL = Eaδǫφ
a ∗ 1+ dΘ(φa, δǫ) , (B.16)

where all the terms involving a derivative on δǫφ
a have been moved into the dΘ term. It

is easy to see that Ea = 0 is the usual Euler-Lagrange equation for φa. From (B.15) and

(B.16), one can define a Noether current,

Jǫ = Θ(φa, δǫ)−Mǫ , (B.17)

which becomes a closed form when the equations of motion are satisfied, dJǫ = −Ea ·δǫφa∗1.
So when Ea = 0, one should locally have Jǫ = dQǫ, with Qǫ being some n − 2 form. Now

with appropriate boundary conditions, a conserved charge can be defined as

Qǫ =

∫

V
dQǫ =

∮

∂V
Qǫ , (B.18)

where V is a space-like slice of the spacetime manifold M. The charge Qǫ is defined up to

an arbitrary closed form, but this ambiguity drops out in (B.18).

For a transformation generated by the Lie derivative, δξφ
a = Lξφa, one has

δξL = Ea · Lξφa ∗ 1+ dΘ(φa,Lξ)

= LξL = d(iξL) . (B.19)

The Noether current (B.17) is

Jξ = Θ(φa,Lξ)− iξL . (B.20)

By analogy to (B.4), one can define

Ω(φa; δ1, δ2) =

∫

V
w(φa; δ1, δ2) , (B.21)

w(φa; δ1, δ2) = δ1Θ(φa, δ2)− δ2Θ(φa, δ1) . (B.22)
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The quantity Ω(φa; δ1, δ2) is conserved if

dw(φa; δ1, δ2) = 0 =⇒
∮

∂M
w =

∫

M

dw = 0 . (B.23)

Notice that,

0 = (δ1δ2 − δ1δ2)(L ∗ 1) ⇐⇒ δ1δ2φ
a = δ1δ2φ

a , (B.24)

= (δ1Eaδ2φ
a − δ2Eaδ1φ

a) ∗ 1+ dw(φa; δ1, δ2) . (B.25)

As a result,

dw(φa; δ1, δ2) = 0 =⇒ δ1Ea = δ2Ea = 0 . (B.26)

So δ1φ
a and δ2φ

a must both satisfy the linearized equations of motion for φa, in order

that Ω(φa; δ1, δ2) can be constant in time. When this condition is satisfied, one can try to

construct a charge corresponding to δξ = Lξ, by analogy to (B.6),

δQξ = Ω(φa; δ,Lξ) =
∫

V
w(φa; δ,Lξ) . (B.27)

The variation of the Noether current (B.20) is

δJξ = δΘ(φa,Lξ)− iξδL

= δΘ(φa,Lξ)− LξΘ(φa, δ) + d
[
iξΘ(φa, δ)

]
, (B.28)

where the second line is obtained for Ea = 0. As a result,

w(φa; δ,Lξ) = δΘ(φa,Lξ)− LξΘ(φa, δ) = dkξ(φ
a, δ) ,

=⇒ δQξ =

∮

∂V
kξ(φ

a, δ) , (B.29)

with

kξ(φ
a, δ) = δQξ − iξΘ(φa, δ) . (B.30)

Note that δ(Lξφa) = Lξ(δφa), so both δ and Lξ satisfy the assumption made about the

operators δ1 and δ2 in (B.24). From (B.29),

Qξ(φ) =

∫ φ

φ̄
δQξ +Qξ(φ̄) =

∫ φ

φ̄

∮

∂V
kξ(φ

a, δ) +Qξ(φ̄) , (B.31)

where Qξ(φ̄) is the value of the charge on a given background. For the charge Qξ(φ) to be

well defined, one expects the integral to be finite. Now given two such charges (say Qξ and

Qζ), the Poisson bracket is found by analogy to (B.13),

{
Qξ , Qζ

}
P.B.

= Ω(φa;Lζ ,Lξ) =
∮

∂V
kξ(φ

a,Lζ) . (B.32)
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It was shown in [25, 26] that with appropriate boundary conditions, the Poisson bracket

{Qξ , Qζ}P.B. of any differentiable generators Qξ and Qζ takes the form

{
Qξ , Qζ

}
P.B.

= Q[ξ,ζ] +K[ξ, ζ] , (B.33)

where K[ξ, ζ] is a potential central extension to the algebra. It is demonstrated in [26] that

a constant shift in the charges will not affect the nontrivial part of K[ξ, ζ]. Using this, we

can shift the charges by some constant and let Q[ξ,ζ](φ̄) = 0 in a chosen background. Then

we get

K[ξ, ζ] =
{
Qξ , Qζ

}

P.B.
=

∮

∂V
kξ(φ̄

a,Lζ) . (B.34)

Note that if instead of using (B.27), had we chosen to define

δQξ = −Ω(φa; δ,Lξ) = −
∫

V
w(φa; δ,Lξ) , (B.35)

we would have got

K[ξ, ζ] =
{
Qξ , Qζ

}
P.B.

= −Ω(φa;Lξ,Lζ) = −
∮

∂V
kξ(φ

a,Lζ) . (B.36)

This result was used in the calculation of the Kerr/CFT correspondence [1].

In the case of pure gravity supplemented with a cosmological constant, the Lagrangian

density is given by

L =
R− 2Λ

16π
. (B.37)

For an infinitesimal variation of the metric,

δL =
1

16π

(
−Rµν +

R− 2Λ

2
gµν +∇µ∇ν − gµν∇ρ∇ρ

)
δgµν ∗ 1 . (B.38)

Einstein’s equations are

Eµν = Rµν − R− 2Λ

2
gµν = 0 , (B.39)

=⇒ Rµν =
2Λ

n− 2
gµν , R =

2nΛ

n− 2
. (B.40)

When (B.39) is linearized, one has

0 = δEµν =
1

2

[
∇ρ(∇µhνρ +∇νhµρ)− ∂ρ∂ρhµν −∇µ∇νh

]

−1

2

[
∇µ∇νh

µν − ∂ρ∂ρh−Rρσhρσ

]
gµν −

R− 2Λ

2
hµν , (B.41)

where hµν = δgµν and h = gµνhµν . Taking the trace of (B.41), one has

∇µ∇νh
µν − ∂ρ∂ρh−Rµνhµν = 0 . (B.42)
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From (B.19),

Θ(gµν , δ) =
1

16π
(dn−1x)µ

[
∇νh

µν −∇µh
]
,

=⇒ iξΘ(gµν , δ) =
1

16π
(dn−2x)µν2ξ

ν(∇νh
µν −∇µh)

=
1

16π
(dn−2x)µν(−IµνΘξ

) , (B.43)

where

IµνΘξ
= ξµ∇ρh

νρ − ξν∇ρh
µρ + ξν∇µh− ξµ∇νh . (B.44)

The Noether current (B.20) is

Jξ =
1

16π
(dn−1x)µ

[
∇ν∇µξν + ∂ρ∂ρξ

µ − 2∇µ∇νξν − (R− 2Λ)ξµ
]

= − 1

16π
(dn−1x)µ∇ν

[
∇µξν −∇νξµ

]
,

=⇒ Qξ = − 1

16π
(dn−2x)µν(∇µξν −∇νξµ) , (B.45)

where we have used (B.39). Note that δQξ =
1

16π (d
n−2x)µνI

µν
Qξ

, with

IµνQξ
= −h

2
(∇µξν −∇νξµ) + hµρ∇ρξ

ν − hνρ∇ρξ
µ

−(∇µhνρ −∇νhµρ)ξρ . (B.46)

From (B.30), one gets that

kξ(gµν , δ) =
1

16π
(dn−2x)µνk

µν ,

kµν = IµνQξ
+ IµνΘξ

= ξν∇µh− ξν∇ρh
µρ +

h

2
∇νξµ − hνρ∇ρξ

µ + ξρ∇νhµρ

−(µ↔ ν) . (B.47)

This result matches with that given in [5] up to a trivial term. Note [1] uses a formula

for kξ(gµν , δ) with the opposite sign, for which to make sense, we need to use (B.35) and

(B.36).

To clarify the notations involved, note that we write a p-form as

wp =
1

p!
wµ1···µpdx

µ1 ∧ · · · ∧ dxµp . (B.48)

Its Hodge-∗ dual is defined by (note |ǫ···| =
√

|g|)

∗wp = wµ1···µp
1

p!(n− p)!
ǫµ1···µpν1···νn−p

dxν1 ∧ · · · ∧ dxνn−p . (B.49)

One can also write it as

∗wp = (dn−px)µ1···µpw
µ1···µp , (B.50)
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(dn−px)µ1···µp =
1

p!(n− p)!
ǫµ1···µpν1···νn−p

dxν1 ∧ · · · ∧ dxνn−p . (B.51)

With this, Stokes’s theorem
∫
Σ d ∗wp =

∮
∂Σ ∗wp can be written as

∫

Σ
(dn−p+1x)µ2···µp∇µ1w

µ1µ2···µp =

∮

∂Σ
(dn−px)µ2···µpµ1w

µ1µ2···µp . (B.52)

C Some Examples

In this section, we use some examples to illustrate some major points made in the main

context. The majority of the examples have been studied in [8, 6, 7]. Here we discuss them

again by using the new perspective that we have gained from the present work. Since all

the calculations after (2.10) and (2.11) evolve in a straight forward manor, our goal here is

to show that all the examples can be put into the form of either (2.10) or (2.11) as r̂ → rH .

One intriguing result we find is that a surprisingly large number of solutions are exactly

of the form (2.10) with hA = haχ = htt = 0. This feature could be helpful when one is trying

to look for new solutions.

C.1 Kerr-NUT-AdS Solutions in Diverse Dimensions

Lets start with examples studied in [8].

The first example is the Kerr-AdS solution in four dimensions [27],

ds2 = ρ2
(dr̂2

∆
+
dθ2

∆θ

)
+

∆θ sin
2 θ

ρ2

(
adt̂− r̂2 + a2

Ξ
dφ̂
)2

− ∆

ρ2
(dt̂− a sin2 θ

Ξ
dφ̂
)2
,

ρ2 = r̂2 + a2 cos2 θ , ∆ = (r̂2 + a2)(1 + r̂2ℓ−2)− 2Mr̂ ,

∆θ = 1− a2ℓ−2 cos2 θ , Ξ = 1− a2ℓ−2 . (C.1)

It is is a solution to the equations of motion Rµν = −3ℓ−2 gµν . Comparing with (2.4) and

(2.5), it is easy to see that

A = dt̂− a sin2 θ

Ξ
dφ̂+

ρ2

∆
dr

= dt̂− a sin2 θ

Ξ
dφ̂+

r2 + a2 − a2 sin2 θ

∆
dr ,

=⇒ hv = r2 + a2 , hφ = aΞ , hA = 0 . (C.2)

One sees that the metric is exactly of the form (2.10) with hA = hφχ = htt = 0.

The second example is the five-dimensional rotating black hole with S3 horizon topology.

The solutions was obtained by Hawking, Hunter and Taylor-Robinson [28], satisfying the
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equations of motion Rµν = −4ℓ−2 gµν . The metric, which generalizes the Ricci-flat rotating

black hole of Myers and Perry [29], is given by

ds2 = −∆

ρ2
(dt̂− a sin2 θ

Ξa
dφ1 −

b cos2 θ

Ξb
dφ2)

2 +
∆θ sin

2 θ

ρ2
(adt̂− (r̂2 + a2)

Ξa
dφ1)

2

+
∆θ cos

2 θ

ρ2
(bdt̂− (r̂2 + b2)

Ξb
dφ2)

2 +
ρ2

∆
dr̂2 +

ρ2

∆θ
dθ2 (C.3)

+
1 + r̂2ℓ−2

r̂2ρ2

(
abdt̂− b(r̂2 + a2) sin2 θ

Ξa
dφ1 −

a(r̂2 + b2) cos2 θ

Ξb
dφ2

)2
,

where

∆ =
1

r̂2
(r̂2 + a2)(r̂2 + b2)(1 + r̂2ℓ−2)− 2M , ∆θ = 1− a2ℓ−2 cos2 θ − b2ℓ−2 sin2 θ ,

ρ2 = r̂2 + a2 cos2 θ + b2 sin2 θ , Ξa = 1− a2ℓ−2 , Ξb = 1− b2ℓ−2 . (C.4)

Note that in this coordinate system, the metric is asymptotic to AdS5 in a rotating frame,

with angular velocities Ω∞
φ1

= −aℓ−2 and Ω∞
φ2

= −bℓ−2. By letting

φ1 → φ1 − aℓ−2t̂ , φ2 → φ2 − bℓ−2t̂ , (C.5)

one can change to an asymptotically static coordinate system. The metric is now given by

ds2 = −∆

ρ2

[(
1 +

a2ℓ−2 sin θ2

Ξa

+
b2ℓ−2 cos θ2

Ξb

)
dt̂− a sin2 θ

Ξa

dφ1 −
b cos2 θ

Ξb

dφ2

]2

+
ρ2

∆
dr̂2 +

∆θ sin
2 θ(r̂2 + a2)2

ρ2Ξ2
a

(
dφ1 −

a(1 + r̂2ℓ−2)

r̂2 + a2
dt̂
)2

+
ρ2

∆θ

dθ2 +
∆θ cos

2 θ(r̂2 + b2)2

ρ2Ξ2

b

(
dφ2 −

b(1 + r̂2ℓ−2)

r̂2 + b2
dt̂
)2

+
a2b2(1 + r̂2ℓ−2)

r̂2ρ2

{
(r̂2 + a2) sin2 θ

aΞa

(
dφ1 −

a(1 + r̂2ℓ−2)

r̂2 + a2
dt̂
)

+
(r̂2 + b2) cos2 θ

bΞb

(
dφ2 −

b(1 + r̂2ℓ−2)

r̂2 + b2
dt̂
)}2

. (C.6)

From (2.4) and (2.5),

A =
(
1 +

a2ℓ−2 sin θ2

Ξa
+
b2ℓ−2 cos θ2

Ξb

)
dt̂

−a sin
2 θ

Ξa
dφ1 −

b cos2 θ

Ξb
dφ2 +

ρ2

∆
dr . (C.7)

Comparing (C.6) with (2.10), we find

hv =
(r̂2 + a2)(r̂2 + b2)

r̂2
, h1 =

a(1 + r̂2ℓ−2)

r̂2 + a2
hv ,

h2 =
b(1 + r̂2ℓ−2)

r̂2 + b2
hv , hA = 0 . (C.8)
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It is easy to see that (C.6) is of the form (2.10) with hA = haχ = htt = 0.

In the following, we shall consider the general Kerr-NUT-AdS solutions found in [30],

which solve the Einstein equation Rµν = −(d − 1)ℓ−2 gµν . The case of Kerr-AdS solutions

have been studied in [8] and [6]. Since the NUT parameters will not affect anything in

the process, here we will include them as well. Also, we will choose to write the metric by

analogy to (40) and (48) in [30], which specialized to seven and six dimensions respectively.

In even dimensions, d = 2n, the metric is given by

ds22n =

n∑

i=1

(fidx2i
Xi

+
Xi

fi
A2
i

)
, fi =

∏

j 6=i

(x2i − x2j ) , (C.9)

Ai = dt+
∑

j 6=i

x2jdφ1 +
∑

j,k 6=i

x2jx
2
kdφ2 + · · ·+

∏

j 6=i

x2jdφn−1 ,

Xi = 2Mixi +

n−1∑

j=0

c2jx
2j
i + g2x2ni . (C.10)

In odd dimensions, d = 2n+ 1, the metric is given by

ds22n+1 = ds22n +
cn∏n
i=1 x

2
i

A2
n , (C.11)

with

An = dt+

n∑

i=1

x2i dφ1 +

n∑

i,j=1

x2ix
2
jdφ2 + · · · +

n∏

i=1

x2i dφn ,

Xi = (−1)
d−1

2
cn
x2i

+ 2Mi +

n−1∑

j=1

c2jx
2j
i + g2x2ni ,

Ai 6=1 = dt+
∑

j 6=1,i

x2jdφ1 +
∑

j,k 6=1,i

x2jx
2
kdφ2 + · · ·+

∏

j 6=1,i

x2jdφn−2

−r2
(
dφ1 +

∑

j 6=1,i

x2jdφ2 + · · ·+
∏

j 6=1,i

x2jdφn−1

)

= dt− r2dφ1 +
∑

j 6=1,i

x2j(dφ1 − r2dφ2) + · · ·

+
∏

j 6=1,i

x2j

(
dφn−2 − r2dφn−1

)
. (C.12)

Note we have wick rotated the radial direction r2 → −x21 so that the metrics (C.9) and

(C.11) can be put into a compact form. To get back to the Lorentzian signature black hole

metric, one needs to wick rotate back, x21 → −r2. Especially, one has

f1 = (−1)n−1f̃1(r) , X1 = (−1)nX(r) ,

f̃1(r) = r2(n−1) + r2(n−2)
∑

j>1

x2j + r2(n−3)
∑

j,k>1

x2jx
2
k + · · ·+

∏

j>1

x2j ,
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X(r) = g2r2n + · · · . (C.13)

Now from (2.4) and (2.5), one has for both (C.9) and (C.11),

A = A1 +
f̃1dr

X
. (C.14)

As a result, for both even and odd dimensions (i ≤ n− 1),

hv = r2(n−1) , hi = r2(n−1−i) , hA = 0 . (C.15)

From (C.12),

Ai 6=1 = dt− hv
h1
dφ1 +

∑

j 6=1,i

x2j

[(
dφ1 −

h1
hv
dt
)
− r2

(
dφ2 −

h2
hv
dt
)]

+ · · ·+
∏

j 6=1,i

x2j

[(
dφn−2 −

hn−2

hv
dt
)
− r2

(
dφn−1 −

hn−1

hv
dt
)]
. (C.16)

In odd dimensions, we also have

An = dt+
n∑

i=1

x2i dφ1 +
n∑

i,j=1

x2ix
2
jdφ2 + · · ·+

n∏

i=1

x2i dφn ,

= dt+
∑

j 6=1,i

x2jdφ1 +
∑

j,k 6=1,i

x2jx
2
kdφ2 + · · ·+

∏

j 6=1,i

x2jdφn−1

−r2
(
dφ1 +

∑

j 6=1,i

x2jdφ2 + · · · +
∏

j 6=1,i

x2jdφn

)

= dt− r2dφ1 +
∑

j 6=1,i

x2j (dφ1 − r2dφ2) + · · ·

+
∏

j 6=1,i

x2j

(
dφn−1 − r2dφn

)

= dt− hv
h1
dφ1 +

∑

j 6=1,i

x2j

[(
dφ1 −

h1
hv
dt
)
− r2

(
dφ2 −

h2
hv
dt
)]

+ · · ·+
∏

j 6=1,i

x2j

[(
dφn−1 −

hn−1

hv
dt
)
− r2

(
dφn −

hn−1

r2hv
dt
)]
. (C.17)

So it is obvious that both (C.9) and (C.11) can be put into the form of (2.10), with hA =

haχ = htt = 0.

C.2 Extremal Static Black Holes in Supergravity Theories

Here we turn to the examples studied in [7]. A key feature here is that all the solutions

are charged but static. In order to use the Kerr/CFT correspondence, which only works

with rotating black holes, the strategy used in [7] is to lift the charged static solutions into
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higher dimensions by using some consistent Kaluza-Klein reduction procedure. The electric

charges of the static black holes then acquire the interpretation of rotations in the internal

dimensions after the lifting.

Here we will discuss the same examples from the perspective of using (2.10), but we

will still be using the same strategy as employed in [7]. For this purpose, we start with the

various reduction ansatz given in [31]:

• For the S5 reduction of type IIB supergravity, the ansatz for the ten-dimensional

metric is

ds210 =
√

∆̃ ds25 +
1

g2
√

∆̃

3∑

i=1

X−1
i

[
dµ2i + µ2i (dφi + g Ai)2

]
, (C.18)

where X1X2X3 = 1.

• For the S7 reduction of D = 11 supergravity, the ansatz for the eleven-dimensional

metric is

ds211 = ∆̃2/3 ds24 + g−2 ∆̃−1/3
∑

i

X−1
i

[
dµ2i + µ2i (dφi + g Ai(1))

2
]
, (C.19)

where ∆̃ =
∑4

i=1Xi µ
2
i , and

∑4
i µ

2
i = 1 and X1X2X3X4 = 1.

• For the S4 reduction of D = 11 supergravity, the ansatz for the eleven-dimensional

metric is

ds211 = ∆̃1/3 ds27 + g−2 ∆̃−2/3

{
X−1

0 dµ20

+

2∑

i=1

X−1
i

[
dµ2i + µ2i (dφi + g Ai(1))

2
]}

, (C.20)

where ∆̃ =
∑2

α=0Xα µ
2
α with µ20 + µ21 + µ22 = 1, and the auxiliary variable X0 ≡

(X1X2)
−2.

• For the S4 reduction of type IIA supergravity, the ansatz for the ten-dimensional

metric is found in [32],

dŝ210 = (sin ξ)
1

12 X
1

8

[
∆

3

8 ds26 + 2g−2 ∆
3

8 X2 dξ2

+
1

2
g−2 ∆− 5

8 X−1 cos2 ξ

3∑

i=1

(σi + g Ai(1))
2
]
, (C.21)

where X = e
− 1

2
√

2
φ
, and ∆ = X cos2 ξ+X−3 sin2 ξ. The quantities σi are left-invariant

1-forms on S3, which satisfy dσi = −1
2ǫijk σ

j ∧ σk. One can parameterize them as

σ1 = dθ , σ2 = sin2 θdφ , σ3 = dψ + cos θdφ . (C.22)
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For all the examples that will be discussed in the following, the lower dimension metrics

will be static. So the metric will not have any cross terms involving dt̂ and the azimuthal

angles. So for the terms involved in (2.4) and (2.5), one will have fa = 0. What’s more,

all the gauge fields are of the particular form, Ai = Φi(r)dt̂; and for (C.21), only A3
(1) 6= 0.

So it is easy to see that hi/hv = −gΦi(r). It is then obvious that all the metrics (C.18),

(C.19), (C.20), and (C.21) will be of the form (2.10). Now lets look at explicit examples.

The first example is with the maximal gauged supergravity in D = 5. It has SO(6)

gauge symmetry. The Cartan subgroup is U(1)3. The five-dimensional three-charge static

AdS black hole solution was constructed in [33]. We adopt the convention of [31], and the

solution is given by

ds25 = −H−2/3f dt̂2 +H1/3(f−1dr̂2 + r̂2dΩ2
3,ǫ) ,

Xi = H−1
i H1/3 , Ai(1) = Φi dt̂ , Φi = −(1−H−1

i )αi ,

f = ǫ− µ

r̂2
+ g2r̂2H , H = H1H2H3 , Hi = 1 +

ℓ2i
r̂2
,

αi =

√
1 + ǫ sinh2 βi
sinhβi

, ℓ2i = µ sinh2 βi , (C.23)

where dΩ2
3,ǫ is the unit metric for S3, T 3 or H3 for ǫ = 1, 0 or −1, respectively. If all

the charge parameters βi are set equal, the solution becomes the five-dimensional Reissner-

Nordström AdS black hole. We see that

hi
hv

= −gΦi , hφχ = htt = 0 ,

A = dt̂+

√
H
f
dr =⇒ hv =

√
H , fi = 0 , hA = 0 . (C.24)

The second example is with the maximum gauged supergravity in D = 4. It has SO(8)

gauge group, with the Cartan subgroup U(1)4. The four-charge static AdS black hole was

constructed in [34, 35]. Following the convention of [31], the four-dimensional 4-charge AdS

black hole solution is given by

ds24 = −H−1/2f dt̂2 +H1/2(f−1dr̂2 + r̂2dΩ2
2,ǫ) ,

Xi = H−1
i H1/4 , Ai(1) = Φi dt̂ , Φi = −(1−H−1

i )αi ,

f = ǫ− µ

r̂
+ 4g2r̂2H , H = H1H2H3H4 , Hi = 1 +

ℓi
r̂
,

αi =

√
1 + ǫ sinh2 βi
sinh βi

, ℓi = µ sinh2 βi , (C.25)

where dΩ2
2,ǫ is the unit metric for S2, T 2 or H2 for ǫ = 1, 0 or −1, respectively. If the charge

parameters βi are set equal, the solution becomes the standard Reissner-Nordström AdS
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black hole. We see that

hi
hv

= −gΦi , hφχ = htt = 0 ,

A = dt̂+

√
H
f
dr =⇒ hv =

√
H , fi = 0 , hA = 0 . (C.26)

The third example is with the maximal gauged supergravity in D = 7. It has SO(5)

gauge symmetry, whose Cartan subgroup is U(1)2. The seven-dimensional 2-charge AdS

black hole solution is given by [31]

ds27 = −H−4/5f dt̂2 +H1/5(f−1dr̂2 + r̂2dΩ2
5,ǫ) ,

Xi = H−1
i H2/5 , Ai(1) = Φi dt̂ , Φi = −(1−H−1

i )αi ,

f = ǫ− µ

r̂4
+

1

4
g2r̂2H , H = H1H2 , Hi = 1 +

ℓ4i
r̂4
,

αi =

√
1 + ǫ sinh2 βi
sinh βi

, ℓ4i = µ sinh2 βi , (C.27)

where dΩ2
5,ǫ is the unit metric for S5, T 5 or H5 for ǫ = 1, 0 or −1, respectively. We see that

hi
hv

= −gΦi , hφχ = htt = 0 ,

A = dt̂+

√
H
f
dr =⇒ hv =

√
H , fi = 0 , hA = 0 . (C.28)

The last example is with the gauged supergravity in D = 6 constructed in [36]. It has

a SU(2) gauge symmetry. The U(1) charged AdS black hole was constructed in [32],

ds26 = −H−3/2f dt̂2 +H1/2(f−1dr̂2 + r̂2dΩ2
4,ǫ) ,

X = H−1/4 , A(1) = Φ dt̂ , Φ = −
√
2(1−H−1)α dt̂ ,

f = ǫ− µ

r̂3
+

2

9
g2r̂2H2 , H = 1 +

ℓ3

r̂3
,

α =

√
1 + ǫ sinh2 β

sinh β
, ℓ3 = µ sinh2 β . (C.29)

We see that

hσ3

hv
= −gΦ , hσ1 = hσ2 = hφχ = htt = 0 ,

A = dt̂+
H

f
dr =⇒ hv = H , fi = 0 , hA = 0 . (C.30)

C.3 Extremal Rotating Black Holes in Supergravity Theories

The Kerr/CFT correspondence for rotating black hole solutions in supergravity theories

were studied in [6]. Here we will revisit some of the examples by comparing them with

(2.10) and (2.11).
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In the five dimensional (un)gauged supergravities, there are three non-extremal solutions

that cannot accommodate each other. They are the three-charge two-rotation Cvetič-Youm

solution [37] in the ungauged supergravity, the three-charge equal-rotation solution [38] and

the three-charge (two of which equal) two-rotation solution [39] in the gauged supergravity.

The Cvetič-Youm solution is given by

ds2 = (H1H2H3)
1/3

[
dx2

4X
+
dy2

4Y
+
U

G

(
dχ− Z

U
dσ

)2

+
XY

U
dσ2

]

−
G
(
dt+ Ã

)2

(H1H2H3)2/3
,

Ã =
2mc1c2c3

[
(a2 + b2 − y)dσ − abdχ

]

x+ y − 2m
− 2ms1s2s3(abdσ − ydχ)

x+ y
,

X = (x+ a2)(x+ b2)− 2mx , Y = −(a2 − y)(b2 − y) ,

U = yX − xY , Z = ab(X + Y ) , G = (x+ y)(x+ y − 2m) ,

Ai =
2m

Hi

{
cisidt+ sicjck

[
abdχ+ (y − a2 − b2)dσ

]

+cisjsk(abdσ − ydχ)
}
, i 6= j 6= k ,

Xi =
H

1/3
1 H

1/3
2 H

1/3
3

Hi
, Hi = x+ y + 2ms2i , (C.31)

where si = sinh δi , ci = cosh δi and i, j, k = 1, 2, 3. The variables χ and σ are related to the

canonical azimuthal angles by

σ =
aφ̂1 − bφ̂2
a2 − b2

, χ =
bφ̂1 − aφ̂2
a2 − b2

. (C.32)

Near the horizon, σ is playing the role of the time direction as in the Schwarzschild solution.

We have for (2.4) and (2.5),

A = dσ +
(a2 − b2)

√
x dx

2X

√
1− yX

xY
. (C.33)

By comparing various terms, we find that

hv =
ab(c21c

2
2c

2
3 + s21s

2
2s

2
3)− (a2 + b2 − 2m)c1c2c3s1s2s3

abc1c2c3 + xs1s2s3
m
√
x ,

h1 =
a(b2 + x)s1s2s3 − b(b2 − 2m+ x)c1c2c3

2(abc1c2c3 + xs1s2s3)

√
x ,

h2 =
b(a2 + x)s1s2s3 − a(a2 − 2m+ x)c1c2c3

2(abc1c2c3 + xs1s2s3)

√
x , (C.34)

and so

dσ =
a

a2 − b2
dφ̂1 −

b

a2 − b2
dφ̂2 ,
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− U

4Y
=

( a

a2 − b2
h1 −

b

a2 − b2
h2

)2
− yX

4Y
,

dχ− Z

U
dσ = −

( x
x+y +

a2

x+y−2m)(a2 − y)b

( xy
x+y +

a2b2

x+y−2m )(a2 − b2)

(
dφ̂1 −

h1
hv
dt
)

+
( x
x+y +

b2

x+y−2m)(b2 − y)a

( xy
x+y +

a2b2

x+y−2m )(a2 − b2)

(
dφ̂2 −

h2
hv
dt
)

−
( abs1s2s3x+y−2m − c1c2c3y

x+y )X
√
x dt

2hv(
xy
x+y +

a2b2

x+y−2m)(abc1c2c3 + s1s2s3x)
,

dt+ Ã =
2m(a2 − y)

a2 − b2

( ac1c2c3
x+ y − 2m

− bs1s2s3
x+ y

)(
dφ̂1 −

h1
hv
dt
)

+
2m(b2 − y)

a2 − b2

(as1s2s3
x+ y

− bc1c2c3
x+ y − 2m

)(
dφ̂2 −

h2
hv
dt
)

+
2m2X

√
x c1c2c3s1s2s3dt

hv(abc1c2c3 + s1s2s3x)(x+ y − 2m)(x+ y)
. (C.35)

It is obvious that (C.31) is of the form (2.11) with hA, h
1
χ, h

2
χ 6= 0 but htt = 0. As a side

remark, note the gauge fields can be written as

Ai =
2m

(a2 − b2)hi

{
(bcisjsk − asicjck)(a

2 − y)
(
dφ̂1 −

h1
hv
dt
)

+(bsicjck − acisjsk)(b
2 − y)

(
dφ̂2 −

h2
hv
dt
)}

+
abcisi(c

2
jc

2
k + s2js

2
k)− cjcksjsk[x+ c2i (a

2 + b2 − 2m)]

(abcicjck + sisjskx)hv/(m
√
x)

dt

+
cjcksjskXm

√
x

(abcicjck + sisjskx)hihv
dt , i 6= j 6= k . (C.36)

When transforming to the coordinates on the horizon by (2.7), only the third line will lead

to a divergence, but which can be absorbed as pure gauge.

For the three-charge equal-rotation solution in the gauged supergravity [38], the result

is given by

ds2 = R

{
− X

f1
dt2 +

r2

X
dr2 + dθ2 + cos2 θ sin2 θ(dφ− dψ)2

+
f1
R3

(
cos2 θdφ+ sin2 θdψ − f2

f1
dt
)2
}
,

X = r4 − 2m(r2 − ℓ2) + g2f1 , f1 = 2mℓ2(r2 + 2ms̃) +R3 ,

f2 = 2mℓr2(c1c2c3 − s1s2s3) + 4m2ℓs1s2s3 ,

R = (H1H2H3)
1/3 , Hi = r2 + 2ms2i , i = 1, 2, 3 ,

s̃ = 2s1s2s3(c1c2c3 − s1s2s3)− s21s
2
2 − s21s

2
3 − s22s

2
3 ,
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Ai =
2m

hi

[
cisidt+ ℓ(cisjsk − sicjck)(cos

2 θdφ+ sin2 θdψ)
]
. (C.37)

It is easy to tell that the metric is of the (2.10) with

hv = r
√
f1 , hφ = hψ =

rf2√
f1
, hA = hφχ = hψχ = htt = 0 . (C.38)

After using (2.7), the gauge fields are also regular on the horizon up to some divergence

which can be absorbed as pure gauge.

The three-charge (two of which equal) two-rotation solution in the gauged supergravity

was found in [39], and the result is given by

ds2 = H
2/3
1 H

1/3
3

{
(x2 − y2)

(
dx2

X
− dy2

Y

)
− x2X(dt+ y2dσ)2

(x2 − y2)fH2
1

+
y2Y

[
dt+ (x2 + 2ms21)dσ

]2

(x2 − y2)(γ + y2)H2
1

−U
(
dt+ y2dσ +

(x2 − y2)fH1

[
abdσ + (γ + y2)dχ

]

ab(x2 − y2)H3 − 2ms3c3(γ + y2)

)2


 ,

A1 = A2 =
2ms1c1(dt+ y2dσ)

(x2 − y2)H1
,

A3 =
2m
{
s3c3(dt+ y2dσ)− (s21 − s23)

[
abdσ + (γ + y2)dχ

]}

(x2 − y2)H3
, (C.39)

X1 = X2 =

(
H3

H1

)1/3

, X3 =

(
H1

H3

)2/3

,

f = x2 + γ + 2ms23 , γ = 2abs3c3 + (a2 + b2)s23 ,

U =

[
ab(x2 − y2)H3 − 2ms3c3(γ + y2)

]2

(x2 − y2)2(γ + y2)fH2
1H3

,

H1 = 1 +
2ms21
x2 − y2

, H3 = 1 +
2ms23
x2 − y2

,

X =
−2mx2 + (ã2 + x2)(b̃2 + x2)

x2

+
g2(ã2 + 2ms21 + x2)(b̃2 + 2ms21 + x2)(2ms23 + γ + x2)

x2
,

Y =
(ã2 + y2)(b̃2 + y2)

[
1 + g2(γ + y2)

]

y2
,

si = sinh δi , ci = cosh δi , ã = ac3 + bs3 , b̃ = bc3 + as3 .

Comparing with (2.4) and (2.5), we see that

A = dt+ y2dσ +
(x2 − y2)

√
fH1

xX
dx

= dt+ y2dσ +
(x2 − y2 + 2ms21)

√
f

xX
dx ,
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=⇒ hv =
(x2 + 2ms21)

√
f

x
, hσ = −

√
f

x
. (C.40)

As a result,

dt+ (x2 + 2ms21)dσ ∝ dσ − hσ
hv
dt , (C.41)

and with hχ =
ab+ 2mc3s3

x
√
f

,

dt+ y2dσ +
(x2 − y2)fH1

[
abdσ + (γ + y2)dχ

]

ab(x2 − y2)H3 − 2ms3c3(γ + y2)

=
{
x+ 2ms21 +

(ab+ 2mc3s3)(x
2 − y2)H1(y

2 + γ)

ab(x2 − y2)H3 − 2mc3s3(y2 + γ)

}(
dσ − hσ

hv
dt
)

+
(y2 + γ)(x2 − y2)fH1

ab(x2 − y2)H3 − 2mc3s3(y2 + γ)

(
dχ− hχ

hv
dt
)
. (C.42)

Now it is obvious that the metric in (C.39) is of the form (2.10). For the gauge fields, one

has

A1 = A2 =
2mc1s1y

2

(x2 − y2)H1

(
dσ − hσ

hv
dt
)
+

2mc1s1
x2 + 2ms21

dt ,

A3 = − 2m

(x2 − y2)H3

{[
ab(s21 − s23)− c3s3y

2
](
dσ − hσ

hv
dt
)

+(s21 − s23)(y
2 + γ)

(
dχ− hχ

hv
dt
)}

+
2m
[
c3s3f + (ab+ 2mc3s3)(s

2
1 − s23)

]

f(x2 + 2ms21)
dt . (C.43)

Again, when (2.7) is used, the divergent pieces can be absorbed as pure gauge.

In the following, we consider a few more solutions in dimensions other than five. Again,

all these have been studied in [6]. We include them here just to show the general applicability

of the metric (2.10) and (2.11).

The first example is the four-charge black hole of the ungauged supergravity in four

dimension [40, 41],

ds24 = −ρ
2 − 2mr̂

W
(dt̂+B dφ̂)2 +W

(dr̂2
∆

+ dθ2 +
∆ sin2 θ dφ̂2

ρ2 − 2mr̂

)
. (C.44)

The detail of various functions can be found in [6]. Notably,

∆ = r̂2 − 2mr̂ + a2 , ρ2 = r̂2 + a2 cos2 θ , W =W (r) ,

B =
2ma2 sin2 θ[r̂c1c2c3c4 − (r̂ − 2m)s1s2s3s4]

a(ρ2 − 2mr̂)
. (C.45)
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Note ρ2−2mr̂ = ∆−a2 sin2 θ. So when it comes close to the horizon, dφ̂ replaces dt̂+B dφ̂

and become the time direction. What’s more,

B = − 1

B0

(
1 +

∆

a2 sin2 θ

)
+O(∆2) ,

B0 =
a

2m[r̂c1c2c3c4 − (r̂ − 2m)s1s2s3s4]
. (C.46)

Comparing (C.44) with (2.4), we have for (2.5),

A = dφ̂+

√
a2 sin2 θ −∆

∆sin θ
dr̂

≈ dφ̂+
a

∆
dr̂ − dr̂

2a sin2 θ
,

=⇒ hφ̂ = a , hA = − 1

2a sin2 θ
. (C.47)

By letting hv =
a

B0
and hφ̂χ = − 1

a sin2 θ
, we also have

dt̂+B dφ̂ ∝ dφ̂−
hφ̂ + hφ̂χ∆

hv
dt̂+O(∆2) . (C.48)

So (C.44) is of the form (2.11) with htt = 0.

The next example is the rotating black hole solution in four-dimensional U(1)4 gauged

supergravity with the four U(1) charges pairwise equal [41]. The metric is

ds2 = H
[
− R

H2(r̂2 + y2)

(
dt̂− a2 − y2

Ξa
dφ̂

)2

+
r̂2 + y2

R
dr̂2 +

r̂2 + y2

Y
dy2

+
Y

H2(r̂2 + y2)

(
dt̂− (r̂ + q1)(r̂ + q2) + a2

Ξa
dφ̂

)2 ]
, (C.49)

where

R = r̂2 + a2 + g2(r̂ + q1)(r̂ + q2)[(r̂ + q1)(r̂ + q2) + a2]− 2mr̂ ,

Y = (1− g2y2)(a2 − y2) , Ξ = 1− g2a2 ,

H =
(r̂ + q1)(r̂ + q2) + y2

r̂2 + y2
, qI = 2ms2I , sI = sinh δI . (C.50)

Comparing (C.49) with (2.4), we have for (2.5),

A = dt̂− a2 − y2

Ξa
dφ̂+

(r̂ + q1)(r̂ + q2) + y2

R
dr̂ ,

=⇒ hv =
(r̂ + q1)(r̂ + q2) + a2

R
, hφ̂ =

Ξa

R
. (C.51)

It is easy to see that

dt̂− (r̂ + q1)(r̂ + q2) + a2

Ξa
dφ̂ ∝ dφ̂−

hφ̂
hv
dt̂ . (C.52)
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So (C.49) is of the form (2.10) with hA = hφ̂χ = htt = 0.

A single-charge two-rotation solution to the six-dimensional SU(2) gauged supergravity

was found in [42]. The metric is

ds2 = H1/2

{
− R

H2U
Ã2 +

(r̂2 + y2)(y2 − z2)

Y
dy2 +

Y Ã2
Y

(r̂2 + y2)(y2 − z2)

+
U

R
dr̂2 +

(r̂2 + z2)(z2 − y2)

Z
dz2 +

ZÃ2
Z

(r̂2 + z2)(z2 − y2)

}
,

(C.53)

ÃY = dt̂− (r̂2 + a2)(a2 − z2)
dφ̂1
ǫ1

− (r̂2 + b2)(b2 − z2)
dφ̂2
ǫ2

− qr̂Ã
HU

,

ÃZ = dt̂− (r̂2 + a2)(a2 − y2)
dφ̂1
ǫ1

− (r̂2 + b2)(b2 − y2)
dφ̂2
ǫ2

− qr̂Ã
HU

, (C.54)

where the various functions and constants can be found in [6]. The ones relevant for us are

U = (r̂2 + y2)(r̂2 + z2) , H = 1 +
qr̂

U
,

Ã = dt̂− (a2 − y2)(a2 − z2)
dφ̂1
ǫ1

− (b2 − y2)(b2 − z2)
dφ̂2
ǫ2

. (C.55)

Comparing (C.53) with (2.4), we have for (2.5),

A = Ã+
HU

R
dr . (C.56)

By comparing various terms, one can find

hv = (r̂2 + a2)(r̂2 + b2) + qr̂ ,

h1 =
r̂2 + b2

a2 − b2
ǫ1 , h2 =

r̂2 + a2

b2 − a2
ǫ2 , (C.57)

and

ÃY =
(z2 − a2)[qr̂ + (r̂2 + a2)(r̂2 + z2)](r̂2 + y2)

HUǫ1

(
dφ̂1 −

h1
hv
dt̂
)

+
(z2 − b2)[qr̂ + (r̂2 + b2)(r̂2 + z2)](r̂2 + y2)

HUǫ2

(
dφ̂2 −

h2
hv
dt̂
)
,

ÃZ =
(y2 − a2)[qr̂ + (r̂2 + a2)(r̂2 + y2)](r̂2 + z2)

HUǫ1

(
dφ̂1 −

h1
hv
dt̂
)

+
(y2 − b2)[qr̂ + (r̂2 + b2)(r̂2 + y2)](r̂2 + z2)

HUǫ2

(
dφ̂2 −

h2
hv
dt̂
)
. (C.58)

So (C.53) is of the form (2.10) with hA = hφ̂χ = htt = 0.

The single-charge three-rotation black hole solution to the seven-dimensional SO(5)

gauged supergravity was found in [43]. The metric is

ds2 = H2/5

{
− R

H2U
Ã2 +

U

R
dr̂2 +

(r̂2 + y2)(y2 − z2)

Y
dy2
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+
(r̂2 + z2)(z2 − y2)

Z
dz2 +

Y Ã2
Y

(r̂2 + y2)(y2 − z2)

+
ZÃ2

Z

(r̂2 + z2)(z2 − y2)
+
a21a

2
2a

2
3

r̂2y2z2
Ã2

7

}
,

ÃY = dt̂−
3∑

i=1

(r̂2 + a2i )γi
a2i − y2

dφ̂i
ǫi

− q

HU
Ã ,

ÃZ = dt̂−
3∑

i=1

(r̂2 + a2i )γi
a2i − z2

dφ̂i
ǫi

− q

HU
Ã ,

Ã7 = dt̂−
3∑

i=1

(r̂2 + a2i )γi
a2i

dφ̂i
ǫi

− q

HU

(
1 +

gy2z2

a1a2a3

)
Ã , (C.59)

where the various functions and constants can be found in [6]. The ones relevant for us are

U = (r̂2 + y2)(r̂2 + z2) , γi = a2i (a
2
i − y2)(a2i − z2) ,

H = 1 +
q

(r̂2 + y2)(r̂2 + z2)
, Ã = dt̂−

3∑

i=1

γi
dφ̂i
ǫi

. (C.60)

Comparing (C.59) with (2.4), we have for (2.5),

A = Ã+
HU

R
dr . (C.61)

By comparing various terms, one can find

hv =
(r2 + a21)(r

2 + a22)(r
2 + a23) + q(r2 − ga1a2a3)

r2
,

hi =
ai(r

2 + a2j )(r
2 + a2k)− gqajak

ai(a2i − a2j )(a
2
i − a2k)r

2
ǫi , i 6= j 6= k , (C.62)

and

ÃY =

3∑

i=1

(z2 − a2i )[q + (r̂2 + a2i )(r̂
2 + z2)](r̂2 + y2)a2i

HUǫi

(
dφ̂i −

hi
hv
dt̂
)
,

ÃZ =

3∑

i=1

(y2 − a2i )[q + (r̂2 + a2i )(r̂
2 + y2)](r̂2 + z2)a2i

HUǫi

(
dφ̂i −

hi
hv
dt̂
)
,

Ã7 =

3∑

i=1

γi

[q(a1a2a3 + gy2z2)

HU
− a1a2a3

a2i
(r2 + a2i )

]

a1a2a3ǫi

(
dφ̂i −

hi
hv
dt̂
)
. (C.63)

So (C.59) is of the form (2.10) with hA = hφ̂χ = htt = 0.
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