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Inclusive momentum distributions of charged particles in restricted cones around jet axes were measured in
dijet events with invariant dijet masses in the range 80 to 600 GeV/c2. Events were produced at the Fermilab

Tevatron inpp̄ collisions with a center of mass energy of 1.8 TeV and recorded by the Collider Detector at
Fermilab. The results were compared to perturbative QCD calculations carried out in the framework of the
modified leading log approximation~MLLA ! and assuming local parton-hadron duality. It was shown that the
data follow theoretical predictions quite well over the whole range of the jet energies included in this analysis.
We extracted the MLLA cutoff scaleQe f f and found a value of 230640 MeV. The theoretical prediction of
Ejetsinuc scaling, whereuc is the cone opening angle, was experimentally observed for the first time. From the
MLLA fits to the data, two more parameters were extracted: the ratio of parton multiplicities in gluon and
quark jets,r 5Npartons

g-jet /Npartons
q-jet 51.960.5, and the ratio of the number of charged hadrons to the number of

predicted partons in a jet,KLPHD
charged5Nhadrons

charged/Npartons50.5660.10.

DOI: 10.1103/PhysRevD.68.012003 PACS number~s!: 13.87.2a, 12.38.Qk

I. INTRODUCTION

We report a measurement of the inclusive momentum dis-
tributions of charged particles in dijet events with dijet in-
variant masses in the range 80 to 600 GeV/c2. These events

were produced at the Fermilab Tevatron inpp̄ collisions with
As51.8 TeV and recorded by the Collider Detector at Fer-
milab ~CDF!. The results are compared with perturbative
QCD calculations carried out in the framework of the modi-
fied leading log approximation~MLLA ! @1–6# and the hy-
pothesis of local parton-hadron duality~LPHD! @7#. The
MLLA evolution equations allow an analytical description of
the development of a parton shower for gluon and quark jets.
The LPHD hypothesis assumes that hadronization is local
and occurs at the end of the parton shower development, so
that properties of hadrons are closely related to those of par-
tons. Altogether, the MLLA1LPHD scheme views jet frag-
mentation as a predominantly perturbative QCD process.

Modern Monte Carlo generators that use the leading log
approximation~e.g. HERWIG @26#! were found to be very
good in describing experimental data. However, one has to
keep in mind that all generators are heavily tuned to repro-
duce the data. More generally, no matter how successful a
Monte Carlo calculation is in describing data, it does not
solve the physics problem of what is happening with QCD at
low momentum transfers. Progress in this area is likely to
come from perturbative QCD methods. If such methods are
successful, they will greatly expand our understanding of the
underlying physics of the jet fragmentation phenomenon.

The Tevatron data, with their broad range of jet energies,
present a unique opportunity to verify the validity and con-
sistency of the MLLA approach on an energy scale much
larger than that available at other machines. Overlap of the
energy regions of the Fermilab Tevatron ande1e2 experi-
ments allows a direct comparison of experimental results ob-
tained in very different environments.

II. THEORETICAL CONSIDERATIONS

A. Modified leading log approximation

The MLLA is a resummed perturbative calculation that
keeps track of terms of orderas

nlog2n(Ejet) and
as

nlog2n21(Ejet) at all ordersn of perturbation theory (Ejet is
the jet energy!. Color coherence effects between diagrams of
the same order inas can be accounted for by introducing an
angular ordering@8# which effectively constrains sequen-
tially emitted partons to successively smaller angles with re-
spect to the parent parton. Angular ordering plays a very
important role in building the resummation scheme at all
orders and obtaining the final solutions in analytical form.
Improved, more accurate solutions of the MLLA evolution
equations are often referred to as ‘‘next-to- . . . -MLLA,’’ al-
though technically they are of the same order. The MLLA
and various next-to-MLLA versions differ in how they ac-
count for the orders beyond the precision stated above. They
all do it only partially leading to the differences in their
predictions~to be addressed at the end of this section!.

Any theoretical model attempting to describe jet fragmen-
tation phenomena must be able to handle particles with very
low kT scales. Here,kT is defined as the transverse momen-
tum of a particle with respect to the jet axis. Figure 1 shows
thekT distribution of charged particles in jets of mean energy
Ejet5108 GeV and within a cone defined by the angle with
respect to the jet axisuc50.28 rad. One can see that most of
the particles havekT’s well below 1 GeV/c, i.e. in the do-
main where perturbative QCD calculations are not obviously
applicable. In the MLLA,as , the coupling constant control-
ling emission of gluons, evolves as

as5
2p

b

1

log~kT /LQCD!
, ~1!

whereb is a QCD constant that depends on the number of
colorsnc and the number of flavorsnf of effectively mass-
less quarks (b59 for nc53 andnf53), andLQCD is the
QCD regularization scale. In order to carry out all interme-
diate stages of calculations, a sufficiently high cutoff scale
Qcuto f f is imposed so that all partons are emitted withkT
.Qcuto f f , i.e. in a regime guaranteed to be perturbative.
After the resummation is done, the final MLLA solutions for

*Present address: University of California, Santa Barbara, Califor-
nia 93106.
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momentum distributions of partons are infrared stable with
the cutoff parameterQcuto f f as low asLQCD . Lowering the
parameterQcuto f f is equivalent to including softer partons in
the description of the model. SettingQcuto f f to its lowest
allowed value,LQCD , maximizes the range of applicability

of the model. The new phenomenological scale replacing the
two initial parameters,Qcuto f f andLQCD , is conventionally
denoted asQe f f and is the only parameter of the model.

The MLLA prediction for the shape of the momentum
distribution of partons within an opening angleuc in a gluon
jet of energyEjet ~Fig. 2! is given by@1,4#

dNpartons
g-jet,MLLA

dj
5

4nc

b
G~B!E

2p/2

p/2 dt

p
e2BaH cosha1~122z!sinha

4nc

b
Y

a

sinha
J B/2

I BSA4nc

b
Y

a

sinha
@cosha1~122z!sinha# D ,

~2!

where b is as defined earlier,B is another QCD constant
(B5101/81 for nc53 and nf53), and I B is the modified
Bessel function of orderB. The other variables are

j5 log
1

x
, x5

p

Ejet
, Y5 log

Ejetsinuc

Qe f f
,

z512
j

Y
, a5a01 i t, and tanha052z21,

wherep is the parton momentum.
This expression can be simplified to allow for easier ma-

nipulation @10#:

dNpartons
g-jet,MLLA

dj
5

8nc

pb
@2~12z!#BE

0

p/2

dt~cost!B

3 (
n50

` uaun

n!

G~B!

G~B1n11!
cos~nf2Bt!,

~3!

where

uau5
16nc

b
Yz~12z!costA a0

21t2

124z~12z!cos2t

FIG. 1. Distribution of the momentum transverse to the jet axis
for particles in cones of opening angleuc50.28 rad around the jet
axis, for mean energyEjet5108 GeV. Data points correspond to
the CDF measurement described in this paper while the line was
obtained from theHERWIG Monte Carlo plus detector simulation,
scaled by a factor 0.89 as discussed in Sec. XIII.

FIG. 2. The evolution of the MLLA predicted partonj spectrum
with energy for a gluon jet and for a cone of opening angleuc

50.28 rad. The four lines correspond to jet energiesEjet550, 100,
200, and 300 GeV.
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and

f5tan21S ~2z21!t2a0tant

~2z21!a01t tant D .

The shape of the MLLA inclusive parton momentum dis-
tributions can be approximated by a Gaussian@3# or a
skewed Gaussian@11#. It should be pointed out that the
MLLA equations are strictly valid for soft partons only (x
5p/Ejet!1). AlthoughdN/dj→0 asj→0 as it should, the
exact descent to zero is not expected to be well described by
MLLA. MLLA also assumes that partons are massless and
the opening angleuc is small.

The evolution of the momentum distribution peak posi-
tion j0 with jet energy is given by@6#

j05
1

2
Y1AcY2c, ~4!

wherec50.29 fornf53.
Note that all the MLLA predictions depend on the com-

binationEjetsinuc /Qeff , which implies the presence of scal-
ing behavior.

Within MLLA, the momentum distribution of partons in a
quark jet differs from that in a gluon jet only by a normal-
ization factor r 5CA /CF59/4 (CA and CF are the color
charges of gluons and quarks, respectively!:

dNpartons
q-jet ~j!

dj
5

1

r

dNpartons
g-jet ~j!

dj
. ~5!

More accurate solutions of the set of coupled QCD evo-
lution equations describing parton production in quark and
gluon jets primarily affect parton multiplicities. The corre-
sponding changes are equivalent to rescaling the normaliza-
tion of Eqs.~2!, ~3! by a factorFnMLLA :

dNpartons
g-jet,nMLLA~j!

dj
5FnMLLA~Ejet!

dNpartons
g-jet,MLLA~j!

dj
. ~6!

At the same time, the ratio of the number of partons in
gluon and quark jets deviates from the lowest order value of
9/4. Like FnMLLA , r becomes a function of the jet energy.

FnMLLA(Ejet) and r (Ejet), when calculated analytically,
are usually expressed in powers ofAas(Ejet). Improved
‘‘next-to- . . . -MLLA’’ calculations published in@12–14# dis-
agree~see Figs. 3 and 4! on the exact scale of these correc-
tions. However, they all suggest that bothFnMLLA and r are
weak functions of energy. This allows the corrections to be
treated as effectively constant for the range of dijet masses
covered by this analysis. We assumedFnMLLA51.3 with a
60.2 theoretical uncertainty~the range is shown as a shaded
rectangle in Fig. 3!. As for the parameterr, one may attempt
to extract it from the data. This could serve two purposes.
First, to verify the consistency of the MLLA calculations by
checking if the values ofr are in agreement with the expec-
tations, and second, to try to distinguish between the three

theoretical calculations@12–14# ~see Fig. 4!. With this in
mind, we chose to treatr in this analysis as a free, energy-
independent parameter.

B. Local parton-hadron duality

Any parton level calculation for jet fragmentation will be
difficult to interpret if hadronization effects dominate the
perturbative stage. An example of a hadronization model that
preserves the correspondence between the properties of had-
rons and partons is the LPHD hypothesis. LPHD has been
shown to be naturally connected with the ‘‘pre-confinement’’
properties of QCD cascades@15#. Experimental studies are
required to determine the lower limit at which the LPHD
approach is applicable for hadronization.

FIG. 3. Energy evolution of the correction factorFnMLLA for the
gluon jet, based on improved calculations with respect to MLLA
@12–14# ~shown as solid, dot-dot-dashed and dashed lines, respec-
tively!. The shaded area indicates the spread in calculated values of
FnMLLA for the range of energies relevant to this analysis.

FIG. 4. Energy evolution of the ratio of parton multiplicities in
gluon and quark jets based on improved calculations with respect to
the MLLA @12–14# ~shown as solid, dot-dot-dashed and dashed
lines, respectively!. The shaded area indicates the spread in calcu-
lated values ofr for the range of energies relevant to this analysis.
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Within LPHD, one relates the number of hadrons and
their momentum distributions to those of partons via an
energy-independent constantKLPHD :

Nhadrons5KLPHD3Npartons ~7!

and

dNhadrons

dj
5KLPHD3

dNpartons

dj
. ~8!

In the simplest interpretation of LPHD, each parton pro-
duced during the perturbative stage picks up a color partner
from the vacuum sea at the end of parton branching and
binds into a hadron, so thatKLPHD5Nhadrons/Npartons.1.
Then, for charged particles only, one expects from isospin
invariance that the constantKLPHD

charged5Nhadrons
charged/Npartons

should be approximately 2/3. Furthermore, assuming the
fraction of the jet energy carried by particles in a jet to be
charge independent, the fraction of charged particles with
respect to all particles should be equal to the average fraction
of the jet energy carried by charged particles. The latter has
been measured in hadronic events ate1e2 experiments to be
approximately 0.60@16#, while the results from hadron col-
liders are 0.4760.0260.05 @17# and 0.6560.0260.08 @18#.

C. Quark and gluon jets

Dijet events at the Fermilab Tevatron consist of both
quark and gluon jets. By denoting the fractions of gluon and
quark jets aseg and eq , respectively, one can rewrite the
formula for the parton momentum distribution shape as fol-
lows:

dNpartons
mix

dj
5eg

dNpartons
g-jet

dj
1eq

dNpartons
q-jet

dj

5S eg1~12eg!
1

r D3
dNpartons

g-jet

dj
. ~9!

Combining this formula with Eq.~8! and taking into ac-
count the next-to-MLLA correction@Eq. ~6!#, one arrives at
an expression for the shape of the momentum distribution
expressed in terms of the MLLA spectrum@Eqs.~2!, ~3!#:

dNhadrons
charged

dj
5K3

dNpartons
g-jet,MLLA~j!

dj
~10!

with a normalization parameterK defined as

K5KLPHD
charged3FnMLLA3S eg1~12eg!

1

r D . ~11!

III. EARLIER EXPERIMENTAL RESULTS

Comparisons of momentum distributions observed in data
to the MLLA predictions have been performed in several
e1e2 andep experiments and show good qualitative agree-
ment. The distributions were fitted for the value of theQe f f

parameter and the normalization factorKLPHD
charged. Qe f f was

found to have a value around 250 MeV@19–21#. On the
other hand, the measurements ofKLPHD

charged were too high
~around 1.3! @21# to be consistent with one-to-one parton-
hadron correspondence. However, it should be pointed out
that the measurement ofKLPHD

charged is directly coupled to as-
sumptions aboutFnMLLA andr. In earlier papersFnMLLA was
taken to be 1, whiler was assumed to be equal to 9/4. If one
takes into account the next-to-MLLA valueFnMLLA.1.3 and
r .1.6, the reportedKLPHD

chargedvalue needs to be rescaled, and
its next-to-MLLA value becomes.0.7.

Several measurements of the ratior of charged particle
multiplicities in gluon and quark jets have been made. Early
measurements showed little difference between charged par-
ticle multiplicities in gluon and quark jets~i.e., r 51) @22#.
Later, the reported numbers@23# varied from r .1.1 to r
.1.5 with typically small uncertainties. The variations are
likely to be due to different definitions of jets and regions of
particle phase space used in the analyses, which makes the
observables different and the comparison to the theory am-
biguous.

IV. ANALYSIS STRATEGY

Motivated by the predictions of the MLLA, we performed
an analysis to determine how the momentum distributions of
charged particles in jets evolve with jet energy and the open-
ing angle within which the particles are observed. We used a
data sample consisting of two-jet events. Note that in hadron
collisions, to compare data to theoretical predictions de-
scribed by Eqs.~2!, ~3! one has to use the jet energy mea-
sured in the center-of-mass system of the two jets. When
referring toEjet in this paper, we always assume it to be the
jet energy in the center-of-mass frame of the two jet system.
Assuming that jets are massless,Ejet5MJJ/2, whereMJJ is
the dijet mass~the exact definition can be found in Sec.
VIII !. Therefore, the events were assigned to nine bins ac-
cording to their dijet masses. Momentum distributions were
measured for particles in restricted cones of three sizes
around the jet axis. The cones were selected to be sufficiently
small so that uc.sinuc . The particular choices ofuc
50.28, 0.36, and 0.47 rad were made to match the definition
of the dijet mass bins. Consecutive cone sizes and the edges
of the dijet mass bins were a factor of 1.3 apart from each
other. This was motivated by the predictedEjetuc /Qe f f scal-
ing of the momentum distributions.

The measured distributions were fitted with the MLLA
predicted spectrum, Eq.~10! with the parton spectrum as in
Eq. ~3!, for the MLLA parameterQe f f and normalizationK.
Values of Qe f f obtained from all combinations of dijet
masses and cone sizes were compared to verify whetherQe f f
is indeed universal. The evolution ofK with energy, which
comes mostly through the gluon fractioneg , Eq. ~11!, al-
lowed extraction of the LPHD parton-to-hadron conversion
parameterKLPHD

chargedand the ratio of the multiplicities in gluon
and quark jets,r.

Finally, the momentum distributions were fitted for the
peak positionj0, and the evolution ofj0 with jet energy and
cone size was plotted to verify the predictedEjetsinuc /Qeff
scaling. Measured peak positions were also used to extract
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the parameterQe f f using Eq.~II A !. These extracted values
of Qe f f were then compared to those obtained from the fit for
the full shape of the distributions with the MLLA function,
Eq. ~10!.

V. CDF DETECTOR

This analysis used data collected at the Collider Detector
at Fermilab~CDF!, a multipurpose detector designed for pre-
cision energy, momentum and position measurement of par-
ticles produced in proton-antiproton collisions with a center-
of-mass energy of 1.8 TeV. The CDF detector is described in
detail in @24# and references therein. Here, we will briefly
describe the elements of the detector directly related to this
analysis.

The CDF coordinate system is defined with respect to the
proton beam direction, which defines the positivez direction,
while the azimuthal anglef is measured around the beam
axis. The polar angleu is measured with respect to the posi-
tive z direction. The pseudorapidity,h, is often used and is
defined ash52 ln tan(u/2). Transverse components of par-
ticle energy and momentum are conventionally defined as
projections onto the plane transverse to the beam line,ET

5E sinu andpT5upW usinu.
The sub-detectors we used were the silicon vertex detec-

tor ~SVX!, the vertex drift chamber~VTX !, the central track-
ing chamber~CTC! and the central parts of the calorimeter
system, namely the central electromagnetic~CEM!, central
hadronic~CHA! and wall hadronic~WHA! calorimeters.

The SVX is the component of the CDF detector that is the
closest to the beam line. It provides precise determination of
the vertex position in the transverse plane viar 2f tracking.
The VTX surrounds the SVX and helps determine thez po-
sition of the primary vertex. SVX and VTX information was
used to determine the position of the primary vertex and to
distinguish particles produced in the primary interaction
from background tracks and tracks from secondary interac-
tions in the same bunch crossing.

The SVX and the VTX are mounted inside the cylindrical
3.2 m long central tracking chamber. The CTC is an open-
cell drift chamber of 2.65 m outer diameter designed for
precision measurement of particle trajectories. The determi-
nation of particle momenta is based on trajectory curvature
and knowledge of the solenoidal magnetic field (B
51.4 T). The chamber contains 84 layers of sense wires
grouped into nine superlayers. Five of the superlayers consist
of 12 axial wires, while four stereo superlayers consist of six
wires tilted by 3° with respect to the beam line. The CTC
fully covers the region21,h,1 with a momentum reso-
lution better thandpT /pT

2<0.002 (GeV/c)21. In this analy-
sis, we used particles in restricted cones around the jet axis,
and particle momenta were measured entirely by the CTC.

The CEM is a lead-scintillator calorimeter, while the CHA
and WHA consist of alternating iron and scintillator sheets.
The CEM, CHA, and WHA have 2p azimuthal coverage,
with pseudorapidityuhu,1.1 for the CEM anduhu,1.3 for
the CHA1WHA. The segmentation of all three detectors is
determined by the size of the individual towers, each cover-
ing 15° in f and 0.1 unit inh. The CHA and CEM single

particle energy resolutions are 0.5/AET% 0.03 and
0.135/AET% 0.02, respectively, whereET is the transverse
energy in GeV. The WHA energy resolution is 0.75/AET

% 0.04. For our data sample, the jet energy resolution of the
combined CDF calorimeter system varied from 10% to 7%
for jet energies from 40 to 300 GeV.

VI. JET DEFINITION

In this analysis, jet identification, direction and energy are
completely based on the calorimeter information. CDF de-
fines jets using a cone algorithm. Starting with the highest
ET tower, the algorithm forms preclusters from an unbroken
chain of contiguous seed towers~any tower with transverse
energyET above 1 GeV! provided the towers are within a
window of 737 towers centered at the originating tower. If
a tower is outside this window, it is used to form a new
precluster. The coordinates of the precluster are calculated as
ET-weighted sums of thef and h of the seed towers as-
signed to this precluster. Next, all towers withET above 0.1
GeV within R5A(Df)21(Dh)250.7 of the precluster are
merged into a cluster. The centroid of this cluster is com-
puted, a new cone of radiusR50.7 is drawn around it, and
towers inside the cone are assigned to the cluster. The pro-
cedure is then repeated until a stable set of clusters is found.

The energy of a jet is defined as the sum of the energies of
the towers belonging to the corresponding cluster. Correc-
tions are applied to compensate for the non-linearity and
non-uniformity of the energy response of the calorimeter, the
energy deposited inside the jet cone from sources other than
the parent parton, and the parent parton energy that radiates
out of the jet cone. Full details of this procedure can be
found in @25#.

VII. MONTE CARLO SIMULATIONS

To verify that the event selection and track quality cuts do
not produce unexpected biases, we used theHERWIG 5.6

Monte Carlo event generator@26# and the standard CDF
Monte Carlo program packageQFL that simulates the re-
sponse of the detector.HERWIG uses leading log approxima-
tion calculations for parton branching and explicitly includes
color coherence effects. For hadronization,HERWIG employs
the cluster model, which combines partons into colorless
clusters and decays them into lighter clusters and/or final
hadrons according to the available phase space.

We usedHERWIG in its default configuration in conjunc-
tion with the parton distribution function sets CTEQ4M@27#
and CTEQ4HJ@28#.

QFL is a package that simulates the passage of particles
through the CDF detector subsystems, includingg conver-
sions, multiple scattering, decays of long-lived particles in
the material of the detector, and showers in the calorimeters.
The output of the simulation with QFL matches the data
formats. Standard event generators, such asHERWIG, can be
used as input toQFL.
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VIII. EVENT SELECTION

The results presented in this paper are based on data col-
lected during the 1993–1995 running period with a total ac-
cumulated luminosity.95 pb21. Events were accumulated
using single jet triggers withET thresholds of 20, 50, 70 and
100 GeV, the first three triggers being pre-scaled by 1000, 40
and 8 respectively.

First, the raw jet energies measured by the calorimeters
were corrected as described in Sec. VI. To select clean dijet
events, we required the presence of two well-balanced
~within the calorimeter resolution! high ET jets: uEW Tjet1

1EW Tjet2
u/(ETjet1

1ETjet2
),0.15. One or two additional jets

were allowed when they were very soft, (ETjet3

1ETjet4
)/(ETjet1

1ETjet2
), 0.05; otherwise, possible biases

could be introduced~for example, in events with high energy
jets, a single track escaping a jet at a sufficiently large angle
could be identified as a separate jet!. Only events with both
leading jets in the central region of the detector (uh jet1,2u
,0.9) were retained for the analysis to ensure efficient track
reconstruction. The maximum number of primary vertices
allowed was two because selecting only single vertex events
would have unnecessarily reduced the statistics. Generally, in
the events with two vertices, one can unambiguously choose
the right one by comparing how much energy and how many
tracks point from each vertex to the clusters in the calorim-
eter. Also, the second vertex is soft in an overwhelming frac-
tion of cases, which makes the separation very clear. In this
study, for events with two vertices, a spatial separation of at
least 12 cm between them was required to ensure unambigu-
ous assignment of tracks to the vertices.

After the selection cuts, the sample consisted of approxi-
mately 100 000 dijet events. The events were further subdi-
vided into nine bins according to the dijet mass energy as
measured by the calorimeters and defined as

MJJ5A~E11E2!2/c42~PW 11PW 2!2/c2. ~12!

The bins had a uniform log-scale widthD ln MJJ50.3,
which was always wider than the calorimeter resolution for
the dijet mass determination,dMJJ /MJJ.7 –10 %. Table I
shows how the dijet mass bins were defined along with the
mean measured values of the dijet masses. It also shows the

mean values of dijet masses after correcting for detector
resolution effects~see Sec. X!.

We varied the selection cuts to verify that our measure-
ments do not show any noticeable dependence on the selec-
tion procedure. For example, the number of primary vertices
allowed was restricted to one, and all the measurements were
repeated. In the same way, the number of jets allowed was
restricted to exactly two, and the jetET balancing require-
ments were varied. In addition, the fiducial cuts on jeth
were varied by excluding the very central region (uh
u,0.1) and, separately, by excluding events with jets outside
the regionuh1,2u,0.7. The differences between the original
values and those measured with varied selection cuts were
used as estimates of the systematic uncertainties associated
with the selection requirements.

To check that trigger effects do not bias the measurement,
we verified the continuity of several observables in the dijet
mass regions corresponding to the transition from one trigger
to another. We analyzed the continuity of the inclusive mean
multiplicity and the fraction of total jet energy carried by
charged particles. These variables were chosen because the
former one is sensitive to mismeasurements in the soft part
of the particle spectra, while the latter is sensitive to high
energy particles. No significant effects were found.

We also checked whether the analysis was sensitive to a
particular choice of the cone radiusR used by the jet finding
algorithm. To do that, we selected events using different ra-
dii, 0.4 and 1.0 compared to the default value of 0.7, and
keeping the rest of requirements unchanged. No significant
variations in the results were observed.

IX. TRACK SELECTION, CORRECTIONS, AND
SYSTEMATIC ERRORS

The analysis was carried out in the dijet center of mass
frame. Momentum distributions were measured for tracks
falling in restricted cones of sizesuc50.28, 0.36, and 0.47
rad around the jet axis. Measured momentum distributions
were normalized per jet. The following sections describe the
track selection cuts and corrections that were applied to data.
For illustration, we typically show the distribution corre-
sponding to the middle dijet mass bin, with mean unsmeared
MJJ5216 GeV/c2. In cases where the energy dependence is

TABLE I. Definition of bins for the dijet mass.

Left edge Right edge Mean measuredMJJ UnsmearedMJJ

(GeV/c2) (GeV/c2) Nevents (GeV/c2) (GeV/c2)

72 94 4148 82 78
94 120 1968 105 101
120 154 3378 140 133
154 200 12058 182 171
200 260 31406 229 216
260 340 23206 293 274
340 440 7153 378 351
440 570 1943 488 452
570 740 416 629 573
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important, we show the data for the lowest and the highest
dijet mass bins.

A. Track vertex cuts

We required full 3D track reconstruction and used several
vertex cuts to ensure that tracks used in this analysis did
originate from the primary vertex and were not due to sec-
ondary interactions,g conversions,K0 and L decays, or
other backgrounds. The first vertex cut was on the track im-
pact parameter,d, defined as the shortest distance in ther -f
plane between the interaction point as measured by the SVX/
VTX detectors and the particle trajectory as obtained by the
tracking algorithm fit. The second vertex cut used was on
Dz, defined as the difference between thez position of the
track at the point of its closest approach to the beam line and
the position of the primary vertex, measured by the vertex
detectors.

Figure 5 shows the distribution of log(pT) versus log(udu),
wherepT is in GeV/c andd is in cm, for the data from the
dijet mass bin withMJJ5216 GeV/c2. The cluster of points
corresponds to particles produced at the interaction point or
passing very close to it. The bend at the bottom of the main
domain toward larger impact parameters corresponds to mul-
tiple scattering of low momentum particles.

The straight line of correlated points to the right of the
main region corresponds tog conversions. It can be shown
that for electrons and positrons produced ing conversions at
radiusR from the beam line,pT and d have the following
correlation:

log PT. log~0.15R2B!2 logudu, ~13!

whereR is measured in meters and the magnetic fieldB is in
tesla. In our case, the origin of the correlation was traced to
cables in the area between the VTX and the CTC chambers.
This was confirmed by detector simulation.

The nominal cut on the impact parameter removed the
tracks produced byg conversions~solid line on the plot! and
all background tracks to the right of theg-conversion line.
Moving this cut further to the left would remove more of the
background but would also eliminate signal tracks from the
tails of the impact parameter resolution spectrum. To esti-
mate the associated systematic error, we used another, harder
cut eliminating everything outside the detector resolution er-
rors ~dashed line!. For all measured values, the difference
between using the default and the strict cut was conserva-
tively assigned to be the systematic uncertainty associated
with the impact-parameter requirements.

The parameterDz was used to ensure that tracks from
secondary interactions in the same bunch crossing were not
assigned to the primary vertex. It was found that a cutuDzu
,6 cm was highly effective in eliminating tracks not origi-
nating from the primary vertex. Figure 6 shows the distribu-
tion of Dz for tracks falling in the cone withuc50.47 rad
from the dijet mass bin withMJJ5216 GeV/c2. The uDzu
,6 cm criterion motivated the requirementuz12z2u
.12 cm on the spatial separation of primary vertices in two-
vertex events used in the event selection described earlier.

B. CTC efficiency correction

We also had to correct for the CTC track reconstruction
efficiency. Particles in jets of high energies tend to be spa-
tially densely packed, which complicates pattern recognition.
Sometimes, two tracks can be identified as one or lost alto-
gether. This may also alter the reconstructed track param-
eters.

FIG. 5. The distribution of logpT versus logudu for the dijet mass
bin with MJJ5216 GeV/c2. Here,pT is the transverse momentum
of the track andd is the impact parameter. The default cut on the
impact parameter is shown by the solid line, while the cut shown by
the dashed line was used to estimate the systematic error.

FIG. 6. The distribution ofDz ~see the main text for definition!
for tracks from the dijet mass bin withMJJ5216 GeV/c2 within a
cone of opening angleuc50.47 rad.
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To investigate tracking reconstruction efficiencies, we
used a procedure based on embedding tracks at the CTC hit
level into real events and re-running the full CTC track re-
construction. For this purpose, we selected a smaller, but
statistically representative subset of data~approximately 500
events for each dijet mass bin!. For a given event in the
subset, a track was selected from one of the jets, rotated 180°
in the center-of-mass system, and embedded into the other
jet. The full CTC reconstruction was then re-applied. By
comparing the parameters of the reconstructed tracks with
their original values before the embedding, we could deter-
mine whether the embedded track had been properly recon-
structed. This procedure was repeated for each track in each
event of the subset, allowing us to derive an efficiency cor-
rection function.

We chose to embed tracks from real dijet events to ensure
that no biases~due to specific properties of embedded tracks!
would be introduced into the calculated correction functions.
The algorithm used to estimate the efficiency required one to
determine whether the embedded track is found irrespective
of surrounding tracks. In some cases, such a determination
could not be made reliably. For example, if the embedded
track and a nearby track from the original event are very
close, the tracking algorithm may mix the sense wire hits
from both to reconstruct a single track. Sometimes, this
newly reconstructed track may have parameters very differ-
ent from those of the embedded and the original tracks, mak-
ing it impossible to determine if the embedded track survived
the reconstruction.

When looking for the embedded track after reconstruc-
tion, we allowed three options: ‘‘lost,’’ ‘‘found’’ and ‘‘found
with mismeasured parameters.’’ Every track was assigned to
one of the three categories using ax2 based on comparing
the helix parameters of the embedded and reconstructed
tracks. The momentum distribution of all found tracks~in-
cluding those with mismeasured parameters! was then com-
pared to the original momentum distribution before embed-
ding in order to extract the correction functions.

As explained above, in a fraction of cases tracks could not
be unambiguously assigned to any of the three categories.
Assigning these questionable tracks to either ‘‘lost’’ or
‘‘found with mismeasured parameters’’ allowed ‘‘default’’
and ‘‘optimistic’’ parametrizations for the tracking ineffi-
ciency to be defined and provided an estimate of the system-
atic uncertainty.

The scale of the correction depended on the energy and
the cone size because it is larger for higher energies and
smaller cones. Figure 7 shows the obtained efficiency as a
function of j for the lowest and highest dijet mass bins. The
upper curve (f 1) corresponds to the ‘‘optimistic’’ scenario,
while the lower line (f 0) corresponds to the default param-
etrization.

For charged tracks, the average default tracker efficiency
with the vertex cuts of Sec. IX A and within the opening
angleuc50.47 rad around the jet axis was found to be 93%
at the lowest dijet mass and 78% at the highest mass.

C. Uncorrelated background subtraction

Additional corrections to the data were needed for the
underlying event, accelerator induced backgrounds, and sec-
ondary interactions in the same bunch crossing that occurred
very close to the vertex of the primary event.

To estimate the number of these uncorrelated background
tracks in the jet cone, we defined two complementary cones,
as shown in Fig. 8. These cones were positioned at the same
polar angle with respect to the beam line as the original jets
and rotated inf so that they were at 90°~i.e. as far as
possible! with respect to the dijet axis. This can be done
when the dijet axis is within 45°,u,135°. Cones formed
in such a fashion are assumed to collect statistically the same
uncorrelated background as the cones around the jets.

Figure 9 shows the momentum distribution of particles
after background subtraction in the cone of size
uc50.47 rad for the dijet mass bin withMJJ5216 GeV/c2

~upper histogram!. Also shown is the momentum distribution

FIG. 7. The estimated CTC efficiency for tracks falling into the cone of opening angleuc50.47 rad for the lowest and the highest dijet
mass bins (MJJ578 and 573 GeV/c2). The upper line shows the ‘‘optimistic’’ scenario while the lower line corresponds to the default case.
The j51.6 left end point of the lines corresponds to the fitting range used. The right end point is different for different dijet mass bins and
cone sizes.
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of the background subtracted using the complementary cone
defined above. The size of the correction was 0.5–0.6 tracks
per jet for the cone of sizeuc50.47 rad, and about 0.2 tracks
for the cone withuc50.28 rad.

Figure 10 shows the background spectra measured using
the complementary cone technique as a function of logp,
wherep is the track momentum in GeV/c, in the center-of-
mass frame for the cone of sizeuc50.47 rad, for three
choices of dijet mass bins. Note that this correction is inde-
pendent of the jet energy, in agreement with the assumption
that this contribution is mostly due to uncorrelated back-
grounds.

To evaluate uncertainties associated with background sub-
traction using the complementary cone technique, we used
the following procedure. Background spectra were indepen-
dently collected for all nine dijet mass bins. Then, for each

given dijet mass bin, all nine background spectra~one by
one! were subtracted from the raw momentum distribution
for this dijet mass bin. The range of variation~maximum
deviation from the original value! of the final results was
assigned as the systematic error.

D. Correction for photon conversions

For theg conversions that remained after the vertex cuts
were applied, a correction to the momentum distribution was
derived based on Monte Carlo studies. The correction was
small (;3%) in the region where the distributions were fit-
ted ~see Fig. 11!. This allowed us to conservatively estimate
the associated uncertainty by comparing the results with and
without this correction applied.

E. Jet reconstruction effects

To evaluate errors resulting from jet direction mismea-
surement, we utilized Monte Carlo simulations. We com-
pared the momentum distributions for two cases. In one case,
the restricted cones were based on the jet direction as deter-
mined by the detector response from the simulation. Momen-
tum distributions were produced using tracks in such cones.
In the second case, we extracted the true jet direction as
given by theHERWIG Monte Carlo program at the parton
level. In this case, the momentum distributions were built
using restricted cones around the true direction. Dividing one
distribution by another, we obtained the desired bin-by-bin
correction function.

Within the fitted range, the scale of the correction was
consistent with unity, having a spread of approximately 1%

FIG. 8. Illustration of the definition of complementary cones.
The unlabeled arrows are the axes of the cones complementary to
jets 1 and 2.

FIG. 9. Illustration of the complementary cone subtraction for
the bin with dijet massM j j 5216 GeV/c2 and cone withuc

50.47 rad. The upper histogram is the distribution after subtrac-
tion, while the lower one is the background contribution of the
complementary cone that was subtracted.

FIG. 10. Illustration of the complementary cone subtraction. The
background spectra measured using the complementary cone tech-
nique as a function of logp, wherep is the track momentum in
GeV/c. Three choices of dijet mass bins are shown (MJJ578, 216
and 452 GeV/c2) for tracks in the coneuc50.47 rad around the
complementary direction.
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with no observed dependence onj. Because of the small
scale of this correction, this effect was included in the esti-
mates of the systematic uncertainty due to the jet direction
mismeasurement but not explicitly corrected for.

The jet energy correction, mentioned in Sec. VI, accounts
for several effects: the energy response of the calorimeter,
the energy deposited inside the jet cone from sources other
than the parent parton, and the parent-parton energy that ra-
diates out of the jet cone. These corrections are standard for
CDF and are described in detail elsewhere@25#.

To estimate the systematic errors, we used parametriza-
tions that under- or overestimate the jet energy and reclassi-
fied events according to dijet mass. The difference between
the measurements for the default and modified distributions
was assigned as systematic uncertainty.

X. MLLA FITS TO THE MOMENTUM DISTRIBUTIONS

The momentum distributionsdN/dj, corrected for the
various backgrounds and reconstruction inefficiencies de-
scribed in the preceding section, were plotted in nine bins of
dijet mass, as measured by the CDF calorimeter.

Since the energy resolution of the calorimeter is finite, in
a specific dijet mass bin there is always a fraction of events
that really originate in the nearby bins. This contamination
causes a smearing of thedN/dj distribution, which needs to
be taken into account in comparisons with theoretical predic-
tions @Eqs.~3! and~10!#. This was done as follows. For each
experimental dijet mass bin we extracted the true dijet mass
spectrum from theHERWIG simulation at the parton level, by
selecting HERWIG events whose dijet mass, after detector
simulation and reconstruction, falls within the given bin. The
momentum distribution measured in a given bin was fitted

with the theoretical prediction, Eqs.~3! and ~10!, averaged
over the true dijet mass spectrum for that bin. The corre-
sponding systematic uncertainty was estimated by comparing
the above fit with a fit to Eq.~10! evaluated at the mean
unsmeared dijet mass for the bin~i.e. no averaging!.

Figures 12–14 show nine inclusive momentum distribu-

FIG. 11. Correction for the tracks fromg conversions that re-
mained after the vertex cuts were applied. The dijet mass bin is
MJJ5216 GeV/c2 and the cone size isuc50.47 rad. The solid line
corresponds to the fitting range used.

FIG. 12. Inclusive momentum distribution of particles in jets in
the restricted cone of sizeuc50.47 rad for nine dijet masses. Each
distribution is normalized per jet. The line represents the fit of the
data to the MLLA gluon spectrum@Eq. ~10!#.

FIG. 13. Inclusive momentum distribution of particles in jets in
the restricted cone of sizeuc50.36 rad for nine dijet masses. Each
distribution is normalized per jet. The line represents the fit of the
data to the MLLA gluon spectrum@Eq. ~10!#.
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tions of charged particles corresponding to the nine available
dijet mass bins and the restricted cone sizesuc50.47, 0.36,
and 0.28 rad. The bin size inj was 0.1 and was chosen to be
much wider than the resolution of the tracker within the fit-
ted range. The lines correspond to the MLLA two-parameter
fits according to Eq.~10!. Table II contains the results of the
fit, Qe f f andK.

When choosing the left edge of the fitting range, one
needs to remember that the MLLA calculations are valid
only for x!1 ~see Sec. 4!. The default left edge of the fitting
region was chosen to bej51.6 (x.0.2).

On the other side of the spectrum, the MLLA imposes a
limitation on the allowed transverse momentumkT of the
particles with respect to the jet (kT.Qe f f). This results in a
limit on the minimum allowed momentum of particles:p
5kT /sinuc.Qeff /sinuc . The MLLA spectrum rapidly falls
to zero at values ofj exceedingjmax5 log(Ejetuc /Qeff).
When fitting, the right edge was chosen to avoid this region.

The excluded regions contain tails of the momentum dis-
tributions with relatively small fractions of particles. By
varying the left and right edges, we evaluated the systematic
errors due to the choice of fitting range. These errors never
dominated the overall systematic uncertainty.

Systematic uncertainties for the fitted parameters were es-
timated by varying the respective corrections and cuts and
refitting the distributions for the parametersK andQe f f . As
an example, Table III shows the breakdown of the contribu-
tions of various systematic uncertainties for the fitted param-
eters for the cone of sizeuc50.47 rad and the dijet mass bin
MJJ5216 GeV/c2.

The overall qualitative agreement between data and
MLLA is very good. However, there is a small but statisti-
cally significant difference in shape between the data and the

predictions, the data showing a steeper rise and fall around
the peak~Figs. 12–14 and also Fig. 15! than the MLLA
prediction. The values of thex2 shown in Table II are based
on statistical errors only and refer to the distributions with all
the default corrections and cuts described in Sec. IX.

We investigated whether these differences in shape could
be accounted for by the systematic errors. For example, the
CTC tracking correction, the largest correction applied to the
data, was analyzed by refitting the momentum distributions
using the CTC efficiency correction parametrized as follows:

f ~pCTC!5 f 01pCTC~ f 12 f 0!,

wherepCTC50 corresponds to the default case (f 5 f 0), and
the parametrization withpCTC511 ( f 5 f 1) corresponds to
the ‘‘optimistic’’ correction. We refitted the distributions
treatingpCTC as a free parameter bounded by21 and 1. The
distributions were also re–fitted using the bin-by-bin CTC
correction~shown as points on Fig. 7!. No significant im-
provements inx2 were found.

XI. INTERPRETATION OF THE RESULTS

Figure 16 showsQe f f obtained from the fits to the mo-
mentum distributions. One can see thatQe f f tends to become
smaller for larger energies and, possibly, for smaller angles.
The trends are statistically significant~the individual system-
atic uncertainties derived in different dijet mass bins are
strongly correlated!. The slight drift in the value ofQe f f may
indicate the presence of higher order contributions and/or
non-perturbative effects at the hadronization stage. However,
the moderate scale of these variations suggests that the over-
all shape of the momentum distributions is, indeed, mostly
governed by the perturbative stage of jet fragmentation.

For the final reported value ofQe f f , we calculated the
mean of the 27 measurements shown in Fig. 16. The associ-
ated error is estimated by taking the difference between the
maximum and minimum of the 27 values and dividing it by
2. After rounding off the result, we arrive atQe f f5230
640 MeV. Note that this error covers the drift of the param-
eter Qe f f , which is not predicted by the theory. Therefore,
the error should be interpreted as a range of values ofQe f f
suitable for the dijet energies used in this analysis. Figure 16
also shows the results for the fitted parameterQe f f from
e1e2 @19–21# and ep @29# data, showing good agreement
and, possibly, the same trends.

Regarding the normalization parameterK, two consider-
ations have to be addressed. First, according to Eq.~11!, K
depends linearly oneg , and fitting the distribution for the
slope and intercept can resolve bothKLPHD

charged andr. We also
examine whetherK remains cone size independent for a
fixed dijet mass.

Although the value ofQe f f is completely defined by the
shape of the distribution,Qe f f also affects the distribution
amplitude: the smallerQe f f , the higher the distribution.
Therefore, the value ofQe f f is strongly correlated with the
fitted value ofK. If the shape of the distributions is not in
perfect agreement with MLLA, the fit will try to tuneQe f f to
improve the match. SinceQe f f is also tied to the amplitude

FIG. 14. Inclusive momentum distribution of particles in jets in
the restricted cone of sizeuc50.28 rad for nine dijet masses. Each
distribution is normalized per jet. The line represents the fit of the
data to the MLLA gluon spectrum@Eq. ~10!#.
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TABLE III. Systematic uncertainties for dijet mass bin withMJJ5216 GeV/c2 and coneuc50.47 rad.

MLLA fit Peak position
Origin of uncertainty sK /K sQe f f

/Qe f f sj0
/j0

Statistical uncertainty 0.1% 0.4% 0.2%

Uncertainties related to the event selection:
Cut on soft jets 0.2% 0.5% 0.0%
Cut on jet balance 0.4% 0.5% 0.1%
Cut on number of vertices 1.4% 0.9% 0.2%
Jet uhu cut 0.4% 1.2% 0.1%

Other uncertainties:
Track vertex cuts 5.5% 3.4% 0.5%
CTC efficiency 2.5% 1.7% 0.3%
Uncorrelated background 0.2% 0.1% 0.1%
g-conversion correction 2.2% 2.7% 0.6%
Jet energy measurement~total! 3.5% 4.3% 0.7%
Jet direction measurement 0.3% 0.4% 0.1%
Choice of fitting range 1.1% 2.0% 0.2%

TABLE II. Fitted values ofK andQe f f ~MeV! from inclusive momentum distributions of charged particles in cones of sizes 0.28, 0.36,
and 0.47 rad around the jet axis for all available dijet mass samples. Each distribution was fitted independently. The first error is statistical
and the second one is systematic. Note that the systematic uncertainties are strongly correlated.

Dijet mass (GeV/c2) Coneuc50.28 Coneuc50.36 Coneuc50.47

78 K50.59060.00560.059 K50.61160.00460.043 K50.63460.00460.048
Qe f f525965629 Qe f f526463615 Qe f f527464624

x2/d. f .527/16 x2/d. f .556/20 x2/d. f .569/22
101 K50.57460.00660.038 K50.60360.00560.038 K50.63360.00660.040

Qe f f523965620 Qe f f524264612 Qe f f526364614
x2/d. f .526/20 x2/d. f .528/24 x2/d. f .539/25

133 K50.56060.00460.037 K50.57760.00460.037 K50.59660.00460.038
Qe f f525064617 Qe f f524764619 Qe f f526464620

x2/d. f .532/22 x2/d. f .547/25 x2/d. f .542/27
171 K50.55160.00260.034 K50.57060.00260.036 K50.59660.00160.039

Qe f f522962612 Qe f f523562612 Qe f f525362618
x2/d. f .5106/26 x2/d. f .5108/28 x2/d. f .5132/29

216 K50.53660.00160.037 K50.55160.00160.039 K50.56960.00160.042
Qe f f523061617 Qe f f523561619 Qe f f524161618
x2/d. f .5306/27 x2/d. f .5357/29 x2/d. f .5408/31

274 K50.52960.00160.040 K50.54660.00160.041 K50.56060.00160.042
Qe f f523361621 Qe f f523761615 Qe f f524761618
x2/d. f .5169/29 x2/d. f .5214/31 x2/d. f .5230/33

351 K50.50360.00160.048 K50.51660.00260.043 K50.52160.00260.044
Qe f f522762618 Qe f f522662617 Qe f f522662618
x2/d. f .5109/32 x2/d. f .585/34 x2/d. f .590/36

452 K50.45360.00260.047 K50.47060.00360.048 K50.47860.00360.042
Qe f f520463619 Qe f f521164622 Qe f f521263617

x2/d. f .576/35 x2/d. f .585/37 x2/d. f .579/39
573 K50.39460.00660.049 K50.40660.00660.049 K50.41560.00360.050

Qe f f517867625 Qe f f518066626 Qe f f518466629
x2/d. f .569/39 x2/d. f .561/41 x2/d. f .554/43
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of the distribution, changingQe f f will affect K. Table IV
shows the values ofK obtained from the fits of the momen-
tum distributions withQe f f fixed at 230 MeV for all 27 com-
binations.

To studyK as a function ofeg , one needs to evaluateeg

for the data in each of the dijet mass bins. We did this by
using theHERWIG 5.6 Monte Carlo program with CTEQ4M
parton distribution functions. To evaluate the uncertainties,
we used the CTEQ4HJ set. The predicted fraction of gluon
jets monotonically decreases fromeg.62–64 % of all jets at
MJJ580 GeV/c2 to .22–26% at 600 GeV/c2 ~variations
result from using different parton distribution functions!.

Figure 17 showsK as a function ofeg for the nine dijet
mass data samples for the restricted cones of sizesuc
50.28, 0.36, and 0.47 rad. The results of the linear fits are
shown on the plot. The error inr and the first error in
KLPHD

charged are statistical and experimental systematic errors
added in quadrature. A large fraction of the systematic error
comes from varying the assumptions on the degree of corre-
lation between individual experimental systematic uncertain-
ties in the determination ofK. We also fitted the same data
usingK ’s obtained from fits of the momentum distributions
with Qe f f fixed at 190 and 270 MeV. The corresponding
variations were included in the systematic error. The uncer-
tainty resulting from the use of different parton distribution
function ~PDF! sets was small. The second error inKLPHD
reflects the theoretical uncertainty of60.2 in FnMLLA51.3.
For the final reported values, we use the same approach as
for Qe f f . Taking the unweighted average of the results for
the three cone sizes, and treating the differences between the
individual measured values and the average as an additional
systematic uncertainty, we arrive atr 5Npartons

g-jet /Npartons
q-jet

51.960.5 andKLPHD
charged50.5660.0560.09.

Table IV shows that, for each dijet mass value,K is stable
with respect to the opening angle, as predicted by MLLA.
However, we observe a slight decrease towards the smaller
cone sizes. Given the strong correlation between the system-
atic uncertainties for the three cones, this small variation of
K is statistically significant.

XII. PEAK POSITION OF THE MOMENTUM
DISTRIBUTION

The value ofQe f f can also be extracted from the momen-
tum distribution peak position,j05 log 1/x0 @see Eq.~4!#.
This measurement is somewhat different from the direct fits
to the MLLA-predicted function: this measuredQe f f de-
pends only on the momentum distribution peak position, and
does not depend on the distribution shape as a whole. Table
V lists peak positions and corresponding values ofQe f f for
the nine dijet mass bins and the three restricted cone sizes.
Peak positions were found with a simple Gaussian fit in the
vicinity of the distribution maximum (Dj.61). The qual-
ity of the fit to the distributions for the peak position was
good.

Figure 18 shows the correlation between the values of
Qe f f extracted from the fits of shapes of the momentum dis-
tribution ~Table II! and from the fit for the peak position
~Table V!. One can see that these two are in good agreement,
a demonstration of self-consistency of the model.

To verify the predictedEjetsinuc /Qeff scaling, we plotted
the peak positions as a function ofM j j sinuc52Ejetsinuc
~Fig. 19!. One can see that all points from three different
opening angle data sets, being plotted versusEjetsinuc , do

FIG. 15. The (dN/djData2dN/djFIT)/dN/djFIT distribution
for all dijet mass bins and for the restricted cone sizeuc

50.47 rad. Errors are statistical only. Fit curves correspond to Fig.
12 and are obtained by independently fitting each of the nine mo-
mentum distributions for the parametersK andQe f f .

FIG. 16. Fitted values of the MLLA parameterQe f f as a func-
tion of the dijet mass, for three cone sizes,uc50.28, 0.36 and 0.47
rad. Each of the 27 distributions was fitted independently. The er-
rors are dominated by the systematic uncertainties. Points corre-
sponding to the cone sizesuc50.28 and 0.47 are shifted left and
right with respect to the dijet mass values they correspond to in
order to avoid visual confusion. The reported value isQe f f5230
640 MeV, and the shaded area shows this range. For illustration,
the data fromeeandepexperiments are also shown. The slight drift
in Qe f f may be due to higher order and/or non-perturbative effects.
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cluster along the same line, which confirms theEjetsinuc
scaling. AssumingQe f f is a constant, a fit to the CDF data in
Table V givesQe f f5223620 MeV. This result has a smaller
uncertainty than the one reported in Section XI, since we
assume here thatQe f f is independent ofEjet . However, Fig.
16 suggests that this may not be true. We therefore prefer to
quote theQe f f value of Sec. XI as our final result.

Also plotted in the figure are the data points from ALEPH
@30#, DELPHI @31#, L3 @20,32#, Mark II @33#, OPAL @21,34#,

TOPAZ @35# and ZEUS@29#. One should keep in mind that
results quoted from other experiments were obtained by
counting all particles in the full solid angle fore1e2 experi-
ments or the entire jet hemisphere forepexperiments, which
technically corresponds to the opening angleuc590°.
Therefore, these data did not verify theEjetsinuc scalingper

se. However, the fact that all measurements frompp̄, epand
eecollisions nicely overlap and complement each other has a
significance of its own. First, it implies jet universality in
various environments, and second, the validity of the MLLA
description of jet fragmentation over two orders of magni-
tude in the range of jet energies.

XIII. COMPARISONS TO HERWIG 5.6

In our previous studies@9#, theHERWIG Monte Carlo pro-
gram was found to overestimate the charged particle multi-
plicity in jets by approximately 11%. Here, we compared
differential inclusive momentum distributions of charged
particles toHERWIG 5.6predictions and found the same trend.

Figure 20 shows the measureddN/dj momentum distri-
butions~central plots from Figs. 12–14! compared to predic-
tions of HERWIG 5.6 that have been smeared for the detector
response and corrected in the same manner as the data~i.e.
no correction for the contamination from neighboring dijet
mass bins was performed!. HERWIG was scaled by a factor of
0.89 and, after rescaling, follows the data quite well. Other
dijet mass bin data follow the same pattern.

Note that systematic uncertainties and corrections applied
to the data are dominated by different effects in the soft and
hard part of the spectrum~e.g. the CTC efficiency effects are
more important for high momentum particles while the be-
havior of the soft side of the spectrum is more affected by the
choice of the vertex cuts applied to removeg conversions!.
This results in low correlations of the systematic uncertain-
ties for the data in different ranges ofj, making the 11%
difference statistically significant.

Figure 1, which shows thedN/dkT distributions in data
and inHERWIG, is yet another confirmation of the same 11%
effect. Note that this distribution has low correlation with the
dN/dj spectrum, as the tracks in a particular bin of the

TABLE IV. Fitted values ofK from inclusive momentum distributions of charged particles in cones of sizes 0.28, 0.36, and 0.47 rad
around the jet axis for all available dijet mass samples with fixed parameterQe f f5230 MeV. The first error is statistical and the second one
is systematic. Note that the systematic uncertainties are strongly correlated.

Mean dijet mass
(GeV/c2) Coneuc50.28 Coneuc50.36 Coneuc50.47

78 K50.55860.00360.053 K50.59160.00360.047 K50.59860.00360.048
101 K50.56760.00460.038 K50.59360.00460.044 K50.60560.00460.040
133 K50.54560.00360.039 K50.56360.00360.046 K50.57060.00360.042
171 K50.55260.00160.039 K50.56560.00160.040 K50.58060.00160.050
216 K50.53560.00160.040 K50.54760.00160.042 K50.56260.00160.043
274 K50.52560.00160.049 K50.54160.00160.044 K50.54960.00160.045
351 K50.50460.00160.047 K50.51960.00160.046 K50.52560.00160.047
452 K50.46960.00260.046 K50.48260.00260.045 K50.48960.00260.049
573 K50.42460.00460.051 K50.43560.00460.051 K50.44260.00460.050

FIG. 17. ParameterK as a function ofeg . The results of the
linear fits for r 5Npartons

g-jet /Npartons
q-jet and KLPHD

charged @see Eq.~11!# are
shown on the plot. The error inr and the first error inKLPHD

charged are
combined statistical and systematic experimental uncertainties. The
second error inKLPHD

charged corresponds to the assumed theoretical
uncertainty of 0.2 on the value of 1.3 forFnMLLA .
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dN/dkT distribution come from many bins in thedN/dj
spectrum.

XIV. SUMMARY

We have measured inclusive momentum distributions of
charged particles in jets for dijet events with a wide range of
dijet masses, 80–600 GeV/c2. The analysis was done for

particles in restricted cones around the jet direction (uc
50.28, 0.36, 0.47 rad!.

The data were compared to calculations carried out in the
framework of the modified leading log approximation in
conjunction with the hypothesis of local parton-hadron dual-
ity. The data were found to follow the theoretical prediction

TABLE V. Peak positionj0 and correspondingQe f f for nine dijet mass bins and three opening angles. The first error is statistical and the
second one is systematic.

Mean dijet mass
(GeV/c2) Coneuc50.28 Coneuc50.36 Coneuc50.47

78 j052.6460.0160.05 j052.7860.0160.05 j052.9160.0160.05
Qe f f524763621 Qe f f525664620 Qe f f526964623

101 j052.8560.0160.03 j052.9860.0160.03 j053.0860.0160.03
Qe f f523364611 Qe f f523865612 Qe f f526265614

133 j053.0060.0160.04 j053.1560.0160.04 j053.2660.0160.05
Qe f f524064615 Qe f f524364615 Qe f f526164619

171 j053.1860.0060.03 j053.3260.0160.04 j053.4460.0060.04
Qe f f523161612 Qe f f523562614 Qe f f525162617

216 j053.3360.0060.04 j053.4760.0060.04 j053.6160.0060.04
Qe f f523061617 Qe f f523361616 Qe f f524161616

274 j053.4660.0060.05 j053.6160.0060.04 j053.7460.0060.04
Qe f f523861619 Qe f f523661615 Qe f f524661618

351 j053.6360.0160.04 j053.8060.0160.04 j053.9660.0160.05
Qe f f523062616 Qe f f522462616 Qe f f522263618

452 j053.8560.0160.06 j053.9760.0160.07 j054.1460.0260.07
Qe f f520764621 Qe f f521664625 Qe f f521267625

573 j054.0660.0360.07 j054.2160.0360.10 j054.3560.0260.09
Qe f f518769623 Qe f f518768629 Qe f f519068628

FIG. 18. Correlation between values ofQe f f from the fit accord-
ing to Eq.~10! and from the Gaussian fit for peak position, Eq.~4!.
Uncertainties~not shown! are dominated by the systematic errors.

FIG. 19. Momentum distribution peak position as a function of
M j j sinuc52Ejetsinuc . Also plotted in the figure are the data points
from eeandep experiments. A fit of the CDF data to Eq.~4! gives
Qe f f5223620 MeV.
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rather well in the region where the MLLA is applicable.
Quantitatively, we observe a 5–10 % discrepancy~see Fig.
15! between the experimental and theoretical shapes of the
momentum spectra~note that the shape depends only onQe f f
and is independent of the choice of fit values forK, FnMLLA ,
and r ). A fit of the shape of the distributions yieldsQe f f
5230640 MeV with Qe f f decreasing for larger dijet
masses. Measurement of the momentum distribution peak

position agrees well with the MLLA. A fit of the evolution of
the peak position with dijet mass givesQe f f5223
620 MeV, in agreement with the fits to the overall indi-
vidual momentum distribution shapes. TheEjetsinuc scaling
is verified for the first time.

The fact that the content of quark and gluon jets in data
varies with dijet mass allowed us to extract two MLLA pa-
rameters from the evolution of the charged particle momen-
tum spectra: the ratio of multiplicities in gluon and quark
jets, r 5Npartons

g-jet /Npartons
q-jet 51.960.5, and the ratio of the

number of charged hadrons to the number of partons gener-
ated in a jet,KLPHD

charged50.5660.10.
HERWIG 5.6 was found to overestimate the overall multi-

plicity of charged particles in jets by about 11%. This excess
appears to be approximately independent of particle mo-
menta within a jet.
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