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ABSTRACT

Computer Vision and Simulation Tools For Three-Dimensional Random Antenna Arrays

Joshua Thomas Ruff
Department of Electrical Engineering

Texas A&M University

Research Advisor: Dr. Gregory Huff
Department of Department of Electrical and Computer Engineering

Texas A&M University

This research project aims to develop and improve auxiliary tools which aid in ongoing re-

search on beamforming with random antenna arrays. One of the challenges of conducting research

on random arrays is the tedious nature of preparing electromagnetic simulations to test beam-

forming algorithms. This project presents an automation framework written in Python which will

expedite the setup of simulations and reduce the room for error during this process. A computer

vision system designed to locate the feedline of the patch antennas used in this array is used in the

random array lab setup. Refinements to the light filtering software and the position finding soft-

ware are presented, and a machine learning approach for distinguishing between different antennas

is explored.

ii



ACKNOWLEDGMENTS

I would like to thank Dr. Gregory H. Huff and all other members of the Huff Research Group

who provided help, advice, and guidance throughout this process. I would also like to thank

Deanna Sessions and Jacob Freking for taking the time to edit the drafts of this thesis.

iii



CONTRIBUTORS

The Medusa system was developed in the Huff Research Group Labratory over the course

of several years. Modifications to the computer vision system and the development of the dual

quaternion interface for HFSS were done in close collaboration with Jacob Freking, who converted

the code in Appendix D and Appendix E from Python2 to Python 3. Steven Yeh provided test cases

for the random array generator.

All other work conducted for this thesis was completed by the student independently.

iv



NOMENCLATURE

HRG Huff Research Group

HFSS Ansys HFSS, a High Frequency Electromagnetic Simulation
Software

Phased Array An antenna array with phased inputs

UAV Unmanned Aerial Vehicles

WSN Wireless Sensor Network

CAD Computer Aided Design

API Application Program Interface

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTRIBUTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Random Phased Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computer Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Limitations of Current Computer Vision System . . . . . . . . . . . . . . . 2
1.3 Electromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Goals of an Automation Framework for HFSS . . . . . . . . . . . . . . . . 4
1.3.2 Existing Scripting Capabilities of HFSS . . . . . . . . . . . . . . . . . . . 4

1.4 Dual-Quaternion Coordinate System Transformation . . . . . . . . . . . . . . . . 5
1.4.1 Complex Numbers and 2D Rotation Matrices . . . . . . . . . . . . . . . . 6
1.4.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Unit Quaternions and Rotations . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Dual Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.5 Dual Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.6 Representing Both a 3-D Rotation and a Translation with Dual Quaternions 14

2. METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Electromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Abstraction Layers in the HFSS Automation Framework . . . . . . . . . . 15
2.1.2 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Device Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Design Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Computer Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Fixing Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Different LED Configurations . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



2.2.3 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . 27

3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Electromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Continuing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Computer Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

APPENDIX A: SOURCE CODE REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . 34

vii



LIST OF FIGURES

FIGURE Page

1.1 Kinect Computer Vision Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Computer Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Computer Vision Rotation Causing Failure . . . . . . . . . . . . . . . . . . . . . . 3

2.1 HFSS Script Abstraction Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 HFSS Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Local Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Coax Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Patch Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Full Setup HFSSl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Halos Old and New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Recognition Old and New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Rotation Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Multiple Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

viii



LIST OF TABLES

TABLE Page

3.1 Time reduction automating HFSS vs CADing by hand . . . . . . . . . . . . . . . . 29

ix



1. INTRODUCTION

1.1 Random Phased Arrays

Random phased arrays show a variety of advantages over more traditional antenna array ge-

ometries. Random arrays allow for sidelobe reduction without amplitude tapering[1][2][3]. The

development of random antenna arrays is critical to the maturation of distributed beamforming

techniques which can be used for less conventional mutable communication networks[4]. Ran-

dom arrays provide the opportunity to bring phased array beamforming to nontraditional platforms

such as phased arrays on networks of satellites[2], phased arrays on morphing formations of un-

manned aerial vehicles (UAVs)[1], and grounded wireless sensor networks (WSNs)[1][4]. An

analytical treatment of the problem of volumetric spherical random antenna arrays was provided

by Buchanan[1]. The development of beamforming algorithms in volumetric random arrays also

Figure 1.1: Random Array with Kinect Computer Vision Setup

presents unique challenges which were not present during the development of classical phased ar-

rays. The exact location of each antenna is known upon the construction of the array in a traditional

array. In a random array, the exact location of each antenna in a 3-dimensional space needs to be
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actively measured to apply phasing as well as to replicate the geometry in simulation[5]; tasks

which are made more challenging by the entropy innate in random arrays.

1.2 Computer Vision System

One method with which antenna location can be determined is by use of computer vision

systems[6]. Computer vision systems vary in sophistication but have the advantage of being faster

than measuring element placement by hand; however, they bring their own set of challenges to the

problem. The current setup in the Huff Research Group lab for measuring antenna position (shown

in Figure 1.1) involves using an XBOX Kinect to locate the feed point. First, light from the LEDs

positioned at known distances from each antenna’s feed point is filtered (Figure 1.2 Left). Next,

boxes are drawn around sharp contours in the filtered image (Figure 1.2 Center). The location algo-

rithm looks for two larger recognition rectangles, each completely containing two smaller location

rectangles (implying no overlap). When this case exists, the antenna is successfully recognized by

the software. The center coordinates of each of the location rectangles are combined with prior

knowledge of the position of each LED to approximate the feed point position(Figure 1.2 Right).

Figure 1.2: Computer Vision System: (left to right) Patch Antenna with LEDs Filtered, Boxes
Drawn Around Sharp Filtering Contours, Successful Feed Point Location

1.2.1 Limitations of Current Computer Vision System

There are a number of limitations to the computer vision system in its current state. Ambi-

ent light can significantly reduce the effectiveness of this system which relies on sharp changes
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in color and intensity to locate objects. Potential for improvement of this system is found in the

implementation of more sophisticated computer vision algorithms and filtering techniques to the

measurement software. The existing lab setup has additional limitations. Firstly, certain rotations

will cause the antenna recognition system by to malfunction by making the recognition rectan-

gles to overlap (Figure 1.3). Another limitation is the ability to only measure one antenna at a

Figure 1.3: Antenna recognition system failure caused by overlapping boxes

time, and one type of antenna at a time. With each additional antenna measured simultaneously,

the complexity of a potential location algorithm increases significantly. Mixing in different types

of antennas, each with its own pattern of marking LEDs, also compounds the problem. In this

vein, the application of machine learning techniques with computer vision offers a promising al-

ternative to the existing approach to element location finding, and thus will be investigated for this

application.

1.3 Electromagnetic Simulations

Modeling and simulating a system in Ansys HFSS, an electromagnetics CADing software, is

a critical part of the design process for any electromagnetics project. Once a lab setup has been

measured, the orientations, magnitude and phase tapering, and positions for each element of the
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random array must be entered into HFSS by hand; a process which becomes tedious and time

consuming as the number elements in the array increase. The repetetiveness of specifying large

numbers of array elements creates a situation where automated drawing is advantageous .

1.3.1 Goals of an Automation Framework for HFSS

The first goal of any automation framework for HFSS would be to speed up the process of

modeling random arrays. Currently, the process for specifying a random array can take several

hours depending on the number of elements, and with an automation framework this could drop

down to a few minutes. The speed and convenience with which this is created can then be leveraged

to create other features. Positions and orientations measured through the computer vision system

would be able to be quickly and automatically replicated in HFSS. This could also be used to

automate the process of randomly generating large numbers of arrays, simulating them in HFSS,

and stripping out the desired results. Another application of an automation framework is the use of

alternative coordinate systems. HFSS can only specify drawings in cartesian coordinate systems,

while Quaternions and Dual Quaternions are often used for the sorts of aerial vehicle systems

random arrays will be applied to. For testing puproses, it is then desirable to be able to ’sample’

the Dual Quaternion positions and orientations of the vehicles, then specify and simulate each

sampled configuration in HFSS. Longer term goals include expanding the HFSS native capabilities

through the implementation of functions capable of drawing fractal structures or more challenging

parametric structures than can be handled by the native parametric drawing capability

1.3.2 Existing Scripting Capabilities of HFSS

A Visual Basic API for HFSS exists, as does a method to call functions from this API through

Python code; however, the syntax for this is unnatural and results in code which stylistically is

quite different from Python. As an example take the following code sample which shows the

native environment’s CreateSphere method.

oEditor.CreateSphere(

[
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"NAME:SphereParameters",

"XCenter:=" , "0mm",

"YCenter:=" , "0mm",

"ZCenter:=" , "0mm",

"Radius:=" , "1.01980390271856mm"

],

[

"NAME:Attributes",

"Name:=" , "Sphere1",

"Flags:=" , "",

"Color:=" , "(132 132 193)",

"Transparency:=" , 0,

"PartCoordinateSystem:=", "Global",

"UDMId:=" , "",

"MaterialValue:=" , "\"vacuum\"",

"SolveInside:=" , True

])

Numerical values for the sphere’s coordinates and radius have to be concatenated with their

respective units, then passed to the HFSS environment as part of an array containing other string

literals. This is the case for all other drawing functions, and leads to a situation where it would

be advantageous to build a layer of abstraction on top of the HFSS API to minimize syntax errors.

Such a library could also provide for the use of design variables to allow models to be slightly

modified after construction, and facilitate the drawing of devices in local coordinate systems.

1.4 Dual-Quaternion Coordinate System Transformation

HFSS posesses a limited method of transforming coordinate systems natively. Relative coor-

dinate systems can be specified by a translation of the origin and directional vectors of the X-axis

and Y-axis. The directional vectors together encompass all the information from any rotations per-
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formed on the coordinate system relative to the origin. This means that when simulating an array

or some other structure defined using an alternative coordinate system, calculations to model this

in HFSS must be done and entered by hand, which, in turn, becomes another natural way to extend

the automation framework.

Quaternion and dual quaternion representations have a number of advantages over traditional

3x3 rotation matrices. Quaternion multiplication requires fewer arithmetic operations than 3x3

matrices[7]. Quaternion products are easily renormalized, whereas the nearest orthonormal ma-

trix to the result of 3x3 matrix multiplication is not so easily found. These computational effi-

ciencies are an advantage of quaternions over more traditional representations. Quaternions also

avoid some singularities which plague 3x3 matrix representations such as gimbal lock[8]. Because

of these features, quaternion systems find wide use in robotics, computer graphics, aircraft, and

spacecraft navigation[7]. Dual-quaternions are needed to represent both a translation and rotation.

Consequently, one focus of this paper will be the theory behind and methods necessary to represent

a dual-quaternion system in HFSS.

1.4.1 Complex Numbers and 2D Rotation Matrices

Quaternion coordinate systems use complex numbers as a method for representing rotations.

McDonald’s paper [9] draws an analogue between complex numbers and rotation matrices which

is very useful for developing an intuition for quaternion transformations. He begins with the subset

of 2x2 scale matrices of the form:

A =

a 0

0 a


in which matrix addition and subtraction behave the same as real number addition and subtraction.

These matrices function as an analogue for real numbers.

Next he introduces the matrix :

I =

0 −1
1 0

 =

cos(90◦) − sin(90◦)

sin(90◦) cos(90◦)


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What makes I unique is I2 equals the scale matrix [−1]. Where in normal complex numbers,

i =
√
−1 wasn’t really something that existed, in matrix form the square root of negative one

exists in the form of I . This implies that a unit complex number cosθ + jsinθ equals:

R =

cos θ 0

0 cos θ

+

 0 − sin θ

sin θ 0

 =

cos θ − sin θ

sin θ cos θ

 (1.1)

One of the subtleties of quaternion notation is the fact that every vector is a complex number[9].

Purely real vector notation would show matrix multiplication as

cos θ − sin θ

sin θ cos θ


x
y

 =

x cos θ − y sin θ
x sin θ + y cos θ


However, if the vector is interpreted as a complex number, multiplication by the rotation matrix

would be notated as:cos θ − sin θ

sin θ cos θ


x −y
y x

 =

x cos θ − y sin θ −y cos θ + x sin θ

y cos θ + x sin θ x cos θ − y sin θ

 (1.2)

The significance is that both methods of representing vectors give the same result:

(x cos θ − y sin θ) + i(y cos θ + x sin θ)

1.4.2 Quaternions

Quaternions are formally defined as an extension of complex numbers[7]:

q = w + ix+ jy + zk (1.3)
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where i, j, and k are orthogonal imaginary unit vectors under the constraints:

i2 = j2 = k2 = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ki = −j

(1.4)

These rules are made more intuitive by McDonald’s method[9] of building a 3D analogue of the

relationship between complex numbers and rotations in a 2D space. Because quaternions consist

of 4 elements, a 4x4 matrix is necessary to fully represent them. Similar to the 2x2 case, real

numbers are represented by 4x4 matrices of the form:

[A] =



a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 a


There are multiple solutions to

√
[−1] in 4x4 matrices. The following three are chosen to yield a

matrix representation of quaternions which most closely follows the 2x2 analogue:

i =



0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


j =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


k =



0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


(1.5)

The rules defined in (1.4) can be derived directly from multiplying the imaginary matrices in (1.5).

Furthermore, these matrix definitions can be combined with (1.3) to yield a quaternion fully em-
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bedded into a 4x4 matrix:

q =



w −z y x

z w −x y

−y x w z

−x −y −z w


(1.6)

Another notation for quaternions is useful for describing certain properties[10]:

q =< w, ~u > where ~u = [x, y, z]T (1.7)

With this, quaternion addition and multiplication by scalars can be defined.[7]

aq1 + bq2 = bq2 + aq1 =< aw1 + bw2, a ~u1 + b ~u2 >

Quaternion multiplication can also be defined, but like matrix multiplication is not commutative

q1q2 =< w1w2 − ~u1 · ~u2, w1 ~u2 + w2 ~u1 + ~u1 × ~u2 >

q2q1 =< w1w2 − ~u1 · ~u2, w1 ~u2 + w2 ~u1 − ~u1 × ~u2 >

The conjugate of a quaternion is found similar to complex conjugates, by negating every complex

term:

q∗ = w − ix− jy − kz (1.8)

By plugging the conjugate definition from (1.8) into the matrix form of a quaternion (1.6), it

becomes evident that for unit quaternions, q∗ = qT . Finally, with the definition of q∗, the norm

square and thus inverse quaternion can be defined:

||q||2 = qq∗ = w2 + x2 + y2 + z2 = q · q (1.9)

q−1 = (1/||q||2)q∗ = q∗ for ||q||2 = 1 (1.10)

9



1.4.3 Unit Quaternions and Rotations

The intutitive way to define quaternion rotation is now to directly extend the complex rotation

matrix method R~v into three dimensions. Before this can be attempted, ~v needs to be expressed in

quaternion notation, which is accomplished by assigning a w component of 0: qv =< 0, ~v >.

Quaternions with unit magnitude are used to represent rotations in three dimensions to leverage

the fact that q−1 = q∗. A rotation of θ around the axis in the direction of û is represented in unit

quaternion notation as:

qu =< cos θ, sin(θ)~u > (1.11)

As an example, (1.12) shows a quaternion rotation by θ around the z axis, and extends this to

the matrix notation introduced in (1.6):

qz =< cos θ, sin θ[0, 0, 1] >= cos θ + sin θk



cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ


(1.12)

The matrix in (1.12) shows how the 2-D rotation matrix from (1.1) is now embedded into the top

left corner of the quaternion representation of the transformation. The particular choices of the

i, j, and k matrix allowed for this to occur. The bottom right corner the quaternion contains the

information for a rotation by −θ, which will represent an extra rotation in the w − z plane. This

is where the limitation of the rotation matrix analogue breaks down and can clearly be shown by

applying this rotation to ~v = [1, 0, 1]:

~v′ = qz~v = (cos θ + k sin θ)(i+ k) = i cos θ + k cos θ + ki sin θ + k2 sin θ

= − sin θ + i cos θ + k cos θ + j sin θ =< − sin θ, [cos θ, sin θ, cos θ] >

(1.13)
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compare this with the expected result:

~v′ =< 0, [cos θ, sin θ, 1] > (1.14)

The x and y components of the operation in (1.13) were rotated corectly. However, the rotation in

the w-z plane reduced the value of the z coordinate, and added a w component to what was sup-

posed to be only a vector. This is a limitation of building directly on the rotation matrix analogue,

the method of rotation will need to be modified from this.

To show where the modification comes from, McDonald first starts by reversing the order of

the rotation:

~v′ = ~vqz = (i+ k)(cos θ + sin θk) = i cos θ + k cos θ + ik sin θ + k2 sin θ

= i cos θ + k cos θ − j sin θ − sin θ =< − sin θ, [cos θ,− sin θ, cos θ] >

(1.15)

This result reversed the direction of the desired rotation about the z axis, but the w-z plane rotation

remains the same. To rectify this, the same operation is performed with q−1z .

~v′ = ~vq−1z = (i+ k)(cos θ − sin θk) = i cos θ + k cos θ + ik sin θ − k2 sin θ

= i cos θ + k cos θ + j sin θ + sin θ =< sin θ, [cos θ, sin θ, cos θ] >

(1.16)

Now the rotation about the z axis is correct, and the w-z plane rotation is reversed from that of

(1.13). The final result of all this is quaternion rotations are performed with two operations on ~v:

~v′ = qz~vq
−1
z (1.17)

The rotation in (1.16) now rotates v by θ about the z axis twice, while the opposing w-z rotations

from qz and q−1z cancel with one another. Thus (1.18) is the final form of quaternion rotation about

axis ~u, with the definition of qu from (1.11) modified to eliminate the double rotation about the z
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axis:

~v′ = qu~vq
−1
u = qu~vq

∗
u

qu =< cos(θ/2), sin(θ/2)~u >

(1.18)

Rotations can also be composed from multiplications of multiple quaternions[7]:

v
′
= (pq)v(pq)∗ (1.19)

This fully specifies rotations around any axis. However, to fully specify translations as well as

rotations, quaternions need to be extended to a dual number system.

1.4.4 Dual Numbers

Goddard provides the background on dual numbers in his dissertation[7]. He begins with the

definition of a dual number:

d = a+ εb where ε2 = 0 (1.20)

He then defines a variety of operations for dual numbers. Note the similarity to complex number

operations.

• Addition:

d1 + d2 = (a1 + εb1) + (a2 + εb2) = a1 + a2 + ε(b1 + b2) (1.21)

• Multiplication:

d1d2 = (a1 + εb1)(a2 + εb2) = a1a2 + ε(a1b2 + b1a2) (1.22)

• Conjugation:

d∗ = a− εb (1.23)

• Modulus:

|d| = a (1.24)
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• Conjugate multiplication:

dd∗ = a2 (1.25)

• Finally, he defines a dual angle:

θ̂ = θ + εd (1.26)

where θ is the angle between the line vectors and d is the shortest distance between the

lines[7]

1.4.5 Dual Quaternions

Next, Goddard builds upon the definition of dual numbers by defining the Dual Quaternion.

q̂ = r + εs (1.27)

where r and s are quaternions. Again he defines several operations for Dual Quaternions. Dual

quaternion multiplication has definitions similar to quaternion multiplication and addition:

q̂1 + q̂2 = r1 + r2 + ε(s1 + s2) (1.28)

q̂1q̂2 = r1r2 + ε(s1r2 + r1s2) (1.29)

In addition to this, he defines conjugation, square magnitude, and inverse of a dual quaternion:

q̂∗ = r∗ + εs∗ (1.30)

||q̂||2 = q̂q̂∗ = rr∗ + ε(rs∗ + sr∗) (1.31)

q̂−1 = q̂∗/||q̂||2 (1.32)
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Finally, he defines a unit dual quaternion as having:

||q̂||2 = 1 + ε0 (1.33)

This implies:

rr∗ = 1 and rs∗ + sr∗ = 0 (1.34)

1.4.6 Representing Both a 3-D Rotation and a Translation with Dual Quaternions

With the definition of Dual Quaternions complete, they can now be used to fully represent 3D

rotations and translations. Let t be a quaternion vector representing a translation.

t = 0 + ix+ jy + kz (1.35)

q is a quaternion rotation about some axis ~u as defined in (1.18). A dual quaternion representation

of these is then:

q̂ = q + ε
t

2
q (1.36)
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2. METHODS

The challenges of working with random arrays here are approached from two different angles.

Firstly, an automation framework is develeoped along the lines of the goals laid out in the intro-

duction, and serves to automate the generation of large HFSS simulation models. Secondly, the

computer vision system is modified to improve the ability to measure antenna position in a lab set-

ting, and allow for various tests of beamforming with Medusa, a random antenna array test setup.

2.1 Electromagnetic Simulations

The current lab setup uses a sixteen-element antenna array to test beamforming techniques, the

entirety of which needs to be modeled accurately in HFSS to verify test results with simulation

results (Figure 2.1). Because of the challenges innate constructing the model, automation with

Python becomes a viable solution. HFSS has a feature where the user can construct or modify a

part of a model through the GUI editor, then record this sequence of actions to a Python file. This

process outputs code of the form similar to the CreateSphere method discussed in the introduc-

tion. Without modification this is a rudimentary form of automation, but its usefulness is hindered

by the syntax.

2.1.1 Abstraction Layers in the HFSS Automation Framework

Code which relies upon directly on the native HFSS API quickly becomes a challenge to write

and debug. Another drawback of the native scripting environment is every value used to specify the

geometry of the antenna array is hardcoded into the strings. Hardcoded values limit the reusability

and, as a result, the overall usefulness of the script. To compensate for these weaknesses, an

automation library can be split into three distinct and (mostly) isolated layers within the code,

shown in Figure 2.2. These abstraction layers help to facilitate the writing of clean, functional,

pythonic code while automating HFSS.

The lowest layer consists of the functions that interact directly with HFSS. This application
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Figure 2.1: Abstraction Diagram

layer includes drawing functions, functions to create relative coordinate system, assign materials

to objects, assign excitations, create radiation boundaries, and handle file management. The user

of the automation library can thereby be given access to any and all features of HFSS through the

interface of this lowest layer.

The second layer is the device layer. As its name implies, the device layer provides a series of

functions which can be used to specify various electromagnetic devices through their dimensions

and constitutive materials. Device layer functions will then perform all necessary calculations

using those dimensions, and call all the application layer functions necesary to draw the device

model in HFSS. Device layer functions will then return the name of all objects needed in the

design layer to perform operations such as subtracting out the radiation boundary or assigning

excitations to waveports.

The third and nominally the highest abstraction layer in the HFSS library is then the design

layer. Design layer files are the main files for this automation framework. Functioning in this

role, design layer files will import the coordinates and rotations of devices in the design under

test, call any device layer functions necessary to draw those devices in the program, and call any
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application layer functions necessary to handle the assignment of boundary conditions, excitations,

and wave fronts. Additionally, the design layer will call application layer functions to handle

file management and simulation initialization. In this manner, the organization provided by this

abstraction works to facilitate the writing of automation scripts.

2.1.2 Application Layer

Many of the application layer functions can be classified into a few major categories. Drawing

functions specify 2-D or 3-D shapes in the software. Modification functions subtract objects from

one another, assign boundary conditions or waveports to geometries, and assign materials to the

geometry. More general functions can assign excitations, edit simulation paramters, automate the

processing of results, and automate running the simulation. All of this funcitonality is contained

in the file HFSSLibrary.py.

Figure 2.2: HFSS Sphere

Drawing functions all have similar functionality, and can be illustrated through the example of

the drawSphere() function. A sphere, shown in HFSS in figure 2.3, can be completely specified by

its positional coordinates and radius.
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def drawSphere(oDesign, center_x, center_y, center_z, radius, units,

material, cs, names, Transparency):

As per the function header shown above, the application layer function then takes in these nu-

merical arguments, along with a single string for their units, and handle all the concatenation and

other string operations necessitated by the HFSS API. It also handles choosing a coordinate sys-

tem, naming the object in HFSS, and assigning a transparency value to the shape. This allows

the user of the automation library to perform any calculations in a higher level of abstraction (the

design layer or device layer), then pass these values to the application layer, where all the string

manipulation is handled automatically. Every drawing function called in HFSS, including but not

exclusive to drawing rectangles, boxes, circles, and cylinders, can be handled in a similar manner

to drawSphere, so that the user of the library doesn’t have to touch the Visual Basic API directly.

Another important feature of the Application layer involves the creation of local coordinate

systems for each device. These relative coordinate systems can be specified with a translation and

rotation by the vector direction of the x and y axes relative to the global origin. This is shown

through the function header below:

def dualQuaternionCS(oDesign,dq,units,name):

When a relative coordinate system is active, all operations are performed in that local coordinate

system. This cuts down on the number of operations needed to draw a geometry in HFSS by elim-

inating the need for a separate translation and rotation for each object as they are automatically

drawn in position. The drawback to this native relative coordinate system is specifying rotation’s

through this mehtod is not very intuitive, more common methods would be rotation matrices or

quaternion rotations. To facilitate this, the application layer library provides three auxiliary coor-

dinate system functions: globalCS, rotatedCS and dualQuaternionCS. The globalCS function

resets the active coordinate system to be the global coordinate system. This is done in between

specifying local coordinate systems for other devices, so that all coordinates are specified relative
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to the same origin.

Figure 2.3: This HFSS model shows local coordinate systems and the global origin.

rotatedCS takes in the same translation coordinates createRelativeCS does, but the rotation

is described by the angle in degrees rotated about the x-axis, y-axis, and z-axis.

def rotatedCS(oDesign, X, Y, Z, theta_x, theta_y, theta_z, units,

name):

These are combined into a rotation matrix and multiplied by unit vectors to get the direction vec-

tors necessary to call createRelativeCS. Rotations and translation measured with the Medusa

computer vision system are currently output in a format that makes this function convenient.

To implement dualQuaternionCS in this library, an existing open source dualQuaternion

class[11] had to be converted from Python 2 to Python 3. The HFSS Library function then takes in

a dualQuaternion object as a parameter, and extracts the x,y,z coordinates and rotation matrix from
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the quaternion object necessary to specify the coordinate system in HFSS.

def dualQuaternionCS(oDesign,dq,units,name):

The dual quaternion is converted to cartesian specification using methods native to the dualQuater-

nion class. This enables numerical method programs using quaternion systems to interface with

HFSS automatically.

The application layer also handles the assignment of boundary conditions, and the assign-

ment of materials to objects. assignFaceBoundaryMaterial, assignBoundaryMaterial, and

AssignRadiationBoundary can all assign different geometries to be perfect conductor, infinite

far field, perfect magnetic or other types of boundaries. Most objects are assigned materials as a pa-

rameter of their drawing functions. The application layer also offers access to the HFSS function-

ality to create custom materials through the newProperty, getProperty, and changeProperty

functions.

Another set of functions in the application layer handles excitations, simulation parameters

and file management. assignExcitation puts a wave port onto an object, then edit_sources edits

the phasing and amplitude of different excitations. insert_setup allows for control of simulation

parameters, and LinearFrequencySweep allows for the confiugration of frequency sweeps as its

name implies.

2.1.3 Device Layer

Figure 2.4: Electrically permittive substrate with copper ground plane (green)
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The device layer consists of all the functions contained in EmagDevices.py. These functions

are written to use all the application layer functions and automate the drawing of different devices

in HFSS. Parameters mostly consist of the dimensions of the device, and the names of objects will

be returned as necessary. Functions to automate the drawing of coax cable, copper plated substrate,

and patch antennas are all currently written. This can then easily be extended to include dipole and

monopole antennas, as well as other types of antennas that may be useful in random array research.

The substrate function takes in the xyz coordinates of the center of the substrate, as well as

a string for the material. substrate then calls drawing functions, and assigns a conductive copper

boundary to the bottom face of the substrate for the ground plane. The header of the function is

shown below, and a screenshot of the resulting device is shown in Figure 2.4.

def substrate(oDesign, subX, subY, subZ, units, material,cs, name):

Figure 2.5: Coax Feedline for Patch Antennas

The coax_50_Ohm function draws the coax cable shown in figure 2.5, with the xy coordinates

of the center of the coax, as well as the length and substrate height as parameters. It uses the appli-

cation layer functions to drawCylenders and perform binary subtractions of overlapping shapes
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to draw the coax, and assigns copper boundaries to the inner and outer conductors. Finally, it

calls assignExcitation to create a waveport on one end of the coax, and draws a perfect electrical

conducting cap on the other side of this waveport.

def coax_50_Ohm(oDesign, center_x, center_y, length, substrate_height,

cs, name):

Figure 2.6: Fully drawn rectangular patch antenna, with feedline matched

The rectangular_patch function is used to draw a patch antenna with fully known dimensions

in HFSS. Necessary parameters include the substrate material, length, width, and height, the patch

length and width, and the probe xy location. This function calls substrate and coax_50_Ohm to

place those in the proper positions relative to the patch. In doing so, the names of the devices and

excitation port are returned. An example of the patch antenna is shown in Figure 2.6.

def rectangular_patch(oDesign, patch_length, patch_width, probe_x,

probe_y, substrate_length, substrate_width, substrate_height,

substrate_material,units,cs, name):

Another useful function is the design_rectangular_patch function which designs a patch

antenna based on the operating frequency, feedline impedance, and substrate material and height.
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def design_rectangular_patch(oDesign, operation_frequency,

feedline_impedance, substrate_height, substrate_permittivity,

substrate_material, units, cs, name):

2.1.4 Design Layer

Figure 2.7: Resulting 32 Element Random array

The Design Layer consists of the main file for any automation using this library. Because of

the design choices made in writing the application layer and device layer functions, a full array of

32 patch antennas can be specified in just a 10 line for-loop, provided the antenna positions and

rotations are already imported, and the patch dimensions are already specified.

for i in range(0, len(positions)):

globalCS(oDesign) #relative CSs are created based off global CS

name = "Patch%d" % (i + 1)

csName = name + "_CS"
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rotatedCS(oDesign, positions[i, 0], positions[i, 1], positions[i,

2], rotations[i, 0], rotations[i, 1],rotations[i, 2]-90, "mm",

csName)

[temp_excitation, temp_object_names] = rectangular_patch(oDesign,

patchL, patchW, probeX, probeY, subL, subW, subH,"FR4_epoxy",

"mm", csName, name)

excitations.append(temp_excitation)

object_names += temp_object_names

At the beginning of each loop iteration, the active coordinate system is reset to the global origin,

so that all translations and rotations are performed relative to this system instead of relative to

each consecutive local coordinate system. The next few lines demonstrate another useful ability of

this style of automation: objects in HFSS can be dynamically named. For example, the first patch

would be named ’Patch1’, its coordinate system ’Patch1_CS’, its substrate ’Patch1_Substrate’, and

so on. This is extremely useful when editing the generated model manually after its creation.

After creating the names, the relative coordinate system is created with a call to rotatedCS, and

the patch is drawn with a call to rectangular_patch. Finally, object names and excitation names

are appended to appropriate lists to allow for editing of excitaitons and subtraction of objects from

the radiation boundary sphere outside the loop.

Following this loop, the radius of the radiation boundary is calculated in a method specific to

the particular setup, and then simulation parameters are set up.

edit_sources(oDesign, excitations, modes, amplitudes, phases, "dBm",

"deg")

globalCS(oDesign)

drawSphere(oDesign, 0, 0, 0, max_r+wavelength, "mm", "vacuum",

"Global", "radiation_boundary", .55)

binarySubtraction(oDesign, "radiation_boundary", object_names,True)

insertSetup(oDesign, 2.45e9,"Test_Setup")
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LinearFrequencySweep(oDesign,2e9,4e9, .01e7, "Test_Setup",

"Test_Sweep")

AssignRadiationBoundary(oDesign, "radiation_boundary",

"radiation_boundary")

First, the phases and amplitudes of the inputs are specified with edit_sources. Next, the global

origin is designated the active coordinate system so that the radiation boundary is drawn centered

at the origin. Following this, the radiation boundary is drawn, and the list of objects from the array

generation loop is passed to binary_subtraction to subtract them from the vaccum in the radiation

boundary sphere. The simulation parameters are then set up, the radiation boundary is assigned to

the outer face of the sphere, and finally, the project is saved and simulated. Thus, in fewer than 20

lines of code, (excluding the declaration of lists of positions and patch sizes) a large random array

such as that shown in Figure 2.7 can automatically be specified in HFSS.

2.2 Computer Vision System

2.2.1 Fixing Rotations

Figure 2.8: Halos from filtering around LEDs. The old filter value is on the left, while the new
filter is on the right

The most significant major issue with the computer vision system was the inability to measure

a rotated antenna. The Medusa software recognized when it had found an antenna by counting

the number and arrangement of rectangles. Overlapping rectangles, shown in the introduction
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in Figure 1.3, signal to the computer that the contours around the LEDs are not clear enough to

distinguish the antenna from the surroundings. The approach to this problem was to change the

Figure 2.9: Antenna Recognition boxes. The old method is on the left, and the new method is ont
the right

filter values in the manner shown in Figure 2.8. The two elongated halos surround two LEDs each

were reduced to four smaller halos each surrounding a single LED. This required an adjustment

to how the boxes drawn around sharp contours were interpreted. Figure 2.9 illustrates the change.

The old location algortithm looked for 6 rectangles in total, with two smaller rectangles inside each

of the two larger rectangles. The new algorithm is modified to look for eight rectangles. Each of

the four larger rectangles should contain a single smaller rectangle inside it. Furthermore, due to

the separation of the LEDs around the antenna, the antenna can now be rotated without breaking

the algorithm as the larger rectangles no longer overlap. A successful antenna location during

rotation is shown in Figure 2.10. This modification of the filter value had the additional benefit of

being less sensitive to ambient light, which increased the location success rate.

2.2.2 Different LED Configurations

One intriguing extension to the computer vision system in its current state is the ability to dis-

tinguish between different types of objects based on differing LED configurations. To demonstrate

this, the LED controllers were modified so that the fourth LED could be toggled on and off, and the

detection system was modified to allow for three large rectangles containing one small rectangle
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Figure 2.10: Antenna Recognition with a Rotation

each to count as a recognition case.

2.2.3 Machine Learning Techniques

With all these modifications, the computer vision system still has the rather serious limitation of

only detecting one antenna at a time. With the existing approach using boxes to detect antennas, a

potential algorithm to provide for a successful antenna detection becomes more exponentially more

complex as the number of antennas increases. This situation is therefore conducive to alternate

approaches, particularly machine learning approaches.

Figure 2.11: Detecting multiple antennas at once

Machine learning already finds widespread use in facial recognition software, and that applica-

tion has enough similarities to detecting different antennas within the picture to make it feasible to
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leverage the work already done. The approach involves ’training’ the machine learning algorithm

with a set of images of a single antenna at various angles and various levels of ambient lighting,

then using the algorithm in an attempt to detect individual antennas from a large group like in

Figure 2.11.

Work on this is started by filming a thirty second video of a single antenna and moving the

camera around through a variety of angles. The video is split into all of its frames, and each frame

is fed into the facial recognition software as a training set. The open source software is then tested

with an antenna array to look for results.
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3. RESULTS

The methods for developing and testing random antenna arrays focused on in this paper often

do not have a quantitative measure for their effectiveness. Where one can be approximated, that

approximation is described; otherwise, qualitative measures of success are used.

3.1 Electromagnetic Simulations

The HFSS Automation framework was successful in significantly reducing the amount of time

it takes to model a large random array in the software. Table 3.1 shows some examples of ap-

proximated model construction times by hand compared with measured times for the scripted

modeling. Manual construction is done using a template file. The scripted modeling time does

not scale linearly, because HFSS responds to commands slower as the model size increases. The

Model Construction Method Time(hh:mm:ss)
Single Patch Antenna Designed by Hand 00:30:00
Single Patch antenna Python Script 00:00:05
16 Element Random Antenna Array Designed by Hand 01:00:00
16 Element Random Antenna Array Python Script 00:01:19
32 Element Random Antenna Array Designed by Hand 01:45:00
32 Element Random Antenna Array Python Script 00:05:06

Table 3.1: Time reduction automating HFSS vs CADing by hand

dual quaternion interface works, and the framework is able to model systems designed using dual

quaternion coordinates

3.1.1 Known Issues

When phasing is applied to these models, the resulting waveform does not appear to be as

directive as some models completed by hand. This is likely due to to the coordinate systems in

the script having an origin in a location slightly offset from the feed point, which should be fairly

straightforward to correct.
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3.1.2 Continuing Work

Additional features can be added to the library in its current state. One example would be

the ability to take a template file of a unique antenna, and quickly replicate it into an random (or

ordered) array. Other potential areas for improvement include developing an interface for complex

fractal or parametric structures.

3.2 Computer Vision System

The major success with the computer vision system was the ability to take measurements and

successfully demonstrate beamforming with rotated antennas. This fix allowed for other projects

using Medusa in the lab to progress beyond this roadblock.

The machine learning approach to antenna recognition, while promising, is still in the early

stages of implementation, and therefore have no significant results to show for it yet. This is

anticipated to be a continuing area of exploration in the coming months.
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4. CONCLUSIONS

This paper presented improvements to the current approach to simulation and testing of random

antenna arrays. The automation framework for HFSS has been successfully implemented, and

with a few bug fixes should see use in the lab setting immediately. The fixes to the computer

vision system enabled other projects to move forward and take data with rotated antennas which

previously could not be measured. The approach to antenna recognition with machine learning

techniques similar to facial recognition is in progress, and shows promise for results in the near

future. Through further work on this system, the Huff Research Group and other researchers

utilizing random antenna arrays will be able to quickly measure and simulate test setups thereby

making further advancements in the antenna community more accessible.
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APPENDIX A: APPLICATION LAYER SOURCE CODE

The code used for the HFSS automation framework is stored in full on the Huff Research Group

Github page[12]. The repository contains the following files:

• HFSSLibrary.py contains all the application layer functions discussed in section 2.1.2.

• EmagDevices.py is the full source for the device layer discussed in 2.1.3.

• main.py is the full example main file shown in part in section 2.1.4.

• qmathcore.py is the quaternion math class converted from the python 2 source taken from[11].

• DualQuaternion.py the dual quaternion math class converted from the python 2 source

taken from[11].

34

https://github.com/ghuff/HRG/tree/master/HFSS_Python
https://github.com/ghuff/HRG/tree/master/HFSS_Python

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Random Phased Arrays
	Computer Vision System
	Limitations of Current Computer Vision System

	Electromagnetic Simulations
	Goals of an Automation Framework for HFSS
	Existing Scripting Capabilities of HFSS

	Dual-Quaternion Coordinate System Transformation
	Complex Numbers and 2D Rotation Matrices
	Quaternions
	Unit Quaternions and Rotations
	Dual Numbers
	Dual Quaternions
	Representing Both a 3-D Rotation and a Translation with Dual Quaternions


	METHODS
	Electromagnetic Simulations
	Abstraction Layers in the HFSS Automation Framework
	Application Layer
	Device Layer
	Design Layer

	Computer Vision System
	Fixing Rotations
	Different LED Configurations
	Machine Learning Techniques


	RESULTS
	Electromagnetic Simulations
	Known Issues
	Continuing Work

	Computer Vision System

	CONCLUSIONS
	REFERENCES
	Appendix A: Source Code Repository 

