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ABSTRACT 

 

 Increasing worldwide energy consumption has imposed strain on natural energy 

sources and given rise to an energy crisis on our society. The development of efficient 

solar energy conversion to augment other renewable energy approaches is one of the 

grand challenges in our time. Water splitting, or the disproportionation of H2O into 

energy‐dense fuels, H2 and O2, is undoubtedly a promising strategy. However, solar 

water splitting has been a long challenge in the scientific community since the process 

involves the concerted transfer of four electrons and four protons, which requires the 

synergistic operation of solar light harvesting, charge separation, mass and charge 

transport, and redox catalysis processes. 

 In the first thrust, we explore the development of tunable and programmable 

heterostructures comprised of MxV2O5 nanowires (where M = Pb2+, Sn2+) and cadmium 

chalogenide quantum dots (QDs: CdS, CdSe, and CdTe) designed to extract 

photoexcited holes from the valence band of quantum dot to mid-gap state of MxV2O5 

nanowires to facilitate water oxidation at low overpotentials. Thermodynamic energetic 

band offsets and the relative band alignment of MxV2O5/QD heterostructures have been 

studied by hard X-ray photoelectron spectroscopy and density functional theory, whereas 

the dynamics of charge transfer kinetics has been examined by ultrafast transient 

absorption spectroscopy. These heterostructures demonstrate the remarkable utility of 

stereoactive lone pairs of post-transition-metal (p-block) cations in mediating solar 

energy conversion by dint of precise tunability of their energy positioning.  
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 In the second thrust, we develop an alternative palette of light harvesting 

semiconductors through the establishment of dimensional control over lead halide 

perovskites. The nucleation and growth processes are finely tuned with the help of added 

surface ligands in order to precisely control size and thus optical properties of the 

nanocrystals. Dimensional control is a key to engineering optical, electronic, and 

magnetic properties of materials owing to quantum confinement effects, selective 

elimination of symmetry elements, and the pronounced role of surface energy. Utilizing 

ligand-mediated synthetic approaches, such as ligand-assisted reprecipitation and hot 

colloidal methods, allows for control over nucleation/growth kinetics and consequently 

enables precise modulation of nanocrystal dimensions. In this dissertation, we have been 

successful at synthesizing precisely tunable 2D methylammonium lead bromide 

(MAPbBr3) nanoplatelets by controlling the surface-capping ligands. Utilizing a variety 

of spectroscopic tools, we have derived mechanistic understanding and structure—

function correlations of the role of surface-capping ligands in mediating the growth of 

all-inorganic 2D CsPbBr3 nanoplatelets as a function of reaction temperature and 

concentration.  
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

 

I.1 Rational Design of Semiconductor Heterostructures 

The catastrophic environmental impact of our reliance on geological deposits of 

hydrocarbons1, 2 as our primary source of energy makes solar energy conversion 

arguably the greatest scientific and technological challenge of our generation.3, 4 Solar-

to-electrical energy conversion, using photovoltaics, is essential but insufficient. 

Variable insolation also necessitates the storage of solar energy through the generation 

of fuels.3 Water splitting, or the disproportionation of H2O into H2 and O2, is the most 

promising strategy, given that it yields hydrogen, a high-energy-density fuel that can be 

combusted to release energy, with water as the only byproduct (Figure I. 1).3-5 Water 

splitting is fundamentally challenging, however, as it requires the concerted transfer of 

four electrons and four protons4, 6 and necessitates remarkable synergy between 

thermodynamics and kinetics in a manner that is intuitively difficult to predict.  

  Water-splitting photocatalysts must promote the following processes: (1) 

absorption of the solar spectrum to yield electrons at potentials sufficiently negative to 

reduce protons and holes at potentials sufficiently positive to oxidize water, (2) 

separation of charges and accumulation at catalytic sites, (3) generation and separation 

of H2 and O2, and (4) transport of four equivalents of protons from the oxidation site to 

the reduction site (Figure I. 2). A single material or molecule that can mediate this entire 

sequence of light-harvesting, charge-transfer, and mass-transport processes may never be  
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Figure I. 1 Photoelectrochemical cell for water splitting. Water is split into O2 and H2 
upon solar radiation to solar photoelectrochemical cell assembly as four proton and four 
electrons are moving.3 Reprinted with permission from Ref. 3. Copyright 2006 PNAS 
Science Journal. 
 

identified. Instead, a promising strategy is to develop hybrid systems in which different 

components perform the various functions required to split water.6, 7 This approach 

mimics photosynthesis, in which oxidation and reduction occur in separate photosystems 

with seamless “division of labor”.  

Semiconductor-based photocatalyst constructs have been investigated for 

decades6; however, real-world water-splitting applications have been precluded by poor 

light harvesting, inefficient redox catalysis, long-term instability, and high cost. The 

vexingly high overpotential of the water-oxidation half-reaction has often necessitated 

the use of wide-bandgap metal oxide semiconductors, with valence band-edge potentials 

up to 2 V positive of the water-oxidation potential, as photocatalysts.6 Such materials are 

poor harvesters of visible light, and free energy is thrown away via the unnecessarily 

large driving force for water oxidation. Moreover, simple binary and ternary  
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Figure I. 2 Water-splitting mechanism of proposed PECs with CdSe QDs and 
Pb0.33V2O5 NWs as a representative example. Holes are injected from photoexcited 
QDs to the NWs, then transported to the dark anode to oxidize water. Excited-state 
electrons are transferred to a reduction catalyst at which H2 is evolved. The Co3+/2+ 
potential corresponds to that of Nocera’s catalyst.5 
 

semiconductors such as TiO2, SnO2, WO3, and SrTiO3, which have traditionally been 

studied for photovoltaics and photocatalysis, exhibit clearly-defined valence and 

conduction band edges separated by a fixed bandgap. The ability to tune light-harvesting 

properties, electronic structure, and charge-transfer reactivity is thus immutably limited. 

We have undertaken an alternative approach. Our effort involves the rational 

design of hybrid photocatalyst architectures exhibiting programmability of absorption 

spectra, interfacial electronic structure, energetic offsets, and thermodynamic driving 

forces for charge transfer.8-10 These photocatalysts consist of single-crystalline MxV2O5 

nanowires (NWs), where M is an intercalated cation with stoichiometry defined by x,11-13 

functionalized with II-VI semiconductor quantum dots (QDs). Unique properties of 



 

4 
 

MxV2O5/QD interfaces render them intriguing for incorporation into hybrid 

photocatalyst constructs. First, several examples of MxV2O5 NWs possess mid-gap 

electronic states situated several hundred millivolts positive of the water-oxidation 

potential.11-13 These states are derived not from defects or dopants but from the intrinsic 

crystal structure of the NWs and are reconfigurable by changing the specific intercalated 

cations in the open-framework structures.13 Second, the energetic dispersion and 

occupancy of the mid-gap states of MxV2O5 NWs are tunable through the stoichiometry 

and identity of the intercalating cation, whereas the potentials of excitonic and surface 

states of QDs are tunable through size, composition, and surface functionalization. These 

effects enable systematic control of light harvesting, driving forces for charge transfer, 

and interfacial electronic coupling. Third, MxV2O5 NWs exhibit reversible mid-gap-

state-mediated electrochemistry and are not susceptible to anodic corrosion.9 Thus, these 

novel NW/QD heterostructures exhibit programmable absorption, charge-transfer, and 

charge-transport properties for photocatalysis. This strategy to involve intercalative mid-

gap states in interfacial charge transfer while exploiting quantum confinement to tune 

charge-transfer reactivity represents a new approach to photocatalysis and solar energy 

conversion and yields a richly diverse design space that can be efficiently navigated 

using an iterative combination of theory and experiment as illustrated in Figure I. 3. 

The accessible design space comprises a vast matrix of potential NW/QD 

heterostructures, differing in composition and interfacial properties, enabling broad 

tunability of electronic properties as well as both the thermodynamics and kinetics of 

excited-state charge transfer. Variables include the type of V2O5 framework (e.g., single- 
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Figure I. 3 Schematic illustration of our strategy for the design and synthesis of 
MxV2O5/QD heterostructures with programmable energetic offsets and kinetics of charge 
transfer that underpins our evolutionary approach to photocatalyst design. p-block 
cations are particularly of interest for positioning of states derived from filled s-subshells 
at the top of the valence band to facilitate hole extraction from photoexcited QDs. The 
integration of first-principles modeling, diversified material synthesis, interfacial 
functionalization, and analytics allows for effective exploitation of the opportunities for 
programmability available in the design space. 
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layered α- and γ'-, double-layered ε', and tunnel-structured ζ-phases)14, the specific 

cation (M) that yields a mid-gap state, the stoichiometry (x) of the cation, the 

composition and size of QDs, and the nature of the interface between NWs and QDs 

(Figure I. 3). These variables provide tremendous versatility and are central to the 

development of heterostructures with programmable light harvesting, energetics, and 

charge transfer. However, the complexity of this multidimensional parameter space 

represents a daunting challenge, which complicates the prediction and rational design of 

interfacial energetic offsets and electronic coupling, as well as the rate constants of 

charge-transfer processes central to photocatalysis. This challenge is difficult to resolve 

using a purely Edisonian approach. Therefore, we are instead utilizing a predictive 

decision-making framework involving the iterative integration of theory and experiment 

to converge on optimal catalyst architectures (Figure I. 3). 

In this introduction, we outline our evolutionary design scheme as well as 

summarize our computational and experimental research involving the synthesis of first-

generation heterostructures consisting of -Pb0.33V2O5 NWs interfaced with cadmium 

chalcogenide QDs. The prediction and measurement of the electronic structure of such 

heterostructures is delineated, highlighting favorable energetic offsets for interfacial 

charge separation and the experimental characterization of their excited-state charge-

transfer dynamics and photocatalytic performance. Additionally, we report on the 

theory-guided design of second-generation SnxV2O5/QD heterostructures with electronic 

structure programmed to engender excited-state charge transfer and photocatalysis. The 

programmability of this interfacial coupling approach epitomizes the versatility of  
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Figure I. 4 Mid-gap states derived from p-block cations. (A) Hybridization of p-block 
ns2np0 cations with anionic p-states as per the “revised lone pair model”.

16 (B) Energy 
level diagram of cation s and anion p orbitals calculated from DFT (Kohn-Sham 
eigenvalues are depicted). (C) Comparison of the crystal structures of d-block β-
Ag0.33V2O5 and p-block β-Pb0.33V2O5 indicating the lone-pair-induced distortion; (D) 
SEM and TEM images of β-PbxV2O5 nanowires; (E) HAXPES valence band spectra of 
β-PbxV2O5; (E) DFT calculation and HAXPES measurements at two different energies 
acquired for β-PbxV2O5. Panel (A,B) is reprinted and panel (C) is adapted with 
permission from ref 16. Copyright 2011 Royal Society of Chemistry; Panel (D,F) is 
reprinted with permission from ref 12. Copyright 2014 American Physical Society; 
Panel (E) is reprinted with permission from ref 11. Copy right 2013 Wiley-VCH.  
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MxV2O5 frameworks and underscores the centrality of electronic structure design, 

achieved through integration of theory and electronic structure measurements, to 

facilitate the rational design of heterostructures and the systematic improvement of their 

properties and photocatalytic performance. 

At the heart of our programmable design of electronic structure is the ability to 

reconfigure periodic MxV2O5 solid-state compounds through facile topochemical 

methods.14, 15 A variety of V2O5 frameworks can be stabilized with intercalated cations 

through hydrothermal synthesis; the energy positioning of the valence and conduction 

bands of these compounds is determined by the V—O connectivity and the local 

vanadium coordination environment, whereas the hybridization of the intercalated 

cations with the V2O5 frameworks gives rise to states with variable energy dispersion 

depending on the mode of interaction. The conduction band edges are typically V 3d in 

origin (with their specific splitting dictated by the vanadium coordination geometry and 

their resulting hybridization with O 2p states), whereas the valence band edges are 

primarily O 2p in origin.15 The topochemical leaching of cations from MxV2O5 at low 

temperatures stabilizes metastable V2O5 frameworks, many of which are located only 

slightly higher in energy as compared to the thermodynamically stable α-V2O5 phase. 

Tunnel-structured ζ-V2O5 and puckered layered γ'-V2O5 are two prominent examples of 

kinetically trapped compounds that are considerably modified in structure and covalency 

from the layered α-V2O5 phase15; the installation of entirely different cations within 

these frameworks through intercalation chemistry provides a powerful means of 

reconfiguring electronic structure and thereby energetic offsets in our photocatalytic 
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platform. Of particular interest for photocatalytic applications are the filled s-subshells 

of post-transition-metal cations with the (n-1)d10ns2np0 electronic configuration (Figure I. 

1), which have the potential to yield mid-gap states derived from their stereoactive lone 

pairs of electrons. Such states are typically positioned at the top of the valence band, 

where they can extract photogenerated holes from QDs if the appropriate energetic 

offsets can be established within heterostructures. 

The filled s-subshell of p-block cations is manifested prominently in distinctive 

structural distortions of solid-state compounds, seen for example, in the litharge 

structures of SnO and PbO, which have historically been ascribed to a second-order 

Jahn—Teller effect mediated by the hybridization of cationic ns and np states.17 A more 

recent view, the “revised lone pair model”, derived from extensive quantum chemical 

calculations and X-ray emission spectroscopy measurements of the valence band 

structure paints a more complex picture. These filled subshells are not in fact inert in 

character and tend to be strongly hybridized with anion p-states giving rise to filled 

bonding and anti-bonding states as sketched in Figure I. 4.16, 18 The antibonding states 

can further hybridize with empty cation np0 states with a distortion of the local 

coordination geometry away from a centrosymmetric environment when the electronic 

stabilization thus derived offsets the destabilization resulting from coordinative 

undersaturation.16 The projected electron density of the stabilized anti-bonding state has 

classical “lone pair” character19 and is positioned at the top of the valence band. In order 

to have effective orbital overlap with cation 5p or 6p states, which is necessary to 

facilitate a pronounced distortion, a major constraint is that the hybrid antibonding 
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cation-s—anion-p-states must have substantial 5s/6s-character. In turn, this necessitates 

the effective mixing of the cation 5s/6s and anion p-states, the extent of which strongly 

diverges as a function of the anion electronegativity and resultant energy positioning of 

the anion-p states (Figure I. 2C).16 Two important consequences that result from this 

constraint are that (a) oxides are considerably more amenable to pronounced lone pair 

effects as compared to chalcogenides (as a result of the sharp change in electronegativity 

and energy positioning of p-states in going from oxygen to sulfur) and that (b) 5s2 (Sn2+) 

states that show the least differential in energy exhibit the most pronounced lone-pair 

distortions in oxides since 6s2 (Pb2+) states are relegated to even lower energies as a 

result of relativistic effects. The order of stability of lone-pair distortions arising from 

anti-bonding states at the top of the valence band is predicted to follow: 

Sn>Pb>Sb>Bi>Te>Po.16 Figure I. 2D shows the pronounced lone-pair-induced 

structural distortion observed around the intercalating cation in β-PbxV2O5 that is not 

observed in its d-block counterpart β-AgxV2O5. Figures I. 2E and F illustrate the 

pronounced anti-bonding and bonding states with considerable Pb 6s character observed 

by high-energy X-ray photoemission spectroscopy (HAXPES) measurements at the edge 

and deep valence band of β-PbxV2O5, respectively. The ability to modulate the energy 

positioning of the lone-pair states at the top of the valence band provides an important 

design tool for the construction of heterostructures whereby such states can be 

positioned to accept holes from interfaced photoexcited QDs. 

The ability to access this design space is greatly facilitated by our recent 

discovery of topochemical extraction and intercalation methods wherein treatment with 
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acid or an appropriate oxidizing agent facilitates cation extraction from MxV2O5 bronzes, 

stabilizing a metastable V2O5 framework that can be filled with other cations. As a 

remarkable demonstration of this approach, Ag-ions have been extracted from β-

Ag0.33V2O5 by acid treatment, stabilizing the metastable ζ-V2O5 phase with open 1D 

tunnels, which are subsequently filled with Mg-ions by reaction with di-n-

butylmagnesium  or by electrochemically magnesiation using a Mg(TFSI)2 electrolyte to 

stabilize a β-Mg0.33V2O5 phase inaccessible from direct synthesis.20 Such an “etch-a-

sketch” approach to swapping cations through intercalation chemistry provides 

unprecedented control over electronic structure of the hole acceptor and thereby 

facilitates tuning of energetic offsets within heterostructures (Figure I. 1). 

In our proposed design, light harvesting by the II-VI QDs is immediately 

followed by charge separation on ultrafast timescales such that photoexcited electrons 

are extracted by a hydrogen evolution catalyst and used to reduce protons in aqueous 

media, whereas photogenerated holes are transferred to the abovementioned mid-gap 

states of MxV2O5 nanowires for transport to a water oxidation catalyst. Figure I. 5 

illustrates two distinctive methods for the preparation of NW/QD heterostructures: (1) 

linker-assisted assembly (LAA)21, in which bifunctional ligands tether colloidal QDs to 

NWs with the specific binding preferences explicable based on principles of hard-soft 

acid—base interactions and differences in surface potentials, and (2) successive ionic 

layer adsorption and reaction (SILAR)22 wherein NWs are immersed sequentially into 

ionic precursor solutions of cadmium and chalcogenide precursors. The former method 

allows for well-defined preformed chalcogenide nanocrystals to be tethered to NWs with  
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Figure I. 5 Synthetic strategies and energetic band offsets of MxV2O5/QDs 
heterostructures. (A) Schematic illustration of SILAR and LAA routes for constructing 
MxV2O5/QDs heterostructures; (B) SEM image for (I) SILAR-derived and (II) LAA-
derived β-PbxV2O5/CdSe heterostructures, and (III) TEM image of SILAR-derived β-
PbxV2O5/CdSe; (C) valence band spectra of β-PbxV2O5/CdSe heterostructures; (D) 
energetic offsets of MxV2O5/QDs heterostructures illustrating the thermodynamic driving 
forces for charge transfer. Panel (B,C) are reprinted with permission from ref 8. 
Copyright 2015 American Chemical Society. 
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separations controllable by the chain lengths and functionalities of linker molecules.21 

Precise control of QD size and composition allows for tunability of light harvesting, 

whereas the ability to modulate the interfacial separation based on choice of molecular 

linker provides control over the dynamics of hole and electron transfer.21 In turn, the 

SILAR method is facile and yields nanostructured chalcogenide QDs directly bonded 

through quasi-epitaxial interfaces with the NWs with thickness tunable by the number of 

SILAR cycles. Figure I. 5B illustrates scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) images of β-Pb0.33V2O5/CdSe heterostructures. 

HAXPES measurements allow for delineation of energetic offsets and are shown for β-

Pb0.33V2O5/CdSe heterostructures in Figure I. 5C.  

Holes generated in II-VI QDs upon photoexcitation relax to the valence band 

edges, which are comprised primarily of chalcogenide p-states. Concordant with Fajan’s 

rules, the extent of mixing of cationic and anionic states is increased down a group, 

reflecting the relatively greater covalency of the heavier chalcogenide lattices.23 As a 

result, the energy positioning of the p-states that constitute the valence band follows 

periodic trends in electronegativity as per: S > Se > Te.24 The deeper valence-band edges 

of CdS are more optimally situated to facilitate hole transfer to mid-gap states of β-

PbxV2O5 NWs and indeed represent our most successful first-generation heterostructures 

(Figure I. 5D). However, owing to their larger bandgap, these QDs are relatively 

inefficient at harvesting the solar spectrum10 and furthermore there is a 0.48 eV barrier to 

hole transfer from the valence band edge to the mid-gap states of the β-PbxV2O5 NWs. 

Based on the considerations outlined above and the expected energy positioning of 5s2 
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states relative to 6s2 states sketched in Figure I. 4, β-SnxV2O5/QD heterostructures are 

anticipated to resolve both issues, allowing for thermodynamically favorable hole 

transfer from the valence band edges of CdS and CdSe QDs (Figure I. 3D) and further 

enabling utilization of CdTe QDs that are particularly efficient at harvesting the visible 

region of the solar spectrum in view of their smaller bandgap. An important additional 

lever to control driving forces for electron transfer to a HER catalyst arises from 

quantum confinement effects, which primarily modify the conduction band edges of 

QDs25 but have relatively little influence on the valence band edges. In summary, the 

thermodynamic driving forces for electron and hole transfer are amenable to tuning in 

our heterostructures through variation of QD size, compositional modulation of the QD 

lattice, and the specific p-block cation selected for the NW component. 

 

I.2 Efficient Light Harvesting with Type II Semiconductors Heterostructures 

Harvesting solar energy and storing the energy in the chemical form or by 

generating electric current is of tremendous importance to modern technology given the 

predominant role of fossil fuels in the current economy.26-28 For effective solar energy 

conversion, not only must a semiconductor absorb a large portion of the incident solar 

radiation but also the photoexcited electron−hole pairs must be further separated and 

transported across interfaces.27, 29 Efficient charge separation and transport across 

interfaces is predicated on both thermodynamic energy offsets as well as the kinetics of 

charge transfer; based on Marcus theory considerations, the latter relies on the interfacial 

structure and distance as well the thermodynamic driving force or relative energetic 
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offset.29-31 Charge separation, interfacial charge transfer, and transport from the interface 

must outcompete charge recombination to maximize conversion efficiencies. Recently, 

we have designed and developed reconfigurable β-PbxV2O5/QDs with programmable 

interfacial energetic offsets, wherein electron and hole charge carriers can be separated 

from direct photoexcitation.8, 32 Desired charge transfer processes must outcompete with 

deleterious charge recombination pathways to improve a photocatalytic efficiency. 

Furthermore, this platform can be potentially used as ideal platform water splitting 

exploiting a distinctive feature in the electronic structure of ternary vanadium oxide 

bronzes: the presence of intrinsic midgap states, derived from the intercalating cations, 

which are situated between the valence-and conduction-band edges. The intrinsic mid-

gap states derived from antibonding Pb 6s‒O 2p interactions and are situated between 

the conduction and valence bands.11, 33 There is a vast matrix of potential material 

compositions and interface structures that can be envisioned with some obvious 

variables being the specific cation (M) bearing a stereoactive lone pair, the stoichiometry 

(x) of the cation, the specific II-VI QDs, the size of the QDs, and the mode of coupling 

between the NWs and the QDs.8, 12, 32, 34 

To increase charge carrier lifetimes (and facilitate more thermodynamic 

favorable charge transfer), controlling the energetic offsets within heterostructures is 

imperative since thermodynamics energetic band offsets can dictate interfacial charge 

transfer kinetics (Figure I. 6). The heterostructures with type II band alignment 

(staggered configuration) is more desirable rather than with type I band alignment  
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Figure I. 6 Energetic offset and relative band alignment of type I and type II interfaces. 
In type I interface, both electrons and holes are localized in a single component whereas 
in type II interface, electrons and holes are spatially separated.  
 

(sandwiched configuration) as a result of excited-state charge separation and longer 

electron-hole lifetimes.35, 36 Typically, in type I band alignment, both valence (VB) and 

conduction band (CB) of one component are entirely sandwiched by VB and CB of the 

other wider energy bandgap materials. As a result, excited-state electrons and holes are 

only localized in one of the component. However, in type II heterostructures, as depicted 

in Figure I. 6, the VB and CB edge of one component are staggered with the other 

component, located either lower or higher than the other component energy level. Type 

II energetic alignment thus facilitates spatial charge separation and localization of 

electrons and holes in different location; the hole is localized on the component with the 

higher (more negative) valence band edge, and the electron is localized on the 

component with the lower (more positive) conduction band edge. As a result of charge 

separation, type II configuration substantially increase carrier lifetimes by diminishing 
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radiative electron-hole recombination processes, thereby allowing carriers to be 

deployed for catalytic reactions. 

 

I.3 Dimensional Control over Lead Halide Perovskite 

Colloidal semiconductor quantum dots (QDs) have attracted tremendous 

research interest over the last two decades owing to their distinctive optical properties 

such as size-dependent photoluminescence emission, narrow band-edge absorption, and 

high quantum yields, which are derived from quantum confinement effects.37, 38 

Establishing precise dimensional control over these systems thus provides a means to 

tune their electronic, optical, and sometimes magnetic properties. The strong absorption 

cross-sections of QDs renders these materials intriguing candidates for harvesting of 

solar radiation but require the efficient separation of photoexcited holes and electrons.  

While well-established chalcogenide nanocrystals have been used as the light-

harvesting components of heterojunctions, they are plagued by numerous challenges 

such as a high density of trap states, poor overlap with the solar spectrum for sulfides 

and selenides, and tendency to stabilize defects such as stacking faults that deleteriously 

impact carrier transport. We have sought to expand an alternative palette of 

semiconductor nanocrystals based on remarkably defect tolerant cesium lead halides. In 

Chapters II—IV, we detail our efforts to establish compositional, dimensional, and 

morphological control through mechanistic understanding of the influence of added 

ligands.  
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Lead halide perovskites have attracted considerable research interests recently 

because they have emerged as the next generation of photovoltaics with efficiencies 

approaching 22.1% in 2016.39, 40 Lead halide perovskites have ABX3 crystal structure 

(where A = Cs+, CH3NH3
+, CH2(NH2)+; B = Sn2+, Pb2+; X = Cl−, Br−, I−) and have been 

extensively studied over a couple of years since lead halide perovskite are a versatile 

class of materials with highly tunable optical and electronic properties through 

compositional and dimensional confinement (Figure I. 7).41 The phase of ternary A-B-X 

perovskites are substantially invested in terms of ionic exchange reactions in monovalent 

“A”, divalent “B”, and “X” sites, respectively, as well as dimensional confinement as a 

result of quantum confinement effect. Apart from compositional variation in cationic or 

anionic sites, dimensional control is an alternative to engineering optical, electronic, and 

magnetic properties of materials owing to quantum confinement effects, selective 

elimination of symmetry elements, and the pronounced role of surface energy. Utilizing 

ligand-mediated synthetic approaches, such as ligand-assisted reprecipitation42 and hot 

colloidal methods43, allows for control over nucleation/growth kinetics and consequently 

enables precise modulation of nanocrystal dimensions.44 Establishing precise 

dimensional control over these systems thus provides a means to tune their electronic, 

optical, and sometimes magnetic properties. The strong absorption cross-sections of lead 

halide perovskites renders these materials intriguing candidates for harvesting of solar 

radiation but require the efficient separation of photoexcited holes and electrons.  

In the nanoscale regime, when the material size is decreased below the exciton 

Bohr radius (CdSe: 5.4 nm, MAPbBr3: 2.5 nm, and CsPbBr3: 3.5 nm), the optical and  
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Figure I. 7 Structural and compositional modulation of lead halide perovskites. (A) 
Anion exchange exchange by changing ‘X’ halide anion (B) ‘B’ cation exchange 
reaction (C) ‘A’ cation exchange eraction (D) Phase transformation from CsPbX3 to 
Cs4PbX6 and CsX via reactions with Pb2+ or PbX2. (E–G) TEM images of nanocrystals 
obtained through the phase transformations in the ternay Cs–Pb–Br compounds. 
Reprinted with permission from ref. 41. Copyright 2018 Nature Publishing Group. 

 

electronic properties are drastically altered as a result of quantum confinement effects 

wherein electron and hole wavefunctions are three-dimensionally confined in 0D 

nanocrystals.37, 38, 41 Surface-capping ligands are generally used to establish synthetic 

control over nanocrystal dimensions. The ligand-mediated synthesis of nanocrystals has 

been intensively studied since initial reports of the colloidal synthesis of CdSe quantum 
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dots in 1993.45 In a similar manner, perovskite nanocrystals are rapidly precipitated and 

crystallized through ligand-mediated synthesis wherein the surface-capping ligands can 

play a crucial role in mediating the extent of supersaturation and confining the layer-by-

layer crystal growth of nanoplatelets by binding to the basal planes of PbBr6 corner-

sharing nanoplatelets.42, 43, 46 Mechanistic elucidation of the role of surface-capping 

ligands is imperative to precisely modulate nanocrystal dimensions and will be the focus 

of the Chapter II—III.  
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CHAPTER II 

LIGAND-MEDIATED MODULATION OF LAYER THICKNESSES OF 

METHYLAMMONIUM LEAD BROMIDE NANOPLATELETS* 

 

II.1 Introduction 

 Organic metal halide perovskites with the composition ABX3 (where A is a short-

chain alkylammonium cation; B is a main-group, usually divalent, metal cation; and X is 

a halide anion), have been heralded as being transformative for the next generation of 

photovoltaic devices given the outstanding device efficiencies that are accessible even 

with solution-cast thin films.1-5 These materials show exceptional promise as 

semiconductors and are characterized by high diffusion lengths, small exciton binding 

energies, and long-lived as well as high-quantum-yield photoluminescence.6-8 Such 

properties have further led to interest in these materials for applications in light-emitting 

diodes (LEDs) and electroluminescent (EL) devices.9, 10 The band gap, exciton binding 

energy, and absorption cross-section of these materials are tunable to some extent by 

partial or complete substitution of the A, B, and X sites with analogous cations or anions 

albeit it is worth noting that unlike oxide perovskites, the lower charge of the halide 

anions constrain the oxidation states and ionic radii permissible at the B site (for 

instance, entirely excluding transition metals).11-15  The A site is furthermore sensitive to 

size as well as charge distribution constraints and is thus far restricted to Cs+, CH3NH3
+,  

*Reprinted with permission from “Ligand-Mediated Modulation of Layer Thicknesses of Perovskite Methylammonium 
Lead Bromide Nanoplatelets” by J. Cho, Y-H. Choi, T. E. O’Loughlin, L. D. Jesus, S. Banerjee, Chem Mater, 2016, 
28, 6909-6916. © 2016 Amercan Chemical Society. All rights reserved.  
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and HC(NH)2
+. 15-17 As with other semiconductors, dimensional confinement in 

proximity of the Böhr radius (estimated to be in the range of 1.36—2 nm18-20 for these 

materials) provides an important additional means of tuning the energy positioning and 

separation of conduction and valence band edges and thus optical and electronic 

properties.  

As polar extended solids, perovskite organic lead halides are readily crystallized 

from solvent mixtures containing the constituent ions.15, 21 The use of capping ligands, 

analogous to methods deployed in the synthesis of colloidal quantum dots, has gained 

increasing prominence as a means of dimensionally confining crystal growth.22-24  For 

instance, Schmidt et al. have reported the preparation of 0D colloidal methylammonium 

lead bromide (MAPbBr3) nanocrystals that are ca. 6 nm in diameter using octyl- or 

octadecyl-alkylammonium ions as capping ligands.25, 26 As a result of the larger steric 

footprint of longer alkyl chain (R) quaternary ammonium salts and their specific charge 

distribution, such cations are unable to occupy the A sites of ABX3 perovskites and 

instead stabilize layered perovskites with the structure (RNH3)2PbI4.27-29 The addition of 

mixed ligands, for instance, methylammonium and long chain alkylammonium ligands 

results in segregation of the capping ligands such that the former is incorporated within 

the crystal structure, whereas the latter serves as the terminating layer where it is 

electrostatically bound to sheets of corner-shared PbBr6 octahedra. As an example of this 

approach, a ligand-assisted reprecipitation method has been developed wherein the 

addition of octylamine facilitates the stabilization of colloidal MAPbX3 perovskite 

nanocrystals exhibiting photoluminescence quantum yields of up to 70%.30, 31 Recently, 
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surface termination with long-chain alkylammonium cations has been utilized in the 

synthesis of quasi-2D perovskite nanoplatelets with a layered structure; the 2D 

morphology allows for modulation of the extent of quantum confinement along the 

vertical direction depending on the number of layers and holds great potential for 

fabrication of colloidal analogs of epitaxally grown 2D quantum well architectures.32-35 

Depending on the relative ratios of CH3NH3
+ and the long-chain alkylammonium 

cations, the proportion of interior unit cells incorporating the former and terminal surface 

planes binding the latter can be modulated to obtain nanoplatelets that span no more than 

unit cell (of MAPbBr3) in thickness with the longer chain capping ligands 

electrostatically bound on both sides of the platelets. The 2D nanoplatelets show 

increased exciton binding energies, decreased photoluminescence decay times, and 

improved absorption cross-sections.28, 36-38 Particularly striking and distinctive thickness-

dependent optical properties are observed for 2D platelets that are confined to being one- 

or two unit cells thick, which have dimensions below the Böhr radius, and are thus 

within the strongly quantum confined regime in terms of their vertical dimensions. 28, 38 

While several synthetic and fractionation protocols to prepare phase-pure samples of 

few-layered thick nanoplatelets have become available18, mechanistic understanding of 

the factors affecting nucleation and growth have thus far not been elucidated. 

In this paper, we demonstrate that tuning the chain length and concentration of 

the longer chain alkylammonium cation in ligand-assisted reprecipitation allows for fine 

modulation of the stacking of MAPbBr3 nanosheets. The vertical oligomerization of the 

nanosheets is directly correlated to diffusion constants of the alkylammonium species 
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and allows for broad tunability of optical absorption and emission features in the range 

of 430—520 nm.  

 

II.2 Experimental 

Synthesis of 2D MAPbBr3 perovskite nanoplatelets. Methylammonium lead bromide 

nanoplatelets were prepared by modifying a previously published ligand-assisted 

reprecipitation method.31 Briefly, a precursor solution was prepared by dissolving 0.016 

mmol of CH3NH3Br and 0.016 mmol of PbBr2 in 1 mL of DMF (a good solvent for the 

perovskite organic metal halides) and mixing in 0.5 mL of oleic acid and the appropriate 

amount of alkylamine (RA). Alkylamines with different alkyl chain lengths were 

employed such as BA (C4), HA (C6), OA (C8), DA (C12), and OLAm (C18). The 

MA:Pb ratio was kept constant at 1:1, whereas the MA:RA ratio was varied in the range 

between 1:0.5 to 1:8. Next, the precursor solution was rapidly added into 10 mL of 

toluene (a poor solvent for the polar perovskite organic metal halides) under vigorous 

stirring resulting in stabilization of a precipitate. The precipitate was collected by 

centrifugation at 10—15k rpm for 10 min and then resuspended in toluene solution. 

Three such centrifugation and resuspension cycles were used to obtain a colloidal 

dispersion of the nanoplatelets in toluene for further characterization.  

Characterization. Powder X-ray diffraction (XRD) measurements were performed 

using a Bruker D8-Focus Bragg-Brentano X-ray Powder Diffractometer with a Cu Kα 

radiation source (λ = 1.5418 Å). Powder XRD data was acquired in the range of 10—

60°. Bright-field transmission electron microscopy (TEM) images were obtained using a 
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JEOL JEM-2010 instrument operated at an accelerating voltage of 200 kV; high-

resolution TEM (HRTEM) images were obtained using a FEI Tecnai G2 F20 ST 

instrument operating at 200 kV. Field emission scanning electron microscopy (FE-SEM) 

images were acquired using a JEOL JSM-7500F instrument at an accelerating voltage at 

10 kV. Atomic force microscopy (AFM) images were acquired using a Bruker 

Dimension Icon instrument using silicon tips in tapping mode. Small angle X-ray 

scattering (SAXS) measurements were performed using a Rigaku S-Max3000 Pinhole 

SAXS Camera. UV-Vis absorption spectra were measured using a Hitachi U-4100 UV-

Vis-NIR spectrophotometer, whereas photoluminescence spectra were obtained using a 

Horiba PTI Quanta-Master series spectrofluorometer with a Xenon arc lamp as the 

source and a photomultiplier tube (PMT) as the detector.  

Calculation of Diffusion Coefficients. Diffusion coefficients of various alkylamine 

(C4, C6, C8, C12, and C18) were calculated as per:39  

ࡰ ൌ ࢀ࢑

૟࣊ࢇࣁ
ࢇሺ૛	ܖܔ

࢈
ሻ…    (II. 1) 

where D is the diffusion coefficient, kB is Boltzmann’s constant, T is the absolute 

temperature, η is the viscosity of the solvent, a is the radius of long axis, and b is radius 

of short axis of freely rotating prolate ellipsoids of the alkylamine. The dimensions were 

calculating from molecular models of the amines constructed using the Avogadro 

molecular modeling package.40 The viscosity was extrapolated from experimentally 

determined values measured for DMF (0.92 cP) and toluene (0.59 cP) at room 
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temperature. A 1:10 stoichiometry ratio of DMF:toluene was used to calculate the values 

shown in Figure II. 1b. 

 

II.3 Results and Discussion 

As a polar solvent, DMF is able to dissolve all of the precursors; however, 

addition of the precursor solution to non-polar toluene at room temperature immediately 

induces precipitation and crystallization of MAPbBr3 as indicated by the incipient 

turbidity of the solvent mixture. The MAPbBr3 crystals are formed immediately at room 

temperature and thus nucleation and growth of the precursors is not well separated in 

time.41, 42 However, the long chain RA ligands clearly influence the morphology and 

layer thicknesses of the obtained nanoplatelets. As noted above, the thinnest platelets that 

can be stabilized are only one unit cell thick; the strong exciton binding energy of these 

systems partially counteracts the effects of quantum confinement and such monolayer (n 

= 1) species have been reported to exhibit a characteristic photoluminescence emission 

maximum at 427 nm and a sharp excitonic absorption feature blue-shifted by a small 

Stokes shift.18 The spectral signatures are red-shifted stepwise by discrete energies with 

increasing number of layers (n = 2, 3, 4, etc.) up until the bulk limit (n = ∞) characterized 

by a photoluminescence emission maximum at 519 nm and an absorption onset of 528 

nm.18, 43 These well-established thickness-dependent spectral signatures of few-layered 

MAPbBr3 thus enable mapping of the layer thicknesses of  the prepared materials as a 

function of the concentration and chain length of the long chain alkylammonium groups, 

which in turn can be correlated to the extent of supersaturation of the precursors in the  
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Figure II. 1 (a) Photoluminescence maximum of MAPbBr3 nanoplatelets plotted as a 
function of the number of carbon atoms in the alkyl chain of long chain RA groups added 
as capping ligands. The photoluminescence maxima at different MA:RA concentrations 
are plotted. (b) Photoluminescence emission maxima plotted as a function of the 
calculated diffusion constant and the number of carbon atoms at a MA:RA ratio of 1:2. 
Photoluminescence emission spectra at MA:RA ratios of 1:x for different chain lengths 
of the capping ligand plotted at (c) x = 0.5, (d) x = 2, and (e) x = 8. The 
photoluminescence spectra have been normalized to a unitary intensity at their peak 
maxima. The inset to (c) indicates a digital photograph of toluene dispersions of the 2D 
nanoplatelets prepared using different capping ligands upon excitation with a UV light 
source at 365 nm. 

 

solvent mixture as buffered by the capping ligands.19, 20, 24, 44 Figure II. 1a indicates the 

evolution of the photoluminescence emission maxima measured for nanoplatelets 

obtained using different alkyl chain lengths of the alkylammonium cations (C4—C18) at 

varying precursor ratios of MA:RA = 1:x (x = 0.5—8). At a low concentration, 1:0.5 of 

MA:RA, the photoluminescence emission maxima for all of the alkylammonium cations 
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collapse to a single peak in the range of 510—520 nm, indicative of the nanoplatelets 

approaching the bulk limit in terms of the number of layers. The small differences in PL 

maxima across the different ligands likely relate to the dielectric constants of the 

electrostatically bound layers and their extent of aggregation. In stark contrast, at the 

highest RA concentration (MA:RA = 1:8) examined here, for all but the butylamine-

capped nanoplatelets, the photoluminescence maxima collapse to a singular peak at 433 

nm, which can be attributed to the emission of strongly quantum confined single-layered 

nanoplatelets.      

The photoluminescence maximum of the butylamine-capped nanoplatelets is 

observed at 450 nm, corresponding to nanoplatelets that span two unit cells in thickness 

(n = 2). These two data sets are illustrative of the critical influence of the longer chain 

alkylammonium cations in mediating the vertical oligomerization of MAPbBr3 platelets. 

The addition of toluene to the DMF solution induces supersaturation of MAPbBr3 and 

results in a rapid burst nucleation that yields monomers, likely single-layered MAPbBr3 

that span only a few unit cells in terms of lateral dimensions. The extent of 

supersaturation is mediated by the long-chain alkylammonium groups that passivate the 

surfaces of these monomers. At high RA concentrations, the longer-chain 

alkylammonium cations are electrostatically bound to the entire surface of the monolayer 

nuclei and preclude vertical oligomerization, thereby yielding nanoplatelets that are 

constrained to being a single unit cell thick and limiting crystal growth to the increase of 

lateral dimensions via mechanisms such as oriented attachment.18, 45 Monomers can 

continue to add along the uncapped edges enabling the growth of the nanoplatelets in the 
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ab plane.44, 46 The shorter butylammonium cation is clearly less effective at constraining 

growth and thus a high density of bilayered (n = 2) platelets are stabilized. In contrast, at 

low RA concentrations, the surfaces of the monomers are not entirely covered, and thus 

under conditions of high supersaturation, unconstrained growth yields bulk-like crystals 

(although note the blue shift of the photoluminescence maxima for crystals grown using 

the longest chain OLAm moiety, which suggests some weak dimensional confinement). 

The effects of chain length are greatly emphasized in the intermediate 

concentration regime where MA:RA = 1:2 (Figure II. 1b) and 1:4. Figures II. 1c—e 

contrast the photoluminescence spectra acquired at MA:RA ratios of 1:0.5, 1:2, and 1:8, 

respectively, for different alkyl chain lengths. At intermediate concentrations of the 

capping group, the extent of supersaturation is greatly decreased and a 2D layer-by-layer 

mode of crystal growth becomes accessible yielding few-layered nanoplatelets with layer 

thicknesses as ascribed in Figure II. 1d.44, 47-49 Nanoplatelets prepared using the C4 RA 

as the capping group show a photoluminescence maximum at 510 nm, suggesting the 

stabilization of multilayered nanoplatelets approaching the bulk limit; the C6 RA moiety 

yields a single peak at 506 nm, ascribed to 2D nanoplatelets with n = 6; the C8 RA yields 

a primary peak at 474 nm that can be ascribed to n = 3 nanoplatelets with shoulders 

showing distributions of both bilayered and four-layered nanoplatelets; the C12 RA is 

characterized by an emission band centered at 455 nm assigned to bilayered 

nanoplatelets with a minority population of n = 3 nanoplatelets; and finally, for C18 RA 

the photoluminescence maximum shifts to 450 nm, which can be ascribed to layer 

thicknesses of n = 2 with minority populations of monolayer (at 433 nm) and trilayered 
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nanoplatelets (at 474 nm). Table A. 1 lists the spectral assignments to layer thicknsses 

and cites the assignments available in the literature.18, 28, 51 Figure A. 1 shows the 

corresponding absorption spectra that furthermore corroborate the influence of the chain 

length and concentration. The MA:RA = 1:8 samples are characterized by pronounced 

excitonic absorption features at 427 nm, corresponding to monolayer MAPbBr3, whereas 

samples prepared using MA:RA = 1:0.5 have broad absorption features characteristic of 

the bulk material. Figure A. 2 shows powder X-ray diffraction patterns acquired for the 

materials grown at MA:RA ratios of 1:2 with varying chain lengths of the 

alkylammonium cations. The diffraction patterns exclusively show (00l) reflections, 

which is further indicative of the stabilization of 2D nanoplatelets. Scherrer broadening 

is observed for the 2D nanoplatelets  

 

Figure II. 2 (a) UV-visible absorption spectra and (b) photoluminescence emission 
spectra plotted for varying MA:RA ratios when C8 OA is used as the capping ligand. The 
photoluminescence spectra have been normalized to a unitary intensity to exhibit 
variations of the peak maxima. (c) Plot of the peak position of the primary 
photoluminescence emission band as a function of the relative OA concentration. An 
exponential fit to the data yields a R2 value of 0.987. The inset to (c) indicates a digital 
photograph of 2D nanoplatelets capped with OA prepared at different concentrations of 
the capping ligand upon excitation with a 365 nm UV light source. 

 

grown using C8, C12, and C18 RA groups indicative of strong dimensional confinement 

along the crystallographic c direction. Notably, the intensities of the Bragg reflections are 
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greatly diminished for the latter two samples that span only a couple of unit cells in 

thickness. 

Since the monomeric single-layered MAPbBr3 nanosheets are capped by the RA 

groups, crystal growth in layer-by-layer mode becomes dependent on the diffusion 

constant of the capping ligand, which in turn is dependent on the alkyl chain length. 

Indeed, Figure II. 1b suggests a direct correlation between the calculated diffusion 

coefficients of the RA moieties39 and the PL maxima, which in turn reflects the number 

of layers at a MA:RA ratio of 1:2 (Figure II. 1d). It is evident from this figure that at 

these RA concentrations, oligomerization proceeds through a diffusion controlled 

regime. Notably, the diffusion constant serves as a proxy for several physical parameters. 

Under conditions of dynamic equilibrium, interactions between surface-bound ligands 

will greatly affect the grafting density and consequently the ease of monomer diffusion. 

In general, when considering the packing of long-chain alkylaimines on surfaces, the 

aggregation enthalpy is increased with increasing number of carbon atoms as a result of a 

higher number of dispersive interactions within structured aggregates but such packing is 

entropically disfavored since the rotation of alkyl chains is hindered by conformational 

restrictions imposed by packing. 52 For longer aliphatic chains, it has been suggested that 

exothermic enthalpic processes become predominant (close to 8—10 carbon atoms) and 

can outweigh the entropic penalties inherent from conformational restrictions that inhibit 

packing for shorter chain lengths.52, 53 The exact details of the interplay between these 

parameters will of course also depend on the binding enthalpy of the ligands on the 

PbBr6-terminated surface. While bending and bond rotations are likely still feasible on 
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the surfaces, the conformational degrees of freedom are greatly reduced upon 

aggregation of the ligand molecules on the surfaces that accompanies crystallization of 

the nanoplatelets. Consequently, longer chain ligands are expected to form better packed 

aggregates that can impede diffusion of monomeric species to the surfaces of the 

nanoplatelets. In other words, the low diffusion coefficient, higher steric footprint, and 

overall greater enthalpy of aggregation results in the formation of thinner nanoplatelets 

by restricting monomer addition along the vertical direction.  

As a representative long chain RA cation with a diffusion constant deduced to be 

0.78 × 10-9 m2/s in the DMF—toluene mixture, the influence of C8 OA in modulating the 

extent of supersaturation and layer-by-layer growth is illustrated in Figure II. 2 for 

concentrations ranging for MA:OA ratios of 1:0.5 to 1:8. Figure II.2a shows absorption 

spectra, whereas Figure II. 2b shows photoluminescence emission spectra acquired at 

these varying concentrations. At a MA:OA ratio of 1:8, a distinct excitonic absorption 

feature is observed at 427 nm (Figure II. 2a) and a single photoluminescence emission 

band is observed at 433  nm (Figure II. 2b) suggesting the stabilization of single-layered 

nanoplatelets. Halving the concentration yields bilayered nanoplatelets as the 

preponderant species but shoulders to the primary emission band in the 

photoluminescence spectra indicate the presence of n = 1, n = 3, and even highly 

agglomerated bulk nanoplatelets as minor products (Table A. 1). Halving the  
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Figure II. 3 TEM images of 2D MAPbBr3 nanoplatelets obtained at different ratios of 
the capping ligand C8 OA, MA:OA = 1:x where (a) x = 0.5, (b) x = 1, (c) x = 2, and (d) x 
= 4; (e) high-magnification image of MAPbBr3 nanoplatelets obtained at a MA:OA ratio 
of 1:2 (the inset depicts a lattice spacing of 0.298 nm, which is attributed to the 
separation between 200 planes); and (f) fast Fourier transform of the high-resolution 
TEM image of (e). 

 

concentration again yields trilayered nanoplatelets as the primary moieties in 

photoluminescence spectra with n = 2, n = 4, and highly agglomerated bulk nanoplatelets 

as minor moieties. At a concentration of MA:RA = 1:1, n = 6 nanoplatelets are stabilized, 

whereas upon further decreasing the OA concentration, the added ligands are unable to 

prevent vertical oligomerization of the nanoplatelets resulting in the formation of bulk 

crystallites. Figure 2c plots the peak position of the primary emission band as a function 

of the OA concentration, indicating a single-exponential fit with y = 110e(-x/2.23)+431.9, 
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and suggesting that the RA groups buffer the extent of supersaturation and thus directly 

control the layer-by-layer growth of these materials. The inset to this figure indicates the 

pronounced blue-shifts engendered by confining the nanoplatelets to one or two unit cell 

dimensions,  

 

Figure II. 4 Tem images of face-to-face orientation of 2D perovskite nanoplatelets 
obtained at a, b) MA:BA ratio of 1:2; c) MA:OA ratio of 1:1; and d) and MA:OA ratio of 
1:2. 
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which are in the strongly quantum confined regime.18 MAPbBr3 nanoplatelets are 

extremely sensitive under an electron beam and are rapidly disintegrated upon prolonged 

imaging.18, 32 

Nevertheless, the transmission electron microscopy (TEM) images in Figure II. 3 

and the scanning electron microscopy images in Figure A. 3 are consistent with the 

concentration-dependent thickness variations deduced from the optical absorption and 

emission spectra. Large cubic crystals with sides on the order of 500±100 nm are 

observed for MA:RA ratios of 1:0.5 (Figures A. 3a and b). The particles are visibly 

thinner for MA:RA ratios of 1:1 (Figures A. 3c and d) and indeed upon further increasing 

the ratio to MA:RA of 1:2, ultrathin nanoplatelets are observed with relatively low 

electron density contrast. Figure II. 3 indicates TEM images acquired for nanoplatelets 

grown at different MA:OA ratios. Again at low OA concentrations, relatively large 

nanoplatelets are observed that are ca. 100±20 nm in thickness and span ca. 400±100 nm 

in terms of their lateral dimensions (Figures II. 3a-b). At MA:OA ratio of 1:2 (Figure II. 

3c) and 1:4 (Figure II. 3d), the nanoplatelets are extremely thin as well as smaller in 

terms of their lateral dimensions (ca. 30±10 nm). However, clear elucidation of size 

distributions by electron microscopy is precluded by beam damage since these thin 

nanosheets are extremely susceptible to degradation, forming 0D quantum dots.26, 31 

Figures II. 3e and f indicate lattice-resolved TEM images and a SAED pattern acquired 

for individual nanoplatelets estimated to span three or four layers in thickness. Given the 

electron beam sensitivity of the nanoplatelets, AFM has been deployed to corroborate the 

assigned layer thicknesses. Figure A. 4 indicates AFM images and height profiles 
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obtained for nanoplatelets grown at different concentrations of C8 OA. The reduction in 

vertical dimensions is clearly visible as a function of the alkylamine concentration; at 

low concentrations of OA (MA:OA of 1:1), the nanoplatelets span few hundred 

nanometers in thickness. However, at high relative concentrations (above MA:OA of 

1:4), nanoplatelets that are only 1.5 ± 0.3 nm in thickness are observed and can be 

assigned to n = 1 monolayers as also observed previously in the literature.18  Intermediate 

relative concentrations yield finite numbers of layers (n = 3 and n = 5 at MA:RA 

concentrations of 1:2). The AFM results are thus consistent with the assignments derived 

from photoluminescence and optical absorption spectra. Figure A. 5 indicates SAXS 

measurement for nanoplatelets prepared using different relative concentrations of OA 

(MA: OA 1:x, where x = 1-4). A reflection at q = 0.176 Å-1 is observed to increase in 

intensity with increasing concentration of OA. The reflection corresponds to a separation 

of 3.58 nm and is attributed to the separation between individual monolayer (n =1) 

nanoplatelets assembled within columnar aggregates.53 The value of 3.58 nm 

corresponded to the thickness of a monolayer of MAPbBr3 (ca. 1.5 nm) and a double 

layer of surface bound octylammonium cations (ca. 2.0 nm).  

Figure A. 6 depicts absorption and photoluminescence spectra acquired for the 

C4, C6, C12, and C18 alkylammonium groups as a function of increasing concentration. 

A similar concentration-dependent blue-shift of absorption and emission features is 

observed with increasing concentration for all of the RA groups. However, as also 

illustrated by Figure 1a, the shorter chain groups need to be present at higher 

concentrations to be able to confine the nanoplatelets to thinner dimensions. The growth  
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Figure II. 5 Photoluminescence emission spectra of synthesized 2D perovskite 
nanoplatelets as a function of the OAc concentration while keeping the same molar ratio 
of MA:OA at 1:2. The photoluminescence spectra have been normalized to a unitary 
intensity to exhibit variations of the peak maxima. 

 

of the single-layered (n = 1) monomer units is easier along the edges since the long chain 

alkylammonium cations bind preferentially to the faces; vertical oligomerization can 

result from addition of monomeric units after displacement of the surface ligands or via 

oriented attachment along the faces.44, 54, 55 Indeed, Figure II. 4 indicates the face-to-face 

ordering of nanoplatelets that may precede oriented attachment.28, 56, 57  

It is worth noting that long chain alkylamines are used in the reaction and are 

transformed to alkylammonium cations that bind electrostatically to the PbBr6 sheets 
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upon protonation by the added large excess of oleic acid (RA:oleic acid = 1:93.75). 

Consequently, the solution-phase activities of the ligand species are expected to vary 

with the oleic acid concentration if it is not added in large excess. Indeed, Figure II. 5 

illustrates that with decreasing OA:oleic acid ratios, the photoluminescence emission 

bands are strongly red-shifted and indeed at a MA:oleic acid ratio of 1:0.94, the 

concentration of protonated alkylammonium cations is too low to effectively bind to the 

surfaces of the monomeric units yielding platelets approaching the bulk limit. 

 

II.4 Conclusions 

In summary, we have investigated the role of the chain-length-dependent 

diffusion coefficient and the concentration of alklylammonium ions in confining the 

crystal growth of MAPbBr3 nanoplatelets. Longer chain alkylammonium cations and 

high concentrations of alkylammonium cations of intermediate chain length are strongly 

electrostatically bound to the faces of the perovskite crystals and confine crystal growth 

along the vertical direction yielding nanoplatelets of tunable thickness. This approach 

allows for precise modulation of layer thickness ranging from strongly quantum confined 

nanoplatelets that are single- or bilayered in thickness to nanoplatelets in the weakly 

confined regime that span three to six layers in thickness. The added alkylammonium 

cations induce a strong growth anisotropy as a result of preferential binding to the top 

and bottom PbBr6 sheets. Vertical oligomerization is thought to be mediated by oriented 

attachment. The results here suggest the facile control of morphology and layer thickness 

that can be induced in this polar system by varying the steric footprint of added ligands. 
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Future work will focus on mixed ligand systems and “entropic ligands” to further exploit 

the interplay between enthalpic stabilization and entropic conformational restriction of 

the ligand shell in mediating crystal growth. 
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CHAPTER III 

INFLUENCE OF LIGAND SHELL ORDERING ON DIMENSIONAL 

CONFINEMENT OF CESIUM LEAD BROMIDE (CsPbBr3) PEROVSKITE 

NANOPLATELETS* 

 

III.1 Introduction 

The colloidal synthesis of ultrathin two-dimensional materials, particularly 

semiconductors, has inspired tremendous recent research interest owing to the 

ability to induce directional dimensional confinement within these structures. 

Directional elimination of structural coherence allows for selective modulation of 

the electronic structure along specific directions of the Brillouin zone and gives 

rise to thickness-dependent optical, electronic, and magnetic properties.1-5 Much 

recent interest has focused on perovskite halide semiconductors with the 

composition ABX3 (where A = Cs+, methylammonium, formadimium; B= Pb2+, 

Sn2+, Ge2+; and X = Cl-, Br-, I- or some mixture therein), which are characterized 

by tunable exciton binding energies, high absorption cross-sections, narrow 

emission bands, and high photoluminescence (PL) quantum yields.6-11 Such 

properties are particularly desirable for light-emitting diodes (LEDs) and 

electroluminescent (EL) devices.12-14 The perovskite structure affords some 

degree of compositional flexibility, and thus tunability of photophysical properties, 

*Reprinted with permission from “Influence of ligand shell ordering on dimensional confinement of cesium lead 
bromide (CsPbBr3) perovskite nanoplatelets” J. Cho, H. Jin, D. G. Sellers, D. F. Watson, D. H. Son, and S. Banerjee, J. 
Mater. Chem. C, 2017, 5, 8810-8818. Reproduced with permission of © 2017 Royal Society of Chemistry. All rights 
reserved.  
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based on substitution of the constituent A, B, and X ions within a parameter space 

constrained primarily by the perovskite tolerance factor;15 layered Ruddleson-

Popper phases are stabilized to accommodate ions that induce larger distortions.16 

While much of the interest in perovskite semiconductors grew out of the 

remarkable properties of organic—inorganic hybrid methylammonium lead halide 

perovskites, their susceptibility to degradation has focused attention on the more 

stable all-inorganic analogue, CsPbX3.17-21  

Dimensional reduction provides a means to access the quantum confined 

regime and modulate the excitonic binding energies and diffusion lengths of such 

materials beyond the scope of compositional modulation.22 The synthesis of 

colloidal 2D CsPbBr3 perovskite nanoplatelets with a high PL quantum yield 

(>70%) as a result of reduction of trap states has been reported by several research 

groups.15, 18, 19, 21 Such syntheses typically deploy surface capping ligands that 

afford a high degree of control over the thickness of the obtained nanoplatelets. 

For instance, Akkerman et al. have demonstrated tunability of morphology from 

nanoplatelets to nanocubes for CsPbBr3 using a reprecipitation method by 

adjusting the amount of bromic acid.18 The extent of protonation of oleylamine 

added as a ligand can effectively control the nucleation and growth of 

nanoplatelets since the surfactant alkylammonium cation competes with the 

cesium cation to electrostatically bind the BX2 layers. The surface ligands are 

electrostatically bound to the basal planes of corner-sharing PbBr6 octahedra; their 

reversible adsorption and desorption mediates further addition of monomeric 
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species, which determines the eventual thickness of the nanoplatelets. Bekenstein 

et al. have examined the influence of reaction temperature and observe wide 

variations of the shape, morphology, and band gap emission of stacked columnar 

perovskite structures as a function of temperature; high reaction temperatures 

(150°C) induce the growth of symmetric nanocubes, whereas anisotropic 

nanoplatelets are obtained at lower reaction temperatures (90°C).19 In recent work, 

Pan et al. have examined the role of surface-capping ligands at different 

temperatures to elucidate the influence of these parameters on the size and shape 

of the obtained nanocrystals.23 However, detailed mechanistic understanding of 

the influence of alkylammonium chain length and branching as well as the 

interplay between thermodynamics and kinetics as it affects nucleation and 

growth remains to be elucidated. The highly ionic nature of perovskite halides 

poses somewhat of a synthetic challenge in that growth rates are high and thus 

discretization of a growth focusing step to obtain monodisperse nanoplatelets can 

be difficult.24 As a practical consequence, the PL spectra of as-prepared 

perovskite nanoplatelets often comprise multiple PL emission peaks 

corresponding to different octahedral layer thicknesses (n).18, 19 A post-synthesis 

treatment with a polar solvent has been developed to obtain quasi-monodisperse 

nanoplatelets, but the treatment degrades crystal quality by disrupting the ligand 

shell.18, 19,23  

Alkylammonium cations are commonly used as surface-capping ligands for 

the synthesis of perovskite nanoplatelets, and can stabilize nanostructures 
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spanning only a few unit cells in thickness by dint of electrostatic interactions 

with negatively charged PbX2 layers.20 The intermolecular interactions amongst 

capping ligands on nanocrystal surfaces are expected to strongly influence the 

further addition of monomer species. Consequently, the crystallinity or ordering 

of the ligand shell is of paramount importance, particularly in systems where 

monomer diffusion is rapid. In essence, the structure of the ligand shell reflects 

the trade-off between enthalpic gains from surface adsorption (ligand—surface 

interactions) and dispersive interactions (ligand—ligand interactions) and the 

entropic penalty imposed by conformational restrictions (as compared to a freely 

rotating ligand molecule in solution). However, to the best of our knowledge, the 

correlation between ligand packing and the nucleation and growth rate has not 

been studied. In this article, we evaluate the influence of chain length, branching, 

and temperature on the dimensional modulation of 2D perovskite nanoplatelets. A 

clear correlation is observed between crystallinity of the ligand shell and 

dimensional confinement of the perovskite nanoplatelets and is rationalized based 

on distinct thermodynamic and kinetic regimes.25  

 

III.2 Experimental  

Synthesis of 2D CsPbBr3 nanoplatelets. In a typical reaction, cesium oleate (Cs-OA) 

was prepared by adapting a previously reported method wherein 0.032 g Cs2CO3 and 10 

mL OLAc were loaded in a 50 mL three-neck round-bottomed flask, degassed under 

vacuum at 120°C, and heated to 150°C under Ar flow to ensure complete dissolution of 
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the solids.21 In parallel, 0.015 g of PbBr2 was dissolved in 5 mL ODE and 0.250 mL of 

OLAc; the lead oleate thus formed was mixed with a desired stoichiometric ratio of 

alkylamine (RA:C4—C18) in a three-neck round-bottomed flask and degassed under 

vacuum for 20 min at 100°C; for C4 mixture was heated at 80—90°C because of low 

boiling point of C4 (78°C). The alkylamine (RA) concentration (x) was systematically 

varied. After complete dissolution of PbBr2, the temperature of the flask was set at the 

desired temperature (which was varied from 50–150°C). Next, 1 mL of the as-prepared 

Cs-OA solution was rapidly injected under Ar flow. The reaction mixture was 

maintained for 10 s and immediately quenched with 15 mL of cool hexanes to 30—40 

°C). The pale yellow-colored precipitate was collected by centrifugation at 12,000 rpm 

for 10 min and then resuspended to form a colloidal dispersion in hexanes. The colloidal 

dispersion of the nanoplatelets in hexanes was used for further characterization. It is 

worth noting that thinner perovskite nanoplatelets tend to grow into thicker crystals in 

solution if the reaction is not quenched. The PL emission spectra of nanoplatelets capped 

with C4 and C14 obtained after 24 h are red-shifted in comparison to spectra obtained 

immediately after synthesis. The nanoplatelet populations corresponding to n = 2 

disappear for C14; the n = 3‒4 are also substantially decreased for C4, (Figure A. 15). 

The attachment of nanoplatelets likely underpins the observed increase of thickness.  

Characterization. Single-particle PL emission spectra from individual perovskite 

nanoplatelets were measured with a home-built wide-field microscope equipped with an 

imaging spectrograph (Princeton Instruments, Acton SpectraPro SP-2300) and an 

electron multiplying charge-coupled device (EMCCD) (Princeton Instruments, ProEM 
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16002). A Xe-lamp (Oriel Instrument, 300 W) in conjunction with a monochromator 

(Newport, Oriel Cornerstone 130) was used as the excitation light source. The 

nanoplatelets were excited via an attenuated total reflection scheme using a quartz prism 

to minimize the interference from the excitation light during the PL measurement. A 

dilute dispersion of colloidal nanoplatelets was cast onto a thin quartz plate to deposit 

well-separated individual nanoplatelets. Next, the plate was placed on top of the prism 

using an index matching liquid (hexanes). The PL from individual nanoplatelets was 

collected using an objective lens (Olympus, PLanFL N 40×) and was focused onto the 

EMCCD either as an image or as a spectrum using a tube lens (Nikon) through the 

imaging spectrograph. High-resolution transmission electron microscopy (TEM) images 

were obtained using a FEI Tecnai G2 F20 ST instrument at accelerating voltage 200 kV.  

Powder X-ray diffraction (XRD) measurements were performed using a Bruker D8-

Focus Bragg-Brentano X-ray Powder Diffractometer with a Cu Kα radiation source (λ = 

1.5418 Å) in the range of 10—60°. Small angle X-ray scattering (SAXS) measurements 

were performed using a Rigaku S-Max3000 Pinhole SAXS Camera in the range of 0.02 

– 0.30 Å-1. UV-Vis absorption spectra were obtained using a Hitachi U-4100 UV-Vis-

NIR spectrophotometer. PL emission spectra were acquired using a Horiba PTI Quanta-

Master series spectrofluorometer with a Xenon arc lamp as the light source and a 

photomultiplier tube (PMT) as the light detector. Fourier transform infrared (FTIR) 

spectra were obtained using Bruker VERTEX 70 in the range of 4000—400 cm-1 with a 

spatial resolution of 4 cm-1.  
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Calculation of the average octahedra layer thickness (n) of nanoplatelets. The 

average octahedral layer thickness of nanoplatelets is reported as per the following 

equation.  

navg = ∑ ሺܽ௜ ൈ ݊௜ሻ
ஶ
௜ୀଵ 	∙∙∙∙∙(III. 1) 

ai = 
ூ௡௧௘௚௥௔௧௘ௗ	௔௥௘௔	௢௙	௡	೔		௜௡	௉௅	௦௣௘௖௧௥௔

்௢௧௔௟௟௬	௜௡௧௘௚௥௔௧௘ௗ	௔௥௘௔	௜௡	௉௅	௦௣௘௖௧௥௔
∙∙∙∙∙ (III. 2) 

where navg is average octahedral layer thickness for a specific sample, ai (i = 1—6 and 

bulk) is the weighting factor representing the population of a specific layer thickness, 

and ni (i = 1—6 and bulk) is the number of octahedral; layers of few-layered 

nanoplatelets. For nanoplatelets thicker than n = 6 in the bulk limit, a value of n = 30 has 

been approximated, based on TEM measurement for thick perovskite approaching to 

bulk limit. In order to calculate the relative proportion of each population, the integrated 

area of individual nanoplatelets at a specific PL maximum emission wavelength is 

obtained and then divided by the total integrated area in the PL spectrum. 

 

III.3 Results and Discussion  

Nanocrystals of CsPbBr3 have been obtained by the hot injection of 

cesium-oleate (Cs-OA) to an octadecene (ODE) solution of lead-oleate (Pb-OA) 

precursors in the presence of oleic acid and alkylamine (RA) based on adaptation 

of a previously reported method.21 The chain length of the alkylamine is varied 

from R = C4—C18; linear as well as branched alklyamines are contrasted for their 

ability to induce dimensional confinement. The injection is performed at varying 



 

61 
 

reaction temperatures ranging from 50–150°C. The synthetic procedures are 

described in further detail in the Experimental section. Prior to injection, the 

solution contains alkylammonium cations protonated by reaction with excess oleic 

acid; the cations are thought to associate with bromide ions to form 

alkylammonium bromide.20, 26 

The large molar excess of oleic acid ensures rapid protonation of the added 

alkylamines at the stoichiometric ratios examined here. The oleic acid 

concentration strongly affects the growth rate, likely as a result of chain-length-

dependent protonation rates, at lower oleic acid:RA molar ratios, as observed in 

previous work. 20 Indeed, the explicit addition of hydrogen bromide has been 

shown to yield thinner nanoplatelets owing to faster capping by ligands that now 

have an increased binding affinity and can thereby efficiently compete with Cs+ 

ions and confine growth along the vertical direction.18, 20  In this study, the oleic 

acid concentration is held constant at 3.895 mmols of oleic acid to 0.019 mmols of 

Cs-OA in order to specifically examine the influence of ligand aggregation on 

crystal growth.  The injection of Cs-OA initiates rapid crystallization of the ionic 

perovskite and the reaction is quenched immediately after injection by the 

addition of hexanes.24 The rapid nucleation and growth kinetics of perovskite 

nanoplatelets render precise dimensional control somewhat more challenging as 

compared, for instance, to II-VI chalcogenide quantum dots. Nevertheless, the 

alkylammonium cations acting as surface-capping ligands strongly influence the  
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Figure III. 1 (a) Single-particle PL emission spectra acquired for CsPbBr3 nanoplatelets 
spanning the range from 2—6 octahedral layers in thickness. The spectra are compared 
to spectra acquired for bulk (n > 6) CsPbBr3, which is beyond the quantum confined 
regime. (b) Intensity map acquired for single particles depicting the shift of emission 
maximum with increasing layer thickness. 

 

morphology and dimensions of the resulting nanoplatelets by controlling the 

monomer supersaturation, monomer addition to incipient nuclei, and the diffusion 

rate.20, 27 In this article, we have sought to correlate the nature of the ligand shell 

to the specific dimensions of the obtained CsPbBr3 nanoplatelets and to develop 

mechanistic understanding of ligand-directed crystal growth.   

Figure A. 7 and Table A. 2 shows the result of a Rietveld refinement to 

the powder X-ray diffraction of CsPbBr3 nanoplatelets obtained using C8 amine 

as the ligand at 150°C. Unlike in the bulk wherein the cubic phase is the 

thermodynamically stable polymorph, colloidal nanocrystals prepared at these 
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temperatures have been seen to have a preference for a lower symmetry 

orthorhombic phase.21, 28 Indeed, the refinement suggests the stabilization of a 

distorted orthorhombic structure with space group Pnma and lattice parameters of 

a = 8.29 Å, b = 11.79 Å, and c = 8.23 Å (Table 1). The vertical dimensions of the 

nanoplatelets are thus expressed in terms of the number of PbBr6 octahedral layers.  

Evaluation of the dimensional confinement of the nanoplatelets is 

facilitated by the thickness-dependent spectral signatures induced as a result of 

quantum confinement along the vertical direction. A Bohr exciton diameter of ca. 

7.0 nm has been deduced for this material suggesting substantial scope for 

tunability of the bandgap as a function of PbBr6 octahedral layer thickness (in 

both cubic and orthorhombic crystal structures, the thickness of a single 

octahedral layer is 0.584 nm).18-21, 27 Single-particle spectroscopy enables us to 

unequivocally assign the spectral signatures of individual nanoplatelets with 

varying thickness based on the peak positions of the PL emission maxima, which 

correspond to band-edge emission.29 Figure III. 1 indicates single-particle PL 

emission spectra with distinctive spectral signatures for bilayer (λem = 427 nm), 

trilayer (λem = 456 nm), four-layer (λem = 475 nm), five-layer (λem = 490 nm), six-

layer (λem = 505 nm), and bulk (n > 6, λem = 515 nm) CsPbBr3 nanoplatelets.18, 19 

30 The samples shown in Figure III.1 correspond to different synthetic conditions 

in each instance. The PL emission spectra for individual nanoplatelets depicted in 

Figure III. 1 correspond to the following synthetic conditions with a fixed ligand 

concentration of 0.760 mmol of RA: n = 2 nanoplatelets have been obtained using  
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Figure III.2 Photoluminescence emission (solid line) and UV-vis absorption 
spectra (dotted line) obtained for CsPbBr3 nanoplatelets prepared using different 
chain lengths of alkylamines (C4—C18) at (a) 150°C, (b) 100°C, and (c) 50°C. 
The insets of (a-c) depict digital photographs of colloidal dispersions of the 
nanoplatelets in hexanes  under UV illumination. The bottom inset to (c) depicts a 
magnified view of the spectra in the range from 400—420 nm indicating 
stabilization of monolayer nanoplatelets for the C14 alkylamine. 

 

the C12 amine at 50°C; n = 3 nanoplatelets have been isolated from dispersions 

prepared with the C12 amine at 100 °C; n =4 and n = 5 nanoplatelets have been 

imaged from dispersions prepared using C12 amine at 150°C (the latter is a 

minority species); and n = 6 and particles in the bulk regime have been imaged 

from samples prepared using the C8 amine at 100°C (the former is a minority 

species). The PL excitation spectra for these samples are depicted as Figure A. 8. 

The PL emission maxima are red-shifted with increasing layer thickness as a 

result of reduced extent of quantum confinement. In contrast to II-VI 

semiconductor quantum dots where in principle the particle size, and thus extent 

of quantum confinement can be varied continuously, for CsPbBr3, discrete 

quantized values of bandgaps are accessible based on the number of octahedral 

layers stacked along the confined dimension. Single-layered nanoplatelets have 

not been isolated under these conditions but a contribution from such species is 
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discernible in ensemble PL spectra (λem = 406 nm) and can be attributed to a 

minority population of such species (Figure III. 2c, inset). 

The measured PL emission maxima wavelengths and assignments to layer 

thicknesses in terms of numbers of octahedral layers are listed in Table A. 3. The 

thickness-dependent spectral signatures allow for mapping of the influence of 

reaction conditions on the extent of dimensional confinement and thereby 

facilitate development of a rich picture of the thermodynamics and kinetics of 

crystal growth.  

Figures III. 2a-c plots the evolution of PL emission spectra as a function 

of the alkylamine chain length at different temperatures (Pb-OA:RA ratio has 

been kept constant at 1:20). The insets depict digital photographs of colloidal 

dispersions of the nanoplatelets in hexanes under UV excitation. The rapid 

crystallization of the ionic perovskite halides yields a distribution of layer 

thicknesses24 for several of the reaction conditions, which are manifested as 

multiple PL emission peaks. The average layer thickness for a specific set of 

reaction conditions (temperature and alkylamine chain length) is deduced by 

fitting the ensemble PL emission spectra to multiple Gaussian peaks, each 

corresponding to the emission of CsPbBr3 nanoplatelets of a certain layer 

thickness as depicted in Figure A. 9. Figure A.9 and Table A. 4 depict the fitting 

results for all of the samples prepared here along with the assignments to the 

number of octahedral layers. The relative intensity of each fitted curve is 

calculated as described in the Experimental section and provides a measure of the 
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average layer thickness. The corresponding optical absorption spectra are depicted 

in Figure III.2a-c. The absorption spectra in Figure III. 2b depicts a consistent 

blue shift of optical absorption feature, which corroborate the progression seen in 

Figure III. 2a. While the photoluminescent quantum yield is thickness-, 

excitation-wavelength, and ligand-dependent, the high quantum yield (>40%) of 

these materials allows for a reasonable evaluation of the layer thickness.21, 30, 31 

The trends observed in PL emission along with absorption spectra have been 

further verified by electron microscopy (vide infra). 

Figure III. 3 plots the average thickness of the nanoplatelets expressed in 

terms of the number of octahedral layers stacked along the vertical dimension as a 

function of the temperature and alkyl chain length of the alkylamine ligands, 

clearly demonstrating the strong influence of these parameters on the extent of 

dimensional confinement. For a reaction temperature of 150°C, increasing the 

chain length of the alkylamine results in a monotonic decrease of the thickness of 

the nanoplatelets, which is manifested as an overall blue-shift of the PL emission 

(Figure III. 2a). Using C4 and C8 capping ligands results in a PL emission peak 

centered at 520 nm, which suggests that the nanocrystals grow beyond the 

quantum confined regime to the bulk limit as these ligands are unable to 

substantially constrain crystal growth. The C12 moiety primarily yields four-

layered platelets with a PL emission peak of 475 nm and minority populations at 

456, 490, and 520 nm corresponding to n = 3, 5, and bulk, respectively. Further 

increasing the chain length to C14 yields a primary product of tri-layered  
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Figure III. 3 (a) 3D correlation and (b) 2D mapping of the nanoplatelet thickness 
expressed in terms of the number of octahedra layers as a function of the alkyl chain 
length at different reaction temperatures 

 

nanoplatelets with a blue-shifted characteristic PL emission band at 456 nm with 

minor contributions from n = 4, 5, and bulk species. As the chain-length is further 

increased, the C18 ligand yields tri-layered nanoplatelets with minor contributions 

from n = 4, 5 species. A prominent blue-shift of the emission with increasing 

chain length is clearly discernible in the digital photograph shown as the inset of 

Figure III. 2a. A similar blue-shift is evidenced for the absorption features in the 

spectra depicted in Figure III. 2a. An analogous correlation with increasing chain 

length is also observed for reaction temperatures of 100 and 50°C for alkylamine 

chain lengths ranging from C4 to C12.  

Once precursors are decomposed resulting in the formation of monomeric 

species, the nucleation and growth of the crystals will be influenced by the 

monomer supersaturation, which in turn is influenced by the ligand chain length. 

The diffusion rate of the monomers is further dependent on the length of the 
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ligands and thus it is clear that with increasing ligand chain length, the 

electrostatically bound alkylammonium monolayer is increasingly able to restrict 

monomer addition, thereby limiting the vertical growth of the nanoplatelets.20, 32-35 

In other words, longer chain alkylammonium cations are able to inhibit access of 

incoming monomers to the incipient crystallite and the monomers themselves are 

likely to be sterically more encumbered and thus slower to diffuse with the net 

effect of longer chain species being able to substantially retard crystal growth, 

allowing for stabilization of ultra-thin nanoplatelets.   

The kinetics of crystal growth being proportional to the diffusion 

coefficient of monomers is expected to be accelerated at higher temperatures and 

indeed for C4-C12 ligands, the thickness of the layers increases with increasing 

reaction temperature.20, 32, 36 Figure A. 10 depicts the PL emission spectra for 

each alkylammonium chain length examined here as a function of temperature. 

Interestingly, Figure III. 3 and A. 10 indicate several departures from the 

correlations noted above for longer chain alkylammonium cations C14 and C18. 

At 50°C, despite their greater steric footprint and sluggish diffusion, the layer 

thicknesses are increased as compared to C12. Indeed, the thinnest nanoplatelets 

at 50°C are obtained for C12, at 100°C for C14, and at 150°C for C18. Figure 

A.10 indicates that for C14 ligands, decreasing temperature from 150 to 100°C 

results in the nanoplatelets becoming thinner but further decreasing the 

temperature to 50°C induces a red-shift of the emission suggesting the 

stabilization of thicker nanoplatelets.  
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Figure III. 4 TEM images and size distribution histograms acquired for nanoplatelets 
prepared by injection at 100°C using alkylamines with different chain-lengths: a,f) C4; 
b,g) C8; c,h) C12; d,i) C14; and e,j) C18. 
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Further evaluation of the extent of dimensional confinement has been 

derived from transmission electron microscopy (TEM) data depicted in Figure III. 

4 The relative stability of these materials under an electron beam 

(methylammonium lead halides in contrast are rapidly disintegrated) and their 

predilection to form columnar stacks (e.g., inset to Figure III.4c) arrayed in a face-

to-face manner allows for direct measurement of the thickness of the prepared 

nanoplatelets. Figure III. 4 contrasts the nanocrystals obtained as a function of 

varying alklyamine chain length at temperature of 100°C. Additional TEM images 

acquired for CsPbBr3 nanoplatelets prepared as a function of varying alkylamine 

chain lengths, illustrating top views of the extended basal planes of the 

nanoplatelets, are shown in Figure A. 11. The shorter-chain ligands yield cubic 

morphologies or relatively thicker rectangular platelets that are strongly modified 

to anisotropic thin nanoplatelets for longer chain alkylamines. The selected area 

electron diffraction (SAED) pattern depicted in Figure A.11f attests to the single-

crystalline nature of individual nanoplatelets, which is further verified by the 

lattice-resolved HRTEM images depicted in Figure A. 12a and b. The C4 amine 

yields large rectangular nanocrystals with lateral dimensions of 100±50 nm and 

vertical dimensions of 40±15 nm. The smallest dimension is well above the Böhr 

radius, consistent with the observation of bulk band-edge emission in PL emission 

spectra of these nanoplatelets (Figure III. 2). Increasing the chain-length of the 

alkylamine to C8 renders the growth strongly anisotropic, resulting in the 

stabilization of thin nanoplatelets, indicative of selective dimensional confinement 
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along the vertical direction (Figure A. 12b).37 A relatively broad size distribution 

of nanoplatelets is observed under these conditions as illustrated by the size 

distribution histograms in Figure III. 4f,g. Figure A. 12c provides a high-

magnification view of the columnar stacks; such images allow for precise 

thickness measurements and assignment to discrete numbers of octahedral layers. 

The nanoplatelets prepared using C8 alkylamine are 30±5 nm in terms of lateral 

dimensions. In terms of vertical dimensions, two discrete populations are 

discernible, thin nanoplatelets with vertical dimensions of 3±1 nm and thicker 

nanoplatelets with vertical dimensions of 6±2 nm. The former distribution 

corresponds to stacks of 3–6 octahedral layers, whereas the latter is beyond the 

quantum confined regime. The observed distribution of vertical dimensions in 

histograms deduced from the TEM images is consistent with the multiple 

emission bands observed in the PL spectra (Figure III. 2). The anisotropic growth 

induced by the alkylammonium ligands corresponds to their selective binding  

 
Figure III. 5 (a) SAXS and (b) IR spectra of few-layered perovskite nanoplatelets 
prepared using various alkylamine chain lengths at 100 °C. The insets (a) depict SAXS 
pattern of nanoplatelets using C18. 
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along the basal planes of the nanoplatelets wherein they are able to selectively 

regulate monomer addition along the vertical direction.20, 37 In contrast, monomers 

can continue to be added to the uncapped edges enabling the lateral growth of the 

nanoplatelets along the ab plane.25, 38 The relatively greater thickness of the C8 

monolayer as compared to C4 alkylammonium monolayer formed on the 

nanoplatelet faces retards vertical oligomerization, yielding thinner nanoplatelets. 

For longer-chain C12 alkylamines, extremely thin nanoplatelets are stabilized that 

range 25±5 nm in lateral dimensions but are only 2.0±0.3 nm in terms of vertical 

dimensions. The corresponding values for C14 alkylamines are 20±5 nm in terms 

of lateral dimensions and 1.9±0.4 nm for vertical dimensions. As also illustrated 

by Figure III. 3, C18 alkylamines appear to be less adept at confining crystal 

growth as compared to their C14 counterparts at 100°C. Indeed, these ligands 

yield CsPbBr3 nanoplatelets with lateral dimensions of 35±5 nm and vertical 

dimensions of 2.3±0.4 nm.  

Figure III. 4 and A. 12 indicate the tendency, particularly of the thinner 

nanoplatelets, to form columnar stacks. Such columnar stacks comprising ligand-

capped nanoplatelets spaced at quasi-regular intervals suggests a high degree of 

ordering of alkylammonium groups assembled on the basal planes of the 

nanoplatelets, essentially forming bilayers. Small angle X-ray scattering (SAXS) 

has been used to characterize the vertical stacking and long-range ordering of the 

nanoplatelets (Figure III. 5a). 19 The nanoplatelets prepared using C4 do not 

exhibit any characteristic reflections in SAXS patterns; this is consistent with the 
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stabilization of larger cubes that do not further show a pronounced degree of 

ordering. For the longer-chain alklyamines, a distinctive reflection is evidenced 

and is shifted to a lower angular momentum vector value with increasing chain-

length; the reflection is ascribed to a quasi-regular periodicity established between 

the nanoplatelets and is shifted from q = 0.164 Å-1 , corresponding to a separation 

of 3.89 nm for C8, to q = 0.140 Å-1 (separation of 4.49 nm) for C12, to q = 0.138 

Å-1 (separation of 4.55 nm) for C14, and q = 0.128 Å-1 (separation of 4.94 nm) for 

C18 (Figure III.5a). The repeat distance corresponds to the bilayer of the self-

assembled alklyammonium monolayers on the basal planes of the platelets in 

addition to the thickness of the few-layered nanoplatelets.20 With an increase of 

the chain length of the alkylamines, the interlayer separation is monotonically 

increased as a result of the double layer of surface passivating ligands. The 

sharpening of the feature with increasing chain length corresponds to an increase 

in cumulative van der Waals’ interactions, which define a more rigid ligand shell 

and yield a more consistent spacing. The increased ordering of the ligand shell is 

also reflected in the FTIR spectra contrasted in Figure III. 5b. The νa (CH2) 

asymmetric stretching frequency and νs (CH2) symmetric stretching frequency of 

the alkylamine is shifted to slightly lower wavenumbers with increasing chain 

length (νa (CH2) from 2920 cm-1 for nanoplatelets capped with the C4 alkylamine 

to 2918 cm-1 for C18 as the capping ligand; νs (CH2) from 2852 cm-1 for 

nanoplatelets capped with the C4 alkylamine to 2850 cm-1 for C18 as the capping 

ligand. These results suggest a higher number of dispersive interactions with 
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increasing chain length.39 The intermolecular interactions reduce electron density 

in C—H bonds, slightly softening this mode.  

The TEM, SAXS, and FTIR data presented in Figure III. 4, III. 5, and A. 

12 provide strong post facto evidence for the presence of highly ordered 

monolayers of alkylammonium cations assembled on the basal planes of the 

CsPbBr3 nanoplatelets. The correlation between chain length of the alkylamine 

capping ligands and the dimensional confinement induced within these systems 

can be attributed to the characteristics of such monolayers. Upon initial rapid 

nucleation of highly ionic crystallites, the alkylammonium cations are 

electrostatically bound to negatively charged planes of PbBr6 octahedra. Their 

preferential binding to these surface planes restricts monomer addition along the c 

direction, whereas growth along the ab plane is less hindered, enforcing planar 

growth anisotropy. The spontaneous binding of the alkylammonium cations onto 

the CsPbBr3 nanocrystals is mediated by two specific interactions with 

distinguishable free energy contributions: 

ΔGbinding = ΔGelectrostatic + ΔGaggregation …(III. 3) 

The first term corresponds to the attractive interactions between the 

quaternary ammonium ions and the negatively charged surfaces, whereas the 

second term (ΔGaggregation) corresponds to the interactions between 

alkylammonium cations on the CsPbBr3 surface. The electrostatic interactions 

between the alkylammonium cations and the surfaces are likely not a strong 

function of the alkylamine chain length for the C4—C18 moieties examined here 
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(given the strong enthalpic component of the electrostatic interaction, the loss of 

entropy at room temperature is relatively small). The latter term can further be 

separated into enthalpic and entropic components as per: 

ΔGaggregation = ΔHaggregation -TΔSaggregation…(III. 4) 

where T is the absolute temperature. In comparison to a freely diffusing molecule 

in solution, an amine molecule adsorbed onto a surface within a crystalline 

monolayer is enthalpically stabilized by dispersive interactions with adjacent 

molecules;26, 40 the magnitude of the dispersive interactions increase with the 

number of carbon atoms. In contrast, assembly within a monolayer incurs an 

entropic penalty as a result of loss of conformational degrees of freedom and is 

also chain-length dependent.  

The Gibbs free energy of aggregation of linear primary amines varies as a 

function of alkyl chain length as per: 

௔௚௚௥௘௚௔௧௜௢௡ሺ݊ሻܩ∆ ൌ െܴܶሺ݈݊݊∆ݓ ൅ …଴ሻݓ݈݊ ሺIII. 5ሻ 

where n is the alkyl chain length, Δw has been empirically determined based on 

regression fits to aggregation data and is 4.241 for each methylene group.41, 42 

 The value of w0 has been empirically determined to be 4.16×10-4 for 

alkylamines.43 ΔGaggregation of the alkylamines used here at the different reaction 

temperatures are plotted in Figure A. 13.42 Figure A. 13 suggests that beyond C6 

alkylamines, the formation of well-ordered monolayers of long n-alkyl chains is 

strongly favored simply taking into account aggregational parameters.42, 44 If 

incipient nuclei are capped immediately with alkylammonium cations, their 
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growth will depend fundamentally on the rate of monomer addition. From a 

kinetic perspective, the rate of monomer addition will scale as 

Rategrowth ∝
ௗమ

஽
    …(III. 6) 

where d is the diffusion path length that the monomer needs to traverse to the 

nuclei and D is the diffusion coefficient. Two distinct diffusion regimes can be 

distinguished, diffusion of monomers in solution to a growing nanocrystal and 

diffusion of the monomer through the ordered ligand shell following Fickian 

kinetics.45 The diffusion coefficient can be expressed as: 

ܦ ൌ ௞்

଺గఎ௔
ln	ሺଶ௔

௕
ሻ…(III. 7) 

where D is the diffusion coefficient, kB is Boltzmann’s constant, T is the absolute 

temperature, η is the viscosity of the medium, a represents the radius of the long 

axis, and b is the radius of the short axis of prolate ellipsoids of the alkylamine.34 

In the two regimes, the viscosity of the medium will differ substantially with 

diffusion through the ligand-shell being subject to a substantially greater retarding 

force as compared to diffusion across the solution.  

These correlations allow for mechanistic understanding of the observed 

chain-length and temperature-dependence of the extent of dimensional 

confinement. The diffusion coefficient of monomers both in solution as well as 

across the alkylammonium bilayer is proportionally increased with decrease of the 

chain-length, resulting in relatively rapid growth of nanocubes approaching the 

bulk limit.20, 26, 34 As per Equation III. 4, the quasi-solid-state diffusion path length 
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through the ligand shell is further relatively small for shorter chain lengths. In 

contrast, thinner nanoplatelets are stabilized for longer ligand chain lengths owing 

to the larger interfacial diffusion path lengths and the slower diffusion of 

monomers in solution and across the ligand shell (Figures. III. 2-4).40, 46 

Increasing temperature imparts greater kinetic energy and increases the diffusion 

coefficient as per Equation III. 7 resulting in easier monomer addition and the 

stabilization of relatively thicker nanoplatelets (Figure III. 3).  

Figure III. 6 plots ΔGaggregation at different temperatures versus the 

thickness of the nanoplatelets expressed in terms of octahedral layer thickness, 

suggesting that ligand shell crystallinity is generally well correlated with 

dimensional confinement. This is especially true at 150°C, which suggests that the 

interplay between aggregational enthalpic gain and entropic cost of forming 

ordered ligand shells governs the overall rate of monomer addition and determines 

the specific octahedral layer thickness stabilized at a given temperature for a 

capping ligand of a specific chain length.20 44, 46 Considering that the attachment 

and aggregation of alkylammonium cations is part of a dynamic equilibrium also 

characterized by ligand desorption, increasing the concentration of the amine 

ought to favor formation of the ligand shell. Figure A. 14 demonstrates the 

influence of concentration of C4, C14, and C18 amines at 100 °C. For the short-

chain amine, even high concentrations do not substantially suppress growth along 

the vertical direction given the high solution-phase and interfacial diffusion 

coefficients and the short diffusion path length across the monolayer. In contrast,  
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Figure III. 6 (a) Aggregational Gibbs free energy of ligand packing as a function of 
chain-length of ligands at various temperature and (b) schematic illustration of ligand 
shell packing and rearrangement at low and high temperatures. 
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for both long-chain amines of C14 and C18, increasing the alkylamine 

concentration strongly limits vertical growth. Specifically, the dimensional 

confinement along vertical direction as a function of concentration of C14 can be 

clearly discernible for C14 that the octahedral layer thickness change from bulk 

limit to bilayer upon increasing the ligand concentration. As noted above, longer 

chain ligands (C14 and C18) at lower temperatures exhibit a pronounced 

departure from this correlation at 50 and 100°C. Despite their longer chain lengths 

and expected sluggish monomer diffusion, Figures. III. 2-4 indicate the 

stabilization of relatively thicker nanoplatelets. Adsorption of ligand molecules 

likely initially happens in a somewhat stochastic manner with subsequent 

desorption/adsorption equilibria facilitating ligand shell rearrangement from a 

disordered to an ordered structure.47 48 The thermal energy required to facilitate 

this ordering is furthermore dependent on chain length. It is thus posited that the 

longer-chain alkylamines form relatively less ordered (metastable) ligand-shell 

assemblies at low temperatures; the relatively lower packing density make such 

ligand shells more permeable to monomers, resulting in the growth of thicker 

nanoplatelets (Figure III. 6b).47 The up-turn in Figure III. 3 can thus be ascribed to 

kinetic stabilization of less ordered ligand shells on the basal planes. 

Indeed, to examine the influence of relatively poor ligand shell 

crystallinity, primary (n-octylamine), secondary (di-n-octylamine), and tertiary 

(tri-n-octylamine) amines have been used in the synthesis of CsPbBr3 

nanoplatelets.35, 49 Figure III. 7 depicts a strong red-shift of the PL emission 
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Figure III. 7 (a) PL emission spectra of CsPbBr3 nanocrystals prepared using n-
octylamine, di-n-octylamine, and tri-n-octylamine. Corresponding TEM images for (b) 
n-octylamine, (c) di-n-octylamine, and (d) tri-n-octylamine. 

 

spectra to the bulk limit of 515 nm with increasing branching of the alkylamine, 

suggesting that reducing the crystallinity of the ligand shell results in stabilization 

of thicker nanoplatelets. The corresponding TEM images further confirm thicker 

vertical dimensions of 20±5 nm for CsPbBr3 nanoplatelets prepared using di-n-

octylamine and 80±20 nm for CsPbBr3 nanoplatelets prepared using tri-n-

octylamine as compared to 3±1 nm for the nanoplatelets prepared using the 

primary amine. The branched amines have a stronger entropic penalty and lower 
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enthalpic gain upon surface adsorption yielding a less ordered ligand shell. The 

reduced ordering and lower packing density of the ligand shell for the secondary 

and tertiary amines facilitates easier monomer addition yielding thicker 

nanoplatelets.49  

 

III.4 Conclusions 

In summary, the influence of ligand chain length, branching, concentration, and 

temperature on the dimensional confinement of CsPbBr3 nanoplatelets has been mapped. 

Alkylammonium capping groups induce anisotropic growth by selectively binding to the 

basal planes of CsPbBr3 nanoplatelets. The ability of the ligands to induce dimensional 

confinement is found to depend on the crystallinity of the ligand shell; a high degree of 

ordering correlates to a higher degree of dimensional confinement primarily by limiting 

monomer addition. The degree of ordering is chain-length dependent and depends on the 

balance between enthalpic gain from increased dispersive interactions and entropic loss 

arising from conformational restrictions. In general, at high temperatures longer-chain 

primary alkylamines yield better ordering of monolayers and restrict monomer diffusion 

while also providing a longer interfacial diffusion path length. However, at lower 

temperatures, disordered monolayers represent metastable assemblies that are less 

effective at constraining growth along the vertical dimensions. These results provide a 

mechanistic basis for developing syntheses to precisely modulate the dimensions of 

perovskite halide nanoplatelets. 
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CHAPTER IV 

LIGAND-ASSISTED NAVIATION OF A TERNARY PHASE DIAGRAM: 

ESTABLISHING SYNTHETIC CONTROL OF STRUCTURAL DIMENSIONALITY 

IN SOLUTION-GROWN CESIUM LEAD BROMIDE NANOCRYSTALS* 

IV.1 Introduction 

Lead halide perovksites have in short order emerged as promising next-

generation candidates for photovoltaics, light-emitting displays, and other optoelectronic 

applications owing to their excellent electronic and optical properties such as tunable 

exciton binding energies, high absorption cross-sections, long carrier diffusion lengths, 

and near unitary photoluminescence quantum yields.1-7 Hybrid organic—inorganic and 

all-inorganic ABX3 perovksites (where A = Cs+, CH3NH3
+, CH2(NH2)+; B = Sn2+, Pb2+; 

X = Cl-, Br-, I-) have been extensively investigated over the last several years.8, 9 The 

phase space of ternary ABX3 perovskites has been systematically mapped in terms of 

compositional variations; for instance, solid-solution mixed-halide perovskites have been 

stabilized through topochemical ion-exchange reactions;10-12 similarly, a variety of 

transition metal dopants have been incorporated on the A- and B-cation sublattices.13-15 

Beyond substitutional variations, considerable progress has been achieved in terms of 

controlling particle dimensionality (below the Böhr exciton radius, estimated to be ca. 

3.5 nm for CsPbBr3)16 and morphology (0D quantum dots and 2D nanosheets) through  

*Reprinted with permission from “Ligand-Directed Stabilization of Ternary Phases: Synthetic Control of Structural 
Dimensionality in Solution-Grown Cesium Lead Bromide Nanocrystals” by J. Cho, and S. Banerjee, Chem. Mater., 
2018, 30, 6144-6155. Reproduced by permission of © 2018 American Chemical Society. All rights reserved.  
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the use of passivating ligands and templates.17-19 Other ternary halide perovskites with 

reduced structural dimensionality and more anisotropic crystal structures have started to 

attract increasing attention such as the A2PbX4 Ruddlesden—Popper phases,20, 21 

tetragonal phases,
22, 23 and hexagonal Cs4PbX6.24, 25 These ternary lead halides are 

characterized by structural motifs that are quite distinct from the ABX3 phase. In contrast 

to the 3D network of corner-sharing [PbBr6]4- octahedra in the 3D perovskite, the 

A2PbX4 Ruddlesden—Popper phase is constituted from 2D sheets of corner-sharing 

[PbX6]4- octahedral layers alternated by layers of bulkier A ligands.26 27 In this structure, 

the connectivity of [PbX6]4- octahedra is constrained to being only along the 2D plane; 

the resulting 2D confinement of photogenerated excitons results in a strong blue-shift of 

the excitonic absorption feature as compared to analogous 3D perovskite compositions, 

which reflects the electronic decoupling of [PbX6]4- octahedra along the crystallographic 

c-axis. Distinctive from these two motifs, the Pb-deficient Cs4PbBr6 phase has isolated 

[PbBr6]4- octahedra surrounded by Cs-ions, crystallizing in a 0D structure characterized 

by highly localized excitations. The reduction in dimensionality is reflected in a 

pronounced increase of the bandgap; 3D CsPbBr3 has a bulk bandgap of 2.36 eV 

(tunable in the 2.36—3.2 eV range as a result of confinement below the Böhr radius),28 

whereas in Cs4PbBr6 the bandgap is ca. 3.95 eV as a result of the electronic decoupling 

of [PbBr6]4- octahedra.24, 29 In this article, we demonstrate that the concentration, steric 

bulk, and denticity of ligands used in synthesis allows for remarkable tunability of 

structural dimensionality from 3D CsPbBr3 to 0D Cs4PbBr6. In other words, coordinating 
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ligands allow for navigation of the Cs—Pb—Br phase diagram and provide simultaneous 

control over both structural and particulate dimensionality. 

Akkerman et al. have developed a colloidal synthesis route for the preparation of 

0D Cs4PbBr6 quantum dots with dimensions tunable in the range between 8.8—34.0 

nm.24 The obtained Cs4PbBr6 nanocrystals are transformed to CsPbBr3 nanocrystals upon 

titrating with excess PbBr2. Liu et al. have reported a post-synthetic modification route to 

access Cs4PbBr6 nanocrystals from CsPbBr3 nanocrystals.25 The addition of excess 

alkylamine or thiol ligands results in leaching of PbBr2 and exfoliation of the 3D 

perovskite nanocrystals to Cs4PbBr6 nanocrystals.30 However, the fundamental role of 

ligands in mediating the transformation between CsPbBr3 and the lead-deficient 

Cs4PbBr6 phase remains to be understood. Two distinct mechanisms have been advanced 

to explain the observed ligand-induced structural transformations: (1) the reversible 

topochemical transformation of CsPbBr3 to Cs4PbBr6 by the addition/elimination of 

PbBr2 with complete retention of morphology; and (2) a dissolution—recrystallization 

process wherein the CsPbBr3 phase is dissolved and subsequently precipitated as 

Cs4PbBr6. The latter mechanism is expected to allow for greater tunability of the particle 

dimensions and morphology, which in the case of the former is dictated by the 

dimensions and morphology of the initial nanocrystals. 

Previous work by our group and others has demonstrated that for highly polar 

CsPbBr3 nanocrystals, the diffusion coefficients, extent of aggregation, and the degree of 

ordering within self-assembled ligand monolayers determines the kinetics of crystal 

growth, yielding precise control over particle size and dimensionality.31-34 Herein, we 
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evaluate the influence of added ligands in mediating the stabilization of 3D CsPbBr3 and 

0D Cs4PbBr6 structures based on variation of concentration, denticity, and steric bulk of 

alkylamine ligands.  

IV.2 Experimental  

Preparation of cesium oleate. A 0.4M solution of cesium oleate was prepared by 

dissolving Cs2CO3 with excess OLAc in ODE. Briefly, 2.5 mmol of Cs2CO3 was placed 

in a round-bottom flask with 10 mL of ODE and 2.5 mL of OLAc; the reaction mixture 

was heated to temperatures in the range of 150–200°C in an Ar ambient under Schlenk 

conditions until the solid inside the flask was completely dissolved to yield a transparent 

homogenous yellow liquid.  

Ligand-Mediated Synthesis of CsPbBr3 and Cs4PbBr6 Nanocrystals. Cesium lead 

bromide nanocrystals were synthesized by modifying a previously published ligand-

mediated reprecipitation process.1 A precursor solution containing Cs-oleate and PbBr2 

was prepared by dissolving 37.5 μL of 0.4M Cs-oleate (in ODE) and 0.030 mmol of 

PbBr2 in 0.2 mL OLAc and 0.6 mL DMF (a polar solvent that dissolves all of the 

precursors) with the appropriate amount of the amine (RA). The molar ratio of Cs/Pb 

precursors was held constant at 0.5:1, whereas the Pb:RA molar ratio (1:x) was 

systematically varied for x between 0.5 and 8. Alkylamines with different denticity, steric 

bulk, and varying alkyl chain lengths were evaluated for their role in directing crystal 

growth. It is worth noting that for chelating ligands such as ODA, DDA, and TAA, the 

precursor solution was heated to 100–150°C in order to facilitate the dissolution of the 
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amine. In all of the syntheses, the prepared precursor solution containing the dissolved 

salts and ligands were rapidly added to 10 mL of toluene under vigorous stirring, thereby 

inducing the reaction of the polar precursors and crystallization (directed by the added 

ligands) at room temperature. The resulting precipitate was collected by centrifugation at 

12,000—15,000 rpm for 10 min and then resuspended in 5 mL of toluene for further 

characterization.  

Reversible phase transformation from CsPbBr3 to Cs4PbBr6. A compositional 

transformation from Cs4PbBr6 to CsPbBr3 was observed upon reacting the as-synthesized 

Cs4PbBr6 hexagonal platelets with excess PbBr2 solution. In a typical transformation 

reaction, 2 mL of the Cs4PbBr6 dispersion in toluene was mixed with 0.2 mL PbBr2 

solution; the PbBr2 solution was prepared separately by mixing 0.2 mmol of PbBr2 with 

0.25 mL of OLAc and 0.25 mL of OLAm in 0.5 mL of toluene. Upon addition of the 

PbBr2 solution, the reaction mixture was heated at 120°C until its color changed to 

yellowish-green. Phase transformation from CsPbBr3 to Cs4PbBr6 was accomplished by 

treating an as-prepared 2 mL colloidal dispersion of CsPbBr3 with 0.2 mL of an ODA 

solution at 120°C until it turned cloudy; the ODA solution was prepared separately by 

mixing 0.2 mmol ODA with 0.25 mL OLAc in 0.75 mL toluene.  

Characterization. Powder XRD measurements were performed using a Bruker D8-

Focus Bragg-Brentano diffractometer with a Cu Kα radiation source (λ = 1.5418 Å) in 

the 2θ range of 10—60°. High-resolution transmission electron microscopy images were 

obtained using a FEI Tecnai G2 F20 ST instrument operated at an accelerating voltage of 

200 kV. Energy dispersive X-ray spectroscopy (EDS) data were acquired using an 
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EDAX Instruments EDS detector. UV-Vis absorption spectra were obtained using a 

Hitachi U-4100 UV-Vis-NIR spectrophotometer in the range of 300—700 nm. 

Photoluminescence (PL) emission and excitation spectra were acquired using a Horiba 

PTI Quanta-Master series spectrofluorometer with a Xenon arc lamp as the source and a 

photomultiplier tube (PMT) as the detector. For CsPbBr3 nanoplatelets, an excitation 

wavelength of 360 nm was used to acquire PL emission spectra and an emission 

wavelength of 515 nm was used to acquire PL excitation spectra. For Cs4PbBr6 

hexagonal platelets, an excitation wavelength of 300 nm was used to acquire PL 

emission spectra and an emission wavelength of 360 nm was used to acquire PL 

excitation spectra. FTIR spectra were obtained using a Bruker VERTEX 70 instrument in 

the energy range of 3500—500 cm-1 with a spatial resolution of 4 cm-1. The signal was 

averaged over 64 scans. NMR spectra were recorded on an Inova NMR spectrometer 

equipped with a Quad probe operating at a 1H frequency of 300 MHz. 

1H NMR Characterization: n-octylamine (OA; 300 MHz; CDCl3): δ 2.60—2.55 ppm 

(t, 2H), 1.33—1.12 ppm (10H), and 0.78 ppm (t; 3H); 1,8-octyldiamine (ODA; 300 

MHz; CDCl3) δ: 2.66—2.61 ppm (t, 4H) and 1.41—1.26 ppm (12H); oleic acid (OLAc; 

300 MHz; CDCl3) δ: 5.36 ppm (t, 2H), 2.38—2.33 ppm (t, 2H), 2.04—2.02 ppm (t, 4H), 

1.67—1.62 (t, 2H), 1.32—1.28 ppm (18H), and 0.89 ppm (t, 3H) 

 

 



 

95 
 

IV.3 Results and Discussion  

Tuning Structural Dimensionality Based on Ligand Denticity and Steric Bulk 

Nanocrystals of the 3D CsPbBr3 perovskite and the 0D hexagonal Cs4PbBr6 

phases have been prepared using a ligand-mediated reprecipitation reaction at room 

temperature. In this reaction, a soluble mixture of cesium oleate, lead bromide, and 

alkylamines is prepared in DMF and rapidly added to toluene under vigorous stirring. 

The large resulting change in polarity and concomitant decrease in solubility induces 

rapid nucleation and growth of the ionic cesium lead bromide perovskite lattice in 

nanocrystalline form.18, 33 The reaction mixture changes appearance from colorless to 

green or pale blue upon formation of CsPbBr3 (depending on the extent of quantum 

confinement, as dictated by the added ligands) and to a turbid cloudy coloration upon 

stabilization of Cs4PbBr6. The stabilization of 0D or 3D ternary cesium lead bromide 

nanocrystals is observed to be dictated by the concentration, steric bulk, and denticity of 

the added alkylamine ligand. Figures IV. 1 and 2 present characterization data obtained 

for nanocrystals stabilized using varying concentrations of monodentate n-octylamine 

(OA) as the ligand. Figure IV. 3 presents analogous data acquired for nanocrystals 

stabilized using secondary and tertiary monodentate amines, whereas Figures IV. 4 and 5 

present characterization data for nanocrystals stabilized using various concentrations of 

bidentate 1,8-octyldiamine (ODA) as the ligand. For the monodentate and bidentate C8 

ligands, the molar ratio of the PbBr2 precursor to the added ligand has been varied in the 

range of 1:0.5 to 1:8. Notably, in the absence of any added ligand (x = 0) to induce 
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dimensional confinement, submicron-sized particles of CsPbBr3 are stabilized (Figure A. 

16). 

Figure IV. 1A plots UV-vis absorption spectra of ternary lead halide perovskites 

stabilized as a function of increasing OA concentration (x); a pronounced blue-shift of 

the first excitonic absorption characteristic of CsPbBr3 is observed from 515 nm (x = 0.5) 

to 450 nm (x = 4); however, the excitonic feature is completely eliminated at the highest 

OA concentration (x = 8) suggesting that the 3D perovskite is no longer stabilized at this 

concentration. At an OA concentration of x = 2, several features are observed, which can 

be reasonably attributed to the different layer thicknesses (n) of nanoplatelets: the band 

centered at 475 nm to n =4; the band at 450 nm to n = 3; the band at 400 nm to n = 1; and 

the band at 375 nm is characteristic of PbBr2 complexed to OA (Figure A. 17 shows UV-

vis absorption and PL emission spectra acquired for this complex in DMF solution).34  

The inset to Figure IV. 1A displays digital photographs of the colloidal dispersions of the 

nanocrystals under ambient laboratory light and 365 nm UV excitation; the bottom inset 

indicates a change in coloration from green to blue and to violet-blue with increasing 

concentration of OA, suggestive of the increased dimensional confinement of the 

obtained nanocrystals up to x = 4. PL emission and excitation spectra have further 

recorded for these materials. Based on previous single-particle PL emission spectroscopy 

measurements, the observed spectral features can be correlated with the specific layer 

thickness (n) of CsPbBr3 nanoplatelets.34 Indeed, a continuous blue-shift of the emission 

maximum is observed from 518 nm (corresponding to n = bulk limit) for x = 0.5 to 475 

nm (n = 4) with a minority population at 455 nm (n = 3) at x = 2 (Figure IV. 1B). In past 
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work, we have demonstrated that for a fixed alkyl chain length, increasing the 

concentration of alkylamine ligands brings about the pronounced dimensional 

confinement of CsPbBr3 nanoplatelets by enabling the stabilization of a well-ordered 

ligand shell that limits monomer addition.33 Specifically, the equilibrium between bound 

and free ligands is shifted towards the former, which results in the stabilization of a well- 

Figure IV. 1 Ligand-mediated dimensionality control of cesium lead bromide using n-
octylamine as a ligand. (A) UV-vis absorption spectra acquired at different molar ratios 
of the Pb precursor to OA, 1:x where x = 0.5—8 (the top and bottom insets display 
digital photographs of the obtained samples under laboratory ambient light and 360 nm 
UV excitation, respectively); (B) PL emission (solid lines) and excitation spectra (dotted 
lines); and (C) XRD patterns of the obtained perovskite nanocrystals at different 
concentrations of OA (x = 0.5—8). The blue and red ticks on the bottom and top 
horizontal axes denote reflections of CsPbBr3 (PDF# 01-072-7929) and Cs4PbBr6 (PDF# 
01-073-2478), respectively. (D) Schematic depiction of quantum confinement and the 
reduction of dimensionality with increasing concentration of OA from 3D CsPbBr3 to 0D 
Cs4PbBr6. 
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ordered ligand shell at high ligand concentrations. The ligand-induced dimensional 

confinement close to the Böhr radius (3.5 nm for CsPbBr3) brings about the pronounced 

observed modulation of optical properties in this concentration regime.35 Notably, the 

relatively thin ligand shell formed by OA is unable to constrain growth to monolayer or 

bilayer dimensions, which typically necessitates longer-chain alkylamines.18, 36, 37 

Interestingly, still further increasing the OA concentration to x = 8, brings about a 

pronounced discontinuous shift of the PL emission maximum to 360 nm; a cloudy 

appearance is furthermore noted in the digital photographs shown in Figure IV. 1A. The 

observed emission spectrum is concordant with the stabilization of the wide bandgap 0D 

Cs4PbBr6 phase, as further verified by powder X-ray diffraction (XRD, vide infra).24, 38 

The PL excitation spectrum acquired for the x = 8 sample provides additional evidence 

for the stabilization of 0D Cs4PbBr6 nanocrystals. Two distinct excitation bands are 

observed centered at 320 nm, respectively, which can be assigned to localized 6s1/2—

6p1/2 optical transitions of Pb2+ cations of individual [PbBr6]4- octahedra.25, 39, 40  

Structural characterization of the products obtained at different molar ratios of the 

Pb precursor to OA has been performed using power XRD as shown in Figure IV. 1C. In 

the Pb-precursor:OA range of 1:0.5—1:2, the products can be unequivocally assigned to 

the orthorhombic phase of CsPbBr3 (PDF# 01-072-7929).41 Bulk CsPbBr3 adopts 

different crystal structures depending upon the temperature (orthorhombic at room 

temperature, tetragonal above 88°C, and cubic above 130°C);42 colloidal nanoplatelets 

adopt the lower symmetry orthorhombic structure as a result of a distortion of [PbBr6]4- 

octahedra that is stabilized upon dimensional confinement.43, 44 A pronounced Scherrer 
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broadening of the Bragg reflections is observed with increasing OA concentration, 

indicative of greater dimensional confinement, as also suggested by the optical 

spectroscopy results in Figures IV. 1A and B.33 At an OA concentration of x = 4, several 

additional reflections are observed that can be indexed to the rhombohedral Cs4PbBr6 

phase (PDF# 01-073-2478). At the highest OA concentration of x = 8, the rhombohedral 

Cs4PbBr6 phase is the primary product with some residual reflections from CsPbBr3. 

Indeed, at this concentration, elongated reaction times of up to 24 h induces complete 

transformation to the lead-deficient Cs4PbBr6 phase within the limits of detection (Figure 

A. 18).45 As discussed below, CsPbBr3 is the kinetic product that transforms to the 

thermodynamically favored Cs4PbBr6 phase (and complexed PbBr2) upon prolonged 

reaction. Figure IV. 1D schematically illustrates the dimensional confinement of ternary 

cesium lead bromide nanoplatelets induced as a function of increasing ligand 

concentration; high ligand concentrations initially result in stabilization of strongly 

quantum confined three- or four-layered CsPbBr3 nanoplatelets; further increasing the 

OA concentration brings about a reduction of the intrinsic dimensionality of the structure 

and the stabilization of the Pb-deficient Cs4PbBr6 phase. 

Coordinating ligands can fundamentally alter the extent of supersaturation of 

monomers available for addition to incipient nuclei.46 Monodentate n-alkylamines bind 

Pb2+ cations strongly with a complexation constant (log K) of 1.55±0.1 under aqueous 

conditions.47 High concentrations of ligands that sequester PbBr2 and decrease the 

activity of the monomeric lead species promote stabilization of the Pb-deficient phase. 

Indeed, at higher ligand concentrations, given the reduced availability of the Pb  
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Figure IV. 2 Evolution of the size and morphology of cesium lead bromide nanocrystals 
as a function of the OA concentration. TEM images of cesium lead perovskite 
nanocrystals obtained as a function of increasing OA concentration (x): (A) x = 0.5; (B) x 
= 1; (C) x = 2; (D) x = 4; (E) x = 6; and (F) x = 8. 
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monomer as well as the potential leaching of PbBr2 from incipient CsPbBr3 

nanoplatelets,11,24 the 0D Cs4PbBr6 phase with discrete lead-centered octahedra emerges 

as the thermodynamically favored species, as further evidenced by the observation of 

time-dependent transformation of CsPbBr3 to Cs4PbBr6 indicated in Figure A. 19 and 

discussed at further length below.48  

Figure A. 19 provides further mechanistic insight into the ligand-induced 

modulation of dimensionality. At an intermediate OA concentration of x = 6, the PL 

emission and excitation spectra are strongly modified as a function of time. Under 365 

nm UV excitation, the initial color of the solution immediately upon mixing (at ca. 10 s) 

is bright blue, suggestive of the formation of strongly quantum confined CsPbBr3 

nanoplatelets; however, over a period of time the color of the solution changes to deep 

violet, indicative of the stabilization of Cs4PbBr6. The emission spectrum immediately 

upon mixing is characterized by a strong emission band at 458 nm corresponding to 

trilayer CsPbBr3 nanoplatelets along with a minority population of Cs4PbBr6 

nanoplatelets with a characteristic emission band at 365 nm.34, 49 The latter band 

progressively grows in intensity as a function of time. In other words, under these 

conditions, the CsPbBr3 nanoplatelets represent kinetically trapped metastable species 

and are transformed to the thermodynamic equilibrium comprising Pb-deficient 

Cs4PbBr6 nanocrystals and OA-coordinated PbBr2 species.  

Figure IV. 2 shows TEM images acquired for cesium lead bromide nanoplatelets 

grown at various OA concentrations (x = 0.5—8). The electron micrographs allow for 

direct visualization of dimensional confinement induced in the x range from 0.5 to 4. The 
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shape and morphology of the nanocrystals are significantly changed from rectangular 

crystals in the bulk limit (Figure IV. 2A) to ultra-thin nanoplatelets and subsequently to 

quasi-hexagonal nanoplatelets as a function of increasing ligand concentration. At an OA 

concentration of x = 0.5, the obtained CsPbBr3 nanoplatelets have lateral dimensions of 

70±10 nm and vertical dimensions of 50±10 nm (Figures IV. 2A and A. 20A). The inset 

to Figure A. 20A shows an indexed SAED pattern; the diffraction spots illustrate the 

single-crystalline nature of the nanoplatelets. Increasing the OA concentration to x = 1 

brings about pronounced dimensional confinement down to the quantum confined 

regime; two discrete populations are observed, nanocubes with lateral dimensions of 

20±5 nm and vertical dimensions of 15±5 nm and nanoplatelets with lateral dimensions 

of 30±5 nm and vertical dimensions of 5±2 nm (Figures IV. 2B and A. 20B). Still more 

pronounced dimensional confinement of nanoplatelets is observed at an OA 

concentration of x = 2; ultrathin nanoplatelets with vertical dimensions of 3±1 nm are 

stabilized (Figures IV. 2C and A. 20C). At a still higher OA concentration of x = 4, even 

larger nanosheets spanning a few micrometers in terms of their lateral dimensions are 

stabilized with vertical dimensions of three or four-layers. (Figures IV. 2D and A. 20D). 

The crystal growth of nanoplatelets is strongly confined along the crystallographic c-

direction and indeed ordered ligand shells are constituted on the basal planes. As a result 

of the self-assembled monolayers that inhibit monomer addition along the vertical 

direction,34 growth is strongly preferred along the unpassivated lateral edges. Notably, 

the higher concentration of OA is unable to induce further dimensional confinement 

owing to the facile diffusion of monomeric species across the relatively thin ligand shell. 
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Intriguingly, some degradation of the nanoplatelets and a speckled appearance is noted in 

Figures IV. 2E and A. 20E when the OA concentration is increased to x = 6, which can  

likely be attributed to leaching of PbBr2 or surficial Pb-species by the excess alkylamine 

at these concentrations; the speckled appearance may also result from degradation of the 

nanoplatelets to either quantum dots50 or extrusion of Pb nanoparticles under electron 

beam irradiation as noted previously in the literature.51, 52 Further characterization of the 

speckles has been attempted but is precluded by their instability under the electron beam. 

However, the increase in the density of degraded particles appears to be correlated with 

high amine concentrations providing indirect evidence of greater instability of the 

CsPbBr3 nanoplatelets under these conditions. The observed exfoliation and dissolution 

appears to be consistent with the observations of Figure A. 19 suggesting the preferential 

stabilization of Cs4PbBr6 as a function of time.11, 25, 53 At the highest OA concentration of 

x = 8, self-assembled hexagonal platelets of Cs4PbBr6 are stabilized as depicted in 

Figures IV. 2F and A. 20F. The platelets have diameters of 120 ± 30 nm and indeed 

CsPbBr3 nanoplatelets are no longer observed from SAED patterns (Figure A. 20F). 

In order to examine the influence of the steric bulk of the ligands on the Cs—

Pb—Br ternary phase diagram for ligand-assisted reprecipitation, di-n-octylamine 

(DOA) and tertiary tri-n-octylamine (TOA) amines have further been investigated as 

passivating ligands. Figures IV. 3A and B show PL excitation and emission spectra 

acquired for the obtained cesium lead bromide nanocrystals prepared using different 

concentrations of DOA and TOA, respectively. DOA yields submicron-sized CsPbBr3 

nanoplatelets  
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Figure IV. 3 Influence of the steric bulk of added ligands on the Cs—Pb—Br ternary 
phase diagram. PL emission (solid lines) and PL excitation (dotted lines) spectra of 
cesium lead bromide nanocrystals acquired at different ligand concentrations (x = 4—16) 
using (A) DOA and (B) TOA. The insets to Figures 3A and 3B show digital photographs 
acquired under 365 nm UV illumination. 

 

(approaching the bulk limit in terms of their optical properties) at low concentrations; 

only at a value of x = 8 is a blue-shift to 460 nm observed suggesting quantum 

confinement of the CsPbBr3 nanocrystals (down to approximately trilayer thicknesses).  

Indeed, for the secondary amine, a high ligand concentration approaching x = 16 (twice 

as high as in the case of the monodentate C8 amine) is required to stabilize the Pb-

deficient Cs4PbBr6 phase, albeit even at this concentration a significant population of 

CsPbBr3 nanocrystals is present, as suggested by the distinctive emission band at 519 nm 

in Figure IV. 3A. In contrast, for TOA, even at a high ligand concentration of x = 16, 

only CsPbBr3 nanocrystals at the bulk limit are observed. In other words, increasing 

steric bulk of passivating ligands strongly shifts the synthetic landscape to stabilization 

of the 3D CsPbBr3 phase. The increased steric bulk of these ligands diminishes their 

ability to form an ordered ligand shell and passivate the nanocrystal surfaces.34 As a 
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result, rapid monomer diffusion and growth immediately after nucleation (with minimal 

temporal separation of nucleation and growth steps) results in the formation of large 

CsPbBr3 crystals.34 It is notable that the 1°, 2°, and 3° amines evaluated here furthermore 

have different pKb values, which has been shown to affect crystal growth54. However, 

notably the pKb values for amines used in this study are 3.35 for the primary amine 

(OA), 2.99 for the secondary amine (DOA), and 3.92 for the tertiary amine (TOA), 

respectively, at room temperature55, which does not correlate directly with the observed 

control of structural dimensionality. This suggests that the sterics and resulting entropic 

losses for the branched amines34, which result in a less ordered ligand shell, play a 

greater role as compared to the pKb values. In other words, sterically bulky ligands have 

a much more modest impact on determining the effective monomer concentration at the 

surface of the incipient nuclei and thereby have only a limited influence on controlling 

nanocrystal growth.  

A bidentate C8 ligand, ODA, has further been evaluated for its influence on 

controlling the dimensionality of cesium lead bromide nanocrystals as shown in Figures 

IV. 4 and 5. Figure IV. 4A plots UV-vis absorption spectra as a function of the ODA 

concentration. For an ODA concentration of x = 0.5, the characteristic first excitonic 

peak of CsPbBr3 is observed at 520 nm; successively increasing the ODA concentration 

to x = 1, 2, 4, and 8 yields distinctly different absorption bands centered at 324, 322, 318, 

and 317 nm, respectively, which can be ascribed to the absorption of Cs4PbBr6  
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Figure IV. 4 Ligand-mediated dimensionality control of cesium lead bromide; 1,8-
octyldiamine as a ligand. (A) UV-vis absorption spectra (the inset shows digital 
photographs acquired under ambient laboratory light (top) and 365 nm UV illumination 
(bottom)); (B) PL emission (solid lines) and excitation spectra (dotted lines); and (C) 
XRD patterns of the obtained cesium lead bromide perovskite nanocrystals at different 
concentrations of ODA (x = 0.5—8). (D) Schematic depiction of quantum confinement 
and phase transformation with increasing concentration of ODA from 3D CsPbBr3 to 0D 
Cs4PbBr6.  

 

nanocrystals. The pronounced blue-shift of the absorption maxima of Cs4PbBr6 can be 

rationalized based on electronic decoupling of [PbBr6]4- octahedra within the 0D 

Cs4PbBr6 structure.24, 56 Consistent with the absorption spectra, the PL emission and 

excitation spectra depicted in Figure IV. 4B show a pronounced blue shift with 

increasing ODA concentration. At an ODA concentration of x = 1, two distinct emission 

bands are observed at 370 nm and 520 nm (Figure A. 21); the bands arise from the 
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presence of two disparate populations, a majority population of Cs4PbBr6 and a minority 

species of CsPbBr3. Further increasing the ODA concentration yields only the 

characteristic emission band of Cs4PbBr6. The XRD patterns plotted in Figure IV. 4C 

reflect a clear evolution from orthorhombic CsPbBr3 to rhombohedral Cs4PbBr6 with 

increasing concentration of ODA. At an ODA concentration of x = 0.5, phase-pure 

CsPbBr3 nanoplatelets are stabilized; at an intermediate ODA concentration of x = 1, a 

biphasic mixture of CsPbBr3 and Cs4PbBr6 is discernible. At higher ODA concentrations 

of x = 2—8, phase-pure Cs4PbBr6 is stabilized within limits of detection (Figure IV. 4C). 

The nanocrystals obtained using ODA have further been characterized by TEM. At an 

ODA concentration of x = 0.5, aggregated CsPbBr3 nanocubes are observed (Figure IV. 

5A); increasing the ODA concentration to x = 1 yields well-defined hexagonal platelets 

of Cs4PbBr6 with a diameter of 200±40 nm along with debris of somewhat degraded 

CsPbBr3 nanoplatelets, suggesting that at this concentration, the ODA is beginning to 

leach PbBr2 layers from the incipient CsPbBr3 nanoplatelets (Figure IV. 5B), consistent 

with previous reports in the literature.57 At an ODA concentration of x = 2, well-defined 

hexagonally close packed superlattices of Cs4PbBr6 hexagonal nanoplatelets are 

stabilized with each platelet having a side of 80±10 nm (Figures IV. 5D and A. 22). 

EDS analysis of the hexagonal nanoplatelets indicates an elemental ratio of Cs:Pb:Br = 

4.1:1.18:6, which is concordant with the expected Cs4PbBr6 stoichiometry with the 

excess Pb likely arising from surficial PbBr2 layers stabilized by ODA (Figure A. 21B). 

The chelating nature of the bidentate ligand induces a much more facile transformation 

to the lead-deficient Cs4PbBr6 phase, at a significantly lower concentration of x = 1 as  
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Figure IV. 5 Evolution of size, morphology, and crystal structure of cesium lead bromide 
nanocrystals as a function of the ODA concentration. TEM images of cesium lead 
perovskite nanocrystals obtained as a function of increasing ODA concentration (x): (A) 
x = 0.5; (B) x = 1; and (C,D) x = 2. 

 

compared to OA (where the crossover is achieved at x = 6) as a result of the strong 

binding of these ligands to PbBr2 species (Figure IV. 4D). The strong binding of amines 

reduces the availability of the Pb monomer, and the leaching of PbBr2 from incipient 

CsPbBr3 nuclei brings about a rapid phase transformation to Cs4PbBr6. Depending upon 

the denticity of the surface-passivating ligands, the binding affinity (or complexation 

constant) of the amines to PbBr2 is strongly altered, which in turn modifies the monomer 

supersaturation and resulting crystal growth kinetics. In comparison to monodentate 

amines, bidentate amines bind PbBr2 more strongly and thus have a stronger influence on 

dimensional confinement and phase transformation as compared to their monodentate 

counterparts. 
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Diamines of different chain lengths, specifically, ethylenediamine (EDA) and 

dodecyldiamine (DDA)) have also been examined as structure-directing ligands at two 

different concentrations of x = 1—2. Based on absorption and PL emission spectra 

shown in Figure A. 23, both diamine species stabilize Cs4PbBr6 nanocrystals at these 

ligand concentrations. For EDA, the sharp absorption peak at 316 nm can be attributed to 

6s1/2—6p1/2 transitions within electronically decoupled [PbBr6]4- octahedra25, 58 (Figure 

A. 23); sharp excitation bands are observed at 310 nm and 330 nm along with a broad 

emission at 360 nm (Figure A. 23B), corroborating the stabilization of Cs4PbBr6 

nanocrystals. Similarly, the utilization of DDA stabilizes stabilizes Cs4PbBr6 

nanocrystals at these concentrations (Figure A. 23C,D). It is worth noting that relatively 

low concentration (x < 1) of both bidentate ligands can stabilize CsPbBr3 as majority 

populations.  To further evaluate the influence of ligand denticity on the stabilization of 

cesium lead bromide nanoplatelets, a tridentate amine, tris(2-aminoethyl)amine (TAA), 

has been evaluated as a ligand. However, the strongly chelating nature of tridentate 

ligands results in the formation of the lead-deficient Cs4PbBr6 as well as unidentified 

molecular lead complexes coordinated even at concentrations as low as x = 0.5.  

Figure IV. 6 schematically illustrates the synthetic phase space of ternary cesium 

lead bromide stabilized using monodentate OA and bidentate ODA. With increasing 

denticity of the ligand, the Pb-deficient Cs4PbBr6 phase is stabilized at successively 

lower ligand concentrations. The results can be rationalized considering the 

complexation constants (log K) for binding of Pb2+ by monodentate, bidentate, tridentate, 

and tetradendate amines. Considering ethyl groups where a consistent dataset is available  
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Figure IV. 6 Synthetic phase diagram of ternary cesium lead bromide stabilized using 
monodentate OA and bidentate ODA as a surface capping ligands. The ligand 
concentrations have been varied in the range of x = 0—8. Cs atoms with different local 
coordination environments are depicted in cyan and orange. 

 

(albeit under aqueous conditions), the log K values scale with ligand denticity from one 

to four as 1.55±0.1, 5.04±0.05, 7.56±0.05, and 10.35±0.04, respectively.47, 59 While these 

values have been measured under aqueous conditions, the trends attest to the much 

stronger ability of multidentate ligands to sequester divalent lead cations as a result of 

the chelate effect60 reflective of both enthalpic and entropic stabilization of the amine-

PbBr2 complexes. Lower concentrations of the ligand, correlated to a higher 

supersaturation of monomeric PbBr2, stabilize the orthorhombic CsPbBr3 phase, whereas 

at higher ligand concentrations, the Pb-deficient rhombohedral Cs4PbBr6 phase is 

stabilized consistent with a greater sequestration of the lead precursor (and a 

correspondingly lower extent of supersaturation of active lead monomers).61 In other 
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words, the added amine ligands appear to buffer the extent of supersaturation of the lead 

monomer and thereby allow for stabilization of a Pb-rich or Pb-deficient phase. At null 

or low concentrations of the ligands or in the presence of sterically bulky ligands that do 

not yield well-ordered ligand shells, the CsPbBr3 phase is stabilized, reflecting rapid 

nucleation and growth of this phase driven by strong electrostatic interactions between 

the Cs-oleate and PbBr2 precursors, both of which are present at higher supersaturation 

upon reversal of polarity by the addition of toluene. Low concentrations of ligands bind 

to the surfaces of incipient nanocrystals but as a result of sub-monolayer coverage are 

unable to preclude rapid addition of monomeric species, resulting in stabilization of 

relatively large crystals spanning several hundred nanometers in dimensions (Figure A. 

16). With increasing ligand concentration and resulting greater sequestration of Pb2+ 

precursors, the supersaturation of Pb precursors is decreased, slowing crystal growth and 

allowing for dimensional confinement down to the quantum confined regime (Figure IV. 

1D). Further decrease in the available Pb concentration, induced at relatively low 

concentrations of multidentate ligands, results in preferential stabilization of the 

Cs4PbBr6 phase. Still further decreases in Pb concentration induced by addition of 

tridentate ligands altogether precludes the precipitation of cesium lead bromide 

nanocrystals. 

It is worth noting that initial nucleation processes are driven by local 

supersaturation (burst nucleation)62 and thus at intermediate ligand concentrations, a 

significant population of CsPbBr3 nuclei are formed as a kinetically stabilized phase; 

however, such nuclei are unstable with respect to the Pb-deficient Cs4PbBr6 and are 
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transformed over the course of time as observed in Figure A. 19. In other words, owing 

to sequestration of Pb-species by the ligands, Cs4PbBr6 is the thermodynamically favored 

polymorph within the low-Pb composition regime; as a result, diffusion—

recrystallization processes result in transformation of the initially nucleated CsPbBr3 

nanocrystals to Cs4PbBr6 (with leaching of solution-phase complexes of amines and 

PbBr2). Indeed, Palazon et al. have studied the phase transformation of CsPbBr3 to 

Cs4PbBr6 upon the addition of butylamine and tetramethylethylenediamine; the diamine 

species is observed to immediately induce the stabilization of a white precipitate of 

Cs4PbBr6.38 

 

Surface Passivation of Cesium Lead Bromide Nanocrystals  

In order to verify the role of the added amines as passivating ligands bound to the 

nanocrystal surfaces, Fourier transform infrared (FTIR) spectroscopy measurements have 

been performed for materials obtained at a ligand concentration of x = 2 for OA and 

ODA (corresponding to CsPbBr3 for OA and Cs4PbBr6 for ODA). The passivating nature 

of the ligands is verified based on comparison with FTIR spectra of the uncomplexed 

amines. Assignments of the FTIR bands for the amines and amine-passivated 

nanocrystals are indicated in Figure A. 24.63,64 The aliphatic amine vibrational modes are 

considerably weakened for the colloidal dispersions of nanocrystals given that they are 

only present as surficial layers; however, the N-H stretching mode at 3300— 300 cm-1 

and N-H bending mode at 1600—1700 cm-1 are observed for both CsPbBr3 and 

Cs4PbBr6 nanocrystals. The relative intensity of the N-H wagging mode is considerably 
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weakened as a result of conformational restrictions arising from binding of the ligands to 

the nanocrystal surfaces. 1H nuclear magnetic resonance (NMR) spectroscopy has further 

been used to characterize the ligand shells as shown in Figure A. 25. 

NMR spectra have been acquired for the ligands as well as ligand-capped nanocrystals in 

CDCl3. For OA, after coordination to perovskite nanocrystals, the proton signal from the 

aliphatic linear chain is shifted downfield from 0.78 to 0.94 ppm for the terminal CH3 

protons 1 (as labeled in Figure A. 25) and from 1.12–1.18 to 1.32–1.38 for intermediate 

CH2 protons 2-765; the α-CH2 proton 8 depicted in Figure A. 25 is no longer observed, 

likely as a result of broadening from the conformational restrictions at the nanocrystal 

surface. The reduced shielding arises from coordination of the Lewis basic amine ligands 

to the cation-terminated surfaces and provides strong evidence for the formation of the 

amine ligand shell along the lines of the schematic depiction in Figures IV. 1D and 4D. 

Taken together, the FTIR and NMR data along with the observations noted above from 

varying amine denticity, sterics, and concentration point to the pivotal role of the amine 

ligands in controlling both particle size and defining the range of the Cs—Pb—Br 

ternary phase diagram reached by the system (thereby controlling the structural 

dimensionality). 

 

Ligand-Induced Leaching and Recrystallization of CsPbBr3 to Cs4PbBr6 

Figure A. 19 illustrates the remarkable change in visible coloration and 

absorption/emission spectra of CsPbBr3 as a function of time. The reversal of polarity 
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upon the addition of polar precursors to toluene and the resulting sharp increase in 

precursor supersaturation induces burst nucleation of CsPbBr3 nanocrystals. However, at  

Figure VI.7 Ligand-induced leaching and phase transformation from CsPbBr3 to 
Cs4PbBr6 occurring through dissolution—recrystallization processes. TEM images of 
cesium lead bromide nanocrystals obtained using bidentate ODA at a concentration of 
(A,F) x = 1  and (G—H) x = 2. (I) Schematic illustration of the phase transformation of 
CsPbBr3 nanoplatelets to Cs4PbBr6 hexagonal nanoplatelets. precludes the precipitation 
of cesium lead bromide nanocrystals. 

 

high ligand concentrations, thermodynamic equilibria favor a Pb-deficient region of the 

ternary phase diagram, and consequently Cs4PbBr6 nanocrystals are formed as the 

equilibrium solid-phase product with excess PbBr2 complexed to the amine ligand 

remaining in solution. Subsequent to nucleation of 3D perovskite nanocrystals, the 

system approaches quasi-equilibrium conditions through diffusion and leaching of PbBr2 
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facilitated by the amine ligands. TEM images obtained for cesium lead bromide 

nanocrystals synthesized at an ODA concentrations of x = 1 and 2 provide intriguing 

snapshots of the transformation process. In Figure IV. 7A, stacked lamellar CsPbBr3 

nanoplatelets assembled within columnar aggregates can be distinguished from a few 

hollow hexagonal Cs4PbBr6 platelets. The nanoplatelets are thought to be agglomerated 

as a result of the formation of self-assembled ligand monolayers. However, the edges of 

the nanoplatelets are not passivated and it is posited that ODA-mediated leaching of 

PbBr2 is accommodated through fusion of nanoplatelets to form hexagonal templates. 

Lattice-resolved TEM images, fast Fourier transforms, and selected-area electron 

diffraction patterns acquired for the columnar aggregates and hexagonal nanoplatelets 

(Figure A. 26) allows for their differentiation as orthorhombic CsPbBr3 and 

rhombohedral Cs4PbBr6, respectively. Figures IV. 7C and D demonstrate the growth of 

the initially hollow Cs4PbBr6 nuclei as the inner core of the hollow hexagonal platelets 

gets filled, resulting eventually in the formation of solid single-crystalline Cs4PbBr6 

platelets (Figures IV. 7G and H). The uniform hexagonal morphologies, reflective of 

energy-minimized Wulff constructions, are further suggestive of the Cs4PbBr6 

nanocrystals being the thermodynamic product under these conditions. While in situ 

monitoring of the recrystallization process is required to obtain unambiguous evidence, 

the TEM images in Figures IV. 7 and A. 26 suggest an inverse Kirkendall effect66 

subsequent to the oriented attachment of rhomboidal nuclei.36, 49 Rhombohedral 

Cs4PbBr6 nuclei obtained upon ODA-induced PbBr2 leaching have an increased surface 

area with multiple high-surface-energy exposed facets; the nuclei are condensed to form 
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hollow hexagonal rings through an oriented attachment mechanism, which enables 

minimization of surface free energy. The empty voids are subsequently filled as a result 

of the diffusion of monomeric ionic species (Figure IV. 7I). Solid hexagonal Cs4PbBr6 

nanoplatelets are stabilized at the end of this process and self-assembled within 

hexagonal superlattices. 

The reversibility of the transformation along the Cs—Pb—Br phase diagram 

from 0D Cs4PbBr6 to 3D CsPbBr3 has been investigated as shown in Figures A. 27 and 

28. Figure A. 27 shows that treating as-synthesized Cs4PbBr6 hexagonal nanoplatelets 

recovered using OA at a concentration of x = 8 for an extended period of time with 

excess PbBr2 dissolved in oleylamine and oleic acid in toluene brings about a 

pronounced change in coloration of the solution and the PL emission spectra indicating 

reversion to the CsPbBr3 phase; the emission band at 465 nm observed upon addition of 

PbBr2 is attributed to n = 3 nanoplatelets. Similarly, Figure A. 28 shows a change in 

coloration from cloudy to greenish yellow within ca. 30 min. Consistent with this change 

of color, the UV-vis absorption band in Figure A. 28 is shifted from 325 nm to 460 nm 

reflecting the stabilization of trilayered CsPbBr3 nanoplatelets in the presence of excess 

OLAm and OLAc. Conversely, upon treatment of CsPbBr3 nanocubes with excess ODA 

dissolved in OLAc under heating at 120°C, the solution changes appearance from a clear 

green to cloudy coloration within ca. 10 min. The excitonic absorption band at 515 nm is 

replaced by a new absorption at 320 nm. The PL emission spectra acquired for the PbBr2 

addition and ODA-leaching experiments corroborate the reversibility of the 

transformations between 0D Cs4PbBr6 to 3D CsPbBr3 nanocrystals. The dynamic 
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equilibrium between lead-rich and –deficient phase and corresponding reversible phase 

transformation can thus be written as: 

4CsPbBr3 ⇆ 3PbBr2 + Cs4PbBr6                                       (IV. 1)  
 

IV.4 Conclusions 

In summary, we map the synthetic landscape of the ternary Cs—Pb—Br system 

with respect to structural and morphological dimensionality as dictated by the 

concentration, denticity, and steric bulk of added aliphatic amine ligands. In the ligand-

assisted reprecipitation reaction, the reversal of polarity resulting from the addition of 

ionic precursors dissolved in polar solvents to toluene results in a sharp increase of 

monomer supersaturation, bringing about nucleation of 3D perovskite CsPbBr3 

nanocrystals. In the presence of high concentrations of amines with large complexation 

coefficients for binding PbBr2, thermodynamic equilibrium favors the stabilization of the 

Pb-deficient 0D Cs4PbBr6 phase in the Cs—Pb—Br phase diagram and indeed this 

structure is rapidly stabilized as the solid-phase product with excess PbBr2 complexed to 

the amine ligand remaining in solution. The predilection for stabilizing the Pb-deficient 

Cs4PbBr6 phase is observed to be directly correlated to the chelating ability of the 

amines, which reduces the local monomer supersaturation at the surfaces of incipient 

nuclei. The ability to stabilize this phase is inversely correlated to steric bulk since bulky 

ligands form disordered monolayers at the surfaces of nuclei and are unable to 

adequately separate nucleation and growth processes. The general trend with increasing 

concentration of ligands, correlated to lower monomer supersaturation, is initially 
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dimensional confinement of the nanoplatelets, followed subsequently by stabilization of 

the Pb-deficient Cs4PbBr6 phase as the monomer concentrations decreases below a 

critical value. Monodentate amines bring about a smooth progression from thicker 

nanoplatelets to few-layered nanoplatelets to nanoplatelets of the Pb-deficient phase as a 

function of the amine concentration (Figure IV. 1D). In contrast, the transformation 

across the phase diagram is more abrupt for bidentate ligands wherein the Pb-deficient 

regime is reached at a much lower amine concentration (Figure IV. 4D). The results 

presented here not only define a mechanism-based understanding of synthetic parameters 

but furthermore are expected to be widely generalizable to the navigation of synthetic 

landscapes for the growth of ternary and more complex nanocrystals. 
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CHAPTER V 

ULTRAFAST TRANSIENT ABSORPTION SPECTROSCOPY FOR TIME-

RESOLVED CHARGE TRANSFER KINETICS WITHIN MxV2O5/QDs 

HETEROSTRUCTURES* 

 

V.1 Introduction 

Nanoscale semiconductor heterostructures are of tremendous interest for solar 

energy conversion owing primarily to the tunability of the bandgaps and band-edge 

potentials of semiconductors as a function of composition and size.1-4 In a typical 

heterostructure configuration used for solar energy conversion, a light-harvesting 

semiconductor nanoparticle (excited-state charge donor) is interfaced with a wide-

bandgap semiconductor (charge acceptor), and photogenerated charge carriers are 

transferred across the interface.5-7 To achieve efficient solar energy conversion, the 

separation of excited electrons and holes must occur more rapidly than excited-state 

relaxation; and subsequent charge-transport or redox photocatalytic steps must 

outcompete charge recombination. The kinetics of charge separation depend 

substantially on the thermodynamic driving force, which is dictated by interfacial 

energetic offsets of electron-donating and accepting states. Consequently, the design of 

nanoscale semiconductor heterostructures for charge transfer and solar energy 

conversion requires careful consideration of interfacial energetic offsets.8-10 The  

*Reprinted with permission from “Programming Interfacial Energetic Offsets and Charge Transfer in β-
Pb0.33V2O5/Quantum-Dot Heterostructures: Tuning Valence-Band Edges to Overlap with Midgap States” by K.E. 
Pelcher, C. C. Milleville, L. Wangoh, J. Cho, A. Sheng, S. Chauhan, M. Y. Sfeir, L. F. J. Piper, D. F. Watson, and S. 
Banerjee, J. Phys. Chem. C 2016, 51, 28992-29001 Reproduced by permission of © 2016 American Chemical 
Society. All rights reserved.  
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tunability of electronic structure that is accessible in semiconductor quantum dots (QDs)  

provides a powerful adjustable parameter for achieving heterostructures with desired 

energetic offsets. 1, 11-12 

Recently, we demonstrated a promising tunable platform for light-harvesting and 

excited-state charge transfer derived from interfacing β-Pb0.33V2O5 nanowires (NWs) 

with CdSe QDs.13-14 This platform exploits a distinctive feature in the electronic 

structure of ternary vanadium oxide bronzes: the presence of intrinsic midgap states, 

derived from the intercalating cations, that are situated between the valence and 

conduction band edges.15-16 In the case of β-Pb0.33V2O5, midgap states are derived from 

Pb 6s-O 2p antibonding interactions.17-18 The energies and occupancies of these midgap 

states are tunable through the choice of intercalating cation and the cation 

stoichiometry.17, 19 Since the intercalating cations are homogeneously incorporated 

within the quasi-1D crystal structure, such states constitute an integral part of the 

electronic structure and are quite distinct from midgap states derived from defects or 

dopants. Hard X-ray photoemission spectroscopy measurements revealed substantial 

energetic overlap between the midgap states of β-Pb0.33V2O5 and valence-band states of 

CdSe, suggesting that the transfer of photogenerated holes from the valence band of 

CdSe into the midgap states of β-Pb0.33V2O5 is possible as also verified by transient 

absorption spectroscopy experiments.13-14 However, the valence band edge of CdSe QDs 

was measured to lie ca. 0.7 eV higher in energy than the highest-energy midgap states of 

β-Pb0.33V2O5 NWs. Therefore, the transfer of thermalized holes at the valence band edge 
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of CdSe QDs to the midgap states of β-Pb0.33V2O5 NWs was thermodynamically 

unfavorable.13 

The size- and composition-dependent electronic structure of QDs is 

advantageous when designing heterostructures with desirable interfacial energetic offsets 

and tunable driving forces for excited-state charge transfer.2, 5 In this article, we 

demonstrate that an improved driving force for hole transfer in QD/NW heterostructures 

is obtained by replacing CdSe QDs with CdS QDs of the appropriate dimensionality as 

light-harvesters and excited-state hole donors. The valence band edge of bulk CdS is ca. 

0.5 eV lower in energy than that of bulk CdSe,20-21 which provides a means for 

improving the energetic overlap of the valence-band states of QDs with midgap states of 

β-Pb0.33V2O5 NWs, thereby rendering such interfaces more suitable for excited-state 

charge separation and yielding heterostructures designed to optimally harvest solar 

radiation. Interfacial energetic offsets have been examined for heterostructures with 

distinctive sizes and modes of attachment of CdS and CdSe QDs. Transient absorption 

spectroscopy measurements have further been used to dynamically resolve hole and 

electron transfer processes in these heterostructures and suggest that the midgap states of 

β-Pb0.33V2O5 NWs mediate hole transfer from photoexcited QDs at <1 ps timescales. 

The design concepts illustrated here underscore the programmability of charge transfer 

in heterostructures coupling QDs with NWs characterized by distinctive intercalative 

states.  
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V.2 Experimental  

Synthesis of β-Pb0.33V2O5 nanowires. β-Pb0.33V2O5 NWs were prepared using a one-

step hydrothermal reaction as previously reported.18 In brief, stoichiometric amounts of 

Pb(CH3COO)2ꞏ3H2O and V2O5 were placed in a polytetrafluoroethylene-lined acid 

digestion vessel (Parr) along with 16 mL of deionized (DI) water. The vessel was sealed 

in an autoclave and heated to 250oC for 72 h. The product was isolated by vacuum 

filtration, washed with water, and allowed to dry in air.  

Synthesis of Cysteinate-capped CdSe Quantum Dots. Cysteinate-capped CdSe QDs 

with average diameters less than 2 nm, hereafter referred to as Cys-CdSe(sm), were 

synthesized as previously reported.22 The selenium precursor was prepared by refluxing 

an aqueous solution of Se powder and Na2SO3 overnight, and the cadmium precursor 

was an aqueous solution of 3CdSO4ꞏ8H2O and cysteine. The pH of the cadmium 

precursor was titrated to 12.5—13.0 with solid NaOH. The hot selenium precursor was 

added to the cadmium precursor and allowed to stir for 30 min. The resulting dispersions 

of Cys-CdSe(sm) QDs were purified by solvent/non-solvent (H2O/MeOH, 3:1) washing 

to remove excess reagents. Cysteinate-capped CdSe QDs with greater average diameters, 

hereafter referred to as Cys-CdSe(lg) QDs, were synthesized and purified by a similar 

procedure, differing only in that the cadmium precursor was heated to, and maintained 

at, 80oC for the duration of the experiment (2 h)23. 

Synthesis of Cysteinate-capped CdS Quantum Dots. Cysteinate-capped CdS QDs 

were prepared using a modification of the synthesis of Cys-CdSe(sm) QDs. A sulfur 

precursor solution was prepared by adding sodium thiosulfate (1.17 g, 7.41 mmol) to 25 
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mL DI water in a 50 mL round bottom flask and heating to reflux for 30 min. For QDs 

with relatively smaller average particle size, hereafter referred to as Cys-CdS(sm) QDs, 

the cadmium precursor was an aqueous solution (10.5 mL) of cadmium sulfate 

octahydrate (0.433 g, 1.69 mmol) and cysteine (1.02 g, 8.44 mmol). The pH of the 

solution was titrated to 12.5—13.0 with solid NaOH. The hot sodium thiosulfate 

solution (4.5 mL) was added to the cadmium precursor with stirring.  The reaction was 

allowed to stir overnight (12—16 h) resulting in the formation of a cloudy, white 

suspension of flocculated Cys-CdS(sm) QDs. For QDs with relatively larger average 

particle size, hereafter referred to as Cys-CdS(lg) QDs, the cadmium precursor was an 

aqueous solution (21 mL) of cadmium sulfate octahydrate (0.866g, 3.38 mmol) and 

cysteine (2.05 g, 16.88 mmol). The pH of the solution was titrated to 12.5—13.0 with 

solid NaOH. The cadmium precursor was then heated to 80oC and the hot sodium 

thiosulfate solution (9 mL) was added with stirring.  The reaction was allowed to 

continue heating for 4 h with stirring, resulting in the formation of a cloudy, yellow 

suspension of flocculated Cys-CdS(lg) QDs. Typical concentrations of cadmium, sulfur, 

and Cys in the reaction mixtures for both Cys-CdS(sm) and Cys-CdS(lg) were 113, 90, 

and 563 mM, respectively. Dispersions of both Cys-CdS(sm) and Cys-CdS(lg) QDs 

were purified by solvent/non-solvent washing to remove excess reagents. First, 5 mL of 

the flocculated QDs were centrifuged to isolate the QDs and the supernatant was 

discarded. The pellet of QDs was then fully dispersed into 10 mL DI water resulting in a 

clear dispersion. Then, 30 mL of methanol was added to the dispersion of QDs, resulting 

in the flocculation of QDs. The flocculate was then centrifuged again to isolate the QDs, 
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supernatant was discarded, and the QDs were redispersed into 10 mL DI water. This 

process was repeated once for a total of two purification cycles. 

Successive Ionic Layer Adsorption and Reaction (SILAR) Assembly of β-Pb0.33V2O5 

/CdX (X = Se, S) Heterostructures. CdSe was deposited directly onto β-Pb0.33V2O5 

NWs via SILAR using a previously reported method.13 In a single SILAR cycle, CdSe 

QDs were grown directly onto β-Pb0.33V2O5 NWs by sequentially mixing the NWs with 

a cadmium precursor solution (Cd(NO3)2 in ethanol), followed by a selenium precursor 

(Na2Se in ethanol). The NWs were washed with ethanol following each mixing step to 

remove excess ions. CdS/β-Pb0.33V2O5 heterostuctures were prepared using a 

modification of this procedure. A 50 mM solution of Na2S was prepared by dissolving 

Na2Sꞏ9H2O in ethanol. Meanwhile, β-Pb0.33V2O5 NWs (50 mg) were dispersed in 15 mL 

of ethanol, and a 100 mM solution of Cd(NO3)2ꞏ4H2O was prepared in ethanol. All 

solutions and dispersions were placed in a glovebag filled with Ar gas. To begin the 

SILAR cycle, the dispersion of NWs was mixed with the Cd(NO3)2 solution, thus 

bringing the concentration of Cd(NO3)2 to 50 mM. The solution was stirred for 30 s, and 

the NWs were then removed through centrifugation at 6500 rpm for 90 s. Subsequently, 

the NWs were washed with 10 mL of ethanol for 30 s and centrifuged. Next, the NWs 

were mixed with the Na2S solution for 30 s, centrifuged and isolated, and washed again 

with 10 mL of ethanol. This final washing step concludes one SILAR cycle.  

Linker-assisted Assembly of Cys-CdSe/β-Pb0.33V2O5 Heterostructures. Cys-

CdSe(sm)/β-Pb0.33V2O5 and Cys-CdSe(lg)/β-Pb0.33V2O5 heterostructures were prepared 

via LAA as reported previously.13 An aqueous dispersion of β-Pb0.33V2O5 NWs was 
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added to an aqueous dispersion of purified Cys-CdSe(sm) or Cys-CdSe(lg) QDs and 

allowed to equilibrate overnight (12—16 h). CdSe-functionalized NWs were recovered 

by centrifugation, rinsed with DI water to remove excess QDs, and dried at room 

temperature before characterization.  

Linker-assisted Assembly of Cys-CdS/β-Pb0.33V2O5 Heterostructures. Cys-CdS/β-

Pb0.33V2O5 heterostructures were prepared using a modification of the LAA method 

employed for formation of Cys-CdSe/β-Pb0.33V2O5 heterostructures. β-Pb0.33V2O5 NWs 

(10 mg) were dispersed in DI water (10 mL) in a 20 mL scintillation vial. The dispersion 

was sonicated for 20 min to maximize the amount of dispersed NWs. An aqueous 

dispersion of either purified Cys-CdS(sm) QDs or purified Cys-CdS(lg) QDs (1 mL) was 

added to the dispersion of β-Pb0.33V2O5 NWs and allowed to equilibrate overnight (12—

16 h). Cys-CdS(sm)/β-Pb0.33V2O5 or Cys-CdS(lg)/β-Pb0.33V2O5 heterostructures were 

recovered via centrifugation and then rinsed with DI water to remove excess QDs. The 

heterostructures were dried at room temperature prior to characterization. 

Synthesis of β-SnxV2O5/CdX (X = Se, Te) QD Heterostructures. β-SnxV2O5 

nanowires were interfaced with CdX QDs using the SILAR method in a glovebag under 

an argon atmosphere. In a typical SILAR process, as-prepared β-SnxV2O5 nanowires 

were first dispersed in an ethanol solution of the cadmium precursor (Cd(NO3)2·H2O, 

Alfa Aesar, 98.5%) for 45 seconds under manual stirring, washed with ethanol, and 

recovered by centrifugation  at 6000 rpm for 2 minutes. In a second step, the material 

was then immersed in an ethanol solution of the sodium chalcogenide precursor (Na2X, 

Alfa Aesar, 99.8% in ethanol, X = Se, Te) for 45 seconds under manual stirring, washed 
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with ethanol, and finally recovered by centrifugation at 6000 rpm for 2 minutes. One 

SILAR cycle thus comprises immersion in the cadmium precursor solution and an 

ethanol washing step, followed immediately by immersion in the chalcogenide precursor 

and an ethanol washing step. Three complete SILAR cycles were performed to prepare 

the β-SnxV2O5/CdX heterostructures examined in this study. After three SILAR cycles, 

the heterostructures were washed with a large excess of ethanol to remove excess QDs 

not adhered to the nanowire surfaces and were then allowed to dry at room temperature 

under ambient conditions.  

Time-resolved transient absorption spectroscopy. Transient absorption (TA) 

measurements were acquired using a commercial Ti:sapphire amplified laser system 

(SpectraPhysics Spitfire Pro, 800 nm, 1 kHZ repetition rate). Wavelength tunable pump 

pulses were generated in a commercial optical parametric amplifier (LightConversion). 

For femtosecond time delays, a supercontinuum probe beam (425—900 nm) was 

generated by focusing a fraction of the laser fundamental into a sapphire disc to generate 

supercontinnum probe light and was mechanically delayed (dynamic range of 3 ns) 

relative to the pump pulse. For longer probe times, a separate fiber-based 

supercontinuum laser was used to generate the probe beam and was electronically 

delayed (dynamic range of > 20 μs) relative to the pump pulse (Ultrafast Systems). TA 

decay traces were compiled by averaging ΔA values over a given range of probe 

wavelengths at each delay time.  
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V.3 Results and Discussion 

1st Generation Photocatalytic Architectures of β-PbxV2O5/QD  

The design of semiconductor heterostructures for solar energy conversion 

necessitates not just optimal thermodynamics for directional charge transfer but also 

requires that the photoinduced charge transfer processes occur more rapidly than 

competing charge recombination pathways. In order to evaluate the timescales of these 

competing pathways, excited state charge carrier dynamics were investigated for the 

CdS/β-Pb0.33V2O5 heterostructures given that X-ray photoelectron spectroscopy (XPS) 

measurements indicate that the valence band of these QDs is better overlapped with the 

midgap states of the NWs. TA spectroscopy experiments at picosecond timescales allow 

for a clear mapping of charge transfer processes within these heterostructures. The pump 

excitation wavelength of 360 nm (3.4 eV) used in these experiments corresponds to an 

above-bandgap excitation for both the CdS QDs (bandgap of 2.8 eV) and β-Pb0.33V2O5 

NWs (bandgap of 2.4 eV). TA spectra have been acquired in the wavelength range of 

450–750 nm and 425–750 nm for thin films of SILAR- and LAA-derived CdS QD/NW 

heterostructures, respectively.  

Figure V. 1 contrasts the TA spectra of unfunctionalized β-Pb0.33V2O5 NWs as 

well as SILAR- and LAA-derived CdS QD/β-Pb0.33V2O5 NWs heterostructures. The 

spectra are extracted from the data matrix by averaging ΔA values at delay times 

between 1000 and 2500 ps.  The following spectral features are distinguished in all three 

spectra: a transient bleach at 440—480 nm, an induced absorption band centered at 

550—650 nm, and another lower energy induced absorption band at 650—750 nm. The  
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Figure V. 1 Schematic indicating the relative positioning of the valenceband and 
conduction-band edges of Cys-CdSe versus Cys-CdS as deduced from XPS 
measurements, as well as the time scales for electron and hole transfer from 
photoexcited CdS QDs into the midgap states and CB of β-Pb0.33V2O5, respectively, as 
obtained from TA spectroscopy experiments. 
 

spectral features have been assigned based on spectroelectrochemical studies of β-

Pb0.33V2O5 NWs,14 which indicate that the TA spectrum for this material is captured well 

by a summation of spectra for electrochemically oxidized and reduced species. 

Considering unfunctionalized β-Pb0.33V2O5,
14 the intense 550—650 nm induced 

absorption band can be ascribed to the excitation of electrons from the valence band to 

empty midgap states (and is thus characteristic of a hole situated on the β-Pb0.33V2O5 

framework).14 The lower energy 650—750 nm band can be attributed to the excitation of  
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Figure V. 2 TA spectra of unfunctionalized β-Pb0.33V2O5 NWs (black), 3× SILAR CdS/ 
β-Pb0.33V2O5 heterostructures (blue), and Cys-CdS β-Pb0.33V2O5 heterostructures (red) 
acquired at λpump = 360 nm. The spectra are averaged for delay times in the interval 
1000–2500 ps.  
 

electrons from the conduction band to higher energy states in the conduction band (and 

is thus characteristic of a free electron in β-Pb0.33V2O5). The bleach in the differential 

absorption spectra reflects the reduced oscillator strength of the bandgap absorption once 

an electron has been excited into the conduction band (bleach of ground state 

absorption).  

The spectra in Figure V.1 are normalized to the transient bleach of β-Pb0.33V2O5 

NWs in an attempt to contrast the spectral features of bare β-Pb0.33V2O5 NWs with those 

of the CdS/β-Pb0.33V2O5 heterostructures. Both the LAA- and SILAR-derived QD/NW 

heterostructures exhibit an increased population of electrons and holes (but an otherwise 

very similar spectral profile) as compared to the bare β-Pb0.33V2O5 nanowires where the 
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carrier density derives entirely from direct photoexcitation. The increased population of 

holes and electrons is attributed to charge transfer from the photoexcited CdS as 

schematically illustrated in Figure V. 2, wherein electrons are transferred from the 

photoexcited QDs to the conduction band of the β-Pb0.33V2O5 NWs, whereas holes are 

transferred to the midgap states of the β-Pb0.33V2O5 NWs. This charge-transfer 

mechanism, and the transient absorption spectral features, are consistent with 

previously-reported results for CdSe/β-Pb0.33V2O5 heterostructures.14 

To resolve the dynamics of electron and hole transfer, ultrafast transient 

absorption measurements were acquired on picosecond time scales for the LAA- and 

SILAR-derived CdS/β-Pb0.33V2O5 heterostructures and are shown in Figure V. 3 

Ultrafast measurements for β-Pb0.33V2O5 NWs are shown in Figure A. 29 and suggest 

that the transient absorption bands reach their maximum amplitude within the response 

time of the instrument, which is consistent with the assignment of these spectral features 

to electron—hole pairs generated by direct photoexcitation. The spectra for both the 

LAA and SILAR-derived samples evolve to the TA spectra observed in Figures V. 3. 

However, several additional features are discernible at earlier time scales and enable 

direct observation of interfacial charge transfer in these heterostructures. A pronounced 

bleach with a minimum at 455 nm is observed for LAA-derived Cys-CdS/β-Pb0.33V2O5 

heterostructures; a similar bleach centered at 485 nm is observed for SILAR-derived 

CdS/β-Pb0.33V2O5 heterostructures. These features are attributed to the bleach of the first 

excitonic ground state absorption of the CdS QDs, consistent with the nanosecond-

timescale TA spectrum of colloidal Cys-CdS QDs (Figure A. 30). The TA spectrum of  
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Figure V. 3 TA spectra of (A) 3× SILAR CdS/β-Pb0.33V2O5 and (B) Cys-CdS β-
Pb0.33V2O5 and 3D TA color maps of (C) 3× SILAR CdS/β-Pb0.33V2O5 and (D) Cys-CdS 
β-Pb0.33V2O5, indicating ΔA in the 0–50 ps range for probe wavelengths in the range of 
425–850 nm with λpump = 360 nm. 
 

aqueous dispersions of Cys-CdS(lg) QDs exhibits a long-lived bleach with an average 

lifetime of 230±45 ns (Table A. 5) centered at 440 nm with an onset at 462 nm (Figure  

A. 30). Since both Cys-CdS QDs and β-Pb0.33V2O5 NWs absorb at 360 nm, the TA 

spectra of the heterostructures can be reasonably assigned to the combination of the TA 

spectra of the individual components. The bleach derived from the CdS QDs recovers 

much more rapidly but at different timescales for the LAA- and SILAR-derived 

heterostructures until only the blue-shifted characteristic bleach of β-Pb0.33V2O5 remains 

(Figure V.3). The bleach recovers with an average lifetime of 5.4±1.1 ps for the LAA-
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derived Cys-CdS/β-Pb0.33V2O5 heterostructure (Table A. 6). The characteristic red-

shifted residual bleach of β-Pb0.33V2O5 is fully recovered upon decay of the CdS bleach 

after ca. 30 ps. For the SILAR-derived CdS/β-Pb0.33V2O5 heterostructure, the TA 

spectrum shows a bleach signal throughout the spectrum due to some contribution of 

instrument response to the TA signal, which precludes the reliable extraction of 

lifetimes. Nevertheless, it can be inferred from Figure V. 3C and 3D that the bleach 

corresponding to CdS QDs recovers to the blue-shifted bleach of β-Pb0.33V2O5 NWs 

within approximately 5 ps. Since the bleach feature in TA spectra of QDs is dominated 

by the electron population in the excited state,33-35 the much more rapid decay of the 

bleach observed in QD/NW heterostructures as compared to the aqueous dispersion of 

Cys-CdS QDs can be reasonably assigned to electron transfer from CdS QDs to β-

Pb0.33V2O5 NWs. The red-shifted bleach observed for the SILAR QD/NW 

heterostructures is attributed to the larger size of these QDs. The slower decay of the 

excitonic bleach of CdS for LAA-derived heterostructures (ca. 30 ps to completion) 

relative to SILAR-derived heterostructures (ca. 5 ps to completion) reveals that electron 

transfer is slower for the LAA-derived heterostructures. The greater barrier to electron 

injection observed for the LAA-derived heterostructures likely derives from the 

increased charge-transfer distance and relatively lower extent of electronic coupling 

(decreased overlap integrals) at these interfaces as compared to the directly coupled 

SILAR interfaces as also predicted by Marcus’ kinetic theory.31-32, 36-37 The induced 

absorption band centered at 550—650 nm in Figure V. 3 approaches its maximum 

amplitude within the instrument response suggesting that hole transfer proceeds much 
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faster, at <1 ps timescales, than electron transfer for both SILAR and LAA-derived 

heterostructures (completed within 5 and 30 ps, respectively, as noted above). Some 

modest growth of both the induced absorption bands is nevertheless still discernible over 

a few picoseconds in Figures V. 3A and B.   

TA kinetic traces were extracted around the 440—470 nm bleach, the 550—650 

nm absorption, and the 700—750 nm absorption band (Fig. 6). The decay of the bleach 

and the rises of the absorptions were fitted to multiexponential kinetics as per the 

following equation:  

ܣ∆ ൌ ଴ܣ∆ ൅	∑ ௜݁ܥ
ሺି ೟

ഓ೔
ሻ

௜       (V. 1) 

where ∆࡭  is absorbance difference, ∆࡭૙  is the absorbance difference that the data 

approach at long timescales, Ci is a preexponential weighting factor, t is delay time, and 

�i is lifetime. The smallest number of individual lifetime components, τi, which resulted 

in the minimum χ2, were used for each fit. The decay curves corresponding to bleach and 

induced absorption features for aqueous dispersion of cysteinate-capped CdS QDs, 

LAA-derived CdS/β-Pb0.33V2O5 heterostructures, and SILAR-derived CdS/β-Pb0.33V2O5 

heterostructures were fitted to either monoexponential kinetics (i = 1) or biexponential 

kinetics (i = 2). Decay curves for SILAR-derived CdS/β-Pb0.33V2O5 heterostructures  

could not be fitted accurately due to the highly variable bleach component observed at 

zero delay time, which is attributed to instrument response. The fitted parameters for the 

decay curves for various samples are tabulated in Tables A. 5 and A. 6. Amplitude-

weighted average lifetimes (<τ>) were calculated using equation 2: 
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Figure V. 4 TA decay traces and multiple exponential fits measured for LAA-derived 
QD/NW heterostructures at different probe wavelengths of 455 (biexponential), 600 
(monoexponential), and 740 nm (monoexponential) with λpump = 360 nm. 

 

〈࣎〉 ൌ 	
∑ ࢏࢏࣎࢏࡯

∑ ࢏࢏࡯
         (V. 2) 

The percentage of non-time-resolvable and time-resolvable growth of induced 

absorption bands, which provide indications of the percentages of hole-transfer events 

that occurred within our instrument response and on slower, resolvable, time scales, 

respectively, were estimated as ΔAnon-resolvable and ΔAresolvable:  

௡௢௡ି௥௘௦௢௟௩௔௕௟௘ܣ߂	% ൌ 	
∆஺భ
∆஺మ

	 ∙ 100      (V. 3) 

௥௘௦௢௟௩௔௕௟௘ܣ߂	% ൌ
∆஺మି∆஺భ

∆஺మ
	 ∙ 100 ൌ 100 െ  ௡௢௡ି௥௘௦௢௟௩௔௕௟௘  (V. 4)ܣ߂	%	

where ∆࡭૚ and ∆࡭૛	are the absorbance differences at delay times of 0.8 ps (immediately 

after the initial sharp increase of apparent absorption attributable to instrument response) 
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and 50 ps, respectively, for a given bleach or induced absorption band. The relevant 

delay times are indicated by dashed lines in Figure V. 4.  

For the Cys-CdS(lg)/β-Pb0.33V2O5 heterostructures, values of %ΔAnon-resolvable for 

the 600 and 740 nm absorption bands were estimated to be 76.3% and 68.3%, 

respectively. This difference suggests that more holes were injected into the midgap 

states of β-Pb0.33V2O5 NWs (the 550—650 nm induced absorption band is the 

characteristic signature of holes) from the photoexcited CdS QDs as compared to 

electrons into the conduction band of the NWs (the 740 nm induced absorption band is 

the characteristic spectral signature of electrons) within the instrument response time. 

This observation is further consistent with the timescales for electron and hole transfer 

deduced above. The relative ease with which holes are transferred in these 

heterostructures and the ability to enhance the differential in the timescales of hole and 

electron transfer by insertion of molecular linkers suggests that the QD/NW 

heterostructures exploiting midgap states constitute a viable architecture for excited-state 

charge separation and photocatalysis 

 

2nd Generation Photocatalytic Architectures of β-SnxV2O5/QD  

The central advance of 2nd generation photocatalytic architectures is illustrated 

by the improved alignment of the Sn-derived midgap state (blue) with the VB of the 

CdSe QDs (green), leading to a diminished thermodynamic barrier (Φh) for hole transfer 

from the photoexcited QD to the semiconducting nanowire as shown in the energy offset 

diagram (Figure I. 5). We next turn our attention to determining whether such initially  
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Table V. 1 Experimentally determined valence band onsets for CdSe/β-Pb0.33V2O5 
heterostructures 

 
 

 

predicted and now experimentally realized midgap states give rise to efficacious or rapid 

hole extraction from the VB of photoexcited QDs using transient absorption (TA) 

spectroscopy measurements.14,38 Figure V. 5 depicts 3D TA color maps ranging between 

0—5 ps and TA spectra acquired at various delay times (from 0.5—20 ps) for β-SnxV2O5 

nanowires and β-SnxV2O5/CdSe heterostructures. The 3D color maps clearly elucidate 

the rise of transient induced absorption features (indicated in red) and the recovery of the 

transient bleaches (indicated in blue) as a function of delay time. The bare β-SnxV2O5 

nanowires (Figure V. 5A and C) are characterized by two broad induced absorption 

bands at 500—600 nm and 650—750 nm as well as a bleach centered at ca. 465 nm. 

Based on spectroelectrochemical measurements and TA spectra measured for β-PbxV2O5 

nanowires, the short-wavelength induced absorption feature observed for β-Sn0.23V2O5 

can be ascribed to transitions from deep VB states into the midgap states after 

photoexcitation of electrons from the midgap states (and thus corresponds to oxidation 

of the nanowires). The longer-wavelength induced absorption band can be assigned to 

excitation of electrons in the conduction band of β-Sn0.23V2O5 to higher energy states 

(corresponding to the reduction of the nanowires).14,38 In other words, the shorter 

wavelength (500—600 nm) and longer wavelength (650—750 nm) induced absorption  

Sample Valence Band Edge (eV) 
LAA Cys-CdS/β-Pb0.33V2O5 1.33±0.02 

SILAR CdS/β-Pb0.33V2O5   1.32±0.02 
LAA Cys-CdSe/β-Pb0.33V2O5 0.92±0.01 

SILAR CdSe/β-Pb0.33V2O5 0.94±0.02 



 

147 
 

 

Figure V. 5 Evidence of fast hole transfer dynamics from photoexcited CdSe QDs to 
occupied midgap states of β-SnxV2O5. TA intensity maps acquired for (A) β-SnxV2O5 
nanowires and (B) β-SnxV2O5/CdSe heterostructures in the delay time range of 0—5 ps 
across a probe wavelength range of 425—825 nm at an excitation wavelength of 360 
nm. TA spectra collected within the same time range for (C) β-SnxV2O5 nanowires and 
D) β-SnxV2O5/CdSe heterostructures. Each individual spectrum in (C) and (D) is taken 
as a horizontal ‘slice’ of the 3D maps in (A) and (B) at specific delay times (integrated 
across: a ±0.1  ps time window for the 0.5 ps decay; a ±0.5 ps time window for 1, 2.5, 
and 5 ps decay traces; and a ±2.5 ps time window for 10, 20 ps decay traces). TA decay 
and recovery traces as well as multiexponential fits are shown in Figure A. 31. 
 

features can be assigned to excited-state holes in the midgap gap state and electrons 

situated in the conduction bands of β-SnxV2O5 nanowires, respectively. Upon direct 

photoexcitation at 360 nm both bands are presented within the instrument response time 

corresponding to the creation of holes in the midgap states and excited electrons in the 

conduction band. The TA spectra of β-SnxV2O5/CdSe heterostructures (Figure V. 5B and 

D) show some stark differences from spectra acquired for the bare β-SnxV2O5 nanowires. 
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A significant reduction in the induced absorption band at 500—600 nm is clearly 

discernible, which is a result of overlap with the characteristic excitonic bleach of CdSe 

QDs.14,38 The bleach of the ground-state absorption of CdSe QDs, combining both first 

and second excitonic transitions, gives rise to an initial broad bleach feature in the ΔA 

spectra.14,39 A pronounced rise of the SnxV2O5 induced absorption bands and the recovery 

of the CdSe bleach (to the blue-shifted bleach of β-SnxV2O5) is clearly distinguishable in 

the differential absorption spectra (ΔA) well within 5 ps. The recovery of the CdSe 

excitonic bleach at picosecond timescales is attributed to electron transfer from the 

conduction band of the QDs to the CB of β-SnxV2O5 nanowires (bleaches observed in 

excited QDs primarily reflect electron dynamics).34,40 Note that this process occurs in 

binary heterostructures in the absence of an electron acceptor that would spatially 

separate the hole and electron as achieved in the photocatalytic architectures described 

above. Consequently, the hole transfer dynamics from photoexcited CdSe QDs to the 

midgap states of β-SnxV2O5 occurs within the instrument response time, reflecting 

ultrafast sub-picosecond timescales, whereas the electron transfer process can be 

resolved within the first few picoseconds.  

TA recovery traces have been extracted and fitted for the exciton bleach feature 

attributed solely to QDs (centered at 485 nm); similarly, TA decay traces have been 

analyzed for an induced absorption band coupled to the QD bleach centered at 525 nm 

(Figure A. 31). The TA recovery and decay traces have been fitted using 

multiexponential functions since multiple relaxation pathways are operational including 

multiple trap-state-mediated recombination processes.14,38 The fitting parameters used to 
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describe the decay and recovery kinetics are listed in Table A. 7. Decay traces obtained 

for the β-SnxV2O5/CdSe heterostructures are well described using biexponential decay 

functions (i = 2). As noted above, the hole transfer kinetics cannot be resolved within the 

instrument response time; however, the multiexponential fits suggest complete recovery 

of the CdSe excitonic bleach and growth of the corresponding induced absorption band 

at 525 nm, both corresponding to electron transfer processes, occurs within 1—2 ps. The 

deduced average lifetimes <τ> at probe wavelengths of 485 and 525 nm are calculated to 

be 0.4±0.1 ps and 0.3±0.1 ps, respectively (Table A. 7).  

Analogous TA data for β-SnxV2O5/CdTe heterostructures is shown in Figure. A. 

32A and B. The 3D TA color maps and time-resolved TA spectra are again consistent 

with ultrafast sub-picosecond hole transfer (which cannot be resolved within the 

instrument response time) but electron transfer (observed as recovery of the excitonic 

bleach of CdTe QDs)41 is demonstrably slower as compared to the CdSe 

heterostructures. The pronounced rise of ΔA over time corresponds to increased 

injection of electrons from the CB of CdTe QDs to the CB of β-SnxV2O5. Figure A. 32C 

illustrates the TA decay and recovery traces and their corresponding multiexponential 

fits measured for β-SnxV2O5/CdTe heterostructures at 485 nm and 675 nm. The former 

corresponds to excitonic bleach CdTe QDs, whereas the latter corresponds to the first 

excitonic feature of CdTe QDs coupled with the induced absorption feature of β-

SnxV2O5. The deduced average lifetimes <τ> at 485 and 675 nm are 4.3±0.3 and 3.5±0.8 

ps, respectively, which suggest a considerably slower electron transfer process as 

compared to the β-SnxV2O5/CdSe heterostructures. The slower electron transfer 
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dynamics can be directly attributed to the decreased thermodynamic driving force for 

charge transfer relative to β-SnxV2O5/CdSe (Figure V. 5).31,36,37 In summary, the TA 

results attest to the ultra-fast hole extraction mediated by Sn-derived midgap states 

within β-SnxV2O5/CdX heterostructures with notably improved offsets for charge 

transfer for CdSe as compared to CdTe. 

V.4 Conclusions 

We have synthesized CdS QD/β-Pb0.33V2O5 NW heterostructures through both 

SILAR and LAA methods. TEM and SEM images revealed a continuous shell of CdS 

QDs on the surface of β-Pb0.33V2O5 NWs. SAED and Raman spectroscopy confirmed the 

wurtzite crystal structure of the CdS. XPS valence band measurements on CdS/β-

Pb0.33V2O5 and CdSe/β-Pb0.33V2O5 have demonstrated that the valence band edge of CdS 

QDs is lower in energy relative to CdSe QDs, suggesting a ca. 0.4 eV decrease in the 

thermodynamic barrier for hole injection from the valence band edge of the QDs and a 

significant increase of the fraction of valence band states that can inject holes into the 

NWs. Charge transfer within these heterostructures has been examined by TA 

spectroscopy, which provides direct evidence of hole transfer from photoexcited CdS 

QDs to the midgap states of β-Pb0.33V2O5 NWs along with electron transfer into the 

conduction band of the β-Pb0.33V2O5 NWs. Hole transfer is substantially faster, with the 

majority occurring at <1 ps timescales, whereas completion of electron transfer requires 

ca. 5 ps for the SILAR-derived heterostructures and ca. 30 ps for the LAA-derived 

heterostructures. The disparate timescales of electron and hole transfer, and the 

tunability of the relative timescales as a function of the mode of attachment, which is 
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explicable based on the variation of electronic coupling in these systems as per Marcus’ 

theory of electron transfer, provides a vital design tool for designing photocatalytic 

architectures to promote interfacial charge separation. The approach demonstrated here 

suggests that semiconductor QD/midgap-state NW architectures are a versatile platform 

wherein thermodynamics and kinetics of charge transfer can be systematically 

modulated to improve charge separation across interfaces.  

The theory-guided design and topochemical synthesis of metastable β-SnxV2O5 

paves the way to development of 2nd generation β-SnxV2O5/CdSe heterostructures 

wherein Sn 5s-derived midgap states are ideally positioned to extract photogenerated 

holes from CdSe QDs. The energetic offsets have been verified by XPS and HAXPES 

measurements and <0.5 ps hole transfer kinetics have been observed within these 

heterostructures.  The reconfiguration of ζ-V2O5 to precisely position states derived from 

stereoactive lone pairs of p-block cations, achieved through development of a novel and 

highly versatile topochemical synthesis route, represents a major advance and suggest a 

versatile strategy for optimizing energetic offsets. The β-SnxV2O5/CdSe is shown to be 

viable light-harvesting and charge-separating photocatalytic architectures capable of 

water splitting. Future work will focus on the preparation of ternary heterostructures 

with the further addition of an electron acceptor to enhance charge separation. 
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CHAPTER VI 

POLYMORPHYSM OF V2O5 AS A MEANS OF TUNING ENERGETIC OFFSETS IN 

TYPE II V2O5/CdSe QUANTUM DOT HETEROSTRUCTURES: IMPLICATIONS 

FOR CHARGE SEPARATION AND PHOTOCATALYTIC PERFORMANCE 

 

VI.1 Introduction 

Harnessing solar energy is imperative to mitigate the catastrophic environmental 

consequences of global reliance on fossil fuels as the primary energy source 

underpinning electrical grids and the transportation infrastructure. Solar energy can be 

converted directly to electrical energy by photovoltaic devices or to energy-dense 

chemical fuels in photoelectrochemical cells.1-4 In solar photocatalysis, absorbed 

sunlight is used to mediate an enthalpically disfavorable reaction, thereby yielding a 

solar fuel. The fuel is stored and subsequently combusted along a thermodynamically 

favored pathway to recover the energy at the point of use, yielding water as a by-

product.1, 5-7 Nanoscale semiconductors are oftentimes used to harvest solar energy given 

the typically high oscillator strengths of band-edge absorption features in direct-bandgap 

semiconductors and the potential to tune their overlap with the solar spectrum through 

compositional modulation and dimensional confinement.8, 9 Solar photocatalysis 

necessitates a sequential cascade of events initiated by the absorption of sunlight and 

ensuing creation of an electron—hole pair, involving separation of the charges and their 

transport to sites where redox catalysis steps can be separately mediated. In practice, 

effective charge separation is often achieved by utilizing binary or ternary 
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semiconductor heterostructures such that photogenerated electrons or holes or both are 

rapidly transferred across interfaces, thereby diminishing their non-productive 

recombination.10-12 In other words, interfacial charge transfer processes must outcompete 

multiple undesirable processes such as carrier cooling as well as non-radiative and 

radiative recombination pathways in order to be used to catalyze redox processes.13-15  

As per Marcus’ kinetic theory of charge transfer extrapolated to semiconductor 

interfaces with a continuum of donor or acceptor states, the rate constants of interfacial 

charge-transfer processes are dependent on the thermodynamic driving force, the 

reorganization energy at the heterojunction, the extent of electronic coupling between 

the donor and the acceptor, and the density of charge-accepting states.14, 16 The relative 

band alignment (or interfacial energetic offsets) within semiconductor heterostructures 

determine the thermodynamic driving forces for interfacial charge transfer.10, 12, 17, 18 

Staggered Type-II interfaces are quite effective for engendering charge separation,19-21 

and indeed light-absorbing II-VI semiconductor quantum dots are often paired with 

wider bandgap transition metal oxides to define such heterojunctions. In such 

heterojunctions, the valence band edges of II-VI semiconductor quantum dots are 

tunable as a function of composition as per Fajan’s rules regarding covalency and 

ionicity down the chalcogenide series10; similarly, the conduction band edges of 

quantum dots are tunable as a function of size in the quantum confined regime below the 

Bohr radius.22 In contrast, the valence and conduction band edges of transition metal 

oxides are generally considered to be immutable. Remarkably, in the case of V2O5, the 

rich accessible energy landscape makes available a variety of metastable polymorphs 
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with varying extents of ionicity and covalency, and thus allows for considerable 

tunability of the energy positioning of valence and conduction band edges as a function 

of structure for the same chemical composition.23-28 In this article, we examine energetic 

offsets in V2O5-nanowire/CdSe-quantum dot heterostructures for three different 

polymorphs of V2O5 illustrating a pronounced alteration of energetic offsets, which 

thereby alters the extent of charge separation and photocatalytic activity.  

The thermodynamically stable α-phase of V2O5 has a layered orthorhombic 

crystal structure wherein [VO5] square pyramids are connected through corner- and 

edge-sharing (Figure VI. 1).26 Several metastable phases of V2O5 are accessible through 

topochemical deintercalation of ternary vanadium bronzes, MxV2O5 where M is metal 

and x is stoichiometry; the “emptied” open framework structures represent kinetically 

trapped polymorphs that are unable to revert to the thermodynamic sink, the layered α-

phase, at the low temperatures at which soft-chemical de-intercalation is performed.24-27, 

29, 30 The γ′-phase of V2O5 with puckered single layers is stabilized by leaching of Li-ions 

from γ-LixV2O5 (x ~ 1.0), whereas the tunnel-structured ζ-phase of V2O5 is obtained by 

extracting Ag-ions from β-AgxV2O5 (Figure VI. 1).25 The three polymorphs exhibit 

vastly different extents of V—O hybridization, allowing for considerable tunability of 

energetic offsets in their heterojunctions with CdSe quantum dots.31, 32 In this article, we 

evaluate semiconductor heterostructures comprising nanowires of the three V2O5 

polymorphs functionalized with II-VI QDs, which represent intriguing new 

reconfigurable platforms for solar energy conversion. The nanowires of the V2O5 

polymorphs have been interfaced with CdSe quantum dots by two distinctive 
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approaches, linker-assisted assembly (LAA)33 and successive ionic layer adsorption and 

reaction (SILAR).34 Transient absorption spectroscopy measurements suggest that the 

V2O5/CdSe heterostructures form long-lived charge-separated states with lifetimes 

extending to a few microseconds, allowing for their effective utilization as 

photocatalysts for the hydrogen evolution reaction.  

 

VI.2 Experimental 

Synthesis of V2O5 nanowires of different polymorphs. α-V2O5 nanowires were 

prepared using a two-step reaction according to previously reported methods.26 Briefly, 

micron-sized powders of V2O5 were hydrothermally reduced to V3O7xH2O nanowires 

using oxalic acid (C2H2O4) as a reducing agent; the V3O7xH2O nanowires were 

annealed in air at 350°C for 72 h to obtain phase-pure α-V2O5 nanowires.  

γ′-V2O5 nanowires were prepared by a procedure adapted from a previously 

reported synthesis.50, 51 Briefly, α-V2O5 nanowires prepared as described above were in a 

LiI solution in dry acetonitrile in a 3:1 molar excess of the lithium precursor at 22°C 

under an argon atmosphere within a round bottom flask adapted to a Schlenk-line for 72 

h. The nanowire powders were dispersed in the LiI/acetonitrile solution by sonication for 

5min every 6 h to promote phase purity. The yellow α-V2O5 nanowires turned dark 

green, reflecting the reduction of pentavalent vanadium to tetravalent vanadium upon 

insertion of Li-ions; the acetonitrile supernatant acquired a brown/purple coloration, 

which is characteristic of the formation of dissolved I2. The resulting suspension was 

isolated by vacuum filtration and washed with acetonitrile and 2-propanol to obtain δ-
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LixV2O5 nanowires (x ~ 1.0). The dried powder was placed in an alumina crucible and 

annealed in a tube furnace under a combination of vacuum and flowing Ar atmosphere 

(100 mlꞏmin-1) at 250°C for 4 h to obtain phase-pure γ-LixV2O5 nanowires (x ~ 1.0). A 

small amount of the metastable ε′-LiV2O5 phase sometimes observed as a secondary 

phase upon lithiation of V2O5 also anneals to the γ-LixV2O5 phase.52 Upon cooling, the γ-

LixV2O5 nanowires were resuspended in a 0.1 M solution of NOBF4 in dry acetonitrile 

under an argon atmosphere within a glovebox and gently stirred for 24 h. The resulting 

γ′-phase V2O5 nanowires were washed with copious amounts of acetonitrile.  

ζ-V2O5 nanowires were obtained from parent β-AgxV2O5 nanowires as described 

in previous work.25, 36 Briefly, Ag-ions were topochemically extracted from 

hydrothermally prepared β-AgxV2O5 nanowires by hydrothermal treatment of 300 mg of 

β-AgxV2O5 nanowires with 16 mL of an aqueous solution of 0.51 M HCl at 210°C for 24 

h. The topochemcial extraction was performed within a PTFE-lined stainless steel 

autoclave with a capacity of 23 mL. The resulting brown powders were washed with 

copious amounts of water and 2-propanol and allowed to dry in air overnight. The 

insoluble AgCl precipitate was removed from the resulting sample by suspending the 

powders in a 5 wt.% aqueous solution of sodium thiosulfate as described in previous 

work.25 The suspension was separated by vacuum filtration and further washed with 

copious amounts of water to remove adsorbed ionic species.  

Synthesis of Cysteinate-capped CdSe QDs. Cysteinate-capped CdSe QDs with average 

diameters less than 2 nm were prepared as per previously reported methods.4, 53 The 

selenium precursor was prepared by refluxing an aqueous solution of Se powder and 
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Na2SO3 overnight; the cadmium precursor was an aqueous solution of 3CdSO4ꞏ8H2O 

and cysteine. The pH of the cadmium precursor was titrated to 12.5—13.0 with solid 

NaOH. The hot selenium precursor solution was transferred to the cadmium precursor 

solution and allowed to stir for 30 min. The resulting dispersions of cysteinate-capped 

CdSe QDs were purified by solvent/non-solvent precipitation/redispersion (H2O/MeOH, 

3:1 (v/v)) to remove excess reagents. 

Surface functionalization of V2O5 nanowires with CdSe QDs using SILAR and 

LAA. CdSe QDs were attached to nanowires of different polymorphs of V2O5 using 

SILAR and LAA procedures, which were performed as per previously reported 

methods.4 The SILAR-derived V2O5/CdSe heterostructures correspond to three 

sequential cycles of immersion of V2O5 nanowires in Cd and Se precursor solutions. 

Cd(NO3)24H2O in ethanol was used as the Cd precursor, whereas Na2Se in ethanol was 

used as the Se precursor. The powders were washed extensively with ethanol following 

each immersion step to remove weakly bound ions.  

In LAA-derived V2O5/CdSe heterostructures, the two components were tethered 

together using cysteine. Briefly, an aqueous dispersion of V2O5 nanowires was 

transferred to an aqueous dispersion of purified cysteinate-capped CdSe QDs in a flask 

and allowed to equilibrate overnight (12—16 h) at room temperature under vigorous 

stirring. CdSe-functionalized V2O5 nanowires were isolated by centrifugation, washed 

with copious amount of deionized water to remove excess, weakly adsorbed quantum 

dots, and allowed to dry at room temperature.  
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Structural characterization. Scanning electron microscopy (SEM) imaging was 

performed using a FEI Quanta 600 FE-SEM operated at an accelerating voltage of 10 

kV. The instrument was equipped with an IR-CCD chamber camera and an Oxford 

system for energy dispersive X-ray spectroscopy (EDS) measurements. Samples for 

SEM measurements were prepared by dispersing powders recovered from synthesis onto 

carbon tape adhered onto machined stubs. High-resolution transmission electron 

microscopy (HRTEM) and selected area electron diffraction (SAED) measurements 

were performed using a FEI Tecnai G2 F20 microscope operated at an accelerating 

voltage of 200 kV. Samples for TEM measurements were prepared by drop-casting 

heterostructrure dispersions in ethanol onto Formvar/carbon support films on 400 mesh 

Cu grids.  

Determination of optical energy bandgap by diffuse reflectance measurements. 

Diffuse reflectance measurements were performed using the Praying Mantis accessory in 

a Hitachi U-4100 UV-vis-NIR spectrophotometer. Diffuse reflectance spectra were 

obtained in the range of 200–800 nm for all samples at a scan rate of 600 nm/min. 

Samples for diffuse reflectance spectroscopy were prepared by finely crushing the 

powders recovered from synthesis with a mortar and pestle; the fine-grained powders 

were next placed within a sampling cup from the Praying Mantis diffuse reflectance 

accessory.  

The optical bandgaps of the V2O5 polymorphs were determined by extrapolating 

the linear region of the diffuse reflectance spectrum to the abscissa and utilization of 

Kubelka-Munk theory, as per: 
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    (VI. 1)  

where R is the measured diffuse reflectance and F(R) is the Kubelka-Munk function, 

which is proportional to the extinction coefficient.42 By plotting F(R) versus energy 

(eV), the optical bandgap was deduced for each V2O5 polymorph by extrapolation of the 

best-fit to the linear section of the curve. 

Transient absorption spectroscopy. Nanosecond transient absorption spectroscopy 

measurements were carried out using 800 nm pump pulses with a subnanosecond pulse 

duration and an electronically delayed supercontinuum light source as the probe. An 

EOS spectrometer (Ultrafast System) was used to acquire the TA spectra. TA decay 

traces were compiled by averaging ΔA values over a given range of probe wavelengths 

at each delay time. Averaged TA spectra were obtained by averaging the absorption 

differential (ΔA) at delay times in the range of 1.5—10 ns from the 3D data matrix 

plotting in 425—900 nm as a function of pump-probe delay time (t), exemplified in 

Figure VI. 5. TA measurements were performed on thin films of V2O5 nanowires and 

V2O5/CdSe heterostructures, which were prepared by spray-coating a 5 mL ethanol 

dispersion at a concentration of 1 mg/mL onto glass microscope slides.  

Photocatalytic H2 generation. An aqueous dispersion of V2O5 polymorphs (50 mg) 

nanowires was added to an aqueous dispersion of purified Cys-CdSe quantum dots and 

allowed to equilibrate for 1 h. The photocatalysts (V2O5 nanowires functionalized with 

CdSe quantum dots) were recovered by centrifugation, rinsed with deionized water to 

remove excess quantum dots, and subsequently dried at room temperature before further 

use. Photocatalytic H2 generation was performed in a 100 mL Pyrex flask at ambient 
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temperature and atmospheric pressure. The flask was sealed with a silicone rubber 

septum. The light source was a 100 W Xe arc lamp (Oriel 133 Photomax); a cut-off filter 

transmitting 400 to 720 nm (visible) light was used to modulate the irradiance. The 

focused intensity on the flask, measured using a power meter (Gentec solo PE laser 

power meter with sensor), was 120 mW/cm2. The catalyst (50 mg) was suspended in a 

50 mL mixed solution of lactic acid (20 vol.%) and water under vigorous stirring. The 

co-catalyst used was Ni-(3-MPA) (0.1 M Ni2+ and 0.2 M 3-mercaptopropionic acid). 

Before irradiation, the suspensions were bubbled with Ar for 30 min to remove dissolved 

oxygen. Magnetic stirring was used in order to maintain a colloidal dispersion of the 

photocatalyst particles. A total of 3 mL of headspace vapors were collected through the 

septum after 1 h and analyzed using a gas chromatograph (Perkin Elmer Clarus 580) 

equipped with a thermal conductivity detector (TCD) using Ar as the carrier gas.  

 

VI.3 Results and Discussion 

Electronic Structure of V2O5 Polymorphs and Implications for Energetic Offsets 

Polymorphs of V2O5 differ substantially in the connectivity of V—O bonds and 

arrangement of vanadium-centered polyhedra.30 Alteration of V—O connectivity 

strongly influences the electronic structure as well as energy dispersion and separation 

between the valence and conduction bands. Figure VI. 1A—C illustrate the three 

different polymorphs of V2O5 examined here as components of Type-II 

heterostructures.26, 27 Layered α-V2O5 is the thermodynamically stable phase and has 

been directly prepared in the form of nanowires based on hydrothermal reduction of  
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Figure VI. 1 (A-C) Crystal structures of V2O5 polymorphs: (A) α-phase, (B) γ′-phase, 
and (C) ζ-phase; (D) X-ray diffraction patterns for V2O5 polymorphs and a bulk 
counterpart; and (E-G) TEM images of corresponding V2O5 polymorphs: (D) α-phase, 
(E) γ′-phase, and (F) ζ-phase. In Figure VI. 1A-C, V atoms and O atoms are 
correspondent to the red and blue sphere, respectively.  

 

 



 

168 
 

micron-sized V2O5 to V3O7ꞏH2O followed by oxidation to V2O5 nanowires (as detailed 

further in the Methods section).26 This polymorph comprises [VO5] square pyramids 

connected by alternating edge-sharing and corner-sharing (Figure VI. 1A) with a 

defined van der Waals’ gap along the crystallographic c direction. Figure VI. VI. 1D 

shows a XRD pattern of the α-V2O5 nanowires with reflections indexed to PDF# 41-

1426,26 establishing the phase purity of the structures. Figure VI. 1E shows a 

transmission electron microscopy (TEM) image; the prepared nanowires have lateral 

dimensions of 200±50 nm and are tens of microns in length.  

V2O5 is characterized by a “rugged” energy landscape with numerous metastable 

polymorphs in relatively close proximity to the thermodynamic phase.30 The single-

layered γ′-V2O5 polymorph, shown in Figure VI. 1B, comprises puckered sheets of 

V2O5 and is accessed by topochemical de-intercalation of Li-ions from a distorted γ-

LixV2O5 structure. The ternary γ-LixV2O5 phase in turn is derived from an irreversible 

intercalation-induced transition upon lithiation of α-V2O5 that allows for accommodation 

of a higher concentration of Li-ions above x >1 through an increase in the interlayer 

separation and puckering of [V2O5]n sheets as well as a shear distortion with respect to 

adjacent sheets. Figure VI. 1D plots a powder XRD pattern acquired for the γ′-phase 

V2O5, which can be indexed to PDF# 85-2422, attesting to the phase purity of the 

topochemically stabilized γ'-V2O5 phase.35 Figure VI. 1F shows TEM images acquired 

for the prepared nanowires, which have lateral dimensions of 150±20 nm and vertical 

dimensions of several microns in length.  
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The metastable ζ-V2O5 structure pictured in Figure VI. 1C is stabilized by topochemical 

leaching of Ag-ions from a β-AgxV2O5 Wadsley bronze as described in the methods 

section; the structure is characterized by a quasi-1D tunnel-structured framework 

constituted from corner- and edge-sharing [VO6] octahedra and edge-sharing [VO5] 

square pyramids.23, 36 Figure VI. 1D plots a powder XRD pattern acquired for the 

topochemically stabilized material, which can be indexed as per a previous Rietveld 

refinement performed for this crystal structure.25 Figure VI. 1G shows TEM images of 

ζ-V2O5 nanowires, which have lateral dimensions of 150±5 nm and are several microns 

in length.  

In V2O5 polymorphs, states at the top of the valence band are typically O 2p in 

origin, whereas states at the bottom of the conduction band are typically V 3d in origin30; 

α-V2O5 is notably characterized by a narrow split-off conduction band that is V 3dxy in 

origin.37-39 The valence band edge potential of α-phase V2O5 nanowires (as well as CdSe 

QDs) has been determined based on hard X-ray photoemission spectroscopy (HAXPES) 

and is schematically shown in Figure VI. 2.4 Density functional theory (DFT) 

calculations and HAXPES measurements indicate that the valence band edge potentials, 

which are derived primarily from non-bonding O 2p states, are relatively unaltered in 

different V2O5 polymorphs. In contrast, the energy positioning of the V 3d—O 2p 

conduction band edge is strongly sensitive to the extent of hybridization.24, 40 The 

conduction band edge of V2O5 has been deduced based on delineation of the optical 

bandgap, as measured for the different polymorphs by diffuse reflectance spectroscopy 

(Figure VI. 2A). Different absorption profiles are observed for V2O5 polymorphs. The  
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Figure VI. 2 (A) Diffuse reflectance spectra of V2O5 polymorphs and bulk V2O5 
counterpart and (B) relative energy positioning of the valence and conduction bands 
edges of polymorph V2O5 nanowires versus CdSe QD. 
 

optical bandgaps have been determined by the Kubelka—Munk method41, 42 as detailed 

in the experimental section. The bandgaps are determined to be 2.36 eV for γ′-V2O5, 

2.31 eV for α-V2O5 (concordant with the 2.29 eV value measured for bulk V2O5), and 

2.09 eV for ζ-V2O5. The inset to Figure VI. 2A displays a change in visible coloration 

from light brown for the γ′-phase to yellow for the α–phase, and dark brown for ζ-V2O5.  

The energetic offsets expected in heterostructures comprising V2O5 polymorphs 

interfaced with CdSe quantum dots is plotted in Figure VI. 2B. The relative energy 

positioning suggest a type II interface for heterostructures of all three V2O5 polymorphs 

functionalized with CdSe quantum dots, which should result in interfacial charge 

separation upon photoexcitation. Photoexcitation of either component of the 

heterostructures is expected to bring about confinement of holes at the valence band 

edges of the quantum dots and electrons at the conduction band edges of V2O5. The 
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driving forces for hole transfer are seen to be essentially constant, whereas the driving 

force for electron transfer varies as a function of the covalency of the V2O5 framework 

(Figure VI. 2B).  

 

Surface Functionalization of V2O5 Nanowires with CdSe Quantum Dots  

As per Marcus theory, the nature of the interface between the donor and the 

acceptor dictates the overlap integrals that determine the charge transfer kinetics.43, 44 

V2O5 nanowires of the different polymorphs have been functionalized with CdSe 

quantum dots using SILAR and LAA methods as described in the Methods section. 

SILAR-derived heterostructures are characterized by a direct interface with the 

nanocrystals grown directly onto the nanowire surfaces, whereas in the LAA-derived 

heterostructures, a trifunctional molecule, cysteine, is used to tether the two components. 

Under the weak basic reaction condition (pH 8.5—9), the deprotonated thiol group of 

linker molecules is preferentially coordinated to Cd2+ surface site on QD whereas the 

protonated amine group of cysteine is predominantly attached to surficial hydroxyl 

groups of V2O5 nanowires as per hard-soft Lewis acid-base theory.4 Figures A. 33 and 

34 show scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS) characterization of the prepared heterostructures, respectively.  

Figure A. 33 displays SEM images of pristine V2O5 nanowires, LAA-derived 

V2O5/CdSe heterostructures, and SILAR-derived V2O5/CdSe heterostructures for all 

three polymorphs of V2O5. The surfaces of the V2O5 nanowires are initially smooth but 
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take on a speckled appearance upon functionalization with CdSe quantum dots. Figure 

VI. 3A—F depicts bright-field TEM images of the obtained LAA and SILAR  

 
Figure VI. 3 TEM images of (A—C) LAA-derived V2O5/CdSe heterostructures and 
(D—F) SILAR-derived V2O5/CdSe heterostructures: (A,D) α-V2O5; (B,E) γ′-V2O5; and 
(C,F) ζ-V2O5. Insets to D-F show indexed SAED patterns acquired for SILAR-derived 
heterostructures. 
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heterostructures for all three polymorphs of V2O5. In stark contrast to the smooth 

surfaces of pristine nanowires (shown in Figure VI. 1E-F), protuberant specks and dots 

are discernible on the surfaces of both SILAR- and LAA-derived heterostructures. 

Relatively high extents of surface coverage with quantum dots are noted for SILAR-

derived heterostructures corresponding to three cycles of immersion in Cd and Se 

precursor solutions. The indexed SAED patterns shown in Figure VI. 3D—F provide 

additional corroboration of the growth of wurtzite-structured CdSe quantum dots on the 

nanowire surfaces. The diffraction spots have been indexed to the lattice planes of the 

different polymorphs of V2O5, whereas the diffuse rings are indexed to (002) and (112) 

reflections of wurtzite CdSe quantum dots.4, 10 Figure VI. 4 shows high-resolution TEM 

images of heterostructures; lattice-resolved images shown as insets provide further 

corroboration of the growth of crystalline wurtzite CdSe nanocrystals on the surfaces of 

the V2O5 nanowires (for all three polymorphs). The measured separation between the 

lattice planes of ca. 3.47Å can be indexed as the separation between the (002) planes of 

wurtzite CdSe.45 46 Diffraction contrast images in Figure VI. 4 provide an intensity 

profile corresponding to the concentration of quantum dots on the surfaces of the V2O5 

nanowires. Fast Fourier transform (FFT) patterns acquired across the lattice-resolved 

regions corroborate the hexagonal symmetry of wurtzite CdSe quantum dots grown onto 

the nanowire surfaces.46 Figure A. 34 plots EDS spectra measured for LAA- and 

SILAR-derived V2O5/CdSe heterostructures. The loading of CdSe quantum dots is 

approximately 5—20 at.% for the SILAR heterostructures and 3—10 at.% for LAA 

heterostructures based on the relative atomic ratios of Cd and V.  
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, 
Figure VI. 4 High-resolution TEM images (left) and false-color diffraction contrast 
images (right) for (A,B) SILAR-derived α-V2O5/CdSe, (C,D) SILAR-derived γ'-
V2O5/CdSe, and (E,F) SILAR-derived ζ-V2O5/CdSe. Insets to panels A,C,E show 
magnified lattice-resolved views of the regions denoted by a white square in the panels. 
The observed fringes can be indexed to separation between the (002) planes of wurtzite 
CdSe quantum dots. The insets to panels B,D, and F correspond to fast Fourier 
transforms acquired for the same region.  
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Charge Separation within V2O5/CdSe Heterostructures  

Polymorphism of V2O5 along with compositional and dimensional tunability of 

II-VI quantum dots makes V2O5/II-VI quantum dot heterostructures a versatile and 

programmable platform for tuning thermodynamic driving forces for charge transfer. As 

shown in Figure VI. 2, the energetic offsets across all three V2O5 polymorphs and CdSe 

quantum dots has a staggered type II alignment. Such interfaces are particularly 

desirable for solar energy conversion as a result of the potential for obtaining long-lived 

charge separated states upon photoexcitation. Type-II interfaces separate charges in 

space through interfacial charge transfer, allowing for their further utilization to generate 

a photocurrent or for catalyzing redox processes.19, 21 The charge carrier relaxation 

dynamics of V2O5/CdSe heterostructures constituted from different V2O5 polymorphs 

have been resolved using transient absorption (TA) spectroscopy upon photoexcitation at 

an excitation wavelength of 360 nm.  

In previous work, we have measured TA spectra for pristine α-V2O5 nanowires 

and their heterostructures with CdSe quantum dots QD.11 In the TA spectra of V2O5 

nanowires, an induced absorption band observed at 450—600 nm is assigned to excited-

state holes (corresponding to excitation of electrons from the deep valence band to the 

valence band edge), whereas an induced absorption band in the range of 600—750 nm 

can be attributed to excited-state electrons (being promoted to still higher lying 

conduction band states). Figure A. 35 plots TA spectra of V2O5 polymorphs acquired on 

the nanosecond timescale. In accordance with previous assignments, TA spectra of V2O5 

polymorphs are characterized by a transient bleach (centered at 440 nm for α- and 425 
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nm for γ'-V2O5 and 490 nm for ζ-V2O5) and two induced absorption bands (high energy 

band from 475—600 nm and a low energy band from 600—750 nm).11 The transient 

bleach in the differential absorption spectra is ascribed to carrier depletion from the 

ground-state upon band edge excitation, which results in a bleach of the ground-state 

absorption.47 The ground-state bleach is centered at 425—450 nm for γ′-V2O5, 440—510 

nm for α-V2O5, and 480—520 nm for ζ-V2O5. The relative trend of the ground state 

bleach values is indeed consistent with the optical bandgap values deduced from the 

diffuse reflectance measurements (Figure VI. 2A).  

Intense, broad induced absorption features are observed at 550—600 nm for α-

V2O5, 510—550 nm for γ′-V2O5, and 560—620 nm for ζ-V2O5, and can be assigned to 

the photogenerated excited-state holes situated at the valence band edge of the V2O5 

polymorphs, which correspond to the excitation of electrons from the deep valence band 

to valence band edge states.11 In contrast, low-energy induced absorption bands are 

observed at 650—750 nm for α-V2O5, 550—620 nm for γ′-V2O5, and 650—750 nm for 

ζ- V2O5, and can be assigned to excited-state electrons located in the conduction bands of 

the V2O5 polymorphs, which can be ascribed to the state-filling of electrons in the 

conduction band of V2O5 and further excitation of electrons from the conduction band 

edge to higher energy states in the conduction band that become accessible upon 

photoexcitation.11 

Figure VI. 5A—C plot TA spectra acquired for pristine V2O5 polymorphs, 

SILAR-derived V2O5/CdSe heterostructures, and LAA-derived V2O5/CdSe 

heterostructures. Spectra acquired for unfunctionalized V2O5 nanowires are contrasted  
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Figure VI. 5 (A-C) TA spectra of unfunctionalized V2O5 nanowires, LAA-derived 
V2O5/CdSe heterostructures, and SILAR-derived V2O5/CdSe heterostructures: (A) α-
V2O5, (B) γ′-V2O5, and (C) ζ-V2O5. (D-F) Decay traces and multiexponential kinetic 
fitting for pristine V2O5 nanowire, LAA-derived V2O5/CdSe heterostructures, and 
SILAR-derived V2O5/CdSe heterostructures at the induced absorption band maximum: 
(D) α-V2O5 nanowires and their heterostructures, (E) γ′-V2O5 nanowires and their 
heterostructures, and (F) ζ-V2O5 nanowires and their heterostructures. 

 

with spectra measured for SILAR-derived and LAA-derived heterostructures for each of 

the polymorphs. Notably, spectra acquired for three SILAR-derived V2O5/CdSe 

heterostructures are characterized by a pronounced induced absorption band at longer 
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wavelengths 650—800 nm, whereas all three LAA-derived V2O5/CdSe heterostructures 

exhibit excited-state spectral features rather similar to that of unfunctionalized V2O5 

nanowires with an amplification of the measured intensity. For the three SILAR 

samples, a broad induced absorption band is discernible, centered at 650—800 nm for α-

V2O5/CdSe, 600—800 nm for γ′-V2O5/CdSe, and 500—800 nm for ζ-V2O5/CdSe, which 

is not observed for the pristine V2O5 nanowires, and is ascribed to formation of a charge 

separated state (vide infra). Additionally, the high energy (425—520 nm) induced 

absorption band corresponding to excited-state holes present in V2O5 nanowires is 

significantly diminished in intensity in spectra measured for SILAR-derived γ′- and ζ-

V2O5/CdSe heterostructures, but is still observable for SILAR-prepared α-V2O5/CdSe. 

This observation suggests that the excited-state hole populations within SILAR-derived 

γ′- and ζ-V2O5/CdSe heterostructures are significantly decreased owing to hole transfer 

to the CdSe quantum dots in these constructs. In contrast, the TA spectrum of SILAR-

derived α-V2O5/CdSe heterostructures corresponds to a combination of excited-state 

spectral features of pristine α-V2O5 nanowires and a charge-separated state.  

In the case of the LAA-derived heterostructures, the excited-state spectral 

features of pristine V2O5 nanowires (characterized by a transient bleach and two induced 

absorption bands) are still discernible. The amplified TA intensity as compared to 

pristine V2O5 nanowires reflects an increase of the carrier concentrations but the charge 

separated state is not readily resolved given the relatively lower concentration of 

quantum dots. Photoexcitation at 360 nm corresponds to above-bandgap excitation for 

both V2O5 nanowires and CdSe quantum dots, which are simultaneously excited within 
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SILAR- and LAA-derived heterostructures (V2O5 nanowires have bandgaps in the range 

of 2.0—2.4 eV as noted in Figure VI. 2 and Table VI. 1,24 whereas CdSe quantum dots 

have bandgaps in the range of 1.8—2.4 eV).48 As per the energetic offsets plotted in 

Figure VI. 2, excited electrons are expected to be localized in the conduction band of 

V2O5 nanowires, whereas photogenerated holes are localized in the valence band of 

quantum dots upon direct photoexcitation of either component (corresponding to 

electron transfer from the conduction band of photoexcited quantum dots to the 

conduction band of V2O5 and hole transfer from the valence band of photoexcited V2O5 

nanowires to valence band of CdSe quantum dots). As a result, the characteristic induced 

absorption band associated with excited-state holes in V2O5 nanowires is diminished as a 

result of a decreased hole population in V2O5 nanowires. Hole transfer further brings 

about an induced absorption band at long wavelengths (650—800 nm) derived from 

trapped-holes situated in the valence band of CdSe quantum dots.11, 49 The excited-state 

electrons in V2O5 nanowires derived from both direct excitation and electron transfer 

give rise to a low energy band (650—800 nm). The broad spectral features characteristic 

of the charge-separated state observed for SILAR-derived heterostructures thus represent 

a summation of induced absorption bands derived from excited holes confined in CdSe 

quantum dots and electrons confined in V2O5 nanowires. In contrast, for the LAA 

heterostructures the excited-state spectral feature of pristine nanowires are intensified as 

a result of increased carrier concentrations but the charge separated state is not clearly 

discernible owing to the relatively low loading of quantum dots.  
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Figure VI. 5D—F plot decay traces for the long-wavelength induced absorption 

band for pristine V2O5 nanowires as well as their SILAR- and LAA-derived 

heterostructures, which are shown alongside multiexponential fits. The decay traces have 

been fitted to multiple exponential decay functions to resolve the excited-state relaxation 

dynamics as per equation (VI. 2) using the least number of components: 

ܣ∆ ൌ ଴ܣ∆ ൅	∑ ௜݁ܣ
ሺି ೟

ഓ೔
ሻ

௜    (VI. 2)2,11  

where ∆ܣ is differential absorbance, ∆ܣ଴  is the differential absorbance at the longest 

timescales, Ai is a pre-exponential weighting factor, t is pump-probe delay time, and ߬௜ is 

lifetime of individual component. The extracted fitting parameters are tabulated in Table 

A. 8. The average carrier lifetime is computed by dividing the amplitude-weighted 

lifetime with the pre-exponential weight factor (Ai) as per: 

〈߬〉 ൌ 	
∑ ஺೔ఛ೔೔

∑ ஺೔೔
     (VI. 3) 

All the decay traces are well fitted using biexponential decay kinetics (i = 2) (vide infra). 

The pristine V2O5 nanowires exhibit well-defined multiexponential decay kinetics on the 

microsecond timescale, resulting from two main recombination processes: charge 

trapping by surface defect states and electron—hole radiative recombination. 3D color 

maps are plotted in Figure A. 36—38. The multiexponential fits as well as the 3D color 

maps indicate significantly increased carrier lifetimes for excited states of both SILAR- 

and LAA-derived heterostructures (Figures VI. 5D-F and Figures A.36—38). Average 

lifetimes <τ> are summarized in Table VI. 1 to contrast carrier lifetimes between 

pristine V2O5 nanowires and their SILAR- and LAA-derived heterostructures as well as  
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Table VI. 1 Average carrier lifetimes derived from TA decay trace and kinetic fitting for 
nanowires of different polymorphs of V2O5, LAA-derived V2O5/CdSe heterostructures, 
and SILAR-derived V2O5/CdSe heterostructures.  

Average carrier lifetimes for 
each sample (τave; μs) 

α-V2O5 γ′-V2O5 ζ- V2O5 

Pristine nanowires 0.15 ± 0.01 0.28 ± 0.01 0.70 ± 0.01 
LAA-derived V2O5/CdSe 0.27 ± 0.01 0.76 ± 0.01 1.5 ± 0.1 

SILAR-derived V2O5/CdSe 1.2 ± 0.2 0.95 ± 0.1 1.2 ± 0.1 
Energy band gap (eV) 2.31 2.36 2.09 

 

the energy bandgap of V2O5 polymophs. Notably, the average lifetimes of SILAR or 

LAA heterostructures are substantially increased, by up to one order of magnitude, as 

compared to pristine V2O5 nanowires. The 3D TA color maps that both SILAR- and 

LAA-derived heterostructures have more intense and longer-lived induced absorption 

bands at their induced absorption maxima persisting up to 1—2 μs (Figure A. 36—38). 

The separation of charge in real space across V2O5/CdSe interfaces yields substantially 

longer-lived carriers within both heterostructures as compared to single component 

nanowires. The increased carrier lifetime can also partly be attributed to the surface 

passivation of V2O5 nanowires with CdSe quantum dots, which decreases the density of 

surface trap states and thereby suppresses trap-mediated recombination pathways. The 

SILAR-derived heterostructures have relatively thicker CdSe shells as compared to their 

LAA-derived counterparts (Figures VI. 3 and 4), resulting in relatively better surface 

passivation and longer-lived charge carriers.4  

Photocatalytic hydrogen evolution  

Photocatalytic H2 production with the prepared type II heterostructures has been 

evaluated under visible light irradiation (400-720 nm) using lactic acid as a sacrificial 

proton donor and Ni-(3-MPA) as a co-catalyst (Figure VI. 6). Figure VI. 6B illustrates  
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Figure VI. 6 (A) Comparison of the photocatalytic H2 evolution rates of pristine V2O5 
nanowires LAA-derived V2O5/CdSe heterostructures in a 20 vol. % aqueous solution of 
lactic acid under visible light irradiation in the presence of Ni-(3-MPA) co-catalyst. (B) 
Schematic illustration of catalytic scheme. 
 
Table VI. 2 Rates of H2 generation for LAA-derived V2O5/CdSe heterostructures with 
approximately similar loadings of QDs. 

Photocatalyst (LAA) Amount H
2
( µmol h-1) 

α-V2O5/Cd0.23Se0.17 38.7±5.4 
γ’-V2O5/Cd0.28Se0.21 ~ 0 
ζ-V2O5/Cd0.23Se0.23 0.25±0.06 

 

the mechanism of proton reduction reaction sought to be mediated by photogenerated 

electrons transferred to V2O5 nanowires along with oxidation of lactic acid using 

photogenerated holes at the quantum dot surfaces. The catalytic conditions are described 

in further detail in the experimental section. Control experiments performed in the 

absence of either the photocatalyst or light irradiation indicates the complete absence of  

hydrogen evolution. Figure VI. 6A shows a comparison of visible-light-driven 

photocatalytic H2 evolution rates of pristine V2O5 polymorphs and LAA-derived 

V2O5/CdSe heterostructures. Notably, no H2 gas evolution is detected for any of the three 

polymorphs of V2O5 prior to functionalization, whereas LAA-derived α- and ζ-
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V2O5/CdSe heterostructures are seen to be excellent unassisted dispersed photocatalysts. 

For similar amounts of CdSe quantum dots, the LAA-derived α-V2O5/CdSe 

heterostructures show the highest rate of H2 generation at 38.7±5.4 μmol/h, whereas 

LAA-derived ζ-V2O5/CdSe heterostructures exhibit H2 generation at a rate of 0.3±0.1 

μmol/h, almost two orders of magnitude slower; negligible H2 evolution is observed 

using LAA-derived γ′-V2O5/CdSe heterostructures. The relatively poor performance of 

the metastable phases upon visible light irradiation is perhaps a function of their relative 

instability under acidic conditions. Ongoing experiments are focused on examining the 

structural stability of their heterostructures under operational conditions.  

SILAR-derived heterostructures do not show any H2 gas evolution upon visible 

light irradiation. Considering that proton reduction reactions occurs at the surfaces of 

V2O5 nanowires owing to electron localization in the conduction band of V2O5, the 

encapsulation of the nanowires by relatively thick CdSe quantum dot shells likely 

precludes adsorption of the Ni co-catalyst to the nanowire surfaces and establishes 

diffusion restrictions limiting hydrogen evolution. In contrast, SILAR heterostructures 

are likely to be promising oxidation catalysts given the localization and ready 

accessibility of trapped holes in CdSe shells enrobing the V2O5 nanowires. 

 

VI.4 Conclusions 

Well-defined V2O5/CdSe quantum dot heterostructures with a type II 

configuration have been prepared for nanowires of three different polymorphs of V2O5. 

The thermodynamically stable α-V2O5 phase as well as metastable ζ- and γ' V2O5 
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polymorphs have been interfaced with CdSe quantum dots. LAA- and SILAR methods 

have been used to assemble the heterostructures with the latter yielding relatively higher 

surface coverage. Nanosecond TA spectroscopy studies indicate that SILAR-derived 

heterostructures exhibit charge-separated states with electrons localized in V2O5 

nanowires and holes localized in CdSe quantum dots. The states are long-lived with 

lifetimes of ca. 1—2 μs, increased by about two orders of magnitude as compared to the 

excited state features observed for unfunctionalized V2O5 nanowires. In TA spectra of 

LAA-derived heterostructures, increased concentrations of electrons and holes are 

evidenced as compared to pristine nanowires. Promising photocatalytic activity towards 

hydrogen evolution is observed for colloidal dispersions of LAA-derived 

heterostructures, whereas SILAR-derived heterostructures are expected to serve as 

oxidation catalysts owing to hole localization in the thicker CdSe shells enrobing the 

V2O5 nanowires. The polymorphism of V2O5 provides an interesting means of tuning 

energetic offsets of V2O5/CdSe type II interfaces providing an additional degree of 

freedom to the programmability inherent from compositional and dimensional 

modulation of the quantum dot components.  
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CHAPTER VII 

INCORPORATION OF HYDROXYETHYLCELLULOSE-FUNCTIONALIZED 

HALLOYSITES AS A MEANS OF DECREASING THE THERMAL 

CONDUCTIVITY OF OILWELL CEMENT 

 

VII.1 Introduction 

Well cementing, the pumping and solidification of cement within the annulus 

between the inserted casing and its surrounding rock formation, represents a critically 

important step in the completion of oil wells.1 The oilwell cement provides zonal 

isolation, protects surrounding groundwater from contamination, structurally bolsters the 

casing, and substantially mitigates corrosion of the casing. The choice of cement and the 

method of cementing are determined by the specifics of the geological formation and the 

nature of the extraction process. Enhanced oil recovery methods that are increasingly 

being used to meet global energy needs often have specific requirements for well 

cementing,2 which adds considerable cost and complexity to the myriad challenges of 

accessing unconventional deposits. In recent times, the steam-assisted gravity drainage 

(SAGD) process has emerged as one of the pre-eminent means of extracting viscous oil 

in the Canadian Oil Sands spread across Northern Alberta and Saskatchewan.3, 4 In this 

process, steam is injected down a wellbore through an injection well creating a steam 

chamber that increases the temperature of the viscous oil deposits, thereby reducing the 

viscosity of the oil and allowing it to drain down to a lower production well (under the 

influence  
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of gravity) from which it is extracted using powerful pumps as an emulsified mixture of 

water and oil.5, 6 Apart from load-bearing characteristics, the cement components 

deployed in SAGD wellbores also have to endure the severe thermal cycling inherent in 

the SAGD process; the oilwell cement must further be flexible and yet dense in order to 

avoid microannulus formation, adhere conformally to metal tubing, and provide zonal 

isolation.7-9 Given the considerable temperature differential inevitable between the 

casing and the environment during the SAGD process, there is substantial interest in 

reducing the thermal conductivity of the oilwell cement in order to reduce heat loss and 

improve the energy efficiency of the SAGD process. Needless to say, a reduction in 

thermal conductivity needs to be accomplished without deleteriously impacting critically 

important mechanical properties such as ultimate compressive strength. In this article, 

we report a pronounced reduction in the thermal conductivity of oilwell cement upon 

inclusion of polymer-functionalized halloysite nanotubes (HNTs). The hollow interiors 

of the HNTs and the scattering of phonons at multiple interfaces yields cement with a 

substantially decreased thermal conductivity without degrading the mechanical 

properties of the cement. 

Concrete cement is a mixture of silicates and oxides of calcium, aluminum, and 

iron, primarily comprising various phases of calcium and aluminum silicates. Upon the 

addition of water, hydraulic cement can be quickly gelled through the hydration reaction 

of various metal silicates.10-13 Several thermal cements incorporating polymeric and 

polysulfide additives have been developed in order to provide enhanced elastic 

deformability and thermal insulation.14 Increasing the flexibility (by decreasing the 
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Young’s modulus) of the cementitious matrix helps prevent delamination at the metal 

tubing interface and further prevents buildup of strain gradients (derived in large 

measure from thermal gradients) that could bring about fracture and compromise well 

integrity.14 Polymer-derived cements incorporate cross-linkable polymeric chains that 

are oftentimes covalently bonded to the cement matrix giving rise to a dense load-

bearing framework. The ability to unravel polymeric chains and the intrinsic 

stretchability of polymeric backbones can substantially enhance the elastic properties of 

the matrix. As a result of their “softer” more deformable characteristics, the Young’s 

modulus is decreased for such materials, albeit oftentimes with an accompanying 

reduction of compressive strength. Polymer-derived cements further serve to reduce 

water sorption, allow for enhanced corrosion resistance, and provide a means for 

improved adhesion to metal tubing. Polymeric inclusions further bring about some 

diminution of thermal conductivity as a result of the dissimilar nature of polymers and 

silicates, which results in considerable phonon scattering at their interfaces, thereby 

diminishing the thermal conductivity of the framework. Considerable efforts have also 

been directed at the inclusion of fibrous additives such as carbon nanotubes (CNTs) or 

plant fibers within cementitious matrices as a means of simultaneously enhancing 

deformability as well as fracture toughness.8, 14-16 A major challenge in the preparation of 

cement nanocomposites, which is imperative to fully harness the functional benefits of 

the inclusions, is to ensure homogeneous dispersion of the inclusions within the 

cementitious matrix whilst precluding the entrainment of air.  
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While macroscopic porosity is most certainly deleterious to cement strength and 

well integrity, the incorporation of closed nanoscopic voids represents an intriguing 

means of embedding a low-thermal-conductivity medium. Naturally occurring hollow 

clay nanotubes provide a means of introducing nanoscopic voids if they can be 

incorporated within cementitious matrices in an appropriate manner but such an 

approach to modulate thermal conductivity has not hitherto been explored to the best of 

our knowledge. HNTs have a rather similar chemical composition (Al2Si2O5(OH)4) to 

cement but have not been extensively explored as cement additives.17-19 Their porous 

tubular nature and deformability are promising for structural applications that require 

low thermal conductivity and high elastic modulus (estimated to be ca. 140 GPa). As a 

result of their high aspect ratios, they can effectively bridge multiple domains and 

thereby preclude crack formation even at low loadings of additives. In this work, we 

have contrasted the modulation of thermal conductivity induced upon inclusion of 

different fibrous additives, CNTs, HNTs, and jute fibers. Based on the superior 

modulation of thermal properties accessible using HNTs, we have further explored the 

evolution of the thermal conductivity and mechanical properties of nanocomposite 

cement as a function of the HNT/polymer loading within cement and the HNT:polymer 

ratio. An unprecedented decrease of thermal conductivity is engineered without 

deleterious modification of mechanical properties, suggesting an entirely new approach 

to oilwell cementing.  
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VII.2 Experimental 

Materials & Methods. Portland cements with Class G employed in this study were 

sourced from Cenovus Energy, Inc. Classification of cement from Class A through H is 

defined by American Petroleum Institute (API).  

CaCl2 (Sanjel), SiO2 flour (Sanjel), Multi-walled CNTs (CheapTubes), HNT nanoclays 

(Aldrich), twisted jute twine (SecureLine), hydroxyethylcellulose (NatrosolTM 250H4Br 

PA; Ashland Chemicals), polyacrylic acid (CarbopolTM; Acros Organics), poly(vinyl 

alcohol) (PVA; Aldrich), poly(acrylic acid) (AcrylsolTM; Dow Chemicals), were 

obtained and used without additional purification. 

Preparation of colloidal dispersion of polymer-functionalized fillers. The polymer-

functionalized fillers were obtained by mechanically mixing fibrous fillers and the 

polymer in water. Several types of fibrous fillers were examined for their ability to 

facilitate modulation of the thermal properties of the cement: (a) CNTs (b) HNTs, and 

(c) cellulosic jute fibers. Several polymers were further investigated that can grafted to 

the cement matrix: (a) hydroxyethylcellulose (NatrosolTM); (b) polyacrylic acid 

(CarbopolTM), (c) PVA, and (d) poly(acrylic acid) (AcrysolTM). Initially, 2 g of the 

fibrous filler was placed within a plastic container and next a dispersion comprising 0.5 

g of polymer blended in 10 mL of water was added. The obtained dispersion was 

ultrasonicated for 10 min using a bath sonicator to ensure homogenization of the 

mixture. The relative mass ratios of the filler and polymer was varied from 8:1 to 1:1 

while keeping the total mass at 2.5 g.  
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Preparation of cement nanocomposites incorporating polymer-functionalized fillers. 

Unmodified cement specimens were constituted by mixing and drying the cementitious 

slurry, which was prepared by mechanically stirring 223.62 g of G-class cement, 89.58 g 

of silica flour, and 6.26 g of CaCl2 in 133 mL of de-ionized water for 10 min. The well-

mixed cementitious slurry was immediately transferred to a plastic mold with a diameter 

of 52 cm and height of 104 cm and cured for 7 days. The preparation of modified cement 

nanocomposites followed exactly the same procedure with the addition of pre-prepared 

polymer-functionalized fillers during the mixing step. After drying for 7 days, the 

cement slurry was extracted from the mold for further characterization. The obtained 

cement slab typically had a diameter of 50 cm and a height of 100 cm. 

Structural and Morphological Characterization. The morphological characteristics of 

the cement samples, with and without inclusion of polymer-enrobed fillers, were 

evaluated using a Leica EZ4 stereomicroscope equipped with a KL 1500 LCD detector 

and a FEI Quanta 600 field emission scanning electron microscope (FE-SEM) equipped 

with a conventional Everhart-Thornley detector, back-scattered electron detector, and 

IR-CCD chamber camera operated at an accelerating voltage of 10–20 kV. The chemical 

composition of cement samples was analyzed by EDS using an Oxford Instruments 

silicon drift detector. The samples for SEM/EDS characterizations were prepared by 

fracturing the cured large cement slab with a mechanical clamp; ultra-thin sections with 

a smooth surface were selected, which were adhered to the SEM sample holder with 

carbon tape.  
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High-resolution transmission electron microscopy (TEM) images were acquired 

using a FEI-Tecnai G2 F20 ST instrument at an accelerating voltage of 200 kV. The 

samples for TEM characterization were prepared by mechanically fracturing with a 

mechanical clamp and grinding by mortar and pestle to get the powered cement sample, 

which was further dispersed in ethanol. Next, a few drops of the dispersion were 

transferred to a carbon-supported Cu TEM grid. Fourier transform infrared (FT-IR) 

spectra were obtained using a Bruker VERTEX 70 instrument in the range of 4000—500 

cm-1 with a spectral resolution of 4 cm-1. Powder X-ray diffraction (XRD) measurements 

were performed using a Bruker D8-Focus Bragg-Brentano X-ray Powder Diffractometer 

with a Cu Kα radiation source (λ = 1.5418 Å) in the 2θ range from 10—60°. 

Thermal Conductivity Measurements. Thermal conductivity measurements were 

performed with a hot point sensor on a Linseis Transient Hot Bridge (THB) 100 – 

Thermal Conductivity Meter. The sample setup was performed by placing one cylinder 

flat on a table; next, the hot point sensor was placed at a desired measuring spot, and 

finally a second cylinder of the same exact composition was placed directly atop the first 

cylinder, thereby sandwiching the sensor and minimizing exposure to the open air. The 

measurements were performed using 10 mA of current and 40 mW of power over a 

period of 8 s and were performed in triplicate for each configuration with a wait time of 

100 s in between measurements. 

Compressibility Testing. The compressive strength of the cement nanocomposite 

specimens were measured on an Instron 5982 Mechanical Testing Device using a servo-
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controlled 100 kN load capacity at a displacement rate of 5 mm/min. The dimensions of 

the cement specimens measured 5.1 cm in diameter and 6.1 cm in height. 

 

VII.3 Results and Discussion 

As a result of their covalently bonded -M-O-M- (M = Ca, Al, Fe) as well as 

silicate frameworks, cementitious materials are typically characterized by a high 

compressive strength and a high Young’s modulus but have a relatively low tensile 

strength.20 The incorporation of nanometer-sized inclusions provides a means of 

modulating properties of cement as a result of the structural reinforcement provided by 

typically harder or more elastic additives or as a result of the altered ratios of different 

crystalline silicates nucleated at the interfaces with the additives.21-23 As with other 

hybrid nanocomposites, in order to fully realize the benefits of the nanoscopic filers, it is 

imperative to ensure optimal dispersion of the additives within the host matrix and to 

further ensure interfacial compatibility of the host matrix and the added fillers.24  

Figure VII. 1 presents a schematic depiction of the design and preparation of the 

nanocomposite thermal cement incorporating various polymer-encapsulated fibrous 

fillers. The initial step corresponds to blending of the fillers within the polymer matrix to 

obtain a dispersion of polymer-functionalized fillers. Polymers with polar functional 

groups are used to ensure aqueous dispersibility. Colloidal dispersions are obtained as a 

result of non-covalent binding of the polymers around the anisotropic fibrous additives.25 

The as-prepared dispersion is immediately transferred to the cement slurry and  
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Figure VII. 1 Schematic illustration of the preparation of nanocomposite thermal 
cements based on the incorporation of polymer-functionalized fillers within cementitous 
matrices. An as-prepared dispersion of polymer-functionalized fibrous additives is added 
and vigorously mixed within a cement slurry, which is subsequently allowed to dry for 7 
days resulting in solidification of the composite matrix. 

 

homogeneously mixed with the help of a mechanical stirrer to prepare a slurry 

incorporating the polymer-encapsulated fibers. The slurry is allowed to cure within a 

mold for 7 days to allow for cross-linking and stabilization of a rigid framework. As 

delineated in Figure VII. 1, three distinct types of fillers have been incorporated within 

the nanocomposite cements, CNTs, HNTs, and cellulosic jute fibers. The relative ratio of 

the filler and the polymer and the overall loading of the filler within the cement matrix 

have been systematically varied.  

A preliminary screening of thermal conductivity has been performed for three 

different types of fillers and four distinct polymers at a fixed filler loading of 2 wt.% 

with a 4:1 ratio of filler/polymer (CNTs, HNTs, jute fibers as fillers; 

hydroxyethylcellulose, polyacrylic acid (CarbopolTM), poly(vinyl alcohol) (PVA),  
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Figure VII. 2 Stereomicroscopy Observations of Modified Cement Specimens. 
Stereomicroscopy images of (A) an unmodified cement specimen and modified cement 
nanocomposite incorporating 2 wt.% of polymer—fibrous additive inclusions: (B) HNTs 
dispersed with the aid of hydroxyethylcellulose; (C) jute fibers dispersed using 
hydroxyethylcellulose; and (D) CNTs dispersed using hydroxyethylcellulose. The 
fiber:hydroxyethylcellulose ratio is 4:1 in each case. Scale bar = 1 mm. 

 

poly(acrylic acid) (AcrylsolTM), as the polymers). The inclusion of polyacrylic acid 

within the cement matrix induces rapid gelling and segregation of the polymeric media 

from the cementitious matrix and furthermore is seen to be accompanied by considerable 

entrainment of air bubbles by stereomicroscopy (Figure A. 39). The presence of 

macroscopic voids is discernible and thus this polymer has not been further considered 

as an additive. The hydroxyethylcellulose nanocomposites showed considerably greater 

diminution of thermal conductivity for test specimens as compared to the polyacrylic 
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acid and PVA blends (for all of the fibrous inclusions) and has thus been used as the 

polymeric dispersant in subsequent studies seeking to examine the evolution of thermal 

conductivity across a multidimensional compositional space.  

Figure A. 40 illustrates digital photographs of colloidal dispersions of HNTs suspended 

in aqueous media using hydroxyethylcellulose as a dispersant at various particle 

loadings. The added amount of HNTs is varied from 0.1—2 g while keeping the mass of 

hydroxyethylcellulose constant at 0.5 g hydroxyethylcellulose in 10 mL water. Notably, 

even the highest loading of 2 g of HNT fillers shows excellent dispersion within the 

gelled hydroxyethylcellulose matrix 24 h after mixing. Similar stable dispersions are 

obtained for jute fibers and CNTs. 

Figure VII. 2 exhibits cross-sectional stereomicroscopy images of modified 

cement composites with 2 wt.% loading of various fillers (HNTs, CNTs, and jute fibers) 

functionalized with hydroxyethylcellulose; the unmodified cement specimen has also 

been imaged as a control. The unmodified cement shows a homogeneous distribution of 

particles at this magnification; similarly the modified cement nanocomposites are 

microscopically homogeneous suggesting the absence of phase segregation of filler 

particles from the host cement matrix; no evidence for microannuli (as observed for 

poly(acrylic acid) nanocomposites in Figure A. 39), which are severely detrimental to 

the cementing process,8 is observed in any of the images. Microannulus formation has 

been strongly implicated in failures of well cementing in casing applications and thus it 

is notable that the fibrous inclusions at 2 wt.% loading do not give rise to microannuli 

detectable by stereomicroscopy.8, 9  
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Figure VII. 3 Microstructure of Cement Specimens with and without Fibrous Additives. 
SEM images of A,B) unmodified cement; C,D) modified cement nanocomposite 
incorporating a 2 wt.% loading of HNT and hydroxyethylcellulose; E,F) modified 
cement nanocomposite incorporating a 2 wt.% loading of jute fibers and 
hydroxyethylcellulose; and G,H) modified cement nanocomposite incorporating a 2 
wt.% loading of CNTs and hydroxyethylcellulose. The fiber:hydroxyethylcellulose ratio 
is 4:1 in each case. Scale bar = 40 μm for the left column and 4 μm for the right column. 
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The microstructures of the modified cement composites prepared using various 

fillers with hydroxyethylcellose have been investigated by scanning electron microscopy 

(SEM) (Figure VII. 3). Low-magnification SEM images display the presence of  

micron-sized primary particles. Similar micron-sized aggregates are observed in SEM 

aggregates of images of the modified composites. High-resolution SEM images 

demonstrate that at the nanoscale level, the modified cement nanocomposites exhibit a 

distinctive hierarchical microstructure that is quite different from that of the unmodified 

cement specimen (Figures. VII. 3B,D,F,H). A hierarchical porous microstructure is 

observed and is thought to derive from the shrinkage of the polymer-cross-linked cement 

particles upon drying (a similar microstructure is observed for all three fillers and thus 

appears to be primarily derived from the common hydroxyethylcellulose matrix). The 

stabilization of hierarchical nanoporous primary particles suggests an increased thermal 

contact resistance not observed in unmodified cement (which in contrast exhibits a 

characteristic 3D interconnected microstructure), resulting in an increased resistance to 

phonon transport across macroscopic cement specimens in the former.26  

Figure VII. 4 contrasts the thermal conductivity profiles measured for 

unmodified and modified cement nanocomposites incorporating various filler/polymer 

additives (HNTs, CNTs, and jute fibers along with hydroxyethylcellulose) at a fixed 

loading of 2 wt.% using the transient hot bridge method. The temperature versus time 

plot demonstrates that the temperature of a cement composite with HNTs rises faster 

than that of the other cement composites upon resistive heating of the thermal source 

attesting to the relatively poor ability of this sample to dissipate heat (the increase in  
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Figure VII. 4 Thermal Conductivity of Cement Specimens with and without Fibrous 
Additives. Plots showing the evolution of temperature as a function of time for 
unmodified cement and modified cement composites containing 2 wt.% loadings of 
various fillers (HNTs, CNTs, and jute fibers) dispersed using hydroxyethylcellulose. The 
fiber:hydroxyethylcellulose ratio is 4:1 in each case. 

 

temperature can be ranked in the following order depending on the inclusion of fillers: 

HNTs > jute fibers > control specimen (no fillers) > CNTs). The deduced thermal 

conductivity values are 1.252 ± 0.013 W/mK for unmodified cement; 0.424 ± 0.007 

W/mK for HNTs; 0.703 ± 0.008 W/mK for jute fibers; and 1.365 ± 0.015 W/mK for 

CNTs. The observed trend of thermal conductivity values is intriguing given the 

microstructure observed in Figure VII.3. A hierarchically porous structure, derived from 

the use of the hydroxyethylcellulose, enhances the thermal contact resistance for all three 
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types of fibrous additives, yet considerable differences are observed in the thermal 

conductivity values suggesting a pronounced dependence of thermal conductivity of the 

nanocomposites on the specific composition and structure of the fibrous fillers.  

CNTs are excellent thermal conductors with thermal conductivity values approaching 

3500 W/mꞏK along their length for individual single-walled carbon nanotubes 27 and 

approaching 1500 W/mꞏK for aligned fibers.28 Their high aspect ratios imply that they 

can readily form a quasi-percolative network across the 3D cement matrix, thereby 

yielding a higher thermal conductivity matrix despite the stabilization of the porous 

microstructure as a result of dispersion using hydroxyethylcellulose. In stark contrast, 

the diminution of thermal conductivity upon incorporation of HNTs is stark and can be 

attributed to the nanoscopic voids within such materials, which provides a low-thermal-

conductivity medium. The inherent low thermal conductivity of HNTs (0.1 W/mK) 

thereby brings about a pronounced decrease in the thermal conductivity of 

nanocomposites that include these materials. A decrease of thermal conductivity of 

phase-change materials when HNTs are used as storage media and an increase in thermal 

conductivity for carbon-based materials has been observed in a different context for 

phase change materials used for latent heat storage.29, 30 Jute fibers do not have the 

hollow voids characteristic of HNTs but being cellulosic in nature have low thermal 

conductivities (estimated to be 0.43 W/mꞏK)31 and also bring about a diminution of 

thermal conductivity of the cement specimens although not to the same extent as HNTs. 

In other words, the HNT/hydroxyethylcellulose inclusions offer an abundance of 
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disparate interfaces and void space that can effectively scatter phonons, thereby reducing 

the thermal conductivity.17-19  

To investigate the crystallographic phases present within the cement composites, 

powder X-ray diffraction (XRD) patterns have been acquired for the modified cement  

Figure VII. 5 XRD Patterns of Cement with and without Inclusion of 
Hydroxyethylcellulose-Modified HNTs. XRD patterns of unmodified cement (black) 
and modified cement nanocomposite incorporating 2 wt.% loadings of fibrous additives 
with hydroxyethylcellulose: HNT (red), Jute (blue), and CNT (green). The observed 
reflections are assigned to the following crystalline phases with the corresponding 
JCPDS number quoted in parenthesis in each case: 1. Ca3Al2O6 (32-0150); 2. γ-C2S 
(2CaOꞏSiO2; 31-0297); 3. Anhydrite (CaSO4; 37-1496); 4. CaCO3 (33-0268); 5. C3S 
(3CaOꞏSiO2; M1: 13-0272, M3: 42-0551); 6. α-C2S (2CaOꞏSiO2; 23-1042); 7. TCA 
(3CaOꞏAl2O3; 38-1429); 8. Ca3Al2O6 (32-0150); 9. Arcanite (05-0613); 10. Na2xCa3-

xAl2O6 (26-0957); 11. a'-C2S (20-0237); 12. C4AF (4CaOꞏAl2O3ꞏFe2O3); 30-0226); 13. 
Sodium sulfate (NaSO4; 37-1465,24-1132)  
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composites at 2 wt.% loading of various fillers and are compared to the pattern of 

unmodified cement (Figure VII. 5). The XRD pattern for unmodified cement verifies 

the presence of the major crystalline phases of Portland cement: 1) dicalcium silicate 

(belite; C2S; 2CaOꞏSiO2); 2) tricalcium silicate (alite; C3S; 3CaOꞏSiO2); 3) tricalcium 

aluminate (celite; C3A; 3CaOꞏAl2O3); and 4) tetracalcium aluminoferrate (ferrite; C4AF; 

4CaOꞏAl2O3ꞏFe2O3).11, 32, 33 Figure A. 41 shows a magnified view of the powder XRD 

pattern acquired for unmodified cement indicating characteristic reflections of the C3S, 

C2S, and C3A phases in the 2θ range between 29—35°. The highest intensity reflection 

at a 2θ value of ca. 26° can be indexed to the (112) reflection of the vaterite phase of 

CaCO3 which is a major component of cement. It is worth noting that the powder XRD 

pattern remains essentially the same upon the inclusion and crosslinking of 

hydroxyethylcellulose-functionalized HNT, CNT, and jute fiber fillers. Indeed, this 

observation suggests that the crystallinity and compositional ratio of the cementitious 

matrix remains largely unaltered upon inclusion of 2 wt.% of the fillers even as the 

microstructure of individual particles is strongly modified. The diminution of thermal 

conductivity can thus be attributed to microstructural modifications and the specific role 

of the fillers themselves and not to a compositional or structural modification of the host 

matrix.  

Given the relatively higher diminution of thermal conductivity upon inclusion of 

HNTs, a detailed evaluation of HNT/hydroxyethylcellulose-modified cement has been 

performed at varying filler loadings. Figure VII. 6 shows Fourier transform infrared 

(FTIR) spectroscopy data acquired for modified cement composites prepared with  
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Figure VII. 6 FTIR Spectra of Cement Specimens with and without Inclusion of 
Hydroxyethylcellulose-Modified HNTs. FTIR spectra measured for unmodified cement, 
hydroxyethylcellulose, and modified cement composites incorporating 2 and 5 wt.% 
loadings of hydroxyethylcellulose-modified HNTs.  

 

hydroxyethylcellulose-modified HNTs. The unmodified cement specimen displays 

prominent vibrational modes at 865, 1050, and 1415 cm-1, respectively, which can be 

assigned to ν2 CO3
2- stretching, Si-O-Si stretching, and ν3 CO3

2- stretching modes, 

respectively; 34, 35 less intense modes are discernible at 2854-1 and 2921 cm-1 and can be 

assigned to CH2 stretching modes. The modes arise from the CaCO3 and calcium silicate 

(C3S and C2S) phases that are the primary constituents of cement. The modified cement 

composites with 2 and 5 wt.% loading of HNTs added with hydroxyethylcellulose show  
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Figure VII. 7 TEM Images of Cement with and without Inclusion of 
Hydroxyethylcellulose-Modified HNTs. TEM images of (A) unmodified cement, (B) 
modified cement composite incorporating 2 wt.% of hydroxyethylcellulose-modified 
HNTs; and (C) HNT precursors. The corresponding SAED patterns are shown in (D)—
(F); (D) the observed rings are indexed to the (-401) planes of C3S and (102) plane of 
C2S phase with d-spacings of 0.320 nm and 0.289 nm, respectively; (E) diffraction rings 
are indexed to C3S and C2S phases of cement and the (002) and (003) plane of HNTs; 
(F) diffraction rings are indexed to the (002) and (003) planes of HNTs with interplanar 
separations of 0.405 nm and 0.254 nm, respectively. Scale bar = 200 nm for TEM 
images and 2 nm-1 for SAED patterns. 
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intense IR bands centered around 1050—1100 cm-1 and 1400—1500 cm-1, which again 

can be assigned to Si-O-Si and CO3
2- stretching modes, respectively (as also observed 

for the unmodified cement specimen). The similarity in the vibrational spectra of the 

modified and unmodified cement specimens further attests to preservation of the primary 

phases. At a relatively high loading of 5 wt.% hydroxyethylcellulose-modified HNTs, a 

new vibrational mode at 945 cm-1 is observed and can be ascribed to the Al-OH stretch 

of the Al2Si2O5(OH)4 HNTs. A distinctive C—O stretching mode at 1650 cm-1 

associated with elongation of the C-O vibration of cellulose rings is also observed for the 

modified cement specimens and derives from the incorporation of hydroxyethylcellulose 

within the cementitious matrix.36-38  

Figure VII. 7 shows TEM images of unmodified cement and cement composites 

containing 2 wt.% of hydroxyethylcellulose-modified HNTs, contrasted with TEM 

images of the HNT precursors. Higher magnification images are shown in Figure A. 42. 

The HNTs are 40—50 nm in a diameter and span several micrometers in a length 

(Figure VII.7C and Figure A. 42E,F). The hollow nature of the HNTs is clearly 

discernible in the TEM images. The TEM images directly evidence the inclusion of 

HNTs within the cement matrix and further establish that the HNTs retain their structural 

integrity and void space upon inclusion within the matrix. The unmodified cement 

sample depicts dense aggregates of the silicate and carbonate particles comprising 

stacked thin sheets and aggregated microparticles (Figure VII. 7A and Figure A. 42). 

The SAED pattern in Figure VII.7B can be indexed to reflections from (-401) 

crystallographic planes of the C3S phase and (102) planes of α-C2S phase from  
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Figure VII.8 Thermal Conductivity of Nanocomposite Cement Specimens as a Function 
of Filler Loading. Plots showing the evolution of temperature as a function of time 
measured using a hot bridge analyzer for unmodified cement and modified cement 
composites with varying loadings of HNTs. The HNT to hydroxyethylcellulose ratio is 
held constant at 4:1. 

 

unmodified cement.39 Composite samples imaged after mechanical fracturing clearly 

show the presence of embedded HNTs (Figure VII.7B and Figure A. 42C,D). Indeed, the 

high-aspect-ratio HNTs appear to connect primary particles in several instances, perhaps 

as a result of covalent tethering of the hydroxyethylcellulose to cement. The SAED 

pattern in Figure VII. 7D attests to the retention of crystallinity of the HNTs; the 

observed diffraction rings can be indexed to diffraction spots from (002) and (003) 

planes of HNTs along with reflections from the primary cement phases. These images 
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thus provide direct evidence both of the nanoscopic voids and the multiple interfaces that 

result in the boundary scattering of phonons, thereby diminishing the thermal 

conductivity of cement.  

The chemical homogeneity of cement samples before and after inclusion of 

hydroxyethylcellulose-modofied HNTs has been further been mapped using energy 

dispersive X-ray spectroscopy (EDS). Figure A. 43 shows EDS spectra, whereas Figure 

A. 44 shows micron-scale elemental maps. Based on EDS mapping, the unmodified 

cement shows a homogenous distribution of Si (ca. 7.0 at.%), and Ca (ca. 10.4 at.%), O 

(ca. 54.1 at.%) across the entire area of the specimen, which suggests that the various 

calcium silicate phases are well-dispersed without compositional segregation or 

formation of large voids. Some minor contributions from other elements such as Al (ca. 

0.4 at.%), S (ca. 0.6 at.%), K (0.4 at.%), Fe (ca. 0.3 at.%), Zr (ca. 0.6 at.%) are also 

identified. After inclusion of hydroxyethylcellulose-modified HNTs, the relative 

concentration of Si and Al is found to increase (Figure A. 43). However, EDS mapping 

suggests that the compositional homogeneity is maintained (Figure A. 44) confirming 

the homogeneous distribution of HNTs within the cementitious matrix as also 

discernible from the TEM images in Figure VII. 7.  

The HNT: polymer ratio and the overall loading of fillers have been 

systematically varied in the cement matrix. Figure VII. 8 plots the temperature versus 

time profiles measured using a transient hot bridge analyzer for varying overall loadings 

of hydroxyethylcellulose-modified HNTs maintaining a constant polymer:HNT ratio of 

4:1. The thermal conductivity values deduced from these measurements are 1.252 ±  
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Figure VII. 9 Thermal Conductivity of Nanocomposite Cement Specimens as a 
Function of HNT:Hydroxyethycellulose Ratio. Plots of the evolution of temperature as a 
function of time measured using a hot bridge analyzer for unmodified cement and 
modified cement composites with varying ratios of HNT to hydroxyethylcellulose. The 
overall loading of hydroxyethylcellulose-modified HNTs is held constant at 2.0 wt.%. 

 

0.013 W/mK for unmodified cement, 1.030 ± 0.009 W/mK for 0.5 wt.% 

hydroxyethylcellulose-HNT; 0.440 ± 0.003 W/mK for 1.0 wt.% hydroxyethylcellulose-

HNT; and 0.357 ± 0.001 W/mK for 2.0 wt.% hydroxyethylcellulose-HNT. However, at 

5.0 wt.% loading the thermal conductivity increases slightly to 0.410 ± 0.002 W/mK. At 

relative high loadings of HNTs in the range of 2—5 wt.%, Figure A. 45 indicates that 

flakes of cement are bridged by HNTs. Such a bridging function can mitigate crack  



 

216 
 

 
Figure VII. 10 Mechanical Testing of Cement Nanocomposites. Stress versus strain 
curves measured for unmodified and modified cement samples embedded with 2.0 wt.% 
of hydroxyethylcellulose-functionalized HNTs for different ratios of 
HNT:hydroxyethylcellulose. 

 

formation. However, at high loadings, it is likely that the high-aspect ratio HNTs begin 

to form a percolative network that makes available a new pathway for phonon transport 

along their crystalline walls thereby increasing the measured thermal conductivity. In 

other words, the benefits of the nanoscopic voids and multiple interfaces are best 

realized below the threshold for stabilization of extended percolative networks. 
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The overall loading of hydroxyethylcellulose-modified HNTs has further been 

held constant at 2.0 wt.% and the relative ratio of HNT:hydroxyethylcellulose has been 

varied. The measured thermal profiles are plotted in Figure VII. 9. The deduced thermal 

conductivity values decrease with increased HNT:hydroxyethylcellulose loading; a 1:1 

sample exhibits a thermal conductivity of 0.852 ± 0.003 W/mK; a 2:1 sample exhibits a 

value of 0.626 ± 0.004 W/mK; a 4:1 sample exhibits a value of 0.357 ± 0.001 W/mK, 

and a 8:1 sample yields the lowest thermal conductivity value of this set of samples at 

0.212 ± 0.003 W/mK. The greater volumetric incorporation of nanoscopic voids and the 

increased number of interfaces likely contribute to the measured decrease of thermal 

conductivity.  

Compressive testing has further been performed for the modified cement samples 

prepared by varying the HNT:hydroxyethylcellulose ratio while keeping the overall 

loading of hydroxyethylcellulose-funtionalized HNTs at 2 wt.%. Figure VII. 10 plots 

the stress versus strain plots. The unmodified cement sample has a compressive strength 

of 13.75 MPa, which given the short drying time (7 days) and size of the sample (5.1 cm 

diameter, 6.1 cm height) is within the range of values measured for thermal cements. For 

the samples incorporating hydroxyethylcellulose-modified HNTs, the 1:1 sample has a 

compressive strength of 12.81 MPa, the 2:1 sample has a strength of 13.08 MPa, the 4:1 

sample has a compressive strength of 14.56 MPa, and the 8:1 sample has a compressive 

strength 15.71 MPa. The observed compressive strength values attests that even with 

incorporation of polymer functionalized HNTs within the matrix, the compressive 

strength is not deleteriously modified thereby yielding a sample with substantially 
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reduced thermally conductivity that retains the compressive strength of the material. The 

incorporation of nanoscopic enclosed voids that can increased phonon boundary 

scattering without weakening the host matrix underpins the observed desirable 

combination of thermal and mechanical properties.  

 

VII.4 Conclusions 

The available palette of thermal cements is rather sparse despite the urgent need 

for low-thermal-conductivity cement for applications such as SAGD wherein heat loss to 

the external environment represents a considerable expense. The inclusion of additives 

to form nanocomposites to reduce thermal conductivity without deleteriously impacting 

load-bearing ability has been examined across a multidimensional compositional space 

(type, loading %, ratio of filler/polymer). The inclusion of polymer-modified fillers has 

been examined for three distinct fibrous additives: CNTs, HNTs, and jute fibers; and 

three distinct polymers hydroxyethylcellulose, PVA, and poly(acrylic acid). 

Hydroxyethylcellulose-modified fibrous composites can be cured without discernible 

microannulus formation and exhibit a porous microstructure. CNTs bring about an 

enhancement of thermal conductivity, whereas jute fibers and HNTs substantially reduce 

thermal conductivity. The diminution of thermal conductivity is most pronounced for 

HNTs as a result of the nanoscale voids and the phonon boundary scattering at multiple 

interfaces. The thermal conductivity appears to be lowest below the percolation 

threshold. Modified cement nanocomposites incorporating HNTs along with 

hydroxyethylcellulose in a 8:1 ratio with an overall loading of 2 wt.% exhibit the lowest 
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measured thermal conductivity of 0.212 ± 0.003 W/mK, which is substantially reduced 

from the thermal conductivity of unmodified cement (1.252 W/mK). The mechanical 

properties of the hydroxyethylcellulose-HNT nanocomposite cements are not 

deleteriously impacted. The development of novel nanocomposite cements with reduced 

thermal conductivity fulfills a substantial need for well cementing in the SAGD process. 
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CHAPTER VIII  

DISSERTATION SUMMARY AND OUTLOOK 

 

VIII. 1 Conclusions  

In this dissertation, rational design and development of next generation 

photocatalytic architectures interfacing light-harvester quantum dot and charge acceptor 

nanowires are explored. Chapter II focuses on the ligand-mediated modulation of 

dimensional control over methylammonium lead bromide (MAPbBr3) nanoplatelets 

down to monolayer layer thickness level. Dimensional confinement of semiconducting 

nanocrystals in proximity to exciton Bohr radius (2 nm for MAPbBr3; nm for CsPbBr3; 

nm for CdSe) represent an alternative means to alter the energy bandgap and 

corresponding photoluminescent emission wavelength of optically active 

semiconducting materials. Surface-capping ligands generally deployed in a colloidal 

synthesis of nanocrystals allows for precise control of nucleation and growth kinetics of 

crystals by controlling supersaturation of monomer, monomer diffusion, and nucleation 

and growth kinetics. The surface-capping ligands are bound on the surface of 

nanocrystals indeed modulate the monomer addition to nuclei and growth kinetics of 

nanocrystals. Steric hindrance and concentration of surface capping ligands allows for 

modulation of the degree of vertical oligomerization and tuning the photoluminescent 

emission feature across the visible range of 430—520 nm.  

Chapter III explores more robust all-inorganic CsPbBr3 nanoplatelets, 

alternative to MAPbBr3. Dimensional reduction, particularly in proximity of the Bohr 
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exciton radius, allows for substantial tunability of the photophysical properties of this 

material as a result of quantum confinement. The use of surface passivating ligands, 

particularly alkylammonium cations, has been developed as a means of inducing 

directional growth and facilitates dimensional confinement of the obtained perovskite 

nanocrystals. The ligand packing dictated by thermodynamics and kinetics of ligand 

shell assembly strongly influences the extent of dimensional confinement for obtained 

nanoplatelets. The interplay between enthalpic stabilization from crystalline packing and 

entropic loss from loss of configurational degrees of freedom provides substantial 

opportunity to tune the parameter space as a function of ligand structure and reaction 

variables. Mechanistic understanding of thermodynamic and kinetic regimes provides a 

means to rationally optimize synthetic parameters to obtained desired dimensionality and 

thus allows for control over nanocrystal thickness in precise increments.  

Chapter IV illustrates a navigation of cesium—lead—bromine ternary phase 

diagram and establishes synthetic control of structural dimensiontily of lead halide 

perovskite nanocrystals. Ligand-mediated navigation of the ternary phase diagram is 

demonstrated that distinctive regimes can be stabilized from 3D CsPbBr3 to 0D 

Cs4PbBr6 nanocrystals. The denticity, steric bulk, and concentration of aliphatic amine 

ligands strongly modifies the supersaturation of lead monomers, scaling proportionately 

to their complexation coefficients and ability to form ordered passivating ligand shells. 

The added ligands strongly alter the trajectory of nucleation and growth processes, 

stabilizing either Pb-rich or Pb-deficient compositions across the ternary phase diagram. 

These parameters furthermore exert considerable influence on the physical dimensions 
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of the obtained nanocrystals. By altering the monomer supersaturation and dynamics of 

crystal growth, the molecular amines thus provide a means of controlling both structural 

dimensionality and nanocrystal size. The reversible interconversion of CsPbBr3 and 

Cs4PbBr6 is furthermore illustrated upon the ligand-mediated addition/leaching of PbBr2.  

Chapter V studies on the interfacial charge transfer kinetics of MxV2O5/QDs 

heterostructures (M = Pb, Sn and QDs = CdS, CdSe, CdTe) with two distinctive 

interfaces using time-resolved ultrafast transient absorption (TA) spectroscopy. A vast 

matrix of potential compositions of MxV2O5/QD heterostructures with tunable properties 

are successfully stabilized, differing for example in the intercalative cation M of 

nanowires and its stoichiometry x, the composition and size of various quantum dots, the 

nature of interface between nanowires and quantum dots, and the doping of nanowires 

and quantum dots. These variables provide tremendous design space which is central to 

the idea of programmable heterostructures. Collaborative integration of first principles 

theory, combinatorial material synthesis, high-throughput screening, and analytics 

allows for precise prediction of energetic offset, improvement of band alignment of 

heterostrutures, and ultimate exploits of the opportunities for programmability available 

in the target heterostructures with desired functionality.  

Chapter VI further explores the energetic offset of V2O5 polymorph 

functionalized with CdSe quantum dot heterostructures with distinctive type II interface 

modulated as a function of the V-O connectivity and open frameworks of V2O5 

nanowires. Careful band alignment of thermodynamic driving force across the interface 

is achieved for rapid charge separation and charge transfer kinetics. The type II 
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semiconductor heterostructure comprised of polymorph V2O5 and CdSe quantum dots 

(QDs) is successfully prepared using two distinctive approaches: linker-assisted 

assembly (LAA) and successive ionic layer adsorption and readction (SILAR). The 

thermodynamic driving force is correlate to charge transfer kinetics within type II 

interface based on relative band alignment of semiconductor heterostructure. SILAR-

derived V2O5/CdSe heterostructure based on type II configuration facilitate the rapid 

charge separation with elongated carrier lifetime up to few microsecond.  

Chapter VII demonstrates the modification of thermal conductivity of cement 

nanocomposites via incorporation of polymer-functionalized fillers into cementitious 

matrix. The nanocomposite materials are successfully designed with careful regard to a 

number of constraints. The cementitious materials deployed in steam-assisted gravity 

drainage (SAGD) wellbores have to endure the severe thermal cycling inherent in the 

SAGD process in which the temperature of steam fluctuates up to 275°C; the oilwell 

cement must further be flexible and yet dense in order to avoid microannulus formation, 

adhere conformally to metal tubing, and provide zonal isolation. We have been able to 

achieve a pronounced reduction in thermal conductivity without deleteriously impacting 

critically important mechanical properties such as ultimate compressive strength. 

Development of low-thermal-conductivity cement indeed provide a combination of 

enhanced thermal insulation and mechanical resilience upon thermal cycling which lead 

to better energy efficiency and mechanical robustness in SAGD process.  

As a future direction for designing of next-generation photocatalysts, Figure 

VIII. 1 sketches the broad compositional, structural, and interfacial palette available in  
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Figure VIII. 1 Future outlook for elaboration of heterostructure catalysts to further 
enhance photocatalytic activity. (A) schematic illustration of the modulation of energy 
positioning and dispersion of midgap states within MxMy'V2O5 nanowires via 
intercalation of multiple cations with steroactive lone pairs or periodic ordering of 
cations in distinctive sites within the tunnels (combinations of monovalent and trivalent 
ions, e.g., In3+ and Sb3+ represent a particularly attractive strategy); (B) engineering of 
the valence and conduction band edges of QDs via alloying of the cationic and anionic 
sublattices and quantum confinement; (C) ligand engineering based on selection of 
ligand molecules with different alkyl chain-lengths and functionality to modulate 
tunneling across the interfaces; and (D) integration of hydrogen evolution catalysts 
(HER) such as Pt and MoS2 to build ternary heterostructure photocatalysts; the right 
panel illustrates hydrogen evolution from the edges of MoS2 nanosheet (the inset shows 
a scanning transmission X-ray microscopy image of edge states in MoS2)1; Panel (D) is 
reprinted with permission from ref 1. Copyright 2018 American Chemical Society. 
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our scheme to design heterostructures that satisfy the demanding constraints imposed by 

thermodynamics and kinetics for viable light harvesting, charge separation, and redox 

catalytic processes. DFT calculations benchmarked with electronic structure 

measurements (HAXPES, resonant inelastic X-ray scattering and X-ray absorption 

spectroscopy measurements) allow for mapping of thermodynamic parameters; in turn, 

TA spectroscopy and photoelectrochemistry measurements provide a measure of the 

relevant kinetic parameters. Taken together the computational and experimental data 

provide a rich set of input parameters and descriptors (e.g., valence band energetic 

offsets, interfacial separation, bandgaps) that can further be deciphered with assistance 

from machine learning algorithms. While an algorithm that identifies optimal descriptors 

to meet the multiple constraints of photocatalysis remains to be developed and clearly 

requires a more extensive elaboration of the compositional, structural, and interfacial 

palette beyond existing configurations, statistical learning methods have begun to guide 

navigation of the design space. For instance, Bayesian image analysis of hyperspectral 

X-ray microscopy data has been pivotal to the development of intercalation methods for 

homogeneously inserting cations within ζ-V2O5
2; similarly, efficient navigation of 

synthetic design space to prepare QDs with the desired size to facilitate efficient 

harvesting of the solar spectrum has been achieved by identifying diffusion constant of 

passivating ligands as a key descriptor.3  

Benchmarking of DFT calculations to experimentally measured electronic 

structure is imperative to increase its predictive power and to address known limitations 

of DFT in predicting energy level alignments and bandgaps.4 In order to provide 
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meaningful information on thermodynamic driving forces, DFT calculations need to 

accurately capture electron correlation, relativistic effects, spin-orbit coupling, and lone-

pair hybridization, which is non-trivial given the large unit cells and possibilities for 

interfacial hybridization. Valence band spectroscopy measurements performed at 

different excitation energies have been critical to quantitatively examine the orbital 

contributions and energy positioning of lone-pair-derived states and to determine the 

choice of hybrid functionals that most accurately capture the energetic offsets in these 

systems. Such integration of modeling and measurements has played a key role in 

guiding synthetic prioritization and will be imperative to more efficient navigation of the 

design space. Future work will explore mixed cation β-MxM'yV2O5 bronzes (Figure. 

VIII. 1A) as well as other (double-layered or puckered single-layered) frameworks of 

MxV2O5 to determine the most optimal energy dispersion and positioning of stereoactive 

lone-pair states that can facilitate hole extraction from photoexcited QDs. Similarly 

compositional modulation of QDs through alloying of the cation or anion lattice5 holds 

promise for tunability of the VB and CB edges of the light harvesting element (Figure. 

VIII. 1B), which in turn would allow for alteration both of thermodynamic driving 

forces for charge transfer as well as the kinetics of charge separation in a programmable 

manner. Direct bandgap perovskite semiconductors with high oscillator strengths and 

size-tunable spectra hold further promise as light harvesting components of the 

heterostructures. 

Predicting excited-state charge transfer reactivity from first principles represents 

a formidable challenge but would provide highly complementary information on the 
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foundational principles and descriptors underpinning charge transfer dynamics and 

thereby guide synthetic prioritization of possible MxV2O5/QD interfaces. Towards this 

end, time-dependent density functional theory-molecular dynamics methods explicitly 

including time-domain evolution of the electronic states that have recently become 

available hold promise for providing meaningful simulations of the charge transfer 

processes.6 Notably, standard molecular dynamics simulations based on Born—

Oppenheimer or Car—Parinnello methods that model evolution of the electronic ground 

state cannot be used to examine excited-state charge transfer reactivity of the 

heterostructures. Based on empirical considerations, ligand chain length provides a 

means of tuning interfacial coupling terms with interfacial coupling tunable as per 

Marcus theory, as illustrated in the distinctive differences in electron transfer rates when 

cysteine and homocysteine are used as bridging ligands. Ligand engineering, specifically 

increasing the separation between the MxV2O5 and QD components of LAA-assembled 

heterostructures by varying the carbon chain length, holds great promise for increasing 

the differential between ultrafast hole transfer and relatively slower electron transfer 

reactions, thereby diminishing electron—hole recombination. Figure VIII. 1C shows 

mercapto acids with varying chain lengths. Furthermore, the installation of aromatic and 

conjugated residues in the bridging ligands can be used for enhancing light harvesting 

and to achieve further modulation of hole and electron transfer dynamics.  

The design of ternary heterostructures incorporating HER catalysts further 

provides a mechanism for reducing electron—hole recombination since electrons can be 

consumed rapidly to mediate proton reduction reactions. Figure. VIII. 1D illustrates 
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further interfacing of the QD components of the MxV2O5/QD heterostructures with well-

known Pt or MoS2 reduction co-catalysts to form ternary heterostructures. The reduced 

overpotential of the HER reaction engendered by interfacing these catalysts is expected 

to further facilitate more effective utilization of photoexcited electrons for catalysis 

while diminishing electron—hole recombination.  

In summary, the account describes a conceptual framework and rich sandbox for 

tuning semiconductor heterostructures to meet the stringent constraints of photocatalytic 

water splitting. The ability to position stereoactive lone pair states through soft chemical 

intercalation chemistry provides a powerful means of tuning the energetics and 

dispersion of mid-gap states, enabling close overlap with chalcogenide-derived valence 

band edges of light-harvesting QDs. The nature of the interface determines the efficacy 

of charge separation. Viable photocatalysts for water splitting have been prepared with 

high Faradic efficiencies for H2 production and continue to be improved in an 

evolutionary manner exploiting the multiple compositional, structural, and interfacial 

degrees of freedom available in these constructs. 
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APPENDIX A 

SUPPLEMENTARY FIGURES AND TABLES 

 

 

Figure A. 1 UV-visible absorption spectra of 2D perovskite nanoplatelets prepared 
using different chain lengths of capping ligands at varying MA:RA ratios of 1:x where 
(a) 1:0.5, (b) 1:2, and (c) 1:8.  
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Figure A. 2 Powder XRD patterns acquired for perovskite nanoplatelets prepared at a 
MA:RA concentration of 1:2 for different chain lengths of alkylammonium cations. 
These patterns are contrasted to the pattern acquired for MAPbBr3 precipitated by only 
using MABr and PbBr2 as precursors without any added surfactants. 
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Figure A. 3 SEM images of perovskite MAPbBr3 nanoplatelets obtained at different 
ratios of the capping ligand C8 OA, MA:OA = 1:x where a, b) x = 0.5; c, d) x = 1; and e, 
f) x = 2. 
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Figure A. 4 AFM topography images (left) and height profiles (right) measured for 
nanoplatelets obtained using the capping ligand C8 OA at different concentrations 
MA:OA 1:x: (a), (b) x = 1; (c), (d) x = 2; (e), (f) x = 4 
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Figure A. 5 SAXS data acquired for perovskite nanoplatelets prepared using C8 OA 
surface binding ligands at different relative concentrations (MA: OA = 1:x); black (x = 
1), red (x = 2), and blue (x = 4).  
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Figure A. 6 UV-visible absorption and photoluminescence emission spectra of 2D 
perovskite nanoplatelets prepared at varying MA:RA ratios using different 
alkylammonium groups: a,b) BA C4; c,d) HA C6; e,f) DA C12; and g,h) OLAm C18. 
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Figure A. 7 Rietveld refinement of powder XRD pattern of CsPbBr3 nanoplatelets 
obtained using C8 at 150°; tick marks indicate the position of Bragg reflections 
corresponding to the Pnma orthohombic space group of CsPbBr3. 
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Figure A. 8 PL excitation spectra along with emission spectra for CsPbBr3 nanoplatelets 
with different layer thickness (n = 2, 3, 4, 5, 6, and bulk): n = 2 and n = 3 nanoplatelets 
are obtained from dispersions prepared using C12 amine at 100°C; n = 4 and n =5 
nanoplatelets are isolated from dispersions prepared using C12 amine at 150°C; and n = 
6 and n = bulk nanoplatelets are isolated from samples prepared using C8 amine at 
100°C.  
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Figure A. 9 Deconvolution of ensemble PL emission spectra of CsPbBr3 nanoplatelets 
to contributions from nanoplatelets of different layer thicknesses exemplified for spectra 
collected for nanoplatelets prepared using C4—C18 alkylamine ligands at 100°C. In 
each case, the spectra have been fitted to Gaussian peaks derived from n = 1, 2, 3, 4, 5, 
6, and bulk species. The spectra correspond to nanoplatelets prepared at 150 (left), 100 
(middle), and 50°C (right column) using (a-c) C4, (d-f) C8, (g-i) C12, (j-l) C14, and (m-
o) C18. 
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Figure A. 10 PL emission spectra of of CsPbBr3 nanoplatelets plotted as a function of 
temperature for nanoplatelets obtained using (a) C4, (b) C8, (c) C12, (d) C14, and (e) 
C18 alkylamine ligands. 
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Figure A. 11 TEM images of CsPbBr3 nanoplatelets prepared at 100°C using different 
alkylammonium chain-lengths of a) C4, b) C8, c) C12, d) C14, and e) C18. f) Selected 
area electron diffraction and its fast Fourier transform acquired for an individual 
CsPbBr3 nanoplatelet prepared using a C4 amine.  
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Figure A. 12 High-resolution TEM images of CsPbBr3 nanoplatelets obtained using 
different chain-lengths of ligands and representative measurements of the thickness 
spans of nanoplatelets. The images correspond to CsPbBr3 nanoplatelets prepared using: 
a) C4; b,c) C8, d) C12, e) C14, and f) C18. 
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Figure A. 13 Gibbs free energy of aggregation of ligand packing as a function of chain-
length at different reaction temperatures. 
 



 

248 
 

 
Figure A. 14 PL emission spectra of CsPbBr3 nanoplatelets plotted as a function of 
ligand concentration (Pb-OA:RA=1:5—1:30) for nanoplatelets obtained using (a) C4, 
(b) C14, and (c) C18 at 100 °C. 
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Figure A. 15 PL emission spectra of CsPbBr3 nanoplatelets obtained immediately after 
synthesis (solid line) and after 1 day (dotted line) using C4 at 50°C and C14 at 80°C.  
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Figure A. 16 A) UV-vis absorption (red line) and PL emission spectrum (green line) 
(λex. = 360 nm), (B) XRD pattern, and C,D) TEM images of submicron-sized CsPbBr3 
particles stabilized in the absence of alkylamine ligands, corresponding to the x = 0 
reaction as per the nomenclature noted in the text.  
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Figure A. 17 UV/Vis absorption and PL emission spectra for PbBr2 complex with OA in 
DMF. The inset indicates digital photographs of the solution taken under ambient light 
(left) and 365 nm UV illumination (right). 
 
  



 

252 
 

 
Figure A. 18 XRD patterns of cesium lead bromide samples acquired at OA 
concentration x = 8 and 16 after 24 h. The red tick mark correspond to reflections from 
rhombohedral Cs4PbBr6 (PDF# 01-073-2478). 
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Figure A. 19 (A) Digital photographs of colloidal dispersions of cesium lead bromide 
nanocrystals immediately upon mixing (at ca. 10 s) and 1 h after mixing under ambient 
laboratory light (left) and upon 365 nm UV illumination (right); (B) time-course PL 
emission (solid line) and excitation (dotted line) spectra acquired after 10 s, 30 min, and 
1 h of adding the precursor DMF solution to toluene.  
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Figure A. 20 TEM images of cesium lead bromide nanocrystals obtained as a function 
of increasing OA concentration (x): (A) x = 0.5; (B) x = 1; (C) x = 2; (D) x = 4; (E) x = 6; 
and (F) x = 8. The insets of Figure A. 20A and F show SAED patterns acquired for the 
imaged CsPbBr3 and Cs4PbBr6 nanocrystals, respectively. 
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Figure A. 21 (A) PL emission spectrum of nanocrystals obtained at an ODA 
concentrations of x = 1 and (B) energy dispersive X-ray spectra (EDS) of the 
nanocrystals obtained at an ODA concentration of x = 2.  
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Figure A. 22 TEM images of cesium lead bromide perovskite nanocrystals obtained at 
different ODA concentrations: (A, B) x = 1 and (C—F) x = 2. Figure A. 22F shows a 
lattice spacing of 0.69 nm, corresponding to the separation between the (110) planes of 
Cs4PbBr6.  
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Figure A. 23 (A) UV-vis absorption spectra and (B) PL emission (solid line) and 
excitation spectra of Cs4PbBr6 nanocrystals stabilized at EDA concentrations of x = 1 
and 2; (C) UV-vis absorption spectra and (D) PL emission (solid line) and excitation 
spectra of Cs4PbBr6 nanocrystals stabilized at DDA concentration of x = 1 and 2. The 
insets to Figures A21.A and C show digital photographs of colloidal dispersions of 
Cs4PbBr6 nanocrystals taken under ambient laboratory light (left) and 365 nm UV 
illumination.  
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Figure A. 24 FTIR spectra of OA (olive), OA-capped CsPbBr3 (navy blue), ODA (blue), 
and ODA-capped Cs4PbBr6 (magenta). The nanocrystal samples correspond to fixed 
ligand concentrations of x = 2. The relative intensity of the N-H stretching and bending 
vibration is increased upon changing from the monodentate alkylamine (OA) to the 
bidentate amine (ODA).  
 
 
 
 
 
 



 

259 
 



 

260 
 

Figure A. 25 1H NMR spectra of (A) OA-capped CsPbBr3 (top) and OA (bottom); (B) 
ODA-capped Cs4PbBr6 (top) and ODA (bottom); and (C) oleic acid (OLAc). The insets 
to Figures S7A—C indicate the molecular structures of OA, ODA, and OLAc, 
respectively.  
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Figure A. 26 (A,B) High-resolution TEM image, (C,D) corresponding fast Fourier 
transform patterns, and (D,E) SAED patterns acquired for CsPbBr3 nanoplatelets (A, C, 
E) and hexagonal Cs4PbBr6 platelets (B, D, F).   
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Figure A. 27 Digital photograph of lead halide perovskite nanocrystals prepared at an 
OA concentration of (A) x = 8 and (B) after treatment with PbBr2 solution under ambient 
(left) and 365 nm UV illumination (right). (C) UV/vis (dotted line) and PL emission 
(solid) spectra of the colloidal nanocrystals before and after PbBr2 treatment indicating 
recovery of the characteristic emission bands of CsPbBr3 nanocrystals. 
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Figure A. 28 Reversible phase transformation from colloidal dispersion of CsPbBr3 in 
toluene to Cs4PbBr6 and back to CsPbBr3: A) UV-vis absorption spectra of Cs4PbBr6 
and the Cs4PbBr6 after addition of PbBr2 dissolved in OLAc and OLAm in toluene; the 
inset shows digital photographs taken under ambient laboratory light (left) and 365 nm 
UV illumination (right). (B) Corresponding PL emission (solid line) and excitation 
spectra (dotted line). (C) UV-vis absorption spectra of CsPbBr3 nanocrystals and the 
CsPbBr3 colloidal dispersion after reaction with ODA dissolved in OLAc; the inset 
shows digital photographs taken under ambient laboratory light (left) and 365 nm UV 
illumination (right). (D) Corresponding PL emission (solid line) and excitation spectra 
(dotted line).  
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Figure A. 29 TA spectra of (top) bare β-Pb0.33V2O5 NWs and (bottom) corresponding 
3D color map illustrating the evolution of ΔA over a time interval of 0–50 ps as a 
function of the probe wavelength in the range of 425 – 850 nm (λpump = 360 nm).  
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Figure A. 30 TA spectrum (A) of colloidal Cys-CdS QDs in aqueous dispersion 
averaged for delay times in the interval 0—10 ns; and (B) corresponding kinetic decay 
and biexponential fits obtained at probe wavelengths of 440 nm (blue) and 700 nm (red) 
with λpump = 360 nm. 
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Figure A. 31 TA kinetic trace and multiexponential kinetic fitting for β-SnxV2O5/CdSe 
heterostructures at probe wavelength of 485 nm (only contribution from bleach feature 
of CdSe QDs) and 525 nm (contribution from both bleach feature of CdSe QDs and 
induced absorption of β-SnxV2O5 nanowires). The decay trace at the specific probe 
wavelength is marked as spread dots while the multiexponetial kinetic fit is indicated as 
a solid line.  
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Figure A. 32 (A) TA 3D color map illustrating the evolution of difference spectra of β-
SnxV2O5/CdTe heterostructures, (B) TA spectral evolution over a time interval of 0–20 
ps, and (C) decay kinetic trace and multiexponential fitting at probe wavelengths of 485 
nm (blue) and 675 nm (red) with λpump = 360 nm.  
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Figure A. 33 SEM images of (A) pristine V2O5 nanowires; (B) LAA-derived 
V2O5/CdSe heterostructures; and (C) SILAR-derived V2O5/CdSe heterostructures (top: 
α-V2O5, middle: γ’-V2O5, and bottom: ζ-V2O5).  
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Figure A. 34 SEM images (left) and corresponding EDS spectra (right) obtained for (A, 
B) LAA-derived α-V2O5/CdSe; (C, D) SILAR-derived α-V2O5/CdSe; (E, F) LAA-
derived γ′-V2O5/CdSe; (G, H) SILAR-derived γ′-V2O5/CdSe; (I, J) LAA-derived ζ-
V2O5/CdSe; and (K, L) SILAR-derived ζ-V2O5/CdSe. 
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Figure A. 35 TA spectra acquired at 360 nm pump wavelength for α-, ζ- and γ'-V2O5 
nanowires. The TA spectra have been averaged for delay times in the interval between 
1.5—10 ns.   
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Figure A. 36 TA 3D color maps of (A) pristine α-V2O5 nanowires, (B) SILAR-derived 
α-V2O5/CdSe heterostructures, and (C) LAA-derived α-V2O5/CdSe heterostructures in 
the delay time range of 0-2 μs. Both heterostructures show longer-lived excited-states as 
compared to the pristine nanowires. 
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Figure A. 37 TA 3D color maps of (A) pristine γ′-V2O5 nanowires, (B) SILAR-derived 
γ′-V2O5/CdSe heterostructures, and (C) LAA-derived γ′-V2O5/CdSe heterostructures in 
the delay time range of 0-2 μs. Both heterostructures show considerably longer-lived 
excited-states as compared to the pristine nanowires.  
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Figure A. 38 TA 3D color maps of (A) pristine ζ-V2O5 nanowires, (B) SILAR-derived 
ζ-V2O5/CdSe heterostructures, and (C) LAA-derived ζ-V2O5/CdSe heterostructures in 
the delay time range of 0-2 μs. Both heterostructures show longer-lived excited-states as 
compared to the pristine nanowires.  
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Figure A. 39 Stereomicroscopy Characterization of Modified Cement Nanocoposites. 
Stereomicroscopy images of modified cement nanocomposites incorporating a 2 wt.% 
loading of 2 wt.% of 4:1 polymer—fibrous additive ratio inclusions: (A) HNTs 
suspended in poly(acrylic acid) and (B) jute fibers suspended in poly(acrylic acid). Large 
voids spanning several hundred microns are discernible in both panels. Scale bar = 1 
mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

275 
 

 
Figure A. 40 Colloidal Dispersion of HNT in Water in Aid of Hydroxyethylcellulose. 
Digital photographs of colloidal dispersions of HNTs dispersed in 10 mL water with the 
help of 0.5 g of hydroxylethylcellulose. The digital photographs in the left panel were 
taken immediately after mixing, whereas the panel on the right was photographed 24 h 
after mixing. 
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Figure A. 41 X-ray Diffraction Patterns of Cement. Magnified XRD pattern confirming 
the presence of four major phases of cement in the cured unmodified cement specimen. 
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Figure A. 42 TEM Images of Cement Nanocomposites with Inclusion of 
Hydroxyethylcellulose-Modified HNTs. TEM images of A,B) unmodified cement and 
C,D) modified cement composites incorporating 2 wt.% of hydroxyethylcellulose-
modified HNTs. E,F) TEM images of the HNT precursors. Scale bar = 100 nm for 
4A,C,D,E; Scale bar = 50 nm for 4B; and Scale bar = 20 nm for 4F. 
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Figure A. 43 Elemental Analysis of Pristine Cement and Modified Cement Composites. 
EDS spectra of (A) an unmodified cement specimen and (B) a modified cement 
composite incorporating 2 wt.% of hydroxyethylcellulose-modified HNTs. The inset 
showed the SEM images of the samples measured and the table provided alongside lists 
the detailed elemental compositions in each case. 
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Figure A. 44 Homogenous Distribution of Elements in Modified Cement 
Nanocomposites. EDS elemental maps measured for A-F) unmodified cement and G-L) 
modified cement composite incorporating 2 wt.% of hydroxyethylcellulose-modified 
HNT: (A,G) SEM images, (B,H) C K-edge elemental maps (red); (C,I) O K-edge 
elemental maps (green); (D,J) Si K-edge elemental maps (yellow); (E,K) Ca K-edge 
elemental maps (cyan); (F,L) K K-edge elemental maps (grey). Scale bar = 20 μm. 
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Figure A. 45 Microstructure Formation within Modified Cement Composites. SEM 
images of modified cement composites with varying loadings of hydroxyethylcellulose-
modified HNTs at a fixed 4:1 stoichiometric ratio of HNTs: hydroxyethylcellulose: (A) 
0.5 wt.%; (B) 1 wt.%; (C) 2 wt.%; and (D) 5 wt.%. Scale bar = 1 μm. 
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Unit cell layer 
number (n) 

Emission  
maximum (nm), 

Experimental 
(this paper) 

Emission  
maximum 

(nm), 
Ref.  18 

Emission  
maximum 

(nm), 
Ref. 28 

Emission  
maximum 

(nm), 
Ref. 50 

1 433 427 - 442 
2 450 454 - - 
3 474 469 - 456 
4 485 482 475 482 
5 490 490 490 492 
6 505 - 504 - 
∞ 520 519 530 534 

 
Table A. 1 PL emission maximum wavelength (nm) of 2D perovskite nanoplatelets 
and corresponding unit cell layer number (n) assignment obtained from Refs. 18 and 
28.   
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Table A. 2 Rietveld refinement parameters corresponding to the refinement of the power 
XRD pattern of CsPbBr3 nanoplatelets obtained using C8 at 150°C as shown in Figure A. 
7. Refinement statistics, including goodness of fit (χ2), weighted goodness of fit (wRp) 
and the individual point residuals (Rp) show good agreement between the observed and 
calculated patterns. The orthorhombic structure provides a better fit to the diffraction 
data as compared to the cubic polymorph. 
  

Orthorhombic Fit: CsPbBr3 (using C8 at 150°C)// Space Group: Pnma // Vol: 
804.83(6) Å3 
α = 90.000(0)° β = 90.000(0)° γ = 90.000(0)° 
a = 8.2934 (5) b = 11.7941 (4) c = 8.2281(6) 
χ2 = 5.809 wRp = 0.1482 Rp = 0.1150 
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Thickness of 
nanoplatelts in terms 

of number of 
octahedra layers (n) 

Experimental result 
based on  
emission  

maximum (nm), 
 (this paper) 

Emission 
maximum 

(nm), 
Ref. 18 

Emission  
maximum (nm), 

Ref.  19 

Emission  
maximum (nm), 

Ref.  29 

1 406 - 405 - 
2 430 - 435 - 
3 458 438 462 452 
4 475 450 477 478 
5 490 459 488 489 
6 505 - - - 

Bulk 520 - - 516 
 

Table A. 3 PL emission maxima (nm) measured for 2D CsPbBr3 nanoplatelets from 
single-particle PL emission spectroscopy experiments and assignments to layer 
thicknesses in terms of number of octahedral layers (n). The assignments are in good 
agreement with previous assignments available from Refs. 16 and 17. 
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Used Ligand 
chain length at 
reaction 
temperature  

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

n = bulk  
(larger  

species) 

C4 at 150°C - 461 479 493 - 520 546 
C8 at 150°C - - - - 502 519 538 
C12 at 150°C 435 460 476 491 - 516 539 
C14 at 150°C - 460 476 490 502 515 - 
C18 at 150°C - 462 477 489 502 516 - 
C4 at 100°C - - 479 493 504 521 543 
C8 at 100°C 432 461 477 491 - 515 - 
C12 at 100°C 435 463 477 489 - 515 - 
C14 at 100°C 433 458 476 490 506 - - 
C18 at 100°C 430 457 475 488 501 - - 
C4 at 50°C - 452 470 487 - 515 - 
C8 at 50°C 435 462 475 492 - 519 - 
C12 at 50°C 432 455 475 489 - 510 - 
C14 at 50°C 430 455 473 489 508 - - 
C18 at 50°C 433 453 476 488 - 510 - 

 
Table A. 4 Deconvolution of PL emission spectra using Gaussian fitting results and 
emission peak position for different layer thickness (n = 1, 2, 3, 4, 5, 6, and bulk) at 
specific synthetic condition using various chain length amines at various temperature. 
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Table A. 5 Kinetic fitting parameters and calculated average lifetimes deduced from TA 
decay traces of colloidal CdS QD.  
 
Sample λpump 

(nm) 
λprobe 

(nm) 
ΔA0 C1 τ1 (ns) C2 τ2 

(ns) 

< τ > 
(ns) 

χ
2
 

Cys-CdS 
 
 

360 440 -0.09 
(±0.01) 

-0.43 
(±0.04) 

20 (±10) -0.35 
(±0.02) 

500 
(±90) 

230 
(±45) 

1.68 

Cys-CdS 
 
 

360 700 0.04 
(±0.01) 

0.33 
(±0.26) 

570 
(±110) 

0.46 
(±0.03) 

30 
(±5) 

250 
(±210) 

1.37 

 
Table A. 6 Kinetic fitting parameters and calculated average lifetimes for TA decay 
traces of LAA-derived CdS QD/β-Pb0.33V2O5 NW heterostructures.  
 

Sample λpump 

(nm) 
λprobe 

(nm) 
ΔA0 C1 τ1 (ps) C2 τ2 (ps) < τ > 

(ps) 
χ

2
 Non-

resolv
able 

Signal 

Time-
Resol
vable 
Signal 

Cys-
CdS/β-

Pb0.33V2O5 
 

360 455 -0.18 
(±0.01) 

0.49 
(±0.09) 

10.5 
(±0.8) 

0.51 
(±0.08) 

0.46 
(±0.09) 

5.4(±1.
1) 

0.015 - - 

Cys-
CdS/β-

Pb0.33V2O5 
 

360 600 1.13 
(±0.01) 

1.00 
(±0.07) 

5.3 
(±0.7) 

- - 5.3 
(±0.8) 

0.127 76.3
% 

23.7
% 

Cys-
CdS/β-

Pb0.33V2O5 
 

360 740 1.01 
(±0.01) 

1.00 
(±0.05) 

5.1 
(±0.5) 

- - 5.1 
(±0.6) 

0.117 68.3
% 

31.7
% 

 
Table A. 7 Kinetic fitting parameters and calculated average lifetimes for picoseond TA 
decay traces of β-SnxV2O5/CdSe and β-SnxV2O5/CdTe heterostructures.  
 

Sample λpump  

(nm) 
λprobe 

(nm) 
ΔA0 A1 τ1 (ps) A2 τ2 (ps) < τ >  

(ps) 
χ

2
 

β-SnxV2O5/CdSe 360 485 -0.124 
(±0.007) 

-3.228 
(±0.242) 

0.248 
(±0.012) 

-0.156 
(±0.016) 

3.671 
(±0.770) 

0.406 
(±0.053) 

0.132 

β-SnxV2O5/CdSe 360 525 0.968 
(±0.009) 

-5.110 
(±0.433) 

 0.221 
(±0.017) 

-0.252 
(±0.074) 

1.925 
(±0.655) 

0.301 
(±0.052) 

1.082 
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β-SnxV2O5/CdTe 360 485 -0.023 
(±0.004) 

-0.734 
(±0.013) 

1.113 
(±0.043) 

-0.318 
(±0.013) 

11.77 
(±0.835) 

4.33 
(±0.301) 

0.123 

β-SnxV2O5/CdTe 360 675 0.786 
(±0.011) 

-0.878 
(±0.196) 

2.222 
(±0.443) 

-0.248 
(±0.203) 

8.389 
(±5.29) 

3.578 
(±0.811) 

1.379 

          

 
Table A. 8 Kinetic fitting parameters and calculated average lifetimes for nanosecond 
TA decay traces of individual V2O5 nanowires and SILAR-derived and LAA-derived 
V2O5/CdSe heterostructures.  
 

Sample λpump  

(nm) 
λprobe 

(nm) 
ΔA0 A1 τ1 (μs) A2 τ2 (μs) < τ >  

(μs) 
χ

2
 

α-phase 
V2O5 

360 550 -0.108 
(±0.008) 

0.599 
(±0.069) 

0.019 
(±0.035) 

0.629 
(±0.037) 

0.284 
(±0.026) 

0.155 
(±0.025) 

1.665 

LAA-α- 
V2O5/CdSe 

360 565 -0.026  
(±0.009) 

0.585 
(±0.046) 

0.058 
(±0.009) 

0.409 
(±0.046) 

0.585 
(±0.098) 

0.275 
(±0.052) 

1.641 

SILAR-α- 
V2O5/CdSe 

360 725 0.098  
(±0.022) 

0.205 
(±0.044) 

0.076 
(±0.037) 

0.568 
(±0.032) 

1.698 
(±0.263) 

1.266 
(±0.224) 

3.341 

γ'-phase 
V2O5 

360 520 -0.010 
(±0.010) 

0.609 
(±0.050) 

0.076 
(±0.050) 

0.295 
(±0.051) 

0.705 
(±0.182) 

0.281 
(±0.078) 

1.836 

LAA-γ'- 
V2O5/CdSe 

360 525 0.055 
(±0.003) 

0.205 
(±0.011) 

0.075 
(±0.009) 

0.674 
(±0.010) 

0.979 
(±0.028) 

0.768 
(±0.027) 

0.145 

SILAR-γ'- 
V2O5/CdSe 

360 725 0.094 
(±0.012) 

0.264 
(±0.030) 

0.058 
(±0.015) 

0.559 
(±0.020) 

1.372 
(±0.123) 

0.950 
(±0.099) 

1.299 

ζ-phase 
V2O5 

360 580 0.003 
(±0.003) 

0.406 
(±0.014) 

0.119 
(±0.008) 

0.529 
(±0.014) 

1.151 
(±0.050) 

0.703 
(±0.036) 

0.155 

LAA- ζ - 
V2O5/CdSe 

360 570 0.065 
(±0.006) 

0.266 
(±0.016) 

0.246 
(±0.022) 

0.624 
(±0.014) 

2.072 
(±0.096) 

1.527 
(±0.084) 

0.130 

SILAR- ζ - 
V2O5/CdSe 

360 700 0.070 
(±0.009) 

0.341 
(±0.017) 

0.103 
(±0.012) 

0.514 
(±0.014) 

1.842 
(±0.132) 

1.148 
(±0.089) 

0.477 

 
 
 


