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ABSTRACT1 

 

We report the implementation of a novel magnetic concertation setup for localized 

finishing of freeform surfaces based on employing electro-permanent magnet arrays 

configured using a recently developed magnetic concentration principle. The setup, 

without the use of any rotating or moving component, is capable of creating a localized 

spatiotemporal magnetic field variation in the specialized magnetic fluid to polish a target 

1.5cm2 area on the workpiece surface. Using a computational mechanistic model as well 

as experimental studies, we show that the current configuration of electro-permanent 

magnets is capable of amplifying the magnetic strength by almost 3 times near the 

workpiece surface in comparison to no magnetic concentration. We also show that by 

modulating the strength, including toggling the polarity of electro-permanent magnets, we 

demonstrate the sloshing motion of the fluid at a targeted region without requiring any 

rotating part.  

A set of experiments was conducted to study the capabilities of the experimental 

setup. The first experimental investigation looked at the localized and selective removal 

of acrylic paint applied from a differential geometry. The second experimental study 

looked at improving the surface roughness of 3D printed polyurethane dogbone samples. 

The process was capable of reducing the SA values from 11 µm initially to .7 µm.  

                                                 

1 Parts of the abstract are reprinted with permission from “Localized magnetic fluid finishing of freeform 
surfaces using electropermanent magnets and magnetic concentration” by Iskander El-Amri, Ashif Sikandar 
Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing Processes,2018 
https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 
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1. INTRODUCTION2

1.1 Introduction 

Recent advances in additive and hybrid manufacturing technologies have created 

several opportunities to manufacture complex, freeform components with differential 

surface morphology and microstructure to deliver enhanced performance [1]. The ability 

of AM technology to fabricate custom components with net near shape and enhanced 

functionalities has created a massive demand for additive manufactured parts, especially 

in automobile, aerospace and biomedical implant industry with an estimated market size 

of about $4 billion in 2017 and expected to surpass $13 billion by 2025 [2].  

However, with increasing part complexity, challenges pertaining to that of surface 

quality and porosity has also increased. For example, biomedical implants (such as knee 

and hip implants) require specular surface finish (ܵ௔ < 20 nm) to promote wear mitigation 

at the joints and other the bearing surfaces. In contrast, a rough, textured surface is desired 

along the vast swathes of the part to promote osseointegration (i.e., direct structural and 

functional connection between ordered living bone and the surface of a load-carrying 

implant). In aerospace and automobile industry, post-processing of additive manufactured 

2 Parts of the introduction are reprinted with permission from “Localized magnetic fluid finishing of
freeform surfaces using electropermanent magnets and magnetic concentration” by Iskander El-Amri, Ashif 
Sikandar Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing Processes,2018 
https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 
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components, e.g., turbines and shafts—with hard-to-reach free-form geometries— require 

finished surfaces to allow undisrupted flow. However, conventional machining and 

finishing approaches are incapable of finishing hard-to-reach surfaces. 

Realization of spatially specific texturing and finishing of such complex shapes 

and structures to meet the desired functionalities necessitate localized finishing and 

targeted modification of freeform surfaces. Conventionally, the industry employs manual 

hand-held polishers for localized finishing. Such processes tend to be laborious and 

demand extreme dexterity. Alternatively, localized electro-chemo-mechanical etching 

methods have been investigated, but they need some masks or physical barriers to confine 

material removal at desired locations. While localization is hard to achieve with free-

abrasive methods, many geometric features are inaccessible to hand-held polishers.  

Advancements in magnetic fluids and magnets design offer new opportunities [3]–

[11] to create adaptable tools that combine the best features of conventional finishing tools

(flexible downforce, localization) and the flexibility provided by fluids to reach tight 

spaces to enable a fast, automated and localized finishing of hard-to-access locations. 

Significant research exists on utilizing the abrasive-mixed magnetorheological fluid as a 

magnetic abrasive brush [1] to finish planar surfaces. Consequently, conventional 

magnetic polishers are limited to flat geometries or require the application of complex 

robotic arms or CNC machines to finish free-form surfaces using the magnetic abrasive 

brush. However, only limited research has focused on creating spatiotemporal variation in 

the magnetic fields that could be utilized to access these hard-to-access locations.  
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1.2 Research Motivation & Objective 

With the rise of the additive manufacturing, engineers and scientist can create 

unique parts that combine intricate geometries with complex functionalities. However, the 

parts generated with the AM techniques cannot be directly used since they need to undergo 

many post-processing operations to eliminate the support structures and to improve the 

surface roughness. Traditionally, improving the surface toughness was done with handled 

tools that require skilled labor and a tremendous amount of time which will impact the 

cost of the part and induce variability in the quality of the product due to the human factor. 

However, thanks to the development in magnetorheological fluids and the advancement 

in electro-permanent magnet technology made it possible to create a flexible polishing 

tool that can remove material from interior surface/ complex surfaces relying only on the 

sharp changes in the magnetic field. To achieve this goal, the following research object 

must be addressed: 

 Investigate and characterize various compositions of magnetic fluid blobs—that

lend themselves to stiffen and agitate under suitable magnetic fields optimally

 Derive spatiotemporal magnetic field patterns best suited for local polishing

(desired local down pressure and fluid flow pattern) via novel ray-tracing based

path planning methods

 Specify the magnetic system (consisting of a suitably positioned electro-permanent

magnet) to generate the desired spatiotemporal fields
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2. LITERATURE REVIEW3

In this section, we present a comprehensive survey of the literature discussing the 

nonmagnetic localized polishing processes. Then, we are going to investigate the various 

efforts in the magnetic polishing process and cover the critical process parameters and 

underlying mechanics. We also review the recent works that have reported simulation 

efforts in localizing and concentrating the magnetic field lines at an arbitrary location 

away from the poles. 

2.1 Localized Polishing 

In this section, we present the traditional methods attempted to create a localized 

finishing and we divided these processes according to the material removal mechanisms 

in play.  

2.1.1  Chemical Mechanical Methods: Chemical Mechanical Polishing 

Chemical Mechanical Polishing (CMP) was first developed in 1963 by Robert J. 

Walsh et al. [12]. The process was used to create defect-free semiconductor wafers by 

combining a mechanical polishing action, provided by a rotary polishing disk pressing 

3 Parts of the literature review are reprinted with permission from “Localized magnetic fluid finishing of
freeform surfaces using electropermanent magnets and magnetic concentration” by Iskander El-Amri, Ashif 
Sikandar Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing Processes,2018 
https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 
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down on the surface of the wafer, and a chemical polishing action created by abrasive 

particles suspended in a slurry (see Fig. 1).  

During CMP [13]–[16], the abrasive slurry is pumped at the pad/workpiece contact 

interface where the individual abrasive particles are moving in the same direction of the 

pad while also sliding and rolling against the target surface. This range of motion is known 

as a 3-body abrasion mechanism [17] (see Fig. 2) and is very useful in creating a fine 

finish surface with little scratch marks or surface defects. 

Figure 1: Chemical Mechanical Polishing Slurries for Chemically Vapor-Deposited Diamond Films 
(Reprinted from [53])  
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CMP is typically utilized to create a uniform finish across a targeted surface and 

does not have the capability to address areas with high surface irregularities locally, 

however, new advancements in polishing pad designs and advanced surface roughness 

measuring devices have enabled the use of CMP in localized small areas.  

For example, Yutaka et al. [18] developed a new CMP setup that utilizes a rotating 

polishing pad smaller than a fixed workpiece. The setup controls the oscillations patterns 

of the pad depending on the surface roughness values collected by a data collection system 

Figure 3: Schematic showing a CMP polishing process with pads smaller than workpiece designed for localized 
polishing (Reprinted from [18])

Figure 2: Schematic showing the motion of the abrasive particles in a three-body abrasion (Reprinted from 
[17]) 
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(see Fig. 3). Ring-shaped polishing pads[19] (Fig. 4) ; can also be used to focus the 

polishing action on a specific region of the target surface. However, this new setup 

requires in situ surface roughness measurement system and custom-made polishing pads 

which add to the cost of this method. Moreover, this method is only applicable for planar 

geometries which restricts the versatility of the process.  

Figure 4: Schematic novel design of polishing rings utilized to create localized polishing (Reprinted from 
[19]) 
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2.1.2 Energy Based Method: Laser Polishing 

 Laser beams have been utilized in polishing processes that were demonstrated to 

yield a very high-quality surface finish, especially of metallic parts. Three main strategies 

are exploited in this process including large area ablation, localized ablation and material 

re-melting [20] .  

Recently, more efforts were focused on the laser re-melting technique (see Fig. 5) 

since it offers shorter cycle times, better control over the surface roughness in a localized 

area where the process can achieve a surface roughness of 5 nm (see Fig. 6). During this 

process, a laser beam melts the surface peaks which are then redistributed in adjacent 

valleys via capillary action resulting in the reduction of the peak to valley ratio thus 

creating a smoother surface. Combining the laser re-melting process with a CNC machine 

was proven effective in the polishing of freeform geometries[20]–[23]. 

Figure 5: Schematic showing the surface profile of a workpiece during laser polishing (Reprinted from [20]) 
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Rosa et al. [23] have investigated using a polish as you print strategy where the 

same laser source used during the laser sintering process is also utilized to polish the newly 

printed areas. This method allows to finish the workpiece during the printing process, and 

it was demonstrated to polish interior surface and hard to reach areas. A multi-pass strategy 

was utilized where the laser beam was applied N times to the desired areas while keeping 

the same parameters.  

Figure 6: Surface profile of a workpiece before (red profile) and after polishing (blue profile) (Reprinted 
from [20]) 
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This approach was capable of reducing the surface roughness of an ALM 316L 

printed from 21 μm to 0.79 μm a surface finish of 0.79 μm, thus a 96% improvement in 

surface roughness (see Fig. 7 & 8). However, this method requires a surface roughness 

measurement device to get an initial reading of the surface profile to target the peaks 

exclusively in the desired location. It requires as well as a CNC program generated from 

a 3D model of the workpiece. Another drawback of this method is that it can create heat 

affected zones where the defects can propagate [20].  

Figure 8: Schematic displaying the surface roughness improvement after five passed with the laser 
polishing process (Reprinted from [23])

Figure 7: Photograph showing a complex part surface before and after laser polishing (Reprinted from [23]) 
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2.1.3 Chemico-Electrical Methods 

2.1.3.1 Electrochemical Polishing 

Electrochemical polishing has been used to create high surface finish parts. The 

workpiece, anode here, is submerged in a bath of electrolyte where current is passing 

through. With the passage of current, material is removed from the anode and deposited 

on the cathode thus improving the surface roughness of the parts.  

For example, Zhang et al. [24] have utilized electrochemical polishing to create 

3D microstructures on a Si (100) workpiece (see Fig. 9) by using an agarose stamp which 

serves as a guide to localizing the material removal action in specific areas. Under vacuum, 

the micropattern guide is placed in a beaker filled with agarose gel which seeps into the 

smallest details of the stamp. The gel acts as current conductor thus allowing for a precise 

material removal following the stamp (see Fig. 9 & 10).   

Figure 9: Schematic showing the localized electrochemical polishing setup (Reprinted from [24]) 
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Researchers have tested with a pulsed current to polish microstructures machined on steel 

plates [25]. This method yielded better results in polishing localized features than other 

electrochemical polishing techniques (see Fig. 11). However, this technique only works 

with conductive materials and can create corrosion on the surface of the workpiece. 

Figure 10: Photograph showing patterns generated by electrochemical polishing (Reprinted [24]) 

Figure 11: Schematic showing the electrochemical process and the resulting fine details on polished surface 
(Reprinted from [25]) 
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2.1.3.2 Electrorheological Polishing 

Electrorheological fluid (ERF) are fluids that are a combination of non-conductive 

particles suspended in an insulating liquid. When current is applied through the ERF, the 

viscosity of the suspension goes from low to a gel-like. This property has been utilized to 

polish microstructure because the fine abrasive particles suspended in the ERF become 

polarized when an electric current is passing through thus forming a collection of stable 

chains of particles [26]. As shown in figure 12, when the electrode encloses the polishing 

tool, electric field lines radiate from the tip of the tool, aligning the particles along these 

lines. By rotating tool, a polishing action is created underneath the target region. 

 Combining the tool with a surface profilometer (Fig. 12), this method enables to 

selectively polish asperities in target regions. However, this process is time-consuming 

since it has a low material removal rate and needs costly scanning equipment.   

Figure 12: Schematic showing the components of the electrorheological polishing process and the 
material removal mechanism (Reprinted from [26]) 
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2.1.4 Mechanical Methods 

2.1.4.1 Bonnet Polishing 

Bonnet polishing or “precession” is a technique that uses a flexible inflatable 

membrane which continually presses against the target surface [27]. The bonnet tool is 

rotated via a CNC machine to achieve polishing (see Fig. 13). The flexibility of Bonnet 

allows it to polish freeform shapes with a high level of localization. This process uses fine 

abrasive slurry in conjugation with the flexible tool to remove material. However, this 

method depends highly on the precision of the rotating machine and is also not able to 

polish the internal surface.  

To overcome the problems addressed in the previous section, some researchers 

proposed that magnetic polishing process be a possible polishing method for localized 

Figure 13: Photograph showing the Bonnet polishing flexible head mounted on CNC (Reprinted  from [27]) 
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freeform geometry finishing because magnetic slurry can form a flexible tool that can 

adapt to the surface profile of the workpiece. Recently, researchers have proposed many 

variations of the magnetic abrasive polishing technique, which we are going to discuss in 

this section.  

2.2 Magnetic Polishing 

2.2.1 Working Principles 

During the magnetic polishing, the magnetic particles align themselves with the 

field lines to form chain-like structures which constitute the flexible magnetic brush. This 

brush applies two forces on the surface of the workpiece namely: a normal force (FN) 

packs the magnetic abrasive particles against the surface of the workpiece and is also 

responsible for the micro indentations on the surface. The tangential force (FT) is a result 

of the movement of the flexible magnetic brush and is responsible for the microchipping 

of the asperities of the workpiece surface [28]. 

The normal force FN and tangential force FT are transferred from the ferromagnetic 

particles close to the surface to the abrasive particles; thus, we can model the magnetic 

polishing process as a cutting process with a negative rake angle (see Fig. 14). 
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For an arbitrary position, FN and FT can be expressed as the sum of two forces Fx along 

the direction of the magnetic force line and Fy along the magnetic equipotential lines Fx 

and Fy can be expressed by the following equations [28]: 

௫ܨ = ߯௦ ߤ଴ܸܪ ൬
ܪ݀
݀ܺ

൰ 
EQ 2-1 

௬ܨ = ߯௦ ߤ଴ܸܪ (
ܪ݀
ܻ݀

) 
EQ 2-2 

Figure 14: Schematic displaying the forces acting on an abrasive particle during the magnetic polishing process 
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where ߯௦ is the magnetic susceptibility of the magnetic particles 
ௗு

ௗ௑
and 

ௗு

ௗ௒
are the 

gradients of the magnetic field in the x and y directions respectively. From Fig. 15, we can 

express FN and FT in terms of Fx and Fy by using the following relation [28]: 

ேܨ = ߠݏ݋௫ܿܨ −  EQ 2-3 ߠ݊݅ݏ௬ܨ

்ܨ = ߠ݊݅ݏ௫ܨ− −  EQ 2-4 ߠݏ݋௬ܿܨ

2.2.2 Magnetic Fluid 

Magnetic fluid or commonly known as ferrofluids are a particular class of smart 

materials that can be controlled in the presence of a magnetic field. These fluids are 

colloids of ferromagnetic nanoparticles (like magnetite Fe3O4) dispersed in a carrier fluid 

and stabilized with a surfactant. Therefore, this class of material exhibits fluid-like 

Figure 15: Free body diagram of the forces acting on an abrasive particle during the magnetic polishing 
process 
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behavior in the absence of a magnetic field source and solid like behavior in the presence 

of a magnetic field. On the microscopic scale, the van der Waals and magnetic forces are 

pervasive and must be balanced by coulombic forces by applying a surfactant that attaches 

to magnetic particles thus stabilizing the magnetic fluid [29], [30].Moreover, the carrier 

fluid has to be compatible with the surfactant to ensure the stability of the colloid. 

2.2.3 Process Parameters 

Various elements influence (see Fig. 16) the surface finish generated by the 

magnetic polishing process. These include the magnetic particle types, abrasive particles 

type, and size, the distance between the magnet and the fluid and the relative motion 

between the workpiece and the fluid. In fact, great care must be taken when choosing the 

input parameters since they hold a significant influence on the process output. For 

example, the magnetic particles, surfactant, and carrier fluid must be compatible to create 

a stable colloid with good viscoelastic properties which will result in a better motion of 

the magnetic fluid thus resulting in a larger MRR.  

Figure 16: Elements influencing the quality of magnetic polishing process 
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2.2.4 Types of Magnetic Polishing 

The use of a magnetic field for localized finishing was first recorded in 1938 for 

finishing the inner surface of welded joints of a barrel; specially to remove oxide scales 

using magnetic abrasive particles [31]. This setup is composed of a motor rotating the 

barrel and a fixed magnet underneath which concentrates the magnetic particles in one 

spot (see Fig. 17). The combined action of the rotation and the magnetic force on the 

abrasive particles creates a polishing action. 

After almost half a century, it was Kordonski [7] who used magnetorheological fluids 

(MRFs) for finishing of optical glasses (see Fig. 18). In this process, a convex workpiece 

secured at a fixed position from a moving flat belt thus forming a converging gap. An 

electromagnet, placed under the belt at a fixed gap, generates a non-uniform magnetic 

Figure 17: Schematic of system to polish internal surfaces of barrels with Ferrofluids (Reprinted from [31]) 
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field thus providing the necessary magnetic gradient to stiffen the MRF. Combining the 

high shear stress of the MRF under the magnetic field with the lateral velocity provided 

by the conveyor belt, this process is capable of creating very high finish glass pieces. The 

belt also circulates the fluid which reduces the separation of the fluid, reduces heat effects 

and flushes the abraded glass particles thus increasing the quality of the surface. MR fluid 

utilized is composed of 55% water (carrier fluid), 36% carbonyl particles (magnetic 

particles) and 6% cerium oxide (abrasive particles) and 3% stabilizer (surfactant). 

Subsequent efforts focused more on the global finishing using magnetorheological fluids 

and much broader classes of magnetic fluids (MFs). 

Alternative MF finishing methods have been developed based on employing 

different magnetic configurations as well as different variants and concentration of 

magnetic abrasives and fluids [32]–[35].  

Figure 18: Schematic showing a magnetic polishing setup to finish curved lenses (Reprinted from [7]) 
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For example, Shinmura et al. [32] used bonded magnetic abrasives to polish steel 

and silicon nitride cylinders. The bounded particles were made from a mixture of 5m 

pure iron and aluminum oxide particles at 4:1 weight ratio.   

This mixture is then sintered at high temperature and pressure conditions (1600 K and 

5Mpa) and then mechanically crushed and controlled to small size with a screen. This 

study also investigated the use of cast iron balls coated with diamond particles as a new 

type of magnetic abrasive particles (see Fig. 19) where the diamond particles are 

electrodeposited randomly on the surface of the balls. This was attempted with different 

size iron balls and different size diamond particles. Polishing with these particles 

improved the surface roughness of Si3N4 samples from 0.45um to 0.04 um. The study 

also showed that the surface roughness increases as particles of diameter “D” increased 

along with the grain diameter “d.”  
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Fox et al. [33] investigated the effects of using loose magnetic abrasives in 

cylindrical magnetic abrasive finishing process where the workpiece is placed between 

two magnets with opposing poles and in contact with the magnetic particles which form a 

flexible brush. The workpiece is then rotated (see Fig. 20) to induce polishing. It was noted 

that this method increases the material removal rate (MRR) but results in a rougher 

surface. It was also determined that (a) imparting axial vibration to the workpiece resulted 

in a better surface finish, and (b) increasing the magnetic flux density yield a better MRR 

and surface finish [33]. 

Figure 19: SEM micrograph of a cast iron ball bonded with abrasive particles using sintering 
(Reprinted from [32]) 
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 Kim et al. [34] used a pressurized jet of magnetic abrasive particles through a 

nozzle to finish internal surfaces of a workpiece with a non-circular cross-section(Fig. 21). 

Figure 20: Schematic showing a barrel magnetic polishing with unbounded magnetic particles (Reprinted 
from [33]) 

Figure 21: Schematic showing the magnetic jet polishing process (Reprinted from [34]) 
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Yamaguchi et al. [35], employed MRF to finish the internal surface of a capillary 

tube. Although magnetic field strength was used to apply the necessary downforce, the 

workpiece (capillary tube) was mechanically rotated to generate the relative motion 

between the magnetic abrasives and the internal surface (Fig. 22).  In addition to this, the 

finishing of complexly shaped tubes using this principle required specialized robotic arms 

to create the necessary relative motion between the abrasive particles and the workpiece 

surface. 

More recently, Jain and Sidpara [36], demonstrated a methodology to polish free-

form geometries to nanometer roughness using CNC milling machine connected to a 

neodymium magnet that serves at creating a flexible ball end MR finishing tool(Fig. 23). 

The diameter of magnetic finishing tool was kept sufficiently small so that the contact area 

was “locally flat.” A specific tool path was then generated following the workpiece 

geometry, to polish the whole region while continuously varying the z-axis. However, the 

Figure 22: Schematic showing the magnetic polishing of capillary tubes process (Reprinted from [35]) 
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downforce was provided using the finishing tool, rather than the magnetic strength. Other 

methods implemented to achieve localization or internal finishing involve controlling the 

geometry, shape, and placement of magnetic tool  [1], [36], masking, magnetic abrasive 

jet finishing [34].  

 Sato, Wu et al. 2010 [37], , proposed a method to polish 3D features. However, 

instead, the workpiece is composed of flat surfaces at different heights which are far from 

freeform geometries. However, one of the significant contributions of their work was to 

demonstrate that dynamic magnetic fields are far more effective than static magnetic fields 

in polishing flat geometries at different heights. However, this method cannot be applied 

to free-form polish surfaces locally (Fig. 24). 

Figure 23: Schematic of CNC milling machine connected to a neodymium magnet that serves at creating a 
flexible ball end MR finishing tool (Reprinted from [36]) 
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Guo, Wu et al. [38], showed the spot polishing of flat geometries in the presence 

of dynamic magnetic fields which was achieved by rotating the magnet fields and by its 

shape. They studied the variation of the forces acting the MRF (pressure and shear stress) 

with changing the working gap between the workpiece and magnet (Fig. 25). In particular, 

the spot size is limited to the size of the magnet and the spread of magnetic slurry. To vary 

the spot size, the magnet configuration and size had to be changed.  

2.2.5 Gaps in Magnetic Polishing 

Most of the current implementations of MF finishing methods either rely on some 

external mechanism to apply the necessary downforce and rotating parts to induce relative 

Figure 25: Schematic of magnetic polishing process with dynamic magnetic field (Reprinted from [38]) 

Figure 24: Magnetic polishing of 3D flat features (Reprinted from [37]) 
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motion between the workpiece surface and the abrasive mixed-MF. This significantly 

hinders their applicability to free-form and hard-to-reach geometrical surfaces. In addition, 

localization of the finishing action is also constrained by the geometrical aspects of the 

external mechanism/part used to induce the required downforce and relative motion. 

Although significant effort has been made towards developing specialized tools and 

configurations for example developing specialized robotic arms or CNC machines, less 

emphasis has been made on understanding and creating spatiotemporally varying 

magnetic fields without having movable parts to harness and optimize the visco-elastic 

properties of MFs, and therefore has not been employed to achieve localized finishing of 

free-form surfaces. Nonetheless, recent developments in transformation optics based 

magnetic concentration along with advances in tunable rheological properties, 

hydrodynamics of the MRFs, and electro-permanent magnets (EPM) [3], [4], [39], [40] 

offer exciting possibilities to simultaneously control the local dynamics (flow and 

downforce) as well as rheological properties by varying the magnetic strength and 

localization in space and time.  

2.3 Magnetic Field Concentration 

Spatiotemporal variation and concentration of magnetic field lines are critical to 

allow MFs (a) to stiffen in the presence of concentrated magnetic field lines adequately 

and consequently exert the required shear stress and normal force at desired locations to 

cause material removal, (b) flow to hard-to-access regions and execute sloshing action 

without the need for additional moving parts. In addition to this, abrasive-mixed MFs need 

to stay as a cohesive mixture (e.g., the abrasives should not segregate from the magnetic 
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matrix) and expose more abrasives towards the surface intended to be finished. In this 

section, we present a detailed overview of the concept of magnetic concentration along 

with the electro-permanent magnet configuration to achieve the aforementioned 

functionalities.  

2.3.1 Physical Principle of Magnetic Field Localization 

To localize and concentrate the magnetic field lines at an arbitrary location in 

space, we borrow the concept of magnetic energy harvesting and concertation proposed 

by Navau et al. [41]. It is in fact, an adaptation of the principle of Transformation Optics 

(TO) a novel approach that allows customizing the path of electromagnetic waves by 

reconfiguring the corresponding space by partitioning into regions of varying permittivity 

and permeability. A simple realization of this principle is the distorted path of magnetic 

field lines or electromagnetic ray, such as light, when incident on one face of a sandwich 

of glass slabs with varying refractive indices as shown in Fig. 26. TO takes advantage of 

the form-invariance of Maxwell's equations under any space-coordinate transformation, 

as discussed in the following subsection, to achieve a specified controlled pathway [42].  

Figure 26: Schematic showing the distortion in the light ray path when transmitted through a sandwich of 
glass slabs with different refractive indices, ݊1,2 and ݊3. (Reprinted from [51]) 
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These transformations can be achieved via specially engineered “metamaterials” 

(e.g., optical filters) that have different permeability values at different points to allow the 

manipulation of the electromagnetic waves in space, and therefore, create the desired 

spatial variation.  

Recent simulation studies [43]–[45] with uniform magnetic fields demonstrated 

that magnetic field lines also respond to the change in permeability of space and could be 

governed by the principles of TO. By locally modifying the magnetic permeability of 

space, it is possible to harvest and concentrate the magnetic energy at the desired location 

in space. In the next subsection, we will discuss Maxwell’s equations that govern the 

principles of transformation optics and magnetic concentration using an example.  

2.3.2 Magnetic Concentration and Harvesting 

Maxwell’s equations as given in Eq. (1) are invariant to coordinate system 

transformation  [42]  

where E is the electric field, H the magnetic field, μ଴ and ϵ଴ are the permeability and 

permittivity of vacuum, respectively and correspondingly, μ୰ ,and ϵ୰ are relative 

permeability and permittivity. Thus, when applying a transformation that distorts the space 

created by an orthogonal coordinate system, Maxwell’s Equations retain their original 

form (Eq. (2)) where E෡ and H෡  are renormalized electric and magnetic fields and ϵො୰ ,and μො୰ 

represent the relative permittivity and permeability, respectively. However, the values of 

∇ × ۳ =  −μ୰μ଴ ∂۶/ ∂t 

∇ × ۶ =  −ϵ୰ϵ଴ ∂۳/ ∂t 

EQ 2-1 
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permeability and permittivity are changed to account for the space transformations 

applied.  

∇ × ۳෠ =  −μො୰μ଴ ∂۶෡/ ∂t 

∇ × ۶෡ =  −ϵො୰ϵ଴ ∂۳෠/ ∂t 

EQ 2-2 

This property of Maxwell equations is impressive since it allows for the 

preservation of the properties of the magnetic field of lines while redirecting them in a 

desired fashion by only changing the values of permeability (μ୰) and permittivity (ϵ୰) of 

the adjacent space. Transformation optics utilizes this principle to redirect light to achieve 

the intended functionality, e.g., to manufacture cloaking devices[43]–[46]. This has also 

been exploited to create a wide variety of magnetic devices such as magnetic lenses, 

magnetic concentrators, and magnetic shields [44], [46].  

In this work, we explore specific transformations of space containing the magnetic 

field of lines that would allow harvesting magnetic field of lines from different regions in 

space and concentrate at an arbitrary location, specified apriori. Following the magnetic 

concentration principle and simulation models developed in the work presented by Navau 

et al. [41], we consider an infinitely long cylindrical shell with internal radii Rଵ, external 

radii Rଶ, thickness ξ, and relative angular and radial permeability μ஡ and μ஘, respectively. 

We show that by applying the concept of transformation optics, the magnetic field lines 

that would be in the region ρ < Rଶ can be concentrated in the region, ρ < Rଵ.This 

structure divides space into three areas: interior space, the shell, and exterior space (see 

Fig. 27).  
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Figure 27: Space transformations corresponding to homogeneous anisotropic magnetic concentrating shell with an 
empty interior, (a) the original space (b) linear compression of the interior space, 0 < ߦ − 2ܴ > ݎ (c) higher order 

polynomial expansion of the shell space, ܴ2 − 2ܴ > ݎ > ߦ. (Reprinted from [51]) 

Let ξ be an infinitely small parameter such that the shell and the interior spaces are divided 

into two areas Aଵ and Aଶ as shown in Fig. 28(a) where, 

൜
Aଵ: 0 < r < Rଶ − ξ 
Aଶ: Rଶ − ξ < r < Rଶ

 
EQ 2-5 

 To achieve magnetic concentration, two sequential transformations are applied as 

described in [41]. First, the space Aଵ is linearly compressed and is relocated in the interior 

space (0 < r < Rଵ) (see Fig. 27(b)). Subsequently, a higher order transformation is 

applied to expend the space Aଶ and relocate it in the shell space (Rଵ < r < Rଶ) (see Fig. 

27(a)). After applying the TOs method on this transformed space, the necessary values of 

permeability to construct a magnetic concentration structure can be calculated. The 

interior space must have a permeability μ୧୬୲. =  1 which means that this space must be 

empty to maximize the magnetic energy transfer to the interior space. The shell space 

needs an angular permeability μ஘ ⟶ 0 to avoid magnetic field leakage along the 

tangential direction and a radial permeability μ୮ ⟶ ∞  to redirect the field lines to the 

center. A material with such anisotropy does not exist naturally. However, advancements 
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in metamaterials offer a great solution since an alternating arrangement of ferromagnetic 

material, which provides a high radial permeability and diamagnetic material, with low 

permeability, is an excellent approximation to the results predicted by TO. Such a setup 

cancels the angular component of magnetic field consequently, preventing any magnetic 

leakage and transfers [41] the magnetic field energy out of the shell. Additionally, it 

concentrates the field lines in the interior space while also amplifying the magnetic field 

strength Hୣ୶୲. in the exterior space by a factor of Rଶ/Rଵ .Thus, if the external magnetic 

field is uniform, the magnetic field in the interior H୧୬୲. is given as 

H୧୬୲. =
Rଶ

Rଵ
 Hୣ୶୲. 

EQ 2-6 

However, if the external magnetic field is not uniform, Hୣ୶୲. depends on the 

position of the dipole and H୧୬୲.  becomes  

H୧୬୲.(0, y) =  
Rଶ

Rଵ

η
2π

൬y
Rଶ

Rଵ
− y୫൰

ିଶ EQ 2-7 

where η is the magnetic moment per unit length of the magnet and the dipole is positioned 

at (0, y୫). 
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3. COMPUTATIONAL MODELING AND SIMULATION4

Designing a prototype of a new localized magnetic polishing setup can be time and 

resource exhausting if relying solely on experimental studies. Thus, we took advantage of 

the finite element method which allows us to test many configurations and iterate multiple 

designs more efficiently. In This study, we have utilized the Finite Element Method 

Magnetics V 4.2 software which has 2D solver capable of analyzing planar and 

axisymmetric magnetic problems. In this section, we are going to introduce the 

fundamental equations necessary to describe a magnetostatics problem. Then, we are 

going to explain the mechanics of transforming our complex design problem into a 

solvable numerical problem via the finite element method, and finally, we are going to 

discuss the specifics of our models and their results. 

3.1 Fundamental Equations 

Our problem can be analyzed with a magnetostatics model since we are using static 

fields (or very low-frequency one) where the field flux (B) and the intensity (H) can be 

expressed as follows[47]: 

ࢺ × ࡴ  =  EQ 3-1 ࡶ

4 Parts of the computational models and simulation are reprinted with permission from “Localized magnetic
fluid finishing of freeform surfaces using electropermanent magnets and magnetic concentration” by 
Iskander El-Amri, Ashif Sikandar Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of 
Manufacturing Processes,2018 https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 
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ࢺ ∙ ࡮ = 0  EQ 3-2 

where H and B are related by the following [47]:  

࡮ =  EQ 3-3  ࡴߤ 

However, if the material is a nonlinear the permeability can be expresses by the following 

equation [47]: 

μ = 
B

H(B)
EQ 3-4 

The field flux B can be expressed in terms of potential vector A as follow [47]: 

࡮ = ࢺ  ×  EQ 3-5 ࡭

by using equations (3-4) and (3-5) and substituting terms into equation (3-1) we can obtain 

the following relation 

સ × ൬
૚

(࡮)ࣆ
સ × ൰࡭ =  ࡶ

EQ 3-6 

For a linear and isotropic material, the equation (6) reduces to 

−
૚
ૄ

સ૛ۯ = ۸ 
EQ 3-7 

In general, A is a vector with three components, however, in 2D planar or 

axisymmetric models, two of these components go to zero leaving only the component in 

the out of the page direction. Equations (3-6) is an elliptic partial differential equation 

which the FEMM solves for each element[47]. 
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3.1.1 Finite Element Model Approach 

3.1.2 Finite Elements 

The finite element method can be applied to the problem domain, if we assume 

that there is no loss of magnetic energy i.e. [48]:  

௜௡௣௨௧ܧ =  ௦௧௢௥௘ௗ EQ 3-8ܧ

The energy is inputted to the system as a current density J and is outputted in a magnetic 

field B thus we can express the input and stored energies in the following equation [48]: 

1
2

∫ ∙ ࡶ ݒ݀࡭ = ∫
ଶܤ

ߤ2
 ݒ݀

EQ 3-9 

Let’s call define F as the difference between ܧ௜௡௣௨௧ and ܧ௢௨௧௣௨௧ , thus F can be written as 

(for a linear magnetic field) [48]: 

ܨ = ∫ ቈ
ଶܤ

ߤ2
−

1
2

∫ ࡶ ∙ ቉࡭  ݒ݀
EQ 3-10 

To apply the finite element method, the energy must be minimized. Thus, it is necessary 

to take the partial derivative of F with respect to A and set it to zero [48]:  

ܨ߲
ܣ߲

= 0 
EQ 3-11 

We can rewrite equation (3-10) in the following form [48], 

߲
ܣ߲

∫
ଶܤ

ߤ2
ݒ݀ = ∫  ݒ݀ܬ

EQ 3-12 

To solve the previous equation, the finite element method divides the problem 

domain into small elements made from simple geometric shapes like triangles (see Fig. 

28). These small triangles discretize the magnetic flux B plane, which lies in the (XY) 
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plane, into small areas. Meanwhile, the current density vector J and the potential vector A 

lie in the out of page direction. To solve for A, we utilize the first order triangular element 

shown in the figure below with vertices O, P, and Q representing the nodes at which the 

unknown A must be found. A can be expressed as a first order polynomial shape function 

over the (XY) plane: 

,ݔ)ܣ (ݕ =  ෍ ሾܣ௜(ܽ௜ ൅ ܾ௜ݔ௜ ൅ ܿ௜ݕ௜)ሿ
௜ୀை,௉,ொ

 EQ 3-13 

By expending the previous equation, we can obtain the constant coefficient matrix relation 

൭

ܽை ܽ௉ ܽொ

ܾை ܾ௉ ܾொ
ܿை ܿ௉ ܿொ

൱ = ቌ
1 ைݔ ைݕ
1 ௉ݔ ௉ݕ
1 ொݔ ொݕ

ቍ

ିଵ EQ 3-14 

Substituting the shape function into equation(3-12) , we obtain, 

∫
߲

௜ܣ߲
ቆ

ଶܤ

ߤ2
−

1
2

ቇܣܬ ݒ݀ = 0 
EQ 3-15 

Taking the curl of A, we obtain 

Figure 28:Triangular element used in the finite element to discretize the 
problem domain 
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ଶܤ = ൬
ܣ߲
ݔ߲

൰
ଶ

൅ ൬
ܣ߲
ݕ߲

൰
ଶ EQ 3-16 

The final step of the finite element method is to find the stiffness matrix which can be 

expressed as: 

൬
௥ܣ

ߤ
൰ ቌ

ܾைܾை ൅ ܿைܿை ܾைܾ௉ ൅ ܿைܿ௉ ܾைܾொ ൅ ܿைܿொ

ܾ௉ܾை ൅ ܿ௉ܿை ܾ௉ܾ௉ ൅ ܿ௉ܿ௉ ܾ௉ܾொ ൅ ܿ௉ܿொ

ܾொܾை ൅ ܿொܿை ܾொܾ௉ ൅ ܿொܿ௉ ܾொܾொ ൅ ܿொܿொ

ቍ ቎
ைܣ
௉ܣ
ொܣ

቏ = ൬
௥ܣ

3
൰ ൥

ܬ
ܬ
ܬ
൩ 

EQ 3-17 

where ܣ௥ is the area of the triangular element. The previous equation can be rewritten as 

ሾܭሿሼܣሽ = ሼܬሽ EQ 3-18 

with K is the stiffness matrix, the vector J is given, and the A is the vector to be found. 

3.1.3 Boundary Conditions 

To find a unique solution for the model, it is necessary to the define boundary 

conditions. For the 2D planar magnetostatics models, a Dirichlet Boundary condition is 

applied where the value of the potential vector A is defined explicitly to be zero at the 

Figure 29: schematic showing the boundary and solution domain 
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boundary of the domain which is a region sufficiently far away from the source of the 

magnetic field where the magnetic field value would drop to zero [47], [48].  

In the case of the axisymmetric models, the line passing through the center of the region 

has a vector potential A set to zero.   

Figure 30: Schematic showing the boundary condition and the solution domain of 
axisymmetric model 
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3.1.4 Mesh 

The FEMM solver utilizes a heuristic algorithm to define the optimal element 

number and size to ensure fast convergence of the model. The solver also adapts the mesh 

size depending on the geometry .i.e. smaller elements close to a corner or to curved edge 

while utilizing lager size elements in other position with less stress (see Fig. 31).  

3.2 Models and Simulation Results 

3.2.1 Magnetic Concentration Structure Model 

Following the conceptual development in section 2.3 (discussing transformation 

optics), we implemented a model using air as the region of low permeability, whereas the 

high permeability region is created by using 1006 steel core with a broader base and a 

tapered tip. Two cylindrical grade N52 neodymium magnets, with a diameter of 0.75” and 

Figure 31: schematic showing the mesh created by the FEA software and the automatic element size adaptation 
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a height of 0.75" are attached end-to-end to each of the steel core to amplify the magnetic 

field via the transformation optics principle described in Section 2.3. We chose to use 

cores in this fashion since they provide a broad base that can concentrate most of the field 

lines emanating from the pole of neodymium magnets and sharp tip to focus the lines at a 

localized spot. The output of the model is a density map of the magnetic field strength |B| 

(as shown in Fig. 32(b)). The model consists of 30400 nodes and 15381 triangular 

elements.  

The density map shows a magnetic field concentration region surrounding the 

structure. The maximum magnetic field strength of 0.3T was recorded near the tip of the 

steel core, and the variation of the field strength as a function of distance from the pole is 

plotted in Fig. 32(b) (red profile). In contrast, it could be explicitly noted in Fig. 32(b) 

(blue profile) that the field strength is significantly weaker in the same region when the 

steel cores are removed. This shows that all or most of the magnetic field of lines 

emanating from the magnets are concentrated in the vicinity of the structure which ensures 

a high magnetic flux density thus a higher magnetic field strength.  

The magnetic concentration setup, as we showed, is capable of creating intense 

magnetic fields that can be used to generate downforce in MFs which is necessary for 

material removal [1]. However, along with the sufficient downforce, it is necessary to have 

a relative motion between the workpiece and the magnetic fluid to create a polishing 

action. To achieve this functionality, we create a spatiotemporally varying magnetic field 

that would force the magnetic fluids to flow according to the magnetic gradient and 

therefore create a sloshing action. However, along with the sufficient downforce, it is 
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necessary to have a relative motion between the workpiece and the magnetic fluid to create 

a polishing action. To achieve this functionality, we create a spatiotemporally varying 

magnetic field that would force the magnetic fluids to flow according to the magnetic 

gradient and therefore create a sloshing action. 

Figure 32: (a) Density map showing the field strength generated by the magnetic concentration Structure (b) 
Field strength measured in the vicinity of the structure and field strength measured without the structure
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3.2.2 Modulating Magnetic Field Using EPMs 

EPMs are a class of specialized permanent magnets that combine the high field 

strength of rare earth permanent magnets with the polarity control of solenoids. These 

devices can display a high magnetic field in the ON state (no current passing through the 

solenoid) but will have weak or zero magnetic field if a current pulse is applied in the 

opposite direction. This allows the EPM to create a stronger magnetic field strength as 

well as to preserves the flexibility of conventional electromagnets to toggle the magnetic 

field on and off while being more compact and less energy demanding. Usually, EPMs are 

based on a combination of hard magnets (high coercivity) and soft magnets (low 

coercivity) connected by a ferromagnetic material on both ends. The soft magnet is 

wrapped with coils since it has a small hysteresis loop which requires less energy in 

reversing the direction of magnetization as compared to the hard magnet. 

Figure 33: Schematic showing the ON state of EPM and the effect of current direction on the magnetic field lines 
(b) and OFF state of EPM and the effect of current direction on the magnetic field lines. (Reprinted from [51])
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In the ON state (see Fig. 33(a)) , the soft and hard magnets have the same polarities, 

forcing the field lines out of the device thus creating a high magnetic force. In the OFF 

state (see Fig. 33(b)), current is applied through the coils around the soft magnet to reverse 

its polarity. Thus, both the hard and soft magnets will have opposite polarities, forcing the 

magnetic field lines to circulate through the ferromagnetic material. Consequently, there 

will be no noticeable magnetic force created by the EPM [3]. However, this design only 

allows to toggle the magnetic force between the ON and OFF states and does not increase 

the original magnetic field strength generated by the permanent magnets. Also, this design 

does not channel the field lines in the desired direction. 

3.2.3 New EPM Design 

To address the issues discussed in the previous section, we developed a new EPM 

design consisting of a combination of a steel core solenoid affixed to a permanent magnet. 

The steel core has a large base and sharp tip to channel most of the field lines generated 

by the permanent magnet along its axis, while also boosting the magnetic field generated 

by the coils. When the current generated field lines are in the same direction as the one 

generated by the permanent magnet, the resulting field holds a higher magnitude as a result 

of the constructive superposition of both fields. When the current is reversed, the device 

outputs a very low to zero magnetic field due to both fields canceling each other. This 

property of our design creates sharp gradients which create a high spatiotemporal variation 

of the magnetic field. The novel EPM design increases the range of action of the magnetic 

field away from the magnetic field source which increases the overall magnitude of the 

magnetic gradient. We created an axisymmetric model to study the EPM magnetic field 
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strength. As shown in figure 34 (a), the magnetic fields generated by the coils is opposing 

the field generated by the permanent magnets. In figure 34 (b) , the magnetic fields created 

by the coils is in the same direction of the field generated by the permanent magnets. We 

can observe that the magnetic field region is increased with the use of the EPM which 

allows to extend the magnetic force magnitude away the source.  

To determine the appropriate size of the steel core, we have created a simulation 

model that changes the dimensions L1, L2, D1 and D2 shown in the figure below (see Fig. 

35).  

Fields in opposite direction

(a)

Fields in same direction

(b)

Point O

Point P

Coil

Bolt base

Magnets

Figure 34: Simulation output showing low magnetic field when the current induced magnetic field is in the 
opposite direction of the magnetic field as generated by the hard magnet (b) when the current induced 

magnetic field is the same direction as the magnetic field generated by the hard magnet. 
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We give our model a starting size for the core with which we can verify the magnetic 

strength experimentally and then the program fixes three parameters and changes one at a 

time. The data for each parameter change is recorded and a plot of the magnetic field 

strength vs the fixed parameter is generated. These four plots help in determining the 

parameters values with the highest increase of the magnetic field strength generated at the 

tip of the EPM (Fig. 36, Fig .37 

Figure 35: Schematic of the EPM Core model 
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Figure 36: Magnetic field strength at the tip of the core vs L1 size 

Figure 37 Magnetic field strength at the tip of the core vs D1 size: 
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Figure 38: Magnetic field strength at the tip of the core vs L2 size 

Figure 39: Magnetic field strength at the tip of the core vs D2 size 
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The initial parameters used where L1=0.211”, L2 =1.2015”, D1 =0.288”, 

D2=0.65” (see Fig. 36, 37, 38 and 39) with a magnetic field strength of B= 0.25T. From 

there, the model changes the values of the geometric parameters and plots the results. We 

choose the parameters values that allows us to have an increase of the magnetic field at 

the tip of the steel core while also making sure that the field strength is not too high to be 

countered by the field generated by the solenoid.  

To determine the necessary number of coils necessary for a functioning EPM, we 

have created an axisymmetric model consisting of a steel core and the neodymium 

magnets (as discussed previously) while adding copper wire wound around the core. The 

model changes the number of copper wire turns in each iteration while also changing the 

current direction and plots the magnetic field strength at the tip. Using this approach, we 

can determine the number coils necessary to create the toggling action of the EPM without 

extensive experimental studies. As shown in Fig. 40, we can see that increasing the number 

of turns while the magnetic fields of the electromagnet and the permanent magnet are in 

the same direction generates a higher combined field (red profile). However, when 

reversing the direction of the current, we see that the magnetic field strength decreases 

until reaching 600 turns. Nevertheless, increasing the number of turns results in a 

constructive interaction between the fields thus increasing the overall magnetic field 

strength (blue profile). Thus, using a value of 600 turns yields a good balance between 

increasing the value of the generated field to .5T thanks to the constructive interference of 

the fields; however, the total EPM field drops to almost zero due to the deconstructive 

interference of the fields.  
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3.2.4 Spatiotemporal Variation of Magnetic Fields 

Spatiotemporal variation of magnetic field strength allows the MFs to generate a 

sloshing action [1], [49] that is necessary to perform the material removal. Most of the 

conventional MF polishing approaches either use an external means to mechanically to 

generate the relative motion between the magnetic abrasive brush and the workpiece or 

utilizes additional rotating components to create the spatiotemporal variation of magnetic 

fields. This significantly hinders the applicability of these approaches in the finishing of 

hard-to-access, free-form surfaces. To address these challenges, we use the EPM 

configuration discussed in the previous section since it can toggle the magnetic field 

direction, thereby changing the magnetic strength from one pole to another. In effect, this 

Figure 40:Magnetic field vs the number of copper wire turns around the core of the EPM 
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creates a sloshing effect in the fluid. To validate the toggle action, we developed two 

simulation models as shown in figures. 41(a) &41 (b)  

From the computational model, we can measure the field strength profile between 

points O and P (Fig.  41 (a) & (b)) while alternating the ON/OFF state between the 

two EPMs. The switching action shifts the direction of the magnetic field gradient 

depending on the respective state of EPMs. Also, the switching frequency controls also 

the gradient amplitude. Using a low frequency and 3A current, the magnetic field near 

the pole was amplified to 0.5T on the high side and 0.1T on the low side (see Fig. 42).  

Toggling the EPM states (as shown in Fig. 42) results in a sharp gradient that moves 

from point O to point P.  

Figure 41: (a) Magnetic field density map when the left EPM is ON and right EPM is OFF (b) Magnetic field 
density map when the left EPM is OFF and right EPM is ON 
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Figure 42:Magnetic field strength from point O to P when current direction is flipped 
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4. EXPERIMENTAL SETUP AND DETAILS5

The magnetic polishing experimental setup can be divided into four main 

subsystems, namely:  

The electro permanent magnet assembly, the electronic controller, the magnetic fluid and 

the cooling system (See Fig. 43). In this section, we will describe the main function of 

each subsystem explain the function of each component.   

5 Parts of the experimental setup and detail are reprinted with permission from “Localized magnetic fluid
finishing of freeform surfaces using electropermanent magnets and magnetic concentration” by Iskander El-
Amri, Ashif Sikandar Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing 
Processes,2018 https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 

Figure 43: Photograph showing the experimetal setup(Reprinted from [51]) 



53

4.1 Electro Permanent Magnets 

Based on the results from the FEM models presented in the previous section, we 

built the EPM device comprised of two N52 grade neodymium magnets with ∅0.75'' and 

height 0.75'' affixed axially to an electromagnet. The electromagnet is composed of 500 

turns of 22 AWG copper wire coiled around a 1.2'' long 1006 steel bolt (carbon content 

<0.08%) (see Fig. 44). The 1006 steel is a excellent choice for the EPM’s core since it has 

a low residual magnetic field which allows an easy magnetization/demagnetization cycles 

thanks to its low carbon content. We chose the 22 AWG wire since they can dissipate the 

heat generated by the high current while also having a small enough diameter to ensure a 

more compact EPM. Neodymium magnets are the strongest permanent magnets compared 

to their size, thus using them is a good choice to create a compact yet strong EPM.  

Figure 44:Photograph showing the different components of the new EPM 
design. 

0.25 in 
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4.2 Cooling System 

The main issue faced when using electromagnets with high currents is heat. So, to 

control and stabilize the heat emitted by the EPMs, the use of a cooling system is deemed 

necessary to protect the setup from sparks and heat related issues. 

 The cooling system is composed of a thermoelectric cooling device that uses the Peltier 

effect to transform current into a heat gradient where one side of the device gets cooled 

down while the other side heats up. The Peltier device is attached to aluminum heat 

exchanger on the cool side and to a fan and fins on the other side. The heat exchanger is 

attached through vinyl tubing to the EPM housing and to a DC pump that circulates 

mineral oil to extract heat from the magnets. The hot fluid then, goes through the heat 

exchanger where it is cooled by the Peltier module. The Peltier module then transfer the 

heat through the on the hot side (see Fig. 45 and 46). 

We chose mineral oil as the coolant because it is nonconductive thus eliminating 

the risk of short circuiting the setup and oxidizing the EPMs coils and cores.  

Figure 45: Schematic of the Cooling system heat flow 
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4.3 Electronics Controls 

The H bridge circuit (see Fig. 47) is comprised of a dual H bridge, capable of 

controlling two EPM, mounted on Arduino Uno microcontroller. The microcontroller 

outputs a +/-5V pulse width modulation signal which serves as an input to the H bridge 

circuit (see Fig.48).  

When the input signal has a value of 5V, the transistors Q1 and Q4 allow the 

current to flow through which results in a clockwise current. However, when the input 

signal has a value of -5V, the transistors Q2 and Q3 allow the current to flow through in 

Figure 46: Photograph of the cooling system 
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the counterclockwise direction (see Fig. 49). The H bridge toggles between clockwise and 

counter clockwise 3A current which controls the direction of the induced magnetic field.  

The H bridge circuit can support a pulse width modulation signal up to 20 kHz 

which offers a wide range of frequencies to test the sloshing motion of the MF. The circuit 

is powered by a DC power supply and is fitted with resistors to protect the electronics (see 

Fig. 47). 

Figure 47: Schematic showing the circuit controlling magnetic polishing process 

Figure 48: Magnetic field gradient generated by the EPM subject to a pulse with modulation signal 
(Reprinted from [51]) 
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4.4 Ferrofluid 

The ferrofluid used in our experiments was made with 50 nm magnetite particle. 

The particles are then mixed with an ammonia solution and the mixture is heated until 

ebullition (100°C).  

The surfactant needs to be adequately chosen to bond with the superparamagnetic 

particles to overcome the gravitational force (causing sedimentation) and the inter 

particles magnetic interactions (causing agglomeration). In this case, we chose oleic acid 

since it is safer than other commonly used surfactant.  

The solution is kept at a constant temperature (100°c) to give the oleic acid 

molecules the necessary energy to bond with the magnetite particles. After 90 min, the 

solution is cooled down and carrier fluid is added. The carrier fluid characterizes the 

viscosity and consequently the flow behavior of the colloid. To realize a smooth motion 

of the MF, we used a Kerosene. Kerosene is a good choice since it can dissolve the oleic 

acid thus helping the magnetic particles dispersion in the colloid. The fluid is the stirred 

and then rest for couple of hours to eliminate the water.  

Figure 49: Schematic showing the circuit of an H bridge 
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Then, to test the performance of the fluid a place a sample of colloid in a petri dish 

which is placed on top of a neodymium magnet. The dish and the magnet are separated 

with a working gap of 0.125 in. This setup helps in testing weather or not the fluid can 

form spikes under the magnetic field and also is used to test the responsiveness of the fluid 

when the relative position of the magnet and the petri dish is changed (see Fig. 50).  

Figure 50: Photograph of a setup to test the quality of the MR fluid 
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5. RESULTS AND DISCUSSION6

In this section we are going to present and discuss the results of the experimental 

study conducted during this project. 

5.1 Electro-Permanent Magnet and Magnetic Gradient 

Electropermanent magnets can have their field switched on and off by the 

application of a brief electrical pulse. Electropermanent magnets have lower power 

consumption, less temperature rises and smaller in size compared to electromagnets, 

especially for the same generated magnetic field strength flux. Electropermanent magnets 

have been found to consume an amount of energy proportional to their volume while 

creating a magnetic field strength proportional to their area , which is so fundamental 

scaling favors their low-energy operation at small dimensions[40].  

We used different frequencies of pulse with modulation signals and we observed 

that at a 3.3 Hz signal, the EPM generated a magnetic field gradient ranging from a 

maximum of .3T to a minimum of 0.08T, thus a total gradient of 0.22T. However, as the 

frequency increases, the total gradient value decreases. For example, at a 20Hz signal, the 

total observed gradient had a value 0.06T which 3.7 times smaller than the gradient at 

3.3Hz. This is due to the shorter time the EPM has to switch between polarities which is 

6 Parts of the results and discussion are reprinted with permission from “Localized magnetic fluid finishing
of freeform surfaces using electropermanent magnets and magnetic concentration” by Iskander El-Amri, 
Ashif Sikandar Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing 
Processes,2018 https://doi.org/10.1016/j.jmapro.2018.05.026 , Copyright 2018 by Elsevier 
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not enough to fully demagnetize the residual magnetic field created in the core (see Fig. 

51).  

5.2 Ferrofluid Behavior 

We have studied many compositions of the ferrofluid where we have varied the 

size of the magnetic particles as we used particles with an average size of 20 um (atomet 

75) and we have also utilized nano-sized particles with size varying between 50 and 100 

nm. If mixed with a carrier fluid (like mineral oil),  the colloid with the smaller particles 

takes more time to segregate which an essential attribute for a responsive ferrofluid. Even 

though the smaller particles delay the precipitation due to gravity, the colloidal solution is 

subject to separation. Thus, using a surfactant becomes necessary to suspend the magnetic 

particles in the carrier fluid and also to prevent the agglomeration of said particles.  

Figure 51:Magnetic field gradient with changing EPM switching frequencies 
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We have opted to choose oleic acid as the surfactant since it combines well with 

the nano size magnetite particles and also since it is relatively safe compared to other 

substances like tetramethylammonium hydroxide which is very toxic. Mixing the oleic 

acid with colloid (carrier fluid + magnetic particles) does not yield good results (separation 

still occurs) since oleic acid requires heat to bond with the magnetic particles.  

The concentration of the oleic acid is a significant factor in the performance of the 

ferrofluid in response to a changing magnetic field. To verify this claim, we used three 

levels of oleic acid volumes to observe the responsiveness of the fluid while keeping the 

quantities of the magnetite (we used 10 grams of magnetite since the Nanoparticles are 

expensive) and kerosene fixed (43 ml of Kerosene per batch). We observed (see Table1) 

that at a volume of 5 ml of oleic acid, the ferrofluid had an excellent response to a changing 

magnetic field and also formed needle-shaped spikes. When the oleic acid volume was 

increased to 10 ml, the ferrofluid formed large spikes but was not very responsive to the 

change in magnetic field. Finally, using 15 ml, generated a fluid that formed an 

unresponsive bulb without any spikes. Spikes form when the magnetic force exerted on 

the magnetite particles overcomes the surface tension of the fluid and the gravitational 

pull. As the magnetic field increases, the spikes will increase in size until reaching a point 

where the magnetic force is too strong, and the magnetite particles precipitate towards the 

magnet field source [50]. Thus, spikes are a good indicator of the quality of the ferrofluid 

since they form when the magnetic force applied on the magnetic particles is balanced 

with the gravitational force applied to them and the surface tension of the carrier fluid (see 

Fig. 52).  
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After fixing all the quantities for the MRF components, we found that a ration of 

5% magnetic particles, 85% carrier fluid, and 10% yields the best performance (see 

Table 2).   

Table 1: MR fluid response vs the volume of oleic acid

Volume Spikes Responsive motion 

5ml + + 

10 ml + - 

20 ml - - 

Table 2: Quantities of MRF components 

Volume (ml or cm^3) Ratio 

Oleic Aid 5 0.1 

Kerosene 42.51 0.85 

Magnetite 2.49 0.05 

Total 50 1 
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Figure 52: Photograph showing magnetic fluid response to magnetic field when different quantities of oleic acid are 
used (a) 5ml of oleic acid created a fluid with long spikes and quick response to changes in the magnetic field (b) 10 ml 
of oleic acid created a fluid with small spikes and slow response to the change in the magnetic field  (c) 15 ml of oleic 

acid created a fluid that does not form spikes nor react to the change in the magnetic field  

(a) (b) 

(c)
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5.3 Using Magnetic Fluid for Polishing 

5.3.1 Material Removal from Non-Flat Geometries 

To demonstrate the proof of concept and the efficacy of the proposed approach in 

the finishing of free-form hard-to-access locations, we painted two regions of a cylindrical 

tube with two different permanent water-based (the paint is water soluble but water 

resistant when dried) acrylic paint colors (red and green) and dried the sample thoroughly 

[51]. Each paint layer had an average thickness of 6.5m and covered an area of 3x1 cm2. 

The workpiece was placed in a beaker, and completely immersed in the specially designed 

MF (see Fig. 53).  

Through actuating the EPM, the MF over a targeted location was allowed to 

slosh, causing surface asperity (here, the paint) removal. We then, showed that our 

process was capable of removing material (in this case, acrylic paint) from a target 

region (green painted area with an average thickness of 6.5m and a surface area of 3x1 

cm2).  

Figure 53:Experimental setup of the paint removal experiment 
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Figure 54 (b) shows the results from experiments on localized paint removal on a 

high aspect ratio surface of experiments designed to show localized and selective paint 

removal. The workpiece was painted with two different acrylic paints, red and green, next 

to each other as shown in Fig. 54(a). The workpiece was polished for 90 minutes and then 

rinsed with distilled water. Figure 54(b) shows workpiece after polishing. It could be noted 

that the green paint layer was selectively removed without any changes to the red region. 

This demonstrates the capability of the proposed process to locally remove material from 

a curved surface. 

5.3.2 Polishing of Polyurethane Samples 

To exhibit the capability of our process to produce fine finish surfaces, we utilized 

a 3D printed polyurethane part as our workpiece. We have also utilized 120 grit abrasive 

particles in the process. The sample was secured inside the MRF container and placed in 

Figure 54: (a) painted cylindrical tube before polishing (b) painted cylindrical tube 
after polishing (Reprinted from [51]) 
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contact with fluid. Then, a spatio-temporal magnetic gradient is created between the EPMs 

which forms an FMB filled with abrasive particles. The FMB is allowed to slosh back and 

forth against the surface of the workpiece to remove asperities and close the gaps between 

the infill patterns. The process is sustained for 2 hours and while the MR fluid is stirred 

every 5 minutes to renew the abrasive particles that separated from the FMB. After a 

polishing cycle (2 hours), the workpiece is cleaned with a deionized waterjet to remove 

MRF particles stuck on the surface, the workpiece is placed inside a container full of a 

water and soap mixture to separate oil residues from the surface. Finally, the workpiece is 

dried using a fan.  

Figure 55: Evolution of Surface roughness Sa with time 
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The surface of the workpiece is analyzed with an optical profilometer (ZeGauge) 

to measure the surface roughness and check the evolution of the topology over time.  

The workpiece goes through 6 cycles (2 hours for polishing +1 hours for removing 

residue) and then the surface profile is recorded at 15 random points where each point 

covers an area of 800x800 um. The experiment is conducted with three different samples 

to ensure the repeatability of the results.  

Figure 55 show a box plot to demonstrate the surface roughness evolution over 

time measured in surface area roughness Sa (μm) for the three samples. We observe that 

the initial average surface roughness (Sa) of the PLA sample is 11.91 um. The surface at 

this stage has a lot of defects and asperities created by FDM process. Also, due to the 

printing pattern, the surface has large infill gaps. These gaps measure 120um in width and 

60 μm in depth on average and are also a big contributor to the un-smoothness of the 

workpiece surface (see Fig. 56).  
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After 6 hours of polishing, the average Sa dropped to 3.4558 μm and we observe 

that the surface features are getting flatter with a reduction of the size of the infill gaps 

and the planarization of the surface (see Fig. 57). After 12 hours of polishing (see Fig. 58), 

the Sa was in the nanometer range with an average of 700 nm. We can observe that most 

of the infill gaps are closing and the surface is getting flatter (see Fig. 58).  

Figure 56: 3D reconstruction of the surface at the initial stage 

Sample 1 Sample 2 

Sample 3 
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Sample 1 Sample 2 

Sample 3 

Figure 57: 3D reconstruction of the surface after 6h 
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Figure 58: 3D reconstruction of the surface after 12h 
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The polyurethane samples have a low glass of 40°C that was measured 

experimentally [52] which is a concern since the EPMs release heat that propagates to the 

fluid container even when the cooling is active. Thus, it becomes necessary to monitor the 

temperature rise during the process. To investigate the matter, we placed thermocouple in 

the contact area between the workpiece and the magnetic fluid (see Fig. 59) and recorded 

the temperature rise 12 hours. We observed that the temperature rose from 25°C to 38.1°C 

(see Fig. 60) during the time of study thus reaching a high enough level to observe some 

warping in the material.  

We have also used the profilometer to observe the surface profile and surface 

roughness on the side of the polymer samples that was not subjected to polishing to assess 

if the surface modification is attributed to the polishing mechanism or to heat related 

issues. It was observed that the non-polished surface initially had an average Sa of 5.68μm 

EPM

ThermocoupleFluid

Glass beaker

Figure 59: Schematic showing the experimental setup to measure the temperature rise inside the 
fluid container 
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and an average Sa of 6.094μm after 12 hours of polishing (see Fig. 61 ,62,63 and 64). The 

Sa measurement increased slightly since the samples warped due to the heat generated by 

the EPMs which introduced waviness in the unpolished surfaces.  

 Thus, we can conclude that heat related effects are do not contribute largely to the surface 

modification observed in the sample side subjected to polishing, but it is due to the 

polishing action. 

Figure 60: Temperature measured at interior side of the fluid container vs time 
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Figure 61: Surface roughness of non-polished surface vs Time 



74Figure 62:3D reconstruction of the surface of the unpolished side (sample1) 

Initial 

12 hours 
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Figure 63: 3D reconstruction of the surface of the unpolished side (sample2) 

Initial 

12 hours 
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Figure 64: 3D reconstruction of the surface of the unpolished side (sample3) 

Initial 

12 hours 
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6. CONCLUSIONS7

We have presented a novel approach for creating a spatiotemporal variation in the 

magnetic field by utilizing the concepts of magnetic concentration and electro-permanent 

magnet to polish free-form surfaces with hard-to-reach geometries using magnetic fluids. 

Initial experimental investigations on the localized removal of paint from a cylindrical 

surface present a proof of concept and also polishing some polyurethane samples from an 

average Sa of 11.9 μm to .69 μm. The major contribution of the present work lies in the 

ability to morph the magnetic fluid to the workpiece shape and create a localized sloshing 

action without the need to have any movable parts.  

We also developed computational models to validate the efficacy and strength of 

magnetic concentration using the electro-permanent magnets. Computational results 

showed that the configuration can be used to magnify the magnetic field 3 folds at a 

desired location in space. In principle, by appropriately tuning the magnetic concentration 

setup and the magnetic fluid, it possible to modify surface properties of complex freeform 

geometries, especially regions inaccessible to manual or finite degree-of-freedom 

polishing machines.  

7 Parts of the conclusions are reprinted with permission from “Localized magnetic fluid finishing of freeform 
surfaces using electropermanent magnets and magnetic concentration” by Iskander El-Amri, Ashif Sikandar 
Iquebal, Arun Srinivasa, Satish Bukkapatnam, 2019. Journal of Manufacturing Processes, 
2018 https://doi.org/10.1016/j.jmapro.2018.05.026, Copyright 2018 by Elsevier. 
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Current and future studies are focused towards finishing of additive manufactured 

hip and knee implants using the setup along with extending the magnetic concentration 

setup to include more EPMs to create specialized path plans for finishing complex 

geometrical surfaces and redesign their cores to increase the magnetic downforce. Further 

investigations are also needed to bond the abrasive particles to the magnetic fluid thus 

eliminating sedimentation and increasing the efficiency of the process.   
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