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ABSTRACT

Learning through the sensorimotor loop is essential for intelligent agents. While the im-

portant role of sensorimotor learning has been studied, several important aspects of sensori-

motor learning in the brain, such as the development of motor behavior maps, the influence

of internal dynamics on external behaviors, and the emergence of tool-use capabilities, are

not addressed significantly. In this dissertation, I will address three questions trying to probe

the nature of sensorimotor learning: (1) How can a sensorimotor agent understand its own

body by developing a cortical map of its motor actions?; (2) How can predictive internal

brain dynamics play an important role in external behavior (authorship of actions)?; (3)

How tool-use emerges in a sensorimotor system interacting with the environment?

The first topic considers developing a cortical motor action map in a sensorimotor agent.

Motivated by an experimental study showing a topographical map of complex behaviors

in the macaque brain, we developed a target reaching gesture map using a biologically

motivated self-organizing map model of the cortex with two-joint arm movements as inputs.

The resulting gesture map showed a global topographic order based on the target locations.

The map is comparable to the motor map reported in the experimental study.

In the second topic of this dissertation, I discuss and investigate the role of the predictive

internal brain dynamics. Previous computer simulation studies showed that neural network

controllers with more predictable internal state dynamics can attain higher performance in

harsher or changing environments. This implies that predictable internal state dynamics

could be a necessarily condition for intelligent agents in the evolutionary pathway to have

authorship of actions and to adapt themselves to changing environment. However, there

was a missing link; the findings from the simulation study do not necessarily mean that the

internal state dynamics affects the external behavior (authorship of actions) in the biological
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brain as well. To fill the gap, I investigated the role of predictability of internal state dynamics

in the brain by analyzing the human EEG data. These results support our hypothesis on

the existence of predictable dynamics and its relation to conscious states (as a surrogate of

authorship of actions).

Lastly, in the third topic of this dissertation, I present tool-use in sensorimotor agents.

Tool-use requires high levels of sensorimotor skill learning and problem solving capabilities

and is one of the salient indicators of intelligence along with communication (language) and

logic. However, through our literature search, we found that there are two gaps in tool-use in

AI and robotics. First, most works depend on some degree of designer knowledge regarding

tool-use and motor control. Furthermore, tool-use tasks that require multiple subtasks to

be completed in specific order are almost non-existent in deep reinforcement learning (RL)

literature for developments and benchmarks, even though deep RL has demonstrated good

performance in some control tasks in recent years. In this dissertation, I present environ-

ments and sensorimotor systems where the agents can adapt to use simple or complex tools

based on minimal task knowledge. Specifically, I present two approaches. I first evolve

neural network controllers for simple tool-use behavior in reaching tasks with minimal task

knowledge, followed by analysis of the evolved networks. The results show that minimal,

indirect fitness criteria are enough to give rise to tool-use behavior. Then, as a second step, I

implement a more complex tool-use environment such as dragging an object to a target loca-

tion using a tool in a physics simulation, and demonstrate a deep RL method with stepwise

composite reward shaping methodology to learn the complex tool-use task successfully.

Overall, the studies in this dissertation are expected to help researchers in brain science

and AI understand the nature of sensorimotor aspects of learning in the brain and implement

them in AI.
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5.9 Learning curve for different random seeds under stepwise composite reward
with intermediate elements (stepwise-intermediate): Mean episode reward and
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iterations at most (2 days and 4 hours). One iteration consisted of 2,500 steps,
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1. INTRODUCTION

Learning through the sensorimotor loop is essential for intelligent agents. Intelligent

agents, whether they are biological or artificial, are always driven by sensory inputs such as

proprioceptive, visual, auditory, tactile, olfactory, vestibular, and gustatory input. Sensory

inputs directly and indirectly drive sequence of motor actions that lead to changes in the

agent’s body and the status of the world, which is followed by updated sensory inputs. The

important role of sensorimotor learning has been discussed in many studies [123, 13, 15, 95,

35, 56, 152, 110, 92]. However, several important aspects of sensorimotor learning in the

brain are still hardly understood, such as the development of behavior maps, the influence

of internal dynamics on external behaviors, and the emergence of tool-use capabilities.

In this dissertation, I will address three questions trying to probe the nature of sensori-

motor learning: (1) How can a sensorimotor agent understand its own body by developing

a cortical map of its motor actions?; (2) How can predictive brain internal dynamics play

an important role in external behavior (authorship of actions)?; (3) How tool-use emerges

in a sensorimotor system interacting with the environments? The backgrounds, goals, ap-

proaches, and contributions for each topic are briefly described in the rest of this section.

1.1 Motivation

(1) A sensorimotor agent needs to understand its own body by developing a map of its

own behavior in the brain. In an experimental study, it was found that the motor cortex in

the macaque brain forms a topographical map of complex behaviors, where the final posture

of the movements form a topologically organized map (Graziano et al.[47]). For example,

one part of the motor cortex maps the target location in reaching behavior, where the map

shows a topological organization (nearby neurons represent nearby target locations in the

environment). Motivated by this finding from the biological experiments, in this dissertation,
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I investigate how a motormap in the cortex of the brain can be self-organized. Specifically,

I will investigate the possibility that a motor map in the cortex can be developed based on

the same cortical learning process as the visual and tactile maps in the cortex (Chapter 2).

(2) The previous computer simulation studies showed that neural network controllers with

more predictable internal state dynamics can attain higher performance in harsher or chang-

ing environments, which also indicates higher chance of survival in evolution [68, 29, 25].

The implication of this finding is profound since it implies that the internal state’s proper-

ties can affect the external behavioral performance especially in changing environment, and

predictable internal state dynamics could be a necessarily condition for intelligent agents in

the evolutionary pathway to have authorship of actions and to adapt themselves to changing

environment. However, there is a missing link to connect between the findings from the sim-

ulation studies and the real brain. The findings from the simulation study do not necessarily

mean that the internal state dynamics affects the external behavior (authorship of actions)

in the biological brain as well. To fill the gap, I investigated the role of predictability in

internal state dynamics in the brain by analyzing the human EEG data (Chapter 3).

(3) Tool-use [52], which requires high levels of sensorimotor skill learning and problem

solving capabilities, is one of the salient indicators of intelligence along with communication

(language) [117] and logic [4]. Communication and logical inference have been extensively

investigated in artificial intelligence (AI). However, tool-use is still largely under-developed

in the field of AI [27]. Through our literature search (details are in Chapter 4), we found that

there are two gaps in tool-use in AI and robotics. First, most works depend on some degree

of designer knowledge regarding tool-use and motor control. Furthermore, tool-use tasks

that require multiple subtasks to be completed in specific order are almost non-existent in

deep reinforcement learning (RL) literature for developments and benchmarks, even though

deep RL has demonstrated good performance in some control tasks in recent years.

In this project, I present environments and sensorimotor systems where the agents can

2



adapt to use simple or complex tools based on minimal task knowledge. Specifically, I present

a two step approach. I will first evolve neural network controllers for simple tool-use behavior

in reaching tasks with minimal task knowledge, followed by analysis of the evolved networks

(Chapter 4). Then, as a second step, I will implement a more complex tool-use task such as

dragging an object using a tool in a physics simulation environment, and demonstrate a deep

RL method and reward shaping methodology to learn the complex tool-use task successfully

(Chapter 5).

1.2 Approach

To achieve the above objectives, (1) a computational model of cortical development called

GCAL (Gain Control, Adaptation, Laterally connected), which is basically an unsupervised

learning algorithm, mimicking synaptic plasticity in the cortex of brain, was used to de-

velop a topographical map of complex motor actions (Chapter 2); (2) the predictability of

Inter-peak interval (IPI) was analyzed from the internal brain dynamics data (human EEG

data) and its relation to agent’s own control of external behaviors (authorship of actions)

is discussed (Chapter 3); (3) a combination of neural networks, genetic optimization, and

deep reinforcement learning will be used for designing environments and sensorimotor agents

where they can adapt to use simple or complex tools based on minimal task knowledge. A

physics simulation platform (MuJoCo) will be used for physics simulations (Chapter 4 and

5).

1.3 Organization of this Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I discuss the investi-

gation about how a motormap in the cortex of the brain can be self-organized. Specifically,

I will present the possibility that a motor map in the cortex can be developed based on the

same cortical learning process as the visual and tactile maps in the cortex.

In Chapter 3, the implication of previous computer simulation studies regarding the
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predictable internal state dynamics and the missing link between the simulation study and

the brain will be discussed. Then, the investigation about the role of predictability of internal

state dynamics in the brain by analyzing the human EEG data will be presented.

In Chapter 4 and 5, the gaps regarding tool-use in AI and robotics and also in deep rein-

forcement learning will be discussed. Then, the task environments and sensorimotor systems

will be presented where the agents can adapt to use simple or complex tools. Specifically,

as a first step, in Chapter 4, I will present evolving neural network controllers for simple

tool-use behavior in reaching tasks with minimal task knowledge, followed by analysis of

the evolved networks. Then, in Chapter 5, as a second step, I will present a more complex

tool-use task such as dragging an object using a tool in a physics simulation environment,

and demonstrate a deep RL method and reward shaping methodology to learn the complex

tool-use task successfully.

Finally, in Chapter 6, I will summarize the contributions and conclude the dissertation.
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2. DEVELOPMENT: SELF-ORGANIZATION OF THE MOTOR MAP IN THE

CORTEX

2.1 Background

In recent studies, Graziano et al. found that the motor cortex in the macaque brain

forms a topographical map of complex behaviors [46], where the final target posture of

the movements form an organized map. As we can see in the Fig. 2.1a, the monkey’s

target location in the reaching behavior evoked by extended electrical microstimulation on

a certain location of the mortor cortex was always the same, regardless of the initial hand

position. Furthermore, the target location forms an organized map on the motor cortex,

where ventral and anterior areas corresponded to the target locations in the upper space

of the body, whereas dorsal and posterior areas in the motor cortex corresponded to target

locations in the lower space of the body as shown in Fig. 2.1b. Based on theses findings, our

question is how such motor maps are formed in the cortex through the development period.

In existing works, simulation studies were conducted to mimic the development of visual

and tactile maps in the cortex. The visual cortical neuron’s receptive fields (RFs) and their

map were developed computationally using a self-organizing map model of the cortex (the

LISSOM model) by Miikkulainen et al. [81]. Park et al. showed that both visual RFs and

tactile RFs can be derived by training the same self-organizing map model of the cortex with

different types of inputs (natural-scene images and texture images, respectively) [91].

In this paper, we investigate the possibility that a motor map in the cortex can be

Part of this section is reprinted with permission from Jaewook Yoo, Jinho Choi, and Yoonsuck Choe,
“Development of target reaching gesture map in the cortex and its relation to the motor map: A simulation
study.” In Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 10th
International Workshop, WSOM 2014, Mittweida, Germany, July 2-4, 2014, pages 187-197. c 2014 Springer,
Heidelberg.
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(a) Eight example posture illustrating the topographic
map found in the precentral cortex of monkey.

(b) Topography of hand and arm postures in the pre-
central gyrus based on 201 stimulation sites in monkey.

Figure 2.1: The topographic map found in precentral cortex of Monkey. (a) The enlarged
view at the bottom shows the sites of the electrical microstimulation. The movements shown
in the rectangles A–H were evoked by stimulating the sites A–H in the enlarged circle at
the bottom. The stimulation of the right side of the brain caused mainly the left side of the
body (left arm to move). (b) A shows the distribution of hand positions along the vertical
axis, which are upper, middle, and lower space. After each stimulation, the evoked final
target positions were used to categorize the site. B shows the distribution of hand positions
along the horizontal axis, which are contralateral (right when using left hand), central, and
ipsilateral (left when using left hand) space. Adapted from [46].
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developed based on the same cortical learning process as the visual and tactile maps in the

cortex. A self-organizing map model of the cortex (the GCAL model[12][70]: a simplified

yet enhanced version of the LISSOM model[81]) was trained with two-joint arm movements

(2 DOF) on a 2D plane, which were subsequently encoded as a time-lapse image (cf. Motion

History Images [18]) where time was encoded as the pixel intensity. We investigated if the

experiment can give rise to a motor map organization similar to Fig. 2.1.

This chapter is organized as follows. The related works are reviewed in Section 2.2. Next,

the GCAL model will be explained in Section 2.3. Section 2.4 will explain the simulation

platform and the procedure for the experiments. The results are presented in Section 2.5.

Discussion and conclusion are presented in Section 2.6 and 2.7, respectively.

2.2 Related Work

There is comparatively little work on how motor map is formed in the cortex. Recently,

several related studies were conducted, where a simulation study for the motor map clustering

of monkey using a standard self-organized map (SOM) learning with encoded movements,

and a multi-modal reinforcement learning algorithm to form a map according to behavioral

similarity.

Aflalo and Graziano [2] showed a computational simulation where topographic map orga-

nization emerged based on three constraints. The three constraints were: (1) the body parts

that were being moved for movements, (2) the position reached in Cartesian space, and (3)

the ethological (behavioral) category to which the movement belonged. Encoded movements

(body parts, hand coordinates, and behavioral category) were used as inputs for training.

The initial somatotopic body map from the literature was used to initialize the model. A

standard Self-Organized Map (SOM) learning [65] was used for the motor map clustering.

However, their map configuration through the SOM learning is based on a purely computa-

tional abstraction since their experiment with the learning algorithm did not consider the
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neural connectivity or plasticity in the cortex. Also, the initial somatotopic body map which

was set up to already represent a rough motor map of the adult brain significantly affected

the final configuration of the map.

Ring et al. introduced a new approach to address the problem of continual learning

[103][102], which was inspired by recent research on the motor cortex [46]. Their system

modules, called mot , are self-organized in a two-dimensional map according to behavioral

similarity. However, their method was based on a multi-modal reinforcement learning algo-

rithm, and did not consider the neural underpinnings. Their aim in the study was to improve

learning performance through their new approach, not to understand how the motor map in

the cortex is developed.

While several related studies have been conducted, there is a lack of studies for fine-

grained, biologically plausible motor map development in the cortex.

2.3 The GCAL Model

We trained the GCAL (Gain Control, Adaptation, Laterally connected) model of cortical

development to investigate motor map development in the cortex with 2 DOF arm move-

ments in 2D plane. The GCAL model is a simplified, but more robust and more realistic

version of the LISSOM model, which has been developed recently by Bednar et al. [12][70].

The GCAL model was designed to remove some of the artificial limitations and biologically

unrealistic features of the LISSOM model.

GCAL is a self-organizing map model of the visual cortex [12][70]. Even though GCAL

was originally developed to model the visual cortex, it is actually a more general model of

how the cortex organizes to represent correlations in the sensory input. Therefore, sensory

modalities other than vision should work with GCAL. For example, earlier work with LIS-

SOM, a precursor of GCAL, was used to model somatosensory cortex development [91, 142].

In our GCAL experiments, we decreased the retina size to 2.0 to fit the input image size

8



(80×80 pixels) and enlarged the projection area (radius: 1.5) to project all parts of the arm

movements. The sizes of LGN ON and LGN OFF maps in the thalamus (lateral geniculate

nucleus) and their projection size were the same as that of the retina. The radius of the

projection area for LGN ON (and LGN OFF) was calculated as r = v+l
2

, where r, v, and

l indicate the radius of the projection area for LGN ON (or LGN OFF), the V1 area, and

the LGN ON (or LGN OFF) sheet size, respectively. This way, the arm movements can

be projected to the V1 level without cropping. Also, the other parameters were adjusted

according to the sheets and the projection sizes. Note that in the following we will use the

GCAL terminology of retina, LGN, and V1 to refer to the sensory surface, thalamus, and

cortex, respectively.

The following description of the GCAL model closely follows [12][70]. The basic GCAL

model is composed of four two-dimensional sheets (three levels) of neural units, including the

retinal photoreceptor (input) and the ON and OFF channel of RGC/LGN (retinal ganglion

cells and the lateral geniculate nucleus), the pathway from the photoreceptors to V1 area.

Fig. 2.2 shows the architecture of GCAL we used.

The GCAL training consists of four steps overall as below.

1. At each iteration (input), the retina (sheet) is activated by the time-lapse image of the

2-DOF arm movement.

2. LGN ON and LGN OFF sheets are activated according to the connection weights between

the retina and the LGN ON and LGN OFF sheets. Also, the lateral connections from

other neurons in the LGN ON and LGN OFF sheets affect the activations. The activation

level η for a unit at position j in an RGC/LGN sheet L at time t+ δt is defined as:

ηj,L(t+ δt) = f

γL∑
i∈Fj

ψi,P (t)ωi,j

 (2.1)
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Figure 2.2: The GCAL architecture. In the model, the retina size was increased to 2.0 (side)
to fit the input image size (80×80 pixels) and the projection area enlarged to 1.5 (radius)
to project all parts of the arm movements. Note that in the text we will use the GCAL
terminology of retina, LGN, and V1 to refer to the sensory surface, thalamus, and cortex in
our gesture map model, respectively.
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where the activation function f is a half-wave rectifying function. The terms γL, ψi,P ,

and ωij are defined as follows:

• γL is an arbitrary multiplier for the overall strength of connections from the retina

sheet to the LGN sheet.

• ψi,P is the activation of unit i in the two-dimensional array of neurons on the retina

sheet from which LGN unit j receives input (its connection field Fj).

• ωij is the connection weight from photoreceptor weight from the retina i to LGN

unit j.

3. V1 sheet is activated by three different types of connections: 1) the afferent connection

from the LGN ON and LGN OFF sheets (p = A), 2) the recurrent lateral excitatory

connection (p = E), and 3) the recurrent lateral inhibitory connection from other neurons

in V1 sheet (p = I). The V1 activation is settled through the lateral interactions. The

contribution, Xjp, to the activation of unit j from each lateral projection type (p = E, I)

is then updated for the settling steps as:

Xjp(t+ δt) =
∑
i∈Fjp

ηi,V (t)ωij,p (2.2)

where ηi,V indicates the activation of unit i taken from the set of neurons in V1 that

connect to unit j. Fj is its connection field. The weight ωij,p is for the connections from

unit i in V1 to unit j in V1 for the projection p. The afferent activity (p = A) remains

constant during this setting of the lateral activity.

4. V1 neuron’s activation level is calculated over time by a running average (smoothed

exponential average), and the threshold automatically adjusted through a homeostatic

mechanism.

11



5. LGN to V1 and V1 lateral connections are adjusted using a normalized Hebbian learning

rule.

ωij,p(t) =
ωij,p(t− 1) + αηjηi∑
k (ωkj,p(t− 1) + αηjηk)

(2.3)

where for unit j, α is the Hebbian learning rate for the afferent connection field Fj.

2.4 Experiment

We trained the GCAL model in Fig.2.2 with target reaching behavior of the two-joint arm

on a 2D plane. We generated 20,000 movements in which each started from a random location

(posture) and moved towards one of the 24 predefined target locations (postures). These

input movements simulate the monkey’s arm movement in Fig 2.1a. Our main question was if

the model can learn a target reaching gesture map such that the map has the characteristics

of the motor map in Fig. 2.1a and Fig. 2.1b. Details about the experiment platform,

generating movements, and experiment procedures are as follows.

2.4.1 Experiment Platform

We ran the experiments on a Desktop PC (CPU: Intel Core 2 Duo 3.16GHz, Memory:

16GB) and Laptop (CPU: Intel Core i7 2 GHz, Memory: 8GB). Both machines ran on

Ubuntu 10.04 (32bit). The installed Topographica version was 0.9.7. The python version

was 2.6.5, and the gcc/g++ version 4.4.3.

For training the GCAL model, we mainly used the Topographica neural map simulator

package, developed by Bednar et al. [81]. Topographica is a simulator for topographic maps

in any two-dimensional cortical or subcortical region, such as visual, auditory, somatosensory,

proprioceptive, and motor maps plus the relevant parts of the external environment [81]. The

simulator is mainly written in Python, which makes it easily extendable and customizable

according to the users’ needs. The simulator is freely available including the full source code
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at http://topographica.org.

2.4.2 Generating movements

Two-joint arm movements were generated on a 2D plane and used as inputs for the GCAL

model training. Each of the 20,000 different arm movements started at a random location

(posture) and moved towards one of the 24 predefined target locations (postures). These

generated movements represent the arm movements of the monkey described in Fig. 2.1a

and Fig. 2.1b.

The arm consisted of two joints J1 (θ1) and J2 (θ2) in which the length ratio of the arm

L1 : L2 is 1.6 : 1 (Fig. 2.3a). For each movement, first randomly pick initial angles for θ1

and θ2 (between -180o ∼ 180o) and the 24 target locations as shown in Fig. 2.4. Then, J1

(θ1) and J2 (θ2) are changed toward the target locations from the initial angles either by 5

or 10 degrees each step, until they reach to the target posture. After each step of the angle

update, the posture of the arm was plotted on the same sheet but with different opacity.

The intensity was increased over time by 20% (Fig. 2.3b). Fig. 2.4 shows the examples

of the generated arm movements. The 24 predefined target locations consisted of 16 distal

locations (Fig. 2.4(a)) and 8 proximal locations (Fig. 2.4(b)). Note that in generating these

motion patterns, we did not consider the natural movement statistics of the monkey’s arm,

largely due to the lack of such data.

2.4.3 Experiment Procedure

After generating 20,000 random reaching movements encoded as a time-lapse image, we

trained the GCAL model with these inputs. In each iteration, one of the 20,000 inputs was

randomly picked for training. The density of the two LGN sheets and the single V1 sheet

were 24× 24 and 48× 48, respectively. The parameters of the model for training were based

on the default parameters in the Topographica package except some parameters such as

retina sizes as described in Section 2.3. Once the training is done, we analyzed the resulting
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(a) Kinematics of the arm

(b) Time-lapse encoded arm movement

Figure 2.3: The kinematics and movement of the two-joint arm. (a) The arm consists of two
joint J1 (θ1) : J2 (θ2), and the arm L1 : L2 (with the length ratio 1.6 : 1). The θ1 and
θ2 are randomly picked initially and change toward the target. (b) The arm movement is
encoded as time-lapse image where time is encoded as the pixel intensity. The darkest one
is the target (most recent) posture.
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Figure 2.4: Examples of movements with 24 target locations. Starting from a random
posture, move toward to one of 24 target locations (postures). The movement over time is
expressed using different pixel intensity (darker = more recent). (a) Example movements
with 16 distal target locations. (b) Example movements with 8 proximal target locations.
These movements simulate the arm movements in the experimental literature (Fig.2.1a).
Note: For the same target location, many different time-lapse images were generated by
varying the initial posture.
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map, with a focus on the LGN to V1 afferent connection patterns.

2.5 Results

2.5.1 Local topography based on target location similarity

The resulting gesture map is shown in Fig. 2.5. As we can see, the map is topologically

ordered according to the target locations, where nearby locations (neurons) of the map

represent nearby target locations (end-effector locations of final postures). For example,

we can see that the similar target locations are clustered in the areas of top-left, top-right,

bottom-left, bottom-right, center-left, center-right, and so on. In Fig. 2.6(a), each arrow of

the grids shows the orientation and the distance of the target locations from the center. The

vectors (arrows) with similar lengths and orientations represent similar target distance and

angle.

2.5.2 Global topographic order

The resulting gesture map show global topographic order. The color maps of the hori-

zontal and the vertical components of the vector field in Fig. 2.6(a) are shown in Fig. 2.6(b).

As we can see, the vectors (the target locations) show horizontal order (Fig. 2.6(b), top)

and vertical order (Fig. 2.6(b), bottom), which is comparable to the findings reported in

the experimental literature (Fig. 2.1). Some neighboring vectors show opposite directions

in Fig. 2.6(a), but this is consistent with the biological observations. As we can see in Fig.

2.1b, some adjacent stimulation sites in the precentral gyrus in the monkey show targets in

the opposite directions such as upper vs. lower, or left vs. right arm postures. Look for +

and N located right next to each other in Fig. 2.1b.

2.6 Discussion

The main contribution of this paper is the use of a general cortical development model

(GCAL) to show how fine-grained target reaching gesture maps can be learned, based on
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Figure 2.5: The resulting gesture maps of LGN OFF to V1 projection. 17 × 17 RFs are
plotted from 48 × 48 cortex density to see the details of them. The enlarged views show the
zoomed in views of 3 × 3 RFs at each corner. Note: LGN OFF and LGN ON patterns are
exact inverses of each other and thus contain the same information. The learned projections
to V1 from these two sheets were similar as a result, so here we only showed the LGN OFF
to V1 projections which is easier to visually inspect.
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(a) Target vector map (b) Horizontal (top) and
vertical (bottom) components

Figure 2.6: (a) Target vectors estimated from the resulting gesture map receptive fields (Fig.
2.5). The direction and the length of each arrow show the target location’s direction and the
distance from the center. (b) The color maps of the horizontal and the vertical components
of the vectors in (a): bright=high (right, up), dark=low (left, down). The color maps were
convolved with a Gaussian filter of size 15×15 pixels and sigma 2.5 to show more clearly the
global order.
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realistic arm reaching behavior. An immediate limitation is that the input itself was not

a dynamic pattern of movement (i.e., it was just a static time-lapse image). However, as

shown by Miikkulainen et al. [81], addition of multiple thalamus sheets with varying delay

can address this issue. Miikkulainen et al. [81] used such a configuration to learn visual

(motion) direction sensitivity in V1.

2.7 Contribution

In this work, we developed a target reaching gesture map using a biologically motivated

self-organizing map model of the cortex (GCAL model, a simplified yet enhanced version

of the LISSOM model) with two-joint arm movements as input. The resulting gesture map

showed a global topographic order based on the target locations. The map is comparable to

the motor map reported in the experimental study [46] (Fig. 2.1a and Fig. 2.1b). Although

our simulations were based on a sensory cortical map development framework, the results

suggest that it could be easily adapted to transition into motor map development. Our

work is an important first step toward a fully motor-based motor map development, and we

expect the findings reported in this chapter to help us better understand the general nature

of cortical map development in a sensorimotor agent, not just for the sensory but also for

the motor modality.
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3. INTERNAL DYNAMICS: PREDICTABLE INTERNAL BRAIN DYNAMICS AND

ITS ROLE IN AUTHORSHIP OF ACTIONS

3.1 Introduction

Predictive function is an important aspect of intelligent robots and agents. Along with

prediction, internal states of an intelligent agent have also begun to attract interest among

researchers. For example, it was shown that the central nervous system has an internal model

in the cerebellum which can be used to predict sensorimotor behaviors [145, 146, 144, 61].

Anticipatory systems were proposed where internal models of the agents’ themselves and

environments were used to predict the future for controlling their bodies in the present [104].

However, most of the studies regarding prediction and/or internal states have focused on

using or considering the internal models (or states) as a method for prediction, but not

focused on predictability of internal state itself.

The predictability of internal state dynamics and their effects on external behaviors (au-

thorship of actions) were investigated in the previous computer simulation studies [68, 29, 25].

In those studies, the internal states of a neural network were defined as the activation levels

or patterns of the hidden perceptrons [10] since the state of a neural system can be described

with the neuronal activation levels or patterns. To investigate internal state dynamics, the

researchers evolved recurrent neural network controllers in a dynamic task where prediction

is not an immediate fitness criteria. A 2D pole balancing task was used for the experiments

where the task goal is to keep the pole straight as long as possible by controlling the cart

attached to the base of the pole in a 2D plane (Fig. 3.1a). Among the evolved controllers

Part of this section is reprinted with permission from Jaewook Yoo, Jaerock Kwon, and Yoonsuck Choe,
“Predictable internal brain dynamics in EEG and its relation to conscious states,” Frontiers in Neurorobotics,
8:18, 2014. c 2014 Frontiers.
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(a) 2D pole-balancing task (b) Internal state trajectory

(c) Measuring predictability (d) Experimental design

Figure 3.1: Prediction of Internal state trajectory in recurrent neural network controllers for
a pole-balancing task. (a) 2D Pole balancing task, where x and y are the coordinates of the
cart, and θx and θy are the angles of the pole from the z-axis. (b) A recurrent neural network
controller for the 2D pole balancing task (lower left). The hidden perceptrons’ activations
(internal state) over time (lower right). A 3D plot of the internal state trajectory (upper
right). (c) Measuring predictability of the internal state trajectory, where measuring the
prediction error on a next activation value (t + 1), given several past activation values as
inputs (t − 3 to t) (d) The experimental design shows the population of recurrent neural
network controllers (left), selecting high-perform controllers (middle), and post-selection
analysis by means of Internal State Predictability (ISP) (right). Each controller that passed
the selection state has equal task performance, but the analysis of ISP shows that some with
high ISP and other with much less ISP. Interestingly, with a harder pole balancing task (by
increasing the initial tilt angle of the pole), the controllers with high ISP mostly retain their
performance, but those with low ISP lose most of their preformance. Adapted from our
recent work [69].

21



that passed the performance threshold (Fig. 3.1d, middle), the predictability of the internal

state dynamics (i.e. predictability in the hidden perceptrons activation dynamics over time)

were measured to see if high internal state predictability could emerge spontaneously (Fig.

3.1b and 3.1c), just based on the task requirement that does not include the internal state

predictability. To measure the predictability of the internal state dynamics, supervised learn-

ing was used, where given past n activation values of the hidden units (i.e n=4 in the Fig.

3.1c) as inputs, they measured the errors of the predicted values of the next time step. By

sliding this window along all the internal state trajectories, the errors of the predicted values

were calculated. The lower errors in the prediction means higher predictability. As a result

of measuring the internal state predictability from those controllers with high performance

for the pole balancing task (Fig. 3.1d, middle), some have highly predictable internal state

dynamics and others have much less one. Again, all the controllers, whether with high or

low Internal State Predictability (ISP), passed the same performance threshold for the task

given the same task from the training. However, it is interesting to find that if the authors

made the task harder by increasing the initial tilt angle of the pole, the controllers with

high ISP mostly retained their performance, but those with low ISP could not keep their

performance. They also analyzed the behavior trajectories of x, y positions and pole angles

from the controllers, and found that higher ISP does not necessarily mean simple behaviors.

Namely, even controllers with high ISP may have complex behaviors, and those with low

ISP may have simple behaviors as well.

To sum up, the previous computer simulation studies above showed that neural network

controllers with higher predictable internal state dynamics can attain higher performance in

harsher or changing environments, which also indicates higher chance of survival in evolution.

Also, the studies showed that the increased performance of the high ISP controllers does

not necessarily due to simpler (or predictable) behaviors. Such predictable internal state

dynamics could lead to prediction of external behavior and eventually to authorship of actions
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because a distinct trait of one’s own actions is always perfectly predictable. ‘Authorship of

actions’ means that an agent can distinguish its own motor actions from those of others

[51, 16, 11]. For example, humans know when we are the cause of our own voluntary motor

actions and take responsibility for the effects. Authorship of actions has been explained

by a feed-forward processing (we predict that we are to do an action and then observe the

consequences) and by a requirement for tight temporal binding between the intention to

carry out the motor action and the resulting sensory consequences. The inference of this

finding is profound. It implies that the internal state’s properties can affect the external

behavioral performance especially in changing environment, and predictable internal state

dynamics could be a necessarily condition for intelligent agents in the evolutionary pathway

to have authorship of actions and to adapt themselves to changing environment.

However, there is a missing link between the findings from the simulation studies and the

brain. The findings from the simulation studies do not necessarily mean that the internal

state dynamics affects the external behavior (authorship of actions) in the biological brain.

To fill this gap, I propose to investigate the role of predictability of internal state dynamics in

the brain by analyzing the human EEG data with conscious state as a surrogate of authorship

of actions.

Generally REM sleep is considered more conscious state than SWS. One approach (or

example) to explain the conscious states of REM sleep and SWS is whether reporting dream

or not during the different states. People usually cannot remember dream during SWS while

they can do during REM. In [23], the participants were awakened during SWS and REM

sleep and asked to report about their dream. Some participants awakened during SWS

reported about their dreams. For reporting details of dream, REM reports were significantly

longer than SWS reports, and semantic knowledge was mentioned more frequently as a dream

source for REM than for SWS dream report. With these experimental reports, we can say

SWS is at least less conscious state than REM.
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In this chapter, we analyzed public electroencephalogram (EEG) data from the Phys-

ioBank [43] to test our hypothesis. We took the EEG data taken during awake and sleeping

states (both slow-wave sleep (SWS) and rapid eye movement (REM) sleep) and measured

their predictability. Our results turned out to be consistent with our hypothesis that con-

scious states (awake or REM sleep) have high predictability while unconscious (or less con-

scious) states (SWS) have low predictability, i.e., awake and REM sleep EEG data exhibited

high predictability while SWS EEG data showed low predictability.

In the following, we will present our EEG data analysis method and the results, and

discuss limitations and implications of our findings on time perception and neurorobotics.

3.2 Materials and Methods

3.2.1 EEG data

For our analysis, we used the EEG data from PhysioBank. PhysioBank is a free online

database that has a large, growing collection of digitized physiological signals and related

data for the biomedical research community [43].

The particular database we used is the Sleep-EDF Database that is the recordings ob-

tained from Caucasian males and females (21 to 35 years old) under no medication. The

recordings contain horizontal EOG, Fpz-Cz, and PzOz EEG, sampled at 100Hz. The details

of the Sleep-EEG Database is described in [62].

Among these data sets, we used the Fpz-Cz EEG data of the four subjects (two males

and two females) from the database. An EEG amplifier measures voltage difference between

different points on the scalp. The Fpz-Cz EEG is the measure of the two electrodes that are

located at the Fpz (above the nasion) and the Cz position (top of the head), respectively.

3.2.2 EEG data analysis

Figure 3.2 shows the EEG data sets we used for our analysis, from [62]. We used EEG

signals from four subjects with recordings during awake state (A–B), REM sleep (C–D), and
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Figure 3.2: EEG data [62] from the PhysioBank [43] are shown. Each row represent data
from each subject (four total) and each column represent different states. A. Awake, raw
data. B. Awake, smoothed (Gaussian filter, σ = 1) and peaks identified (circles). C. REM,
raw data. D. REM, smoothed and peaks identified. E. SWS, raw data. F. SWS, smoothed
and peaks identified. Each data set had 30,000 data points but here we are showing only
the first 1,000 for a better view of the details. Adapted from our recent work [151].
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SWS (E–F). We convolved the EEG signal with a Gaussian filter with σ = 1 to smooth the

signals. This was done to avoid sharp, high frequency peaks that made prediction difficult

in all conditions (awake, REM, and SWS).

A perceptron (a single unit in neural networks) is a linear predictor, which is similar to

the autoregressive (AR) model mentioned in [17]. Multi layer neural networks consisting of

many perceptrons are nonlinear predictor. [99] used feedforward neural networks (NNs) with

time delay inputs to predict nonlinear complex time series. Their neural networks predictor

showed accurate predictions for the small prediction steps (less than 5 steps). This result is

similar to our pilot experiment where we used feedforward NNs with time delay inputs to

perform one step prediction. With the original EEG data, the prediction was pretty accurate

for all REM, AWAKE, and SWS, and showed no difference between them.

Also, [32], compared the performance of the one-step-ahead prediction for EEG time series

data between NN-based time series prediction and linear adaptive autoregressive (AAR)

models. They presented that the NN-based time series approach is better than the linear

AAR model in their experiment.

We used the feed-forward neural network predictor approach we first used in [68]; note

that exact error values were used in this study instead of using the adaptive error rates. The

idea is to train a feed-forward neural network using the back propagation algorithm, where

the inputs are k past data points (k = 10 in our case) and the target output is the current

data point (Figure 3.3). Each EEG time series was traversed with a window of size 10 to

construct the input set and the value immediately following the time window was used as

the target value, thus forming the data set. Of the full data thus generated, 60% were used

for training, 15% for validation, and 25% were for testing.

Initially, we applied the above approach to predict the EEG time series directly. However,

we were not able to find any significant difference in predictability across the three different

conditions. Based on our successful pilot analysis of single neuron recording (spike train)
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Figure 3.3: A neural network predictor for a time series. The network predict a value
x at time t + 1 by looking k previous time steps from the current one at time t. The
neurons (perceptrons) are interconnected, and the weights of the connections are adjusted to
minimize the errors between the predicted output values and the ones in the train sets during
training phase. We used k=10 past data points as inputs, 10 hidden units, and 1 output
unit. The network was trained using the Levenberg-Marquardt algorithm, following [50]. In
the algorithm, a damping parameter determines how much the algorithm will approximate
Newton’s method (small value) or gradient descent (large value). The parameter was initially
set to 0.001 and its decrease factor set to 0.1 and increase factor set to 10. Training was
stopped when the validation set error failed to decrease for 5 consecutive epochs or if the
gradient value fell below 10−10. Note, however, that the particular type of algorithm used
for the prediction is not of central importance and we expect similar results with any other
reasonable algorithm.
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data, where we were able to predict the inter-spike interval (ISI), we considered detecting the

EEG signal peaks and predicting the inter-peak interval (IPI), or inter-peak distance ([131],

p. 83). Please refer to the Discussion section (Section 3.4) for more information regarding

neuronal ISI prediction and why we did not include those results here.

We used a simple local search (whether data point at t has a higher value than its

immediate neighbors at t− 1 and t+ 1) to detect the local peaks in the convolved EEG data

(Figure 3.2B, D, and F, marked with circles). From these peak locations, we calculated the

inter-peak interval (IPI). Using the same neural network predictor described in Figure 3.3,

we attempted to predict the k + 1-th IPI, given the past k IPI values from the EEG time

series. The training set was used for training and the validation set used to determine when

to stop the training. The test set (novel input) was used to calculate the IPI prediction

errors, by subtracting the predicted IPI from the true IPI.

3.3 Results

The IPI prediction error on novel data (not used during training or validation) are sum-

marized in Figure 3.4 and the error distributions shown in Figure 3.5.

The results show that, for all four subjects, on average, both awake state and REM have

lower IPI prediction error than SWS (Figure 3.4, all differences (except REM vs. AWAKE

for the subject 4) were significant [t-test, p < 10−6, n ∼ 2, 000]). These results support our

hypothesis regarding the predictability of internal state dynamics and consciousness (i.e.,

they should be correlated).

Curiously, REM data had the lowest IPI prediction error, even compared to the awake

state. This was somewhat unexpected since we hypothesized predictability will be correlated

with the degree of consciousness and by default we expect that the awake state is the most

conscious. This is an interesting counterintuitive result and we will discuss why this could

be the case in the Discussion section.
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The IPI prediction error distributions (Figure 3.5: note that the y-axis is in log scale)

also shed some light on the properties of the predictable dynamics in the EEG data and

the differences among the three conditions, awake, REM, and SWS. As expected, the IPI

prediction error distributions have a higher peak near zero for awake (red) and REM (blue),

compared to that of SWS (green). SWS has a much heavier tail, indicating that extreme

error values are much more common in this condition. Again, these results support our

hypothesis.

We also ran the FFT power spectral analysis with the EEG data to see a possibility that

the different IPI prediction errors between the three conditions are just simple reflection of

the power of alpha waves. Alpha waves are in the frequency range of 7.5-12.5Hz and known

for synchronous, coherent, and probably most predictable neural oscillations in EEG brain

signals. In the results of the FFT power spectral analysis with EEG data, alpha waves are

not notably observed for all data, even in the awake states. This is partly because alpha

waves are reduced with open eyes, drowsiness, and sleep. Note that the participants were

doing normal activity at home with open eyes when the AWAKE EEG data was recorded.

Therefore, it seems that there is no strong association between the IPI prediction and the

alpha wave spectral power in the EEG data.

An interesting property of all error distributions is that the side with positive error has

a broader spread compared to the side with negative error (i.e., the distribution is positively

skewed, with skewness ranging from 0.86 to 1.69). Since the error is calculated as error =

true − predicted, underestimation of the IPI seems more error-prone than overestimation.

See the Discussion section for what factors we think contribute to this this kind of skewness.

3.4 Discussion

In this chapter, we analyzed publicly available EEG data from sleep and awake states to

measure the predictability of the signals under conscious (awake and REM sleep) and uncon-
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Figure 3.4: Summary of EEG IPI Prediction Error Results (Mean and Standard Deviation).
Mean and standard deviation of IPI prediction error are shown for all four subjects, for
all three conditions (awake, REM, and SWS). The unit for the y-axis was 10 milliseconds.
For all subjects, awake and REM conditions resulted in lower IPI prediction error than
SWS, showing that predictive dynamics may be more prominent during conscious states.
All differences were significant (t-test, p < 10−6), except for REM vs. AWAKE for subject
4. See text for details. Awake state having higher IPI prediction error than REM state is
somewhat unexpected, which we will discuss further in the discussion section. Adapted from
our recent work [151].

Figure 3.5: EEG IPI Prediction Error Distribution The IPI prediction error distribution
is shown for all four subjects, each for all three conditions (awake [red], REM [blue], and
SWS [green]). The x-axis is in linear scale while the y-axis is in log scale for a clearer
view of the probability of extreme error values. The unit for the x-axis was 10 milliseconds.
The trends are consistent for all four subjects. REM has the highest peak near zero error,
closely followed by awake state, and finally SWS which shows the lowest peak. SWS has the
heaviest tail, meaning that high error values are much more common than awake state or
REM. Adapted from our recent work [151].
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scious (SWS) conditions. We found that the predictability of EEG signals correlated with

the degree of consciousness. These results support our earlier hypothesis that predictable

internal brain dynamics is a necessary condition of consciousness. In the following, we will

discuss potential issues and interesting observations from our study, and propose potential

applications of our finding to time perception and neurorobotics.

There are potential limitations of our approach as we briefly mentioned in the Materials

and Methods section (Section 3.2). First, we measured predictability in the inter-peak

interval in the EEG signals, not directly on the raw EEG signals. Predictability measured on

raw EEG signals did not show any significant differences among the three conditions: awake,

REM, and SWS (pilot results, data not shown). This could be due to multiple factors, one

of which is the nature of the EEG signals. For example, EEG signals are weighted mixtures

of on-going electrical activity in the brain. Also, generally reduced levels of activity during

SWS may result in flatter signals (slowly changing and low-amplitude, further confounded

by mixing) which may be easier to extrapolate from. Based on this observation, we initially

analyzed single neuron spike train data obtained during sleep and awake states by [119].

Using the data, we used the same feed-forward neural network predictor to predict the inter-

spike interval (ISI) under awake, REM, and SWS conditions. Our results were consistent

with what we reported here, however, the data set was very small (on the order of 100

spikes per condition, compared to thousand peaks in the EEG data) so we could not draw

meaningful conclusions. However, since we found that using discrete events (spikes) instead

of the continuous wave form gave promising results, we tried to recover such events in the

EEG data which led us to the inter-peak interval (IPI) measure; (however, note that we are

not extracting spike information from the IPI information).

One rather unexpected result was that the IPI prediction error was lower for REM sleep

than awake state, and significantly so (t-test, p < 10−6 in all cases (except REM vs. AWAKE

for the subject 4)). Does this mean that subjects are more conscious during REM sleep than
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when they are awake? The reason for this may again be due to the mixed nature of EEG

signals, plus the natural sources of randomness in the stimulus environment during the

awake state. Because the awake EEG signals are driven both by the internal brain dynamics

and the external stimuli, a mixture of the two may be slightly less predictable. A possible

way to isolate the internal vs. external sources would be to use blind source separation,

e.g., independent components analysis [33], and correlate the isolated components with the

stimulus statistics. This way, we can rule out the externally driven signal variability during

awake state. Our prediction is that the predictability of these internal components would be

as high as that of the REM data.

Another interesting property of the IPI prediction error distribution is its positive skew-

ness under all conditions. Positive skewness means more positive error than negative error,

which indicates underestimation of IPI (since error = true − predicted). One possible ex-

planation for this is that the prediction mechanism may be tuned more to shorter IPIs as

the EEG signals generally tend to show high-frequency bursts followed by occasional pause

of low-frequency intervals. The IPI distribution (Figure 3.6) shows that, for all cases, the

distributions are positively skewed, and so the number of IPI instances smaller than the

means is less than the others (the number of instances bigger than the means). This trend

can explain the positive skewness of the IPI prediction error.

The methodology and results from this chapter can also contribute to a better under-

standing of higher level cognition related to time perception. In a general sense, our findings

suggest an important link between subjective mental phenomena and time, supporting re-

cent results that relates affective states and the experience of time (see [143] for a review).

Also, longer-time-scale events signified by IPI may have closer ties to higher level cognitive

function. [74] showed that in a computational simulation that in a bottle-necked Continu-

ous Time Recurrent Neural Networks in a cognitive timed decision task, higher parts of the

bottle-neck evolve slower dynamics than the lower parts in the network. Such a multi-scale,
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Figure 3.6: EEG IPI Distribution A-D. The IPI distributions are shown for all four subjects,
each for all three conditions (awake [red], REM [blue], and SWS [green]). For all cases, the
IPI distributions are positively skewed. E. The skewness values are in the table.

multi-mechanism aspect of the experience of time could also be linked to different classes

of movements, e.g., discrete vs. continuous movement classes [57]. As suggested by [36],

development of temporal processing capabilities may be dependent on a rich set of underly-

ing internal brain dynamics and studies like ours can help understand the requirements and

mechanisms of temporal processing in the brain. Our results showing that underestimation

of IPI is more error-prone than overestimation is also suggestive, i.e., overestimation may

have less severe consequences on the organism. [87]’s results showing human’s tendency to

overestimate time duration (in an embodied context) is in line with our observation. Inves-

tigating such biases (underestimation vs. overestimation) can lead to new insights on time

perception.

Finally, findings from our study can provide new directions for neurorobotics research

with a focus on time perception and temporal processing. Again, the use of IPI as a basis of

temporal event prediction can be adopted by neurorobotics, e.g., in reward event prediction
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[134]. Instead of continuous estimates of future event timing, discrete rank ordering could

be employed (e.g., analogous to rank ordering in visual depth perception). This could be

especially interesting if predictions of two different temporal events need to be compared.

Furthermore, multi-scale aspect can be introduced by convolving the robot’s internal brain

dynamics with Gaussian kernels with a different width, thus allowing the robot’s higher level

temporal processing mechanisms to utilize variously timed events. An open research problem

with respect to the above is how predictable internal dynamics can lead to the actual use

of the dynamics in prediction tasks that are behaviorally relevant to the robot, especially

involving motor tasks such as catching a falling ball [80]. Another interesting question

is to ask what are the origins of predictable dynamics. Our earlier studies showed that

delay and predictive capabilities are intricately tied together: Paradoxically, increasing delay

(e.g., axonal conduction delay) in the system tended to lead to more predictable dynamics

[73, 75]. This could be used as a round-about way for developing predictive capabilities

in neurorobotics, by a strategic use of delay intentionally planted in the system. Also, a

general lesson may be that delays are not always bad (see, e.g., [127] where broader delay

distributions led to the abolishment of complex dynamics in a neural network). A deeper

understanding of this connection can lead to robust time perception and control mechanisms

in intelligent sensorimotor agents.
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4. EMERGENCE OF TOOL USE BY EVOLVED NEURAL CIRCUITS

4.1 Introduction

Tool-use [52], which requires high levels of sensorimotor skill learning and problem solv-

ing capabilities, is one of the salient indicators of intelligence along with communication

(language) [117] and logic [4]. Communication and logical inference have been extensively

investigated in artificial intelligence (AI). However, tool-use is still largely under-developed

in the field of AI [27].

In this chapter, I investigate how the capability to use tools can spontaneously emerge

in an evolved neural circuit controller for a two degree-of-freedom articulated limb. The

goals of the project in this chapter are to find minimal and indirect fitness criteria for the

emergence of tool-use, and to analyze the properties of evolved neural circuits that permit

tool-use.

To support the background and motivation in detail, the rest of this section consists of

the review of tool-use in animals and in AI/Robotics, followed by the approach used in this

project.

4.1.1 Tool Use in Animals

Tool construction and use require high levels of sensorimotor skill, planning, and problem

solving capabilities. Only a small number of animals exhibit the capability of tool-use and

yet fewer are known to construct tools (see [114] for an overview).

Tool use is observed in various animals, not just in humans. For example, chimpanzees

use primitive tools such as stones or sticks [19, 138], macaque monkeys use stone axes for

Part of this section is reprinted with permission from Qinbo Li, Jaewook Yoo, and Yoonsuck Choe,
“Emergence of tool use in an articulated limb controlled by evolved neural circuits.” In Neural Networks
(IJCNN), 2015 International Joint Conference on, pages 1983-1990. IEEE, 2015. c 2015 IEEE.
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various purposes [49], parrots use sticks to reach objects beyond a barrier [9], Degus (a South

American rodent species) can be trained to use a rake-like tool to obtain food under a fence

[89], elephants also use sticks or other objects to obtain food located out of normal reach

[40], and dolphins use sponges to cover their snout when digging for food [116].

Tool construction is only rarely observed in non-human animals. Chimpanzees have long

been known to construct simple tools such as a stack of boxes to reach high-hanging fruit

[64]. More rescently, Price et al. [98] showed that Chimps, after training, can put together

two sticks to extend the reach of the tool. Latest results also show that wild monkeys

flake stone tools to obtain sharp edges [100]. Non-primate species have also shown tool

construction capability, although limited in its complexity. For example, New Caledonian

crows in captivity have been observed to bend a wire to create a hook to retrieve food

[63]. However, tool construction (especially in the wild) is extremely rare among non-human

animals.

There are several levels of tool construction and use with increasing difficulty [27]. Level

1 corresponds to the use of unmodified objects as a tool, which is most commonly observed

in animals. Level 2 represents the construction of simple tools through modification of an

object or putting together a small number of objects. Level 3 is where multiple objects are

put together to form a more complex tool. Level 4 involves two or more agents cooperating

to construct a tool, including abstract (or social) tools. Level 5 calls for the ability to explain

how tools are constructed, used, and why. Animals other than humans have only reached

level 2. In this dissertation, I will focus on task up to level 2 since this is already a very

challenging task. Note that even this early level has not been explored in AI research (Table

4.1)
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4.1.2 Tool Use in AI and Robotics

Tool use [52], which requires high levels of sensorimotor skill learning and problem solv-

ing capabilities, is one of the salient indicators of intelligence along with communication

(language) [117] and logic [4]. Communication and logical inference have been extensively

investigated in artificial intelligence (AI). However, tool-use is still largely under-developed

in the field of AI [27].

4.1.2.1 Related work

In artificial intelligence and robotics, tool-use has recently gained attention (See [5]),

however tool construction is a relatively unexplored area. For a review, the various exsisting

works are listed as follows. See Table 4.1 for a comparison, where six features of the existing

studies are listed. Among the features, the meaning of “Affordance” is to recognize “Where

is the tool handle”, “What function does the tool afford?”, etc. [120, 128]. “Tool-body

assimilation” means “How does ones body image change or extend when the tool is used?”

([78][88], Fig. 4.1). Studies with “Real Robots” and/or “Simul Physics” include real robots

and/or physics simulation in experiments.

(1) Wood and Amant [147] used state-machine-based behavior using maximum-margin

clustering, where a robot dog was used for a reaching task with a stick. The set of

states and actions was pre-programmed.

(2) Learning through human demonstrations has been studied in [7, 71, 93, 108, 148].

In [7] by Arsenio, a humanoid robot learned to use tools such as hammers, drums,

saws, brushes, belles, etc. from human demonstrations. Tasks were modelled as a

finite Markov Decision Process (MDP) including states, tool-use actions (e.g. ham-

mering, dropping, poking, etc.), controller of the robot, and so on. In [71] by Lee et

al., tool-use motion knowledge (both tool manipulation knowledge and body motion
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Distal Receptive Field (hand)

Proximal Receptive Field (shoulder)

Figure 4.1: Tool-body assimilation (Receptive Field Changes Due to Tool Use). The recep-
tive fields for distal (end effector: hand) and proximal (first joint: shoulder) parts of the arm
of bimodal (visual [pink] and somatosensory [blue]) neurons are shown. The visual RFs of
these neurons are known to extend due to tool-use: (c) and (g). Adapted from [78].
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knowledge) was learned from human tool-use demonstrations. Examples of tool-use

in this study are wielding a tennis racket, a wooden sword, a golf club, etc. Both a

simulated physics and a humanoid robot were used for this work. Pastor et al.[93]

had humans physically guide the robot arm to generate demonstrations for tool-use

movement trajectories. The task included grasping and placing an object (e.g. cup),

where a seven degree-of-freedom (DOF) robot arm was used for the experiment. In

[108], grasping, holding, and dropping (a block) actions were sequentially presented by

human. Based on the demonstrations, a humanoid robot reproduced the actions by

mapping the corresponding sensory feedback from the observations to the robot’s own

sensory feedback. In the study by Wu and Demiris [148], humans demonstrated how

to use five different labelled tools (such as spanner, hammer, knife, etc.), where the

agent learned to classify the kind of tools by observing the tool-use movement from

the demonstrators (humans). The dynamic properties of the tools were observed. Af-

fordance, was used to classify tools, and hierarchical representations of the tools were

used for the learning.

(3) In [21] by Brown and Boesch, planning through inductive logic programming such as

go-to, pickup-object and drop-object, and pull-with-tool actions was used for tool-use

actions. (Also see [90], where a model of inductive logic programming was proposed

for tool-use actions.)

(4) Learning affordances via random trial-and-error or body babbling was investigated

in [22][60][120]. In Bullock et al.[22], a three DOF arm learned to reach a distant

target with tools (sticks) of variable lengths. The tool-use was learned through motor

babblings of the arm. In [60] by Katz and Brock, the task was learning kinematic

model of tools (e.g. scissors, shears, pliers, a stapler, etc.) by interacting with the

tools based on pre-programmed motions. A seven DOF robot arm was used. In the
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study by Stoytchev[120], a five DOF robot arm learned affordance of tools through

behavior babbling. The behaviors were encoded manually by the researchers. A stick,

L-stick, T-stick, L-hook, and T-hook are examples of the tools.

(5) Tool use based on tool-body assimilation was studied in [88][126]. Nishide et al.[88]

presented a method to apply a robot’s active sensing experience to create tool-body

assimilation model. The model learned that the robot’s dynamical properties change

when holding a tool. The tools were L-shaped, T-shaped, and I-shaped sticks. The

tools were pre-attached to the robot arm while generating nine pre-programmed mo-

tions for the learning. The task was moving objects to target locations. A seven DOF

arm of humanoid robot was used. Takahshi et al.[126] proposed a tool-body assimila-

tion model, where a recurrent neural network with multiple time-scales was used for the

body model learning. For exploration of the tool functions, predefined motions were

used. I-shaped tool, T-shaped tool, and L-shaped tool were used. A physic simulator

was used, where a robot arm was simulated to manipulate simple object moving tasks.

(6) Bayesian learning of tool affordances was investigated by Jain and Inamura [58]. The

tool affordance (that is the surface on which the tool contacts the object) was learned

by Bayesian learning. The Bayesian networks representing tools were updated by

interacting with humans. Various shapes of sticks and rakes were used as tools. The

experiment was conducted in a physic simulator. In [45] by Gonccalves et al., Bayesian

network learning was applied for learning affordance of tools (e.g. stick, L-stick, fork,

etc.) and objects (e.g. ball, cube, etc.) as well. Four directional pushes were defined

as actions (e.g. left, right, pull closer, and push away). For the effects of actions, five

discrete levels were defined. Both a physic simulator and humanoid robot were used.

(7) Tikhanoff et al.[129] investigated affordance learning with least square support vector

machine. Rolling and pulling affordance was learned. The rolling affordance repre-
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sented the property of the object (such a toy car) to react (to roll a certain distance)

to a tapping action from the robot. The pulling affordance meant the property of the

tool (such as a rake or a stick) to pull an out-of-reach object, where how the tool gets

in contact with the object for pulling needs to be learned. A humanoid robot was used

for this work.

(8) In [121] by Stuckler and Behnke, tool-use was investigated in a service robot (with an

anthromorphic upper body). They proposed to adapt the tools themselves to have spe-

cial handles for providing stable grips for the robot. RGB based perception algorithm

was applied to segment objects. Various tool-use strategies such as sweeping-up-dust,

bottle-opening, and watering-plants were pre-programmed.

(9) Self-supervised learning of grasp-dependent tool affordance was investigated by Mar et

al.[77]. Learning pull affordance of tools were conducted by considering both how the

tool is grasped and how the action is performed. Three different orientations were used

for grasping the tools (e.g. rake, stick, L-stick, etc.). The effects of tool-use actions

were measured as the displacement of a cube object. The affordances were discovered

by clustering the observed effects. Both a physics simulator and a humanoid robot

were used.

(10) In [84] by Mokom and Kobti, tool capabilities (affordances) recognition task was con-

ducted. Tool types and their capabilities were encoded as IDs, and a genetic algorithm

was used for the tool capability recognition task in a simple grid world. A tool capa-

bility represented a way the agent can successfully use the tool.

(11) Evolved tool using behaviors were investigated by Chung and Choe [28], where the

agents were evolved with a genetic algorithm to learn to use (i.e. to drop and detect)

markers for a food foraging task or a ball catching task. In Schafer and Bergfeldt’s
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work[111], the agents (predators) were evolved with a genetic algorithm to learn to

catch an evasive prey agent effectively using tools in a grid world. Two types of tools

were used. When one of the tools was acquired, the agent’s sensory or motor ability

was improved.

4.1.2.2 Two Gaps

There are two gaps in tool construction and use in AI and Robotics: (1) Most of the

works listed above depend on some degree of designer knowledge regarding tool-use and

motor control, e.g., fully hard coded behavior, the tool being pre-attached to the limb, pre-

defined tool features, pre-defined motor primitives, etc. Evolution-based approaches [28][111]

were relatively free of these constraints, but in those cases the tools were more or less simple

markers, not something than can be manipulated with a limb-like structure of the agent.

(2) Furthermore, AI-based work on tool construction is almost non-existent (see Table 4.1).

Wang et al.[135] took a synthetic approach to construct tools, but their focus was more

on understanding the various mechanistic and energetic needs of using the synthetically

generated tools, not on tool construction by agents. In the recent study by Reams and Choe

[101], the agents (with two DOF articulated limb) were evolved for a simple tool construction

(combining two sticks) task to reach distant targets, but the task was a simple reach using

one type of tool (stick). Also, the locations of the tools and targets were encoded.

4.1.3 Approach

In this chapter, we investigate how the capability to use tools can spontaneously emerge

in an evolved neural circuit controller for a two degree-of-freedom articulated limb. The goals

of the study were to find minimal and indirect fitness criteria for the emergence of tool-use,

and to analyze the properties of evolved neural circuits that permit tool-use. We evolved

the neural circuit controller by gradually augmenting the network topology (NeuroEvolution

of Augmenting Topologies [NEAT], by Stanley and Miikkulainen [118]). The environment
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Reference Learning Affordance Tool-body Real Simul Tool
Assim. Robots Physics Constr.

Wood and Amant[147] X
Arsenio[7] X X X

Lee et al.[71] X X X
Pastor et al.[93] X X

Saegusa et al.[108] X X
Wu and Demiris[148] X X
Brwon and Boesch[21] X

Bullock et al.[22] X X X
Katz and Brock[60] X X X

Stoytchev[120] X X X
Nishide et al.[88] X X X X

Takahshi et al.[126] X X X X
Jain and Inamura[58] X X X
Tikhanoff et al.[129] X X X X

Stuckler and Behnke[121] X
Gonccalves et al.[45] X X X X

Mar et al.[77] X X X X
Mokom and Kobti[84] X X
Chung and Choe[28] X

Schafer and Bergfeldt[111] X
Wang et al.[135] X X

Reams and Choe[101] X X X
Proposed (Chapter 4) X X X X
Proposed (Chapter 5) X X X X X

Table 4.1: Tool Construction and Use in AI and Robotics. Six features of the existing works
listed in text are compared. The meaning of “Affordance” is to recognize “Where is the
tool handle”, “What function does the tool afford?”, etc. “Tool-body assimilation” means
“How does ones body image change or extend when the tool is used?” “Real Physics” and/or
“Simul Physics” mean studies include real robots and/or physics simulation in experiments.
See the text for details.
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consisted of a two degree-of-freedom articulated limb, a target object, and a tool. The task

was to reach a target object that may or may not be within reach of the limb, with or without

the tool. Different fitness criteria were tested to investigate which one is good enough to

give rise to tool using behavior for the limb. We define three basic fitness criteria and tested

their different combinations to evolve the neural circuit for the controller for the limb. We

avoided using direct heuristics such as predefined motions or programmed guidance. Our

results indicate that simple, indirect criteria such as distance to target, number of steps

to reach target, and if the tool was fetched was enough to give rise to tool using behavior.

Quantification of recurrent loops in the neural circuit topology showed that better controllers

have more such loops. Furthermore, if recurrent loops are prohibited, the task performance

greatly degraded and the evolved circuit had much more neurons than their recurrent circuit

counterpart.

The rest of the chapter is organized as follows. We will first describe our approach and

method in Section 4.2. Details of the experiments are described in Section 4.3. Results are

reported in Section 4.4, followed by discussion and future work in Section 4.5 and conclusion

in Section 4.6.

4.2 Methods

We evolved neural circuits of arbitrary topology to control a two-limbed articulated arm

in an object reaching task. The environment was equipped with a tool (a stick) that can be

picked up and used to get to objects beyond the reach of the limb.

4.2.1 Algorithm for Evolving Neural Circuits

Early efforts in neuroevolution were limited to adjusting the connection weight, while

leaving the neural circuit topology fixed [85, 139, 140]. In these approaches, each genotype

was mapped to a full neural network. However, these approaches were not flexible enough

and could not handle increasing levels of task complexity. More recent approaches were
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based on single neuron-level evolution [3, 44, 86, 97], however, the evolved neurons had

to be assembled into a network, which typically had a fixed topology. In this chapter, I

needed a method that allows the network topology to evolve since increasingly complex

tools and behavior are required, thus the methods above are not suitable. There are several

approaches that allow network topology evolution [42, 150], however, these were based on

weight-topology co-optimization, thus, they were not flexible enough. For this chapter, I

used a neuroevolution technique called the Neuroevolution of Augmenting Topologies, or

NEAT [118]. Unlike most other neuroevolution techniques, NEAT allows the neural circuit

to evolve to have an arbitrary connection topology.

In NEAT, the chromosome encodes neurons and their connections separately, as well

as the connection weights. Neurons and connections can be added or removed to change

the network topology, thus the chromosome has a variable length. Mating of chromosomes

with different network topology is achieved through the use of a quantity called innovation

number, unique to each gene, that indicates the evolutionary origin of that particular gene.

Innovation numbers allow only compatible genes to mate (i.e., genes that have the same

ancestral origin).

See Fig. 4.2 above for the genotype to phenotype mapping, and crossover of topologically

different networks. Mutation is not shown in the figure but its implementation is straight-

forward (insert or delete connections or neurons). Another unique mechanism of NEAT is

speciation that helps freshly changed topology to be preserved despite the initial plunge

in fitness. The rest of the algorithm is similar to other neuroevolution or evolutionary

algorithms: instantiate phenotype from genotype→ test in the task environment→ calculate

fitness → selection and reproduction.
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(a) Genotype

(b) Crossover

Figure 4.2: Neuroevolution of Augmenting Topologies (NEAT). (a) The genotype-to-
phenotype mapping in NEAT is shown. Each node and each connection has a gene. Each
connection gene has an enable/disable flag and a unique identifier, the innovation number.
(b) Crossover of two parents with different topology is shown. The genes of the two parents
are aligned so that the innovation numbers match up. Adapted from [118].
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4.2.2 Fitness Criteria

Our aim in selecting the fitness criteria was to find measures that do not directly dictate

the evolved tool-use behavior (i.e., minimal and indirect measures). We used three basic

fitness criteria and tested different combinations of them to evolve the neural circuit controller

for the limb. For each controller, by the end of 100 trials, the following quantities were

calculated: (1) D: distance between the end effector and the target (Eq. 4.1); (2) S: steps

taken to reach the target (Eq. 4.2); and (3) T : tool pick-up frequency (Eq. 4.3).

D = 1−
∑

k ‖~ok − ~ek‖
K ×Dmax

, (4.1)

S = 1−
∑

k sk
K × Smax

, (4.2)

T =

∑
k tk
K

, tk =

 1 if tool was picked up

0 otherwise
(4.3)

where ~ok and ~ek are the coordinates of the target object and the end effector of the limb,

respectively. The Euclidean distance ‖ · ‖ is normalized by the maximum radius of the

environment Dmax. K indicates the total number of the trials (K = 100 in the experiment)

and k indicates kth trial. sk indicates the number of steps taken before reaching the target,

and Smax is the maximum movement steps for each trial (Smax = 500 in the experiment). tk

is 1 when the tool was picked up during the trial and 0 otherwise. Different combinations of

the fitness criteria elements were tested: D, S, DS, DT , ST , and DST . Multiplication (“×”)

was used when combining the fitness criteria elements (e.g., DS means D×S). In addition,

neural circuits evolved with and without recurrent connections were compared (SST = S2T

and SSTnoRecur = S2TnoRecur).
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4.2.3 Input and Output Interface for the Neural Circuit

It is important to define the right sensory inputs to represent the environment properly,

especially for artificial agents learning through action and feedback loops [137]. It is widely

believed that we encode the space around us in a body-centered coordinate system. In [76],

the authors compared two forms of representations: world-centered sensory representation

(WC) and agent-centered sensory representation (AC). For example, AC can use polar coor-

dinates while WC can use Cartesian coordinates. The authors further proposed the relative

agent-centered sensory representation (RAC), which is the relative difference between two

ACs.

In our experiment, we used RAC as the sensory inputs to the limb controller neural

circuit. To be specific, the RAC between end effector and target, and the RAC between end

effector and the tool were used. The details for AC (Fig. 4.3) and RAC are as follows.

ACend eff = (ϕ1, d1) (4.4)

ACtarget = (ϕ2, d2) (4.5)

ACtool = (ϕ3, d3) (4.6)

RACend eff&target = (ϕ2 − ϕ1, d2 − d1) (4.7)

RACend eff&tool = (ϕ3 − ϕ1, d3 − d1) (4.8)

Other inputs for the limb controller were the joint limit detectors (ϑ1, ϑ2) that can sense

whether the joints reach the limitations as follows. The last two inputs were the current
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(a) Sensory Representation (b) Kinematics

Figure 4.3: Agent-centered sensory representation (AC) and kinematics of the joint arm. (a)
AC uses a polar coordinate system. ϕ1, ϕ2, and ϕ3 represent the angles for the end effector,
the target, and the tool, respectively. d1, d2, and d3 indicate the distances to the end effector,
the target, and the tool, respectively. (b) The limb consists of two joints J1 (θ1) : J2 (θ2),
and the arm segments L1 : L2 (with the length ratio of L1 : L2 = 1 : 1.25). The two joint
angles θ1 : θ2 are controlled by the neural circuit output.

angle of the two joints (θ1, θ2).

ϑ{θ1,θ2} =


1 if {θ1, θ2} ≥ 150o

1 if {θ1, θ2} ≤ −150o

0 otherwise

(4.9)

In a nutshell, each neural circuit consists of eight inputs, two outputs, zero or more

hidden neurons, and positive (excitatory) and negative (inhibitory) connections (Fig. 4.4).

The eight sensory inputs are RAC between the end effector and the target, RAC between

the end effector and the tool, the two joints angles (θ1, θ2), and two limit detectors for θ1

and θ2. The input values are normalized between 0 and 2 except the d1, and d2 for RAC.

49



(a) Simple neural controller

(b) Controller-environment interaction

Figure 4.4: Neural circuit controller and the jointed limb. (a) A neural circuit controller
consists of eight sensory inputs, two motor outputs, and zero or more hidden neurons. The
sensory inputs are RAC between the end effector and the target, RAC between the end
effector and the tool, two joints angles (θ1, θ2), and two limit detectors for θ1 and θ2. The
motor outputs are for the two joint angles. The neurons are connected with excitatory (solid)
and inhibitory connections (dashed) including recurrent connections. (b) The interaction
cycle between the neural circuit controller and the environment is shown. When the end-
effector reaches the tool end, the tool is automatically attached to the limb and the end of
the tool becomes the end-effector. Note: the controller was not explicitly notified of the limb
extension due to tool pick-up.
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4.3 Experiment (Simulation)

The task environment consisted of a two degree-of-freedom articulated limb, a target

object, and a tool (Fig. 4.4b and Fig. 4.5). The articulated limb moves on the 2D plane by

changing θ1 and θ2. The task is to reach the target with or without the tool. The details

about the limb, the task, and the experimental procedure are described below.

(a) Target out of reach (b) Target within reach

Figure 4.5: Example task conditions. The environment consists of two degree-of-freedom
articulated limb, a target object, and a tool, all on a 2D plane. Note that the tool’s initial
locations are variable. The two half-circles indicate the original reach (inner) and the reach
with tool-use (outer).

4.3.1 Reaching Task

The task is to evolve a neural circuit controller to reach targets with or without the tool.

Amant and Wood [5] argued that animals such as chimpanzees, elephants, and parrots have

some level of intelligence that can be measured, and similar experiments and metrics can be

applied to artificial agents. In [78], a task for reaching a distant object using a tool (stick)

was used to observe tool-use in monkeys. They found that the body schema changes in the

monkey’s brain when the tool was in use. The task of reaching a distant object using a tool

can be categorized as simple tool-use, according to the “tooling test” taxonomy proposed by

51



Amant and Wood [5].

4.3.2 Articulated Limb

The articulated limb consisted of two joints (θ1and θ2), and two links (L1 and L2) (Fig.

4.3). The limb was able to move on the 2D plane by changing θ1 and θ2. It can move the

two joints left or right. At each time step, the velocity limit was from -1.5o to 1.5o. The two

outputs of the neural circuit (the limb controller) were connected to the two joints to move

the limb. The ranges of the two joints were from -150o to 150o.

4.3.3 Experimental (Simulation) Procedure

Each two degree-of-freedom articulated limb was given 100 trials to perform the target

reaching task. In each trial, the limb was allowed to move up to 500 time steps (maximum

time step). For each trial, the target and the tool were placed at random locations. The

distance of the target could be either within the reach of the limb or not (the tool was always

within the reach of the limb; see Fig. 4.5). In the latter case, the limb must use the tool

to reach the target (otherwise it will fail). If the limb successfully reached the target, the

current trial ended and the number of time steps taken was recorded. If the agent failed to

reach the target, the distance from the end effector to the target was recorded. The fitness

of the agent was calculated based on the sum of final distances (Eq. 4.1), the total time

steps (Eq. 4.2), and the number of times the tool was picked up (Eq. 4.3), as described in

the Methods section. Different combinations of the fitness criteria elements were tested as

described in Section 4.2.

We evolved the the neural circuit (the limb controller) for 120 generations with a pop-

ulation size of 100. To evaluate the performance, after the 120 generations were done, we

picked the best limb controller and repeated 10 times a set of 100 test trials (total 1,000

trials). With this, we compared the performance and the trends throughout the generations,

as well as the network topology characteristics. For all experiments, the within-reach and
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out-of-reach conditions were balanced (50% each).

4.4 Results

4.4.1 Evolved Neural Circuits and Observed Behavior

Fig. 4.6 shows the network topology of evolved circuits under different fitness criteria.

The one that included tool pickup frequency (T ) in its fitness showed a much simpler network

while maintaining the same level of performance. In Fig. 4.7, limb movements are shown as

time-lapse images. Time is encoded as the pixel intensity, where darker means more recent

state. The three images in the top row show examples of successful movements. Starting

position is marked as s©, tool pick up event as t©, and ending position as e©. Target location

is marked �. The limbs (blue and red lines) in the three images first move towards the tool

(green line with a circle at the handle) to pick it up, and then the extended limb moves

towards the target. The trajectories of the end effectors are shown as black solid curves.

In the bottom row, the three images show examples of unsuccessful movements, where the

three movements of the limb could not reach the target ( e© is not near �).

In successful trials, the limbs slowed down toward the target, but in unsuccessful cases

they moved with almost the same speed at all times. It seems that the successful neural

circuits learned to move slowly when fine control is needed. Also, another interesting behavior

was observed. When approaching the target after picking up the tool, the limbs first aligned

the ACend eff angle (ϕ1) to the ACtarget angle (ϕ2), and then reduced the difference between

ACend eff distance (d1) and ACtarget distance (d2), by extending the limb toward the target.

4.4.2 Success Rate for Each Fitness Criterion

When measuring the performance of the different fitness criteria, comparing the raw fit-

ness scores is not fair because different fitness criteria produce different fitness score scales.

Therefore, we used success rate to compare the performance between different criteria. Suc-

cess rates are the percentage of successful target reach events during the 1,000 test trials.
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(a) Evolved neural circuit with fitness=S2T .

(b) Evolved neural circuit with fitness=DS.

Figure 4.6: Examples of evolved neural circuits. (a) Evolved neural circuit with fitness
criterion S2T (speed squared and tool pick-up frequency): 24 neurons (8 sensory inputs, 2
motor outputs, and 14 hidden neurons) and 90 connections (49 excitatory and 41 inhibitory
connections; 10 are recurrent). (b) Evolved neural circuit with fitness criterion DS (distance
and speed): 45 neurons (8 sensory inputs, 2 motor outputs, and 35 hidden neurons) and 252
connections (124 excitatory and 128 inhibitory connections; 10 are recurrent).

54



Figure 4.7: Time-lapse images of representative limb movements. The three images in the
top row ((a), (b), and (c)) show examples of successful movements (with fitness criteria
S2T ). In the movements of (a) and (b), the limbs (blue and red lines) first move towards
the tool (green horizontal line) to pick it up (i.e., the limb is extended), and then move
towards the target (�). In the movement of (c), the limb moves directly toward the target
without picking up the tool. The trajectories of the end effectors are shown as black curves,
and parts of the trajectories that may be hard to keep track of are annotated with orange
→. The three images in the bottom row ((d), (e), and (f)) show examples of unsuccessful
movements (using fitness criteria S2T without recurrent connections), where the limbs failed
to reach the target.
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For each fitness criterion, we selected the best neural circuit from the last generation and

then ran 1,000 trials. The entire process of evolution and testing was repeated four times

(n = 4). The results are summarized in Fig. 4.8.

In general, DT, ST ,and DST showed superior success rates than their counterparts that

did not use the tool pick-up frequency criterion T (D,S, and DS). Within the same group

(within {DT, ST,DST} or within {D,S,DS}), the success rates were similar (t-test, n = 4,

p > 0.1 in all cases). However, differences across the two groups were statistically significant

(t-test, n = 4, p < 0.01 for all cases).

The fitness criteria only using D (distance) or S (number of steps) did not show good

performance (around 50%), neither did the combination DS. However, combining with T

(tool pick-up frequency) boosted the performance (DT, ST , around 70%). This indicates

that giving reward for simply picking up the tool, even without any further implications

given, could lead to the emergence of adaptive tool-use. Related observation was reported in

an experimental study. Amant and Wood [5] noted that in the experiment in Visalberghi and

Limongelli [133], capuchin monkeys frequently achieved tasks requiring tool-using ability, by

quickly trying many inappropriate strategies with tools (e.g., pick up something and wield

it without a clear plan).

In most cases, the fitness criterion S (number of steps) seems to be useful (since high S

fitness also means target has been reached, early). The limbs evolved with S (such as ST

and DST ) reached the target directly without picking up the tool, if the distance to the

target is within the limb’s reach. For the fitness criteria without S but with T (such as DT ),

we observed that the limb mostly tried to get to the tool first even when the target is within

reach.

As mentioned above, about 50% of the trials were within-reach condition and the other

50% out-of-reach. However, note that even in cases where the success rates are around

50%, the tool was used to reach out-of-reach targets. That means performance of about 50%
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included cases where tool was used successfully to reach out-of-reach targets, and cases where

within-reach targets were not reached. For example, the success rates for the beyond-reach

trials were D (17.78%), S (31.66%), and DS (28.65%) for the fitness conditions lacking T;

and DT (93.70%), ST(90.47%), DST(94.07%) for the conditions with T. In sum, D/S/DS

conditions did utilize the tool, although less frequently than DT/ST/DST.

Figure 4.8: Average success rates of controllers based on different fitness criteria. Four sets
of experiments (evolution of the neural circuit controller followed by testing) were ran for
each fitness criterion. In general, fitness criteria that included T (tool pick-up frequency)
did significantly better than those that did not include T (t-test, n = 4, p < 0.01). Results
with S2T were similar (data not reported here). Note that the target was placed within the
limb’s reach only ∼50% of the time during the trials. See text for details.
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Figure 4.9: Fitness over generations and network size, with or without recurrent connections.
S2T with (blue line) and without recurrent connections (red line) are compared. Top-left:
max fitness scores through the generations. Top-right: average fitness scores. Bottom-left:
number of total neurons. Bottom-right: number of total degrees (number of connections) in
the neural circuits through the generations.
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4.4.3 Contribution of Recurrent Connections

We compared neural circuits evolved with and without recurrent connections. The S2T

fitness criterion was used to evolve the neural circuit. In the first case recurrent connec-

tions were allowed (S2T ), and in the second case only feedforward connections were allowed

(S2TnoRecur). First, we compared the success rates of the best chromosomes for the two

conditions (S2T : mean = 80.68%; S2TnoRecur: mean = 52.58%). The difference was statis-

tically significant (t-test, n=4, p < 0.01). Next, we compared the maximum fitness scores,

average fitness scores, the number of total neurons, and the total degrees (the total number

of connections) throughout the generations. In Fig. 4.9, top-left and top-right panels show

the maximum fitness scores and the average fitness scores throughout the generations when

evolving the neural circuits. The one with recurrent connections shows better performances

throughout. However, interestingly, the number of neurons and connections in the neural

circuits shows the opposite trend, as shown in the bottom-left and the bottom-right panel.

The neural circuit without recurrent connections has more neurons and more connections

even though the controller (neural circuit) shows significantly lower performance than the

one with recurrent connections. This observation emphasizes the importance of recurrent

connections in evolving neural circuit controllers with continuous action and feedback loop.

Recurrent connections in neural networks can provide memory of the past. Also, recur-

rent connections can provide the ability to predict future internal dynamics, which is an

important ability for neural circuit controllers, especially for challenging control tasks [69].

Also, we analyzed the correlation between (1) the number of recurrent connections and (2)

success rates under different fitness conditions (Fig. 4.10). Self loop, 2-hop, and 3-hop loops

were counted as recurrent connections. The six fitness criteria compared earlier were analyzed

(D,S,DS,DT, ST , and DST ). For each fitness criterion, the best neural circuits from each

generation (total of 120 per condition, generation 1 to generation 120) were analyzed to
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Figure 4.10: Correlations between the number of recurrent connections (self loop + 2 hops
+ 3 hops) and success rates. The data points (blue “x”), the linear regression lines, and
correlation coefficients (r) are plotted, for the six fitness criteria. For each fitness criteria,
the 120 best neural circuits for each generation (generation 1 to 120) were analyzed to see
the correlation between the number of recurrent connections and success rates (average of
1,000 trials each). The total number of cycles (number of loops) is found to be positively
correlated with success rate. Note that the correlation is even higher for those that included
T (tool pick-up frequency) in the fitness.
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see the correlation between the number of recurrent connections and success rates (same

as before). The correlation plots show a trend that the fitness criteria with comparably

high correlation coefficients (such as DT, ST , and DST , the ones with T [tool pick-up

frequency]) have high success rates in Fig. 4.8. This indicates that the recurrent connections

affect positively the performance of the evolved neural circuits (or vice versa). However,

the number of recurrent connections themselves may not be critical for the performance as

long as recurrence is allowed. Instead, how they are connected could be more important:

recurrent connections that are able to predict future internal dynamics [69] could result in

neural circuits with higher success rates.

4.4.4 Internal Dynamics

Studying evolutionary autonomous agents (EAAs) has important potentials to under-

stand structure, function, and behavior of biological neural systems [107]. Analysis of neural

information processing including internal neurons dynamics in EAAs can provide insights on

the function of biological nervous systems. However, even with EAA, fully understanding

each neuron’s role and their connection to behavior is not a trivial task, especially as the

network size increases. In this section, we present some preliminary analysis of the internal

dynamics of evolved neural circuits and correlate the dynamics with behavior.

Fig. 4.11 shows time series values of the fifteen hidden neurons of an evolved neural

circuit. In the time series correlation matrix (Fig. 4.11(b)), we can observe four groups of

neurons that are highly correlated. The four clusters are cluster 1 (hid14415511, hid14416983,

hid14420563), cluster 2 (hid14417371, hid14422164), cluster 3 (hid14415634, hid14415631),

and cluster 4 (hid14418199, hid14422660). As we can see in Fig. 4.11(c) and (d), the groups

of neurons respond (change activity) to the behavioral events 1©, 2©, 3©, and 4©. At the

event 1©, the limb changes the movement towards the tool, and at 3©, it changes towards

the target. Tool pickup happens at the event 2©, and the limb reaches the target at 4©.
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(a) Evolved neural circuit with fitness=DST .

(b) Time series correlation matrix of
the fifteen hidden neurons

(c) Limb movement (time-lapse image) (d) Time series values of the fifteen hidden neurons

Figure 4.11: Internal dynamics of fifteen hidden neurons, their correlations, and matching
limb movements. (a) Evolved neural circuit with fitness = DST. (b) Time series correlation
matrix of the fifteen hidden neurons. (c) Time-lapse image of the limb behavior. (d) Time
series values of the hidden neurons. Event in (c) are marked with dashed lines. See text for
details.
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Cluster 3 responds to 1© and 3©, while cluster 4 to 2© and 4©. There are single neurons that

also exhibit interesting behavior, e.g., hid14416298 (third row from the bottom of Fig. 4.11d

showing rapid oscillation between events 2© and 3©).

4.5 Discussion

The main contribution of this chapter is two-fold: (1) we showed that tool use behavior

can be evolved with minimal, indirect fitness criteria, and (2) we found correlations between

recurrent connections and tool-use behavior. In most prior tool-use research, the tool was

either attached to the agent by default or hard-coded representations were used for the

tool. In our case, the distinction between tool and target object was blurred by design,

and whether the tool (or the target object) should be reached first was not dictated at all.

Despite this paucity of information, our neural controller was able to successfully perform

the target reaching task. Furthermore, we found that recurrent connections are key to the

success (perhaps since memory of events is needed, e.g., tool picked up, then can reach the

target).

The evolving neural circuit controllers also can be utilized for connectomics study. Study-

ing the connectome - a complete neural diagram of the brain - is a challenging problem due to

the complexity and scale (see [24] for a review). Synthetic connectomics can benefit natural

connectomics research by developing analysis methods based on behavior analysis, internal

dynamics analysis, lesion studies, and social context analysis [26]. As our preliminary anal-

ysis showed (Section IV. C and D), the synthetically evolving neural circuit controllers can

be a good resource for developing such analysis methods for connectomics.

4.6 Conclusion

In this chapter, we investigated how the capability to use a simple yet non-trivial tool can

spontaneously emerge in an evolved neural controller for a two degree-of-freedom articulated

limb in a target-reaching task. For evolution of the controllers, we used a neural circuit
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evolution algorithm that permits incrementally changing topology (NEAT). Our results show

that minimal, indirect fitness criteria such as distance to goal (D) , speed to reach the goal

(S), and tool pick-up frequency (T ) are enough the give rise to tool-use behavior. Although

the controller was not aware or not made aware of the significance of tool fetching event,

inclusion of T in the fitness significantly improved performance. We also found that among

the successful neural circuit controllers, those with more recurrent loops were even more

effective. When recurrent connections were prohibited, performance suffered. We expect our

results to help us better understand the origin of tool-use and the kind of neural circuits

that enabled such a powerful trait.
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5. END-TO-END TOOL USE LEARNING IN PHYSICS SIMULATION WITH DEEP

REINFORCEMENT LEARNING

5.1 Introduction

In this chapter, a more complex tool-use environment is implemented in a physics sim-

ulator. It is demonstrated that complex tool-use can be successfully learned with stepwise

composite reward shaping using a deep reinforcement learning method. In addition to the

background and motivation about the tool-use in AI and robotics (Sec. 4.1.2), this chapter

focuses on a more specific area, deep reinforcement learning, applied to tool-use.

In recent years, deep reinforcement learning (RL) have demonstrated good performance

in challenging domains such as Atari games [83], Go [115], and continuous control problems

[37]. However, the tasks that consists of many subtasks in specific order are still challenging

for deep RL. This is because in reinforcement learning an agent first should have some chance

to visit the predefined goal states by random exploration to get some rewards, otherwise it

will never get a chance to update its value or policy functions. Therefore, for tasks requiring

many subtasks to be completed in specific order, there is a very low chance of getting

appropriate rewards, if there is no guidance. For example, discrete action environments

such as arcade video games [83, 14], Super Mario Bros, VizDoom, Montezuma’s Revenge,

and Minecraft are identified to have such challenges [66, 94, 59]. These problems cannot be

solved just using the baseline deep RL methods.

Especially for domains with continuous action spaces, the use of RL is not well explored.

Algorithm development and their benchmarks are conducted mostly on tasks without se-

quential subtask completion requirements. Cutting-edge deep RL algorithms for continuous

action spaces are typically developed and benchmarked on physics simulation tasks such as

Swimmer, Hopper, Walker, Half-Cheetah, Ant, Simple/Full humanoid locomotions, Reacher,
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and Inverted Pendulum [20, 37, 54], in addition to the simple control tasks such as cart-pole

balancing and mountain-cart tasks. The physics-based control tasks above are about learn-

ing multidimensional control actions at a given time step to get higher rewards, but none of

the tasks consist of sequential subtasks to be completed in a specific order.

Given the background above, this dissertation makes two contributions. First, a tool-

use environment is proposed that consists of four subtasks to be completed in a specific

order. The goal of the task is to drag a distant object to a target location using a T-shaped

tool by controlling an articulated arm (three joints) with a gripper (one joint). The task is

motivated by the animal experiment in [78] (Fig. 4.1). To complete the task successfully,

the gripper needs to reach the tool handle, grab the tool, move the tool’s end-effector to

the object, and then finally move the object to the target location using the tool. The task

is implemented in MuJoCo physics simulator [130] for continuous action space control with

OpenAI Gym toolkit [20]. This tool-use task environment could be easily used for further

deep RL algorithm development and benchmarks. Environments involving tools are nearly

absent in the deep RL literature, especially for continuous action spaces.

Second, stepwise composite reward shaping is investigated for learning the multiple sub-

tasks in a specific order in the tool-use task. It is demonstrated that the tool-use task can

be successfully learned using stepwise composite reward shaping with a cutting edge deep

RL algorithm called Actor Critic using Kronecker-Factored Trust Region (ACKTR). The

stepwise composite reward schemes are compared to two other reward schemes to show the

effect of stepwise composite reward shaping. Also, the experiments show that the difficulty

of the tool-use task can be easily adjusted by selecting one of the four reward schemes, which

also could be utilized for further deep RL algorithm development and benchmarks.
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5.2 Approach / Method

In this section, first the tool-use environment implemented in a MuJoCo physics simu-

lator [130] is described (Sec. 5.2.1). Then, the various reward elements and four different

reward schemes using the elements including the stepwise composite reward schemes are de-

scribed (Sec. 5.2.2). Finally, the deep RL method, actor-critic policy gradient method using

Kronecker-factored trusted region (ACKTR), and the neural network architecture used in

this experiment are described (Sec. 5.2.3).

5.2.1 Tool-use Environment in a Physics Simulator

I implemented the tool-use task environment in MuJoCo physics simulator [130] for

continuous action spaces control with OpenAI Gym toolkit [20]. MuJoCo (Multi-Joint

dynamics with Contact) is a physics simulator for robotics, biomechanics, graphics, etc. for

fast and accurate simulation.

As in Fig. 5.2, the tool-use task model consists of an articulated three joints arm (blue)

with a gripper (gray) that has one joint, an object (green ball), and a T-shaped tool (pink).

The three arm joints are controlled by the torques for the joints which is between 1.0 to -1.0.

The gripper joint works like a discrete value where 1.0 is applied to close the gripper if the

action input for the joint is greater than 0.0, otherwise -1.0 is applied to open the gripper.

All the joints including the object and the tool moves in the xy plane.

The task arena is surround by the four boundaries (top, bottom, left and right) and the

goal of the task is to move the object to the bottom boundary using the tool. The tool

location is fixed, and the arm is located either on the left or the right side of the tool, and

the object locations are randomly chosen out of the arm’s reach for each episode.

To complete the task, four subtasks should be completed in sequential order; (1) the

gripper needs to reach the tool handle while the gripper is open; (2) grasp the tool handle;

(3) move the tool’s end-effector to the object while keeping the gripper closed to manipulate
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the tool; (4) move the object to the target location (bottom boundary of the arena) by

maneuvering the tool.

The maximum time step for each episode is set to 500 steps where 1 time step corresponds

to 0.01 seconds. Once the final task condition (i.e. moving the object to the target location

using the tool) is satisfied, the episode ends early and the remaining steps are calculated as

an extra reward for the task completion speed.

5.2.2 Stepwise Composite Reward Shaping

When rewards are sparse it is more challenging to learn the task since the agent needs to

rely on random exploration until it accidentally hits a state where rewards can be observed.

If the agent has lower chances of getting a reward signal, it also has lower chance of learning.

Especially when a task consists of subtasks where a completion of one task is required to

complete next subtasks in large action spaces, reaching a final state (where the final task is

successfully completed) through naive random exploration is very unlikely to succeed. The

tool-use task in this chapter is such a task: The task environment with continuous action

spaces consists of four subtasks (reach, grasp, tool-to-object, and object-to-target) to be

completed in that specific order.

Therefore, one sparse reward that can only be given when the final task is completed (i.e.

move the object to the target) is very unlikely to be observed through random exploration.

In addition, shaping rewards for the sequential order subtasks is not trivial, because one

reward element for a subtask can be turned into noise and interruption for other tasks.

In this chapter, I propose a stepwise composite reward shaping method following [96]

for the tool-use task where the composite rewards for the subtasks are shaped in a stepwise

manner. In the following section, the reward elements used for reward shaping are described

(Sec. 5.2.2.1 and 5.2.2.2). Next, four different reward schemes used in the experiments

are described (Sec. 5.2.2.3): (1) stepwise composite reward with intermediate elements; (2)
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stepwise composite reward without intermediate elements; (3) one sparse reward; and (4) all

reward elements without stepwise order.

5.2.2.1 Subtask completion reward elements

First, the primitive elements that are used in the reward elements for composite reward

shaping are defined below.

• ~pG: the pinch position of the gripper.

• ~pL: the position of the left claw of the gripper

• ~pR: the position of the right claw of the gripper

• ~pH : the position of the tool handle.

• ~pE: the position of the tool end-effector.

• ~pO: the position of the object.

• ~pT : the position of the target (the bottom boundary of the arena).

The four subtasks (reach, grasp, tool-to-object, and object-to-target) are considered to

be completed if the following conditions are satisfied.

• Reach-Tool: The pinch position of the gripper is close enough to the tool handle.

ReachTool = ‖ ~pG − ~pH‖2 < kg, (5.1)

where kg is a constant that is set to the half that of the length of the gripper’s claws.

• Grasp-Tool: The gripper grabs the tool handle.

GraspTool = ReachTool ∧
(
θc < ‖ ~pL − ~pR‖2 < θo

)
, (5.2)
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where θc and θo are thresholds for detecting close and open status of the gripper.

• Tool-Reach-Object: The tool end-effector reaches the object.

ToolReachObject = GraspTool ∧
(
‖ ~pE − ~pO‖2 < ko

)
, (5.3)

where ko is a constant that is set to the half that of the length of the tool tip.

• Object-Reach-Target: The object reaches the target.

ObjectReachTarget = GraspTool ∧
(
‖ ~pO − ~pT‖2 < ka

)
, (5.4)

where ka is a constant that is set to the half that of the thickness of the arena boundary

bar.

5.2.2.2 Intermediate reward elements

The intermediate reward elements are negatively correlated to the distance between the

objects in the physics simulation to guide the gripper to the tool, the tool to the object, and

the object to the target. The value of these rewards are between 0 and 1 and are defined as

follows. These reward elements could guide the learning in a more specific manner, between

the completion conditions for the subtasks. (Sec. 5.2.2.1).

• Distance between Gripper and Tool: This continuous reward is negatively corre-

lated with the distance between the gripper pinch position and the tool handle position.

rc1 = 1− tanh2

(
‖ ~pG − ~pH‖2

kw

)
, (5.5)

where kw is a constant that is set to the width of the arena.
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• Distance between Tool and Object: This continuous reward is negatively corre-

lated with the distance between the tool end-effector position and the object position.

rc2 = 1− tanh2

(
‖ ~pE − ~pO‖2

kw

)
, (5.6)

where kw is the same as above.

• Distance between Object and Target: This continuous reward is negatively cor-

related with the distance between the object position and the target position.

rc3 = 1− tanh2

(
‖ ~pO − ~pT‖2

kw

)
, (5.7)

where kw is the same as above.

5.2.2.3 Reward shaping

Using the reward elements described above, the four different reward schemes are defined.

The first is the stepwise composite reward with intermediate elements, which includes both

subtask completion and intermediate reward elements. The second is the stepwise composite

reward without intermediate elements that only use the subtask completion reward elements.

For the first and second reward schemes, the amount of reward between the subtasks do not

overlap, where the amount of reward is increased stepwise when one subtask is completed.

For example, the maximum reward for the first subtask completion does not exceed the

minimum reward for the second subtask. The third one is one sparse reward, where the

reward is given only when the final task (moving the object to the target using the tool) is

completed. Finally, the last one is all reward elements without stepwise order where all the

reward elements are always provided, but not in a stepwise manner as in the first and the

second schemes. Details of each reward shaping scheme are described below.

(1) Stepwise composite reward with intermediate elements
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(stepwise-intermediate): This reward scheme consists of subtask completion reward

elements (Sec. 5.2.2.1) and the intermediate reward elements (Sec. 5.2.2.2). In this

condition, the agent can continuously receive the intermediate reward signals to guide

itself to complete the next sequential subtask. The amounts of reward between the

sequential subtasks are designed not to be overlap, so that the maximum reward for

a subtask does not exceed the minimum reward for the next subtask. The reward is

given at each time step and an episode ends when the task is successfully completed

(i.e. ObjectReachTarget is True). Once the task is successfully completed, a bonus

reward 300 is given along with a reward for the speed at which the task is completed.

r{ ~pG, ~pL, ~pR, ~pH , ~pE , ~pO, ~pT } =



300.0 + ks × (smax − sk) if ObjectReachTarget (Eq. 5.4)

1.5 + 1.5× rc3 if ¬ObjectReachTarget

∧ToolReachObject (Eq. 5.3)

0.25 + 1.25× rc2 if ¬ObjectReachTarget

∧¬ToolReachObject

∧GraspTool (Eq. 5.2)

0.125 if ¬ObjectReachTarget

∧¬ToolReachObject

∧¬GraspTool

∧ReachTool (Eq. 5.1)

0 + 0.125× rc1 otherwise

(5.8)

where smax is the maximum time step for each episode (500 steps) and sk is the time

steps so far. ks is a constant for weighting the speed of the task completion, which is set

to 3.0. rc1, rc2, and rc3 are the intermediate reward elements that are negatively cor-

related with the distance between the gripper and the tool (Eq. 5.5), between the tool

and the object (Eq. 5.6), and between the object and the target (Eq. 5.7), respectively.

(2) Stepwise composite reward without intermediate elements (stepwise-no-
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intermediate): This reward scheme only consists of the subtask completion reward

elements (Sec. 5.2.2.1) such that the intermediate continuous reward elements are not

used. In this reward scheme, the agent only gets increased reward when it completes

the next sequential subtask. The other conditions are the same as in (1).

r{ ~pG, ~pL, ~pR, ~pH , ~pE , ~pO, ~pT } =



300.0 + ks × (smax − sk) if ObjectReachTarget (Eq. 5.4)

3.0 if ¬ObjectReachTarget

∧ToolReachObject (Eq. 5.3)

1.5 if ¬ObjectReachTarget

∧¬ToolReachObject

∧GraspTool (Eq. 5.2)

0.125 if ¬ObjectReachTarget

∧¬ToolReachObject

∧¬GraspTool

∧ReachTool (Eq. 5.1)

0 otherwise

(5.9)

where smax, sk, and ks are defined and initialized as above.

(3) One sparse reward (one-sparse): The reward is given only when the final subtask

is completed, where the agent moves the object to the target location using the tool.

Otherwise, the agent receives zero reward. Once the task is completed, it will receive

the reward 300 plus the reward for the speed at which the task is completed, just like

the others.

r{ ~pG, ~pL, ~pR, ~pH , ~pE , ~pO, ~pT } =

 300.0 + ks × (smax − sk) if ObjectReachTarget

0 otherwise
(5.10)

where smax, sk, and ks are defined and initialized as above.
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(4) All reward elements without stepwise order (no-stepwise-all): In this reward

scheme, all reward elements are always provided, but not in a stepwise manner. Until

completing the final task, the agent receives the combination of the all reward elements

except the bonus reward for the final task. Once the final task is completed, the bonus

reward of 300 along with the task completion speed reward is given.

r{ ~pG, ~pL, ~pR, ~pH , ~pE , ~pO, ~pT } =

 300.0 + ks × (smax − sk) if ObjectReachTarget

0.125× rc1 + 1.25× rc2 + 1.5× rc3 otherwise
(5.11)

where smax, sk, ks, rc1, rc2, and rc3 are defined and initialized as above.

5.2.3 Deep RL Method: Actor-Critic Policy Gradient Method using Kronecker-Factored

Trust Region

For training the model, a deep reinforcement learning method called Actor Critic using

Kronecker-Factored Trust Region (ACKTR) [149] was used. ACKTR is a policy gradient

method using actor critic architecture with natural gradient, which was recently proposed as

a more efficient (in sample complexity) policy gradient reinforcement learning method than

other cutting-edge policy gradient methods such as Asynchronous Advantage Actor Critic

(A3C) [82] or Trust Region Policy Optimization (TRPO) [112].

The following sections describe details about the ACKTR method including a brief de-

scription about policy gradient methods, actor critic methods, natural gradient, and applying

the method for continuous action spaces. Lastly, the neural network architecture used in this

dissertation and the overview of the method are described. Some parts of the descriptions

about policy gradient methods and actor critic methods follow [124, 125].

5.2.3.1 Policy Gradient Methods

In reinforcement learning, policy gradient methods directly learn a parameterized policy

that produces actions without considering values of the actions, while action value methods
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such as Deep Q-Network (DQN) [83] and its variants [53, 136, 132] learn action values that

are used to select actions.

There are some advantages of policy gradient methods over action value methods as

described in [125]. Policy gradient methods can learn probabilities of taking actions, learn

the proper amount of exploration, and approach asymptotically to deterministic policies,

which is not possible with the ε-greedy and the action value methods. Policy gradient

methods more generally work on various tasks than action value methods, while action value

methods are more sample efficient when they work. Also, as mentioned in [113], DQN has

shown good performance with discrete action spaces such as Atari games [83, 14], but has

not shown good performance with continuous control spaces such as in [20, 37].

Policy gradient methods learn the policy parameters according to the gradient of some

performance measure J(θt) with respect to the policy parameters. The methods update the

gradient ascent approximation to maximize the performance. In general, a method following

Eq. 5.12 is called policy gradient method.

θt+1 = θt + α∇̂J(θt), (5.12)

where θt is the policy parameter vector at time t. ∇J(θt) is the stochastic estimate that

approximates the gradient of the performance measure J(θt), with respect to θt, and ̂

represents the expected value. α is a step size for the update.

To approximate ∇J(θt) in Eq. 5.12, the policy gradient theorem (Eq. 5.13) establishes an

analytical expression for the gradient of the performance measure with respect to the policy

parameters, without computing the derivative of the state distribution.

∇J(θt) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇θπ(a|s,θ), (5.13)

where π is the policy corresponding to parameter vector θ, and the gradients are vectors of

75



1: Initialize the policy parameter θ
2: for counter = 0 to maximum iteration M do
3: Sample an episode S0, A0, R1, ..., ST−1, AT−1, RT , following π
4: for each step t = 0, ..., T − 1 do
5: G← return from step t
6: θ ← θ + αγtG∇θln π(At|St,θ)

Figure 5.1: REINFORCE algorithm pseudocode [125]

partial derivatives with respect to θ. The policy π(a|s,θ) is the probability of taking action

a at time t given a state s at time t with policy parameter θ. qπ(s, a) is the value of taking

action a in state s under policy π. The term µ is the on-policy distribution following π. The

notation ∝ means ‘proportional to’.

From Eq. 5.12 and 5.13, the REINFORCE algorithm [141] leads to Eq. 5.14.

θt+1 ≡ θt + αGt
∇θπ(At|St,θt)
π(At|St,θt)

, (5.14)

where at time t, At is the sampled action by π(a|St,θ) in the state St given the policy

parameter θ. Gt is the return (cumulative discounted reward) following time t. The symbol

≡ means ‘is equal by definition to’. The REINFORCE algorithm uses full return from time

t, including all future rewards until the end of the episode. In other words, the REINFORCE

algorithm is a Monte Carlo algorithm that performs all updates while looking back at the

values stored at each time step after the episode is completed. The pseudocode of the

REINFORCE algorithm is shown in Fig. 5.1, where ∇θln π(At|St,θ) is the compact form of

∇θπ(At|St,θt)
π(At|St,θt) in Eq. 5.14, using the identity ∇ln x = ∇x

x
.

76



5.2.3.2 Actor-Critic Method

Modifying the REINFORCE algorithm to incorporate a baseline (the return Gt is sub-

tracted by the baseline b(St) [141, 124], as follows) reduces the variance of the estimates so

that the learning speed increases.

θt+1 ≡ θt + α (Gt − b(St))
∇θπ(At|St,θt)
π(At|St,θt)

, (5.15)

To estimate a baseline, a state value function v̂(St,w) can be learned, where w is a weight

vector for the value function. In an actor-critic method, a state value function is used as a

baseline and also for bootstrapping. Bootstrapping means that a state value function is used

for estimating the subsequent state’s values. By modifying Eq. 5.15, a k-step actor-critic

method can be formulated as follows [82, 125].

θt+1 ≡ θt + αθ (Gt:t+k − v̂(St,w))
∇θπ(At|St,θt)
π(At|St,θt)

(5.16)

= θt + αθAπ(St, At)
∇θπ(At|St,θt)
π(At|St,θt)

, (5.17)

where αθ is a step size for the policy parameter vector θ update. Aπ(St, At) is called the

advantage function. The advantage function for a k-step method can be generalized as,

Aπ(St, At) =
k−1∑
i=0

γiR(St+i, At+i) + γkv̂(St+k,w)− v̂(St,w) (5.18)

where v̂(St,w) is 0 if St is the terminal state of the episode.

The value function parameter vector w can be updated using the advantage estimates
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as:

wt+1 = wt + αwAπ(St, At)∇wv̂(St,w), (5.19)

where αw is a step size for the w update.

5.2.3.3 Actor Critic with Natural Gradient using K-FAC

Although policy gradient methods with deep neural networks have demonstrated good

performance in control tasks such as Atari games and continuous action control tasks, there

is a challenge of choosing the right step size for updating the parameters. If a step size is too

small, the learning is seriously slow. If the step size is too large, it can be overwhelmed by the

noise of the function approximation and/or cause a catastrophic degradation in performance

[106]. Choosing an inappropriate step size adversely affects reinforcement learning more than

supervised learning, because a bad step size can cause a bad policy which in turn collects

bad samples under the bad policy from the next batch. As a consequence, it cannot recover

from the bad policy and bad sampling cycle, so that performance collapses.

To attack this problem, instead of using stochastic gradient descent (SGD) that is com-

monly used in deep NN and deep RL, trust region policy optimization (TRPO) [112] was

proposed, where the surrogate objective function is maximized, subject to a constraint or a

penalty for step sizes for policy update, as follows.

• With a constraint:

maximize
θ

Êt
[
πθ(at|st)
πθold(at|st)

Âπt

]
(5.20)

subject to Ê [KL[πθold(·|st), πθ(·|st)]] ≤ δ, (5.21)
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• With a penalty:

maximize
θ

Êt
[
πθ(at|st)
πθold(at|st)

Âπt − βKL[πθold(·|st), πθ(·|st)]
]
, (5.22)

where θold is the policy parameter vector before the update, Âπt is the advantage function

estimator at time step t, and KL is the Kullback-Leibler (KL) divergence [67] between the

two probability distributions to measure how one diverges from the other. πθ(·|st) is the

policy distribution of all actions given a state s at time step t with the policy parameter θ.

In continuous action space, πθ(·|st) is a multidimensional normal distribution as described in

Sec. 5.2.3.4; in discrete action space, it is a multinomial distribution over the discrete actions.

Linear approximation to the objective (Eq. 5.20) and the quadratic approximation to the

KL term are used, which is called the natural policy gradient. However, TRPO, in practice,

shows poor performance for large neural network models suffering sample inefficiency because

the approximations above for the conjugate gradient requires large number of samples for

each batch update and large amount of computation.

Alternatively, a recently proposed Kronecker-factored approximated curvature (K-FAC)

can be used, which is a scalable approximation to the Fisher information matrix, a local

quadratic approximation to the KL divergence, to perform efficient approximation for the

natural gradient updates [79, 48]. This technique showed it can speed up training of large

neural network models in supervised learning, where a running average of curvature infor-

mation is kept to enable to use of small samples for the batch update. Motivated by this

work, a scalable trust region optimization algorithm using K-FAC for actor-critic methods

called Actor Critic using Kronecker-Factored Trust Region (ACKTR) was proposed [149].

In this dissertation, the ACKTR algorithm is used for updating both the policy network

(actor) and the value network (critic).
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5.2.3.4 Policy Parameterization for Continuous Actions

Policy gradient methods provide a useful way to tackle continuous action spaces where

infinite number of actions exist. Selecting actions for discrete action spaces and for contin-

uous action spaces should be different. For discrete action spaces, numerical preferences for

each action in a state are the outputs of the policy network. From the numerical preferences,

the actions with highest probabilities in each state are selected according to an exponential

softmax distribution. However, for continuous action spaces, instead of using learned prob-

abilities for each action, the outputs of the policy network are two real number vectors; one

for the mean µ and the other for the standard deviation σ of a multidimensional normal dis-

tribution as used in [72, 125]. The vector size (the number of normal distributions) matches

the number of actions. In the tool-use environment that consists of three arm joints and one

gripper joint, the number of normal distributions is four. The probability density function

for the normal distribution is:

f(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (5.23)

where π in this equation is the mathematical constant (≈ 3.141592). The actions are sampled

from the multidimensional normal distributions following µ and σ vectors from the policy

network. The last layer of the policy network for the µ vectors can be a linear layer, while the

approximation for σ can be an exponential of the linear output since the standard deviation

should be a positive real number.

5.2.3.5 Neural Network Architecture

For the policy network architecture, three dense hidden layers are used where the size

of 64, 64, and 32 neurons are used for the hidden layers h1, h2, and h3, respectively. For

the hidden layers, a tanh activation function is used. The output dense layer consists of
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8 neurons, and no activation function is applied (linear units). Exponential functions are

applied to the four of the output values to represent the standard deviation σ.

For the value network architecture, three dense hidden layers are used as well, where the

size of 64, 64, and 32 neurons are used for the hidden layers h1, h2, and h3, respectively.

The exponential linear unit (ELU) [30] activation function is applied for the hidden layers.

The output is one neuron densely connected to the hidden layer h3, without an activation

function.

Finally, Fig. 5.2 shows the overview diagram of the actor-critic architecture in the task.

At time t, the reward rt and state St are sampled from the tool-use environment. The

observed state St are fed into the policy network (the actor with parameter vector θ) and

the value network (the critic with parameter vector w). Next, the policy network produces

the stochastic policy π(At|St,θ) that consists of the mean µ and the standard deviation σ

vectors of the four dimensional normal distributions. The actions At for each joint (the motor

force vector for the joints) are sampled from the multidimensional normal distributions. The

sampled action vector At are fed into the advantage function and used to take the next

action step as well. Also, the value network estimates the value of the state v̂(St,w) which

is fed into the advantage function. The advantage function Aπ(St, At) keeps the values of

At, v̂(St,w), and the reward rt for k time steps, then use them to update the policy and

value parameters (θ and w) using the natural gradient for the trust region update. The

environment receives the sampled action vector At, takes the next step, and produces the

new state and reward (St+1 and rt+1).

5.3 Experiments

The model was trained with each of the four reward schemes. For each of the four reward

schemes, five model instances were trained simultaneously with five different random seeds

for about 24,000 iterations (about 2 days and several hours) on a machine equipped with
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Figure 5.2: Overview of the actor-critic architecture with the tool-use environment. At time
t, reward rt and state St are sampled from the tool-use environment. The observed state St
are fed into the policy network (the actor with parameter vector θ) and the value network
(the critic with parameter vector w). Next, the policy network produces the stochastic
policy π(At|St,θ) that consists of the mean µ and the standard deviation σ vectors of four
dimensional normal distributions. The actions At for each joint (the motor torque vector
for the joints) are sampled from the multidimensional normal distributions. The sampled
action vector At are fed into the advantage function and used to take the next action. Also,
the value network estimates the value of the state v̂(St,w) which is fed into the advantage
function. The advantage function Aπ(St, At) keeps the values of At, v̂(St,w), and the reward
rt for k time steps, then use them to update the policy and value parameters (θ and w)
using the natural gradient for the trust region update. The environment receives the sampled
action vector At, take a next step, and produces the new state and reward (St+1 and rt+1).
See text in Sec. 5.2.3 for details.
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an Intel Core i7 CPU (6700K Quad Core) and an NVIDIA TITAN X GPU (Pascal). One

iteration consisted of 2,500 steps so that the total steps taken for the training were about 60

million. For the implementation of the experiments, OpenAI Gym [20], baselines [34], and

TensorFlow [1] were utilized.

After training the models, the best models with the highest episode reward means were

selected for each of the four reward schemes. Next, the selected models were compared by

running them with the trained policy networks for 1,000 episodes. Success rates, episode

rewards, and episode lengths were compared. In addition, those performance measures were

compared for all five trained models as well.

The number of maximum time steps for an episode was set to 500 steps, where 1 time

step simulates 0.01 seconds. If the task completion condition (i.e. moving the object to the

target location using the tool) is completed before reaching the maximum time steps, the

episode ends early and the remaining time steps are counted as an extra reward for the task

completion speed. During the training of each model, the episode reward means and the

episode length means were recorded.

The input vector (the observed state St at time t) for the model consisted of the positions

and velocities of the four joints, ~pG, ~pH , ~pE, ~pO, ‖ ~pL − ~pR‖, ‖ ~pG − ~pH‖, ‖ ~pE − ~pO‖, and

‖ ~pO − ~pT‖. The input vectors were normalized using running estimates of the means and

standard deviations. In each time step, there was a relatively small penalty in reward that

is proportional to the forces applied to the joints.

5.4 Results and Analysis

This section presents the results of training the models with the four different reward

schemes. In brief, the stepwise-intermediate and stepwise-no-intermediate reward schemes

could lead to successful learning, with both showing comparable performance. Both one-

sparse and no-stepwise-all reward schemes could not make progress on tool-use learning,
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where none of the five instances for each scheme could learn even the first subtask (i.e.

Reach-Tool). In the following sections, I will present the behavior analysis and performance

comparison of the trained agents, followed by the learning curve comparison.

5.4.1 Behavior analysis of the trained agents

In this section, I will describe qualitative behavior analysis of the trained models. The

stepwise-intermediate and stepwise-no-intermediate reward schemes could train agents that

can complete the tool-use task successfully, while none of the agents trained with the other

one-sparse and no-stepwise-all schemes could complete the task successfully even for the

first subtask (i.e. Reach-Tool).

Fig. 5.3 shows an example of the tool-use task episode from the learned model with

stepwise-intermediate (the model marked with the blue learning curve in Fig. 5.9), where

the screen shots of the subtask completions are shown. Fig. 5.3a shows initial locations of

the arm, tool, and object. The tool location is the same for all episodes. The object location

is selected by random beyond the arm’s reach and the arm can be located either to the right

or to the left side of the tool. To complete the first and the second subtasks (i.e. Reach-Tool

and Grasp-Tool), the agent first opens the gripper and bends the arm while approaching

the tool handle (Fig. 5.3b). When approaching the tool handle, the agent should learn to

approach the tool handle in the proper direction so that the gripper does not hit the tool.

Moving the gripper directly to the tool without bending the arm from the start positions

causes it to hit the tool. As a consequence, the tool moves away to a distance that the

arm cannot reach as shown in Fig. 5.4. Therefore, to prevent this, the agent learned to

bend the arm first and then approach the tool to place the tool handle between the grippers

(Fig. 5.3c). Note that I did not give any specific guidance for this kind of behavior. When

the gripper reaches the tool handle, the agent closes the gripper to grasp the tool and then

manipulates the tool toward the object while keeping the gripper closed (Fig. 5.3d and 5.3e).
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(a) Start

(b) Open gripper and bend arm

(c) Reach to tool

(d) Grasp tool

(e) Move tool to object

(f) Move object to target (bottom bar)

Figure 5.3: Successful example of the tool-use task, where the screen shots of the subtasks
completion are shown. (a) shows initial locations of the tool, object and arm. For each
episode, the object location is randomly selected out of the arm reach, the tool location is
fixed, and the arm location is either right or left side of the tool. (b) Open the gripper
and bend the arm. (c) Reach the tool handle. (d) Grasp the tool. After grasping the tool,
the agent need to keep the gripper closed to manipulate the tool. (e) Move the tool (tool
end-effector) to the object. (f) Move the object to the bottom bar (target) using the tool.
See text for details.
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(a) (b)

Figure 5.4: Examples of unsuccessful episodes. In both screen shots (a) and (b), the arm hit
the tool and as a result the tool moves away to a distance that the arm cannot reach.

Then, finally it moves the object to the target location (the bottom boundary) using the

tool (Fig. 5.3f)

The agents trained with one-sparse and no-stepwise-all could not learn to complete even

the first subtask Reach-Tool. The agents trained with one-sparse converged to one type

of behavior that is to stay in the same location. This behavior is to minimize the reward

penalty of the joint forces, which is in turn a locally optimal behavior because no other reward

signals are given until the last subtask Object-Reach-Target is completed. Stumbling into

the solution for the last subtask by random exploration happens to be very unlikely in tasks

such as tool-use where several subtasks need to be satisfied in a specific order. On the other

hand, the agent trained with no-stepwise-all did not show a convergence to a certain behavior

type. They tend to move randomly because of the noisy reward signal that is irrelevant to

the completion of the first subtask Reach-Tool.

The agents with successful task learning (trained with stepwise-intermediate and stepwise-

no-intermediate) developed different behavioral strategies. The differences in behavior of a

successful agent are not due to different reward schemes but because of the different random

seed. Under different random seeds, the initial locations in the parameter space are different
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and they ended up in good enough local optima with. For example, one type of success-

ful behavior was that once the agent grasps the tool, the agent directly moves towards the

object location. In another type of behavior, the agent extends the arm after grasping the

tool then moves to the left boundary and then to the right boundary. While the first type

looks like an appropriate way of completing the task, the second type also completes the

task. Interestingly, while the agent with the first type learns to complete the tasks faster

than the other type (Fig. 5.7), the second type showed a little higher success rate (Fig. 5.5)

by developing stable controls with fewer mistakes than the first type. The overall average

rewards were a bit higher for the first type than the second type (Fig. 5.6) due to the shorter

episode length leading to higher reward.

5.4.2 Comparing performance of the trained agents

In this section, first, the best models for each reward scheme were selected and run

with the trained policies for 1,000 episodes. From the test running results, the average of

success rates, episode rewards, and episode lengths were compared. In brief, the best models

from stepwise-intermediate and stepwise-no-intermediate reward schemes show much better

performance than the other two models from one-sparse and no-stepwise-all. The first two

models showed higher success rates, higher episode rewards, and shorter episode lengths

than the latter two models. The differences between the first two models were very subtle.

These results indicate that the reward shaping in a stepwise manner is effective for the

tasks such as tool-use that consists of several subtasks arranged in specific order. Also, it

indicates that the intermediate reward elements (e.g. continuously presenting distances to

subtask goal statuses) are not necessarily helpful once stepwise reward shaping is applied

appropriately. In addition to the comparison of the best models, all five models trained with

different random seeds for each scheme were compared. The results are plotted and shows

similar trends to the best model comparison. The details are described in the rest of the
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section.

Fig. 5.5 shows the success rate of the best models for each reward scheme. The best

models from the five different random seeds for each of the four reward schemes were se-

lected and ran for 1,000 episodes with the trained policy networks. An episode was counted

as success if the last subtask (Object-Reach-Target) is satisfied. The bar-plots show the

success rates of each reward scheme’s best model. From the leftmost bar to the right, the

results of the stepwise-intermediate, stepwise-no-intermediate, one-sparse, and no-stepwise-

all are plotted. The stepwise-intermediate (success rate: 93%) and stepwise-no-intermediate

(success rate: 96%) show success rates over 90% where the latter one is slightly higher than

the first one. The one-sparse and no-stepwise-all never completed the task.

Fig. 5.6 shows the mean episode reward of the best models’ 1,000-episode run for each

scheme. For this comparison, the reward scheme no-stepwise-all was used to make sure all

intermediate continuous rewards are always given even though subtasks are not completed.

From the leftmost bar to the right, the results of the stepwise-intermediate, stepwise-no-

intermediate, one-sparse, and no-stepwise-all are plotted. The stepwise-intermediate (mean

reward: 1615.4) and stepwise-no-intermediate (mean reward: 1607.3) show much higher

reward means than the one-sparse (mean reward: 794.2) and no-stepwise-all (mean reward:

776.3). The no-stepwise-all (std: 88.1) has a larger standard deviation than one-sparse (std:

50.4) even though they both could not learn the first subtask (Reach-Tool) and have similar

mean reward. This is because the agent one-sparse learning was converged to minimize

joint movement (staying without much moving) while the no-stepwise-all learning could not

converge to any behavior (kind of random moves).

Fig. 5.7 shows the mean episode length of the best models. An episode ends early when

the episode satisfies the last subtask (Object-Reach-Target) before it reaches the maximum

time steps (500 steps). The bar-plots show the mean episode length of each scheme’s best

model. From the leftmost bar to the right, the results of the stepwise-intermediate, stepwise-
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Figure 5.5: Success rate comparison for the best models. The best models from the five
different random seeds for each of the four reward schemes were selected and ran for 1,000
episodes with the trained policy networks. An episode was counted as success if the last
subtask (Object Reach Target) is satisfied. The bar-plots show the success rates of each
reward scheme’s best model. From the leftmost bar to the right, the results of the stepwise-
intermediate, stepwise-no-intermediate, one-sparse, and no-stepwise-all are plotted. The
stepwise-intermediate (success rate: 93%) and stepwise-no-intermediate (success rate: 96%)
show success rates over 90% where the latter one is slightly higher than the first one. The
one-sparse and no-stepwise-all never completed the task.
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Figure 5.6: Mean episode reward for the best models. The best models for each reward
schemes were selected and run for 1,000 episodes with the trained policies. The bar-plots
show the mean episode reward of each scheme’s best model. For this comparison, the re-
ward scheme no-stepwise-all was used to make sure all kinds of rewards are always given
even though subtasks are not completed. From the leftmost bar to the right, the results
of the stepwise-intermediate, stepwise-no-intermediate, one-sparse, and no-stepwise-all are
plotted. The stepwise-intermediate (mean reward: 1615.4) and stepwise-no-intermediate
(mean reward: 1607.3) show much higher reward means than the one-sparse (mean reward:
794.2) and no-stepwise-all (mean reward: 776.3). The no-stepwise-all has a larger standard
deviation than one-sparse even though they both could not learn the first subtask (Reach
Tool) and have similar mean reward. This is because the agent one-sparse learning was con-
verged to minimize joint movement (staying without much moving) while the no-stepwise-all
learning could not converge to any behavior (kind of random moves).
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Figure 5.7: Mean episode length for the best models. The best models for each reward
scheme were selected and run for 1,000 episodes with the trained policies. An episode length
ends early when the episode satisfies the last subtask (Object Reach Target) before it reaches
the maximum time steps (500 steps). The stepwise-intermediate (mean length: 135.5 steps)
and stepwise-no-intermediate (mean length: 136.8 steps) show shorter mean episode length
than the maximum steps where the first one shows slightly shorter mean episode length.
This may be the reason why the stepwise-intermediate scheme shows better mean reward
than stepwise-no-intermediate in Fig. 5.6 even though the one has lower success rate than the
latter one in Fig. 5.5. The best model from stepwise-intermediate learned a behavior where
the tool end-effector is moved directly towards the object while the stepwise-no-intermediate
learned a behavior where the tool is moved to the left and right boundary with a full stretch of
the arm. However, the first one (stepwise-intermediate) makes more mistakes than the latter
one (stepwise-no-intermediate) when grasping the tool and moving the tool end-effector to
the object. In sum, the stepwise-intermediate scheme learned to complete the task faster
than the stepwise-no-intermediate, while the latter learned to perform the task more stably
than the former. Note that this behavioral difference did not come from the different reward
schemes. The different random seeds played a role in the behavioral differences. We can say
that both schemes led to good enough local optima. The one-sparse (length mean: 500.0
steps) and no-stepwise-all (length mean: 500.0 steps) never completed the tasks.
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(a) Success rates (b) Mean episode reward

(c) Mean episode length

Figure 5.8: Comparison of all five models (including all different random seeds) for each
reward scheme. All five models for each scheme trained with different random seeds were
compared by running for 1,000 episodes with the learned polices. The trends are similar
to the comparison of the best models, where the stepwise-intermediate and the stepwise-
no-intermediate schemes show higher success rate, higher mean episode reward, and shorter
mean episode length than the one-sparse and the no-stepwise-all schemes. The differences
between the stepwise-intermediate and the stepwise-no-intermediate schemes are very subtle.
The stepwise-intermediate and the stepwise-no-intermediate schemes show degraded values
(lower success rates, lower mean episode reward, and longer mean episode length) compared
to the best models because the models here include unsuccessful learnings. The one-sparse
and the no-stepwise-all schemes have almost the same values (success rates, mean episode
reward, and mean episode length) to the best models.
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no-intermediate, one-sparse, and no-stepwise-all are plotted. The stepwise-intermediate

(mean length: 135.5 steps) and stepwise-no-intermediate (mean length: 136.8 steps) show

shorter mean episode length than the maximum steps where the first one shows slightly

shorter mean episode length. This may be the reason why the stepwise-intermediate scheme

shows a bit better mean reward than stepwise-no-intermediate in Fig. 5.6 even though the

one has lower success rate than the latter one in Fig. 5.5. The best model from stepwise-

intermediate learned a behavior where the tool end-effector is moved directly towards the

object while the stepwise-no-intermediate learned a behavior where the tool os moved to

the left and right boundary with a full stretch of the arm. However, the first one (stepwise-

intermediate) makes more mistakes than the latter one (stepwise-no-intermediate) when

grasping the tool and moving the tool end-effector to the object. In sum, the stepwise-

intermediate scheme learned to complete the task faster than the stepwise-no-intermediate,

while the latter learned to perform the task more stably than the former. Note that this

behavioral difference did not come from the different reward schemes. The different random

seeds played a role in the behavioral differences. We can say that both schemes led to good

enough local optima. The one-sparse (length mean: 500.0 steps) and no-stepwise-all (length

mean: 500.0 steps) never completed the tasks.

The comparison of all five models (including all different random seeds) for each scheme

is presented in Fig. 5.8. All five models for each reward scheme trained with different ran-

dom seeds were compared by running for 1,000 episodes with the learned polices. The trends

are similar to the comparison of the best models, where the stepwise-intermediate and the

stepwise-no-intermediate schemes show higher success rate, higher mean episode reward,

and shorter mean episode length than the one-sparse and the no-stepwise-all schemes. The

differences between the stepwise-intermediate and the stepwise-no-intermediate schemes are

very subtle. The stepwise-intermediate and the stepwise-no-intermediate schemes show de-

graded values (lower success rates, lower mean episode reward, and longer mean episode
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length) compared to the best models because the models here include unsuccessful learn-

ings. The one-sparse and the no-stepwise-all schemes have almost the same values (success

rates, mean episode reward, and mean episode length) to the best models.

5.4.3 Learning curves

5.4.3.1 Stepwise composite reward with intermediate elements (stepwise-intermediate)

Fig. 5.9 shows the mean episode reward and mean episode length for each iteration during

training. The five model instances were trained simultaneously with five different random

seeds for 24,000 iterations at most (2 days and 4 hours). Different colors mean different

random seeds. One iteration consisted of 2,500 steps so that the total steps taken for the

training were 60 millions at most. The reason why different random seeds lead to different

total iterations is that some random seeds (e.g. the blue and red learning curves) successfully

learned the task so that the successful episodes completed early as in the Fig. 5.9b, while some

others (e.g. the orange and sky-blue learning curves) could not learn the task successfully so

the episode lengths were equal to the maximum episode steps (500 steps). As stated in [54],

deep reinforcement learning is known to show variance in results according to stochasticity

in the environments or the learning process (such as random weight initialization), which is

an open problem that needs further studies.

Fig. 5.9a shows the mean episode reward during training. The two models (the blue and

red learning curves) learned the task successfully after around 12,000 iterations and reached

about 1,400 mean reward. The pink case reached an intermediate performance, and then

stayed at the plateau. The orange and sky-blue cases could not learn the task successfully.

They struggled to learn the reach/grab subtasks and could not make further progress.

Fig. 5.9b shows mean episode length during training. Successful cases (the blue and red

learning curves) show shorter episode lengths as they show higher rewards in Fig. 5.9a and

converge to a solution about 150 steps, while the others show longer episode length (the pink
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(a) Mean episode reward

(b) Mean episode length

Figure 5.9: Learning curve for different random seeds under stepwise composite reward
with intermediate elements (stepwise-intermediate): Mean episode reward and mean episode
length during the training with five different random seeds. Different colors mean different
random seeds. The model was trained for 24,000 iterations at most (2 days and 4 hours). One
iteration consisted of 2,500 steps, so the total steps taken for the training were 60M at most.
The reason why different random seeds lead to different total iterations is that some random
seeds (the blue and red learning curves) successfully learned the tasks and complete a task
early as in the Fig. 5.9b, while some others (the orange and sky-blue learning curves) could
not learn the task successfully so the episode lengths were equal to the maximum episode
steps (500 steps). (a) Mean episode reward during training. The two models (the blue and
red learning curves) learned the task successfully around 12,000 iterations and reached about
1400 reward. The pink case reached an intermediate performance and stayed at the plateau.
The orange and sky-blue cases could not learn the task successfully. (b) Mean episode length
during training. Successful cases (the blue and red learning curves) show shorter episode
lengths as they show higher rewards, while the others show longer episode length (the pink
learning curve) or maximum episode length (500 steps) as they could not reach the target
for early episode termination.
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learning curve) or maximum episode length (500 steps) as most of the episodes could not

reach the target.

5.4.3.2 Stepwise composite reward without intermediate elements

(stepwise-no-intermediate)

Fig. 5.10 shows the mean episode reward and mean episode length during training with

five different random seeds in the reward scheme of stepwise composite reward without inter-

mediate elements (Eq. 5.9). Different colors mean different random seeds. The five model

instances were trained for 24,000 iterations at most (2 days and 4 hours). One iteration

consists of 2,500 steps, so the total steps taken for the training are 60M at most. The pink

case successfully learned the task at around 7,000 iterations. The orange case learned grad-

ually and reached successful learning state at around 23,000 iterations. The others could

not learn the task. The blue and sky-blue cases could not get out of the plateau, where they

could learn the first two subtasks (i.e. Reach-Tool and Grasp-Tool), but could not learn

the other two subtasks (i.e. Tool-Reach-Object and Object-Reach-Target). The red case

could not show much learning, where it could learn to make the gripper close to the tool

handle, but closes the gripper too early so that it was not able to grasp the tool. Fig. 5.10a

shows mean episode reward during training. The pink case reach about 1,400 reward score

at around 7,000 iterations, and the orange case’s rewards gradually increased and reached

about 1,400 at 23,000 iterations. The blue and sky-blue cases reached around 700 and stayed

that plateau. The red case’s reward stayed around 60, where the agent could not learn to

grasp the tool. Fig. 5.10b shows mean episode length during training. The graph shows

inverse correlation with the graph in (a). The pink case learned to complete the task less

than 200 steps at around 7,000 iterations, and the orange case gradually speed up the task

completion and reach around 200 steps at around 23,000 iterations. The blue and sky-blue

cases were stayed around 450 steps, which means some of the episode completed by luck,
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but could not make further progress. The red case never learned to complete the task, and

the episodes ran to the maximum steps 500.

5.4.3.3 One sparse reward (one-sparse)

Fig. 5.11 shows the mean episode reward and mean episode length during the training

with five different random seeds in the reward scheme of one sparse reward (Eq. 5.10).

Different colors mean different random seeds. The model was trained for 23,000 iterations

at most (2 days and 12 hours). One iteration consisted of 2,500 steps, so the total steps

taken for the training are 57.5M at most. None of the models could learn even to make the

gripper close to the tool. It seems that one of the episode was lucky to complete the task (the

high spike in the red learning curve) at around 900 iterations, but the one lucky trial could

not facilitate further progress. Fig. 5.11a shows the mean episode reward during training.

Obviously, none of the models could get reward (except the red case that got lucky). The

agents learned to reduce the torque penalty, but could not learn any of the subtasks. Fig.

5.11b shows the mean episode length during training. Obviously, none of them learned to

complete the task so that all the episodes lasted to the maximum step of 500.

5.4.3.4 All reward elements without stepwise order (no-stepwise-all)

Fig. 5.12 shows the mean episode reward and mean episode length during training with

five different random seeds in the reward scheme of all reward elements without stepwise

order (Eq. 5.11). Different colors mean different random seeds. The model was trained for

22,000 iterations at most (2 days and 4 hours). One iteration consisted of 2,500 steps, so the

total steps taken for the training were 55M at most. Since all the rewards elements are always

provided in this scheme, the models always show some amounts of reward, but they are all

fluctuating between around 700 and 850, and none of them showed progress. Interestingly,

none of them could not even learn to move the gripper close to the tool even though the

continuous intermediate reward element for the distance between the gripper and the tool is
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(a) Mean episode reward

(b) Mean episode length

Figure 5.10: Learning curve for different random seeds under stepwise composite reward
without intermediate elements (stepwise-no-intermediate): Mean episode reward and mean
episode length during training with five different random seeds. Different colors mean dif-
ferent random seeds. The model instances were trained for 24,000 iterations at most (2
days and 4 hours). One iteration consisted of 2,500 steps, so the total steps taken for the
training are 60M at most. The pink case successfully learned the task at around 7,000 itera-
tions. The orange case learned gradually and reached the successful learning state at around
23,000 iterations. The others could not learn the task. The blue and sky-blue cases could
not get out of the plateau, where they could learn the first two subtasks (i.e. Reach-Tool
and Grasp-Tool), but could not learn to the other two subtasks (i.e. Tool-Reach-Object and
Object-Reach-Target). The red case could not show much learning, where it could learn to
make the gripper close to the tool handle, but closes the gripper too early so that it was not
able to grasp the tool. a) Mean episode reward during training. (b) Mean episode length
during training. The graph shows inverse correlation with the graph in (a). See text for
details.
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(a) Mean episode reward

(b) Mean episode length

Figure 5.11: Learning curve for different random seeds under one sparse reward (one-sparse):
Mean episode reward and mean episode length during the training with five different random
seeds. Different colors mean different random seeds. The model was trained for 23,000
iterations at most (2 days and 12 hours). One iteration consisted of 2,500 steps, so the total
steps taken for the training are 57.5M at most. None of the models could learn even to make
the gripper close to the tool. It seems that one of the episode was lucky to complete the task
(the high spike in the red learning curve) at around 900 iterations, but the one lucky trial
could not facilitate further progress. (a) Mean episode reward during training. Obviously,
none of the models could get reward (except the red case that got lucky). The agents learned
to reduce the torque penalty, but could not learn any of the subtasks. (b) Mean episode
length during training. Obviously, none of them learned to complete the task so that all the
episodes lasted to the maximum step of 500. See text for details.
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provided. This indicates that presenting extra rewards such as the distance between the tool

and the object and/or the one between the object and the target before learning the first

subtasks (reach and grab) affects the learning negatively. In general, rewards unnecessary for

learning the current subtask become noise, which hinders proper learning. This demonstrates

the difficulty of shaping rewards for task consisting of many sequential subtasks such as

tool-use. Fig. 5.12a shows the mean episode reward during training. All rewards fluctuated

between about 700 and 850. None of them learned the first subtask (Reach-Tool). Fig. 5.12b

shows the mean episode length during training. None of them completed the task before

reaching the maximum time step of 500.

5.5 Discussion

Given the gap of the tool-use tasks in AI and Robotics and in deep RL literature, in this

chapter, a more complex tool-use environment is implemented in a physics based simulator.

A contact-rich tool-use environment was proposed and implemented in a physics based sim-

ulator, where four subtasks need to be completed in a specific order in continuous action

spaces. This tool-use environment can be easily used further deep RL algorithm develop-

ment and benchmarks. Also, it is demonstrated that the complex tool-use task consisting

of multiple sequential subtasks can be successfully learned with stepwise composite reward

shaping using a deep reinforcement learning method (ACKTR). It is shown that without

stepwise reward shaping, the intermediate continuous reward elements alone cannot make

the tool-use learning progress although they include all distance information to the subtasks

completions. The difficulty of the tool-use task can be easily adjusted by selecting one of the

four reward schemes, which could be utilized for further deep RL algorithm development as

well.

We learned that designing contact-rich task environment in physics based simulator is not

trivial. We needed to make feasible task environment. There were issues such as penetration
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(a) Mean episode reward

(b) Mean episode length

Figure 5.12: Learning curve for different random seeds under all reward elements without
stepwise order (no-stepwise-all): Mean episode reward and mean episode length during the
training with five different random seeds. Different colors mean different random seeds.
The model was trained for 22,000 iterations at most (2 days and 4 hours). One iteration
consisted of 2,500 steps, so the total steps taken for the training were 55M at most. Since
all the rewards elements are always provided in this scheme, the models always show some
amounts of reward, but they are all fluctuating between around 700 and 850, and none of
them showed progress. Interestingly, none of them could not even learn to move the gripper
close to the tool even though the continuous reward element for the distance between the
gripper and the tool is provided. This indicate that presenting extra rewards such as the
distance between the tool and the object and/or the one between the object and the target
before learning the first subtask (reach) affects the learning negatively. (a) Mean episode
reward during the training. (b) Mean episode length during the training. None of them
learned the first subtask (Reach-Tool) and completed the task before reaching the maximum
time step of 500. See text for details.
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and slip between objects, so that the attributes of the objects including scale, surface, mass,

and maximum joint force needed to be carefully designed. Besides, it was difficult to know

whether the learning fails due to the task environment or algorithm.

We also learned that reward shaping for tool-use is not trivial. Intermediate continuous

reward guides the learning with continuous reward signals, but a continuous reward signal

for a subtask can interrupt another subtask learning. Stepwise reward shaping helps in this

case. We found that if stepwise reward is well shaped, intermediate continuous reward is not

essential for the tool-use learning.

In addition to stepwise reward shaping, hierarchical (or meta) learning or imitation learn-

ing approaches can be used for tool-use learning. In hierarchical learning [8, 66, 39, 41], lower

hierarchies learn subskills and higher hierarchies learn choosing an appropriate subskill given

a state. However, designing hierarchies for subskills could be complex as well. To mitigate

the effort for hierarchy design, automatic discoveries of subskills were demonstrated for sim-

ple tasks (e.g. ant walking in four directions) in the recent years [41]. In imitation learning

[6, 105, 38, 55], expert demonstrations from humans, joystick control, kinesthetic teach-

ing, planning/control algorithm, etc. are given. Agents try to mimic the trajectories from

the demonstrations. However, imitation learning needs many demonstrations and collecting

good trajectories is not trivial. Also mapping demonstrated trajectories from humans to

agents’ body spaces is complex. By combining stepwise reward shaping with hierarchical

learning and imitation learning, more complex tool-use tasks could be learned.

For the future work, we consider a deep NN (RL) and neuroevolution combined approach.

Despite the recent deep RL achievement in many challenging control tasks, some degree of

human knowledge such as reward shaping, human demonstrations, hierarchy design, hyper-

parameter turning, etc. is still required to learn complex tool-use tasks. Also, deep RL

tends to converge to one sub-optimal solution, but it is necessary to try diverse solutions to

solve more complex tool-use tasks such as tool construction. Neuroevolution and deep neural
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network combined approaches have been recently proposed for control tasks in continuous

spaces [31, 122, 109]. These approaches minimize or do not require the human knowledge

mentioned above. In addition, the above neuroevolution approaches have demonstrated to

be able to discover a variety of different ways to solve problems than deep RL algorithms.

The neuroevolution approaches used a large number of CPUs (e.g. 700+ CPU) to run a

large number of populations, which is essential for learning challenging tasks. Although

the neuroevolution approaches above have shown good performance on the typical deep RL

benchmarks, complex tasks such as tool-use have not yet been performed. Therefore, we

consider neuroevolution and deep NN (RL) combined approaches for the future research to

attack more complex tool-use tasks such as tool construction with minimal human knowl-

edge.

5.6 Conclusion

Given the gap of the tool-use tasks in AI and Robotics and in deep RL literature, in

this chapter, a more complex tool-use environment is implemented in a physics simulator.

Also, it is demonstrated that the complex tool-use task consisting of multiple sequential

subtasks can be successfully learned with stepwise composite reward shaping using a deep

reinforcement learning method. First, a contact-rich tool-use environment is proposed and

implemented in a physics based simulator. In the tool-use environment, four subtasks are

required to be completed in a specific order in continuous action spaces. The goal of the

task is to drag a distant object to target locations using a T-shaped tool by controlling

an articulated arm (three joints) with a gripper (one joint). Second, it is demonstrated

that the complex tool-use task consisting of multiple sequential subtasks can be successfully

learned with stepwise composite reward shaping using a deep reinforcement learning method

(ACKTR). The stepwise composite reward schemes are compared to the other two baseline

reward schemes to show the effect of stepwise composite reward shaping. It is shown that
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without stepwise reward shaping, the intermediate continuous reward elements alone cannot

make the tool-use learning progress although they include all distance information to the

subtasks completions. While the intermediate continuous reward can guide the learning

with continuous reward signals, we found that a continuous reward signal for a subtask can

interfere with another subtask learning. In this case, stepwise reward shaping helps. We

found that if a stepwise reward is well shaped, an intermediate continuous reward is not

essential for the tool-use learning. Overall, the tool-use task environment and the findings

with respect to reward shaping in this chapter can be utilized for further deep RL algorithm

development and benchmarks, which could facilitate the development of sensorimotor agents

capable of using tools in the real world.
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6. DISCUSSION AND CONCLUSION

Sensorimotor learning is an essential function of the brain, whether biological or artificial,

to adapt to the changing environment throughout the life of the agent. However, there is

still a lack of understanding about the mechanisms of sensorimotor learning in the brain. In

this dissertation, I investigated three topics to probe the nature of sensorimotor aspects of

learning in the brain, through computational modeling.

(1) Development: Self-organization of the motor map in the cortex.

(2) Internal Dynamics: Predictable internal brain dynamics and its role in authorship of

actions.

(3) Tool-Use with Neuroevolution Controller and with Deep Reinforcement Learning.

The summary and contributions for each topic are as follows.

(1) A sensorimotor agent needs to understand its own body, a map of its own behavior.

Motivated by an experimental study [47] showing a topographical map of complex behav-

iors in the macaque brain, we developed a target reaching gesture map using a biologically

motivated self-organizing map model of the cortex (GCAL model, a simplified yet enhanced

version of the LISSOM model) with two-joint arm movements as input. The resulting ges-

ture map showed a global topographic order based on the target locations. The map was

comparable to the motor map reported in the experimental study [47]. Our work is an

important first step toward a fully motor-based motor map development, and I expect the

findings reported in this work to help us better understand the general nature of cortical

map development in a sensorimotor agent. (Chapter 2)

(2) Previous computer simulation studies showed that neural network controllers with

more predictable internal state dynamics can attain higher performance in harsher or chang-
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ing environments, which also indicates higher chance of survival in evolution [68, 29, 25]. Such

predictable internal state dynamics could be the basis of prediction of external behavior and

authorship of actions. This finding is profound since it implies that the internal state’s prop-

erties can affect the external behavioral performance especially in changing environment, and

predictable internal state dynamics could be a necessarily condition for intelligent agents in

the evolutionary pathway to have authorship of actions and to adapt themselves to changing

environments. However, there was a missing link to connect between the findings from the

simulation studies and the brain. The findings from the simulation study do not necessarily

mean that the internal state dynamics affects the external behavior (authorship of actions)

in the biological brain as well. To fill this gap, we investigated the role of predictability of

internal state dynamics in the brain by analyzing the human EEG data with conscious state

as a surrogate of authorship of actions. We analyzed and predicted inter-peak interval (IPI)

in the internal brain dynamics data (EEG) and discussed the relation between predictable

internal brain dynamics and intelligent behaviors (sensorimotor actions). The results show

that, for all four subjects, on average, both awake state and REM have lower IPI prediction

error than SWS. These results support our hypothesis regarding the predictability of inter-

nal state dynamics and conscious states (i.e., they should be correlated). Our findings show

that the existence of predictable dynamics in the brain and its relation to conscious states

(as a surrogate of authorship of actions), thereby filling the missing connection between the

previous simulation studies [68, 29, 25] and the biological brain. The findings implicate that

the predictable internal state dynamics could be a necessarily condition for intelligent sen-

sorimotor agents in the evolutionary pathway to have authorship of actions and to adapt

themselves to changing environment. A deeper understanding of this connection between

predictable internal dynamics and external behaviors (authorship of actions) can lead to

robust control mechanisms in intelligent sensorimotor agents. (Chapter 3).

(3) Tool-use is a salient indicator of intelligence that requires high levels of sensorimotor
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skill learning and problem solving capabilities. However, tool-use is still largely under-

explored in the field of AI including the DL literature. In this topic, I present environments

and sensorimotor agents where the agents can adapt to use simple or complex tools based

on minimal task knowledge. Specifically, I present a two step approach where I first evolve

neural network controllers for simple tool-use in reaching tasks with minimal task knowledge

followed by analysis of the evolved networks, and then implement a more complex tool-use

task such as dragging an object to a target location using a tool in a physics simulation

environment and demonstrate that deep RL together with composite reward shaping can

learn the complex tool-use task successfully.

In the first step (Chapter 4), we used a neural circuit evolution algorithm that permits

incrementally changing topology (NEAT) to evolve a neural controller for a two degree-of-

freedom articulated limb in target-reaching task. Our results show that minimal, indirect

fitness criteria such as distance to goal, speed to reach the goal, and tool pick-up frequency

are enough to give rise to tool-use behavior. We also found that among the successful

neural circuit controllers, those with more recurrent loops were even more effective. Also,

we presented some analysis of the internal dynamics of evolved neural circuits and correlate

the dynamics with behavior.

In the second step (Chapter 5), a more complex tool-use environment is implemented

in a physics simulator. Also, it is demonstrated that complex tool-use task consisting of

multiple sequential subtasks can be successfully learned with stepwise composite reward

shaping using a cutting edge deep reinforcement learning method. This part makes two

contributions. First, the tool-use environment is presented that consists of four subtasks

to be completed in specific order. The goal of the task is to drag a distant object to the

target location using a T-shaped tool by controlling an articulated arm (three joints) with

a gripper (one joint). To complete the task successfully, the gripper needs to reach the

tool handle, grab the tool, move the tool end-effector to the object, and then finally move
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the object to the target location using the tool. The task is implemented in the MuJoCo

physics simulator for continuous action space control with OpenAI Gym toolkit. This tool-

use task environment could be easily used for further deep RL algorithm development and

benchmarks. Second, stepwise composite reward shaping is investigated for learning the

multiple subtasks in specific order in the tool-use task. It is demonstrated that the tool-

use task can be successfully learned using stepwise composite reward shaping with a deep

RL algorithm called Actor Critic using Kronecker-Factored Trust Region (ACKTR). The

stepwise composite reward scheme is compared to the other two baseline reward schemes to

show the effect of stepwise composite reward shaping. It is shown that the reward function

without stepwise organization could not make progress in learning even though all the reward

elements including continuous intermediate elements are presented. Also, the experiments

show that the difficulty of the tool-use task can be easily controlled by selecting one of the

four reward schemes, which could be utilized for further deep RL algorithm development

and benchmarks.

Overall, the studies in this dissertation are expected to help us understand the nature

of sensorimotor aspects of learning in the brain and even implement them in AI. Also, the

simulation environments and codes used in this dissertation could benefit various future

research in cortical motor map development and in algorithm development for tool-use.
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[110] Bulcsú Sándor, Tim Jahn, Laura Martin, and Claudius Gros. The sensorimotor loop

as a dynamical system: How regular motion primitives may emerge from self-organized

limit cycles. arXiv preprint arXiv:1511.04338, 2015.
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